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What’s so special about adaptation to growth at
high temperature?
Variations in environmental temperature represent an

obvious and easily quantifiable form of environmental hetero-

geneity. Biologists have long been aware of a host of

behavioral, morphological and physiological adaptations to this

environmental variable. Recently, the accumulation of genomic

data has led to an interest in another type of temperature

adaptation. Specifically, we would like to know whether the

genomes themselves - along with their encoded proteomes -

are subject to predictable, temperature-dependent patterns of

molecular evolution.

While variations in environmental temperature share many

of the characteristics of other environmental variables,

temperature is special because of its pervasiveness: it can

penetrate physical barriers and can have dramatic effects on

the structure of virtually all macromolecules. And given

that temperature variation affects all levels of biological

adaptation, we see adaptive responses at all of these levels.

For instance, variations in environmental temperature can

be used to explain the evolution of biological phenomena as

diverse as the migration patterns of birds, on the one hand,

or the density of hydrogen bonds in a nucleic acid sequence,

on the other. 

Adaptations at the genome (DNA) level 
Ever since the experimental demonstration that the thermal

denaturation of double-stranded DNA molecules is affected

by their nucleotide composition [1], biologists have been

intrigued by the possibility that the same principles would

apply in nature. The expectation (which is both perfectly

logical and supported by laboratory experiments) is that the

genomes of organisms growing at higher temperature would

be subject to selection for a higher proportion of G+C than

A+T, because of the increased number of hydrogen bonds

between G and C than A and T on complementary strands.

Despite some early reports of supporting evidence based on

single gene sequences, however, more extensive sequencing

of entire bacterial genomes shows quite convincingly,

although unexpectedly, that there is no obvious correlation

between the G+C content of the genome and the optimal

environmental growth temperature of the organism [2-4].

Indeed, many highly thermophilic species, such as Pyrococcus

abyssi and Aquifex aeolicus, have genomic G+C contents of

less than 50%, while some mesophiles - such as the human

parasite Mycobacterium tuberculosis - have much higher

G+C contents in their genomes. It appears that the large

variations in the average genomic G+C content between

species are largely the result of biased mutation and repair

pressures [5-10]. We must conclude that thermophiles
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have mechanisms other than increasing G+C content for

maintaining the double-stranded structure of their DNA at

high temperatures (Figure 1). Two possibilities are the

existence of thermophile-specific enzymes, such as the

reverse gyrase [11], or selection for certain dinucleotides that

may contribute to thermostability [12].

A number of recent studies (discussed in more detail below)

have shown other sequence differences between mesophiles

and thermophiles, such as the increased level of purine bases

in the coding strands of thermophiles [4,8,13,14]. While

these effects can be detected at the DNA level, and may be

due to the effects of natural selection, they reflect selection

for RNA stability rather than direct selection on DNA.

Adaptations at the transcriptome (RNA) level
The transcriptome includes both the structural RNAs (such

as ribosomal and transfer RNAs, rRNAs and tRNAs) and the

protein-encoding messenger RNAs. One could argue that

these molecules, especially the structural RNAs, would be

subject to the same temperature-dependent constraints as

DNA. Of course, given that the expected correlation between

G+C content of genomic DNA and growth temperature is not

seen, we might expect that the correlation would also be

lacking at the RNA level. But, interestingly, this is not the

case. For instance, Galtier and Lobry [2] demonstrated that

there is a significant correlation between the G+C content of

structural RNAs and growth temperature, and that the high

G+C content was concentrated in the double-stranded stem

regions of the molecule. This provides strong evidence for

selection acting to increase the thermostability of these

regions by changing the nucleotide composition. Indeed, this

enrichment of G and C is so striking that structural RNA

genes virtually identify themselves within the genomes of

hyperthermophiles whose DNA is otherwise AT-rich [15]. 

The effects of natural selection are not limited to the double-

stranded regions of these RNAs, however: selection is also

acting to reduce the G+C content of the single-stranded

regions of rRNA molecules, thus maintaining them in the

single-stranded state [13]. An obvious question that comes to

mind is why we observe the expected correlation between

nucleotide content and growth temperature in the paired

regions of an RNA molecule, but not in double-stranded

DNA. One possible answer is that single mutations affecting

nucleotide composition have a much greater effect on the sta-

bility of the stem regions of an RNA molecule than they do on

double-stranded genomic DNA, simply because the length of

the paired region is much shorter in the RNA molecule. 

In contrast to structural RNAs, the critical feature of the

protein-coding messenger RNAs is not their secondary

structure but their coding capacity. Thus we might not a

priori expect to see strong selection for structural stability in

these molecules. While it is true that a given, specific sec-

ondary structure may not be important for mRNAs, stability

per se is critically important, because it affects the steady-

state level of the genetic message within the cell. There is

now growing evidence [8,13,14,16-18] that all single-

stranded RNA molecules, along with the single-stranded

segments of structural RNAs, show characteristic patterns of

nucleotide composition in all organisms. Specifically, they

are relatively rich in purines, particularly adenine [13,14,16].

Moreover, the degree of purine-richness correlates with

environmental growth temperature. The initial interpretation

of these trends [17] was that they acted to prevent purine-

pyrimidine base pairing between coding sequences. Such

base pairing would be prevented by having a preponderance

of one type of base - either purines or pyrimidines - on the

coding strand. Subsequent studies [4,8,13] indicate,

however, that the selection is specifically for purines. 

Translational efficiency and codon usage at high
temperature
Although different synonymous codons may encode a single

amino acid, there has been considerable interest in the

possibility that some codons are functionally ‘preferred’. The

idea of preferred codons stems from the work of Ikemura [19],

who showed a positive correlation between the frequency of

particular codons and the abundance of their cognate tRNAs.

Over the past two decades, many genomic studies have

attempted to detect clear evidence for selection acting on

synonymous codons, but despite all of these studies it now

appears that the major determinant of synonymous codon

usage on a genome-wide scale is mutational bias rather than

selection [10,20-22]. Despite the dominant effect of

nucleotide composition, recent genomic surveys have shown
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Figure 1
Selection for growth at high temperature affects many molecular
processes simultaneously.
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that environmental growth temperature can have an important

secondary effect on patterns of synonymous codon usage

[8,23,24]. Although there is no obvious explanation for why

particular codons are used preferentially among thermophiles,

the fact that the pattern is repeated within different evolu-

tionary lineages provides strong support for the fact that it is

based on natural selection.

Adaptations at the proteome level 
Given that the thermolability of protein structures - like that

of nucleic acid structures - can easily be demonstrated in the

laboratory, and since protein function depends on protein

structure, we expect the proteins of thermophilic organisms

to have been subjected to intense natural selection for stability

at high temperature. It is, however, difficult to predict the

precise outcome of such selection because the forces governing

protein structure and function are not yet well understood.

Many comparisons of individual protein sequences between

mesophiles and thermophiles have been reported in the

recent literature. Although several of these studies point to

differences between thermophilic proteins and their

mesophilic homologs, different studies have tended to identify

different aspects of protein sequence and structure as con-

tributing to thermostability [25]. The attraction of studying

entire proteomes is that we can hope to identify the more

‘universal’ adaptations underlying protein stability at high

temperature. But, as pointed out by Petsko [26], the problem

with such genome-wide studies is that they may only discover

some of the lowest common denominators for thermal

adaptation at the protein level. 

Most of the proteome-based studies to date have focused on

the average amino-acid composition of proteins in the

proteomes of mesophiles and thermophiles. If we consider

that protein structure is determined to a large extent by the

primary amino-acid sequences, then we can look for consistent

differences in amino-acid composition between the proteins

of thermophiles and mesophiles. Such differences have

been reported for individual genes and in whole-genome

comparisons [8,27-29]. These studies show that while the

average amino-acid composition of a given proteome is

dramatically affected by the underlying patterns of

genomic nucleotide bias [6,9], there is a secondary but

highly significant effect of growth temperature. One study

[21] found a significant effect of nucleotide bias, but did not

reveal any selection on the amino-acid content of thermophilic

proteins. By limiting the analysis to a subset of genomes with

comparable nucleotide compositions, we [8] showed that the

major effect of thermophily at the proteome level was a

significant reduction in the frequency of the thermolabile

amino acids histidine, glutamine and threonine. This is

consistent with the recent observation of increased evolu-

tionary constraint on thermophilic proteomes [30]. The

concomitant increase, among thermophiles, of both positively

charged residues (arginine and lysine) and negatively

charged residues (glutamic acid) suggests that ionic bonds

between oppositely charged residues may help to stabilize

multimeric proteins at high temperature [28]. The proteomes

of thermophiles also contain a larger fraction of proteins

with isoelectric points in the basic range [31], and a general

bias in favor of charged rather than polar residues among

thermophiles has been noted in two separate studies [32,33].

One of the genome-wide surveys [28] also found support for

the conclusions of previous pilot studies (based on one or a

few genes) that there are average length differences between

the proteins of mesophilic and thermophilic species

[32,34,35]. Specifically, the proteins of thermophiles tend to

be somewhat shorter than their mesophilic homologs.

Finally, a number of recent structural genomics studies [36-39]

support the sequence-based studies in that they point to

an increase in intra-helical salt bridges and in hydrogen-

bond formation among thermophiles. The increased

number of salt bridges may contribute to protein stability

at high temperature [40].

Post-translational molecular adaptations in
thermophiles
Most species can survive for short periods of time at tem-

peratures that are significantly higher than their normal

growth temperature. Such a pulse of increased temperature

usually triggers the expression of heat-shock proteins that

act as chaperones to facilitate protein stabilization and

proper protein folding. Such protein chaperones do, in fact,

also play a role in thermophiles [41]. Furthermore, genome-

sequence surveys have uncovered evidence for a novel,

thermophile-specific set molecular chaperones among highly

thermophilic species [42]. Thus, in addition to encoding more

thermostable mRNAs and proteins, thermophilic organisms

may devote more energy to the stabilization of those proteins

at high temperature.

Complications of genome-wide surveys 
Secondary effects of selection 
A significant complication in genomic surveys, although one

that is often ignored, is that the average patterns seen in

genomes and proteomes are not independent; for instance,

the nucleotide composition of the genome can have a

dramatic effect on the amino-acid composition of the

encoded proteome [6,43,44]. Although most of the studies to

date have looked at the effect of G+C content on protein

composition, similar effects will result from other kinds of

genomic biases [45,46]. For instance, a genome whose

coding regions are very rich in purines will necessarily

encode a proteome that is deficient in phenylalanine

residues, and a genome with pyrimidine-rich coding regions

would correspondingly encode few lysines and glutamic

acids. Thus, if the sequences on the coding strand are subject

to selection for increased purine content because of

increased mRNA stability, this selection at the level of RNA

can result in a correlated change in the amino-acid content
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of the proteins, and even in deterministic changes in the

biochemical properties of these proteins - the isoelectric point,

for example. Many recent studies have discussed the possibility

that mutational biases can mimic the effects of selection, but

few authors seem aware of the problem where a selective

effect at one level results in an apparent selective effect at

another level. 

The need for replication 
Large-scale genomic comparisons include, by definition, a

large amount of information. Typically, thousands of genes are

scored and this can give the impression of ample replication,

leading to high statistical confidence in the results. In many

genomic comparisons, however, although very many gene

sequences are included in the analysis, as few as two

genomes may be considered. Any systemic bias in the data

that may occur within a given genome is not corrected by

sampling more genes from the same source; in fact, the

inclusion of more genes simply enhances the problem

[47,48]. Not only do we need to replicate our observations

over many genomes, but we also need to be aware that those

genomes are not independent samples because of their

phylogenetic relationships. For instance, if we compare

several thermophilic species, all of which happen to be

archaea, with several mesophiles, all of which are eubacteria,

we cannot tell if the differences that we observe are due to

the effects of natural selection acting independently on

many genes and genomes, or due to a single event that

occurred early in the phylogenetic history of the two groups

(Figure 2). We must be able to demonstrate that a given

evolutionary solution for growth at high temperatures can

cross phylogenetic boundaries - that it can arise more than

once in the phylogenetic tree of the genomes under study.

Using this approach, Musto et al. [49] have recently

uncovered evidence in favor of a correlation between

genomic GC content and optimal growth temperature.

What about thermophilic eukaryotes? 
The ability to grow at high temperature is relatively

common among archaeal species, and several thermophilic

species of eubacteria have also been described. Among the

eukaryotes, however, thermophily is much rarer [50] and

there are no hyperthermophiles among the eukaryotes. The

upper limit for thermophilic eukaryotes is approximately

60°C [51]. Even at this relatively modest temperature (relative

to those tolerated by thermophilic prokaryotes), we do not

find any complex, multicellular eukaryotes. It has been

suggested that eukaryotes are not thermophilic because of

the susceptibility of their mRNA to degradation at high

temperature [52], and growth at very high temperatures

may also require the presence of special lipids that are not

found in eukaryotes [53]. While these constraints apply to

all eukaryotes, for multicellular animals the temperature

threshold is not set at the molecular level but at the physio-

logical level. Specifically, increasing oxygen demand at

higher temperatures results in depleted oxygen levels in

the body fluids [54]. This explains why multicellular

animals are even more restricted in their temperature

ranges than are microbial eukaryotes (Figures 2 and 3).

Several authors have drawn parallels between thermophilic

and mesophilic microbes on the one hand, and warm- and

cold-blooded vertebrates on the other. In fact, a consider-

able amount of work has been done on the correlation of

differences in genomic G+C content with the body tempera-

ture of animals [55]. Although at first glance there does

appear to be a convincing correlation between elevated

genomic G+C content (especially in isochore regions) and

homeothermy, these results are subject to alternative expla-

nations. For instance, the higher G+C content in certain

regions of mammalian genomes may be due to elevated

recombination rates in those regions [56,57]. It is also worth

noting that the body temperature of mammals is well below

45 °C, which is usually taken as the lower threshold for ther-

mophily among prokaryotes.

In conclusion, given that temperature is a single, clearly

defined environmental variable, one might expect to see a

single, characteristic genomic and/or proteomic response to

changes in this variable. We do see selective responses at the

nucleic acid and protein levels, but they are varied and

unpredictable. It is especially difficult to predict any significant

differences above the level of primary sequence composition.
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Figure 2
The phylogenetic distribution of thermophily. The ability to grow at high
temperature is common among the archaea, relatively rare among
eubacteria, and virtually absent among eukaryotes. The growth
temperatures were taken from the Prokaryotic Growth Temperature
Database [61]. 
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A number of general trends have been identified in the

sequence composition of DNA, RNA and proteins, but it has

proved much more difficult to identify thermophilic

responses at the higher levels of structural organization. This

is particularly true of protein structure, partly because we do

not yet have a good understanding of the rules governing
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Figure 3
Temperature tolerance ranges of species of eubacteria, eukaryotes and archaea, illustrated on a phylogenetic tree using the SHOT web server [62].
Species that grow at temperatures above 50ºC are indicated in red; the remaining species grow below 50ºC. Eukaryotes have a much lower thermal
tolerance than either archaea or eubacteria. The following species have been used: Aeropyrum pernix, Aquifex aeolicus, Arabidopsis thaliana, Archaeoglobus
fulgidus, Bacillus halodurans, Bacillus subtilis, Borrelia burgdorferi, Buchnera sp., Caenorhabditis elegans, Campylobacter jejuni, Candida albicans, Caulobacter
crescentus, Chlamydia muridarum, Chlamydia trachomatis, Chlamydophila pneumoniae CWL029, Deinococcus radiodurans, Drosophila melanogaster, Escherichia
coli K12, Haemophilus influenzae, Halobacterium salinarum, Helicobacter pylori 26695, Homo sapiens, Leuconostoc lactis, Mesorhizobium loti, Methanocaldococcus
jannaschii, Methanobacter thermoautotrophicum, Methanosaeta thermophila, Mycobacterium leprae, Mycobacterium tuberculosis, Mycoplasma genitalium,
Mycoplasma pulmonis, Neisseria meningitidis A, Pasteurella multocida, Pseudomonas aeruginosa, Pyrococcus abyssi, Pyrococcus furiosus, Pyrococcus horikoshii,
Rickettsia prowazekii, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Staphylococcus aureus, Streptococcus pyogenes, Sulfolobus solfataricus, Synechocystis
sp. PCC6803, Thermoplasma acidophilum, Thermotoga maritima, Treponema pallidum, Ureaplasma urealyticum, Vibrio cholerae, and Xylella fastidiosa.
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protein folding, and partly because it now seems likely that

different proteins may respond to selection for greater

thermostability in distinctly different ways. Despite the

obvious complexities of the issue, we can expect widespread

continued study of temperature adaptation at the molecular

level, especially in proteins, because the results are not only

of great biological interest but also of commercial and practical

interest - both in the discovery of new, naturally occurring

‘thermozymes’ and in the design of new custom thermozymes

for industrial purposes [58-60].
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