INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

in the uniikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
night in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-06800

VISTA - A VISUAL INTERFACE FOR SOFTWARE
REUSE IN TROMLAB ENVIRONMENT

RAJEE NAGARAIJAN

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
For THE DEGREE oF MASTER OF COMPUTER SCIENCE
CoONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 1999
© RAJEE NAGARAJAN, 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibiiothéque nationale
du Canada

Acquisitions et)
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your tile Votre reférence

Qur file Notre reférence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette theése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autonsation.

0-612-43556-3

Canada

Abstract

VISTA - A Visual Interface for Software Reuse in TROMLAB

Environment

Rajee Nagarajan

Software reuse has the potential to increase productivity and reduce development
costs. Several research and experience reports show that practicing and achiev-
ing high levels of software reuse in the presence of repository and object-oriented
computer-aided software engineering (CASE) development methods pose technical
and managerial challenges. This thesis presents reuse research that seeks to inte-
grate and enhance software development activity in TROMLAB framework. an en-
vironment being constructed at Concordia University for a rigorous development of
real-time reactive systems. We propose a browser-based reuse framework for auto-
matic search and retrieval of TROMLAB components. VISTA is a visual medium
embedding the browser for practicing software reuse in TROMLAB applications. The
browser provides facilities to navigate the repositories of reusable components, in-
spect components and their dependencies, and enable the retrieval and modifications
of components for reuse. The browser also works in conjunction with the graphical

user interface of TROMLAB, thus providing an environment for active reuse.

i

Acknowledgments

[am very much indebted and grateful forever to my mentor, Professor V. S. Alagar, for
his invaluable supervision, patience, support and advise throughout the course of my
studies at Concordia University. Dr. Alagar’s technical, ethical and moral sensitivity
have inspired me. [found working with Dr. Alagar tremendously rewarding and truly
feel that [have learned from the best! [sincerely hope that our research relationship
continues in the future.

[am grateful to Dr. Peter Grogono for his academic advise and encouragement
throughout my undergraduate degree at Concordia. [am thankful to Dr. Kasi
Periasamy for his encouragement and discussions on formal specification languages.

Although too numerous to mention. [would like to thank Dr. Gregory Butler,
Dr. Jamil Hasan and Dr. T. Radhakrishnan for their continous encouragement. [am
thankful to Dr. Terrill Fancott and Dr. Sheridan K. Houghten for their refreshing
viewpoints and suggestions.

Special thanks to Stan Swiercz and all the system analysts in the Department of
Computer Science for their instant technical support. [am grateful to Robby Kirk
and I[nstructional & Informational Technology Services (IITS) for their warmth and
friendship. I thank the ROSFE research group members for their valuable discussions
about TROMLAB environment.

Most heartfelt thanks goes to Dr. Debra J. Richardson, University of California
(UC), Irvine, for her enriching constant encouragement and support and for providing
me the excellent research facilties and environment to complete this thesis.

Last, but not the least, ROSATEA research group membersin UC, [rvine, deserve

my gratitude for their warmth and earnest friendship.

iv

Contents

List of Figures viii
1 Introduction 1
2 Technical Issues for an Effective Management of Software Reuse 6
2.1 Why Reuse? 7
22 ScopeofReuse 8
2.3 Reuse Management 9
2.3.1 Reuse Experiences 10

2.3.2 Formal Specifications and Black-Box Reuse. 12

2.1 Linking Designs to Implementations - Choice of Language 13

3 Requirements of the Browser 15
3.1 TROMLAB Environment 15
3.2 Requirements, 18

4 Reusable Components of TROMLAB Environment 22
4.1 Larch Specifications 23
42 Structureof TROM 25
4.3 SCS - System Configuration Specification 31
4.4 Train Gate Controller System - An Example 32
4.5 The Dynamicsof Components 4

5 Designing the Browser 44
5.1 Component Repositories 44
52 Navigationand View, 48
53 ReusePromotion, 49

5.4 Browser User Interface 50
5.5 Architecture e 52
56 Overviewof VISTA 58
5.6.1 Interaction of VISTA with TROMLAB Modules 60
Reusing TROMLAB Components 61
6.1 Storage Structures 61
6.2 Larch Reuse Environment 66
6.2.1 How queries are answered? L. 75

6.3 Managing LCPP Files. 7
6.3.1 How queries are answered? 84
6.3.2 Managing TROMs and Subsystems 35
6.3.3 TROM relationships 36
6.3.4 Queries on TROMs and subsystems (SCS) 38

6.1 How the queries are handled? 89
The Prototype and Implementation Issues 95
7.1 Riding VISTA 95
7.1.1 Hardware Requirements 96
7.1.2 Software Requirements 96
7.1.3 Functionalities 96
7.1.3.1 Getting Started, 96

T.L32 Files. 97

T.1.33 LSLFiles 97

7.01.34 Saving LSLFiles 101

7.1.35 LCPPFiles 102

7.1.3.6 Saving LCPP Files 104

7037 TROMs 105

7.1.3.8 Saving TROM Files. 108

7.1.3.9 Subsystems 108

7.1.3.10 Saving SCSFiles 109

TL3IL Query oo 111

TL302 Exit ..o e 111

71313 Help oo oo i 113

7.2 Java Classes

7.3 Implementation Issues
8 Conclusion

Bibliography

..........................

..........................

vii

List of Figures

I Structureof TROMLAB 16
2 Overview of TROM Methodology 22
3 LSL Trait Specification for a Symbol Table 24
4+ Larch Interface Specification for a Symbol Table 25
5 AnatomyofaTROM 26
6 TROM Class Description 28
7 Template for System Configuration Specification (SCS) 28
8 Class Specifications for Train. 30
9 Class specifications for Gate. 31
10 Class specifications for Controller. 32
Il System configuration specification for Train-Gate-Controller system. . 33
12 Train Gate Controller System with 3 Trains, 2 Controllers and 2 Gates 3
13 Version Hierarchy 35
14 LSL Specification of a New Symbol Tablel 38
15 Larch Interface Specification of a New Symbol Tablel 39
16 LSL Specification of a New Symbol Table2 40
IT Larch Interface Specification of a New Symbol Table2 41
I8 Class specifications for NewTrain, NewController and OldGate 42
19 Versionsin TROMLAB 43
20 Version Hierarchy for Traits 43
21 Architectureof VISTA 53
22 OMT Object Model 56
23 OMT Detailed Class Diagram 57
24 DAGofVersions 68
25 Version List of reusable LSL traits 68
26 includes List of LSL traits 69

viii

-~

[SV A V]
e 9]

assumes List of LSL traits 69

Table as a Data Structure 70
An Example Data Storeof 3 Files 7l
NotionofSave. 72
Larch/C++ Interface Specification for RWZone 81
An Example of imports List of LCPP Files 82
Version List of reusable LCPP files 33
NotionofSave. 84
VISTA Opening Window 96
Files Window 97
LSL Files Window 97
LSL Library Files Window 98
LSL Inspect File Window 99
LSL Edit File Window 100
Library File Error Dialog Window 100
Save as DialogWindow 101
Update Database Window 102
LCPP FilesWindow 103
LCPP Version Files Window 103
LCPP Editor Window 104
TROM Classes Window 105
TROM Library Classes Window 106
TROM Editor Window 107
SCSWindow 109
SCS Editor Window 110
Query Window, I
Query LSL Traits Window 111
Query By Includes for LSL Traits 112
Query LCPP Specifications Window 112
Query TROM Window 112
Exit VISTA Window 113
Help Window 114

ix

Chapter 1
Introduction

Reactive systems are characterized by their continuous ongoing stimulus-response
relationship with their environment. For real-time reactive systems. the stimulus-
response behavior is regulated by timing constraints. Such systems find application
in areas such as transportation. process control, telephony, and strategic defence
systems. In general. a reactive system has infinite behavior: a process in a reactive
system is usually non-terminating. In this respect reactive systems are different from
common transformational systems which may be regarded as functions from inputs
available at the start of the computation to outputs provided on termination. Reactive
systems are also different from interactive systems, such as human-computer interface.
The major distinction is in the available synchronization mechanism: an interactive
system waits for a reply from its environment; on the contrary a reactive system, such
as an alarm system in a boiler plant controller, is fully responsible for synchronization
with its environment. Consequently, a reactive system must satisfy two important

requirements:

¢ stimulus synchronization: the process is always able to react to stimulus

from the environment;

e response synchronization: the time elapsed between a stimulus and its re-
sponse is acceptable to the relative dynamics of the environment so that the

environment is still receptive to the response.

Designing a real-time reactive system is an extremely difficult and challenging
task. The complexity arises from three sources: (1) the large number of require-

ments, some of which may become available or well-understood only at later stages

of design; (2) a large number of different executions of the system due to the order-
ings and interleavings of concurrent events; and (3) the real-time constraints on the
event occurrences and the execution sequences. These difficulties and the increas-
ing importance of real-time reactive systems in safety-critical applications necessitate
continued research into methodologies and tools for specifying and reasoning about
the design of such systems. One of the ways of reducing the complexity barrier is to
develop components that are dependable, and reuse these components in a large-scale
development environment. This thesis addresses issues involved in reusing reactive
components.

During the last ten years software and hardware engineers have started employing
graphical representations, such as state machines, timing diagrams, and data flow
graphs to describe the properties of software systems that they design. Such visual
representations capture and communicate the designer’s intuitive understanding of a
system. Many tools based on visual formalisms are now commercially available. Most
notable ones are STATEMATE [17], ObjecTime [33], and Rational Rose [34, 35].
There is a formal semantics for STATEMATE; however, the other two graphical
notations do not have formal semantics. Although research in cognitive sciences have
revealed [20] that graphical notations do indeed facilitate human comprehension, only
notations supported by a formal semantics provide well-defined meaning and promote
logical reasoning. TROMLAB (2, 3] is an object-oriented development environment
founded on (TROM) Timed Reactive Object Model formalism [1]. It is being designed
and developed at Concordia University for the design and development of real-time
reactive systems. The building blocks for developing reactive systems come from
Larch and TROM formalisms. These basic components have a formal semantics.
The objective of this thesis has been to develop a tool, called VISTA, supporting
the maintenance and management of reusable reactive components in TROMLAB
environment.

Recent research has shown that software development methodologies that em-
phasize reuse are increasingly recognized in industries in terms of the increased pro-
ductivity and reduced software costs. However, in order for the process of software
development to improve significantly there must be investment in tools that pro-
mote software reuse. One of the key ingredients for promoting software reuse is to

build software repositories, and develop methods for retrieving components from the

(8]

repositories. In the absence of such a tool to support developers in their search for
identifying and retrieving software components, it is not possible to achieve a sat-
isfactory level of reuse wherein its benefits are fully recognized. The capabilities of
VISTA are appropriate for inspecting, and reusing repository components through
visual interaction.

Viewing the development of software as an information management problem is
not new; however, the methods that we use to design different repositories, one for
each kind of component, and relate them according to TROM development method-
ology are new and novel within the context of reactive system development. There
exists several browsers, the internet supports several. Browsers have been developed
for developing Z [27] and Larch [29] specifications. However, the tool that we have
developed is both more general and specific. The browser developed in this thesis is
more general than Z and Larch browsers in the sense that in addition to developing
Larch specifications, it can be used in a much wider context of TROMLAB. It is spe-
cific because it coexists and cooperates with other tools in TROMLAB environment.
The browser allows navigation through components stored at different layers of ab-
stractions, which include Larch Shared Language (LSL) traits, Larch/C++ (LCPP)
interface specifications, TROMs. subsystems, and their relationships. The tool also
manages different versions of each component, and inheritance (and subtype) relation-
ships among components. The tool provides a specification development environment
for LSL traits, invokes Larch syntax checker and helps the user develop syntactically
correct LSL traits.

The browser can be invoked either independently or in conjunction with a Graph-
ical User Interface (GUI), another tool in TROMLAB environment. Together they
provide a comprehensive visual framework for accessing both static and dynamic in-
formation of the system. [nvoking the browser at any instant from GUI, one can view
and search among the static information in the databases as well as the dynamic
information generated up and until the invocation of the browser. Thus, the tool

combines two approaches:

o The provision of a combined visibility of the development process and the evolv-

ing product.

o The integration of product development process under reuse.

The tool also permits users to deal with two principal working aspects in an

integrated fashion:
o The definition, enactment, and visualization of the development process.

o The animation of heterogeneous prototypes constructed by reusing the compo-

nents in the reuse library.
The browser can be used for the following phases:

¢ Process Model Support -TROMLAB environment integrates formal approaches
with the different stages of a process model. Accordingly, a formal model of the
software unit is constructed by putting together a formalized set of requirements
with a formal model of the environment. This software unit is then simulated
to validate the requirements. Iterative design, simulated debugging and reason-
ing, and formal verification are the successive stages of the process model. The
browser gives visibility and control over the entire set of components used for
the development. This includes querying the database and retrieving suitable
components for reuse in the design. the customization of LSL specifications, the

monitoring and management of prototypes of the system under development.

¢ System Model Configuration - A system is constructed by putting together
components, which may be objects instantiated from TROM classes, or other
subsystems. Users can inspect system components and modify system configu-

rations selected from the reuse library.

¢ Design Animation - Animation is the central piece of the simulator [30] which
is used to validate system requirements. Developers can view the repository for

versions of simulation histories and choose a previously simulated scenario for

reasoning.

Some of the components in the reuse library, such as LSL traits, and TROMs
may be useful in other contexts as well. For example, LSL traits may be reused
in developing Larch interface specifications for reusable class libraries. TROMs are
extended finite state machines, and may be useful to model the behavior of hybrid
systems when real-time computations are permitted in the states. Consequently,

VISTA may find applications outside of TROMLAB environment. Keeping this in

4

mind, we have designed and implemented the tool so that it may be adapted to reuse
activity in any application domain where LSL and TROMs are basic components. The
rationale behind our design is to make the browser easy to use by both novice and

experienced users. The following are the main contributions of this thesis:

—

. A rationale for black-bor reuse of TROMLAB components.

[
H

Design and development of VISTA, a visual tool for inspection, navigation, adap-
tation, and informal reasoning integrated with version management of compo-

nents used in TROMLAB environment.

3. An interactive facility for LSL trait specification development environment.
Users can browse and reuse LSL traits from a library in composing their speci-

fications.

4. Link to Larch/C++ interface specification repository which can be used by the

implementation phase of TROMLAB environment, when it becomes available.

(]

Chapter 2

Technical Issues for an Effective

Management of Software Reuse

The concept of software reuse was introduced in a seminal paper by Mcllroy[26]
at the 1968 Nato Software Conference—the founding date of Software Engineering
discipline. He stated *[would like to see the study of software components become
a dignified branch of Software Engineering. [would like to see standard catalogs of
routines classified by precision. robustness, time-space requirements and binding time
of parameters”. Although some progress has been reported [6, L1, 19], it is the case
that twenty five years later, software reuse has not yet become a widely accepted
practice for software construction. Both technical and managerial issues must be
integrated in promoting software reuse.

Recognizing the most obvious benefits of software reuse, such as productivity gain
and improved software quality, many commercial, government and industrial organi-
zations in the USA, Japan, and Europe have recently instituted systematic software
reuse programs [23]. From the published reports of their experiences, we can in-
fer that there is no consensus on what approaches work best; it is only clear that
no single approach to software reuse has been found to be best for all applications.
There are numerous diverse technical and non-technical issues challenging the wider
practice of software reuse. Among them, the most important technical issue is the
language used for creating, labelling and retrieving software components for error-free
reuse. The choice of language has a profound impact on both technical and manege-

rial aspects of reuse. These include (a) supporting technologies and libraries used to

accomplish reuse; (b) economic conditions on which reuse practice is justified; and
(c) development, maintenance, and management of all future reusable assets such as
requirements, specification, design, and high-level archtectures. The language chosen
for documentation and implementation of reusable products is also closely related to
an effective management of reuse program. In order to maximize the return on the
investment of the reuse program, an organization should choose the language accept-
able to a large community of users and adaptable for large-scale reuse. Based on
the language, strict guidelines and standards for developing software components, or
for acquiring software libraries to be used in the development process can be formu-
lated. Moreover, the choice of language impacts the maintenance and management of
reuse spectrum from domain models to domain specific frameworks and architectures.
The language for composing specifications in TROMLAB has a simple syntax. The
graphical user interface provides a means to compose diagrammatic representations.
Consequently, the reuse factor is likely to be high in TROMLAB environment.

In our view. to fully realize the potential of reuse, software components for fault-
free reuse must be made available with three pieces of information: abstraction-—
for unambiguous and precise understanding; implementation for code reuse; and
environment —for enrichment and enhancement. Abstraction of the component is
a precise unambiguous description of its functionality. [mplementation provides the
details of concrete data structures and algorithms for implementing the abstraction in
a computer. Environment is the contextual information in which the software compo-
nent is designed to perform. The language chosen for reuse must support abstraction,
implementation, and contextual constraints.

Given that TROM formalism includes Larch specifications, and C++ is widely
used in industries, this thesis advocates Larch/C++ language for specifying the in-

terface specifications - thus, linking designs to C++ implementations.

2.1 Why Reuse?

Software development is becoming increasingly capital-intensive, tool dependent, co-
operative, and requires greater early investment of capital in return for reduced cost
at later stages. Thus reusable sofware is to be viewed as a capital good whose in-

vestment cost is recoverable amortized over a number of years from its large pool of

users. The additional expected benefits of reuse are:

o [t can lead to improved reliability and performance.
e Reuse promotes interoperability between systems.
e [t supports rapid prototyping.

e [t provides a transparent uniformity among systems constructed with the same

components, which in turn leads to sound maintenance.

Recent reports from industries such as Hewlett-Packard[23], NEC and Fujitsu[6, L1],
Digital[14], and IBM[13] also suggest that there is a reduction in defective software,
increase in return on investment, improved efficiency in product delivery and in gen-
eral, a corporate-wide acceptance of reuse. Hence it can be argued that the systematic
application of reuse to prototyping, development. and maintenance during the entire
software development process is an effective way to reduce cost and improve software

reliability and productivity.

2.2 Scope of Reuse

Systematic software reuse is a paradigm shift in software development from building
monolithic systems to families of related systems. This kind of paradigm shift was
successfully applied in the 70’s for developing families of algorithms based upon the
design principles of divide and conquer, backtracking etc. The potential effect of
the shifting paradigm in software reuse is expected to be profound when error-free
reusable software components can be repeatedly assembled in different applications
by knowing only their interface specifications.

There are two perspectives to software reuse: one involves careful design for reuse
and is known as forward engineering; the other approach is design recovery and reverse
engineering where software engineers try to recover and adapt existing requirements,
design and code for reuse in different applications. However, it is strongly believed
that technologies for recovering reusable objects from legacy systems will face im-
mense challenges. Moreover, it may even be the case that much of existing software

has little or no reuse value due to its lack of specifications, poor design, undependable

code and imprecise documentation. Reuse, being the use of existing software com-
ponent in a new context, must necessarily be a design issue. That is, a system must
be designed with reusability in mind; otherwise, components will be extremely hard
to reuse even when coding is correct and the documentation is adequate. This may
be accomplished through abstraction - in initial modeling, in data and functions, in
interface design, and in process definitions. The following issues play a key role in

the design of reusable components:

. A component with reuse potential must have a precise and unambiguous de-
scription of its functionality. So, internally the function must be complete.
Externally, its coupling (interface) to the environment must be simple and well
defined.

(S
.

A component for reuse must be governed by abstraction principles support-
ing generality so that a family of dissimilar funtions may be derived from one

description.

3. The interface of a software component must be made simple and must be stan-
dardized. Only then, it will have a large set of potential users and the extent

of reuse will be high.

4. Object-Oriented (OO) concepts such as encapsulation, inheritance, and subtyp-

ing should be used in developing reusable hierarchies.

Reusable software should be easy to modify and be easy to compose.

1
b

6. Precise documentation must be provided for software components.

When a software component is developed to satisfy the above principles and is
shown to meet its requirements, it can be released for reuse. It is clear that both
technical and managerial teams should collaborate to maintain and distribute reusable

products developed according to the above principles.

2.3 Reuse Management

In spite of several challenges facing widespread reuse, some software development or-

ganizations are making good progress in establishing and following reuse programs.

9

[n the US, commercial organizations like AT&T and DEC[14], HP[23], IBM[6], Mi-
crosoft, and Motorola[6] have instituted reuse programs and report improved produc-
tivity and software quality. [n Japan, software reuse in different forms have been
practiced institutionally for more than a decade. For example, at the NEC Soft-
ware Engineering Laboratory a software reuse library for its business application was
built and then integrated into their software development environment. This enforced
reuse in all of their business software applications which resulted in a 6.7:1 productiv-
ity improvement and 2.8:1 quality improvement. It is also reported [6] that in Perth,
Australia, the reuse program at the Universal Defense Systems has accumulated a
library of 396 Ada modules and expects this to grow. [n Europe, Siemens, the Eu-
ropean Space Agency and ESPRIT have reported major efforts in establishing reuse
programs. The following major conclusions may be derived from these reports: (1)
a strong emphasis must be put on integrating reuse tools with software development
environment: (2) measurements to show quality improvement and productivity im-
provement must be kept; (3) full participation in software reuse effort at all stages of

software development must be encouraged.

2.3.1 Reuse Experiences

It is to be expected that because of the encapsulation and data abstraction provided
by the OO paradigm, programmers could reuse classes by understanding the behavior
of classes as specified by the methods in their interfaces. The client of a class may view
the method implementations as being contained in a black-box hidden from view. That
is, the black-box approach to reuse assumes that a classes’s behavior can be described
succintly and without having to refer to an implementation. In many manuals the
description of reusable class libraries are given only in a natural language. These are
often imprecise, verbose, and potentially ambiguous. Due to these shortcomings, class
descriptions give rise to different interpretations among reusers, often forcing them to
read and understand the implementation details. The effort required to understand
the implementation details of a method is often much more than the effort required
to rewrite it from scratch. All this wasted efforts offsets all or part of the productivity
increases which should have resulted in effective reuse of the module. A remedy is to
provide natural language descriptions accompanied by some formal descriptions.

In code reuse, it is clear that most of the simple classes such as container classes

10

(lists, dictionaries, queues), strings, date, time, and tracing package would be required
by all applications. This is the first level of reuse. In the second level, class designs
that are more domain specific would be reused either individually or in clusters by
more sophisticated developers. Informal descriptions of class designs and their inter-
actions in this level are extremely hard to read and understand. As the reuse process
matures more and more complex structures, such as design patterns and frameworks,
would be reused. Their informal descriptions and internal details are much more diffi-
cult to comprehend, if not accompanied by precise descriptions. This thesis addresses
issues related to the second level of reuse in the context of TROMLAB environment.

These factors clearly suggest that, in large part, reuse efforts would be thwarted
by the absence of documentation specifying the behavior of reusable components
in a precise and complete fashion. The absence of precise and complete interface
documentation can also result in the mis-interpretation of the intended behavior of
available components by developers. This may lead to system integration and system
maintenance problems, warranting much time to be spent during system integration
to remove the defects. [f the behavior of components is not precisely defined, it is also
difficult to determine whether these problems were due to incorrect usage of reusable
components or due to the fact that the components were defective.

Black-box reuse has a number of advantages:

o Black-box reuse is simpler for the reuser. Much of the benefits of reuse is lost if
developers are forced to understand the implementation details of a component

in order to understand the behavior of the component.

o The real value of reusable code lies in its properties, such as correctness with
respect to its formal specification. When changes are made in the code, the
program’s behavior is no more predictable and consequently there is no more
invariance of properties. Hence, black-box reuse prevents developers from mak-

ing assumptions of their own about the implementation.

e For polymorphic code, failure to rely solely on the specification makes it difficult
or impossible to determine what constraints client subclasses must respect to

ensure predictable and reliable behavior.

e Reuse products can be thoroughly tested and classified before release.

11

o An efficient maintenance of a reuse library is possible when the products are

not subject to modifications.

e Managing a black-box reuse program is effective because standard conventions

can be imposed for using the products.

2.3.2 Formal Specifications and Black-Box Reuse

Black-box reuse is easy to learn, practice, and administer. What kind of software is
suitable for this level of reuse? If the software is not useful and does not perform
as intended, then it does not matter how reusable it is; it is simply worthless as an
asset. Only after a developer locates and understands the usefulness of the software
its reuse can be planned. The first step in this planning is to determine the behavior
of the software to see whether it will serve the purposes in the plan. Here is where
a good documentation and description of the behavior and interfaces to the product
becomes essential; module descriptions and programming code are simply insufficient
for black-box reuse.

[n our opinion. black-box reuse represents a higher level of reuse than just source
code reuse since it is akin to design reuse. Developers reuse not only the implementa-
tion code of a component but also the abstract design of that component, as described
in the component’s interface specification. For well-designed, and well documented
reusable software this is very significant, as a considerable amount of effort will have
gone into the design of the behavioral interface. [n the case of frameworks of classes,
the amount of design reuse is even more substantial since the developer reuses not
only the design of individual classes but also the design of the interactions between
classes, which are notoriously difficult to design properly.

In order to truly support the ability to reuse a component without having to
understand its internal details, the components’s interface must convey the abstrac-
tion implemented by the class in a precise and complete manner. Trying to provide
a precise interface specification using standard natural language specifications can
be a very challenging and time consuming task. One of the reasons is that, unless
great care is taken, providing the necessary level of precision results in an overly

verbose specification which is difficult to read and understand, thereby reducing the

12

effectiveness with which a component can be reused. Recognizing the necessity of pre-
cise interface specifications several researchers in object-oriented community[39, 21]
have advocated the use of formal specifications to specify component interfaces. The
syntactic support for creating reusable black-boxes are not sufficient; the semantic
support required to state the behavior of components must also be provided. TROM-
LAB components have well-defined syntax and semantics. Consequently, black-box
reuse is appropriate in TROMLAB environment.

When the behavior of a reusable component is only informally stated, the reuser
will either misunderstand the component’s behavior (resulting in improper use of the
class) or turn to read the implemented code (resulting in both loss of time and rigor).
To remedy this from happening, the functionality of a software component must be
stated with precision and conciseness so that all users understand its behavior in one
and only one way. A formal specification language due to its mathematical appara-
tus and formal semantics enable the developer of software to write the functionality
unambiguously. In turn, the reuser can build correct systems from these descriptions.

There are a number of additional advantages to use formal specifications in the
context of developing and using reusable software components. Organizing and retriv-
ing reusable classes from class libraries have only a limited scope when purely syntactic
considerations are used. Organizing reusable classes according to the subtype hierar-
chy provides a logical and meaningful view of classes. Moreover, behavioral subtyping
relations between classes cannot be deduced without a precise specification of the be-
havior of these classes. The proof system in the formal specification language can be
used to formally verify the correctness of a component’s implementation against its

specifications.

2.4 Linking Designs to Implementations - Choice
of Language

In TROMLAB environment there are three categories of components. The abstract
data type layer is founded on Larch{15], and consequently Larch/C++ interface spec-
ifications link the abstractions to a C++ implementation. The Larch family of lan-

guages have the following advantages:

13

o Larch provides a two-tiered approach to specification. In one tier a Larch Inter-
face Language (LIL) (C++ in the case of Larch/C++) is used to describe the
semantics of C++ program modules. In the other tier, Larch Shared Language
(LSL) is used to specify state-independent, mathematical abstractions, called
traits, which can be referred to in any LIL specification. Hence, the two tiers

provide a clean separation of concerns.

o The Larch/C++ specification of a C++ module specifies not only the behavior

of the function, but also how exactly the function is called from C'++ code.

e Externally observable behavior can be expressed independent of implementation

details.

o Functions are described in Larch/C++ using Hoare-style pre- and post- condi-

tions.

e The LSL tier is declarative and assertions can be stated and proved using LP,

the Larch Theorem Prover.

o The syntax for data members and member functions in interface specifications

are almost the same as in a C++ program.

Specifications written in Larch/C++ for implementable components serve a useful
purpose in reusing components. The reuse repository includes a large number of
LSL traits and Larch/C++ specifications developed in the context of formalizing
the interface specifications for a number of classes chosen from the Rogue Wave
Tools.h++[36], a rich, robust and versatile C++ foundation class library. Virtually
any programming chore can be done using the classes from this library. Tools.h++
is an industry standard. The functionalities provided by Rogue Wave Tools.h++
library suits the requirements of a wide range of applications in large-scale industrial
development of software. It is claimed[36] that the Rogue Wave Tools.h++ class
library is built to achieve four basic goals: efficiency, simplicity, compactness, and

predictability. This perfectly fits in with the criteria for black-box reuse.

14

Chapter 3
Requirements of the Browser

In this chapter. we identify the requirements to build VISTA with which developers
in TROMLAB environment can interact to access, manage, and navigate the reuse
repository of TROMLAB components. [n our context, the term component is used
to denote elements of the software that are predefined in terms of the general func-
tionality that they can provide. The components may denote the software artifacts
used within TROMLAB as well as its architectural design parts. The activities that
affect them are the evolutionary changes that occur amidst interaction of TROMLAB
components. The users of VISTA are the developers and other clients of TROMLAB
environment who share reusable software components for building reactive systems.
Below we give a brief overview of TROMLAB architecture and defer detailed structural

and behavioral descriptions of the reusable components to the next chapter.

3.1 TROMLAB Environment

TROMLAB is an Object-Oriented (OQ) software development environment for con-
structing complex real-time reactive systems built with TROM. TROMLAB environ-
ment supports specification, design, validation and verification of subsystems built
with TROMs. The environment proposes [2, 3] a two-pronged strategy to contain
complexity: the object-oriented framework for modeling reactive system supports it-
erative design, design refinements and hence reduces design complexity; the animator

and the verification subsystems provide the tool support necessary for validating the

15

design and verifying time-dependent properties during the evolution of design. Con-

sequent to these design decisions, the components arising in design include TROMs

and components included in them, components assembled using TROMs, and compo-

nents arising from their refinements. The browser includes the reuse libraries of the

components, the editor, and a query processor interacting through a graphical user

interface of the TROMLAB.

GRAPHICAL USER INTERFACE

'@ﬁ

SUBSYSTEM MODEL
SUPPORT

[l

tnumuiste | | ¢opgoure
™OM i
Objects | | Port Links

SIMULATION TOOL
OBJECT MODEL
SUPPORT P—
VALIDATION
Port Type Clas SIMULATOR TOOLSET
Defioiions | | leaders &
Defiaitions
Event Handler

(o

tency

Checher

(i

Figure 1: Structure of TROMLAB

Figure | shows the context and role of VISTA within the design components of TROM-

LAB.

e LSL traits and Larch/C++ Library - This is a passive component, a library

of LSL and Larch/C++ specifications. The specifications in this repository were

composed, analyzed, and used by researchers in the reuse research project at

Concordia University [4]. All specifications in the repository have been checked

for syntactic correctness and in particular, all Larch/C++ specifications con-

form to the requirements stated in Rogue Wave library [36]. All specifications

developed by TROMLAB users can also be stored and retrieved from this library;

however, they are maintained separately from the pre-tested components. The

specifications developed by users of TROMLAB are submitted to Larch tools

and checked for syntactic accuracy and analysed for semantic consistency.

16

¢ Editor - New LSL traits can be composed, and others may be modified using
an editor facility. TROM class specifications, and subsystem specifications may
also be textually composed; however, GUI facilities are better suited for this

purpose.

¢ Interpreter - The TROM specification of a reactive object is presented as a
class definition. The interpreter performs lexical and semantic analysis on the
TROM class definitions and on the specification of subsystem configuration. The
static analysis of TROM classes that are input to the simulator can be done by
the interpreter via the editor. If the TROM is syntactically correct then it builds
an internal representation (AST) of each TROM class and the SCS. At this
point. specifications from the lowest tier (LSL traits) are compiled separately
and checked for consistency using LP, Larch Prover. The TROM classes in the
middle tier can import the LSL traits and are compiled separately independent
of other tiers. New states, transition specifications or time constraints can be
added incrementally to class specifications, and recompiled before inclusion to
a subsystem. When the SCS in the upper tier is redefined. it can be separately

recomnpiled without requiring a recompilation of components in other tiers.

¢ Axiom Generator - [t uses the logical semantics of TROMs and the subsystem
including them to generate a set of axioms for the specific subsystem. There
are three types of axioms: transition specifications; time constrained axioms; and
synchrony axioms. These axioms are used by the simulator for on-line reasoning
about the system behavior. In the TROM class specification, the actual times
of occurences of events, the number of ports, and the actual port at which an
event occurs are dynamic information. They can be obtained only during the
instantiation of object configuration and object collaboration. But the axioms
generated with the static information of an object of a TROM class specification
can be used by all the subsystems that includes this object. Such axiomatization
of TROM ensures completeness of its logical behavior for each predicate in the
axioms and for each state, event and port. The predicates are reducible to
propositions at any instant by the simulation environment. Thus, reasoning
of system properties becomes decidable in the simulation environment. The
browser may interact with the animator to browse and import Larch/C++

interface specifications and C++ programs required for a reasoning session.

17

¢ Simulation Tool - This is to perform system validation through simulator. It’s
debugging facilities include freezing the simulation and activating the validation
toolset. When simulation is frozen, it allows the user to interact with the process
for injecting input events, and query the behavior of the system being simulated.
The user can walk through the event trace and examine the history of the
simulated scenario. This allows the user to roll back and analyze the change
in the system status and simulate iteratively the corrected designs. Also, the

safety properties at each each step in the design can be verified.

e Graphical User Interface (GUI) - A user interacts through the GUI to
compose specifications, to submit them for syntactic and semantic analysis,
to invoke the simulator, tu watch the dynamics of simulated system. and to
interact with the browser at any stage of the development activity and inspect
and navigate system components. [nterpreter, simulation tool, and verification

manager interact with the browser through GUI

e Verification Manager - This component verifies time-dependent properties
in TROM classes and subsystems using PVS [32].

e Browser User Interface - This provides the interface for Larch reuse reposi-
tory when the browser is invoked independently from TROMLAB. It also inter-
acts with GUI to enable the viewing, navigation, and retrieval of TROMs and

subsystems.

The I[nterpreter and the Axiom Generator were designed and implemented by Tao [L1].
The Simulation Tool was designed, and implemented by Muthiayen [30]. Some fun-
damental work leading to formal verification and the design of a Verification Manager
can also be found in Muthiayen [30]. Based upon the works of Tao and Muthiayen,
a reasoning system and simulated debugging facilities are being designed by Haidar
[16]. The GUI is being designed by Srinivasan [40]. Upon completion of these two
works, we expect a full prototype of TROMLAB to become operational.

3.2 Requirements

From the outline given in the previous section, we identify the requirements of VISTA,

the browser tool. These are:

18

o

jl

Y.

10.

VISTA should enable users to read and view LSL traits and Larch/C++ speci-

fications from the library.

VISTA should provide a facility for composing new Larch traits with or without

reuse of LSL traits from the library.

VISTA should interact with Larch tools to check the syntactic correctness of

composed LSL traits as well as analyze some of their properties.

[t should be possible to maintain the relationships among LSL traits. These
include the language specific relationships includes. and assumes, and design

relationships. called versions.

[t should be possible to run ail versions of LSL library traits as well as versions
of composed traits against LSL syntax checker. Only syntactically correct traits
must be saved. Users must be given an oppurtunity to modify and recompose

specifications.

VISTA enables the maintenance of relationships between LSL traits and Larch/C++

interface specifications.

Relationships between Larch/C++ specifications must be maintained. This is

the inheritance hierarchy defined in Rogue Wave Library [36].

The relationship between a Larch/C++ interface specification and an imple-

mentation (C++ program) of its member functions must be maintained.

VISTA should maintain a repository of syntactically correct TROMs. When
requested by GUI, it should release or record TROM specifications from the

repository.
VISTA should maintain the following relationships among TROMs:

e A TROM should be related to all its refinements as defined by the refine-
ment theory of TROMs [1].

o A TROM should be related to all LSL traits included in its definition.
¢ A TROM should be related to all subsystems in which an instance of it is

included.

19

LL. It should maintain a repository of all subsystems composed from syntactically
correct TROMs and subsystems. When requested by GUI, it should release or

record TROM specifications from the repository.
12. The following relationships among subsystems should be maintained:

o A subsystem should be related to all TROMs instantiated in its definition.

e A subsystem should be related to all other subsystems included in its

configuration.
e The port links connecting objects in a subsystem definition must be recorded.
[3. VISTA should provide navigation and viewing facilities for the above components

and their relationships. In particular, the following basic queries and suitable
combinations of them must be answered:

(a) Retrieve a trait based on name.

(b) Retrieve a trait based on includes (assumes) relationship.

(c) Retrieve a trait based on version number.

(d) Retrieve a Larch/C++ specification based on name.

(e) Retrieve a Larch/C++ specification based on uses relation.

(f) Retrieve a Larch/C++ specification based on inheritance information.
(g) Retrieve traits included in a given TROM specification.

(h) Retrieve TROMs included in a given subsystem specification.

(i) Retrieve ports and port links in a given subsystem configuration.

(j) Retrieve all traits transitively related by includes (assumes).

(k) Retrieve all Larch/C++ specifications transitively related through uses

relation.

The browser should also be able to respond to queries composed from the above basic

queries. Two such examples are:

L. Retrieve the versions of all TROMs included in a given subsystem.

2. Retrieve the transitive closure of all traits mentioned in the uses clause of a

given Larch/C++ specification.

The browser can be run either in conjunction with or independent of GUI. These

modes can be switched at any time. To run the browser successfully, the following

are the software and hardware requirements:

L.

2

The Larch syntax checkers Isl, lcpp, and the Larch Prover LP must be available.

The browser should run on a Sun SPARC station 10 using Solaris 2.3 operating

system.

[t should interact with GUI, and through GUI with the rest of TROMLAB

system.

Finally, the browser must remain useful for both experienced and naive users of
TROMLAB and Larch environment. It should be adaptable to evolving need of the
TROMLAB user community.

21

Chapter 4

Reusable Components of TROMLAB

Environment

Having identified the functional requirements. software and hardware requirements,
and performance requirements of the browser, we discuss in this chapter the structural

and behavioral aspects of the reusable components. In TROMLAB there are three

Requirements Specification In
Animation Temporal Logic(TL) PVS
Tool l——-
3 : f 5
v | Subsystem : System Configuration 14 System theory: '
i | Computations , Specification ! Synch. Axiomsin TL :
: : 1 ! :
' ' ' '
' TROM N Timed ' TROM theory: '
1 | Computations ' l,l"e:::‘: © Object f Axioms inTL .
' '
: : l : '
: ' : First order :
: : Larch Shared Language : logic '
' | Data Modet ' (LSL) ' :
4 '
s s a =
"""""""" 3 Tiered Design TToTTETETTTTTeTeTeT
Operational ~ Semantics Seecification Logical Semanics

Figure 2: Overview of TROM Methodology
basic component types:
o LSL traits, and Larch/C++ interface specifications

o TROM, the generic reactive object model

22

o SCS, subsystem specification

These components are structurally and behaviorally different; however, TROM method-
ology, as we briefly review below, uses them at three distinct levels and uses com-
ponents from one level for constructing components in the next higher level. Thus,
when components from a lower level are included in composing a component in a
higher level, the structure and behavior of included components affect the structure
and behavior of the defined component.

TROM methodology is a fusion of Object-Oriented(Q0) methodology with real-
time technology. It is a three-tiered methodology [l] as shown in (Figure 2). The
top most tier constitutes the System Configuration Specification (SCS) to describe
the object interaction. The middle-tier specifics the detailed specification of reactive
objects for a particular problem as described in the requirements. The lowest tier
specifies the data abstractions in Larch Shared Language (LSL) used in TROM class
definitions of the middle tier.

Since this methodology is QO. it inherits natural OO techniques such as modu-
larity, reuse, encapsulation, and hierarchical decomposition using inheritance. This
feature enhances the incremental development that allows the compaosition, verifica-
tion and integration of large and complex systems. In order not to confuse with the
notion of objects in OO, we have called the reusable elements of the three tiers as

components. Below we give a description of the components belonging to these levels.

4.1 Larch Specifications

Larch is a property-oriented specification language. It uses a two-tiered approach
to formal specifications. The first tier, using Larch Shared Language (LSL), provides
programming language independent specifications defining the structure and behavior
of abstract data types and general theories of objects. Each unit of LSL specification
is called a trait. A trait specifies either a data type or any theory to be combined
with a data type. The second tier, using Larch Interface Languages (LIL), provides
specifications of the components of a software system. The interface language is
particular to the programming language used for the software system and defines the
interfaces of the components of the system. The traits in the LSL tier can be referred

in the interface tier. An LSL trait is written in the equational algebraic style. Each

23

equation is an axiom in first order predicate logic. The interface specifications are

written using Hoare style pre- and postconditions.

SymTab : trait

introduces
emp :— S
add : SR,V — S
rem:S, KN — S
find : S.K -V
isin : S. N — Bool
asserts

S generated by (emp, add)

S partitioned by (find, isin)

V(s:Skk:Kv:V)
rem(add(s.k.v).ky) == if k = k; then s else add(rem(s. k), k. v)
find(add(s. k. v), k) == if k = k, then v else find(s, k)
isin(emp, k) == false

isin(add(s, k. v), k) == (k= k) V isin(s. k)

implies
converts (rem, find. isin) exempting (rem(emp), find(emp))
end Sym Tab

Figure 3: LSL Trait Specification for a Symbol Table

A simple LSL tier Larch specification for a symbol table is shown in Figure 3. This
specification introduces the trait SymT7Tab, a theory describing a symbol table. The
signature of SymTab introduces five functions in the introduces clause. The asserts
clause introduces the equations constraining the function. The implies clause states
the checkable redundancies, which logically follow from the equations. The gener-
ated by clause states that all symbol table values can be represented by terms solely
composed of two function symbols emp and add. This clause defines an inductive rule
of inference and is useful for proving properties about all symbol table values. The
partitioned by clause adds more equivalence between terms i.e., two terms are equal

if they cannot be distinguished by any of the functions listed in the clause. This can

24

be used to prove that insertion is commutative. The exempting clause documents
the absence of right sides of equations for rem (emp) and find(emp). Error situations
are handled in the interface specification. The converts and exempting clauses
together forms the completeness of the symbol table specification. There are other
clauses such as includes, assumes, and implies which may be used in composing a

trait. See trait SymTab,, which is a refinement of Sym Tab.

init = proc() returns (s:symbol_table)
ensures s’ = emp A new(s)

insert = proc(s:symbol_table, k:key, v:val)

{
requires —isin(s. k)
modifies (s)
ensures s’ = add(s. k, v)

}

lookup = proc(s:symbol.table, k:key) returns (v:val)

{
requires isin(s. k)
ensures v’ = find(s. k)

}

delete = proc(s:symbol_table. k:key)

{
requires (stn(s. k)
modifies (s)
ensures s’ = rem(s. k)

}

end symbol_table

Figure {: Larch Interface Specification for a Symbol Table

4.2 Structure of TROM

Larch/C++ interface specification language is appropriate as a language of implemen-

tation for components of TROMLAB. the specification in the next tier. Larch/C++

25

Stimulusﬂ(

pid) Incoming

3

[———> Interaction

Ant. Fund States |.....,

cecsrnvesvencnssaasanw

. Enable
Fr“! Global clock
pid 5| Outgoing
Interaction

ResponseE

Figure 5: Anatomy of a TROM

26

has been discussed in [4] in the context of developing interface specifications for com-
mercial class libraries. The functions in the interface tier specification for symbol
table operations are shown in Figure 4. [t has four operations which are explained
below. For each operation, objects specified in the interface specification range over

values denoted by the terms of sort Sym Tab.
e init - initializes the symbol table to be empty

e insert - modifies the table by adding a new binding to symbol table, if the key

k is not in the domain of symbol table

e lookup - requires the key k in the mapping domain and returns the value of
and does not change the state of the symbol table i.e. new table is equivalent

to the old table, and

o delete - requires the key k in the mapping domain and modifies the table by

deleting the binding associated with k from the symbol table

For each operation. the requires and ensures clause specify its pre- and postcon-
ditions. A precondition on an operation is a predicate that must hold in the state
on each invocation of the operation; if it does not hold. the operation’s behavior in
unspecified. A postcondition is a predicate that holds in the state upon return. An
operation’s clients are reponsible for satisfying preconditions, and its implementer is
responsible for guaranteeing the postcondition. The modifies clause lists those ob-
jects whose value may possibly change as a result of executing the operation. Hence,
lookup is not allowed to change the state of its symbol table argument whereas insert
and delete are allowed to change. In the insert operation, we can remove the requires
clause and use a special signals clause in its postcondition to specify that a signal
should be raised if the key k is already found in the symbol table.

A TROM is a hierarchical finite state machine augmented with ports, attributes,
logical assertions on the attributes, and timing constraints. A state in TROM can
represent either a real-valued information of an environment object. such as the po-
sition of a moving train, or a system state. A state can be either simple or complex.
In the later case, the state has substates, where each state can be either simple or
complex. A TROM can include two kinds of attributes: port types, and LSL traits.

The inclusion of an LSL trait brings in to the model the abstract data model and

27

TROM TROM NAME [PORTTY PE PARAMS]
Events: (events)
State: (states)
Attributes: {porttypes)
Attribute-function:
states — altributes
Transition Spec:
R, : (source_stale, destination_state); event(port_condition);
enabling_condition = post_condition;

R.‘V :
Time-constraints:
(TransitionSpec,event, [t} ta], states)

(...)

end

Figure 6: TROM Class Description

SCS SysternName
Includes:
Instantiate:
Configure:

end

Figure 7: Template for System Configuration Specification (SCS)

consequently the abstract operations defined on it. A port has unique port-type and
is an access point for bidirectional communication channel between a TROM and its
environment(e.g. TROMs). A port-type determines the allowable messages at a par-
ticular port. A TROM can have multiple ports of same port-type and/or different
port-types. An event is an activity that happens in an atomic interval of time while
an action is an activity that happens in non-atomic interval of time (finite). An in-
formal description of elements defined in a TROM object shown in Figure 5 are as

follows:

® A set of events (E) partitioned into three sets namely, input events (Ei,),
output events (£,y), and internal events (E;,,). Message passing is represented

by the input and output events suffixed by the symbols ? and ! respectively.

o A set of states (O) in which a state can have many substates and the initial

state is marked by the symbol *.

28

o A set of attributes (x) in which the attributes could be of either an abstract

data type specifying the data model or a port reference type.

e An attribute-function (®) that defines the association of attributes to states.
If a computation is associated with a transition entering a state, only the at-
tributes associated with that state can be modified and all the other attributes

remain unchanged.

e A set of transition specifications (A) in which each specification describes
the computational step associated with the occurrence of an event. A transition
specification has three assertions, (i) precondition, (ii) postcondition, and a port-
condition specifying a property of the port at which the event can occur. These

assertions may involve attributes, and the keyword pid (port-identifier).

o A set of time-constraints (T) in which each time-constraint specifies the re-
action associated with a transition. A reaction is the firing of an output or an
internal event within a defined time period. A set of disabling states are associ-
ated with every reaction. When an object enters any of the disabling states of

the reaction. an enabled reaction is disabled.

Figure 5 depicts abstractly the behavior of a generic TROM [1]. The flow of events
are indicated by filled arrows. An input event is a result of an incoming interaction
caused by external stimulus, the current statc of TROM and the port with respect
to port-condition. A computation is triggered by every event that updates the states
and attributes determined by an attribute-function.

This computation enables a reaction which are indicated by the dashed arrows
corresponding to time-constrained reaction. Similarly, an outstanding reaction may
be disabled because of a state update. An outstanding reaction may be fired in the
form of a transition based on the input from the global clock, thereby generating an
internal or an output event. As a response to the stimulus, all the output events will
result in the port specified by the port-condition.

In this model, port-conditions are used to specify the patterns of interactions
between the components of a system. Typical real-time features such as minimal
and maximal delays, exact occurrences, and periodicity of event occurrences, and
combinations of temporal relations (stimulus-response, response-response, etc.) can

also be specified. The model also provides encapsulation of timing constraints by

29

TROM Train [@C]
Events: Near!C, Erit'C, In, Out
State: *S1,52, 53,54 (Train] Por:@C)
Attributes: cr :@C Near!C ferl
Attribute-function:
S1,83.54 — {}; S2—cr;
Transition Spec:
Ry : (S1,52); Nearl(true).true — o' = pid;
Ra : (52,53); In; true = true;
R3 : (S3,54); Out; true = true;
R4 : (S4,51); Eritl(pid = cr); true => true; \
Time-constraints: g; c':,':s 33 ::fv’:“
(R, In.[3,5], {}) Por: @C > Controller
(Ry, Exit, [0,8],{}

[x>3}

end
Figure 8: Class Specifications for Train.

precluding an input event from being a constrained event. [n other words, a TROM
cannot enforce any timing constraints on the occurrence of input events as they are
under the control of the environment. See Figure 6 for the template sharing the
language for a textual description of a TROM.

To summarize: A reactive object is described as in the textual description shown
in Figure 6. We may regard this description as a specification of a reactive object.
The name of the TROM followed by its elements should be presented for compos-
ing its specification. The modeling elements of a TROM are finite state machines,
port types, LSL traits, and timing constraints. Each modeling element has a formal
meaning. Consequently, a TROM description has an abstract internal description,
called Abstract Syntar Tree (AST) [41]. From this internal representation, objects
of a TROM class are obtained by instantiation. Since the characteristics of TROM
classes are encapsulated in their definition, it is possible for a TROM class to inherit
the characteristics of another TROM. The specification enviornment in TROMLAB
permits the reuse of LSL traits from the library as well as composing them on the
fly. In either case, it is the browser's responsibility to make them available. After
composing a TROM from a set of modeling elements, it is submitted to the Inter-
preter. If it is syntactically correct, the browser may be invoked to save it in the reuse
library. The relationship between a new TROM class, and LSL traits is automatically

computed and updated in the reuse repository.

30

TROM Gate [@S] . _
Events: Lower?S, Raise?S, Down,Up (Gate | Por: @S
State: +G1,G2,G3,G4 Lower?
Transition Spec:

R, : (G1,G?2); Lower?(true); true => true;
Ra : (G2,G3); Down; true = lrue; Up {::ﬂ & go<\2v;1
Ra (G3,G4); Raise?(true); true = true;
R4 : {G4,G1); Up; true = true;
Time-constraints: L v:=0 J
(R, Doun, (0,2}, {}) GI: opened G2: toClose

(R3, Up, [2' 4], {}) G3: closed G4: 100pen

end Port: @S --> Controller

Figure 9: Class specifications for Gate.

4.3 SCS - System Configuration Specification

A System Configuration Specification (SCS) defines a subsystem composed of TROM
objects. Figure 7 shows the template of SCS, which has Include, I[nstantiate, and
Configure sections. Here <name> represents the name of a system being developed.
and Include clause is used to import other subsystems. The [nstantiate clause is
used to define a reactive object by parametric substitutions to cardinality of ports for
each port-type and initializing attributes (if any) in the initial state of the TROM.
The objects specified in the Instantiate clause and the imported subsystems in the
Include clause are composed to obtain a configuration through the Configuration
clause. The communication links between compatible ports of interacting objects are
set up through the composition operator «. If the set of input message sequences at
one port is a subset of the output message sequences at the other port, then the two
ports are compatible and this relationship is symmetric.

A subsystem is composed only from objects instantiated from compiled TROM
classes. It is also possible to include an already composed subsystem in defining a
new subsystem. A subsystem is implemented by recursively aggregating all included
subsystems, and suitably defining port links. In a subsystem, port links are estab-
lished between TROM objects whereas in the included subsystems, the port links are
established with the TROM objects. This facilitates the development of large sub-
systems as the available components can be reused as such. After composition, a
subsystem may be saved by invoking the browser. All inherent relationships within a

subsystem, and the relationships between a new subsystem and those subsystems in

31

TROM Controller [QP,QG]
Events: Near?P, Erit? P, Lower'G, Raise!'G
State: xC'1,C2,C3,C4
Attributes: inSet : PSet;
Traits: Set[@P, PSet] /* Link to LSL tier */
Attribute-function:
Cl— {}; C2,C3.C4~ {inSet};
Transition Spec:
R, : (C1,C2); Near?(true);
true => inSet’ = insert(pid, inSet);
R,y : (C2,C2), (C3,C3); Near?(~(pid € inSet);
true => inSet’ = insert(pid, inSet);
Ry : (C2.C3); Lowerl(true): true => true:
Ry : (C3.C3): Erit?(pid € inSet);
(size(inSet) > 1) => inSel' = delete(pid, inSet);

Rs : (C3,C4): Erit?(pid € inset); o e o oL vt
(size(inSet) = 1) => inSel’ = delete(pid, inSet); Ports: @P > Train, @G > Gate

Rs : (C4,C1); Raisel(true); true = ftrue;
Time-constraints:
(R, Lower,[0,2],{})
(Rs, Raise,[0,2],{})
end

Figure 10: Class specifications for Controller.

the reuse library are automatically recomputed and updated in the reuse repository.

4.4 Train Gate Controller System - An Example

A generalized version of Train-Gate-Controller (TGC) problem has been used in
TROMLAB simulation and verification [3]. To illustrate the reuse assistance that
can be provided by the browser for applications based on trains and gates in trans-
portation domain, we use the components from this example in building the test bed
database for the browser.

[n the TGC system, more than one train can cross a gate simultaneously from
multiple parallel tracks. A train can independently choose the gate it will cross, based
on its destination. So the interacting entities in the system are trains, controllers
and gates. Figures 3, 9, 10 show the TROM class specifications of train, gate, and
controller and their state machine descriptions.

[n Figure 8, a train first sends the message Near (Ezit) to a controller indicating

that it is approaching (exiting) the gate. After sending the Near message, the train

32

SCS TrainGateSystem Gate .« o o G:le
Include:
Instantiate:

Al ..., Am 2 Train[@C : n].Create() G G
B...., B, :: Controller[@P : m,@G : 1].Create()
Ci,....C, 2 Gate[@S : 1].Create()

Configure: P
Yiel..m, je€l...n
A,‘.@Cj -— Bj .@pi
Bj .‘@gl — C'_. Qs

end Train s o & Train

1 m

Figure 11: System configuration specification for Train-Gate-Controller system.

triggers an internal event In within a range of 3 to 5 time units and sends an Erit
message within 8 time units. After receiving the Near message while in the idle
state, a controller sends the message Lower (Raise) within 2 time units to the gate
it is controlling, indicating that the gate has to be lowered (raised). The Raise
message is then sent after receiving the E'rit message from the last train leaving the
crossing. After receiving the Lower message from the controller, the gate triggers
an internal event Down within 2 time units and after receiving the Raise message
triggers an internal event Up within a range of 2 to I time units. An important safety
requirement is that the gate must be closed when a train is crossing the gate and that
the gate must be monitered by a controller. Also, the gate must be eventually raised
and must remain so for a certain period of time before it is lowered again to promote
better operation of the system. The SCS of the TGC system is shown in Figure 11
and is obtained by composing the instances of TROM classes. For example, a system
configured with three trains, two controllers, and two gates will have the following
ports and links. That is, each train will have two ports of the same type referring
to the controller; each controller will have two ports of the same type referring to
the train and one port referring to gate; each gate will have one port referring to
controller; one gate is linked to only one controller by linking the unique port of the
gate to that port of controller referring to gate; each train is linked to both controllers
by linking the two ports of that train to one port referring to train in each controller.
Hence SCS permits configuration of a system in a succint manner. See Figure 12 for

the port links in this system configuration. A set of m trains, n controllers and n

33

Trains Controllers Gates
1
Ty A —
th
t; & —9 ¢
ju b3 ol G,
a1
P €29
l t21
tzy 8¢ —9 Cz’
I ‘s C, G,
€3
T3 c3 ® Ports
“— Port Links

Figure 12: Train Gate Controller System with 3 Trains, 2 Controllers and 2 Gates

gates are composed as shown below:
L. Train Ports - T; : ¢, iz, Cizy -« .. Ciny 1<i<m

2. Controller Ports - C; : &1, tia, tiay ...y tim, 1<i<n
LG [Sisn

3. Gate Ports - G; : ¢, 1<i<n

Therefore, the port links are between trains and controllers. and controllers and gates

as below.
L. Link(T;, C;) @ ¢ & tji, 1<i<m; 1<j<n

2. Link(Ci, Gi) : gi & ¢, 1<i<n

4.5 The Dynamics of Components

During the development of reactive systems, TROM specifications should be composed
and compiled first and then can be followed by a composition of SCS. A TROM

34

VO(Design Object)

v, IL Vai Va

Figuce 13: Version Hierarchy

specification may include one or more LSL traits. A TROM specification may be
written from scratch or may reuse another TROM specifications. Similarly, LSL traits
may either be reused from the LSL library or written from scratch. Consequently, all
TROMLAB components undergo changes and versioning during the different phases of
developing a reactive system. This section discusses in detail the dynamics of change
of TROMLAB components.

A version is a semantically meaningful snapshot of a design component at a point
in time. In general, the versions created for different applications have a hierarchical
relationship as shown in Figure 13. A child component is a version of its parent;
conversely, a child version is a derived version of its parent. A derived version may
inherit from its parents. That is,] may inherit V5 and V53 may inherit V, but not
directly V5. Moreover, siblings do not have any relationship between them.

The LSL traits shown in Figures 14 and 16 are different versions of the LSL trait
shown in Figure 3. These versions include new axioms, new functions and new inter-
face operations. The main significance of the symbol table in Figure 3 is that it does
not allow more than one occurrence of a (key, value) pair whereas this restriction is
relaxed in the version shown in Figure 14. These two versions may be required in two
different contexts and hence both are semantically meaningful. The trait in Figure 16
is another refinement of SymTab, which allows deletion of values of different occur-
rences for the same key. The function find-all in Figure 14 creates a list of all values

having the same key. In order to allow the construction of tables having multiple

35

values, the pre-condition for operation insert has been removed in the new version
(Figure 15). Consequently, pairs of the form (1, 2), (1, 3). ... etc.. can be added to
the symbol table. The axioms for isin is still valid for the new version. However,
its interpretation is that it returns true if the search key k; matches the most recent
insertion of a pair (k, v), £ = k. Consequently, no change in the interface function
lookup is necessary.

The axiom for rem is not changed in SymTab, (Figure 16). Consequently, the
delete operation in the interface specification (Figure 17) which uses rem in the post-
condition ensures that the most recently inserted key in the symbol table is removed.
Similarly, in Figure 17, the function delete-all removes a list of all values having the
same key. The axiom for rem-all is added in the trait Sym Tab, (Figure 16) and the
postconditions for delete operation is unchanged in Figure 17.

With these new interpretations, the traits SymTab, and SymTab, and their cor-
responding interface specifications may be regarded as refinements of Sym Tab. Their
theories correspond to maintaining symbol tables arising in compilers for handling
nested scoping rules in imperative programming languages such as Pascal.

We define a Larch/C++ interface specification (" to be a version of another
Larch/C++ specification C if the uses clause of C’ mentions an LSL trait which is a
version of an LSL trait in the uses clause of C'. This property can be checked from
the syntax of interface specifications. Another type of version relation can be defined:
the interface specification C’ associated with the trait specification T’ is a version of
the interface specification C. if the trait T’ is a version of the trait T" associated with
C’.

Versioning between TROM classes can be defined in a multitude of ways. An
example of versioning is shown in Figure 19. The NewTrain and NewController
objects are instances of classes shown in Figure 18. These are versions of OldTrain,
and OldController, which are instances of classes defined in Figures 8 and 10. For
TROM class objects, a version is a descendent of some existing version (if not the first
version) and can serve as an ancestor of additional versions in the form of hierarchical
trees. New versions can also be created as part of the design process only if the changes
that were made are consistent with the rules for inheritance 1] and are syntactically
correct. It is the responsibility of the users to verify the inheritance properties.

[f the new versions of train (NewTrain) and controller (NewController!) TROMs

36

are used along with the old Gate TROM in defining a subsystem, a new Train-Gate-
Controller system TCGI will be created. We call TCG1 a version of the old subsystem
TCG. Notice that replacing one component C of a system S; by its version C’ leads to
a version 57 of the system S;. Hence, a system may have several unrelated versions,
and each version may give rise to several new versions. Consequently, managing
subsystem versions poses greater challenge than managing TROM versions.

As discussed above, there are three kinds of design components. [t is important
to maintain and manage versions of each kind separately from other kinds. For
composing new LSL specifications, only LSL traits and their versions will be required.
A version of an LSL trait is allowed to add new signature and equations to the parent
trait. All traits which are versions of a trait are grouped together to facilitate their
viewing and reuse. However, versions and newly composed traits (totally unrelated
to traits in the repository) are not part of the reuse repository. The versions of traits
are managed hierarchically, and differently from the traits in the reuse repository.
Separating those traits that have been verified to be semantically correct from those
that are their versions (which may be syntactically correct) ensure both safety and
Hexibility for reuse. For example, the trait Set includes the two traits Bool and Vat.
The traits Set! and Set? are refinements of Set. The trait Set? is a refinement of Set?2.
The traits Set!l. Set2. and Set? may be included in three different TROM classes. see
Figure 20. Similar design principles can be followed in composing subsystems. The

tool manages versions of all components to assist their effective reuse.

37

SymTab, : trait
includes Bool, Set

introduces
emp :— S
add : S. K,V - 8
rem:S. Kk — 5
find : S,k =V
isin : S, K — Bool

find_all : S K — VL

s s

SEMYs

asserts

S generated by (emp, add)

S partitioned by (find. isin)

V(s:Skk:Kv:V)
rem(add(s.k.v). k) == if k = k| then s else add(rem(s. k), k.v)
find(add(s.k,v), k) == if k = k, then v else find(s, k)
istn(emp, k) == false
isin(add(s, k,v), k) == (k = ky) V isin(s, ky)
find_all(add(s, k.v). k) == if k = k; then {v} U find_all(s. k) else

find _all(s. ky)

implies
converts (rem, find, isin, find _all) exempting
(rem(emp), find(emp), find_all(emp))

end SymTab,
Figure 14: LSL Specification of a New Symbol Tablel

38

svmbol_tablel is datatype based on S from SymTabl

init = proc() returns (s:symbol_table)
ensures s’ = emp A new(s)

insert = proc(s:symbol_table, k:key, v:val)

{
modifies (s)
ensures s’ = add(s, k.v)

}

lookup = proc(s:symbol_table, k:key) returns (v:val)

{
requires isin(s. k)
ensures v’ = find(s. k)

}

lookup_.all = proc(s:symbol_table, k:key) returns (vl:v.set)

{
requires :sin(s, k)
ensures vl' = find_all(s, k)

}

delete = proc(s:symbol_table, k:key)

{
requires isin(s, k)
modifies (s)
ensures s’ = rem(s, k)

}

end symbol_tablel

Figure 15: Larch Interface Specification of a New Symbol Tablel

39

SymTab, : trait
includes Bool. Set

introduces
emp :— 5
add : S, K.V = 8§
rem:S, K — S
find :S.K -V
isin : S. K — Bool
find_all : S,k — VL

rem_all :S.K — S

asserts
S generated by (emp. add)
S partitioned by (find. isin)
Y(s:S kk:Kv:V)
rem(add(s.k,v), k) == if k = k, then s else add(rem(s, k), k.v)
find(add(s.k.v). k) == if k = k| then v else find(s. k)
isin(emp, k) == false
isin(add(s,k,v),ky) == (k= k) V isin(s, ky)
find_all(add(s,k,v). ky) == if k = k| then {v} U find_all(s, k) else
find_all(s, k)
rem.all(add(s, k,v), k) == if k = k, then
sU add(rem _all(s, k), k, {v})
else add(rem_all(s, k), k, {v})

implies
converts (rem, find, isin. find_all, rem_all) exempting
(rem(emp), find(emp), find_all(emp), rem_all(emp))

endSymTab,,
Figure 16: LSL Specification of a New Symbol Table2

40

symbol_table2 is datatype based on S from SymTab2

init = proc() returns (s:symbol.table)
ensures s’ = emp A new(s)

insert = proc(s:symbol_table, k:key, v:val) {
modifies (s3)
ensures s’ = add(s. k.v)

}

lookup = proc(s:symbol_table, k:key) returns (v:val) {
requires istn(s. k)
ensures v’ = find(s, k)

}

lookup.all = proc(s:symbol_table, k:key) returns (vl:v_set) {
requires :sin(s, k)
ensures vl' = find_all(s. k)

}

delete = proc(s:symbol_table, k:key) {
requires isin(s, k)
modifies (s)
ensures s’ = rem(s. k)
}
delete_all = proc(s:symbol_table, k:key) {
requires isin(s. k)
modifies (s)
ensures s’ = rem(s, k)
}

end symbol_table2

Figure 17: Larch Interface Specification of a New Symbol Table2

41

TROM Train [@C]
Events: Near!C, Exzit!C, In, Out
State: *S1,52,53, S4
Attributes: cr :@C
Attribute-function:
51,583,854 — {}; S2—cr:
Transition Spec:

R, : (S1,52); Near!(true);true = cr' = pid;

Ra : (S2,53); In; true => lrue;
Ra : (53, 54); Out; true = true;
R4 : (S4,851); Erit!(pid = cr); true => true;
Time-constraints:
(R, In,[2,4), {}),(R., Exit, [0,6], {})
end

TROM Controller [QP.QG]
Events: Near?P, Exit? P, Lower!G, Raise!G
State: x(C'1,C2,C3.C4
Attributes: inSel : PSet;
Traits: Set[@P, PSet] /* Link to LSL tier */
Attribute-function:
Cl— {}; C2,C3.C4 {inSet};
Transition Spec:
R, : (C1.C2): Near?(true);
true => inSet’ = insert(pid, inSet);
Ry : (C2.C2), (C3,C3); Near?(~(pid € inSet);
true => inSel’ = inseri(pid, inSet);
Ry : (C2,C3): Lower!(true); true => lrue;
Ry :(C3.C3): Erit?(pid € inSet);

(size(inSet) > 1) = inSet' = delete(pid, inSet);

Ry : (C3,C4); Erit?(pid € inset);

(size(inSet) = 1) => inSet’ = delete(pid, inSet);

Rs : (C4,C1); Raisel(true); true = true;
Time-constraints:
(R1, Lower, [0, 1], {}).(Rs, Raise.[0,1],{})
end

TROM Gate (@S]
Events: Lower?S, Raise?S, Down,Up
State: +xG1,G2,G3,.G4
Transition Spec:
R, : (G1,G?2); Lower?(true); true = lrue;
R» : (G2,G3); Down; true = true;
Ry : (G3,G4); Raise?(true); true => lrue;
R4 : (G4,G1); Up; true = true;
Time-constraints:
(R1, Down, [0, 1], {}), (Ra, Up, [1,2], {})
end

Si: idle §2: 1oCross
$3: cross S4: leave

Port: @C --> Controller

Cl: idle C2 activate
C3: monitor C4: deactivate

Pornts: @P --> Tmin, @G --> Gate

L v:={) J
Gl: opened G2: toClose

G3: closed G4: 10Open
Port: @S --> Controller

Figure 18: Class specifications for NewTrain, NewController and OldGate

42

OldSymbol

Table (LSL trait) OldTrain (TROM) OldController (TROM)
NewSymbol NewSymbol NewTrain NewController
Tablel Table2

OISTGC (Subsystem)

NewTGCl1 NewTGC2

NewTGC3

Figure 19: Versions in TROMLAB

Nat

Refinement
Structure

Figure 20: Version Hierarchy for Traits

43

Chapter 5
Designing the Browser

The three major functionalities of the browser are: navigation and view, management
of component repositories, and reuse promotion. It can be invoked in two ways:
through GUI of TROMLAB system, and directly through VISTA, the browser user
interface. Navigation and viewing are accompanied by the associated activities such
as querying, retrieving component information, redefining components, and recording
redefined components in the reuse repository. Repository design for large-scale reuse
of software components is a challenging task. We review some approaches in this
chapter. We have decided to simplify the task, for reasons explained later, by adopting
UNIX files and directories to comprise the database. The directory structures, and
algorithms for retrieving reusable components and managing versions are described in
the next chapter. The reuse phase composes new components using components from
the library, invoking other software libraries and editors to assure completeness and
consistency of the component. The browser design takes into account other criteria,
such as providing good user interaction facilities at VISTA, in order to fulfill the above

goals.

5.1 Component Repositories

The structure of a good repository is key to obtaining good retrieval results. If com-
ponents are not indexed and structured properly, even intelligent retrieval algorithms
will fail to produce satisafactory results. Currently, component-based software reuse

faces a big dilemma: in order for the approach to be useful, the repository must

be built effectively and populated with trusted components, and efficient retrieval
techniques must be made available. Several retrieval techniques inherent to classical
information retrieval technologies can be considered as viable candidates for finding
relevant components. Methods based on formal specifications have been studied re-
cently (8] for retrieving software components. These methods match signatures to
retrieve a specification. But very little research has been done into the issues involv-
ing proper and effective design of databases for component-based reuse. Narayanan
[31], has put forth an object-oriented database schema for the storage and retrieval of
design patterns; however experience on using that approach has not yet been reported.

The retrieval methods used for software repositories can be divided into three
categories: enumerated classification, faceted. and free-text indexing [12]. Hypertext
systems also need some form of retrieval for navigation.

Enumerated classification is a well-known retrieval method used by ACM Comput-
ing Reviews Classification System. In this method, information is placed in categories
that are structured in a hierarchy of subcategories, much like Unix file system. This
scheme has the ability to iteratively divide information into smaller pieces that re-
duces the amount of information that needs to be viewed. The major drawback in
this scheme is its inherent inflexibility and possibly difficulties in understanding large
hierarchies. One should compromise between the depth of a classification hierarchy
and the number of categories.

Most importantly, once the hierarchy is in place it gives just one view of the repos-
itory, namely the hierarchical division of categories. [n order to use this repository,
users must have a good understanding of the structure and contents of the reposi-
tory. In particular, users must be able to distinguish between class labels; otherwise
retrieval will be ineffective.

Faceted classification defines attribute classes that can be instantiated with dif-
ferent terms [33]. This is a slight variation of the relational model in which terms
are grouped into a fixed number of mutually exclusive facets. Components may be
searched by specifying one term for each facet. The number of facets used per do-
main is fixed, and within each facet classification methods can be provided to help
users choose terms for retrieval. An advantage of this scheme over enumerated clas-
sification is that individual facets can be redesigned without affecting other facets.

However, users must have an understanding of the significance of the facets, and the

45

term that are used in the facet. It may become hard for users to find the right com-
bination of terms that accurately describe the information needed, especially in large
and complex information domains.

Free-tezt indering (automatic indexing) methods use the text from a document for
indexing. After removing fluffy words such as “and”, and “the” from the extracted
text, the rest of the text is used as an index to the document. Users specify a query
using keywords that are applied to the indices to find matching documents. Although
no classification effort is required, often human indexers augment the automatically
extracted text to refine the index terms. Statistical measures are used to rank re-
trieved information [37]. These indexing schemes are most suitable for retrieving text
documents, because they use linguistic terms and are easy to build and use. The
low cost of building the repository coupled with their acceptable performance have
made this scheme popular in commercial text retrieval systems and World Wide Web
engines such as Yahoo or Alta Vista. Software components such as specification,
design. and source code are nonlinguistic. Indexing methods can be made to work
on the documented text of a software component. In this case, the retrieval is based
on informal descriptions - it is not even dependent on the syntax of the component.
Since effective component retrieval requires both the syntax and semantics of the
components, indexing schemes are not applicable to retrieval of software components.

These methods define a spectrum from enumerated classification, which has a rich
structure, to indexing, which requires no structure. In this spectrum, the cost and
the difficulty of construction decrease from classification to indexing. It seems that
good structure is necessary for effective retrieval. The important question not clearly
answered in literature is the following: what is the relationship between structure
and effectiveness of retrieval and can adequate retrieval effectiveness be accomplished
with minimally structured repositories?

Very litle research has gone into answering the above question for the reuse of
reactive system components. This thesis is the first attempt to put forth a reuse
methodology within the framework of a browser. We are attempting to accomplish
it in the context of TROMLAB components. Because of the experimental nature of
this study, we follow a middle ground wherein the structure of the integrated envi-
ronment, and information structures that are cheaply derived from the knowledge

of the environment are effectively utilized. So, we use UNIX system directories of

46

files produced at different stages of the software development process as our repos-
itory, and build indexes on top of them for retrieval of components. The resulting
repository will be complete and consistent. Completeness is ensured by the processes
and activities that produce and consume the components. We ensure consistency by
separating the libraries of different types of components, and within each library we
retain relationship among components and their versions. A key virtue of complete-
ness and consistency is that information relevant to a query is always retrieved with
*no confusion nor junk”.

There is an inherent hierarchical structure, the one available for UNIX directories,
for the repository. At each level of the hierarchy information in a file may be textual,
or organized as a linked list or organized hierarchically. Consequently our retrieval
algorithms are based on simple and effective algorithms that search and manipulate
hierarchical and linked structures. An overall advantage of this approach is that the
initial set-up cost is low and costs are incurred only incrementally on an as-needed
basis. There is no extensive up-front cost, which would be unavoidable had we opted
for a database approach. A database based approach. as used in faceted classification,
is more general, more structured, and is more appropriate for a large-size reuse.
However, desigining a schema for the repository and building inference engines for
logical-based reasoning and retrieval of reusable components is a challenging research
direction.

We have assumed that most of the users are aware of the formalisms, and lan-
guages governing the components. That is, users are also familiar with the classifi-
cation hierarchy and contents of the repository. VISTA is designed to help users in
understanding the formalism of the system, structure and behavior of design compo-
nents, and TROMLAB features.

During the development phase, new components (not related to components in
the repository) may be constructed. Several versions of a component existing in the
repository may be under development. The developer can invoke the version control
mechanism in the tool to manage these components in the repository. For example,
when the developer creates a new LSL trait, it is recorded as an original version. If it
is modified later in deriving a new trait, the refined trait is recorded as a version in
the reuse library. Versioning of TROM and subsystem components are also controlled

by the tool in a similar manner. We discuss version control of components in a later

47

section.

As remarked earlier, components of the same type may be related, and there may
exist relationship between components of different types. For example, a trait may
be included in many traits. This is a static relationship between LSL traits. A
trait may be used in several Larch/C++ specifications. This is a static relationship
between components of two different types. A trait may be an attribute of several
TROMSs. This is another relationship between components of different types. Some of
these relationships may be used to define new relationships: two TROMs are related
if they share a trait. A dynamic relationship arises when subsystems are constructed
from TROM instances. These relationships are recorded in the browser tool and are

used in navigation algorithms.

5.2 Navigation and View

The search engines on the repository structures are buried under VISTA, which fa-
cilitates navigation. view, and other tasks. Navigation is a guided tour, a metaphor
borrowed from hypertert. Rather than confined to a linear order of documents. users
are able to move through a hypertext document by following links represented on the
window by buttons. The basic building blocks of a hypertext are nodes and links.
Each node is associated with a unit of information. Nodes can be of different types.
For example, node type may depend on the data type stored in a node (text, graphics,
audio, specification, program) or the domain type whose objects are stored in a node
(programs, LCPPs, LSLs, TROMs). Links define relationships between nodes.

For example, a link can connect a trait in LSL with a TROM indicating that the
trait is an attribute of the TROM object. Some links are directed, and some are bidi-
rectional (symmetrical relationship), and some links can be transitively traversed. A
guided tour constrained by the direction of navigation in a link enhances the power
of navigation. When confronted with a large number of navigational possibilities,
the guided tour approach usually will constrain to a few important choices. Com-
ponents can be inspected by moving from one component type library to another
and within each repository taking a guided tour offered by VISTA. These naviga-
tional capabilities facilitate rapid traversal of the repositories to locate target objects

for reuse. Since links are set up based on the semantic information of components,

48

navigation is helpful in zeroing in on the component with a required functionality.
Whenever the semantics of a TROMLAB component changes, it should be recorded
and the links changed to reflect the change. As the information on the components
undergo changes, and the number of components in the repository varies, both nodes
(components in repositories), and links (semantic relationship) must be modified. A
software developer can become disoriented if the resulting hypertext network is too
complex and the navigation produces too many choices. This complexity is avoided
by localising the guided tours: the guided tours are non-intersecting and within each
guided tour only components of one type can be viewed and navigated.

Navigation built on hypertext metaphor seems most suitable for retrieving reusable
components. Developers can actively refine their search by inspecting software com-
ponents and deciding the direction for further navigation. That is, developers are
in control of the identification process, and consequently will be able to conduct a
thorough search. The interactive nature of navigation and component inspection will
result in a better understanding of the repository contents. This in turn reduces
search time and cost of search in future endeavour. The hypertext based search can
withstand the growth of repository contents. Components within each type can be
added without affecting the search performance. New component types can also be
added without affecting the quality of search. The benefits of this navigational aid
provided in VISTA will have a favorable impact on the potential for reusing compo-

nents in TROMLAB environment.

5.3 Reuse Promotion

Software reuse in the context of repositories of components can be accomplished in
two ways: (i) when an application makes a call to a component that already exists in
the repository, and (ii) when a developer designs an application by making a call to a
component that was developed in the context of another application, and, as a result,
has been stored in the repository. The browser enables reuse of the second instance;
that is, the focus is on reuse that occurs during software construction, where software
developers experience the greatest difficulties in finding reusable software products.
Reuse of components is usually preceded by an exploration of the set of candi-

dates from the repository. This is accomplished by querying and navigation. VISTA

49

provides these capabilities. When the identification process is concluded, the user
will have located and retrieved a small set of applicable components that can be
reused. More importantly, this process will yield information about whether there
are components with the appropriate functionality that are in the repository. This
decision will assist the developer in deciding whether or not to build a component
from scratch. Navigating through the basic components may also lead to viewing
versions of the components, which have already been tried in different applications.
The various guided tours group together components which have similar but distinct
functionality. Developers can easily inspect similar objects by following these guided
tours.

Some of the retrieved components may not be relevant to the construction task
and the developer may wish to refine some of these components to fit the task. Using
the editing facilities offered by VISTA, a retrieved component may be edited. After
a new component is obtained, VISTA facilities for syntax checking should be invoked
before recording changes to the components in their repositories. The developer is
responsible for the semantics of the component; it can be tested by invoking LP for

LSL components, and the simulator for TROM components.

5.4 Browser User Interface

VISTA provides textual and graphical descriptions of the LSL traits, Larch/C++ spec-
ifications, TROM classes and subsystems and will display their informal descriptions
in a multiple window environment. Components can be queried, viewed, loaded,
edited, and compiled in an easy interactive mode. When a user queries about a
particular trait, VISTA displays the type along with the newly derived versions of
that type, textual description of the respective traits and graphical version history
tree (hierarchy). This will indeed enable the user to find the best trait needed for
the application being developed or choose one that will require minimal change to
achieve the required functionality. For example, a software designer looking for OO
class specifications only has to know the types of classes available, and the types of
messages each object of a class can receive and act upon. In such a case, the designer
has only need to determine what objects are required, what the various object types

should do and how the various objects or versions of objects relate to each other.

50

VISTA provides facilities for accomplishing these tasks.

VISTA provides high-level editing operations, and it provides templates for con-
structing LSL and Larch/C++ specifications. The menu and button interface enables
the user to load a specification component into the editor allocate area, and compose
into a more complex specification. There are buttons in the edit window that permit
the user to create a new specification, submit a specification for compilation, store a
specification, and invoke Larch software tools.

VISTA can be invoked in two modes: (i) as part of the TROMLAB environment,
or (i) as a stand alone browser. When invoked from TROMLAB environment, the

following tasks may be performed:

o The user can create a new LSL trait or modify an existing trait from the reuse

library to include in the TROM classes or subsystems.

o The user can choose to search for a particular LSL trait. TROM class, or a
subsystem using keywords such as data types, trait names, class names, TROM

name, subsystem name and specify relationships among components.
e The user can navigate through the entire set of stored information space.

When used as a stand alone browser, VISTA offers the following features, which are

restricted to Larch library:

¢ A complete directory listing of LSL trait filenames and LCPP specification file-

names available in the library database are provided side-by-side on the window.

¢ The filenames are hypertexts and has the capability of opening up the corre-

sponding file upon a mouse click.
e The user may open (LSL trait or LCPP) a file by a mouse click:

— The respective hypermode hierarchy tree of traits/classes at different levels
of abstraction is displayed in a small window (hierarchical hypertext trees:
hierarchy for traits and inheritance tree for classes). This will not interrupt

the interface communication between the opened file and the user.

— When the hypertext traitname in the tree is clicked, a window is opened

with the display of corresponding trait file. If the chosen trait has includes

51

or assumes clauses defined, then the trait window also has hypertext links

to them and can be viewed by a mouse click.

— The hierarchy level of the hypertext tree may be restricted to 5 traits/classes.

This reduces the flood of information which may lead to confusion.

The user can choose to search for traits/classes using keywords which can be

data type names, trait names, class names.

The closest possible matches to the query will be displayed in the hypertext
mode and then the user can repeat from any item to further probe the specifi-

cations.

If no formal specification exist, then the user will be asked if a new specifi-
cation should be constructed. In this case, the user is provided with the LSL
(Larch/C++) specification template and a C++ code development area to ver-
ify its correctness. The user may request the newly created class to be added

to the repository.

The user can modify an existing class to suit the needs of a new application

and add to the existing database as a new class.

Components can be added to existing hierarchies and new hierachies can be

constructed.

The above functionalities are consistent and complete with respect to the require-

ments of VISTA stated in Chapter 3.

5.5 Architecture

The design components of VISTA are shown in Figure 21. To support modularity and

extendibility of the tool, we followed the OO design principles. The tool consists of the

following classes; a Workspace Manager (WM), an Object Manager (OM), a Query

Handler (QH), a repository of LSL traits, a repository of LSL versions, a repository
of Larch/C++ Versions, and a Visual Interface for Software Reuse of TROMLAB
Applications(VISTA). QH is supported by QY_LSL, a query handler for LSL traits,
QY_LCPP, a query handler for Larch/C++ specifications, and QY_TR_SCS, a query
handler for TROMs and subsystems.

52

TROMLAB Systems File Structure

Existing TROMLAB _

Figure 21: Architecture of VISTA

33

J

—{(TROMLAB User Interface)
[VISTA .
VISTA User Interface f)
X X Larch Tool
VISTA DB Manager
LSL ’
WORKSPACE L LSLTraits) Syntax Checker
Manager
=P T (LSLVersions) oY syn;fg"l e
OBJECT Manager
(LCPP Specifications)
Y T Larch Prover I
QUERY Handler(QH) (LCPP Versions) \
| |
TROM Classes | C++ Compiler
|
Subsystems J

e Workspace Manager - This component manages the allocation and dealloca-
tion of specification workspace (current version of the LSL trait to be developed)
of the browser. WM is invoked by the Object Manager for the purpose of edit-
ing files. Whenever a file is to be edited, the name of the file and a reference
to the file are communicated to the Workspace Manager. Upon receiving this
information, the Workspace Manager allocates a temporary buffer where in the
contents of the files are copied. It also allocates an editor for editing the buffer.
At the completion of the editing session, the Workspace Manager saves the file,
either by overwriting or by creating a new file as commanded by the user, and

returns the file to the Object Manager.

¢ Object Manager - [t maintains and manipulates versions of all TROMLAB
components. GUI invokes the Object Manager whenever a file has to be in-
spected or edited. The Object Manager initiates the search for the file. If the
search is successful, the reference to the file is then passed on to the Workspace
Manager. The Query Handler can also invoke the Object Manager by specifying
a filename or certain keywords. The keywords may refer to the names of the

traits, TROMs and or Subsystems.

¢ Query Handler - This process handles all the queries about TROMLAB
components in the database and has three subclasses, QH for traits, QH for
LCPP and QH for TROM classes. Query Handler can initiate the following

type of queries from a user.

L. List the names of subsystems.

I~
H

List the names of available TROM classes.

&

List the LSL traits used by a particular TROM.

List the LSL traits of a particular type (original as well as derived).

e

5. List the hierarchy of versions of a particular type of TROM systems or LSL

traits.

6. List the hierarchy tree of included TROM subsystems within a system, and
LSL traits included in each TROM along with its textual description. For

each trait, the version hierarchy can also be requested.

94

7. Display the textual description of components; if graphical descriptions are
requested, VISTA invokes GUI, and GUTI takes over the dialogue with the

user.

QH invokes the query handler that is specific to one component type and returns

the results to WM, who in turn displays the results to the user.

LSL Traits Repository - This is a directory of UNIX files of Larch traits.
Some of them are taken from Larch library [15]; however, a majority of them
were developed at Concordia University [4] in the context of developing specifi-
cations for Rogue Wave Library C++ [36] classes. All traits have been checked
for syntactic and semantic correctness. Traits developed by users are maintained

in a separate file; however, they are also part of the reuse library.

LSL Traits Versions - Many traits in LSL repository have different versions
which have similar but distinct behavior. The versions are maintained in a
hierarchy, where the root of every hierarchy is a trait in the LSL repository.
[t is up to the user to declare whether a refined Larch trait is a version. No
semantic checking is made to ascertain the logical relationship between versions.
The user can make use of LP to check for desirable properties in a trait before

declaring it as a version.

LCPP Repository - This repository contains Larch/C++ interface specifica-
tions for Rogue Wave Library tools.h++ [36]. They have been type checked by
the Larch/C++ tool. These components can be included in the simulation tool

during the validation phase.

LCPP Versions - A Larch/C++ specification can be a subtype of another
Larch/C++ specification [9, 22, 25]. The user should use Larch/C++ tools to
ascertain such a relationship. The browser maintains versions of Larch/C++

specification in a hierarchical structure.

Visual Interface for Software Reuse of TROMLAB Applications - VISTA
provides graphical representations of the hierarchy trees, provides information

on the components in the repositories, enables querying, and navigation of the

TROMLAB components.

39

There is a dialog between the VISTA and GUI of the TROMLAB system at the

following instances.

— a user wants to fetch an LSL trait or an LCPP from the Larch/C++ Reuse
Library

— a user wants to save a version of the trait, or Larch/C++ specification.

— a user wants to inspect (save) a TROM class object or a subsystem.

| |

User Interface Object Munager Query Handler(QH]
_—1 c
, QH for QH for QH for
‘Worl ce Mai LSL LCPP TROM +
kspace Manage Subsyste
T LCPP Data
Template Editor D
o7 MapsTo
LSL Data
1 Dispiays
LCPP View LSL View
LCPP Data
Displays
LCPP File LSL File
MapsTo
References LSL Data
Library File n
Versions File

Figure 22: OMT Object Model

The (OMT) object model and class diagrams with interfaces for the design com-
ponents of VISTA are shown in Figures 22, 23.

56

VISTA CLASS DIAGRAM

Workspace Manager Object Manager Query Handler
FileName{70] : char FilePtr : char*
WorkspaceManager(char *FileName ObjectManager(char *FilePtr) QueryHandler()
OpenFile(); QueryLSL()
EditFile() QueryLCPP()
Add_A_LSL() QueryTROM_SCS()
Add_A_LCPP()
Add_A_TROM()
Add_A_SCS()

Global Functions

SIZE : const int = 25
MAX : const int = 256
MAXSIZE : const int = 150

int Search(char X[][SIZE], int SIZE, char *Key)

int MkArray(char Component[J[SIZE], int MAXSIZE, char *FName)

int MatLsl(int Matrix[}(MAXSIZE], char Trait[)[SIZE], int No, char *FName)

int MatLcpp(int Matrix{][MAXSIZE], char Spec(][SIZE], int No, char *FName)

int MatAssumes(int Matrix[[[MAXSIZE], char Trait{}{SIZE], int No, char *FName)
int MatUses(int Matrix[}{MAXSIZE], char Spec[}{SIZE], int MAXSIZE, char Trit[][SIZE], int No, char *FNamd
int MatTroms(int Matrix{][MAXSIZE]|, char Trom(]{SIZE], int Num, char Trait[]J[SIZE]. int MAX, char *FName
void Update(char *FileName, char *NewComponentName)

void ClearWords(char *UserString)

int Relationship(int X[JIMAXSIZE], int Y[I[[MAXSIZE], int SIZE)

int GetVersions(char TraitName(], char Versions[]][SIZE], int SIZE)

void Replace(char *SLine, char *LsIName)

void GetMatrix(int Matrix[J{MAXSIZE], int y, char Trom{}{SIZE}, int Xsize, char SCS[][SIZE], int p)

int Versions(char *FName, char Versions[][SIZE), int SIZE)

N

N

l I |
LSL LCPP TROM & SCS

Query Handler Query Handler Query Handler
QueryLSL() QueryLCPP() QueryTROM_SCS()
void Initiate() void Initiate() void [nitiate()
void TClosurelncl() void TClosure{mpo(), void LSLinTRAssu()
void IncludedBy() void TClosureUses()| | void LSLinTRIncl()
void Hierlncludes() void HierUses() void LSLinTR Vers()
VO!d CommincidBy() void LSLinLCPPs() void TCIncISCS()
vaid QwParameters() void ObjInstSCS()
vol_d TClosureAssu() void PortLinksSCS()
void AssumedBy() void TRIncISCS()
void HierAssumes() void LSLIncISCS()
void CommAssudBy() void TRInheritanceOf()
void Inincludes()
void InAssumes()
void TClosureVers()
void HierVersion()
void VersionOf()

Figure 23: OMT Detailed Class Diagram

ST

5.6 Overview of VISTA

When the browser is invoked as a stand alone tool, the main window opens and offers
the user four options along with buttons to invoke external Larch tools and a C++

compiler:
o “Files”
o *Query”

o “C++ Compiler” - if user would like to develop code for the formal specifications

he/she created using VISTA
o “Exit”
o “Help”

See Figure 35. By clicking on one of the options. the user can exercise the function-
alities in that option. When clicked on the “Help” button, the system provides a
glossary of technical terms, references to their usage. simple examples, and a brief
summary to VISTA. If the “Exit" button is clicked, the system gives two options:
to exit from TROMLAB system or enter into GUI; and to save unsaved files. [f the

*Query” button is clicked, the user is given five options; see Figure 52:
o Query LSL traits
o Query LCPP files
¢ Query TROMs and subsystems
o Exit
o Close (to go back to the previous window)

If the “Files” option is made in the main menu, the system opens up a window

(Figure 36) in which there are four options to choose from:
o LSL files

o LCPP files

98

e TROM files

o Subsystem files

By clicking on any one of these options, the system responds with a menu having two
options: Library files, and Version files. When an option is clicked, the system opens
up a window which contains the names of files in the chosen collection. For example, if
LSL files was chosen followed by *Versions™, all LSL version files will be on the screen
within the window. This window, shown in Figure has three buttons “Inspect”,
“Edit”. *New” and “Cancel”. When a file name is selected in the window and the
button “Inspect” is clicked, the contents of the file is opened in a separate window (see
Figure -10) for inspection. If the button “New” is clicked. space is allocated in a new
window and an editor is assigned for composing a component. The “Cancel” button
cancels the previously chosen option. [f the “Edit” button is clicked, either after
inspecting or before clicking on “[nspect” button, the browser allocates an editor
to the file, and the file can be edited in a new window allocated for this purpose.
However. no LSL file from the main library can be edited; it can only be viewed,
copied. reused in a design. [n general, this window has “Save”, *Save As”, *Update

DB”. *Close”, and “Exit” buttons. These buttons have the following functionalities:
e “Save” - overwrites the file.
o “Save As” - the file will be saved under a new name given by the user.
o “Close” - closes the session, but confirms any opened unsaved file.
e “Exit” - closes the window and exits from the window to the previous menu.

e “Update DB” - the update options differ for different components; for example,
a trait may become a version of another trait, a TROM object may become part
of a subsystem, or a trait may be included in a TROM. The [unctionality of this
button is to maintain the database behind VISTA to manage the TROMLAB

components.

The user can perform “Update DB” on LSL versions. The “Update” operation on
TROMs and subsystems are done by the Object Manager at the request of GUIL
This is because, semantic checking on TROM components are done by TROMLAB

components that interact with GUIL

59

We explain in the next chapter the window structures, query input facilities and
viewing facilities of query reponses and a complete prototype description is provided

in Chapter 7.

5.6.1 Interaction of VISTA with TROMLAB Modules

VISTA interacts through GUI, the graphical user interface tool of TROMLAB, with
some of the components of TROMLAB. A TROM system comprises of TROM classes
which include LSL traits and TROM subsystems. The editor in GUI interacts with
VISTA to fetch the TROM classes and subsystems stored in the VISTA’s repositories.
When a requested component is not available in the repository, WM allocates storage
and an editor to compose the TROM component. This can be done from scratch
or by invoking the browser again to retrieve suitable components for reuse. After
composition and syntax analysis. a syntactically correct component may be saved by
invoking the browser. The user will be required to give full information on the type of
component and its status (version). The browser determines the relationship of the
new component to other components in the repository and records the relationship
in the repository.

Both [nterpreter. and the Simulation Tool interact with the browser to record
changes to TROM class specifications during the process of simulation. and debugging
in the debugger mode. To specify the behavior of simulated actions the user interface
may interact with the browser to fetch Larch/C++ specifications from the reuse
library. Whenever subsystems are required for a simulation run, the browser may be
invoked to retrieve a subsystem based on information such as included TROM names,
and port links.

If the system is initialized for simulation in the default mode, the interpreter
fetches the necessary TROM classes, subsystem configurations, and LSL traits from
the browser and proceeds with the simulation. Once the system is initialized for simu-
lation in the debugger mode, the Interpreter recompiles TROM classes, and subsystem
configurations, and the browser ensures that LSL traits are syntactically correct, and
then resumes simulation. There is also a provision in the browser to invoke C++
compiler. This feature will be used in future when the TROMLAB environment is
extended with a code generation environment. The Larch/C++ classes provide the

framework to develop semantically correct code.

60

Chapter 6

Reusing TROMLAB Components

A prototype reuse search system to operate within TROMLAB object repositories has
been built. In this chapter, we discuss the contents and structure of reuse repositories.
give the basic algorithms for navigation and query processing, and present the features

of VISTA visual interface features.

6.1 Storage Structures

The repository is a collection five directories: LSL. LCPP, Subsystems and TROMS,
VISTA-C++. The directory LSL contains all relevant ".tex” and ".Is|” trait files; LCPP
contains all ".lcc.tex” and *.lcc” files for all the LCPP Specifications; VISTA-C++ has
five directories Stage_1. Stage_ 2, Stage_3, Stage.4 and Stage.5; TROMS contains all
the TROM files. Subsystems contains all the Subsystem files.

The directory Stage_1 has in turn two directories: Assumes and Includes. The
directory Assumes contains five programming files for the queries of assumes relation
(see below) and three data files. The Includes directory contains six programming

files and three data files.
l. Assumes directory

(a) Data file descriptions:

e assumes.dat contains the set of tuples, where each tuple is a trait in

the assumes relation followed by the traits related to it by the assumes

relation.

61

® trait_ass.dat contains only those LSL traits which have non-empty
assumes relation.
¢ closure.dat contains the (0,1) matrix representation of the assumes

relation.
(b) Programming file descriptions:

e hierachy.cpp which on execution gives the hierachy representation
of the assumes relation for a given LSL trait.

¢ intersection.cpp which computes the common LSL traits that two
LSLtraits assumes.

o trait_exist.cpp which checks if the given trait is already in the as-
sumes relation or not.

¢ matrix.cpp which on execution gives the transitive closure of the as-
sumes relation and also the total number of traits in the assumes

relation for a given LSL trait.

o assumed.cpp which on execution gives the number of traits and the

list of trait names assumed by a given trait.
2. Includes directory

(a) Data file descriptions:

¢ InputFile.dat contains tuples, where each tuple is a trait in the
includes relation followed by the traits related to it by the includes
relation.

e TraitFile.dat contains all LSL traits for which the includes relation
is non-empty.

e matrix.dat contains the (0,l) matrix representation of the includes

relation.
(b) Programming file descriptions:

¢ h_tree.cpp which on execution gives the hierachy representation of
the includes relation for a given LSL trait.
¢ common.cpp which gives the common LSL traits included by two LSL

traits.

62

e relation.cpp which on execution gives the transitive closure of the
includes relation for a given LSL trait and also the total number of

traits it includes.
e paramtr.cpp which on execution with a trait in the form A(p for X, q
for Y) returns the filename of the trait matching the trait substituted

with the given actual parameters.

e existence.cpp which on execution checks if the given trait is already

in the trait file of the includes relation or not.

o included.cpp which on execution gives the number of traits and the

list of traits a given trait includes.

The directory Stage_2 has two sub-directories: Imports and Uses. The Imports
directory contains one programming file and three data files. The Uses directory

contains three programming files and two data files.
l. Imports directory

(a) Data file descriptions:

e Imports.dat contains tuples, where each tuple is a Larch/C++ spec-
ification followed by Larch/C++ specifications related to it by the
imports relation.

e LSpecifications.dat contains all the LCPP Specifications having
non-empty imports relation.

e Impo.matrix.dat contains the (0,1) matrix representation of the im-

ports relation.
(b) Programming file description:
e Reln_imports.cpp which on execution gives the transitive closure of
the imports relation for a given LCPP Specification.

2. Uses directory

(a) Data file descriptions:

e uses.dat contains the LCPP Specifications in the uses relation and

the related LSL traits.

63

e LSpecifications.dat contains LCPP Specifications which have non-

empty uses relation.
(b) Programming file descriptions:

o Reln_uses.cpp which on execution gives the transitive closure of the
uses relation for a given LCPP Specification.

e Hierachy. uses.cpp which on execution gives the hierachy represen-
tation of the uses relation for a given LCPP Specification.

e Used_by.cpp which on execution gives the list and the number of all

LCCP Specifications which uses a given LSL trait.

The directory Stage_3 has the version files for LSL traits and also contains the
programming files for the queries of “version of” relation and one data file. The data
file Version.dat contains tuples, where each tuple consists of a trait followed by its

versions in the “version of” relationship. There are three programming files:

e query._version of.cpp which on execution with a trait A and a version V of

A will find the versions of V in the hierarchy rooted at A.

e version.closure.cpp which on execution with a trait A, and a version V of
A will find the transitive closure of the version V in the “version of” relation .

When the version V is not given, the program outputs all the versions of A.

e hierachy.versions.cpp which on execution with a trait A and one of its ver-
sion V will find the hierachy of the version V. If the version is not given, then

the hierachy of versions for the trait A is given.

The directory Stage_4 has the programming files for updating version files of LSL

traits. [t uses data files from Stage_3 directory. The programming files are:

e Addition.v.cpp which on execution with a trait A and a new version V1 of V,
adds version V1 as a version of V in the hierarchy rooted at A. If the version V

is not given then V1 is added as a new version of A.

e Deletion.v.cpp which on execution with a trait A, a version V1 of version V,
deletes version V1. [f version V is not given, then V1 is assumed to be the first

level version of the trait A and is deleted from ”Version.dat” file.

64

e Add_a_trait.cpp which on execution adds a newly composed LSL trait to the
“Version.dat” file, by checking if it is a valid LSL trait and it also creates a

version file for that LSL.

At present the repository does not have version files for Larch/C++ specifications.
When they become available, they will be organized and manipulated similar to the
way LSL traits have been organized.

The directory Stage5 has iwo directories TROMS and SCS. It contains eleven pro-

gramming files and five data files. The data files are:
e SCS.dat contains subsystem names.

e SCS_TROMS.dat contains tuples, where each tuple is a subsystem followed by a

list of instantiated TROM objects.

e SCS_DATA.dat contains tuples, where each tuple is a subsystem followed by

subsystems included in configuring it.
o TROMS.dat contains the list of TROM names.

e Trom_data.dat contains tuples, where each tuple is a TROM name, followed by

a list of parameters and a list of traits it includes.
The programming files are:

e h_assumes.cpp which on execution gives the hierachy relationship of the as-

sumes relation of the LSL traits included in a given TROM.

e h_includes.cpp which on execution gives the hierachy relationship of the in-

cludes relation of the LSL traits that a given TROM includes.

e h_versions.cpp which on execution gives the hierachy relationship of the“version

of” relation of the LSL traits that a given TROM includes.

e Query_2.cpp which on execution gives the transitive closure of the includes

relationship for a given subsystem.

e Query_3.cpp which on execution determines all the TROM objects instantiated

in a given subsystem.

65

¢ Query 4.cpp which on execution shows the port links in a subsystem.

¢ Query.5.cpp which on execution gives all the subsystems which include a given

TROM.

o Query.6.cpp which on execution determines all the traits included in the objects

within the given subsystem.

® Add.a_SCS.cpp which on execution adds a given TROM file to the directory of
TROMS.

¢ Add.a_TROM.cpp which on execution adds a given subsystem file to the directory

SCS.

® Query.version.cpp which on execution with a TROM. which is an inheritance
of another TROM, gives the TROM name in the “inheritance of” relationship and

also the type of the inheritance (either behavioural, extensional or polymorphic).

6.2 Larch Reuse Environment

When VISTA is invoked to compose a new LSL trait, an LSL Development Window is
provided to the user. Both LSL and LCPP development windows have basically the
same functionality: the differences will be noted. See Figures 10, 46.

The Development Window consists of a srollable editable specification text area,
and a non-editable file path text field. The Specification text field indicates the
corresponding LCPP specification file of the currently loaded LSL trait into the De-
velopment Window. The full directory of the path name of the selected file is shown.
The scrollable text area is where the text of the specification is developed. As ex-
plained in the previous chapter, only traits in the version repository can be modified.
When the modification or composition of the specification is complete, the user can
submit it for syntax checking, and then save the file before quitting. The options on

the window are used to achieve the following functionalities:
¢ Loading a known specification.
e Composing a new specification.

e Editing a specification loaded from version repository.

66

o Checking the syntax of a trait. The output of the syntax checker is displayed

in a text window.

Checking the axioms in a trait using LP. The Larch Prover interface results are

displayed in a text window.

Saving a file after editing; the file is saved under the same file name.

Saving a file with a new file name.

Exiting to the main window.

Browsing and inspecting a selected trait can be done independent of any develop-
ment activity. An important feature of VISTA is the provision of templates for LSL
traits. The template shown in the Development Window is the LSL template. Each
section of the template is labeled by a keyword. The user must enter the keyword
and the punctuations in the respective sections before entering the text appropriate
to the section. The template feature allows the user to edit any of the scrolled areas
of the specification. The “Reset™ button may be clicked at any instant to return the
specification to the state it was in when originally loaded into the template. LSL
traits have two relationships: includes and assumes. The includes section lists all
traits that are necessary for composing the current trait. The semantics of an in-
cluded trait is that the signature, equations and theories implied by it and those of
all the traits transitively included in it are imported into the current specification.
The semantics of assumes is slightly weaker: there is a proof obligation, in the sense
that any trait that imports a trait with an assumes clause cannot have the implied
theories automatically included; they need to be proved. The “Help” facility of the
browser provides on-line implementation of the semantics.

Both includes and assumes relations are irreflexive, antisymmetric and transitive.
The transitive closure of includes(assumes) can be computed using Warshall's algo-
rithm [LO]. This closure includes all pairs (A, B) such that A includes (assumes) B.
Similar statement is true for assumes. During design, several versions of an LSL trait
may be created. The relation “A is a version of B” is reflexive, antisymmetric and
not transitive.

In Figure 24, B is a version of A, C is a version of B, D, E are versions of C

and F is a version of D and E. Both includes and assumes are static relationships.

67

Figure 24: DAG of Versions

Traits: Set Bag Container

SetV BagV ConV
L } |

]
ASWAN

Setl Set2 Bagl Bag2 Conl Con2

/NN /N

Set3 Setd Bag3l Con3 Cond

SetS

Figure 25: Version List of reusable LSL traits

68

Includes List:

Seltln Balgl n Contat;nerln
f ! !
| |
y ! !
| |
Y { '
| |
! ! !

Figure 26: includes List of LSL traits

Assumes List:

SefAs BalgAs F‘ontailnerAs
] ' !
Y Y |
! !
!

Figure 27: assumes List of LSL traits

69

Version Includes Assumes
File.lsl List List List
Set SetV Setln SetAs
Bag BagV | BagIn | ConAs
Con ConV | Contin | BagAs

Figure 28: Table as a Data Structure

However. the version relationship is dynamic. For each trait in the library, several
versions as shown in Figure 25 may exist. The version files are not part of the reuse
library. However, each LSL version will have its own includes list. assumes list, and
version list. If we were to maintain the includes list, assumes list, version list for each
LSL trait in machine memory, the data structures shown in Figures 25, 26, 27, 28
would be appropriate. Figures 26 and 27 show the template for a collection of linked
lists for three LSL traits Set, Bag and Container. The table in Figure 28 has four
entries per row, where each entry is associated with an LSL trait: The first entry is
the name of a trait; the second entry is a pointer to the version list of the trait: the
third entry is a pointer to the includes list; and the fourth entry is a pointer to the
assumes list. Figure 29 illustrates a comprehensive storage organization for a sample
set of reusable components. The data structures in these four figures also portray the
various files that we maintain in the repositories and their interrelationships.
Whenever a version Y of the LSL trait X is created, Y is inserted in the versions list
of X, an entry for Y is made in the table and pointer to the includes and assumes list
are recorded in the table. Note that the files themselves are stored in their respective

directories and only pointers are kept in the table. Whenever a version Y of X is

70

Version Includes Assumes Version List:
File.Isl List List List_
SymbolTable | SymbolTableV | SymboiTableln | SymboiTableAs SymbollTableV Hashl:/l
HashMap HashMapV HashMaplin HashMapAs + +
. . SymbolTable Hash
BTreeDict BTreeDictV BTreeDictin BTreeDictAs 1
SymbolTablel |SymboiTable!V |SymbolTablelIn| SymboiTablelAs SymbolTable!
SymboiTable2 | SymbolTable2V | SymbolTable2In| SymbolTable2As l
Bool ® 7 ° SymboiTable2
Set o +]
Includes List:
SymbolTableln| HashMapin BTreeDictin | SymbolTablelIn |SymbolTable2in
Bool || | [HashTable] | [Buee <] | Bool |, |

[Set

|Lisop | ;]

Assumes List:

EENN

Bool

[SC(l><] LSet l><]

SymbolTableAs

HashMapAs

BTreeDictAs l SymbolTablel As |SymbolTabIc2As

Figure 29: An Example Data Store of 3 Files

71

Jsl File

New oud
sa/ \save as sa/ save as
File File’ File File’
I. Overwrite : . Write as :l. Overwrite : 1. Write as
2. Include File ! NewFile 2 -] NewFile
inTable | 2. Include File’, ! 2. Include File’
' in Table) in Table
§]
] !

!
i
'
Figure 30: Notion of Save

deleted, then the following changes are made to the data structures.

e Y is deleted from the version list of X.

o The entry for Y from the table is removed.

These relationships among LSL traits may be viewed at any time by querying the
system. The different contexts for saving an LSL file is shown in Figure 30.

A Query Session Window as shown in Figure 52 may be created at any time
by the user to query the properties of the specification in the repository. In this
window. there is a radio button corresponding to each query. A query is stated in
natural language against the button. By clicking on a button, the user is asking for
information against that query. The system opens up a dialog box for the user to
input the parameters required to process the query. Upon completing the dialog box
information sections, the user must click on “Apply” button to activate the search
methods for retrieving the information from the repository. The system response is

displayed in a text window. The following sequence of dialogs leads to query selection:

1. If the user chooses Query on LSL traits, the user is asked to choose one of

the following:

e Query on includes or assumes relation of LSL traits

e Query on version relationship on LSL traits

72

e Exit

e Close - go to previous menu

2. If Query on includes or assumes relation of LSL traits is chosen, the

user is asked to choose one of the following options:

e Query on includes relation

e Query on assumes relation

e General information (Statistics)
o Exit

e Close - go to previous menu
3. Query on includes relation ~ The following queries are answered here:

¢ Query-1 Find the transitive closure for the includes relation. The number
of traits included in a particular trait is also given as part of the response.
The member function Query_I() of the class QH_LSL processes the above

query.

e Query-2 Find all the LSL traits that includes a particular trait and also
the number of traits. This query requests the included by relation. The
member function Query.2() of the class QH_LSL processes the above
query.

o Query-3 Find the hierachy relation for each trait in the includes relation.
The member function Query_3() of the class QH_LSL processes the above
query.

¢ Query-4 Find the common traits included by two given traits. The mem-
ber function Query_{() of the class QH_LSL processes the above query.

e Query-5 Given a trait name with parameters, replace the existing param-
eters in the trait file and put the modified file in a temporary file.

The member function Query_5() of the class QH_LSL processes the above
query.

4. Query on assumes relation - The following queries are answered here:

73

e Query-1 Find the transitive closure for the assumes relation. [t also gives

the number of traits a particular trait assumes .
The member function Query_6() of the class QH_LSL processes the above
query.

e Query-2 Find all the LSL traits that assumes a particular trait and also
the number of traits. [t requests the assumed by relation.

The member function Query.7() of the class QH_LSL processes the above
query.

e Query-3 Find the hierachy relation for the trait in the assumes relation.
The member function Query.8() of the class QH_LSL processes the above
query.

e Query-4 Find the common LSL traits assumed by two given traits.

The member function Query.9() of the class QH_LSL processes the above
query.

3. General Information - The following queries are answered here:

¢ Query-1 Find if the given trait is already in the trait file of the includes
relation or not.
The member function Query_10() of the class QH_LSL processes the

above query.

e Query-2 Find if the given trait is already in the trait file of the assumes
relation or not.
The member function Query_11() of the class QH.LSL processes the

above query forassumes relation.

¢ Query-3 Find the number of traits that includes or assumes a particular
trait.
The member function Query_1() of the class QH_LSL processes the above
query for includes relation and the member function Query_6() of the class

QH_LSL processes the above query for assumes relation.

¢ Query-4 Find the number of traits included by or assumed by a particular

trait.

74

The member function Query_2() of the class QH_LSL processes the above
query for included by relation and the member function Query_7() of the

class QH_LSL processes the above query for assumed by relation .

6. Query on version relationship on LSL traits - The following queries are

answered here:

e Query-1 Find the transitive closure of the version V of trait A in the
version of relationship.
The member function Query_12() of the class QH_LSL processes the

above query.

e Query-2 Find the hierachy of the version V . of a given trait A. If the
version V is omitted find all the versions of A.
The member function Query./3() of the class QH_LSL processes the

above query.

e Query-3 Given A. the root of a version tree, and a version V of A. find
all the versions of A.
The member function Query.14() of the class QH_LSL processes the

above query.

6.2.1 How queries are answered?

The data structure shown in Figure 28 is a good description of LSL files had they been
stored internally in machine memory. For an understanding of query processing, this
diagrammatic representation is helpful. Sce Appendix A for the full path names of
directories and files. The table in Figure 28, which portrays the relationship of files
in these directories, consists of a main index of LSL traits. Each row has three indexes
where the first is an index list of version filenames of the LSL trait, the second one
is a list of includes clause of filenames and the third one is a list of assumes clause
of filenames. The main index has a flag which indicates whether the file is protected
or unprotected. The protected files are those that are in the LSL reuse library and
the unprotected files are the versions or new files created by users. So whenever the
user wants to browse a file, the includes list of hyperlink file names are provided for
the includes clause along with the version filename links, if any. Similarly, the as-

sumes list of hyperlink file names are provided for the assumes clause along with the

(6]

version filename links. The three relationships assumes, includes, and version have
same abstract properties: irreflerive, antisymmetric, transitive. We use Warshall’s
algorithm [10] to compute the transitive closure of a generic relation represented by
a (0,1) matrix, and instantiate this to realize the traits in the three respective rela-
tionships. These relationships are precomputed; they will be updated automatically
after changes occur in the version repository. Based on the file structures given in
Appendix A, and the precomputed relations, the queries are handled. An informal

description of query handling methods is described below:

Querying the LSL library

e Query-1 Given a trait A to output all the traits and the number of traits

which A includes.

The query is answered as follows:

We search the file matriz.dat for trait A, and display the traits corresponding
to the value | in the row of trait A. The programming file matrir.cpp in the
directory “VISTA-C++/Stage.l /assumes” computes the response to the query
for the assumes* relation and the programming file relation.cpp in the direc-
tory *VISTA-C++/Stage_l /includes” answers the above query for the includes*

relation.

¢ Query-2 Given a trait A to output all the traits and the number of traits
included by A.
The query is answered as follows:
We search the file matriz.dat for trait A, and display the traits corresponding
to the value 1 in the column of trait A. The programming file assumed.cpp
in the directory “VISTA-C++/Stage.1/assumes”computes the response to the
query for the assumes* relation and the programming file included.cpp in
the directory “VISTA-C++ /Stage_l/includes” answers the above query for the

includes* relation.

¢ Query-3 Given a trait A to check if the given trait is in the trait file of the
(includes/assumes) relation.
The query is answered as follows:

We search the file trait_ass.dat for trait A, and display if the trait exists or not.

76

The programming file trait_ezist.cpp in the directory “VISTA-C++/Stage_l /assumes”
computes the response to the query for the assumes* relation and the pro-
gramming file existence.cpp in the directory “VISTA-C++/Stage_l/includes”

answers the above query for the includes* relation.

e Query-4 Given two traits,to find the included traits common to them.

The query is answered as follows:

We search the file matriz.dat and find the transitive closure of both the traits
and then find the trails common to them. The programming file intersection.cpp
in the directory *VISTA-C++/Stage_l/assumes” answers the above query for
the assumes* relation. The programming file common.cpp in the directory
VISTA-C++/Stage_1/includes” responds to the above query for the includes

relation.

e Query-5 Given a trait in the form A(p for X.q for Y). it is required to return

the filename matching the trait substituted with the given actual parameters.

The query is answered as [ollows:

We search the InputFile.dat to see if the trait exists with the given number of
parameters. [f a match is not found return an error message saying that the
trait is incompatible with the given number of parameters, or does not exist.
However, if a match is found a copy of the trait’s file is made in a temporary
file and the parameters p for X and q for Y, are substituted in the text of the
trait and the user is provided with the temporary filename. The programming
file paramtr.cpp in the directory “VISTA-C++/Stage.l/includes” answers the

above query for the includes relation.
Querying the Versions

® Query-1 Given a trait A and a version V of A to find the corresponding version

in the version of relationship.

The query is answered as follows:

The query can be answered only if the version V is not in the first level because
the solution for this query should only be a version and not the name of the
trait. The version file for the given trait A is opened and the (0,1) matrix

for the versions is formed and then the versions that V was derived from are

7

sent to the screen. The programming file query_version_of.cpp in the directory

“VISTA-C++/Stage.3" processes the above query.

e Query-2 Given a trait A, and a version V of A , find the transitive closure
of the version V in the version of relation . If the version is not given ,then

output all the versions of A.

The query is answered as follows:

[f both A and V are given, the program outputs all the versions transitively
included in V. However if only A is given, then for each version of A (in the
first level as given in Version.dat file), we compute and output all versions
transitively included in it. The programming file version_closure.cpp in the

directory "VISTA-C++4 /Stage_3" processes the above query.

¢ Query-3 Given a trait A and one of its version V find the hierachy of the
version V. [f the version is not given, then display the hierachy of versions for

trait A\.

The query is answered as follows:

[n order to find the first level versions of A , the file Version.dat is used and the
hierachy for those versions are obtained from the version file of the trait. [f the
version is given then only version file of the trait is used. The programming file
hierachy_versions.cpp in the directory “VISTA-C++/Stage.3” processes the

above query.

Updates to LSL Versions

It is possible to add or delete a version to the version file of the given trait. A file
consisting of a set of traits and their first level versions are in the file Version.dat
in the directory “VISTA-C++/Stage_4”. Each LSL trait has it’s own version file as
explained earlier. All the version files are in the directory “*VISTA-C++/Stage 4”.

e Query-1 Given a trait A, a new version V1 can be added as a version of V. If
V is not given then VI is added as a new version of A.

The query is answered as follows:
The version file for the given trait is opened and the (0,1) matrix for the version

relation is formed . The new version V1 is added as a version of the already

78

existing version V and then the corresponding changes are made to the version
file of the trait. If the version V is not given then it is added as a new version to
the version file. The programming file Addition_v.cpp in the directory “VISTA-
C-++/Stage_4" processes the above query.

¢ Query-2 Given a trait A delete the version V1 which is a version of V.IfV

is not given, then V1 is assumed to be the first level version of the trait A.

The query is answered as follows:

The version file for the given trait is opened and the (0,1) matrix for the version
relation is formed . The version V1 which is the version of the already existing
version, V is deleted and then the corresponding changes are made to the version
file of the trait. I[f the version V is not given then changes are made to the
Version.dat file. The programming file Deletion_v.cpp in the directory *VISTA-
C++4/Stage_1” processes the above query.

e Query-3 To add a new trait A to the Version.dat file.

The query is answered as follows:

The given trait is validated to check if it is a trait. [f it is not already present
in the Version.dat file then it is added to the file. The version file for the trait
is also formed. The programming file Add_a_trait.cpp in the directory*VISTA-
C++/Stage.t” processes the above query.

6.3 Managing LCPP Files

The Specification Development window for LCPP specifications has features similar
to the LSL development window. The major distinction is the template structure.
The LCPP template is shown in Figure 46. When the template is displayed in “Edit”
mode, any of the scrolled text areas can be edited. Functions are listed in the Func-
tions list. To view or edit a function, double click on that function in the list, and the
function template will appear. After editing the text in the function template, click
“Apply” to record the change and close the function template. By clicking “Reset”,
instead of “Apply”, the text is not changed. The button “Close” can be used at any
time to close the function template without making change. To create a new mem-

ber function of a class, click on “New”. A function template will be opened. After

79

entering the text, click “Apply”. The new function is added to the function list in
Functions.

An interface specification allows one or more other specifications to be imported.
As an example, the interface specification RWZone shown in Figure 31 imports type-
defs, another Larch/C++ interface specification. RWZone is a partial specification
for the Rogue Wave description of Zone classes [36].

The language does not allow an interface specification to import itself. Moreover,
if a specification A imports specification B and the specification B imports another
specification C then A imports C. This transitive relationship is not permitted to
include cycles. As explained in the previous section, this relationship and its transitive
closure are computed and saved in LCPP repository. The Imports area in the LCCP
template lists all LCPPs imported by the LCPP being edited (or composed) in the
template. Whenever the text in this area is edited, and the changes are recorded, the
relationship in the repository is redefined.

An interface specification sets up a link to Larch tier through the uses clause.
For example, the uses clause in RWZone mentions three traits: Zone, Time, String.
Moreover, the parameters for Time, and String are specified. In general, the uses
clause lists all the LSL traits and the actual parameters to be used for each trait.
The Uses box in the LCPP template lists the traits used by the LCPP composed
(or edited) in the window. The text in this box can be edited: parameters for traits
may be refined, traits may be added or removed from the list. At the time of editing
this box. the LSL window may be opened to view the traits listed in the box. After
completing an editing session the changes made may be committed. thus recording
the revised LCPP. Alternately, the status of the box may be left unchanged.

An interface specification may be refined to another interface specification pre-
serving the list of imported specifications and the list of LSL traits used in the speci-
fication. For example, a specification I obtained by modifying one or more member
functions of an interface specification G is a refinement of G. Another possible way
of refinement is to let F include all member functions of G and have new member
functions which use the same LSL traits used by G. Both types of refinements lead to
a new version. [t is easy to see that the version relationship on the set of all LCPPs is
both irreflexive and transitive. The hierarchical dependency of version relationship is

computed using Warshall’s algorithm [10]. A hierarchy can be viewed or traversed. A

80

typedef int Zone;

typedef int RWCString;

imports typedefs;

struct RWDaylightRule;

extern Zone local;

extern Zone standard;

enum DstRule NoDST, NoAm, WeEu;
extern RWDaylightRule *rules{3];
enum StdZone zone;

abstract class RWZone

{
uses Zone, Time(RWBoolean for Bool), string(RWCString for C);

public:
virtual int timeZoneOffset()

{

ensures result = self".standardOf fset;

}

virtual int altZoneOffset()

{
ensures result = self*.DSTOf fset:

}

virtual RWBoolean daylightObserved()
{

ensures result = daylightObserved(sel f°);

}

virtual RWBoolean isDaylight(const struct tm* tspec)

{

requires daylightObserved(self") A (*tspec) .tm_wday =

week (day(date((*tspec).tm. day, (xtspec)’.tm._month, (*tspec) .tm_year)));

ensures 3t : Time(result = (t = get((tspecx)’))A
observed DST(t.year,self’) <> NON

A(observed DST(t.year,self’) = AHEAD =
(convert(t) >= convert(begin DST (t.year, self"))A
convert(t) <= convert(end DST (t.year, sel f7))))A
(observed DST(t.year,selfy = BEHIND =
(convert(t) <= convert(begin DST (¢t.year, self))A
convert(t) >= convert(endDST(t.year, self")))));

} .

Figure 31: Larch/C++ I[nterface Specification for RWZone

81

Imports List:

RWnDatelmp RWTimelmp | RWZonelmp [RWCollectablelmpgRWHashtableImp

RWZone RWZone typedefs RWFile RWCollectio

RWLocale RWLocale RWViStream|

Figure 32: An Example of imports List of LCPP Files

version may be added or deleted from a hierarchy by naming the root of the hierarchy
and the immediate predecessor of the version; see query structures below.

After completing the editing of the boxes in the LCPP template. click “Generate”
to generate the edited specification in the text area of the “Development Window™.
When a new specification is generated, the system recomputes the relationships be-
tween the new LCPP with LSL and other LCPPs. The relationships of the revised
LLCPP to other components in the reuse repository are recorded by changing the file
pointers associated with the LCPP. It is easier to understand the changes by following
the links in the structures shown in Figures 32, 33, 34. By clicking on “Revert”, the
specification is reverted to the text it was when loaded in the template. The template
can be closed by clicking on “Close” without recording any of the changes.

A Query Session Window as shown in Figure 52 may be created at any time by
the user to query the properties of the LCPP specifications in the repository. In this
window, there is a radio button corresponding to each query. A query is stated in
natural language against the button. By clicking on a button, the user is asking for
information against that query. The system opens up a dialog box for the user to
input the parameters required to process the query. Upon completing the dialog box
information sections, the user must click on “Apply” button to activate the search
methods for retrieving the information from the repository. The system response is

displayed in a text window. The following sequence of dialogs leads to query selection:

L. If the user chooses Query on LCPP, the user is asked to choose one of the fol-

lowing:

e Query on imports or uses relationship

82

LCPPs: RWDate RWFile RWZone
RWDateV RWFileV RWZoneV

RWDate RWFile RWZone
RWDatel RWDate2 RWZonel RWZone2
RWFilel /\
RWDate3 RWDated4 RWZone3 RWZone4
RWDate5

Figure 33: Version List of reusable LCPP files

o Query on version relationship
o Exit
e Previous Menu
2. IfQuery on imports or uses relation is chosen. the user is asked to choose
one of the following options:
e Query on imports relation
e Query on uses relation
e Ceneral information (Statistics)
e Exit
e Previous Menu

3. Imports, Uses, and Version Relations - The following queries are answered

here:

¢ Query-1 Find the transitive closure of the imports relation for a given LCPP

Specification.

83

dcppFile:

\ edit imports list edit uses listl edit member functions

T

save as new file save as new file P
(not a version) (f" is a version of f)
1. Update Table 1. Updating the version file of f
2. Update Table

Note: The file is stored in its directory and
the pomnter to this directory 1s setup
1n the table

Figure 34: Notion of Save

The member function Query-!() of the class QH_LCPP processes the above
query.

Query-2 Find the transitive closure of the uses relation for a given LCPP
Specification .

The member function Query-2() of the class QH_LCPP processes the above
query.

Query-3 Find the hierachy representation of the imports or uses or version
relation for a given LCPP Specification .

The member function Query.J() of the class QH_LCPP processes the above
query.

Query-4 Find the list and number of LCPP Specifications which uses a given
LSL trait.

The member function Query_{() of the class QH_LCPP processes the above
query.

6.3.1 How queries are answered?

In the current repository we do not have versions of LCPP specifications. So, we

restrict to queries on the other two relations.

e Query-1 Given a LCPP specification A, output all the LCPP specifications
imported (used) by A.

84

The query is answered as follows:

We search the file Impo_matriz.dat and display the specifications which have the
value | corresponding to the specification A. The programming file Reln_imports.cpp
in the directory “VISTA-C++/Stage_2/imports” answers the above query for
the imports* relation . The programming file Reln_uses.cpp in the directory

VISTA-C++/Stage_2/uses” answers the above query for the uses relation.

e Query-2 Given a trait, output all the LCPP specifications which uses A.

The query is answered as follows:
We display all the LCPP specifications which have the LSL trait in the uses rela-
tion. The programming file used_by.cpp in the directory “VISTA-C++/Stage_2/uses”

answers the above query for the uses® relation.

¢ Query-3 Given a LCPP specification A, find the other LCPP specifications

which are imported by A.

The query is answered as follows:
We search the file Imports.dat for the LCPP specification and return all LCPP

specifications following the LCPP specification A.

¢ Query-4 Given a LCPP specification A, find the hierachy of the LSL traits
that A uses. The query is answered as follows:
The hierachy algorithm used for the includes relation is used. In order to find
the first level traits that A uses .the file [mports.dat is used and the hierachy

for those LSL traits are obtained by using InputFile.dat for all other traits.

6.3.2 Managing TROMs and Subsystems

The template for TROM is identical to its textual structure and is shown in Figure 49.
A TROM class can be viewed or edited in this template. The text of LSL traits
included in the TROM currently loaded in the template can also be viewed; however,
they cannot be edited. [n order to edit traits included in the TROM currently viewed
in the template, the user should first invoke the Specification Development Window
for LSL, load the trait to be edited in that window, edit and save it. When the TROM

is reloaded in its template the modified trait will be part of its description.

85

The template for a subsystem is shown in Figure 51. This is identical to the
specification template shown in TGC Example. A subsystem can only be viewd in
this template. The GUI of TROMLAB need not be invoked for editing or composing

a subsystem.

6.3.3 TROM relationships
Two TROMs may be related through one or more of the following properties:
o T'hey share a nonempty subset of traits.

e One of them includes a trait A which is a version of trait B included in the

other trait.
o They share a nonempty subset of port types.
o They share the same set of external (input/output) events.

[n addition, there may exist relationship at the object level: an object of a TROM
class .1 and an object of a TROM class B are related by the fact that they are both
included in a subsystem.

The TROM theory [l] defines three kinds of subtype inheritance relationship,
which in turn produce three kinds of versioning for a TROM class. The inheritance
properties should be checked by the user; the browser only manages versions. A brief
informal basis on which versions may be based is given below: consult (1] for a formal
treatment.

[nheritance is a relationship between two classes. Since a class represents a TROM,
a subclass defined by inheriting a class also represents a TROM. In other words.
inheritance helps to define a TROM using the class definition of another TROM. A
formal definition of inheritance in the framework of the TROM model is given below.
Inheritance
Let C' be a class representing a TROM A’ = (¥, &', X', T', ', A/, T'). Let C be
a class derived from C’ by inheritance. Then the TROM represented by C is defined
as A=(%,0,X.T. 0, A, T)such that,

e ¥ = ¥’y Events(C)

e O

©' U States(C)

86

o X = X' 1 Attributes(C)

o T =T'U Traits(C)

¢, = @), t Att-function(C)

®, = @/ { Hierarchy-Function(C)

A =\’ t Trans(C)
¢ T =Tt Time-constraints(C)

where t means redefinition.

[t follows from the definition that, all the events, states, and traits in the parent
class are available in the child class. New events, states, and traits may be added.
However. there is no means to block an event, a state, or a trait from being inherited.
With regard to the attribute set. new attributes may be introduced or the types of
the existing attributes may be modified. Similarly new state hierarchy function or
attribute function may be added or the existing functions be modified. Also new
transition specifications and time-constraints may be introduced or the existing ones
may be modified. GUI provides the facilities for verifying inheritance relationship.

Subtyping ensures some form of behavioral relationship between two types. Hence
subtyping is defined in terms of the relationship between the computations of two
types. The notion of subtyping is useful for modular reasoning. That is, a property
verified to be true in a type T will necessarily be true in a subtype of T. Modular
reasoning can be useful in the design and verification of concurrent reactive systems
since verified subsystems can be put together to build larger systems without reprov-
ing already proved proof obligations. For example, checking that an object O, is a
subtype of object O, requires one to make sure that use of object O, does not in-
validate any assumptions made about the behavior that one could derive from the
specification of object O,. Intuitively, if A is a subtype of B then A preserves all the
properties of B. The three kinds of subtyping are:

o Behavioral-sublyping: ensures the principle of substitutivity and preserves all
the properties of the supertype. An important purpose of behavioral-subtyping
is to move from an abstract level to a detailed level by adding more computa-

tional behavior.

87

o Ertensional subtyping: does not ensure the principle of substitutivity. How-
ever, all the properties of the supertype are preserved. Extensional subtyping
provides more detail for state-space, differentiating individual states into sub-
states and possibly provides more events enriching the signature and behavior
of ports. An important purpose of extension to specialize a common supertype

into variants possibly, by introducing additional stimulus-response behavior.

o Polymorphic subtyping ensures the substitutivity principle. That is, any object
conforming to a polymorphic-subtype can be used whenever an object con-
forming to the supertype is expected. Polymorphic subtyping usually appears
where a supertype is used to characterize the common aspects of several types.
[n this form of subtyping, a subtype preserves the behavior of its supertype
in the environment of the supertype. However, the behavior is not guaranteed
to be preserved in other environments. Intuitively, this form of inheritance

corresponds to adding more features to an existing model.

6.3.4 Queries on TROMs and subsystems (SCS)

A number of different relationships between subsystems could be defined based on
the relationships among the TROMs composing it. The most important one is the
inclusion relationship; see Train-Gate-Controller example. Other relations include
the common TROMs instantiated, and refinements. These are not considered in the
present version of TROMLAB development environment.

The following queries are answered here:

e Query-1 Find the hierachy relationship of the assumes relation of the LSL
traits that a given TROM includes.

The member function Query.l() of the class QH_.TR_SCS processes the

above query.

e Query-2 Find the hierachy relationship of the includes relation of the LSL
traits that a given TROM includes.

The member function Query.2() of the class QH_TR_SCS processes the above
query.

88

o Query-3 Find the hierachy relationship of the version of relation of the LSL
traits that a given TROM includes.

The member function Query.3() of the class QH_.TR_SCS processes the
above query.

e Query-4 Find the transitive closure of the includes relation for a given SCS.
The member function Query_{() of the class QH_TR_SCS processes the
above query.

e Query-5 Find all the objects instantiated by a given SCS.

The member function Query.5() of the class QH_.TR_SCS processes the
above query.

e Query-6 Find the port links in the given SCS .

The member function Query_6() of the class QH_TR_SCS processes the
above query.

e Query-7 Find all the Subsystems which include the given TROM.

The member function Query_7() of the class QH_-TR_SCS processes the
above query.

e Query-8 Find all the LSL traits included in the objects within the given Sub-
system.

The member function Query_8() of the class QH_TR_SCS processes the
above query.

e Query-9 Find the TROM name in the inheritance of relationship and also the
type of the inheritance .

The member function Query_9(y) of the class QH_.TR_SCS processes the

above query.

6.4 How the queries are handled?

VISTA supports the following queries.

89

¢ Query-1 Given a TROM name, find if the TROM exists or not in the database
and if it exists give the included traits and for each trait included in the TROM,

show the includes hierachy, the assumes hierachy and the version hierachy.

The query is answered as follows:

We form the matrix representation for the TROMs and the LSL traitsit includes.
We use I[nputF'ile.dat , which contains the includes relation of a given LSL trait
to compute the includes hierachy. The assumes relation uses Assumes.dat
and the version of relation uses Version.dat in order to form the hierachy.
The programming file h_includes.cpp in the directory “VISTA-C++/Stage 5"
gives the includes hierachy. The programming file h_assumes.cpp in the direc-
tory “VISTA-C++4/Stage_ 57 gives the assumes hierachy. The programming
file h_versions.cpp in the directory “VISTA-C++/Stage.5" gives the versions
hierachy.

e Query-2 Given a subsystem A, determine the transitive closure of the includes

relationship for subsystem.

The query is answered as follows:

The included subsystems for the given subsystem are extracted from the file
SCS_.DATA.dat and the union of the TROM objects instantiated are extracted
from the file SCS.TROMS.dat . The programming file Query_2.cpp in the
directory *VISTA-C++/Stage_5" processes the above query.

e Query-3 Given a subsystem. determine all the objects instantiated in the

subsystem.

The query is answered as follows:

The subsystem file is opened and the list of instantiated objects given under
the sub-title nst: are displayed. The programming file Query_J.cpp in the
directory “VISTA-C++/Stage_5" processes the above query.

e Query-4 Given a subsystem, show all the port links in the subsystem.

The query is answered as follows:

The subsystem file is opened and the list of port links given under the sub-title
Config: are displayed. The programming file Query_{.cpp in the directory
“VISTA-C++/Stage_5" processes the above query.

90

e Query-5 Given a TROM, determine all the subsystems which include this
TROM.

The query is answered as follows:

The file SCS_TROMS.dat is used to form the (0,1) matrix having the subsys-
tems in the rows and the TROMs as columns. The corresponding subsystems
which have the value | for the given TROM are displayed. The programming
file Query_5.cpp in the directory *VISTA-C++/Stage 5" processes the above

query.

¢ Query-6 Given a subsystem, determine all the traits included in the objects

within the subsystem and for all the included subsystems.

The query is answered as follows:

The list of included subsystems and the instantiated objects of each of the sub-
systems are determined using the two data files SCS_.DATA.dat and SCS.TROMS.dat
and then the list of traits are found using the file Trom_data.dat . The program-
ming file Query.6.cpp in the directory “VISTA-C++/Stage.5" processes the

above query.

[t is possible to add a TROM file to the TROMs directory and add a subsystem
file to the SCS directory.

¢ Query-1 Given a TROM file, add the file to the reuse repository.

The query is answered as follows:
The TROM file is scanned to get its name, its parameters and the list of traits

it includes.

— Case 1: TROM name exists
Case 1.1 :List of parameters match
If the TROM name already exists in the file Trom_data.dat and the pa-
rameters and LSL name match, then no change to Trom_data.dat file is
necessary and the already existing file in the TROMs directory is overwrit-
ten.
Case 1.2 : List of parameters do not match
[n case the parameters and the LSL names do not match in the file Trom_data.dat

we find whether or not the given TROM file is a new version of the already

91

existing one. [f yes, then the version file is updated and the file is saved as
a new version in the TROMs directory; otherwise the old file is overwritten

to save the new changes to the TROM file.

— Case 2: TROM name does not exist
[f the TROM name does not exist in Trom_data.dat then the TROM is
added to the Trom_.data.dat and TROMS.dat files and the file is saved in
to the directory TROMs.
[n all the above cases, if the new file includes new LSL traits then the files,
TraitFile.dat and InputFile.dat are updated.

The programming file Add_a.TROM.cpp in the directory “VISTA-C++/Stage_ 5"

processes the above query.

o Query-2 Add a given SCS file to add the reuse repository.

The query is answered as follows:
The SCS file is scanned to get the SCS name.and the list of objects instantiated

by it and the subsystems included by it.

— Case 1: SCS name exists
Case 1.1 : List of parameters match
[f the SCS name exists in SCS.dat and the parameters . the instantiated
objects and the included subsystems match then the old file is overwritten.
Case 1.2 : List of parameters do not match
[f the SCS name does not exist and the instantiated TROMs are all defined
then it is essential to find if the new file is a version file. If yes, the file is

saved as a version file and otherwise the old file is overwritten.

— Case 2: SCS name does not exist
Case 2.1: List of instantiated objects exist
[f the SCS name does not exist in file SCS.dat but the list of TROM names
instantiated are present in TROMS.dat then the file is saved in the direc-
tory SCS and the updates are made in the SCS.dat and SCS.TROMS.dat
files.
Case 2.2: List of instantiated objects does not exist

[f the SCS name does not exist in file SCS.dat and the list of TROM names

92

do not exist in the TROMS.dat then an error message is displayed and
the file is not saved.
The programming file Add_a_SCS.cpp in the directory “VISTA-C++/Stage.5”

processes the above query.

e Query-3 Given an LSL trait file to add the file to LSL directory.

The query is answered as follows:

The LSL file is scanned to get the trait name, its parameters and the list of LSL

traits it includes.

— Case 1: LSL name does exist
Case .1 : List of LSL traits included matches
[f the LSL name already exists in the file TraitFile.dat and the list of LSL
traits it includes match, then no change to InputFile.dat file is necessary
and the already existing trait file in the LSL directory is overwritten.
Case 1.2 : List of LSL traits included do not match
[n case the included LSL names do not match in the file InputFile.dat a
question is asked to find if the given trait file is a new version of the already
existing one. If yes, then the version file is updated and the file is saved as
a new version in the LSL directory and the user is questioned if the TROMs
that include this LSL trait uses the old version or the new version . The
corresponding changes are made in the TROM files. If the given trait file
is not a version, then the old file is overwritten to save the new changes to

the trait file.

— Case 2: LSL name does not exist
If the LSL name does not exist in TrattFile.dat then the LSL is added to
the TraitFile.dat and InputFile.dat files and the file is saved in to the

directory LSL.

The programming file Add_a_LSL.cpp in the directory “VISTA-C++/Stage 5"

processes the above query.

¢ Query-4 Given a TROM, find the TROMs it inherits from and the nature of

inheritance.

93

The query is answered as follows:
Given the TROM name, we find the nature of its inheritance from the file inher-
its.dat and corresponding to the inheritance, we examine the file pinherits.dat

or, einherits.dat . or binherits.dat to find the version of relationship.

The programming file query_version.cpp in the directory *VISTA-C++/Stage_ 5"

processes the above query.

94

Chapter 7

The Prototype and

Implementation Issues

A prototype reuse search support system to operate within the TROMLAB environ-
ment has been built. The reuse repository contains more than 100 LSL traits, 50
Larch/C++ specifications, and about a dozen TROMs and subsystems. There are
several TROM classes. and subsystemns to be added to the repasitory. Since the reuse
context is specific to TROMLAB, we designed the reuse facility on top of and as a
natural extension of system files and directories generated by TROMLAB development
components. The repository is fully implemented and tested. It can be run either as
part of TROMLAB or a stand alone browser. In the later case, only Larch components
can be viewed. composed, and edited.

We have designed and implemented a Visual Interface for Software Reuse in TROM-
LAB Applications (VISTA), to interact independently with users of Larch components
as well as with GUI, the Graphical User Interface of TROMLAB. VISTA is implemented
in Sun Microsystems's JAVA/JDK-1.2.

7.1 Riding VISTA

VISTA is a reuse support CASE tool which has two-tiers, namely the visual interface
(front-end) and the DB Manager (back-end). VISTA is platform independent as it
implemented in JAVA. In this section, we present the visual interface features of the
tool and walk-through the user to install and ride VISTA.

95

7.1.1 Hardware Requirements

VISTA runs on any platform such as Solaris 2.5, Windows 95, Mac OS as long as
Sun’s Java Virtual Machine(JVM) for JAVA/JDK-1.2 is installed and added to the

path.

7.1.2 Software Requirements

We have provided linkage to external software packages from the VISTA to make it
a complete software specification development environment and are optional to use
the VISTA. These software packages include Larch syntax checkers, Isl. lcc, Ip and a
C++ compiler (optional).

7.1.3 Functionalities

The Browser environment is very useful for both experienced and new Larch spec-
ification developers and/or TROMLAB navigators. The users can easily navigate.
query, manipulate and manage the reuse library and versions of the TROMLAB com-
ponents. This section provides a description of the choices and functionality of each
of the VISTA's windows.

7.1.3.1 Getting Started

Before starting the VISTA, the hardware and the software requirements should be
met.

To start the VISTA, type java ObjectBrowser at the command line on a Solaris or
at the MS-DOS prompt on a Windows 95 operating system and the opening window

as shown in Figure 35 will appear.

E;";VI‘) IA Window

Figure 35: VISTA Opening Window

96

7.1.3.2 Files

Figure 36 shows the list available TROMLAB components to browse. The TROMLAB
components consists of LSL, LCPP, TROM and SUBSYSTEM.

tles Window

Pz 3 T

RE3LSL Files

Figure 37: LSL Files Window

7.1.3.3 LSL Files

When the LSL button is clicked. the LSL Files window appears with 2 choices of
browsing the “Library” or “Versions” as shown in Figure 37. Then LSL Library Files
window appears (Figure 38) if the “Library” is clicked. Similarly, the LSL Version
Files window appears if the “Versions” is clicked. These windows provides a directory
listing and the user can either highlight or type the name of the Isl file and “Inspect”
(Figure 39) or “Edit” (Figure 40) it or click “New” to create a new Isl file. The main
important point here is that the library files cannot be edited instead a dialog window
as shown in Figure 41 pops up and asks the user if he would like to save it as a version

file.

97

LSL Libeary Files

R

Addition.Isl
Ascills! e
BTreeDict.Isl
BagiterObij.isl
BagMap.Isl
Bag_hashdict.isl
BinlteratorObi.lsl
BinMap.isi
BinaryTree.lsl
BinaryTreeObj.Isl
BtreeDictObj.Isl o
Delimeter.Is| -
DerivedCollectable.lsl :
DerivedOrders.|s| -
DictiterObj.Is “
File.Isl 5
HashDict.Isl
HashDictiterObj.Isl k:
HashDictMap.isl =
{HashDictObij.Isl &

Figure 38: LSL Library Files Window

98

binmap
L the create ape
BinMap (E, List{Obj[E]]):trait

fincludes BinaryTreeObj(E),
ListOp (Obj[E], List[Ob3j[E]])

incroduces
map : Bin(Obj{E]] -> List[Obj(E]]
Increasing : List{0bj[E]], State -> Bool

|assercs
\forall b:Bin[Ob3j[E]], c:List[Obj(E]], e:0bj(E], st:State

l'Onee(h,) = (Ocences(b,

Figure 39: LSL [nspect File Window

99

listenl |
trai

»includes Sequence(List for C)

'; introduces
renove: List, E -> List

\forall e, el : E, c :List
remove (empty, el} == empty:

Figure 41: Library File Error Dialog Window

100

e [f the user chooses “Inspect™, the file is opened in a inspect mode in the LSL
template. The corresponding LCPP filename is displayed in the template win-

dow in the hypertext mode and user can choose to “Inspect” it as well.

o [f the user chooses “Edit”, the file is opened in edit mode in the LSL template.
Each division of the LSL template is scrollable and allows you to enter the
contents in a friendly way. For example, the user can choose enter each of
filenames in the includes clause seperated by commas in a new line or choose
to enter them in a single. The format is preserved even if the file is re-opened.
The list of filenames in the includes clause are hypertext and user can again
choose to either “Inspect” or “Edit” it on the spot. The corresponding LCPP
filename is displayed in the template window in the hypertext mode and user

can choose to “Edit” it depending on the file opened mode.

7.1.3.4 Saving LSL Files

wds

|BTreeDict1 .|

255 ol

Figure 42: Save as Dialog Window

[n the “Edit” mode. the user has the 3 options to save a file that is opened in the

template.

e [f the user chooses “Save”, the file is saved in the same file name. When a
new file is created and if the user tries to “Save”, then a “Save as” (Figure 42)
dialog pops up and asks for a filename as opposed to a typical save feature in

the commercial softwares which will save the file as untitled.

101

*35 Update D atabase

Figure 43: Update Database Window

o [f the user chooses “Save As” and if the user enters the same filename as the
opened one, a warning dialog pops to confirm the overwriting of an existing file.
This button behaves the same way for both old and new files. If the user docs

not enter any filename, then an error dialog window warns the user.

o If the user chooses “Update DB”, then the user can add or delete the LSL trait
to or from the version database. The update DB Window is shown in Figure -13.
This option is not permitted for the LSL library database. The main purpose of
this functionality is to provide version management and answer queries to the

user from the database.

7.1.3.5 LCPP Files

When the LCPP button is clicked, the LCPP Files window appears with 2 choices
of browsing the “Library” or “Versions” as shown in Figure 44. Then LCPP Library
Files window appears if the “Library” is clicked. Similarly, the LCPP Version Files
window (Figure 45) appears if the “Versions” is clicked. These windows provides a
directory listing and the user can either highlight or type the name of the LCPP
file and “Inspect” or “Edit” it or click “New” to create a new LCPP file. The main
important point here is that the library files cannot be edited instead a dialog window

pops up and asks the user if he would like to save it as a version file.

o [f the user chooses “Inspect”, the file is opened in a inspect mode in the LCPP
template. The corresponding LCPP filename is displayed in the template win-

dow in the hypertext mode and user can choose to “Inspect” it as well.

102

2LCPP Files

ey

Figure 44: LCPP Files Window

RwWBTree.lcc
RWBTreeDict.Icc
RWBTreeOnDisk.lcc
RwBag.lcc
RwBaglterator.lcc
RWBinaryTreelterator.icc
RWCRegexp.lcc
RWCString.lcc
RWCSubString

dcc

s

Figure 45: LCPP Version Files Window

103

twehiree oo

TR 7

ports RWCollection;

r.ues Btree (RUBTree for BtreeObj, RWCollectable for K), ClassID:

/ 2223342224 ¢4 RUBTzee AEERRERAERARAANARARS

/
7/ 09-19-1995 Submitted by Angie Loukas %

AR SRR AR AR A R AR AR AR R AT TAN TR RARRAANSRAAN T IR RRENRANNNS

"JRUBTree (const RUBTrees btr)

constructs self;

Figure 16: LCPP Editor Window

o If the user chooses “Edit”(Figure 46), the file is opened in edit mode in the
LCPP template. Each division of the LCPP template is scrollable and allows
you to enter the contents in a friendly way. For example, the user can choose
enter each of filenames in the imports clause seperated by commas in a new line
or choose to enter them in a single. The format is preserved even if the file is re-
opened. The list of filenames in the includes clause are hypertext and user can
again choose to either “Inspect” or “Edit” it on the spot. The corresponding
LCPP filename is displayed in the template window in the hypertext mode and

user can choose to “Edit” it depending on the file opened mode.

7.1.3.6 Saving LCPP Files

[n the “Edit” mode, the user has the 3 options to save a file that is opened in the

template.

o [f the user chooses “Save”, the file is saved in the same file name. When a
new file is created and if the user tries to “Save”, then a “Save as” (Figure 42)

dialog pops up and asks for a filename as opposed to a typical save feature in

104

the commercial softwares which will save the file as untitled.

o If the user chooses “Save As” and if the user enters the same filename as the
opened one, a warning dialog pops to confirm the overwriting of an existing file.
This button behaves the same way for both old and new files. If the user does

not enter any filename, then an error dialog window warns the user.

o [f the user chooses “Update DB”, then the user can add or delete the LCPP
trait to or from the version database. The update DB Window is shown in
Figure 43. This option is not permitted for the LCPP library database. The
main purpose of this functionality is to provide version management and answer

queries to the user from the database.

7.1.3.7 TROMs

When the TROM button is clicked, the TROM Classes window appears with 2 choices
of browsing the “Library” or “Versions” as shown in Figure 47. Then TROM Library
Classes window appears (Figure 48) if the “Library” is clicked. Similarly. the TROM
Version Files window appears if the *Versions” is clicked. These windows provides
a directory listing and the user can either highlight or type the name of the TROM
class and “Inspect” or “Edit” it or click “New” to create a new TROM class. The
main important point here is that the library files cannot be edited instead a dialog
window as shown in Figure 1l pops up and asks the user if he would like to save it

as a version file.

L5 TROM Fles

Figure 47: TROM Classes Window

105

Controller
Gate
Train.
output
null

Figure 48:

TROM Library Classes Window

106

TROM E DR ~

vents: Near!'C, Out, Exit!C, In ;

|States: *idle, cross, leave, toCross

Rl: <idle, toCross>:; Near(true):; true> Cr's=3Dpid;
: <cross, leave>:; Qut; true> true;

E <leave, idle>; Exit(pid=3Dcr): true> true:
‘R4: <toCross, cross>; In: true> true;
ibute-function: idle -> (}:cross -> (}:;leave -> ():toCross -> (Cr):

ITime-Constraints
{TCvar2: (RL, Exit, [0, 61, {}:
(RL, In, (2, 4], (}:

Figure 49: TROM Editor Window

o If the user chooses “Inspect”, the file is opened in a inspect mode in the TROM
template. The corresponding TROM filename is displayed in the template win-

dow in the hypertext mode and user can choose to “Inspect” it as well.

o [f the user chooses “Edit”, the file is opened in edit mode in the TROM template
(Figure 49). Each division of the TROM template is scrollable and allows vou
to enter the contents in a friendly way. The format is preserved even if the file

is re-opened.

7.1.3.8 Saving TROM Files

[n the “Edit” mode, the user has the 3 options to save a file that is opened in the

template.

o [f the user chooses “Save”, the file is saved in the same file name. When a
new file is created and if the user tries to “Save”, then a “Save as” (Figure 42)
dialog pops up and asks for a filename as opposed to a typical save feature in

the commercial softwares which will save the file as untitled.

o If the user chooses “Save As” and if the user enters the same filename as the
opened one, a warning dialog pops to confirm the overwriting of an existing file.
This button behaves the same way for both old and new files. If the user does

not enter any filename, then an error dialog window warns the user.

o [f the user chooses *Update DB". then the user can add or delete the TROM
class to or from the version database. The Update DB Window is shown in
Figure 43. This option is not permitted for the TROM library database. The
main purpose of this functionality is to provide version management and answer

queries to the user from the database.

7.1.3.9 Subsystems

When the SCS button is clicked, the SCS window appears with 2 choices of browsing
the “Library™ or “Versions” as shown in Figure 50. Then TROM Library Classes
window appears if the “Library” is clicked. Similarly, the SCS Version Files window
appears if the “Versions” is clicked. These windows provides a directory listing and

the user can either highlight or type the name of the SCS and “Inspect” or “Edit”

108

it or click “New” to create a new SCS. The main important point here is that the
library files cannot be edited instead a dialog window pops up and asks the user if he

would like to save it as a version file.

1[5 505 Files

Figure 50: SCS Window

o [f the user chooses “[nspect”. the file is opened in a inspect mode in the SCS
template. The corresponding SCS filename is displayed in the template window

in the hypertext mode and user can choose to “Inspect” it as well.

o [f the user chooses “Edit”. the file is opened in edit mode in the SCS template
(Figure 51). Each division of the SCS template is scrollable and allows you to
enter the contents in a friendly way. The format is preserved even if the file is

re-opened.

7.1.3.10 Saving SCS Files

[n the “Edit” mode, the user has the 3 options to save a file that is opened in the

template.

o [f the user chooses “Save”, the file is saved in the same file name. When a
new file is created and if the user tries to “Save”, then a “Save as” (Figure 42)
dialog pops up and asks for a filename as opposed to a typical save feature in

the commercial softwares which will save the file as untitled.

o [f the user chooses “Save As” and if the user enters the same filename as the
opened one, a warning dialog pops to confirm the overwriting of an existing file.
This button behaves the same way for both old and new files. If the user does

not enter any filename, then an error dialog window warns the user.

109

§E§ TrainGate Controller

Includes: abc:

jINstantiate:
-.jgatel: :Gate[@S:1];
“|ezainl: : Train{@C:1}:
controllerl::Controller(@P:1, BG:1]:
Configure:

Controllerl.@Gl:0G <-> gatel.@S1:0S:
controllerl,.@Pl:QP <-> trainl.@Cl:QC:

Figure 51: SCS Editor Window

110

o If the user chooses “Update DB”, then the user can add or delete the SCS class
to or from the version database. The update DB Window is shown in Figure 43.
This option is not permitted for the SCS library database. The main purpose
of this functionality is to provide version management and answer queries to

the user from the database.

7.1.3.11 Query

The design and algorithm for the processing of different types of queries are described
in detail on chapter 6. When the Query button is clicked, the Query window appears
with choices of query: *Query LSL”, “*Query LCPP", “Query TROM” and “Query
SCS” as shown in Figure 52. Depending on the user’s preference, the respective Query
windows appears as shown in Figures 53, 54, 55, 56. When the user chooses certain
search criteria and click *Apply”. the query is processed and the resuits are displayed

in the Query Result(s) window.

~

Figure 53: Query LSL Traits Window

7.1.3.12 Exit

When the user chooses to “Exit”, the EXIT window appears with 2 choices as shown
in Figure 57. If the user chooses “Exit VISTA", the VISTA quits or if the user chooses
“Exit to TROMLAB", VISTA takes you to the TROMLAB GUI.

111

PINCLLIDE S |

@ *.“'“' e P A
& > %

Figure 54: Query By Includes for LSL Traits

4 | N . N
E ;.l)un*lv LOPE Speciticahon

Figure 56: Query TROM Window

112

Figure 57: Exit VISTA Window

7.1.3.13 Help

A textual help is provided based on the context of the “Help” button clicked. For
example, if the *Help” button is clicked from a LSL Editor Window, a sample trait
would be provided with textual description of the Larch trait specification. A sample

help window is shown in Figure 58.

7.2 Java Classes

Each of the implemented Java classes of VISTA are designed in such a way that
they are independent of each other and can be reused or extended in a another
class and modified easily. The java files are located under “VISTA-Java” directory.
The documentation and the java class hierarchy created by “javadoc” utility in the
*HTML"” format are under *VISTA-Java/DOC”.

e Vista.java - Main class file for VISTA. [L calls “Files”, the “Query”, “ExitSys”
classes and invokes a C++ compiler such as “g++" in a Solaris operating sys-

tem.

e Files.java - Handles file events for the LSL, LCPP, TROM and Subsystem com-

ponents

o LSLFiles.java - Manages LSL files under Library and Versions and calls “LSLFilesLib”

and “LSLFilesVer” classes

o FileViewer.java - Provides a file inspection viewer super class for all the TROM-

LAB components and LCPP files in their respective templates.

113

A

VIGTA Help Window

v SRk

Larch is a property-oriented specification language. It uses a two-tiered :
approach to formal specifications. The firsttier, using Larch Shared Languagg
independent specifications defining the structure and behavior of abstract datg
pes and general theories of objects. Each unit of LSL specification is called §
rait. Atrait specifies either a data type or any theory to be combined with a dat v
pe. The second tier, using Larch Interface Languages (LIL), provides .
specifications of the components of a software system. The interface languagg
is particular to the programming language used for the software system and ‘
defines the interfaces of the components of the system. The traits in the LSL §
ier can be referred in the interface tier. An LSL traitis written in the equational 8
algebraic style. Each equation is an axiom in first order predicate logic. The
interface specifications are written using pre- and post-conditions in a style
similar to a VDM specification.
SymTab: trait
introduces
emp: -> S

Figure 58: Help Window

114

LCPPFiles.java - Manages LCPP files under Library and Versions and calls
“LCPPFilesLib” and “LCPPFilesVer” classes

LSLFilesLib.java - Provides dynamic directory listing of library files in a list

window with file manipulation operations

LSLFilesVer.java - Provides dynamic directory listing of version files in a list

window with file manipulation operations

LSLFileViewer.java - Provides the LSL template editor and the hypertext func-
tionality for browsing the hierarchies based on includes. assumes clauses. [t
calls “UpDatedb™ class to update the relationships of trait files (e.g. includes)

library or version files

LCPPFilesLib.java - Provides dynamic directory listing of library files in a list

window with file manipulation operations

LCPPFilesVer.java - Provides dynamic directory listing of version files in a list

window with file manipulation operations

LCPPFileViewer.java - Provides the LCPP template editor and the hypertext
functionality for browsing the hierarchies based on uses clause. [t calls “Up-
Datedb™ class to update the relationships of LCPP files with trait files and the

uses (e.g. includes) library or version files

Query.java - Handle Query events for the LSL, LCPP, TROM and Subsystem

components

QueryLSL.java - Displays and process query based on different search criteria

described in Chapter 6.

QueryLSLInclude.java - Handles query based on Includes relationship in LSL

traits

SCSFiles.java - Manages Subsystem files under SCS and Versions and calls
“SCSFilesLib™ and “SCSFilesVer” classes

SCSFilesScs.java - Provides dynamic directory listing of TROMLAB Subsystem

files in a list window with file manipulation operations

115

e SCSFilesVer.java - Provides dynamic directory listing of version files in a list

window with file manipulation operations

e SCSFileViewer.java - Provides the SCS template editor and the hypertext func-
tionality for browsing the hierarchies based on included LSL traits or TROM

classes

o TROMFiles.java - Manages Subsystem files under TROMs and Versions and
calls “TROMFilesLib” and “TROMFilesVer” classes

o TROMFilesTroms.java - Provides dynamic directory listing of TROM classes in

a list window with file manipulation operations

o TROMTFilesVer.java - Provides dynamiic directory listing of version files in a list

window with file manipulation operations

e TROMFileViewer.java - Provides the SCS template editor and the hypertext

functionality for browsing the hierarchies based on included LSL traits

e UpDatedb.java - Provides an update dialog window to add/delete a trait to the

database manager

e ExitSys.java - This class Quits VISTA or takes the user to the TROMLAB GUL

7.3 Implementation Issues

Two important implementation considerations became evident through the develop-
ment of the prototype. First, the components in the reuse repository evolve over
two time frameworks: (1) during the development of an application; and (2) during
the independent development of Larch components for various applications, not nec-
essarily confined to real-time reactive systems. The evolution of components in the
first category are handled by the update queries in the system. That is, the devel-
opers may invoke these query windows to save new components. Components of the
second kind may be added to the system manually. In either case, the relationship
among components will be computed after each update. Second, the system must be
evaluated from the experiences of people using the TROMLAB environment. For ex-

ample, slow response times, imprecise retrieval, and incomplete information retrieved

116

will lead developers lose faith in the system. They then would be reluctant to use
the search facility. A compromise would be to investigate more appropriate storage
schemas and migrate the reuse repository to the new data store. We caution that

our browser is not a general purpose reuse engine; it promotes reuse within a very

specific context.

117

Chapter 8
Conclusion

The major motivation for the thesis came from two directions: (1) to provide an
on-line facility to view, select and reuse LSL traits and LCPP specifications created
by the black-box reuse research (BBRS) group under the guidance of Dr. Alagar [4];
and (2) to provide an active reuse method for TROMLAB components. Since LSL and
LCPP are themselves components in TROMLAB, it was decided to build VISTA to
achieve both the objectives.

Very little research work has been reported in the reuse of real-time reactive system
components. [n general, very little reuse is possible with traditional design method-
ologies. The difficulties are mainly due to the complexity in designs. Modularity of
components is an essential aspect for reuse promotion. Designs lacking modularity,
compositionality, and specializations are hard to adapt for reuse in assembling large
systems. However, these are the foundational features of object-oriented (OQ) tech-
niques. Consequently, it becomes essential to integrate OO techniques with real-time
requirements. The work on TROM formalism [l] is one of the first attempts in this
direction. The advantages of combining real-time with OO, and the challenges it
poses in a smooth semantic integration are discussed in {l]. TROMLAB environment
promotes this integration in the design and development of real-time reactive systems,
and hence the components of TROMLAB are best suited for black-box reuse.

LSL, LCPP, TROM, and SCS components can be reused either individually or
collectively in constructing a real-time reactive systems. VISTA provides some limited
support for white-box reuse as well. For example, LSL traits from the repository can

be reused in either a black-box fashion or can be modified, type checked, and then

118

included in a design. Similarly, a TROM class can be reused in different ways:

with no change
developing new classes consistent with the three types of inheritance

instantiating different objects from it, and using the objects in one or more

subsystems

Note that when time constraints are modified, even if changes are certified to be

syntactically correct by the Interpreter, both simulator and verifier should be invoked

to analyze the complete behavior of the system in which it is a component. The
TROMLAB GUI should be used for such purposes.

The contributions of this research are:

L.

o

1.

We have brought out the significant advantages of black-box reuse, both in its

technical and managerial perspectives.

We have proposed a simple approach for the integration of a hypertext-based
navigation with a repository of UNIX directories of files for black-box reuse of

TROMLAB components.

We have shown that repository components can be inspected, edited, composed

integrated with a versioning mechanism during the process of reuse.

VISTA is implemented in Java and is ready for integration with TROMLAB.

Some of the future research directions are:

Application of VISTA during the entire Software Life Cycle
Enhance VISTA to trace dependencies between objects/components at any phase

Apply heterogeneous database technologies for efficient retrieval and manipula-

tion of objects/components in VISTA

Create/Integrate an automatic Larch formal specification-based testing tool(s)
in VISTA

Apply this work in a real industry to study the benefits and challenges of Soft-

ware reuse

119

Among these the challenging direction of further research is the integration of het-
erogeneous database technologies with Computer-Aided Software Engineering (CASE)
environment for automating the different phases of reuse process. This is the natural
step to take when TROMLAB is used by a large community of researchers for the

development of large real-time reactive systems.

Bibliography

(1]

(5]

[6]

R. Achuthan, A Formal Model for Object-Oriented Development of Real-Time
Reactive Systems,” Ph.D. Thesis, Department of Computer Science, Concordia

University, Montreal, Canada, 1995.

V.S. Alagar. R. Achuthan. D. Muthiayen, *“TROMLABL.” ACM TOSEM (re-

vised version) September 1998.

V.S. Alagar, R. Achuthan, D. Muthiayen, “Animating Real-Time Reactive Sys-
tems.” In Proceedings of Second [EEFE [nternational Conference on Engineering
Complex Computer Systems, [CECCS '96, Montreal, Canada, October 1996.

V.S. Alagar, P. Colagrosso, A. Loukas, S. Narayanan, and A. Protopsaltou.
“Formal Specifications for Effective Black-Box Reuse”, Technical Reports (2
volumes), Department of Computer Science, Concordia University, Montreal,

Canada, February 1996.

V.S. Alagar, P. Colagrosso, A. Celer, [. Umansky, R. Achuthan, Formal Specifi-
cations for Effective Black-Boxr Reuse: Phase [Progress Report, Department of

Computer Science, Concordia University, Montreal, Canada, September 1994.

C.L. Braun, "Reuse, in Encyclopedia of Software Engineering’ J. Marciniak (ed),
John Wiley and Sons, 1066-1069 (1994).

A. Celer, Role of Formal Specifications in Black-Bor Testing of Object-Oriented
Software, Master of Computer Science Thesis, Department of Computer Sci-

ence, Concordia University, Montreal, Canada 1995.

P.S. Chen, R. Hennicker, and M. Jarke, “On the Retrieval of Reusable Software
Components,” In Advances in Software Reuse, IEEE Computer Society Press,
Los Alamitos, California, 1993, pp. 99-108.

121

[9] P. Colagrosso, “Formal Specification of C++ class Interfaces for Software
Reuse,” M.Comp.Sci. Thesis, Department of Computer Science, Concordia Uni-

versity, Montreal, Canada, 1993.

[t0] T.H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction To Algorithms,
MIT Press, 1991.

[11] W. Frakes and S. [soda, ‘Success Factors for Systematic Reuse’ IEEE Software,
15-19 September (1994)

[12] W.B. Frakes, and P.B. Gandel, “Representing Reusable Software”, Inf. Softw.
Tech.. 32, 10, 1990, pp. 653-664.

[13] J.E. Gaffney and R.D. Gruickshank, ‘A General Economics Model of Software
Reuse’ Proceedings of l:tth International Conference on Software Engineering,
IEEE Computer Society Press, Los Alamitos. CA, 327-337 (1992).

[14] E. Guerrieri, *Case Study: Digital’s Application Generator’' [EEE Software,
95-96 September (1994).

[15] J.V. Guttag, and J.J. Horning, Larch: Languages and Tools for Formal Speci-
fication, Springer-Verlag, 1993.

[16] G. Haidar. “Simulated Reasoning and Debugging of TROMLAB Environment,”
Master of Computer Science Thesis, Department of Computer Science, Concor-

dia University, Montreal, Canada, (Expected: Winter 1999).

[17] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M.Politi, R. Sherman, A. Htull-
Trauring, M. Trakhtenbrot, *STATEMATE: A Working Environment for the
Development of Complex Reactive Systems,” [EEE Transactions on Software
Engineering, Vol. 16. No. 4, April 1990, pp. 403-414.

(18] T. [sakowitz and R. Kauffman, “Supporting Search for Reusable Objects,”,
[EEFE Transactions on Software Engineering, Vol. 22, No. 6, June 1996.

[19] R. Joos, "Software Reuse at Motorola’ IEEE Software, 42-47, September (1994).

[20] K.R. Koedinger and J.R. Anderson, “Abstract Planing and Perceptual Chunks:
Elements of Expertise in Geometry,” Cognitive Science, Vol. 12, No.4, December
1990. pp. 511-550.

[21]

[22]

23]

(24

(25

[26)

[27]

[29]

[30]

T. Korson and J.D. McGregor, ‘Technical Criteria for the Specification and
Evaluation of Object-Oriented Libraries’ Software Engineering Journal, March
(1992).

G.T. Leavens, Larch/C++ Reference Manual, Draft: Revision 5.1, February
1997.

W.C. Lim, ‘Effects of Reuse on Quality, Productivity and Economics’ [EEE
Software, 11, 23-30 (1994).

G. Leavens. Y. Cheon. 4 Quick Overview of Larch/C++, TR No. 93-18, De-

partment of Computer Science, lowa State University, June (1993).

G.T.Leavens and Y.Cheon, “Preliminary Design of Larch/C++.” in U.Martin
and J.Wing (Eds.), Proceedings of the Firsi International Workshop on Larch,

Workshops in Computer Science Series, Springer-Verlag, 1992,

M.D. Mcllroy. *Mass Produced Software Components, [n Software Engineering:
Report on a Conference by the NATO Science Committee (Garmish, Germany)’
P. Naur, D. Randell, EAS. NATO Scientific Affairs Division. 138-150, Brussels,
Belgium (1963).

L. Mikusiak, V. Vojtek, J. Hasaralejko, J. Hanselova, *Z- Browser - Tool for
Visualisation of Z Specifications.” Technical Report, Department of Computer

Science and Software Engineering.

LE. Moser. Y.S. Ramakrishna, G. Kutty, P.M. Melliar-smith, and L.K. Dillon.
*A Graphical Environment for the Design of Concurrent Real-Time Systems,’
ACM TOSEM, Vol. 6, No. 1, January 1997, pp. 31-79.

M.J. Morin, B.H.C. Cheng, “User Manual for Larch Development Environ-
ment.” Technical Report, Department of Computer Science, Michigan State
University, East Lansing, MI 48824, 1994.

D. Muthiayen, “Animation and Formal Verification of Real-Time Reactive Sys-
tems in an Object-Oriented Environment,” Master of Computer Science The-
sis, Department of Computer Science, Concordia University, Montreal, Canada,
1996.

123

(31] S. Narayanan, “Formal Methods For Reuse Of Design Patterns And Micro-

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

o]

[+1]

[42]

Architectures,” Master of Computer Science Thesis, Department of Computer

Science, Concordia University, Montreal, Canada, 1996.

S. Owre, J. M. Rushby. and N. Shankar, “PVS: A Prototype Verification Sys-
tem,” Proceedings of |Ith International Conference on Automated Deduction,
CADE 1992, Vol. 607 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
. pp. T48-7T52.

R. Prieto-Diaz, *“Implementing Faceted Classification for Software Reuse.”
Communications of ACM, Vol. 34, No. 6, May 1991, pp. 89-97.

UML Notation Guide, Version 1.1, Rational Software Corporation, September
1997.

UML Semantics, Version 1.1, Rational Software Corporation, September 1997.
Rogue Wave. Tools.h++ Class Library, Version 6.0, Rogue Wave Software, 1993.

G. Salton and M. G. McGill, Introduction to Modern Information Retrieval,
McGraw Hill, New York, 1983.

B. Selic, G. Gulleckson, and P. T. Ward. Real-Time Object-Oriented Modeling.
Wiley. 1994.

R. Sessions, "The System Object Model (SOM): A Technology for Language
[ndependent Objects’ Tutorial Notes, OOPSLA (1993).

V. Srinivasan. *An Intelligent Graphical User Interface System for TROM-
LAB,” Master of Computer Science Thesis, Department of Computer Science,
Concordia University, Montreal, Canada, (Expected: Winter 1999).

A. Tao, “Static Analyzer: A Design Tool for TROM,” Master of Computer Sci-
ence Thesis, Department of Computer Science, Concordia University, Montreal,
Canada, 1996.

[. Umansky, “Completeness of Larch/C++ Specifications for Black-Box Reuse,”
Master of Computer Science Thesis, Department of Computer Science, Concor-
dia University, Montreal, Canada, 1995.

124

[43] J. Wing, “A Two-Tiered Approach for Specifying Programs,” Technical Re-
port TR_299, Massachussets Institute of Technology, Laboratory for Computer
Science, 1983.

[44] J. Wing, “Writing Larch Interface Language Specifications,” ACM Transactions
on Programming Languages and Systems, Vol.9, No.1, January 1987, pp. 1-24.

[45] J. Wing, “A Specifier’s Introduction to Formal Methods,” [EEE Computer,
Vol.23, No.9, September 1990, pp. 8-24.

125

