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Abstract

Rose-GRC Translator: Mapping UML Visual Models onto Formal

Specifications

Oana-Mirela Popistas

Real-time reactive systems are among the most difficult systems to design because
of the complex functional and timing requirements that must be satisfied. Visual
models serve to break the complexity barrier. allowing the developer to comprehend
and reason with graphical representations. The graphical representations by them-
selves are not sufficient—they are informal and lack well-defined meaning. This thesis
allows the description of classes. statechart diagrams. and collaboration diagrams of
reactive system components to be constructed graphically using UML notation in
the Rose environment. and maps them to a formal notation, which can be subjected
to a rigorous analysis. such as validation and verification, prior to committing to an
implementation. The mapping is implemented by a translator using RoseScript. the

language provided with the Rose Extensibility Interface of Rational Rose.
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Chapter 1
Introduction

Reactive systems maintain an ongoing continuous interaction with their environment
through stimulus and response. For real-time reactive systems, the stimulus-response
behavior is regulated by timing constraints. Such systems find application in areas
such as transportation, workshop automation, mobile telephony, process control, and
strategic defence systems. The behavior of a reactive system is in general infinite:
a process in a reactive system is usually non-terminating. In this respect reactive
systems are different from common transformational systems. which may be regarded
as functions from input available at the start of the computation to output provided
on termination. Reactive systems are also different from interactive systems, such as a
human-computer interface. The major distinction is in the available synchronization
mechanism: an interactive system may wait for a reply from its environment: on the
contrary a reactive system such as a shutdown system in a nuclear power plant is fully
responsible for synchronization with its environment. Consequently. it must satisfy

two important requirements:

¢ stimulus synchronization: the process is always able to react to a stimulus

from the environment:

¢ response synchronization: the time elapsed between a stimulus and its re-
sponse is acceptable to the relative dynamics of the environment so that the

environment is still receptive to the response.



These characteristics present a challenge in designing and implementing dependable
systems. Since most real-time reactive systems operate in safety-critical environ-
ments. both functional and timing properties must be analyzed to ensure the satis-
faction of safety requirements before deploying the system. Rigorous techniques are
necessary to model, design. and analyse the system behavior before committing to
an implementation. Although formal notations can adequately deal with complex-
ity in modeling and design and further lead to rigorous validation and verification
of the modeled systems, formal notations may be daunting for a developer of the
system. When developing such complex systems. visual models provide more clarity
and comprehension of modeling elements, subsystem configurations. and interfaces.
By providing a visual modeling technique and linking it to formal notations in the
background, one achieves the twin goals: easy to use interface for application design-
ers, and a basis for rigorous analysis of the modeled systems, for which the developer
does not have to learn the underlying formalism. It is in this context that this thesis

is developed.

The foundational work on reactive system modeling is described in [Ach93]. It in-
troduces the Timed Reactive Object Model formalism. and the notion of an abstract
(generic) reactive model. A complete semantics of the formalism. and several case
studies illustrating the expressiveness of the formalism, have appeared in [Ach95] and
[AAR95]. TROMLAB [AAM96] is a development environment for real-time reactive
systems based on the TROM formalism; Figure 1 is an overall architectural view of
TROMLAB.

The following components of the environment are currently operational:

o Interpreter - [Tao96] which parses, syntactically checks a specification and

constructs an internal representation;

¢ Simulator - [Mut96] which animates a subsystem based on the internal repre-

sentation. and enables a systematic validation of the specified svstem:

¢ Browser for Reuse - [Nag99] which is an interface to a library. to help users
navigate. query and access various system components for reuse during system
development.

The components that are nearing completion are:

2
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Figure 1: Existing TROMLAB architecture

e Graphical User Interface - [Sri99] which is a visual modeling and interaction

facility for a developer using the TROMLAB environment;

o Reasoning System - [Hai99] which provides a means of debugging the system
during animation by facilitating interactive queries of hypothetical nature on

svstem behaviour.

Muthiayen [Mut98] in his doctoral dissertation symposium paper has outlined his on-
going research work in integrating object-oriented methodology as practised through
the Unified Modeling Language (UML) [Rat97] notations in industries and formal
verification approaches based on the formal specification language Prototype Verifi-
cation System (PVS) [ORS92]. As a first step towards fulfilling this goal, Alagar and
Muthiayen [AM98] have proposed minimum extensions to UML notations to model
real-time reactive systems as conceived in the generic TROM formalism. This work
has extended the UML notation for classes using stereotypes and provided semantics
for these new classifier tvpes. By developing class diagrams. state diagrams. and
collaboration diagrams to model static and dyvnamic properties of reactive systems,

they have laid the foundation for a smooth integration of visual models to formal



notations.

[t is in this context that this thesis has made a significant contribution—showing how
to realize this method in practice using the Rational Rose 98! tool. Starting from the
proposal [AM98], and investigating it for Rose implementation, brought about several
improvements. which have been incorporated in the model. This thesis presents the

features of the revised UML model and its implementation in Rose.

The goal of the present work is to provide a Rose interface for visual modeling of
real-time reactive systems, where the elements of the visual model can be automati-
cally translated into the TROM models. This graphical interface is an alternate user
interface for the TROMLAB environment. The thesis presents the design and im-
plementation of an easy-to-use interface, a translator to map the visual models into
TROM models, and a graphical front-end to a mechanical verifier based on the PVS

verification system.
The main research contributions of this thesis are:

¢ An improved minimal extension to UML notation to capture a generic reactive

syvstem model:
¢ A mapping from the extended UML notation to a formal notation:

The development of a tool for automatic translation from UML notation to the

formal notation:
¢ An improved UML and formal model for the Train-Gate-Controller problem:

A UML and formal model for the Mobile Originating Short Message Services

industrial application.

Alagar and Muthiayen [AM9S] discuss the differences between our UML model for
generic reactive systems and other technologies such as DisCo [JKSSS90] and ROOM
[SGW94] and [RS98]. Selic and Rumbaugh [RS98] discuss the embedding of ROOM
into UML. thus creating UML for Real-Time [Obj98]. UML for Real-Time is an ex-
tension to the UML 1.1 visual modeling language that has been specifically fine-tuned

!A licence of Rose 98 Enterprise Edition is provided by Ericsson Research Canada as a contribu-
tion to this work.



for the development of complex. event-driven. real-time systems. Collaboration dia-
grams specify the structure of software components by using the primary constructs
of capsules. ports and connectors. Finite state machines capture the functionality
of simple capsules. The ObjecTime Developer tool from ObjecTime Limited incor-
porates these UML for Real-Time concepts [Obj97]. Our UML model for generic
reactive systems has the TROM technique as a basis. with a well-defined semantics.
where requirements validation can be performed at a very early phase. prior to any
implementation decisions. Our UML model is an extension of UML 1.1. as supported

by Rose 98 from Rational Software Corporation.

The thesis is organized as follows. Chapter 2 presents the notion of a generic reactive
system and the formalism. Chapter 3 briefly introduces Rose. the tool used for creat-
ing and maintaining UML models for generic reactive systems. Chapter 4 presents a
UML modeling technique specific for generic reactive systems and its implementation
in Rose. Chapter 35 introduces an automatic translation tool from a Rose model into
a formal notation. Chapter 6 presents the Train-Gate-Controller as a case study.
A second case study. from the mobile telephony industry. is presented in chapter 7.
Chapter 8 suggests future enhancements to the formalism and the translation tool: it
describes how the translator may be integrated into TROMLAB. and bridges the gap
between the UML model and its future use for formal verification. The thesis ends

with a conclusion in chapter 9.



Chapter 2

Formal Model for Generic

Reactive Systems

2.1 Introduction

This chapter is a brief survey of the basics of generic reactive systems, introducing

the concepts and terminology used in the rest of this thesis.

An object-oriented modeling technique for real-time reactive systems was introduced
in [Ach93]. It introduces the Timed Reactive Object Model formalism, and the notion
of an abstract (generic) reactive model. A complete semantics of the formalism. and
several case studies illustrating the expressiveness of the formalism have appeared in

[Ach95. AAR9S).

2.2 The Informal Model

A generic reactive class (GRC) [AM98] is a visual representation of the Timed Reactive
Object Model formalism [Ach93]. It is a hierarchical finite state machine augmented
with ports, attributes, logical assertions on the attributes and time constraints. Such
an object is assumed to have a single thread of control. A GRC communicates with

its environment by synchronous message passing, which occurs at a port.
I[nformally, a reactive object consists of the following elements:

e A set of events partitioned into internal, input and output events. Input and



Output events occur at a port and represent message passing. The names of
these events are suffixed by 7 and !. respectively. Internal events are assumed

to occur at the null port.

o A set of states. A state can be simple or complex. and a compler state may

be decomposed into substates.

o A set of typed attributes. An attribute can be of one of the following two

types: an abstract data type specifying a data model or a port reference type.

e An attribute function. The atiribute function defines the association of
attributes to states. For a computation associated with a transition entering a
state, only the attributes associated with that state are modifiable and all other

attributes will be read-only in that computation.

¢ A set of transition specifications. Each specification describes the computa-
tional step associated with the occurrence of an event. A transition specification
has three logical assertions: an enabling and a post-condition as in Hoare logic,
and a port-condition specifving the port at which the transition can occur. The

assertions may involve attributes and the keyword pid for port identifier.

e A set of timing constraints. A timing constraint can be associated with a
transition to describe the time-constrained response to a stimulus. A timing
constraint captures the event corresponding to the response. lower and upper
bounds for the time interval during which the event should occur. as well as a
list of disabling states. An enabled reaction is disabled when the objects enters

any of the disabling states.

Figure 2 illustrates the elements of a reactive object.

2.3 The Formal Model

A formal definition of the different components of a reactive object as described above

is presented next.
A reactive object is an 8-tuple (P. &, ©. A, L, @, A, T) such that:

-1



Figure 2: Anatomy of a reactive object

P is a finite set of port-types with a finite set of ports associated with each
port-type. A distinguished port-type is the null-type P, whose only port is the

null port o.

£ is a finite set of events and includes the silent-event tick. The set £ — {tick} is
partitioned into three disjoint subsets: &, is the set of input events, &, is the
set of output events. and &,y is the set of internal events. Each e € (€, U &),

is associated with a unique port-type P € P - {P,}.
© is a finite set of states. 8y € O. is the initial state.

X is a finite set of typed attributes. The attributes can be of one of the following
two types: i) an abstract data type specification of a data model: ii) a port

reference type.
L is a finite set of LSL traits introducing the abstract data types used in X'.
® is a function-vector (9,.®,,) where.

— &, : © — 2° associates with each state 4 a set of states, possibly empty,
called substates. A state 8 is called atomic, if ®,(6) = 0. By definition,



the initial state 6 is atomic. For each non-atomic state . there exists a

unique atomic state §° € §,(8), called the entry-state.

~ &, : © — 2% associates with each state  a set of attributes, possibly
empty, called the active attribute set. At each state 6, the set ®,,(8) =
X — ®,,(0) is called the dormant attribute set of 4.

o A is a finite set of transition specifications including Min;. A transition speci-
fication A € A — {Ajnit}, is a three-tuple : < (6.8"); e(¥port); Pen = Cpost Dt

where:

— 0.0’ € O are the source and destination states of the transition;

— event e € £ labels the transition; (o, is an assertion on the attributes in X’
and a reserved variable pid. which signifies the identifier of the port at which
an interaction associated with the transition can occur. If e € &, U {tick]}.
then the assertion yp.r is absent and e is assumed to occur at the null-port

0.

= fen is the enabling condition and .y, is the postcondition of the transi-
tion. en is an assertion on the attributes in .t specifving the condition
under which the transition is enabled. (55,4 is an assertion on the attributes
in X', primed attributes in ®,,(¢') and the variable pid and it implicitly

specifies the data computation associated with the transition.

For each 6 € O, the silent-transition Ay € A is such that.
A : (0.0):tick: true = Vz € &,(0): = z";

The initial-transition Ay is such that A 2 (6g): Create(): finit

where »;,;; is an assertion on active-attributes of ;.

o T is a finite set of time-constraints. A timing constraint v; € T is a tuple
(Ai.€l. [l.u], ©;) where.
— Ai # A, Is a transition specification.
— €! € (Eour U Eine) is the constrained event.
~ [I, u] defines the minimum and maximum response times.

— ©; C O is the set of states wherein the timing constraint v; will be ignored.
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A Subsystem Configuration Specification (SCS) is defined to specify a system or a

subsystem by composing reactive objects or by composing smaller subsystems.

The grammar of the formal specification. based on the above formalism is given in

chapter 5.

Figure 3 shows the template for a class specification. Figure 4 shows the template

for a subsystem configuration specification.

Class < name >
Events:
States:
Attributes:
Traits:
Attribute-Function:
Transition-Specifications:
Time-Constraints:

end

Figure 3: Template for System Configuration Specification.

Subsystem < name >
Include:
Instantiate:
Configure:

end

Figure 4: Template for System Configuration Specification.

10



Chapter 3

About Rational Rose

3.1 Introduction

The Unified Modeling Language (UML) is a notation that combines the best features
from data modeling concepts, business modeling, object modeling and component
modeling. UML became the standard language for visualizing, specifying, construct-
ing and documenting the artifacts of a software system and was approved by the

Object Management Group (OMG) in September 1997.

We chose Rational Rose 98. developed by the Rational Software Corporation. to model
generic reactive systems because it is the leading tool for visual modeling using the
UML notation. In this chapter we discuss some of its features. mainly those that we
use in modeling generic reactive systems and we provide basic information for using

Rose.

3.2 UML Features in Rose

Visual modeling is a way to model software systems using a standard graphical no-
tation. A graphical model helps the designer capture the essential part of a system.
from different perspectives. With use case analysis. Rose allows capturing the busi-
ness process from the end user’s perspective, using real-life entities as actors. A visual
model bridges the communication gap between the business-oriented end-users and
the software developers. Rose facilitates complexity management with the introduc-

tion of packages. allowing a large system to be broken down into subsystems. Static
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structures of a system are captured in class diagrams. System behaviour is captured
in statechart diagrams. Interaction between objects may be shown in collaboration

and sequence diagrams.

Rose has the capacity to generate code, that is component and class skeletons and to

reverse-engineer an application. These features are not addressed in this thesis.

Rose supports the UML notation and may be integrated with other tools from the
Rational Suite. for version control, document generation. requirements management.
[t supports team development by allowing certain parts of the model to be developed

separately.

Rose has a graphical user interface, which shows different views of the model. Given its
ease of use and its versatility. Rose allows the developers to be application specialists

rather than methodology specialists.

UML is not a formal notation, and therefore Rose does not have a strong formalism.
We will use a translating tool to extract information from a Rose model and convert

it into specifications in a formal notation with well-defined semantics.

[n this thesis we propose to use Rose primarily to model the design of real-time
reactive systems. In the following chapters we will refer to Rose’s class diagrams.

statechart diagrams. collaboration diagrams and sequence diagrams.

3.3 Using Rose

The next few sections contain extracts from [Rat98b]. sufficient information for getting
started and creating a Rose model for a real-time reactive system. Only information

relevant for the rest of this thesis is provided.

User Interface Rose provides a modern. intuitive graphical user interface on Win-
dows and Unix platforms. The application window. shown in Figure 3. contains a
menu control box. a menu bar. a toolbar. a minimize button. a maximize button. the

browser. and the documentation window.

The toolbar contains different icons. depending on the diagram window open. It

contains icons for creating new models, opening existing models, saving the current

12
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Figure 5: Rose’s application window

model or log, editing commands, printing commands, help, displaying dialog boxes

for selecting different types of diagrams.

The browser is an easy-to-use alternative to menus and toolbars for visualizing,

navigating and manipulating items within the model. The browser provides:
e a hierarchical view of all the items in a model.
o drag and drop capabilities that change a model’s characteristics.
e automatic updating of model items to reflect changes in the browser.
To hide or display the browser window. click on Browser in the View Menu.

The documentation window provides the user with a way to view and modify
the documentation of the selected item. which can be either a diagram or a model

element.

A stereotype is a modeling element subclassification that has been given a more
specific meaning. Stereotypes can be applied to packages. classes. attributes, associ-

ations. A stereotype can be depicted by either a name or by an icon.

Diagram toolbox
When a modifiable diagram window is active, a toolbox with tools appropriate for

13



the current diagram is displayed. For example, for a sequence diagram, the following
tools are available: selector, note, object, message to self, text, note anchor, note,

lock.
Creating diagrams

1. On the Browse menu, click xxx Diagram, where xxx is the diagram type

(]

. In the resulting dialog box, select a view from the list on the left

3. Select < new > from the list on the right and click OK

e

. Type the diagram title and click OK

Displaying diagrams

1. On the Browse menu, click xxx Diagram, where xxx is the diagram type

2

. In the resulting dialog box, select a package from the list on the left

3. Select a diagram from the list on the right and click OK

Creating an element on a Diagram
1. Click on the appropriate creation tool

2. Click on a location in the diagram

Creating an element in the Browser
1. Click on the appropriate package
2. From the shortcut menu select New. then point to element type (class. package.
etc.)
Manipulating icons on diagrams Rose provides similar features to most major
drawing tools. including selecting, deselecting, moving and resizing icons.

Specifications A specification enables the user to display and modify the proper-

ties and relationships of a model element. Some of the information displayed in a
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specification can also be displayed inside icons representing the element in diagrams.
These fields are standard interface elements such as text boxes. list boxes. option but-

tons and check boxes. Specification dialogs for some model elements will be shown

throughout this text. as appropriate.

Class diagram Class diagrams provide a logical view of the model. displaying icons
representing logical packages, classes and relationships contained in the model. There

are three ways to create a class diagram:

o On the Browse menu, click Class Diagram
e On the toolbar, double-click the class diagram icon

e On the Browser. double-click on the class diagram icon

Collaboration and sequence diagram In Rose a collaboration diagram is an in-
teraction diagram that shows a sequence of interactions between objects. For the
purpose of real-time reactive systems. we propose to use only the static aspect that
can be captured in a collaboration diagram. which is the definition of objects and the

links between them. as explained in Section 4.13.

In Rose. a sequence diagram is a type of interaction diagram that shows a sequence

of interactions between objects.

Rose provides a facility to convert between these two types of interaction diagrams.

For the purpose of real-time reactive systems. we do not propose to use this facility.

Statechart diagrams A statechart diagram shows the states of a given class. the
events that cause a transition from one state to another. and the actions that re-
sult from a state change. Each statechart diagram is associated with one class. A
statechart diagram shows exactly one start state, one or several states and the state

transitions between them.

There are several ways to create a statechart diagram:

¢ On the Browse menu, click statechart diagram
e On the toolbar, double-click the statechart diagram icon

¢ In the browser. double-click the statechart diagram icon
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Chapter 4

Generic Reactive Model in

Rational Rose

4.1 Introduction

In this chapter we explain how we model a generic reactive system in Rational Rose.
Each component of a generic reactive system. as defined in Chapter 2. is treated in a
separate section. We use class diagrams and statechart diagrams to capture properties
of generic reactive classes. collaboration diagrams to capture system configurations

and sequence diagrams to model specific scenarios.

4.2 Generic Reactive Class

A generic reactive class [AM98] is the basic abstract structure of a reactive system.
UML provides an extension mechanism using stereotypes. A stereotyped element is
represented in UML as the symbol of the base element, with a keyword string in
matching guillemets. placed above the name of the element. We introduce generic
reactive classes in Rose as classes with stereotype « GRC>>. Graphically. a generic

reactive class. referred to as a GRC. is represented as shown in Figure 6.

<<GRC>>
i GenernicClassName
<<PortType>> attributet : PortTypeName?
i<<DataType>> atiribute2 : Setfint. mMSet]

Figure 6: Class graphical notation
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[n order to specify a GRC, we use the facilities provided by Rose for classes: in the

browser or directly in a class diagram as introduced in Chapter 3.

The Class Specification dialog. as shown in Figure 7 is used to display and modify

GRC properties.

Ll(:s: Specihcation for

T R T A
5 ; 3 ~

Figure 7: Class Specification Dialog in Rose

The class icon has three compartments in Rose: the name compartment, the attribute
compartment and the operations compartment. The name compartment is manda-
tory. but the other two are optional. As will be seen in the following sections. only the
attribute compartment is needed for specifving a GRC. Therefore. in order to keep
information displayed on a class diagram to the minimum, we suggest suppressing
the operations compartment. As defined in UML. if the operations compartment is
suppressed. no inference can be drawn as to the presence or absence of operations. We

also suggest selecting Rose’s option not to show the visibility property of attributes.
A main class diagram should be created, including all the GRCs in a subsystem.

Alternatively. if the system is developed incrementally, a class diagram can be created
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for each GRC and its associated port types.

4.3 Port Type

A port is an abstraction of an access point for a bi-directional communication channel
through which a GRC may interact with its environment. The characteristics of a
port are defined by its type. A port-type determines the set of events that can occur

at a port of this type.

Following the same extension mechanism with stereotypes as for GRC, we introduce

port types in Rose as classes with stereotype < PortType>.
A port type is represented graphically as a class. as shown in Figure 8.
The name of the port type class must start with the symbol “@”.

In order to specify a port type class, we use the facilities provided by Rose for classes:
in the browser or directly in a class diagram. The Class Specification dialog, shown

in Figure 9 is used to display and modify port type’s properties.

A port type class must have only one attribute. named events, of type Set. This
attribute is considered to be constant. The initial value of this attribute denotes the

list of input and output events that can occur at a port of this type. The direction

won

of the events. i.e.. input or output. is represented by the symbols and “!”,
respectively. and it is suffixed to the event name. The list of events has to be given

within curly braces. which are the standard notation for sets.

We specify the attribute events using Rose’s tab Attributes from the Class Specifica-

tion dialog and the Attribute Specification dialog, shown in Figure 10.

i <<PonType>>
| PortTypeClassName1
‘events : Set = {Event1!,Event27?):

Figure 8: Class graphical notation for a port type with one output event Eventl and
one input event Event2.
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Figure 9: Class specification dialog for port types

4.4 Relationship between a GRC and its Port
Types

A generic class can have several port types. Each port type is used to communicate
with another generic class. We represent the relationship between a GRC and its port
tvpes as a binary association between the GRC symbol and the port type symbol in a
class diagram. The association name is optional. The association end corresponding
to the GRC must have the composition aggregation indicator, meaning that the GRC
is a composite of port types. The composition aggregation indicator is represented as a
filled diamond. Graphically. an aggregation between port type in GRC is represented

as shown in Figure 11.

In Rose. in order to obtain the composition aggregation indicator. the “containment
by value” property has to be selected in the aggregation specification dialog, detail
role tab for the role corresponding to the aggregate class (see Figure 12).
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Figure 10: Attribute specification for constant attribute events

4.5 Events

In UML. a statechart diagram is a view of the state machine. It shows the sequences
of states that an object goes through during its life in response to received stimuli.

It also shows the objects responses and actions.

All the events that may occur for a generic reactive class (input. output and internal)

are modeled in Rose using the statechart diagram belonging to the GRC.

In Rose. the triggering event is defined as the event that triggers a state transition.
Graphically. the event name is represented as the label on the corresponding state

transition. as shown in Figure 13.

We define the event using Rose’s State Transition Specification dialog. in the field

Event (see Figure 14).

Input and output events are also listed in the attribute Events of the corresponding

port type classes as described in section 4.3.

If parameterized events were supported in the formal model. the arguments could

be entered in Rose in the argument field of the transition specification dialog. See

20



<<GRC>>
. <<PortType>>
Genem.:ClassName o— PortTypeClassName2 :
~<<PortType>> attributet : PortTypeName1 events - Set = {Event3?, Eventdl}
‘<<DataType>> attribute2 : Set[int,IntSef] . - o b

C

<<PortType>>
PortTypeClassName1

‘events : Set = {Event1!,Event2?}

Figure 11: Aggregation of two port types to a GRC

Chapter 8 for introduction of parameterized events.

4.6 States

As defined in UML, a state is a condition during the life of an object, during which it
satisfies some condition. performs some action or waits for some event. All the states

of a generic reactive class are modeled in the statechart diagram in Rose.

A state is represented as a rectangle with rounded corners, as shown in Figure 13.
All states of a GRC must have a name. No two states may have the same name. and

the same state should be shown only once in the statechart diagram.

We can specify a state in the statechart diagram and by using Rose’s State Specifi-

cation Dialog. Name field (see Figure 16).

UML defines two special states: a start state and an end state. A start state explicitly
shows the beginning of the state machine. A start state is connected to the first normal
state with an unlabelled transition. Only one start state can exist in each statechart
diagram. When applying nested states, one start state should be defined in each
context. An end state represents a final or terminal state of a system. An end state

is drawn when it is desired to explicitly show the end of the state machine.

For a generic reactive class. we consider the final state of a transition coming from
the special start state in Rose as the initial state. We do not use the special end state.
Figure 17 shows the Rose start state with a transition to the generic class’s initial

state.



Figure 12: Aggregation Specification dialog, detail role tab

.

state1 ? Eventt ~ state2 !

.

Figure 13: Graphical representation of a event name

4.7 Complex States

[n Rose. states may be nested to any depth level. Enclosing states are referred to as
superstates. and everything that lies within the bounds of the superstate is referred

to as its contents. Nested states are called substates.

We may define complex states for a GRC using Rose’s nested states concept. For
a generic reactive class. we define an initial state for each level of nesting. Each
superstate contains the statechart diagram involving its substates. Figure 18 shows

the graphical representation of a complex state.
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Figure 14: Transition Specification Dialog in Rose

S ¥
f state1

.

Figure 15: State graphical notation

4.8 Typed Attributes

In UML. the attribute element is used to show attributes of a class. It is semantically

equivalent to a composition association.

All typed attributes of a generic reactive class will be represented in Rose as attributes
of the GRC. In Rose. an attribute can have a stereotype. an attribute name, a type

and an initial value. An initial value is not used in the context of a generic reactive

class.

In UML. the type of an attribute is a TvpeExpression and it may resolve to a class
name. a simple type or a complex tvpe. The details of the tyvpe expression are
not specified by UML, and may depend on the expression syntax supported by the

particular specification [Rat97].

For generic reactive classes. attributes can be of two types: port types and data types.
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Figure 16: Rose’s State specification dialog

statet !

N——

Figure 17: Special start state with the GRC's initial state

Port type attributes are represented in Rose as attributes with the «PortType>
stereotype. The type expression must be the name of a port type class already
defined in an aggregate association to the GRC. These attributes may be defined

using Rose’s attribute specification dialog. shown in Figure 19.

Data types are abstract data types specified in Larch Shared Language traits [GH93].
Data type attributes are represented in Rose as attributes with the «DataType>
stereotype. The type expression may be a simple type, such as Integer or Boolean,

or it must be of the form:

<LSL_TraitName>[<parameterl>....<parameterN> ,<TypeName>],
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Figure 18: Statechart diagram with nested states

Figure 19: Class Attribute Specification Dialog in Rose for port type attributes

where:

LSL.TraitName is a string denoting the name of the LSL trait which

defines the abstract data type;

Parameterl.....ParameterN, are optional strings, denoting the parameters
of the LSL trait:

TypeName, is the name given to the abstract data type. as defined in the
LSL trait.

These attributes may be defined using Rose’s attribute specification dialog, shown in

Figure 20.
When the UML notation is translated to the formal notation, the mapping shown in
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Type of attribute

Rose attribute type | Formal attribute type

port type

port type class name | port type class name

data type

LSL trait TypeName extracted from LSL trait

Table 1: Mapping for attribute types

Figure 20: Class Attribute Specification Dialog in Rose for data type attributes

Table 1 must be done for the type of attributes.

4.9 LSL Traits

LSL Traits introduce the abstract data types used in the data type attributes intro-

duced above. LSL Traits are specified explicitly in the formal notation for a class.

In Rose. the LSL traits are specified as the type expression of a data type attribute.

in the following format:

<LSL_TraitName>[<parameterl>....<parameterN>.<TypeName>],

where:
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LSL_TraitName is a string denoting the name of the LSL trait which
defines the abstract data type;

Parameterl.....ParameterN. are optional strings. denoting the parameters

of the LSL trait:

TvpeName. is the name given to the abstract data type. as defined in the

LSL trait.

4.10 Attribute Function

In the formal model, the attribute function associates each state with a set of at-
tributes. possibly empty. denoting the active attributes for that state. By active

attributes we mean attributes whose value may change.

In the generic model for UML. we define the attribute function for a state as the set
of attributes that are modified in the post-conditions of all transitions incoming in
the state. This approach. although different from the user’s perspective, does not

affect the rigor of the specification or the semantics.

The post-condition of a transition. as described in a later section, is represented
in Rose in the Action field of a state transition. Figure 21 shows the graphical
representation of a part of the attribute function, where attribl is in the attribute
function of state2. The Action can be modified in Rose’s State Transition Specification

dialog. tab Detail. as shown in Figure 22.

Event1[ port-condition && enabling-condition &&
time-constraint-condition | / attrib1’=pid &&
TCvar1=0
—— ———
state1 | state2
7

N,

Figure 21: Graphical representation of attribute function

The post-condition contains operations on attributes. An attribute is said to be

modified if the post-condition includes an operation of the form:
attribute_name’ = expression,

where the expression yields a result tvpe compatible with the type of the attribute.
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Figure 22: Transition Specification, Detail Tab.

4.11 Transition Specifications

In UML. a transition provides a means for tracking an object through a state change;
that is. the point at which it is no longer in its source state and has not yvet reached

its target state.

In UML. a transition is represented graphically as a solid arrow from a state (the
source state) to another state (the target state). labelled by a transition string, with

the following format:

event—signature | guard—condition ] / action-expression " send—clause

For the purpose of representing transitions for generic reactive classes, the event-
signature should contain only the triggering event name. The send-clause is not used.
The usage of the guard-condition and action-expression is described below. Figure

23 shows the graphical representation of a transition.



Event1 port-condition && enabling-condition
&& time-constraint-condition ] /
post-condition && time-initialization

—-\‘. ;»—‘———-——-———————-- N
state1 | > state? {

j : !

M———

Figure 23: Transition graphical notation

Transition specifications in the generic model have the following components: ini-
tial and final state. triggering event, port-condition. enabling-condition and post-

condition.

The port condition is a logical assertion on the attributes of the generic class and the
reserved variable pid. If the port condition is true then pid can be bound to any port
belonging to the port type of the event associated with the transition. The enabling
condition is a logical assertion on the attributes of the generic class and signifies the
necessary condition for the transition to take place. The post condition is an assertion
on the attributes of the generic class, the primed attributes in the attribute function
and the reserved variable pid and signifies the data computation associated with the

transition.

These components are modeled in Rose using the statechart diagram. as described in

Table 2.

In the generic model | In Rose

[nitial State Source state

Final State Target state

Triggering event Triggering event name

Port-condition First part of the triggering event’s guard condition
Enabling-condition | Second part of the triggering event’s guard condition
Post-condition First part of the transition’s action

Table 2: Mapping of components of transition specification in formal model and Rose.

The guard condition of a transition has several components: port-condition, enabling
condition and time-constraint condition. To facilitate extraction of these components,
they have to be separated by the symbol && and specified in a consistent order. as

follows:



port-condition && enabling-condition && time-constraint condition.

If the port-condition is not applicable. it should be replaced by the logical expression

true.

If the enabling condition is not applicable, it should be replaced by the logical ex-

pression true.

The time-constraint condition does not apply to transitions that are not constrained

events (see Section 4.12).

If there is no guard condition specified, it is assumed that the port-condition is true,

the enabling condition is true and the.e is no time-constraint.
The action of a transition has the following format:

Post-condition && Time-constraint-initialization.

If the action of a transition is empty, the post-condition is assumed to be the logical

expression true.

The time-constraint-initialization does not apply to transitions that are not constrain-

ing events. as described in Section 4.12.

All the fields of a transition specification may be entered through Rose’s state tran-

sition specification dialog. detail tab. as shown in Figure 24.

4,12 Time Constraints

In UML there is no predefined way for specifying time constraints.

A time constraint in the generic model has the following components: constraining

event. constrained event. lower and upper bounds and a set of disabling states.
Time constraints will be introduced in Rose in the statechart diagram. as follows.

For each time constraint. a reserved variable of type integer will be defined. This vari-
able should be named TCVarN, where XN is a numeral (for example TCvarl. TCvar?2,

etc.). This variable has to be initialized to 0 on the transition of the constraining
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Figure 24: Transition specification dialog, detail tab

event. as the second Action. The Action of the constraining transition will thus have

two parts. separated by the symbol &&. as follows:
post-condition && time-constraint initialization.
On the transition corresponding to the constrained event, the guard condition has to

include the time-constraint condition. as a third predicate. This predicate has the

form:
<time-variable> <logical-operator> <lower-bound> &

<time-variable> <logical-operator> <upper-bound>

The condition involving the upper-bound must be specified. If the condition involving
the lower-bound is not specified. the lower bound is assumed to be 0. including 0.
Logical operators allowed are >. <. <. >. For inequality we use the logical operators

< and >. For strict inequality we use the logical operators < and >.

The guard condition of the constrained event will thus be of the form:

<Port-condition> && <Enabling-condition> && <Time-constraint-condition>
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Figure 25 shows the graphical representation of transitions for the constraining event

Eventl and the constrained event Event2, with the time constraint variable TCvarl.

Figures 26 and 27 show the transition specification dialogs for a constraining event

Eventl and a constrained event Event2, respectively.

Event1[ port-condition && enabling-condition
&& time-constraint-condition ] /
post-condition && TCvar1=0

statet * \] state2 }

1
| { !
. S—

Event2[ port-condition && time-condition && TCvar1<2 1/
post-condition

Figure 25: Graphical representation of constraining event Eventl and constrained
event Event2, with time constraint variable TCvarl

A constrained event may have zero, one or several disabling states. Once the object
enters a state that is defined as a disabling state. the constrained event is disabled.

that is. it cannot be fired.

In Rose, state actions show what happens upon entering or exiting the state. Actions
can be modified using Rose’s State Action Specification dialog. Actions on entry are

actions that occur when the object enters the state.

If a state is a disabling state for a time constraint, then in the list of Actions on entry
of that state. the time variable corresponding to the time constraint will be set to

—1. This setting will ensure that the predicate
Lower-Bound < TCvar & TCvar < Upper-Bound

is false. thus disabling the transition. The set of disabling states for a time constraint



Figure 26: Transition specification dialog for a constraining event Eventl

will be determined by selecting all the states in which the corresponding time variable

is set to —1. The set of disabling states may be empty.

For the purpose of specifving generic reactive systems. no operation other than the

time-constraint operation T'CVar = -1 is allowed among the actions of a state.

Graphically. a disabling state is shown as a state with the action on entry displayed

below the name, as shown in Figure 28.

The action of a state may be modified in the state specification dialog, shown in

Figure 29.

Note that the name of the time constraint variable is used to label the time constraint
in the formal notation. in order to create a link between the formal and the graphical

representation of the model.

4.13 Subsystem Configuration Specifications

A System Configuration Specification is defined to specify a svstem or a subsystem

by composing reactive classes. A subsystem specification consists of three sections:
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Figure 27: Transition specification dialog for a constrained event Event?2

stated
entry: TCvar1=-1

Figure 28: Graphical representation of a disabling state for event Event2.

Include, Instantiate and Configure.

The Include clause is used for importing other subsystems. This section is not used

when generic reactive systems are modeled in UML. See section 4.14.

The Instantiate section is used to define generic reactive objects by parametric sub-
stitutions to cardinality of ports for each port type and initializing attributes. if any,

in the initial state of the object.

The Configure section is used to define a configuration by composing objects speci-
fied in the instantiate clause and the subsystem specifications imported through the
Include clause. The composition operator « sets up communication links between
compatible ports of interacting objects. Two ports are compatible if the set of input

message sequences at one port is a subset of the output message sequences at the
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Figure 29: State specification dialog for a disabling state

other port.

In Rose. we model a subsystem as a collaboration diagram. This collaboration di-
agram contains generic reactive objects instantiated with ports and port links for
communication. The purpose of this collaboration diagram is to statically specify the
objects. ports and port links. therefore no messages should be shown on the links.

Messages on links show interaction between objects.

Interaction between objects shall only be shown in Rose in sequence diagrams. See

Section 8.3 for more details on how sequence diagrams are used.

A reactive object is defined in UML as an object of a generic reactive class and is
represented graphically as shown in Figure 30. The object may be modified using the

object specification dialog, shown in Figure 31.

obj1 : Generic
ClassName

Figure 30: Graphical representation of a generic reactive object



Figure 31: Object specification dialog

Ports provide the access points for bi-directional communication between the GRC
and its environment. A port is defined in UML as an object of the class named
with the port type name, and with stereotype «PortType>, and is represented

graphically as shown in Figure 32.

port1 : PortType
ClassName1

Figure 32: Graphical representation of a GRC object

We define a reserved variable pid as the identifier of the port at which an interac-
tion associated with a transition can occur. This reserved variable can be used in
the logical assertions in the port-conditions, enabling-conditions and post-conditions.

conform to the formal notation.

An object may have several ports of each port type defined for the class. This rela-

tionship is shown as a link between the generic reactive object and the port instances
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in the collaboration diagram of the subsystem.

Figure 33 shows a generic object with two ports.

; mcrln :I;ortTy%e ‘ ' olé'ln :C:‘qeneric 12 - PortType
LiassNamei ————  (lassName i_ ClassName?

e e e

Figure 33: Graphical representation of a generic reactive object with two ports

Reactive objects communicate through ports. A link between two port objects be-

longing to two reactive objects defines a port link between the two objects.

Figure 34 shows the port link between two reactive objects.

. port1 : PortType _ objl : Genefic :
ClassNamet{ ————— ClassName ,
| !

1 H !

|
|

i port3 ; PortType " obi2_: Generic
. ClassName3 ———— (ClassName2

Figure 34: Graphical representation of a port link between two generic reactive objects

4.14 Composing Subsystems

In the previous section we mentioned the Include clause in the subsystem configuration

specification. In the formalism. it is used to import objects from other subsystems.

UML does not allow nesting of collaboration diagrams. We propose a way to handle
complex systems, based on the way complex systems can be managed in Rose. with

packages.

A package is a grouping mechanism that may be used to designate not only logical
groupings and physical groupings, but it may also be used to designate use case
groupings. processor groups. and distribution units. Each package represents a chunk
of the logical architecture of the system [Rat93b].

All the generic reactive classes and their components belonging to one subsystem are
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contained in a package. If the subsystem should not include objects from other sub-
systems, the collaboration diagram representing the objects in the subsystem should
be placed in the same package as the GRCs. However, if it is desired to import other
subsystems, the collaboration diagram should include objects from all the included
subsystems. The collaboration diagram should be placed in a package higher in the

hierarchy of packages, to indicate that it contains objects from several subsystems.
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Chapter 5

Rose-GRC Translator: Visual

Models to Formal Specifications

5.1 Introduction

After specifying all the components of a generic reactive class as described in Chapter
4, a translation can be performed automatically from the Rose model to the formal
notation. This tool is called Rose-GRC Translator. This chapter presents the require-

ments. the design and implementation of the translator.

5.2 Requirements

5.2.1 Input: Rose Models

The Rose-GRC Translator shall run in the Rose environment and shall take input from

an open Rose model.

Generic reactive class specifications

The Rose-GRC Translator shall take as input one main class diagram or several class
diagrams. The user shall be allowed to select the appropriate class diagrams from
a list of all the class diagrams in the model, one at a time. A main class diagram
shall be selected if all the classes from the subsystem and their port types are shown
in that diagram. Separate class diagrams shall be selected if each class and its port
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GRC | ::= | <class> <events> <states> <attributes> <traits> <att_funcs>
<tran.specs> <time_constraints> end

Table 3: Grammar for generic reactive class specification

types are shown in a separate class diagram.

Subsystem Configuration Specification

The Rose-GRC Translator shall take as input one or several collaboration diagrams,
which include all the objects in one or several subsystems. Given that the model
may contain several subsystems. the user shall be allowed to select the appropriate
collaboration diagrams, from a list of all collaboration diagrams in the model. The
user shall be allowed to enter a name for each subsystem corresponding to the selected

diagram. The user shall be allowed to skip translation of a subsystem configuration.

Message Sequencing

The Rose-GRC translator shall take as input one or several sequence diagrams. The
user shall be allowed to select the appropriate sequence diagram from a list of all
sequence diagrams in the model, one at a time. The user shall be allowed to skip
translation of a sequence diagram. The user shall be allowed to enter a time of

occurrence for each message in the sequence diagram.

5.2.2 Output: Formal Specifications
Reactive class specifications

The Rose-GRC Translator shall produce as output a text file containing class spec-
ifications for all the generic reactive classes (GRC) that are found in the selected
class diagram. The class specifications should be according to the grammar described

below (Tables 3—11), which is an improved version of the grammar introduced in

[Tao096].

A generic class specification (see Table 3) is composed of the class name, events.

states. attributes, LSL traits, the attribute functions, transition specifications and

time constraints.
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class = | Class <class_name> [<port_types>| NL

port_types = | <port_typename> | <port_type_name>, <port_types>
class_name := | String

port_type_name | ::= | @String

Table 4: Grammar for generic reactive class title

events = | Events: <event.list> NL

event list = | <event> | <event>, <event list>

event = | <inputevent> | <outputevent> | <interevent>
inputevent = | <event.name> ? <port_type_name>
outputevent := | <event.name> ! <port_type_name>

interevent := | <event_name>

event.name := | String

port_typename | ::= | @String

Table 5: Grammar for events

[n the grammar, a class (see Table 4) is described by the keyword Class, followed by
a string denoting the class name, followed by a list of port types in square brackets .
The list of port types is composed of one or several port type names, represented as

strings starting with the symbol @ and separated by a comma.

Events (see Table 3) are introduced by the keyword Events, followed by the list of
events. The list of events can contain one or several events, separated by comma.
Each event can be an internal event, an input event or an output event. Internal
events are represented by a string for the event name. Input events are represented
by a string as event name, followed by the character ? and the string for the port
type at which the event occurs. Qutput events are represented by a string as event
name. followed by the character ! and the string for the port type at which the event

occurs.

States (see Table 6) are introduced by the keyword States, followed by the state set.
The state set is comprised of the initial state, followed by a list of one or several
states. separated by comma. A state is represented by a string for the name. If the
state is complex, the name is followed by its substates, represented as a state set,

within curly braces.
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states = | States: <stateset> NL
state_set := | *<state>, <state list>
state_list = | <state> | <state>, <state list>
state := | <state_name> | <state_name><state_set>
state_name | ::= | String
Table 6: Grammar for states
attributes = | Attributes: <attlist>NL
att_list = | <attribute> | <attribute>;<att list>
attribute = | <att_.name> : <port_type_name> |
<att_.name> : <trait_type_name> |
<att_name> : Integer | <att_name> : Boolean
att_name := | String
trait_typename | ::= | String
port_typename | ::= | @String

Table 7: Grammar for attributes

Attributes (see Table 7) are introduced by the keyword Attributes, followed by the
list of attributes. The list of attributes is comprised of one or several attributes.
separated by a semi-colon. Attributes of type port type are represented by a string
for the attribute name, followed by colon and by the port type name, which starts
with the character @. Attributes of type data type are represented by a string for

the attribute name. followed by a colon and by the LSL trait type name.

LSL traits (see Table 8) are introduced by the keyword Traits. followed by a list of
traits. The list of traits is comprised of one or several traits. A trait is represented
as a string for the trait name. followed in square brackets by the argument list and
the trait type name. The argument list is comprised of one or several arguments. An
argument is either a trait type name or a port type name starting with the character
@

The attribute function (see Table 9) is introduced by the keyword Attribute-Function.
followed by a list of attribute function applications. The list of attribute function
applications has one or several attribute function applications, separated by a semi-
colon. Each attribute function application is comprised of the state name as a string,

followed by the keyword —, followed by an attribute list, between curly braces. An
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traits = | Traits: <trait.list> NL
trait list = | <trait> | <trait>. <trait_list>
trait == | <trait-name>[<arglist> <trait_type_name>| |
<trait_name>|<trait_type_name>]
arg_list = | <arg> | <arg>. <arg.list>
arg := | <trait_tvpe_name> | <port_type_-name>
trait name := | String
trait_typename | ::= | String
port_type_name | ::= | @String
Table 8: Grammar for LSL traits
att_funcs := | Attribute—Function: <att_func_list>
att_funclist | ::= | <attfunc>; | <att_func>;<att_funclist>
att_func n= | <state_name> — <attlist> NL
att_list == | <att_name> | <att.name>.<attlist> | empty
att_name := | String
state.name | ::= | String

Table 9: Grammar for attribute functions

attribute list is comprised of zero or several attribute names. separated by a comma.

Transition specifications (see Table 10) are introduced by the keyword Transition-
Specifications, followed by the list of transition specifications, separated by semi-colons
and new lines. The list of transition specifications is composed of one or several
transition specifications. separated by new lines. A transition specification consists
of a name. followed by a colon. one or several state pairs, separated by semi-colons.
a triggering event. an assertion. the implication operator — and another assertion.
A state pair consists of two state names. in brackets. separated by a comma. The
triggering event is an event name followed in brackets by an assertion. An assertion is
either a simple expression or two simple expressions with a binary operator between
them. A binary operator is one of: =. £. <. <, >. >. A simple expression is either a
term or two terms with the | logical operator. A term is either a factor. or two factors
with the & logical operator. A factor can be the logical operator ! followed by a factor,
or the reserved variable pid. or a primed attribute, an attribute, logical expressions
true or false. an LSL term or an assertion in brackets. An LSL term consists of a
LSL function name. followed by an argument list in brackets. An argument list is

composed of one or several arguments. An argument is either the reserved variable
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tran_specs := | Transition—Specifications: NL <tran_spec.list>

tran_spec_list := | <tran_spec> NL | <tran_spec> NL <tran_spec_list>

tran_spec := | <tran.specname>: <state_pairs> <trig_event>
<assertion> — <assertion>;

state_pairs := | <state_pair>: | <state_pair>; <state_pairs>:

state_pair := | (<state_name>,<state_name>)

trig_event := | <event_name>(<assertion>)

assertion = | <simple_exp> | <simple_exp> <b.op> <simple.exp>

b.op =|=[#[>]2]<]|<

simple_exp = | <term> | <term> <OR> <term>

term := | <factor> | <factor> <AND> <factor>

factor := | <NOT> <factor> | pid | <att_name/ > | <att_name>
| true | false | <LSL_term> | (<assertion>)

LSL_term := | <LSL_func.name>(<arg list>)

arg.list = | <arg>|<arg>.<arg.list>

arg := | pid | <att_name> | <LSL_term>

att_name/ = | String

att_name := | String

state_name := | String

event_name := | String

LSL_func_name | ::= | String

OR = |

AND = | &

NOT = !

pid. or an attribute name or an LSL term. A primed attribute is an attribute (from

Table 10: Grammar for transition specifications

the attribute function) followed by the character /.

Time constraints (see Table 11) are introduced by the keyword Time-Constraints.
followed by one or several constraints. separated by semi-colons and new lines. A
constraint has a name followed by colon and the name of the constraining transition
specification. the name of the constrained event, the lower and upper bounds. and
a list of disabling states. The lower and upper bounds are preceded and followed.

respectively. by the open or closed interval indicators. The list of disabling states is

comprised of zero, one or several state names, separated by a comma.




time constraints | ::= | Time—Constraints: NL <constraints>
constraints u= | <constraint>; NL | <constraint> ; NL <constraints>
constraint := | <time_cons_name>: <tran_specname>, <event_name>,
<min_type><min>.<max><max.type>.<states>
states := | <state_name>|<statename>.<states> | empty
state_name = | String
time_cons_name | ::= | String
tran_spec_name | ::= | String
event_name := | String
min := | NAT
max = | NAT
min_type = | (|
max-type =) |
Table 11: Grammar for time constraints
SCS = | SCS <scs_name> NL <include> <instantiates> <configure>
end
scs_name | ::= | String

Table 12: Grammar for subsystem configuration

Subsystem Configuration Specification

The Rose-GRC Translator shall produce as output a text file containing the configu-
ration specification of the subsystem modeled in the selected collaboration diagram.

One file shall be produced for each collaboration diagram selected. The configuration

specification should respect the following grammar, introduced in [Ta096].

A subsystem configuration specification (see Table 12) is introduced by the kevword

SCS. followed by its name as a string, a new line and the following sections: Includes.

Instantiates, Configure, all followed by the keyword end.

The include section (see Table 13) is introduced by the keyword Includes. followed by

a list of subsystem names and a new line. The list of subsystem names is composed

of one or several subsystem names. separated by a semi-colon.

include u= | Includes: <scs_namelist> NL
scs_namelist | ::= | <scs_name>; | <scs_name_ list>
scs_name = | String

Table 13: Grammar for include section
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instantiates := | Instantiate: <inst.list> NL
inst list := | <instantiate>; NL | <instantiate>; NL <inst list>
instantiate ;= | <objname>::<grcname>[<port_card_ list>]
port_card_list = | <port_card>|<port_card>,<port_card list>
port_card := | <port_type_name>:<cardinality>
obj_name := | String
port_type_name | ::= | @String
grc.name := | String
cardinality := | NAT

Table 14: Grammar for instantiate section
configure := | Configure: <obj_port list>

.

<obj_port_link>; NL | <obj.port_link>; NL
<obj_port_list>:

obj_port list

obj_port_link = | <objname>.<port_.name>:<port_type_name> «
<obj_name>.<port_name>:<port_type_name>

obj_name ::= | String

port_name := | @String

.

port_type_name @String

Table 15: Grammar for configure section

The instantiates section (see Table 14) is introduced by the keyword Instantiate, fol-
lowed by an instance list and a new line. An instance list is composed of one or several
instances. An instance consists of an object name, followed by two colons, a generic
class name and, in square brackets. by a port cardinality list. The port cardinality
list is composed of one or several port cardinalities. A port cardinality is represented

by a port type name, followed by a colon and a natural number for the cardinality.

The configure section (see Table 15) is introduced by the keyword Configure, followed
by the object port list. The object port list is composed by one or several object
port links. separated by a semi-colon. An object port link is composed of an object
name. followed by a period. a port name starting with character @ and its port type,
the composition operator «, another object name, followed by a period, and a port

name starting with character @ and its port type.
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message-list n= | <message> | <message> NL <message list>
message := | <send.obj> : <messge_name> : <rec.obj> |
<send_obj> : <message name> : <rec.obj> : <time>

Time = | String

send_obj = | <obj.name>

rec_obj = | <obj.name>

message name | ;== | String

obj_name = | String

Table 16: Grammar for message sequence

Message Sequencing

The Rose-GRC Translator shall produce as output a text file containing an ordered
list of messages together with the sending and receiving objects and the time of
occurrence, from a selected sequence diagram. The translator should produce a file
for each sequence diagrams selected by the user. The message sequencing output

should be formatted according to the following grammar.

A message list (see Table 16) is composed of one or several messages. separated by
newlines. A message consists of a sending object. followed by a colon. the message
name. colon. and the receiving object. If time of occurrence is specified. then a colon
and the time follow the receiving object. The sending object and the receiving objects
are object names, represented as strings. The message name is also a string. The

time is represented as a string for convenience.

5.2.3 Use Case Analysis

A use case diagram was created as a first step in the analysis of requirements for the

Rose-GRC Translator. and is illustrated in Figure 35.

This use case diagram contains three actors: Developer, Rose and TROMLAB. Rose is
considered to be an actor because the model is for the Translator. and the Rose GUI
and model are outside the translator. The diagram shows two main use cases (Create-
RoseModel and TranslateModel), one mandatory use case (TranslateGRCSpec) and

two optional use cases (TranslateSCSSpec and TranslateMessageSequence).

The Developer creates a Rose model, and the output is sent to Rose, in the sense that a

Rose model file is saved. The Developer translates the model, which at least translates
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Figure 35: Use Case diagram for the Rose-GRC Translator

a GRC specification. Optionally, subsystem configuration specifications and message
sequences may be translated. The output containing formal specifications is sent to

the TROMLAB environment.

5.3 Design

5.3.1 Architectural View

The translator is syntax-directed: it takes Rose diagrams and maps the modeling
elements onto the corresponding syntactic components as defined by the grammar.

The Architecture of the Rose-GRC Translator (Figure 36) is designed in such a way as
to emphasize the information flow between its components. The Rose Graphical User
Interface is used to create 2 Rose Model. When a Rose Model is modified. its view
is updated on the GUI. The Rose Graphical User Interface triggers the translator’s
Graphical User Interface. The translator’s GUI uses information such as lists of
different types of diagrams from the Rose Model. The translator’'s GUT triggers and
controls execution of the translator. The translator sends information. mainly error
and control messages, to its GUL The translator extracts model elements from the

Rose Model. The translator creates output files containing formal specifications.
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Figure 36: Architecture of the Rose-GRC Translator

5.3.2 Detailed Design

The logic of the translator is built around the components of a generic reactive model,

therefore the internal data structures of the translator reflect all these components.

The translator has two parts (Figure 37): the first part is responsible for extracting
all the appropriate information from the Rose model, checking its validity and storing
it in the translator’s internal structures. The second part is responsible for formatting
the formal specifications according to the grammar and for creating the output files.
This separation may seem redundant at first. but it has a strong motivation: it allows
for a thorough error and consistency checking, which ensures that correct formal

specifications are produced.

We created a model of the data structure. where each abstract data type is repre-
sented as a class. The model is separated into three packages: a model for internal
structures for GRC specifications. a model for internal structures for SCS specifica-
tions and a model for message sequence entries. Figure 38 shows the class diagram of
the translator’s internal data structures for GRC specifications. It should be noted

that although this diagram is very similar to the Rose model structure. it is just a
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Figure 37: The two parts and internal structure of the translator

representation of the translator’s internal structures that are needed for GRC speci-
fications. The main class in this diagram is the GRC class, which is an aggregation
of all the other classes. Figure 39 shows the class diagram of the translator’s internal
structure for SCS specifications. This model shows two structures: one for all the
generic objects and one for all port links of the subsystems. Figure 40 shows the class

diagram of the translator’s internal structure for message sequences.
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Figure 38: Class diagram for translator’s internal structures for GRC specifications
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f MessageEntry }

iSendingObject : String |
ReceivingObject : String
MessageName : String |
Time : String i

!

1

Figure 40: Class diagram for translator’s internal structures for message sequences

5.3.3 Algorithms for Extracting Relevant Elements from
Rose Model

Main translator logic

Get GRC class names
For each GRC class found
Get port types
Get events
Get attributes
Get states
Get attribute function
Get transition specifications
Get time constraints
End for
Format GRC specifications and output to a file
Get subsystem configuration
Format SCS specification and output to a file
Get message sequence

Format message sequence and output to a file



Algorithm for extracting GRC classes from class diagrams

For all selected class diagrams returned from GUI
For all classes from the class diagram
If stereotype is PortType then skip.
If stereotype is GRC then store.
Else Error.
End for
End for

Algorithm for extracting port types

Get all the roles of the GRC class
For all roles
Get the other role of the association
If other role has stereotype PortType then
[f state machine exists for port Type class then Error.
If association is not an aggregation then Error.
If port type class name does not start with @ then Error.

If port type class has more than one attribute then Error.

If the attribute of port type class is not named EVENTS then Error.

If EVENTS attribute of port type class is not of type Set then Error.

If initial value of EVENTS is not enclosed in {} then Error.
Store port type class in list of port types for the GRC.

Store initial value of attribute EVENTS as event set in list of port types for..

..the GRC
End for
If no port types found for the GRC class then Error.

Algorithm for extracting events and their types

If GRC class does not have a state machine then Error.

For all transitions in the state machine



skip transition outgoing from Rose’s start state
skip transition incoming into Rose’s end state
If no triggering event defined for transition then Error.
Store name of event in list of events for the GRC.
Default event type to internal in list of events for the GRC.
End For
For all port types stored
If event set is empty then Error.
For all events in the event set
If direction ? Or ! Is not specified then Error.
If this event was not stored in list of events for the GRC then Error.

Store event direction ? Or ! as event type in list of events for the GRC.
End for
End for

Algorithm for extracting attributes

For all attributes of the GRC class
If stereotype is PortType then
If type of attribute is not the name of a port type class stored..
..in the list of port types for the GRC then Error.
If stereotype is DataType then
[f attribute type is Integer or Boolean then store attribute name and..
.. type in list of attributes for the GRC.
If attribute type is of the form LSLtrait[par...traitType] then
Store attribute name in list of attributes for the GRC.
Store traitType as the type of attribute in list of attributes for the GRC.
Store LSLtrait in the list of LSL traits for the GRC.
else Error.

End for

Algorithm for extracting states

If the GRC class does not have a state machine then Error.
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For all states in the state machine
If state is Rose’s start state or end state then skip.
Store the state in list of states for the GRC.
Store indicator for existence of substates in list of states for the GRC.
End for
For all states in the state machine
If state is Rose's start state then
Get the transitions of this state from the state machine
If more than one transition found then Error.
Get the unique transition.
Get the target state of the transition
Store the indication for initial state in list of states for the GRC.
End for

If no initial state was found then Error.

Algorithm for extracting Attribute Function

For all transitions in the state machine of the GRC class

If target state of transition is Rose’s end state then skip.

Get the trigger action of the transition

If trigger action is empty then skip.

If trigger action is not of the form Post-condition && Time-initialization ..
..then Error.

Extract post-condition from trigger action

Extract names of all attributes from left-hand-side of assignments in the ..
..post-condition.

Store names of attributes extracted in attribute function list for the target state ..

.. of the transition.

End for

Algorithm for extracting transition specifications

For all transitions in the state machine of the GRC class
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If transition is outgoing of Rose’s initial state or incoming in Rose’s end state..

.. then skip.

If no trigger event specified for the transition then Error.

Store transition name. source state and target state in transition list for the GRC.

If guard condition is empty then Default port-condition and enabling-condition ..
.. to true in the transition list for the GRC.

If guard condition is not of the form port-condition && enabling-condition && ..
..time-condition then Error.

Extract port-condition and enabling-condition from guard condition.

Store port-condition and enabling-condition in list of transitions for the GRC

If trigger action is empty then default post-condition to true in transitions list..

.. for the GRC.

If trigger action is not of the form post-condition && Time-initialization ..

.. then Error.

Extract post-condition from trigger action.

Store post-condition in the list of transitions for the GRC.

End for

Algorithm for extracting time constraints

For all transitions in the state machine of the GRC class

[f guard condition is empty then skip.

If guard condition is not of the form port-condition && enabling-condition && ..
..time-condition Then Error.

Extract time-conditions from guard condition.

For all time-conditions extracted (are separated by &)
If time-variable Name is not of the form TCvar# then error.
Store time-variable and event name of the transition
Get lower and upper bounds from the inequality.
Store lower and upper bounds.
[f time-variable is already in the list of time constraints for the GRC Then Error.
If lower bound > upper bound then Error.
For all transitions in the state machine of the GRC class
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If time-variable is in time-initialization from trigger action then
If initialization found already then Error.
If time-variable is not initialized to 0 then Error.
Set indicator for initialization found.
Store the event of the transition as constraining event.
End For
For all states in the state machine of the GRC class
Extract state action
If state action has operation T'C'var = —1 then store state as disabling ..
..state.
If state action has other operations involving TCvar then Error.
End for
End for
End for

Algorithm for extracting subsystem configuration

For all collaboration diagrams selected from GUI
For all objects in collaboration diagram
If no class specified for object then Error.
If the stereotype of the class is GRC and if the class was stored as GRC..
.. before then
Store the GRC object.
For all links of this object
If the other role of the link is another GRC object then skip.
If the other role of the link is a port then
If the name of the port does not start with @ then Error.
Increment and store the cardinality of the port type corresponding ..
..to this port for the GRC object.
End for
End for
For all links in collaboration diagram
If both roles of the link are ports then

($]]
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Store the two port names and their port types.

For both roles of the link
Get the other link in which this is a role.
Get the other role of this link.
If the other role of this link is a GRC object then

Store the GRC object.
End for
End for
End for

Algorithm for extracting message sequence

For all sequence diagrams selected from GUI
For all messages in the sequence diagram
Store the sending object, the message name and the receiving object
End for
For all the stored messages
Get the time of occurrence from the GUI
End for
End for

5.4 Implementation

5.4.1 Implementation Language

Rational Rose 98, through its Extensibility Interface (REI) [Rat98a] provides a way
to extend and customize its capabilities. The language is called RoseScript and it al-
lows accessing Rose classes. properties and methods. updating models and generating

documentation.

RoseScript is not an object-oriented language, and in order to implement the design,
all classes are replaced by data type structures. The algorithms are implemented as



subroutines and functions. The implementation is sequential, with calls to properties

and methods of some Rose classes.
The data structures implemented are explained and shown in Appendix A.

We used the following Rose classes and collections: Class. Role, Association. At-
tribute. Transition, Event. StateMachine. State, Action, ClassDiagram, Scenario-
Diagram, Link. ObjectInstance, Roseltem, Message, ClassCollection, RoleCollection,
AttributeCollection, TransitionCollection, StateCollection, ActionCollection, Item-

Collection, MessageCollection.
Appendix B lists all the properties and methods used in the Rose-GRC Translator.

The biggest problem that we faced when using RoseScript was its lack of user-defined
dynamic structures, which imposes a limitation in the number of components of a
class. We also experienced some memory allocation problems when the number of
components of a class was large, however this was solved by adjusting the size of the

translator’s internal structures.

5.4.2 File Handling

The Rose-GRC Translator runs in the Rose environment. thus it needs a model file

(*.mdl) open in Rose’s application window.

The Rose-GRC Translator produces several output files, depending on the user's se-
lections. Each of these files is written according to the grammar listed in the output

requirements.

Figure 41 shows the file structure of the Rose-GRC Translator and the relationship

between the selected components of the input file and the corresponding output files.

All the generic reactive class specifications are listed in one text file, whose name is

entered by the user.

The subsystem configuration specification for each subsystem selected is listed in one

text file, whose name is entered by the user.

The message sequencing from each sequence diagram is listed in a separate text file,
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Figure 41: Translator file structure

where each file name is entered by the user.

The user may save the error log window (See section 5.4.3) by using the SavelogAs

option from Rose’s File menu. This option is available in the File menu only when

the log window is open.

5.4.3 User Interface

The Rose-GRC Translator uses a few graphical interface constructs that are provided
in the Rose Extensibility Interface: message boxes, dialog boxes. select boxes. a log
window and a viewport window. The GUI of the translator is designed in a consistent
way with Rose's GUIL It provides a user friendly way to select diagrams and it assists
the user in creating a correct model through a comprehensive set of error messages.

The Rose-GRC Translator may be executed directly in the Rose environment, being
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triggered by a Rose menu entry.

Translator as an option in a Rose Menu
We followed these steps as indicated in [Rat98b] to add the translator script to the

Rose menu: Follow these steps to add a script to a Rose menu:

1. Open the Rose Menu file (Rose.mnu) in the Rose installation directory.

(£

. Edit the Path Map so that it includes a virtual script path.

3. Modify the Rose menu file to add the script under the appropriate menu. being

careful to follow all of the menu file syntax rules.

4. Save the updated menu file.

The following is the menu entry for the translator, added to the Tools menu:

Separator
Option "Rose-GRC Translator"

{
RoseScript $TRANSLATOR-SCRIP-TPATH\Translator.ebs

Viewport to show status

The Rose-GRC Translator gives feedback to the user on the status of execution via
the viewport window. The viewport window, if not already open. is opened by the
Rose-GRC Translator. The viewport window is scrollable. The status messages listed

below may be displayed.

Starting the GRC translator...

Reading GRC class names...

Looking for port types for GRC <class name>...
Looking for events for GRC <class name>...

Looking for event types for GRC <class name>...
Looking for attributes for GRC <class name>...
Looking for states for GRC <class name>...

Looking for attribute function for GRC <class name>...

Looking for transition specifications for GRC <class name>...
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Looking for time constraints for GRC <class name>...

Looking for initialization of <time-constraint variable name>...

Looking for objects and ports in collaboration diagram <collaboration
diagram name>...

Looking for port links in collaboration diagram <collaboration diagram
name>...

Extracting message sequence from sequence diagram <sequence diagram

name >...

Rose’s log window

Within the Rose environment there is a log window. which may be used to log errors.
The Rose-GRC Translator writes an appropriate text in this log window for each error
that is detected. When the program terminates, the log window contains all the

errors that were detected. Section 5.5 gives a list of error messages.

This log window is also used by several commands from Rose to report progress,
results and errors. When Rose is started. the log is displaved as an icon at the
bottom of the window. Double-click on the icon to open the log and display the
contents. When the log window is open, the following choices are available under the

File menu: AutoSave Log, Save Log As, Clear Log.

Select boxes for selection of diagrams
The Rose-GRC Translator uses select boxes to allow the user to select diagram names
for the following types of diagrams: Class diagrams, collaboration diagrams and

sequence diagrams. Figure 42 illustrates the select box for class diagrams.

The select box has title “Rose-GRC translator <diagram type> ~. [t displays a text
asking the user to make a selection. A list of all the diagrams of the given type from
the model is displayed. The box also contains an OK button and a Cancel button.
The user may highlight any entry in the list by clicking on it with the left mouse
button or by moving up and down the list with the arrow buttons. The user may
select the highlighted entry by pressing the OK button or double-clicking the left

mouse button on it. [f the user presses the cancel button, the program is terminated.

Message Box for yes/no questions



Figure 42: Select box for class diagrams for Train-Gate-Controller model

The Rose-GRC Translator uses message boxes in order to ask the user simple yes/no
questions. These message boxes have a text, a Yes button and a No button and a
Question Icon. The text is dependent on the logic. One such message box is shown in
Figure 43. After the user presses either the Yes or the No button. execution continues

depending on the logic.

Rose GRC Translator

Figure 43: Message Box asking to continue execution of the program

Message Box for error handling
For every error that is detected by the Rose-GRC Translator. a message box is dis-

played. One such message box is shown in Figure 44.

The message box has the title “Rose-GRC Translator Error™. has a text, an Ok
button and a Cancel button. The text is dependent on the error that has occurred.
Section 3.3 gives a list of error messages. If the user presses the OK button, execution
continues according to the logic of the translation algorithms, depending on the type
of the error. Please see the Error handling section. If the user presses the Cancel

button. the program is terminated immediately.
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i Rose GRC Translator Erro

Figure 44: Message Box for reporting an error

Dialog Box for Subsystem Name

A dialog box, shown in Figure 43, is used for allowing the user to enter the name
of the subsystem for which to create a subsystem configuration specification. The
dialog box has the title “Rose-GRC Translator”. There is a text asking the user to
enter the subsystem name, followed by a text input field. The user has to click the
left mouse button on this field before entering the subsystem name. The dialog box

contains an OK button. When the user presses the OK button, execution of the

program continues.

Figure 45: Dialog Box for entering subsystem name

Dialog Box for Message Times

A set of dialog boxes is used for allowing the user to enter the time of occurrence of
all the messages in a sequence diagram. The main dialog box, illustrated in Figure
46 has the title “Rose-GRC translator - Add time of occurrence for messages”. There
is a text with instructions for the user. followed by a list composed of all messages

extracted from a sequence diagram. Each entry in the list is of the format
SendingObject : MessageName : ReceivingObject.

There are three buttons: AddTime, Finish and Cancel. If the Finish button is pressed,

execution of the program continues. If the Cancel button is pressed, a message is
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given to the user and the program is terminated. If the AddTime button is pressed
when a message entry is selected, a second dialog box, illustrated in Figure 47. is
displayved, with title “Rose-GRC translator - Add time for message®. This dialog
box contains a text with instructions for the user. a text box. an OK button and a
Cancel button. The text box contains by default the message entry selected in the
previous dialog box. If the time is entered correctly, then the second dialog box is
removed and the message entry selected is replaced by the new message entry. If the
time is entered incorrectly, the second dialog box is redisplayed. The main dialog box

remains displaved until the Finish or Cancel button are pressed.

S controller1:Lowergatel
fgatel:Down:gatel
train1:in:traini
train1:0Out:ian1
train1:Exit:controller1
controllerl:Raise:gatel

gatel:Up:gatel

Figure 46: Dialog box for List of messages from a sequence diagram

Dialog box for saving file name
For file saving, a pre-defined save file dialog box is used, shown in Figure 48. Within
this dialog box, the user has the capability to browse the directory structure, select

the complete path and file name. The file type is pre-defined to text file. The dialog
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Figure 47: Dialog Box for entering the time of occurence for one message

box has two buttons: an OK button and a Cancel button. If the user presses the Ok
button, the file is saved and execution of the program continues. If the user presses
the Cancel button, a message box is displayed indicating that Cancel was pressed
and that the program ends. The program is terminated. A save file dialog box is
displayed when saving the following files: the file with generic class specifications.
the file with the subsystem configuration specification and the file with the message
sequencing.

- T ST
e T AP S el bt - i = g ik e e

Figure 43: File save dialog for the GRC specification file

Dialog box for option selection

We define a new dialog box (Figure 19) to allow the user to select some options
before running the translator. The dialog box contains text fields, option groups with
option buttons. an OK button and a cancel button. There are three option groups:
for selection of the delimiter string in guard condition and action, for selection of the

set of logical operators allowed and for selecting parameterized events. If the user
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presses the OK button. execution of the program continues. If the user presses the

Cancel button. the program is terminated.

The option for selection of the delimiter string for guard condition and action of a
transition and the option for selection of the set of logical operators are needed for

backward compatibility with older versions of the TROMLAB interpreter.

The option for parameterized events is for a future enhancement. If the output is
going to be passed to TROMLAB, the option for parameterized event must not be

enabled.

Figure 49: Dialog box for option selection

5.4.4 Utility Functions
RoseScript provides functions such as Item$, [temCount to facilitate parsing.

Item$ returns a string containing a list of all the items in a range from the given
formatted text list. The items in a text list may be delimited by a specified set of
delimiters. However. each of the delimiters can be only one character. A similar
function was developed for the case when the specified delimiter contains several

characters.

itemCount returns the number of items from a given formatted text list. The items

in a text list may be delimited by a specified set of delimiters. However, each of the



delimiters can be only one character. A similar function was developed for the case

when the specified delimiter has several characters.

5.5 Error Handling

The Rose-GRC Translator is designed to detect errors related to model consistency
and correctness. The errors are reported to the user interface through message boxes.

Error messages are also displayed in the log window. (See Section 5.4.3).

5.5.1 Error Handling in the Translator

The user is given the option of pressing the Cancel button in the message box to stop
the translation program right after an error is detected and reported. or to continue
until the entire system is checked, by pressing the OK button for each error. With
the second option, the user can view all the errors in the error log window and/or

save the log window to a file.

The Rose-GRC Translator checks for the following errors. and returns the message

texts in Figures 50 and 31.
Class diagram

e All classes in a class diagram must have stereotype <K GRC>> or «PortType>>.

Generic class
o Each GRC must have at least one port type.

e Each GRC must have a state machine.

Attributes

o All attributes of a GRC class must have stereotype <«PortType>> or «Data-
Type>>.

o PortType Attributes must have a defined port type class as type.

Port Types



A port type class name must start with the character @.

Port type classes must aggregate to a GRC.

A port type class must have only one attribute, named events, of type Set, with

initial value enclosed in curly brackets, representing the event set.
o Every port type must have an event list, with a direction for each event.
e Every event in the event list must be defined in the state machine of the class.

A port type class must not have a state machine.

Transition Specifications
o Every transition must have a triggering event.

e Guard condition must have format: port-condition && enabling-condition &&

time-constraint-condition.

¢ Transition actions must have the format post-condition && time-initialization.

States
o Each GRC must have an initial state defined for each context.

¢ There must be one and only one transition from the Rose initial state.

Time constraints
¢ Time constraint variables must be named TCvarN, with N being a numeral.
¢ Time constraint conditions may have logical operators: <, <, > . >
¢ For each time constraint, lower-bound must be lower than upper-bound.
o Each time-constraint variable can only be used for one time-constraint.

Each time-constraint variable must be initialized once, to 0.

The only action on entry allowed in a state is of the form TCvarN = —1
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Collaboration Diagram

¢ All objects must have a class specified.

Ports

o Port object names must start with the character @.

5.5.2 Error Handling in the GUI

e Whenever the user presses the Cancel button in a dialog box, one of the messages

listed in Figure 52 may be displayed in the error message box.

o If an unacceptable combination of options was selected in the option dialog box,

the message listed in figure 33 is displayed in the message error box.

5.5.3 Size Limitation Error Handling

Some of the structures in the Rose-GRC Translator contain fixed-sized arrays. which
is a restriction imposed by RoseScript. Therefore, the translator has to ensure that
no attempt is made to go over the fixed bounds. When such errors are detected. the
error is reported and the program is terminated immediately, regardless of whether
the user presses OK or Cancel button. The reason for immediate termination is that
the generated specifications would be incomplete otherwise. If this occurs, the user
may attempt to redesign the classes in order to decrease the number of components
that caused the error. Alternatively, if the source script is available, an attempt can
be made to increase the fixed size and recompile the script. See Figure 54 for a list

of error messages.



The class <class name> is not a GRC or a PortType.

No state machine for GRC <class name>.

Association from <class name> to <class name> not supported.

PortType class <class name> has a state machine.

PortType class <class name> does not have only one attribute named events.

Port type for GRC <attribute name> does not start with @,

Port type <class name> is not an aggregation to <class name>.

No port types specified for GRC <class name>.

Attribute <attribute name> of PortTvpe class <class name> is not named events.

Attribute <attribute name> of PortType class <class name> is not of tvpe Set.

Initial value of attribute events is not enclosed in curly braces .

No trigger event specified for transition <transition name> for GRC <class name>.

No event list was specified for port type <class name>.

No event direction was specified for <class name> event <event name>.

<event name> is not a valid event name for GRC <class name>.

Class: <class name> attribute <attribute name>: port type <attribute type> ..
..does not exist.

Class: <class name> attribute <attribute name>: type <attribute type> not ..
. supported.

Class: <class name> attribute <attribute name>: stereotype < attribute ..
..stereotype> not supported.

Class <class name> is missing transition from Rose initial <state name>.

Class <class name> has too many transitions from initial state <state name>.

Class <class name> does not have an initial state or substate defined.

No event specified for transition <transition name> for GRC <class name>.

Guard condition <string> is not of the form: port-cond && enabling-cond && ..
.. time-constraint-condition.

Action <action name> is not of the form: post-condition && time-initialization ..
.for GRC <class name>.

Format error in post-condition <string> for GRC <class name>.

Time constraint condition in <string> does not contain valid time constraint ..
..variable with name TCvar#.

Time constraint condition in <string> does not contain valid logical operator.

Time constraint condition with variable <name> has bounds inconsistency for ..
..GRC <class name>.

Time constraint variable <name> used more than once in GRC <class name>.

Too many actions for GRC <class name> transition action <action name>.

Format error in transition action <action name> for GRC <class name>.

Too many initializations for time constraint variable <name> in GRC <class name>.

Figure 50: Translator error messages
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Wrong initialization for time constraint variable <name> in GRC <class name>.

Time constraint variable <name> in GRC <class name> is not initialized.

Action on entry <action name> of state <state name> of GRC <class name> ..
..is not of the form TCVar=-1.

Wrong value for time constraint variable <name> in entry action <action name> ..
..of state <state name> of GRC <class name>.

Object <object name> has unspecified class.

Name of port <object name> does not start with @.

Class <class name> of object <object name> is not a GRC.

Not all objects had classes specified in collaboration diagram. Specify classes ..
. and re-run translator.

Figure 51: Translator error messages—continued

User canceled saving the file with GRC specifications. Program ends
User canceled saving the file with SCS specifications. Program ends
User canceled saving the file with message sequence. Program ends
No collaboration diagram was selected. Program Ends.

No sequence diagram was selected. Program ends.

Selection of options was cancelled. Program ends.

Cancel was pressed. Program ends.

Figure 32: Error messages from GUI

Cannot have & as a delimiter and as a logical operator. Please make another ..
.. selection.

Figure 53: Error messages from GUTI for option selection



More than <MaxConstraints> time constraints specified for GRC <class name>.
More than <MaxStates> states specified for GRC <class name>.
More than <MaxConstraints> time constraint conditions specified for GRC ..
.. <class name>.
More than <MaxTransitions> transitions specified for GRC <class name>.
More than <MaxEvents> events specified for GRC <class name>.
More than <MaxPortTypes> port types specified for GRC <class name>.
More than <MaxTraits> LSL traits found for GRC <class name>.
More than <MaxAttributes> attributes specified for GRC <class name>.

Figure 54: Error messages for size limitations



Chapter 6

Case Study: Modeling the
Train-Gate-Controller Problem

6.1 Introduction

To illustrate our technique for modeling generic reactive systems in UML, we use a
version of the railroad crossing problem. This problem has been discussed previously
in {(HL94]. [Ach95]. [AM93] as a case study to illustrate the expresivity of the TROM
formalism. We focus here on Rose modeling of a generalized version of the Train-

Gate-Controller system.

In this version. several trains cross a gate independently and simultaneously using
non-overlapping tracks. A train may choose to cross any gate on its way. A controller
controls each gate. When a train approaches the gate, it sends a message to the
associated controller. The controller commands the gate to close. When the train
exits the crossing, it sends a message to the controller, which instructs the gate to

open.

To ensure safety of this system. the following timing constraints are placed on mes-
sages. A train should be inside the crossing 2 to 4 time units after sending the
message indicating that it is approaching the gate. The train should send the mes-
sage indicating that it is ready to exit the crossing within 6 time units from the first
message. Within 1 time unit from receiving the initial message from the train, the

controller must instruct the gate to lower and it starts monitoring it. If the controller
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receives an approaching message while it is monitoring the gate, it should continue
monitoring the gate. The controller will instruct the gate to raise within 1 time unit
after the last train exits the crossing. The gate must close within 1 time unit after
the controller instructs it to lower. The gate must open within 1 time unit after the

controller instructs it to raise.

6.2 Rose model

The Rose model for the Train-Gate-Controller problem has three generic reactive
classes: Train, Controller, and Gate. These three classes and their relationships
are described in one main class diagram. Each class has a statechart diagram. The
system is described in a collaboration diagram. A sequence diagram depicts a specific

scenario for the system.

In our model we allow many trains to communicate with one controller, and vice
versa and there is one controller for each gate.

Figure 55 shows Rose’s main window.

6.2.1 Overall View

The Logical View of the Rose Model for the Train-Gate-Controller has three packages.
Each package holds a GRC class and its associated PortType classes. Each GRC class
holds all its attributes. the state machine. and a class diagram, if it has one. The main
class diagram. the collaboration and sequence diagrams belong to the main Logical

View package. Figure 56 shows the Rose browser for the model’s logical view.
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Figure 56: Rose browser for the logical view of the Train-Gate-Controller model.

6.2.2 Main Class Diagram

The class diagram. as depicted in Figure 57 shows the three GRC classes: Train. Gate

and Controller.

Train GRC is an aggregate of port types @C.

Controller GRC is an aggregate of port types @G and @P.
Gate GRC is an aggregate of port types 4S.

There is an association between port type @C of Train and @P of Controller. meaning
that the generic class Train uses port type @C to communicate to the generic class

Controller through its port type @P.

There is also an association between port type 4S of Gate and port type @G of
Controller. meaning that generic class Controller uses port type @G to communicate

with generic class Gate through its port type @S.

Train GRC has one port type @C. At port type -@C. the following events may occur:

output event Near. output event Exzit.
Train GRC has one attribute. named cr. whose type is the port type @C.

Controller GRC has two port types: @P and dG. At port type @P. the following
events may occur: input event Vear. input event Erit. At port type @G, the following

events may occur: output event Lower. output event Raise.

Controller GRC has one data type attribute, inSet. The type is an abstract data type



defined in the LSL trait Set with parameters @P and PSet, where @P is the type of

each name and PSe! is the name of the abstract data type.

Gate GRC has one port type@S. At port type @S the following events may occur:

input event Lower. input event Raise.

T «GRO> <<PorType>>
Tran o — ec
<<PoriType>>cr: @C ! -events : Set = (Near! Ext) |
<<PonType>> ; <<GRC>> <<PonType>>
©G S Controtier @P

- e
events : Set = (Lower! Raisal} | <<DauType>> nSet : Set{@P PSet]| events : Sat « (Near?,Exit?)

t

i

j
: <<PonType>> : <<GRC>>
5 @s — Gate
fevents : Set = {Lower?,Raise7) '

Figure 57: Main Class Diagram for Train-Gate-Controller

6.2.3 Class Diagram for One GRC

As an alternative to specifying a main class diagram with all the classes in a sub-
system, the user may create a class diagram for each GRC, as shown in Figure 38 .
This class diagram will contain only the GRC class and the corresponding PortTyvpe

classes. To illustrate this, we show here a class diagram for the Controller GRC.

<<PortTypes : <<GRC>> i | <cPonType>>
@P ——— Controller o— @G
avents - Set = {Near Exit7] i<<DataType>> inSet : Set{@P,PSet] : ‘events : Set = {Lower!,Raise!}

Figure 58: Class Diagram for Controller

6.2.4 Train GRC
The statechart diagram for Train in shown in Figure 39.

A Train object can be in one of four states: idle. toCross, cross, leave. [dle is the

initial state.

When event Near occurs in state idle, attribute cr is set to pid. the identifier of the
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port where Near occurs. This transition is the constraining transition for two time

constraints. labeled TCrar! and TCrar2. Train goes into state foCross.

A transition from state toC'ross to eross happens when internal event In occurs in
state foCross. and if the time constraint condition TCrart>2 AND TCrari<iis true.
This time constraint means that internal event In should occur within 2 to 4 time

units after event Near occurs in state /dle.
When internal évent Ouf occurs in state cross. Train goes into state leave.

A transition from state leave to idle happens when event Erif occurs in state leace. if
the attribute cr has the value pid (pid is the identifier of the port where Exrit occurs).
and if the time constraint condition Tcrar?<6 is true. This time constraint means

that event Erit should occur within § time units after event Near occurs in state idle.

; N : Near/ cr'=pid && TCvari=0 & E——
| idle TCvar2=0 ~ toCross
-

a N

Exit[ pid=cr && true &&
TCvar2<a6 ]
Inf true && true && TCvari>=2 &
TCvari<=4 |

i S VAN
j leave P Out cross ,
; o~ '

Figure 59: Statechart Diagram for Train

6.2.5 Controller GRC
The statechart diagram for Controller is shown in Figure 60.

A Controller object can be in one of four states: idle, activate. monitor.deactivate.

[dle is the initial state.

When event Near occurs in state idle. the attribute inSef is modified to include the
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new entry pid (pid is the identifier of the port where Near occurs). The Controller goes
into state activate. This transition is the constraining transition for time constraint

TCvarl.

When event Near occurs in state activate from a different Train (pid is not already a
member of set inSet), the attribute inSet is modified to include the new pid (identifier
of the port where the new event Near occurs). The controller remains in the state

activate.

When event Loweroccurs in state activate, if the time constraint condition TCrar1<1
is true. the Controller goes into state monitor. This time constraint means that event

Lower should occur within one time unit after event Near occurs in state idle.

When event Near occurs in state monitor frcm a different Train (pid is not already a
member of set inSet), the attribute inSet is modified to include the new pid (identifier
of the port where the new event Near occurs). The Controller remains in state

monittor.

When event Erit occurs in state monitor, if the identifier (pid) of the port where
event Ezit was received is a member of inSet and if the size of inSet is greater than 1,
meaning that more than one Trains are in the crossing, then the currentpidis deleted

from inSet and Controller remains in state monitor.

When event Erit occurs in state monitor. if the identifier (pid) of the port where event
Ezit was received is a member of inSet and if the size of inSet is equal to 1, meaning
that this is the only Train in the crossing, then the current pid is deleted from inSet
and Controller goes into state deactivate. This is the constraining transition for time

constraint TCuvar?,

When event Raise occurs in state deactivate, if time constraint condition Tcvar?<1
is true. the Controller goes into state idle. This time constraint condition means that
event Raise should occur within 1 time unit after event Ezit was received from the

last Train in the crossing.
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Figure 60: Statechart Diagram for Controller

6.2.6 Gate GRC
The statechart diagram for Gate in shown in Figure 61.

A Gate object can be in one of four states: opened, toClose, closed. toOpen. Closed

is the initial state.

When event Lower occurs in state opened, the Gate goes into state toClose. This is

the constraining transition for time constraint labeled Tcvar!.

A transition from state toClose to closed happens when internal event Down occurs in
state toClose if the time constraint condition TCrari<1 is true. This time constraint
means that internal event Down should occur within 1 time unit after event Lower

occurs in state opened.

When event Raise occurs in state closed, the Gate goes into state toOpen. This is the



constraining transition for time constraint TCvar?2.

A transition from state toOpen to open happens when internal event Up occurs in
state toOpen if the time constraint condition TCvar2>1 and Tcvar2<2 is true. This
time constraint means that internal event Up should occur within 1 to 2 time units

after event Raise occurs in state closed.

| opened x Lower / true && TCvar1=0 \, toClose ‘
l ) .
) s
~ |
Up( true && true && TCvar2>=1 & '
TCvar2<=2] g
; Down( true && true && TC'var1>=0
& TCvart <=1] |
|
' | Y
; toOpen > Raise / true && TCvar2=0 E closed ’
‘ < ]
' ; l

L . s,

Figure 61: Statechart Diagram for Gate

6.2.7 Collaboration Diagram

A collaboration diagram depicts a system, or, for larger systems. a subsystem. First
we specify a system with one train, one controller and one gate, named TrainGate-
Controller!. Second. we specify a system with five trains. two controllers and two

gates. named TrainGateController?.

TrainGateControllerl

The collaboration diagram for this subsystem is shown in Figure 62.

This system has one train object (Train!), one controller object (Controller!) and

o
(S



one gate object (Gatel).
Trainl has one port @(l of type @C, for communication with Controller!.

Controller! has one port ‘4P| of tvpe GP. for communication with Train! and another

port @G of type@G for communication with Gatel.

Gatel has one port @51 of type @S for communication with Controllerl.

—

@C1:. @c| | tmnliTam i gatel:Gae [@si: es:

’
’
\ ,
\ ,
. ’
’

ey A mﬂ‘—'ﬁ'-‘-&ﬂmﬂﬁ‘z],.__@ei_@e

Figure 62: Collaboration diagram for subsystem TrainGateControllerl

TrainGateController2

The collaboration diagram for this subsystem is shown in Figure 63

This subsystem is for a particular subsystem configuration. composed of five trains,
two gates and two controllers. The routes of the five trains are such that one of the
trains can go through both gates. two other trains can only go through the first gate

and the last two trains can only go through the second gate.

This subsystem configuration captures the fact that not all trains communicate with

all controllers and. conversely. that not all controllers communicate with all trains.

6.2.8 Sequence Diagram

Figure 64 shows a sequence diagram that depicts a particular scenario in a subsystem
with one train. one controller and one gate. We use sequence diagrams to provide
for a future enhancement. namely for a formal verifier (see Section 8.3). Only GRC
objects are shown in the scenario. without the ports. for simplicity. The messages are

ordered. and sequence numbers are shown with the labels.



int i
¥ / \\ I ”‘
2orec @C2.@C. o3 @c] [eci6C  @Cs G| 5@ |

Figure 63: Collaboration diagram for subsystem TrainGateController2
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Figure 64: Sequence diagram for a scenario in subsystem TrainGateControllerl
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6.3 Formal Model

6.3.1 GRC Specification for Train

The formal specification for GRC Train. shown in Figure 63, is generated by the
translator from information in the main class diagram and the statechart diagram of

GRC Train. shown in Figures 57 and 39.

Class Train [@C]
Events: Near!@C, Qut. Exitl@C, In
States: *idle, cross, leave. toCross
Attributes: cr:@C
Traits:
Attribute-Function: idle — {}: cross — {} :leave — {}; toCross — {cr};
Transition-Specifications:
R1: <idle.toCross>; Near(true); true => cr/=pid:
R2: <cross.eave>; Qut(true): true => true:
R3: <leave,idle>: Exit(pid=cr); true = true;
R4: <toCross.cross>: In(true); true => true;
Time-Constraints:
TCvar2: R1. Exit. [0. 6]. {}:
TCvarl: RI1. In. 2. 4], {}:
end

Figure 65: Formal specification for GRC Train

6.3.2 GRC Specification for Controller

The formal specification for GRC Controller. shown in Figure 66, is generated by the
translator from information in the main class diagram and the statechart diagram of

GRC Controller. shown in Figures 57 and 60.

6.3.3 GRC Specification for Gate

The formal specification for GRC Gate, shown in Figure 67. is generated by the
translator from information in the main class diagram and the statechart diagram of

GRC Gate. shown in Figures 57 and 61.
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6.3.4 Configuration Specification for TrainGateControllerl

The formal specification for subsystem TrainGateControllerl, shown in Figure 68,
is generated by the translator from information in the collaboration diagram for

subsystem TrainGateControllerl. shown in Figure 62.

6.3.5 Configuration Specification for TrainGateController2

The formal specification for subsystem TrainGateController2, shown in Figure 69,
is generated by the translator from information in the collaboration diagram for

subsystem TrainGateController2, shown in Figure 63.

6.3.6 Message Sequencing

A message sequencing for a particular scenario in subsystem TrainGateControllerl,
shown in Figure 70 is extracted by the translator from information in the sequence
diagram for a scenario in subsystem TrainGateControllerl, shown in Figure 64. The

time of occurrence is entered by the user during translation.

6.4 Case Study Conclusion

Upon completion of this case study. we conclude that the Rose-GRC Translator:

e is capable to produce output conforming to the formally specified GRC (Section

5.2)

e is compatible with the interface of the Interpreter in TROMAB

V7]
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Class Controller [@P, @G]
Events: Lower!@G. Near?@P, Raise!@G, Exit?@P
States: *idle, activate, deactivate. monitor
Attributes: inSet:PSet
Traits: Set[@P,PSet]
Attribute-Function: activate — {inSet}; deactivate — {inSet}; monitor — {inSet}:
idle — {};
Transition-Specifications:
Rl: <activate,monitor>: Lower(true);
true = true;
R2: <activate,activate>; Near(!(member(pid,inSet)));
true => inSet/=insert(pid.inSet);
R3: <deactivate,idle>; Raise(true);
true = true;
R4: <monitor.deactivate>: Exit(member(pid.inSet));
size(inSet)=1 = inSet/=delete(pid.inSet):
R3: <monitor,monitor>; Exit(member(pid.inSet)):
size(inSet)>1 == inSet/=delete(pid.inSet):
R6: <monitor,monitor>: Near(!(member(pid.inSet)));
true = inSet/=insert(pid.inSet);
R7: <idle.activate>; Near(true);
true = inSet/=insert(pid.inSet);
Time-Constraints:
TCvarl: R7, Lower, [0. 1], {}:
TCvar2: R4, Raise, [0, 1], {};
end

Figure 66: Formal specification for GRC Controller
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Class Gate [@S]
Events: Lower?@S, Down, Up. Raise?@$
States: *opened, toClose. toOpen, closed
Attributes:
Traits:
Attribute-Function: opened — {}; toClose — {}; toOpen — {}; closed — {};
Transition-Specifications:
R1: <opened.toClose>: Lower(true): true = true:
R2: <toClose,closed>; Down(true); true = true;
R3: <toOpen.opened>; Up(true); true => true;
R4: <closed,toOpen>; Raise(true); true = true;
Time-Constraints:
TCvarl: Rl, Dowr, [0. 1], {}:
TCvar2: R4, Up, (1, 2], {};
end

Figure 67: Formal specification for GRC Gate

SCS TrainGateControllerl
Includes:
[nstantiate:
gatel::Gate[@S:1];
trainl::Train[@C:1];
controllerl::Controller[@P:1. @G:1];
Configure:
controllerl.@G1:@G — gatel.@S1:QS;
controller].@P1:QP — train1.@C1:@C;
end

Figure 68: Formal specification for subsystem TrainGateControllerl



SCS TrainGateController2

Includes:

Instantiate:
Gate2::Gate[@S:1];
Gatel::Gate[@S:1];
Controller1::Controller[@P:3, @G:1];
Controller2::Controller[@P:3, @G:1];
trainl:Train[@C:1]:
train2::Train[@C:1};
train3::Train[@C:2];
traind::Train[@C:1];
traind::Train[@C:1]):

Configure:
Gatel.@51:4S — Controllerl.@G1:2G:
Controller2.@G2:4G — Gate2.452:@§;
Controllerl.@P2:@P — train2.@C2:0C:
Controller1.@P1:@P — trainl.@C1:@C:
Controller1.@P3:@P — train3.@C3:@C:
Controller2.@P5:@P — train4.@C5:QC:
Controller2.aP6:@P — train5.4C6:QC:
Controller2.a¢P4:@P — train3.@C4:a@C:

end

Figure 69: Formal specification for subsystem TrainGateController2

trainl:Near:controllerl:5
controllerl:Lower:gatel:6
gatel:Down:gatel:7
trainl:In:trainl:8
trainl:Out:trainl:9
trainl:Exit:controller1:10
controllerl:Raise:gatel:11
gatel:Up:gatel:13

Figure 70: A message sequence in subsystem TrainGateController2
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Chapter 7

Industrial Application: Mobile
Originating Short Message

Services

7.1 Introduction

This chapter presents an application from the mobile telephony industry: Mobile
Originating Short Message Services (MO SMS). The problem is described in Sec-
tion 7.2. A formal model for a mobile telecommunication system was presented in
[AAR93]. to illustrate the use of the TROM based methodology. That model used
parameterized events. However the current implementation of TROMLAB does not
support parameterized events. Here we first model the MO SMS problem in Rose
using parameterized events, and we use the translator to produce the formal specifi-
cations. The translator supports parameterized events to some extent, however the
output produced is based on [AAR95] and not on a formal grammar. We show the
Rose model for MO SMS in Section 7.3 and the corresponding formal specifications
in Section 7.4. In order to produce an output compatible with the TROMLAB tools,
we model the MO SMS problem again in Rose (Section 7.5), this time without the
use of parameterized events, by flattening the domain of events. We then translate

the Rose model into formal specifications (Section 7.6).
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7.2 Problem Description

Mobile Originating Short Message Services is a teleservice provided by the Ericsson
cellular system, CMS 8800, according to the North American standard, D-AMPS. A
mobile station (MS) may send a short text message to a message center (MC) through
the Ericsson mobile network, CMS8800. The CMS8800 network is able to receive the
short message and transparently forward it to the appropriate message center and to
forward the reply from the message center back to the mobile. The final destination
of the short message could be another mobile subscriber or a land-line subscriber. but

is irrelevant to the scope of the problem.

A mobile station sends the short message through a digital control channel (DCCH),
in the R-DATA message, as specified in [TIA98]. After performing a number of
checks. the CMS8800 network forwards the short message to the MC with the message
ShortMessageDeliveryPoint ToPoint(SMDPP) Invoke, as specified in [TIA97]. The
MC acknowledges reception of the short message by sending SMDPP Return Result to
the CMS8800 network. The CMS8800 network sends R-DATA ACCEPT or R-DATA
REJECT to the mobile station depending on whether the short message transmission
was successful or not. The CMS8800 network may send REORDER to the MS in the

case when the format of the mobile station identification is not acceptable.

Figure 71 shows the use case diagram for MO SMS.

— N
L 57T i
} Pt . - H
N Dt -

MS Send short message to MC MC

Figure 71: Use case diagram for MO SMS

Figure 72 [Eri98] shows the main flow of messages between the MS, the CMSS8800

network and the MC, in the case when a short message is successfully forwarded to

the MC.

Figure 73 [Eri98] shows the flow of messages between the MS and the CMS8800
network, in the case when a short message cannot be forwarded to the MC due to an

unacceptable format in the mobile station identification.
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Figure 72: Main flow of messages for a successful MO SMS
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Figure 73: Flow of messages for a MO SMS access with invalid MSID

Figure 74 [Eri98] shows the flow of messages between the MS and the CMS8800
network. in the case when a short message cannot be forwarded to the MC due to
length of short message or to an invalid subscriber identification or to an invalid

destination address.

Figure 75 [Eri98] shows the flow of messages between the MS, the CMS8800 network

and the MC. in the case when a short message cannot be stored in the MC.

The main timing requirement for MO SMS is the following: If the mobile station

does not receive an acknowledgment after a certain time (20 super-frames), then it
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Figure 75: Flow of messages for a MO SMS access that cannot be stored in MC

will attempt to send the message once more.

We will model the mobile, the CMS8800 network and the message center as generic
reactive classes. and we will specify their behavior with respect to MO SMS function-
ality only. with focus on the CMS8800 network.

Mobile Station

With respect to MO SMS functionality. the initial state for the MS is the DCCH
Camping state [TIA98]. From the DCCH Camping state, the MS sends R-DATA to
the CMS8800 network and goes to a waiting state.

In this waiting state the MS may receive one of these messages: R-DATAACCEPT,
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R-DATAREJECT and REORDER. If R-DATAACCEPT is received, the MS must
ensure if the message is intended for it. If R-DATAREJECT is received, the MS
must ensure if the message is intended for it. [f REORDER is received, the MS must
ensure if the message is intended for it and then it may re-send the R-DATA with
the same data, using the alternate MSID, if available, and it goes to a waiting state.

Otherwise it returns to the DCCH Camping state.

If 2 timeout occurs (no message received from the CMS8800 network after 20 super-
frames), if it is the first timeout. the MS resends the R-DATA message and goes into
a waiting state. Otherwise it returns to the DCCH Camping state. If the timeout
occurs after the MS has resent the R-DATA message due to a REORDER. then it
should not attempt to re-send the R-DATA again.

Message Center

As stated before, in this model we focus on the CMS8800 network. From its perspec-
tive, after the SMDPP Invoke message is sent to the message center, the conditions
under which the message can or cannot be stored in the message center are irrelevant.
[t is important to distinguish between an SMDPP Return Result message indicat-
ing success and one indicating failure sent from the message center to the C'MS3300

network.

CMSS8800 Network
In order to support MO SMS functionality on DCCH. the CMS 8800 network shall

perform the following functions:
o Receive R-DATA message from the MS.

Check MO SMS feature activation.

e Check MSID format and. if necessary, send a REORDER to the MS.

Check R-DATA message length.

I[dentify the subscriber.

Handle multiple MO SMS accesses in the case when a timeout occurs in the
MS.

Send SMDPP Invoke to the MC.
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e Receive SMDPP Return Result from the MC.
e Send R-DATA ACCEPT to the MS.
e Send R-DATA REJECT to the MS.

e If a timeout occurs when the CMS8800 waits for a reply from the MC. no reply

should be sent to the MS in order to allow it to timeout.

R-DATA parameters

At this level of abstraction, the following parameters are relevant in the R-DATA mes-
sage: Bearer data length, Subscriber identifier, MSID, Destination Address. Based
on the value of these parameters. the CMS8800 will go into different states. The
other parameters. such as the text of the short message, the originating address and
subaddress, and the destination subaddress may be considered implicit because their

value is not checked at this level of abstraction.

7.3 Rose Model with Parameterized Events

7.3.1 Class diagram

We model this problem with three generic reactive classes: MS. CMS8800 and MC.
and we create a class diagram (Figure 76) for the three GRCs and their respective

port types.
The MS class has a port type @C for communication with the CMS8800 class.

The CMS8800 class has a port type @MO for communication with a MS, and another

port type @S for communication with a MC.
The MC class has a port type @M for communication with the CMS8800 class.

The attribute events from each port type class has the initial value equal to the set of
input and output events that may occur at a port of that type. In order to simplify
the diagram. we selected Rose’s option to “Not show attributes” for all the port type

classes.

The MS class has the following attributes:
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Tent is a counter for timeouts, initialized to 0.

currPID stores the pid of the current port of type @C.
currMSID stores the current mobile station identification.
MSID1 is the primary mobile station identification.

MSID?2 is the alternate (optional) mobile station identification.

The CMS8800 class has the following attributes:

MOSMSFeature is a boolean that indicates if the CMS8800 network supports
the MO SMS functionality. Setting this value is outside the scope of this MO
SMS model.

MAXLENG stores the maximum accepted length of a short message accepted
by the CMS8800 network. Setting this value is outside the scope of this MO
SMS model.

currMO stores the pid of the current port of type @MO.
currS stores the pid of the current port of type @S.

Subscribers is a set of integer elements that stores the subscriber identifications
(SubID) of all subscribers that are permitted to make a MO SMS access.

Destinations is a set of integer elements that stores the destination addresses
(DestAddr) of all valid destinations. This is used also to obtain the port of the

appropriate message center.

The MC class has the following attributes:

StoreCondition is a boolean indicating whether the short message may or may

not be stored in the message center.

currPID stores the pid of the current port of type @M.
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<<DataType>> MSID2 : Integer
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<<DataType>> MAXLENG : Integer
<<PortType>> currMO : @MO

<<PorntType>> cunS : @S

<<DataType>> Subscribers : Set{Integer,SubSet}
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et ———— e — <<DataType>> StoreCondition : Boolean

; <<PortType>> currPID : @M g

Figure 76: Class diagram with all GRCs for MO SMS

7.3.2 MS GRC
Figure 77 illustrates the statechart diagram for the MS GRC.

When the MS sends a R-DATA event in state DCCHCamping, it goes in state MOSM-
Sproceeding. If R-DATAACCEPT or R-DATAREJECT is received in this state, the
MS returns to DCCHCamping after releasing its resources. [f REORDER is received
in this state and an alternate MSID is available, the MSsends again R-DATA and goes
into state waitresend. If R-DATAACCEPT or R-DATAREJECT is received in this
state. the MS returns to DCCHCamping after releasing its resources. I[f REORDER
is received in this state, the MS treats it as a reject. If a timeout occurs in state
waitresend. the MS returns to DCCHCamping. If a timeout occurs in state MOSM-
Sproceeding. the MS resends R-DATA and goes into state wait2. If R-DATAACCEPT
or R-DATAREJECT is received in this state, the MS returns to DCCHCamping after
releasing its resources. If REORDER is received in this state and an alternate MSID
is available. the MS sends again R-DATA and goes into state waitresend. If a timeout

occurs in state wait?2, the MS returns to DCCHCamping.
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Figure 77: Statechart diagram for MS GRC

7.3.3 CMS8800 GRC

Figure 78 illustrates the statechart diagram for the CMS8800 GRC.

When the CMS8800 receives an R-DATA, it checks if the MOSMS feature is sup-
ported. If the MOSMS feature is not supported, CMS8800 sends R-DATAREJECT
and returns to idle. If the MOSMS feature is supported. CMS8800 checks the format
of the MSID received. If the MSID format is invalid. it sends REORDER and returns
to idle. If the MSID format is valid. CMS8800 checks if the message length received
is less than the maximum accepted. If it is longer than accepted. CAS8800 sends
R-DATAREJECT and returns to idle. If the message length is acceptable, CMS58800
checks the identity of the subscriber. If the subscriber is not identified, CAMS58800
sends R-DATAREJECT and returns to idle. If the subscriber is identified, CMS8800
checks the destination address. If the destination address is invalid, CMS8800 sends
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R-DATAREJECT and returns to idle. If the destination is valid, CMS8800 retrieves
the port of the MC corresponding to the destination address and sends SMDPPInvoke
to that MC. If CMS8800 receives a SMDPPAccept, it sends R-DATAACCEPT and
returns to idle. If CMS8800 receives a SMDPPReject, it sends R-DATAREJECT and
returns to idle. If CMS8800 does not receive anything, whithin 18 to 19 time units,

it returns to idle.
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Figure 78: Statechart diagram for CMS8800 GRC

7.3.4 MC GRC
Figure 79 illustrates the statechart diagram for the MC GRC.

When the MC receives SMDPPInvoke. it checks if the short message can be stored.
If it can, than it is stored and MC sends SMDPPAccept and returns to idle. If the

short message cannot be stored. MC sends SMDPPReject and returns to idle.
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Figure 79: Statechart diagram for MC GRC

7.3.5 A subsystem

Figure 30 illustrates the collaboration diagram for a subsystem with one MS. one
CMSS8300 network and one MC.

MS1:M M

|
e @M1 @M
@m0 -eM0 Net1.CMS8200 @S1.@S

Figure 80: Collaboration diagram for a subsystem

7.4 Formal Model with Parameterized Events

7.4.1 The MC class

Figure 81 shows the formal specification for the MC GRC.
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Class MC [@M]
Events: SMDPPInvoke?@M, StoreMsg, SMDPPAccept!@M, SMDPPReject!@M
States: *idle, CheckStore, storeOk, storeNOK
Attributes: StoreCondition:Boolean: currPID:@M
Traits:
Attribute-Function: idle — {}: CheckStore — {}; storeOK — {}; storeNOK — {};
Transition-Specifications:
R1: <idle,CheckStore>; SMDPPInvoke(true); true => currPID/=pid;
R2: <CheckStore,storeQK>: StoreMsg(true); StoreCondition=true = true:
R3: <CheckStore.storeNOK >; StoreMsg(true); StoreCondition=false == true:
R4: <storeOK.idle>; SMDPPAccept(currPID=pid); true = true;
R3: <storeNOK.idle>; SMDPPReject(currPID=pid); true = true;
Time-Constraints:
end

Figure 81: Formal Specification for MC GRC

7.4.2 The MS class

Figures 82 and 83 show the formal specification for the MS GRC.

7.4.3 The CMSS8800 class

Figures 84 and 85 show the formal specification for the CMS8800 GRC.

7.4.4 A subsystem configuration

Figure 36 shows the configuration specification for a subsystem with one MS. one
CMSS800 network and one MC.
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Class MS [@C]

Events: R-DATA(MSID1.Len,SubID.DestAddr)!@C, R-DATAACCEPT?@C,
R-DATAREJECT?@C. REORDER?@QC, ReleaseAck, ReleaseRej, Timeout?2,
Timeout

States: *DCCHCamping, MOSMSproceeding, MOSMSresend. ProcessAccept.
ProcessReject. waitresend. wait2

Attributes: Tcent:Integer: currPID:@C; currMSID:Integer; MSID 1:Integer;
MSID2:Integer

Traits:

Attribute-Function: DCCHCamping — {currPID. Tent};

MOSMSproceeding — {currPID, Tent}; MOSMSresend — {};

ProcessAccept — {}; ProcessReject — {};

waitresend — {currMSID}; wait2 — {Tecnt}:

Transition-Specifications:

R1l: <DCCHCamping. MOSMSproceeding>: R-DATA(true):
true = currPIDr=pid&CurrMSID/=MSID1& Tent/=0;

R2: <MOSMSproceeding,ProcessAccept>: R-DATAACCEPT(currPID=pid);
true = true;

R3: <MOSMSproceeding,ProcessReject>; R-DATAREJECT(currPID=pid);
true — true;

R4: <MOSMSproceeding. MOSMSresend>: REORDER(currPID=pid):
MSID2#0 = true:

R5: <MOSMSproceeding.wait2>: R-DATA(true):
Tent=0 = Tentr=1;

R6: <MOSMSresend.waitresend>; R-DATA(true):
true = currMSID/=MSID2;

R7: <ProcessAccept. DCCHCamping>: ReleaseAck(true);
true = currPID/=0:

R8: <ProcessReject. DCCHCamping>: ReleaseRej(true);
true => currPID/=0:

R9: <waitresend.ProcessReject>; REORDER(currPID=pid):
true = true:

R10: <waitresend.ProcessAccept>: R-DATAACCEPT(currPID=pid);
true => true;

R11: <waitresend.ProcessReject>: R-DATAREJECT (currPID=pid):
true => true:

R12: <waitresend. DCCHCamping>: Timeout2(true):
true = true:

R13: <wait2.DCCHCamping>: Timeout(true):
true => Tent/=0:

Figure 82: Formal Specification for MS GRC
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R14: <wait2.MOSMSresend>: REORDER(currPID=pid);
MSID2#0 = true;
R15: <wait2,ProcessAccept>: R-DATAACCEPT(currPID=pid);
true = true;
R16: <wait2.ProcessReject>; R-DATAREJECT(currPID=pid);
true => true:
Time-Constraints:
TCvarl: R1. R-DATA. [21. 22]. {MOSMSresend. ProcessAccept. ProcessReject}:
TCvar3: R6, Timeout2, {21. 22|, {ProcessAccept, ProcessReject};
TCvar2: R3. Timeout. [21. 22]. {MOSMSresend. ProcessAccept. ProcessReject }:
end

Figure 83: Formal Specification for MS GRC—continued
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Class CMS8800 [@S, @MO]

Events: R-DATA(MSID.Len.SubID, DestAddr)?@MO, CheckFeature.
R-DATAREJECT!@MO, MSIDCheck. SMDPPAccept?@S, SMDPPReject?4S.
Release, SMDPPInvoke!@S. R-DATAACCEPT!@MO, REORDER!@MO.
MsgLengthCheck, Subldentify, DestCheck

States: *idle. OFH, processReject. checkMSID. wait, sendSMS,
processAccept, processReorder, checkLength,

IdentifySubscriber. checkDestination

Attributes: MOSMSFeature:Boolean; MAXLENG:Integer; currMO:@MO; currS:@S:
Subscribers:SubSet; Destinations: DestSet

Traits: Set{Integer,SubSet].Set[Integer.DestSet|

Attribute-Function: idle — {currMO, currS}; OFH — {currMO}; processReject — {};
checkMSID — {}; wait — {currS}; sendSMS — {}; processAccept — {};
processReorder — {}: checkLength — {}: IdentifySubscriber — {}:
checkDestination — {};

Transition-Specifications:

R1: <idle,OFH>; R-DATA(true);
true = currMO/=pid;

R2: <OFH,processReject>; CheckFeature(true);
MOSMSFeature=false => true;

R3: <OFH.checkMSID>; CheckFeature(true):
MOSMSFeature=true = true;

R4: <processReject.idle>; R-DATAREJECT(currMO=pid):
true => currMO/=0 & currS/=0:

R3: <checkMSID,processReorder>; MSIDCheck(true);
invalidFormat(MSID) = true;

R6: <checkMSID.checkLength>; MSIDCheck(true);
validFormat(MSID) = true;

R7: <wait,processAccept>; SMDPPAccept(currS=pid):
true = true;

R8: <wait.processReject>; SMDPPReject(currS=pid);
true => true;

R9: <wait.idle>; Release(true);
true => currMO/=0 & currS/=0:

R10: <sendSMS.wait>; SMDPPInvoke(pid=GetMCport{DestAddr)):
true => currS/=pid;

R11: <processAccept.idle>; R-DATAACCEPT(currMO=pid):
true => currMOr=0 & currS/=0:

R12: <processReorder.idle>: REORDER(currMO=pid);
true = currMOr=0;

Figure 84: Formal Specification for CMS8800 GRC
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R13: <checkLength.processReject>: MsgLengthCheck(true);
Len>MAXLENG = true;
R14: <checkLength.ldentifySubscriber>: MsgLengthCheck(true):
Len<MAXLENG = true;
R15: <ldentifySubscriber,processReject>; Subldentify(true);
{member(SubID,Subscribers)) = true;
R16: <IdentifySubscriber,checkDestination>; Subldentify(true):
member(SubID.Subscribers) = true:
R17: <checkDestination.sendSMS>: DestCheck(true);
member(DestAddr,Destinations) => true;
R18: <checkDestination,processReject>; DestCheck(true);
member(Dest Addr.Destinations) = true:
Time-Constraints:
TCvarl: R10, Release. [18. 19], {processReject, processAccept };
end

Figure 85: Formal Specification for CMS8800 GRC—continued

SCS MOSMS2
Includes:
Instantiate:
MS1:MS[@C:1}:
Net1::CMS8800[@S:1, @MO:1]:
MCl:MC[aM:1]:
Configure:
Net1.@MO1:@MO — MS1.@Cl1:4C:
MC1.@M1:@M — Netl.@S1:@S:
end

Figure 86: A Subsystem Configuration Specification
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7.5 Rose Model without Parameterized Events

Because the current implementation of the TROMLAB tools does not support parame-
terized events. in order to produce formal specifications compatible to the TROMLAB
tools, we flatten the domain of event. that is we replace the R-DATA event by several

events, representing all the relevant combinations of parameter values.

We analyzed all the combinations between the relevant values of the necessary pa-
rameters (MSID, Bearer data length. Subscriber Identifier, Destination Address). and
given the order in which they should be checked by the CMS 3800 network, there are

only five distinct combinations:
1. R-DATA with invalid MSID.
2. R-DATA with valid MSID and Length greater than allowed.
3. R-DATA with valid MSID. valid Length and invalid Subscriber Identifier.

4. R-DATA with valid MSID. valid Length, valid Subscriber Identifier and invalid

destination address.

5. R-DATA with valid MSID. valid Length, valid Subscriber Identifier and valid

destination address.

We will replace the R-DATA event by five events. representing the five combinations

listed above.

We also replace the message SMDPP Return Result by two messages:
1. SMDPP Accept

2. SMDPP Reject

7.5.1 Class diagram

We model this problem with three generic reactive classes: MS, CMS8800 and MC.
and we create a class diagram (Figure 87) for the three GRCs and their respective

port tvpes.

Each of the generic reactive classes has the same port types as in the previous model.
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However some of the attributes are removed as they are not needed. The sets Sub-

scribers and Destinations are removed from class CMS8800.

<<GRC>>
D ————————————— Ms Ry
<<PorType>>! <<PonType>>i <<DataType>> Tent : integer = 0

MO c @ <<PonType>> cunPID : @C ‘
;——@—— -———@—-——— -<<DataType>> currMSID : Integer
oo eeeod e, <<DataType>> MSID1 : Integer
<<DataType>> MSID2 : integer

<<GRC>>

CMS8800 :
<<DataType>> MOSMSFeature : Boolean .
<<DataType>> MAXLENG : Integer
<<PortType>> currMO : @MO0
<<PortType>> curS : @S

¢
i«<PortType>>| <<PortType>>; i <<%%c>>
. @8 @M <>

et s ey

'<<DaxaType» StoreCondition : Boolean
i«PortType» currPlD : @M

Figure 87: Class diagram with all GRCs for MO SMS

7.5.2 MS GRC

Figure 38 illustrates the statechart diagram for the MS GRC. The behavior of the
MS class is similar to that in the previous model. The main difference is that instead
of sending one R-DATA with four parameters. the MS sends five distinct events:
R-DATAinvMSID. R-DATAinvLen. R-DATAinvSub, R-DATAinvDest. R-DATAok.
When it sends R-DATAinvMSID, it may receive R-DATAREJECT or REORDER.
When it sends R-DATAinvLen. R-DATAinvSub or R-DATAinvDest it may receive
R-DATAREJECT. When it sends R-DATAck it may receive R-DATAACCEPT. R-
DATAREJECT or a timeout may occur. and then the AS resends R-DATAok once.

7.5.3 CMS8800 GRC

Figure 89 illustrates the statechart diagram for the CMS8800 GRC. The behavior of
the CMS8800 is similar to that in the previous model. The main difference is that
instead of receiving one R-DATA with four parameters, CMS8800 receives five dis-
tinct events: R-DATAinvMSID, R-DATAinvLen, R-DATAinvSub, R-DATAinvDest.
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R-DATAok. Instead of checking the value of the received parameters against the
value of its attributes, CMS8800 just sends the appropriate event depending on the

stimulus received.

754 MC GRC

Figure 90 illustrates the statechart diagram for the MC GRC. The behavior of the
M(C is identical to that in the previous model.

7.5.5 A subsystem

Figure 91 illustrates the collaboration diagram for a subsystem with one MS. one
CMS8800 network and one MC.

7.6 Formal Model without Paramterized Events

7.6.1 The MS class

Figures 92 and 93 show the formal specification for the MS GRC.

7.6.2 The CMSS8800 class

Figures 94 and 95 show the formal specification for the CMS8800 GRC.

7.6.3 The MC class

Figure 96 shows the formal specification for the MC GRC.

7.6.4 A subsystem configuration

Figure 97 shows the configuration specification for a subsystem with one MS. one

CMS8800 network and one MC.
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Figure 89: Statechart diagram for CMS8800 GRC
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Class MS [@C]
Events: R-DATAok!@C, R-DATAinvDest!@C, R-DATAinvSub!@C, R-DATAinvLen!@C,
R-DATAinvMSID!'@C. REORDER?@C, R-DATAREJECT?@C,
R-DATAACCEPT?@C. Timeout. ReleaseAcc. Timeout3, ReleaseRej
States: *DCCHCamping. waitReorder. waitRejl, waitRej2, waitRej3. waitOK.,
resend], waitll, ProcessAccept. waitResend. ProcessReject. wait15.
waitl2, waitld, wait13
Attributes: Tcnt:Integer; currPID:@C; currMSID:Integer; MSID1:Integer;
MSID2:Integer
Traits:
Attribute-Function: DCCHCamping — {currPID. Tent}:waitReorder — {currPID.
currMSID, Tent};waitRejl — {currPID};waitRej2 — {currPID};
waitRej3 — {currPID};waitOK — {currPID}:resendl — {};
waitll — {};ProcessAccept — {}:waitResend — {Tcnt};
ProcessReject — {}:waitl5 — {currMSID}:wait12 — {currMSID}:
waitl4 — {}:waitld — {}:
Transition-Specifications:
R1: <DCCHCamping,waitOK>: R-DATAok(true);
true = currPID/=pid;

R2: <DCCHCamping,waitRej3>; R-DATAinvDest(true);
true => currPID/=pid:

R3: <DCCHCamping.waitRej2>: R-DATAinvSub(true):
true = currP[D/=pid:

R4: <DCCHCamping,waitRejl1>: R-DATAinvLen(true):
true = currPID/=pid:

R5: <DCCHCamping,waitReorder>: R-DATAinvMSID(true});

true = currPID/=pid & currMSID/=MSID1 & Tent/=0;

R6: <waitReorder.resend1>: REORDER(currPID=pid};

MSID2#0 = true;

R7: <waitRejl.ProcessReject>: R-DATAREJECT(currPID=pid):

true = true;

R8: <waitRej2.ProcessReject>: R-DATAREJECT(currPID=pid);

true => true;

R9: <waitRej3.ProcessReject>: R-DATAREJECT(currPID=pid):

true = true;

R10: <waitOK.ProcessAccept>: R-DATAACCEPT(currPID=pid);

true => true;

R11: <waitOK.waitResend>; R-DATAok(true);

true => Tent/=1:

R12: <waitOK.ProcessReject>: R-DATAREJECT(currPID=pid);

true => true;

Figure 92: Formal Specification for MS GRC
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R13: <resendl,waitll1>: R-DATAok(true);
true = true;
R14: <resendl.wait153>: R-DATAinvMSID(true);
true =» currMSID/=MSID2;
R15: <resendl.wait12>; R-DATAinvLen(true);
true => currMSID/=MSID2;
R16: <resendl.wait14>; R-DATAinvDest(currPID=pid);
true => true;
R17: <resendl.wait13>: R-DATAinvSub(currPID=pid);
true = true:
R18: <wait11.DCCHCamping>; Timeout(true);
true => true;
R19: <waitll,ProcessAccept>: R-DATAACCEPT(currPID=pid):
true = true:
R20: <waitll.ProcessReject>: R-DATAREJECT(currPID=pid);
true = true;
R21: <ProcessAccept. DCCHCamping>; ReleaseAcc(true);
true = currPID/=0;
R22: <waitResend. DCCHCamping>; Timeout3(true);
Tent=1 = Tent/=0:
R23: <waitResend.ProcessAccept>: R-DATAACCEPT(currPID=pid):
true = true:
R24: <wajtResend.ProcessReject>: R-DATAREJECT(currPID=pid);
true = true;
R23: <ProcessReject. DCCHCamping>: ReleaseRej(true);
true = currPID/=0;
R26: <wait15.ProcessReject>; REORDER(currPID=pid);
true = true:
R27: <wait12.ProcessReject>; R-DATAREJECT(currPID=pid);
true = true:
R28: <wait14.ProcessReject>: R-DATAREJECT(currPID=pid);
true = true;
R29: <wait13.ProcessReject>: R-DATAREJECT(currPID=pid);
true = true:
Time-Constraints:
TCvar2: R1. R-DATAok. [0. 22]. {ProcessAccept, ProcessReject };
TCvarl: R13. Timeout. {21. 22]. {ProcessAccept, ProcessReject };
TCvar3: R11. Timeout3. [21. 22]. {ProcessAccept. ProcessReject};
end

Figure 93: Formal Specification for MS GRC—continued
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Class CMS8800 [@S, @MO]

Events: R-DATAinvMSID?@MO, R-DATAinvLen?@MO, R-DATAinvSub?@MO,
R-DATAinvDest?@MO, R-DATAok?@MO. CheckFeature, R-DATAREJECT!@MO.
SMDPPAccept?@S. SMDPPReject?@S, Release, SMDPPInvoke!@S,
R-DATAACCEPT!@MO. REORDER!@MO, MsgLengthError. SubldentifyError,
DestinationError, MsgLengthOK, MSIDFormatOK. MSIDFormatError.
SubldentifyOK, DestinationOK

States: *idle. OFH1, processReject, wait. sendSMS, processAccept,
processReorder, checkLength, IdentifySubscriber, checkDestination,

OFH2, checkLength2, OFH3, checkMSID3, checkMSID2, checkMSID1.
IdentifySubscriber2, checkLength3. checkMSID4, OFH4, OFH5.
checkMSID5, checkLength4, IdentifySubscriber3, checkDestination2

Attributes: MOSMSFeature:Boolean; MAXLENG:Integer; currMO:@MO: currS:@S

Traits:

Attribute-Function: idle — {currMO, currS}; OFH1 — {currMO}: processReject — {}:
wait — {currS}; sendSMS — {}; processAccept — {};
processReorder — {}; checkLength — {}; IdentifySubscriber — {}:
checkDestination — {}; OFH2 — {currMO}; checkLength2 — {};

OFH3 — {currMO}; checkMSID3 — {}; checkMSID2 — {};
checkMSID1 — {}; IdentifySubscriber2 — {}; checkLengthd — {}:
checkMSID4 — {};OFH4 — {currMO};0FH5 — {currMO};
checkMSID5 — {}:checkLength4 — {}:IdentifySubscriberd — {}:
checkDestination2 — {};

Transition-Specifications:

R1: <idle.OFH1>: R-DATAinvMSID(true); true = currMQr=pid:
R2: <idle,OFH2>: R-DATAinvLen(true); true = currMOr=pid:
R3: <idle,OFH3>; R-DATAinvSub(true); true => currMOr=pid;
R4: <idle,OFH4>; R-DATAinvDest(true); true = currMOr=pid:
R5: <idle.OFH5>: R-DATAok(true); true = currMOr=pid:
R6: <OFH1.processReject>: CheckFeature(true): MOSMSFeature=false = true:
R7: <OFH1,checkMSID1>: CheckFeature(true); MOSMSFeature=true => true:
R8: <processReject.idle>; R-DATAREJECT(currMO=pid);
true => currMO/=0 & currS/=0;
R9: <wait,processAccept>: SMDPPAccept(currS=pid); true = true:
R10: <wait,processReject>: SMDPPReject(currS=pid); true = true:
R11: <wait.idle>; Release(true); true = currMOr=0 & currSr=0:
R12: <sendSMS.wait>; SMDPPInvoke(true); true = currS/=pid:
R13: <processAccept.idle>: R-DATAACCEPT(currMO=pid);
true => currMO/=0 & currS/=0;
R14: <processReorder.idle>: REORDER(currMO=pid); true = currMQr=0:
R13: <checkLength,processReject>: MsgLengthError(true); true => true;

Figure 94: Formal Specification for CMS8800 GRC
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R16:
R1T:
R18:
R19:
R20:
R21:
R22:
R23:
R24:
R25:
R26:
R27:
R28:
R29:
R30:
R31:
R32:
R33:
R34:
R33:
R36:

<IdentifySubscriber,processReject>: SubldentifyError(true); true => true:
<checkDestination,processReject>: DestinationError(true); true = true;
<OFH2 processReject>; CheckFeature(true); MOSMSFeature=false = true;
<OFH2,checkMSID2>; CheckFeature(true); MOSMSFeature=true = true;
<checkLength2 IdentifySubscriber>; MsgLengthOK(true); true = true;
<OFH3,processReject>: CheckFeature(true): MOSMSFeature=false = true;
<QOFH3.checkMSID3>; CheckFeature(true); MOSMSFeature=true = true:
<checkMSID3.checkLength2>; MSIDFormatOK(true); true = true;
<checkMSID2,checkLength>; MSIDFormatOK(true); true == true;
<checkMSID1,processReorder>; MSIDFormatError(true); true = true;
<IdentifySubscriber2.checkDestination>; SubldentifyOK(true); true => true;
<checkLength3.IdentifySubscriber2>; MsgLengthOK(true): true = true;
<checkMSID4.checkLength3>: MSIDFormatOK(true); true = true:
<OFH4.checkMSID4>: CheckFeature(true): MOSMSFeature=true => true:
<OFH4.processReject>: CheckFeature(true): MOSMSFeature=false = true:
<OFH5.checkMSID5>; CheckFeature(true); MOSMSFeature=true = true:
<OFH5,processReject>: CheckFeature(true); MOSMSFeature=false = true:
<checkMSID35.checkLength4>; MSIDFormatQK(true); true = true;
<checkLength4.IdentifySubscriber3>: MsgLengthOK(true); true == true;
<IdentifySubscriber3.checkDestination2>: SubldentifyOK(true): true = true;
<checkDestination2.sendSMS>: DestinationOK(true); true = true:

Time-Constraints:
TCvarl: R12. Release. [18. 19], {processReject. processAccept }:

end

Figure 95: Formal Specification for CMS8800 GRC—continued
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Class MC [@M]
Events: SMDPPInvoke?@M. StoreMsg, SMDPPAccept!@M, SMDPPReject'@M
States: *idle, CheckStore. storeOK. storeNOK
Attributes: StoreCondition:Boolean:currPID:@M
Traits:
Attribute-Function: idle — {};CheckStore — {currPID}:;storeOK — {}:storeNOK — {};
Transition-Specifications:
R1: <idle,CheckStore>; SMDPPInvoke(true); true = currPIDr=pid:
R2: <CheckStore,storeOK>: StoreMsg(true); StoreCondition=true = true;
R3: <CheckStore.storeNOK>; StoreMsg(true); StoreCondition=false = true;
R4: <storeOK.idle>: SMDPPAccept(currPID=pid); true = true;
R3: <storeNOK.idle>: SMDPPReject(currPID=pid); true = true:
Time-Constraints:
end

Figure 96: Formal Specification for MC GRC

SCS MS-CMS8800-MC-1
Includes:
Instantiate:
MS1:MS[QC:1];
Net1::CMS8800[@S:1. @MO:1]:
MC1:MC[@M:1];
Configure:
Netl.@MO1:@MO — MS1.@C1:2C:
MC1.@M1:@M — Netl.@S1:@S;
end

Figure 97: A Subsystem Configuration Specification
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7.7 Conclusion

The first model for mobile originating short message services shows that this type of
application may be modeled using this technique. The translator is capable to use
parameterized events. but the formal specifications created are based on an example

[AAR95] and not on a well-defined grammar.

The second model for mobile originating short message services shows that in order to
use the formal specifications in the TROMLAB environment. it is possible to replace
a parameterized event with a set of events representing the relevant combinations
between values of all the parameters. Even if the necessary number of paramters was
low and a lot of duplicate combinations were eliminated, it proved to be a tedious
process. The number of states. events and transition specifications in the resulting

state machines has exploded, making the model hard to understand and error-prone.

We may conclude that adding parameterized events in the TROMLAB environment
would make the technique and tools capable of modeling a small industrial applica-
tion. such as MO SMS.
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Chapter 8

Future Enhancements

8.1 Introduction

This chapter presents a few suggested enhancements to TROMLAB and the Rose-GRC
Translator. We discuss the integration of Rose and the translator with TROMLAB.
We also explain the link between the Rose-GRC Translator and a future verifier tool in
TROMLAB. and we discuss the usage of UML sequence diagrams for generic reactive
svstems. We propose a few enhancements to the translator. Last, but not least
we discuss the need for the introduction of parameterized events in the model and

comment on how the translator can be adapted for this.

8.2 Integration of the Rose-GRC Translator in
TROMLAB

In order to provide a seamless interface between the Rose-GRC Translator and TROM-
LAB. we must address the issue of integration. The version of Rose that was available
for development was for a Windows NT environment. TROMLAB is available on Unix.
A single development platform is desirable to ensure a consistent interface between

the two.

If TROMLAB could be executed on Windows NT. then it would be possible to trigger
the parser, semantic analyzer, simulator and a future verifier from Rose. Rose’s menus

may be customized by modifying the file Rose.mnu, in order to add commands that
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execute these programs. See section 5.4.3 for how to customize the Rose menu.

Alternatively, if Rose for Unix becomes available, Rose could be started by the graphic

user interface of TROMLAB that is currently being developed.

At the present time, because of the platform difference. we propose the following.
The user develops the Rose model on Windows NT, which creates one or several text
files. When the translator asks the user for the file names and path, the user may
select a Unix directory, if it is available on the network. If it is not available on the
network, the user would have to copy the files from the PC to a diskette and from
here to a Unix directory, and finally transferred to Unix files. The TROMLAB tools
may read the files thus obtained.

GRAPHICAL USER INTERFACE

UML-GUL
TROMLAS-GUI “wﬂ'-l Rose
Ruﬂ‘ RC Transiutor

( Forma Spednouon

g ] r g

SIMULATION TOOL

VALIDATION
TOOLSET

I
i

eamcaron] | | (2
MANAGER Thow | | Cemtew —

= =
Lareh-Cov Aty Loveh Prome
Figure 98: Integration of the UML-GUI in the TROMLAB architecture

By using Rose for visual modeling and the Rose-GRC Translator to obtain the un-
derlying formal model. we provide an alternative to the graphical user interface of
TROMLAB. Even if Rose and TROMLAB are on different platforms, we may abstract
the graphical user interface component of the TROMLAB architecture to two sub-
components: the UML-GUI and the TROMLAB-GUI [Sri99], as shown in Figure 98.
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For the time being, UML-GUI and TROMLAB-GU! are mutually exclusive, but a link
may be developed in the future, if required. Both UML-GUl and TROMLAB-GU! cre-
ate formal specifications which are the input to TROMLAB. The UML-GUI comprises
the Rose tool and the Rose-GRC Translator.

8.3 A Link to Verification

This section explains the link between the work presented in this thesis and ongo-
ing work on integrating UML and PVS(Prototype Verification System)[ORSY2] for
automated reasoning. The work [AM98], [Pom99] involves embedding the formal
specifications of a generic reactive system in PVS, and using PVS for proving system

properties.

One of the aspects of verification is to ensure the correctness of a scenario. The
sequence of messages in a scenario must be verified against the state machines of the
objects involved. If the time of occurrence is specified for each message, then this
must be verified against the timing constraints given on the state transitions of the

objects involved.

In order to verify the correctness of a particular scenario, an ordered list of message
entries has to be given to a future verifier tool. A message entry is composed of the
sending object. the message name. the receiving object. and, optionally, the time of

occurrence.

A particular scenario may be visually modeled in UML in a sequence diagram. A
UML sequence diagram is a type of interaction diagram that traces the execution of
a scenario in time. It contains objects. their time lines and messages. The sequence

of the messages may or may not be numbered.

The following information may be extracted from a Rose sequence diagram: sending

object. message name. receiving object.

Ideally. for real-time reactive systems. the time of occurrence of a message should be
shown on the sequence diagram. near the message itself. In Rose this could be done by
adding the time as a string and attaching this string to the message, through Rose’s
option "Attach script” from the Edit menu. Figure 99 shows such an ideal sequence
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diagram. However. the translator cannot extract this string from the Rose model.
For this reason, we propose to not show the time of occurrence on the sequence
diagram (see Figure 100), but rather to allow the user the possibility to enter it
during translation. See section 3.4.3 for details on how the user may enter the time

of occurrence.

. obj1 : Genefic obj2 : Generic
ClassName ClassName2
4l Event1 >l

| T
Event2 |
9 u( |
!
i

T

Figure 99: A short sequence diagram with time of occurence as text attached to the
message
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Figure 100: A short sequence diagram without time of occurence

8.4 Enhancements to Translator

Rose-GRC translator in Java

The Rose-GRC Translator may be implemented in Java, for a smoother integration with
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the other TROMLAB tools. This was considered when implementing this version of
the translator, however not much information was available on the interface between
the Rose classes and Java. Implementing it in Java would have the benefit of using

dynamic structures. which are limited in RoseScript.

Rose on Unix

When Rose is available for Unix. the Rose-GRC Translator should be ported to the
Unix platform. This may need some modifications mainly in the area of the graphical
user interface. Having Rose and the translator on Unix will facilitate the integration

of Rose-GRC Translator and the Interpreter in TROMLAB.

8.5 Parameterized Events

The need to support parameterized events in the formalism became obvious after

modeling the MO SMS example. Parameters carry data between objects.

Rose supports paramterized events, thus the model of a generic reactive system can
be easily modified. Arguments may be entered by the user through Rose’s state

transition dialog. and may be used in all the assertions. whenever the event is used.
The Rose-GRC Translator was designed in such a way as to allow an easy addition of
parameters. as follows:

e Has an option selection box that allows the user to select if parameterized events

are supported.

e Has a boolean flag, ParameterFlag. which may be used in order to extract the

arguments of events from Rose and store them in its internal structure.
e Has provision in its internal structure to store arguments of each event.

o The translator does not parse the assertions on the transition specifications
and it only forwards them to the TROMLAB interpreter. therefore the usage of

parameters in these assertions is transparent.

e The subroutines PrintEvents and PrintTransitionSpecs can be easily modified
to print also the parameters from the translator’s internal structure, once the

grammar is updated with parameterized events.
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Chapter 9
Conclusion

By improving the UML model introduced in [AM98] for generic reactive systems. and
integrating it with the formal model. we have provided a development technique that

has the advantages of both visual modeling and of formal modeling.

The modeling technique, although mainly illustrated for real-time reactive systems,
may be adapted to any generic reactive system. without specific time constraints

but only with temporal ordering dictated by the statechart diagrams.

We developed the Rose-GRC Translator as a proof of concept, using RoseScript. the
language provided by the Rose Extensibility Interface (RE!). Due to some language
restrictions imposed by RoseScript in the area of user-defined structures, there is a
size limitation on the number of components in a generic reactive class, but there is
no restriction as to the number of classes in the model. Scalability is ensured by the

algorithms. only data structures need to be improved.

Application specialists are usually reluctant to use rigorous formal notations at a
modeling level due to the rather heavy and constrained constructs. We provide the

flexibility of modeling with a widely accepted industrial standard tool, Rose.

Application specialists may model a generic reactive system first from a business per-
spective in UML using use cases. and then from a software system perspective, using
class diagrams. statechart diagrams. collaboration and sequence diagrams. If the
software system is modeled as described in this thesis, then the Rose-GRC Translator
may be used to obtain the corresponding formal model of the system. The formal
model may be used by the TROMLAB family of tools to validate the model using
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the semantic analyzer [Tao96] and the simulator [Mut96], and to prove certain crit-
ical properties using a future verifier, based on PVS, the formal reasoning system.
Simulating the behavior of the generic model with the existing TROMLAB simulator
[Mut96] ensures that the model is validated at the early phases of design. prior to

committing to an implementation.

The Rose-GRC Translator provides an intuitive standard graphical user interface
similar to Rose’s. The developer has support from Rose’s Help facilities. The Rose-
GRC Translator provides numerous syntactic and consistency checks on the model and

gives a set of comprehensive error messages through its graphical interface.

By developing the Rose-GRC Translator we demonstrate that even if the developer
chooses to use a visual modeling tool such as Rose, with a few modeling guidelines.
the underlying formal model may be obtained automatically to provide the base for

rigorous simulation and formal verification.
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Appendix A

Data Structures in the Rose-GRC Translator

RoseScript supports user-defined types. We declared several types for the translator’s
internal structures for GRC specifications, for SCS specifications and for message

sequencing.

For most elements of a Rose model there is a corresponding collection. Rose Exten-
sibility provides a set of properties and methods that allows access to a particular

element in any collection.

[n RoseScript, collections cannot be defined for user-defined types, therefore arrays had
to be used to hold elements of the same type. Arrays can be fixed or dynamic. Within
user-defined structures. only fixed arrays are permitted. This imposes a restriction
on the number of components of the same type that a GRC may have, but does not

restrict the number of generic classes in the Rose model.

We declared the following types:

Type GRCPortType
PortTvpeClass As Class 'Rose class representing the PortType
EventSet As String ‘stores the list of events extracted from the

‘attribute events of port type class

End Type
Type GRCEvent
evName As String " event name
evIype As String "“"=internal; ~?"=input; *!" =output
evPortType As Integer ‘index in the PortTypes array. indicating
" at which port type the event may happen
evArguments As String " Future: list of arguments for the event
End Type
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Type GRCAttribute

Name As String " attribute name
Type As String " attribute type. Can be simple type Integer
" or Boolean or can be extracted from an LSL trait
InitVal As String " Initial value of the attribute. Usually empty
Stereotype As String " stereotype of the attribute: PortType or DataType
End Type

Type GRCState
State As State " State name
isInitial As Boolean "if true, this state is the initial state
" for the context
isComplex As Boolean " if true, this state has substates
NumAttributesInFunction As Integer
‘number of attributes in attribute function
AttribFunc(MaxAttributes) As Integer
‘array of indexes to the GRCAttributes array,
‘indicating which attributes are in the attribute

function of this state

End Type
Type GRCTransition
Trans As Transition " Rose transition
RNum As String " Internal title for the transition, of format
' R#, where # is a natural number >0
EventNum As Integer " position of transition’s triggering event in
" array GRCEvents
PortCondition As String " String extracted from Rose transition’s
" Action field

130



EnablingCondition As String ’ String extracted from Rose transition’s
" guard condition
PostCondition As String " String extracted from Rose transition’s

" guard condition.

End Type

Tvpe GRCTimeConstraint
TCVar As String " Name of the time constraint. same as the TC
" variable in the Rose model
ConstrainingTransPos As Integer
" Pozition in the GRCTransitions array of
" the constraining transition for this time constraint
ConstrainedTransPos As Integer
" Position in the GRCTransitions array of the
" constrained transition for this time constraint
TCLowerBound As String
" Lower bound for the time constraint interval.
" represented as string for convenience
TCLowerBoundTyvpe As String
" String representing open or closed interval
" for lower bound
TCUpperBound Type As StringString representing open or closed interval
" for upper bound
TCUpperBound As String  * Upper bound for the time constraint interval.
" represented as string for convenience
DisablingStatePos(MaxStates) As Integer
" position in the GRCStates array
" for all states which are disabling states
" for this transition
NumDisablingStates As Integer
" Number of valid entries in array
" DisablingStatesPos()
End Type
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Tvpe GRC

GRCClass As Class " Rose class with stereotype GRC
PortTypes(MaxPortTypes) As GRCPortType

"array of port types
NumPortTypes As Integer ' number of valid port types in array PortTypes
GRCEvents(MaxEvents) As GRCEvent

" array of events
NumEvents As Integer " number of valid events in array GRCEvents
GRCAttributes(MaxAttributes) As GRCAttribute

" array of attributes
LSLTraits(MaxTraits) As String

" array of LSL traits
NumLSLTraits As Integer ' number of valid LSL traits in array LSLTraits
GRCStates(MaxStates) As GRCState

" array of states
NumStates As Integer " number of valid states in array GRCStates
GRCTransitions(MaxTransitions) As GRCTransition

" array of transition specifications
NumTransitions As Integer ' number of valid transitions in array

" GRCTransitions
GRCTimeConstraints(MaxConstraints) As GRCTimeConstraint

" array of time constraints
NumTimeConstraints As Integer

" number of valid time constraints in array

" GRCTimeConstraints

End Tyvpe

Type GRCObject
Name As String " name of Rose object
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GRCPosition As Integer " position in GRCArray of class corresponding to object
GRCPortCardinality(MaxPortTvpes) As Integer

" at position i: number of ports of port type at

" position i in array PortTypes for the

" GRC corresponding to the object

End Type

Type GRCPortLink
ObjlName As String " object name of object linked to port 1 of the link
Obj2Name As String " object name of object linked to port 1 of the link
Port1Name As String " name of port 1 on the link

PortTypelName As String " name of port type of port 1 on the link

Port2Name As String " name of port 2 on the link

PortType2Name As String " name of port type of port 2 on the link
End Type
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Appendix B

Rose Classes with Properties and Methods

We list here the properties and methods of the Rose classes and methods used by the
Rose-GRC Translator, taken from [Rat98a].

| Element Class }

| Property | Description |
[ Name | Name of a model element |
| Method | Description |
| Roseltem Class |
| Property | Description |

| Stereotype | Specifies the Roseitem’s stereotype |
| Method | Description |

| Class Class j |

[Property [ Description |
Attributes Collection that contains the attributes belonging to the class
StateMachine | State machine that belongs to the class
Method Description

| GetRoles | Retrieves the roles belonging to the class |
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| Role Class

[ Property | Description ]

Association | Specifies an association belonging to the role

Aggregate | Ind

icates whether the role is an aggregate class

[ Method | Description |

[ Association Class

| Property | Description

| Method | Description

LGetOtherRole [ Retrieves another role from an association

i

| Attribute Class

|

| Property | Description B

InitValue | Initial value of the attribute

Type Type

of the attribute

| Method | Description |

| Transition Class

| Property

| Description

| Method l Description
GetSourceState Retrieves the transition’s initial state

L

GetTargetState

Retrieves the transition’s target state

GetTriggerAction | Retrieves the action to perform when the transition’s

trigger event occurs

Get TriggerEvent

Retrieves the event that triggers the transition

[ Event Class

|

| Property [ Description |
Arguments Conditions affecting the event
GuardCondition | Defines a condition which, when true, causes the event
to occur. As long as the condition remains false, the event
will not occur.
Name Name of the event
| Method | Description T |
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| StateMachine Class

| Property | Description |

| Method | Description ]
GetAllStates Retrieves all states belonging to a state machine
GetAllTransitions | Retrieves all transitions belonging to a state machine

GetTransitions

Retrieves the collection of transitions belonging to the
state machine

| State Class |
| Property | Description I
ParentState State (superstate) that contains the state
StateKind Rich type that indicates the type of state
Substates Specifies the substates of the stateNote: A state with
substates is called a superstate.
Transitions Specifies the set of transitions defined for the state
| Method | Description

| GetEntryActions |

|

Retrieves the entry actions belonging to a state

| Action Class

|

| Property | Descrip

tion |

| Method | Descrip

tion |

| ClassDiagram Class

L

| Property | Description
| Method | Description
GetClasses Retrieves the collection that contains the classes

belonging to the class diagram

IsUseCaseDiagram

Determines whether the class diagram is a use case
diagram

| ScenarioDiagram Class

|
|
| Property | Description . 1
| Method | Description N |
GetDiagramType | Retrieves the value of the type of diagram
GetMessages Retrieves the collection of messages that belong to the

scenario diagram
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[ Link Class

|

| Property | Description ]

LinkRolel | Defines an object instance as a Rolel link

LinkRole2 | Defines an object instance as a Role2 link

| Method | Description ]

| ObjectInstance Class

|
| Property | Description ]

| Method | Description ]

| GetClass | Retrieves the class to which the object instance belongs |

| Message Class

| Property | Description
| Method [ Description j
GetSenderObject | Retrieves the object that sent the message

GetReceiverObject

Retrieves the object that received the message

LCollections Class

| Property | Description

| Count | Number

of objects in a collection

| Method | Description

| GetAt | Retrieves a specified instance of an object in a given collection

|
|
|
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