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ABSTRACT

Three Dimensional Aero-Structural Shape Optimization of Turbomachinery Blades

Vadivel Kumaran Sivashanmugam

Aero-structural optimization of gas turbine blades is a very challenging

task, given e.g. three dimensional nature of the flow, stringent performance require-

ments, structural and manufacturing considerations, etc. The current research work

addresses this challenge by development and implementation of structural shape op-

timization module and integrating it with an aerodynamic shape optimization mod-

ule to form an automated aero-structural optimization procedure. The optimizer

combines a Multi-Objective Genetic Algorithm (MOGA), with a Response Surface

Approximation (RSA) of the Artificial Neural Network (ANN) type. During the

optimization process, each objective function and constraint is approximated by an

individual ANN, which is trained and tested using an aerodynamic as well as a struc-

ture database composed of a few high fidelity flow simulations (CFD) and struc-

ture analysis (CSD) that are obtained using ANSYS Workbench 11.0. Addition

of this multiple ANN technique to the optimizer greatly improves the accuracy of

the RSA, provides control over handling different design variables and disciplines.

The described methodology is then applied to the aero-structural optimization of the

E/TU-3 turbine blade row and stage at design conditions to improve the aerodynamic

and structural performance of the turbomachinery blades by optimizing the stacking

curve. The proposed methodology proved quite successful, flexible and practical with

significant increase in stage efficiency and decrease in equivalent stress.
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Chapter 1

Introduction

Optimization of physical systems for better performance has always been a quest,

mainly fueled by competitive aerospace environments. This undying quest gives the

necessary impetus for aerospace design and development. These developments are

amply supported by the enormous progress made in the computational technology in

recent years and the use of computer-based simulations of complex physical models

to design the engineering systems. In the face of highly competitive economic and

design environments, reducing the operating and maintenance cost of the gas turbine

engines are the primary focus of the designers apart from other design considerations

such as developing newer materials for high temperature applications, environmen-

tal factors etc. These needs and technology advancements pushes the designers to

venture into highly unconventional design methodologies which results better overall

performance at all operating conditions. Further, the developments in computational

fluid dynamics (CFD) and finite element methods (FEM) reached to a certain level of

maturity, were the industries have integrated these high fidelity tools in their design

cycle to understand the intricate physical performance behaviors of the systems such

as compressors and turbines.

Continuous improvements in efficiency, safety, reliability, manufacturing
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processes of gas turbine engines have been made in the past decade but the need for

improvements in the areas such as noise, cost, power, efficiency and weight still exists;

such are essential for companies to maintain the competitive edge in the aerospace

market. Design requirements are also constantly evolving with time in addition to

the constant motivation to decrease the design cycle time. For example, design re-

quirements such as higher efficiency and longer life for the turbine blades requires,

higher turbine inlet temperature and lower operating stress during normal operating

conditions, which are contradictory in nature. Each new requirements are specific

to a particular design condition and during the design process, improvements in one

discipline reduces the effectiveness of the other. Moreover the design of turbomachin-

ery blades are inherently highly multi-disciplinary, which involves multiple objectives

and constraints related to different disciplines. Trade offs among the design parame-

ters of different disciplines always considered depending on their relative merits and

demerits and also based on the design requirements. Therefore development of multi-

disciplinary optimization tools which involve of different disciplines and corresponding

design variables is an effective way to address complex design problems such as tur-

bomachinery shape optimization. Aerospace systems are highly complex in nature

and always there exists a need to reduce the weight and improve the performance

of at least one system. Application of evolutionary optimization techniques for the

aerospace systems design are discussed by Kroo [8] and recent developments in the

multidisciplinary optimization are summarized by Sobieszczanski-Sobieski et al. [9].

1.1. Turbomachinery optimization

In the case of gas turbine engines, the operating conditions of a the turbine stage

varies with respect to their positioning from the combustion chamber and the type

of engine etc. Usually turbine blades are designed to operate at a specific design
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condition which is known as the design point.

Traditionally, the design of turbine blades begins with aerodynamic design

of the blade shape, primarily focused to get higher efficiency and lower aerodynamic

losses. Then the mechanical analysis is done on the same geometry to check whether

the blades withstand the stress levels during its operating life and the natural fre-

quency levels without interfering with other component frequencies. If the mechanical

conditions are not satisfied then the blade is redesigned with additional constraints.

Inclusion of aerodynamic, structural and thermal disciplines in the conventional de-

sign cycle makes the iterative process more costly in terms of time and computational

resources. Hence, an umpteen number of researchers are working in developing the

tools for multidisciplinary optimization(MDO) of turbomachinery blades and reduc-

ing the design cycle time. Following are some of the notable research areas in this

regard:

1. Effective and accurate representation of blade profiles with less number of design

variables (or Blade parameterization)

2. Faster and more accurate high fidelity analysis tool for CFD and FEM (Ex.

ANSYS CFX, FLUENT, Mechanical, in-house tools (mainly in industries) etc)

3. Robust global, local or combination of both optimization methods (Examples

of global algorithms are Genetic Algorithm (GA), Simulated Annealing (SA)

etc)

4. Developing or modifying the metamodels to approximate the objective function

and constraints with lesser prediction errors (Ex. Artificial Neural Networks

(ANN), Radial Basis Function (RBF) etc)

5. Integration and variable handling of various disciplines during the optimization

cycle
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6. Increasing the robustness and accuracy of the tools without sacrificing the op-

timization cycle time (e.g. using data mining techniques, etc)

Need for Response surface models (RSM) in turbomachinery optimization

Use of high fidelity computational analysis tools (CFD and FEM) in the optimization

process increases the design cycle time to a prohibitively large extent, mainly due to

the time taken to solve the Navier Stokes equations in the complete flow domain and

finite element models to solve the solid models. In this case, low fidelity response

surface models (RSM) come handy and are used as a low cost (but also low fidelity)

substitute for the high fidelity models in the optimization process because of their

advantage in reducing the design cycle time and exploring the complete design space

with minimal computational cost. ANN, RBF, Kriging are some examples of RSMs.

Selection of RSM is highly problem-dependent. It varies depending on the

number of input design variables, dimensionality of the given problem, output vari-

ables, availability of high fidelity database, model accuracy or order of the prediction

error, integration with other disciplines, variable handling etc.

1.1.1 Previous investigations

Coupling multiple disciplines with optimization algorithms to create new designs or

to redesign existing geometries for increased performance is a complex and involved

design process. Different optimization techniques like gradient based methods (such

as sequential Quadratic programming (SQP)), Global optimization techniques (GA,

SA etc) or the combination of both are used depending on the problem at hand.

Right choice of optimization algorithm is an important pre-requisite to achieve a true

optimum shape at the end of the optimization process.

However, the inherent nonlinearities, multimodalities (or presence of many

4



local minima in the design space) that exist in the aero-structural shape optimiza-

tion can be effectively handled by global optimizers such as GA rather than gradient

based methods (although these algorithms are computationally more expensive than

gradient methods). Many researchers have applied this type of methodology in tur-

bomachinery optimization, see [5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

Structural optimization is not a new topic in the field of aerospace due to its

integral nature in the design of aircraft, gas turbine engines and in other important

systems. Finite element based structural shape optimization survey was done by

Haftka et al. [20] and Ding [21]. Structural optimization of turbomachinery blades

mainly focused on maximizing or minimizing the blade fundamental frequencies of

a low pressure compressor blade and hollow turbine blade was done by Frischbier

[22]. Finite element software SAMCEF used to minimize the first bending mode

frequency by sizing the thickness with constraints on the mass, second bending mode

and first torsional mode frequencies. The blade was modeled using plate elements and

thickness of the plate elements are considered as design variables (51 design variables

in total) to represent the blade configuration [22]. Finite element tools SAMCEF

and RASNA/MECHANICA were employed to maximize the frequency of the hollow

turbine blade modeled with solid elements. A 7.4% increase in fundamental mode

was achieved at the end of optimization.

Doorly et al. [23] proposed an optimization methodology which combines

parallel GA, aerodynamic and structural analysis tools to maximize the performance

of 2D airfoil, and aircraft wing. A simple beam model was used to represent the

wing of an aircraft for structural analysis. Martin et al. [24] developed an efficient

constrained hybrid aero-structural optimization methodology to optimize the turbine

blade 2D profiles. Improvements in aerodynamic and thermal performance of the

airfoil were taken as the objectives. Complete profile of an airfoil, thickness of the
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thermal coatings, coolant flow passages, internal strut shapes and locations are opti-

mized during the process. Combination of David - Fletcher - Powell (DFP), Gradient

search, GA, Nelder Mead (NM) simplex method and SA forms a hybrid algorithm in

this case [24].

Tappeta et al. [25] studied the applicability of Concurrent SubSpace Op-

timization (CSSO) (which is a type of MDO methodology) for high temperature air-

craft engine components. The cooled turbine blade was approximately modeled as a

stepped cantilever box in the commercial multi physics software NASTRAN. Uniform

external pressure load with equal magnitude applied on all the sides, and the opti-

mization of the blade was carried out using the iSIGHT optimization software with

weight minimization as the objective while constraining the stress and frequencies.

Talya et al. [26] and Rajadas et al. [27] applied multidisciplinary opti-

mization (MDO) to optimize the shape of a generic 3D turbine blade by consider-

ing aerodynamic, heat transfer, structural and modal objectives. The blade surface

was represented by Bezier-Bernstein polynomials and the constrained multi-objective

optimization problem was solved with Kreisselmeier-Steinhauser (K-S) method. A

combination of 3D Navier-Stokes equations and finite element software (ANSYS) was

used to solve the blade aerodynamic and thermal performance. The maximum blade

temperature, average blade temperature and blade weight were considered as the ob-

jectives with constraints imposed from aerodynamic, modal, structural and geometric

domains.

Optimization of steam turbine stage was done by Rolf Dornberger et al.

[28] using multi-objective Pareto optimization and 3D CFD solver. Main objective of

the work was to minimize the stage aerodynamic losses by varying the rotor and stator

lean and sweep. From turbine stage parameterization 8 controlling parameters were

used as design variables to represent the blades. For multi disciplinary optimization,

other disciplines like mechanical integrity and cost analysis were calculated in parallel
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or after the CFD solver process.

An aerodynamic optimization of axial turbines and compressors were done

by Pierret et al. [29] using FINE/Design3D (Commercial CFD package developed

and marketed by NUMECA). Optimization process incorporates blade modeler tool

(Autoblade), NUMECA CFD and a mesh generator, GA, ANN etc, the interconnec-

tion of multiple tools is handled by FINE/Design3D. A single objective aerodynamic

shape optimization was also done by the same author to minimize the loss coefficient

with several mechanical, aerodynamic and manufacturing constraints. To maximize

the high pressure turbine blade efficiency, stacking and lean were considered as design

variables and in the case of transonic compressor blade (NASA rotor 37), maximiz-

ing the adiabatic efficiency was achieved by decreasing the shock strength. Strong

mechanical constraints were imposed on the compressor due to their critical nature

in lean (due to thinner construction leaning of the blade induces large stresses).

Dirk Buc̈he et al. [30] coupled evolutionary strategy based optimization

algorithm with simplified beam model (mechanical integrity analysis), Q3D flow anal-

ysis and a Bezier curve based blade parameterization scheme to optimize a subsonic

industrial gas turbine compressor. 2D sections of the blade are stacked in the third

direction (spanwise) and each section was defined by a Bezier curve. A total of 27

design variables were selected to optimize the compressor blade. The objective func-

tion aggregates the aerodynamic and structural discipline objectives including the

constraints into a single merit function. Improvements in aerodynamic performance

were observed in terms of reduction in aerodynamic losses and increased operating

range.

Choon Man Jang et al. [31, 32, 33] proposed a methodology which combines

polynomial based RSMs and 3D thin layer Navier-Stokes equations to optimize the

transonic axial compressor blade. Geometric parameters that controls the lean, sweep

and skewness of the blade were considered as the design variables. The main objective
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of the optimization was to maximize the adiabatic efficiency by decreasing the shock

strength at the design point.

Pierret et al. [14, 16] applied GA and Radial Basis Function (RBF) based

aero-structural optimization framework to optimize Rotor 67 compressor blades. Fi-

nite element structural mechanics software SAMCEF was used to predict the static

stresses and modal frequencies. A Navier-Stokes solver was used to calculate the

aerodynamic performance. A RBF-based RSM was integrated with FEM and CFD

solvers to get an automated optimization tool. Maximizing the efficiency at mul-

tiple operating points was considered as an optimization objective with constraints

imposed on von Mises stress, modal frequencies, mass flow rates and pressure ratios.

The overall improvement in aerodynamic efficiency was achieved with an increased

operating range.

A harmonic perturbation-based blade optimization was proposed by Li

et al.[34], and the methodology was employed to optimize the aero-thermal perfor-

mance of the Rotor 67 simultaneously by applying mechanical and aero-mechanical

constraints. Aerodynamic efficiency at the design mass flow rate were used as an ob-

jective with blade displacement, mass flow rate, pressure ratio, maximum static stress

and flutter safe aerodynamic damping were imposed as constraints. An improvement

of 0.4% in thermal efficiency was noted but a notable 33% increase in static stress

were achieved at the end of optimization process.

A GA based multi-objective optimization was applied to minimize the man-

ufacturing cost and volume of the 2D high pressure turbine disk by Rao et al. [35].

Disk stress and fatigue life (number of cycles) were considered as constraints and the

parameters controlling the shape of the disk were considered as design variables. A

generic manufacturing cost modeling tool DECISIONPRO along with Finite element

structural solver SC03 (Rolls Royce PLC) were used to estimate the objectives and

constraints during the optimization process.
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An automated GA and neural network-based structural optimization al-

gorithm was proposed by Dominique et al. [36] for preliminary design of gas turbine

rotor disc. The main objective of this method is to minimize the weight of the rotor

disc with aerodynamic and stresses are constrained. The goal of the proposed method

was to provide the best possible starting solution to the designer to start the new

designs in a shorter time. Geometric parameters which control the disc shape, are

used as design variables and a sensitivity analysis of the design variables is used to

decide on the design variables that should be kept.

Frederic et al. [37] developed a fully automated aero-mechanical MDO

tool box, which was then applied to optimize the high pressure compressor (HPC)

stage so as to improve the aerodynamic performance by applying mechanical and

geometric constraints. The optimization tool contains a Non Uniform Rational B-

Splines (NURBS) parametrization scheme and an ANN response surface approxima-

tion model to create more efficient models and to approximate the error functions

better.

Ashakiran et al. [38] proposed a GA and ANN based multi-disciplinary

optimization methodology to improve the performance of an axial turbine stage.

Commercial CFD tool NUMECA was used to analyze the complete flow domain

and ANSYS Mechanical was used to analyze the blisk and rotor stresses during the

optimization. Parameters like blade stagger angle, rotor tip clearance along with blisk

geometric variables were taken as optimization design variables.

A differential evolution based optimization algorithm in combination with

a NURBS parameterization scheme were developed and applied to optimize Rotor

37 by Luo et al. [18]. Panchenko et al. [39] presented an optimization tool box for

the design of small aircraft engines during the preliminary design stage. Interactions

between the disciplines and influential geometry tools which control the engine cross

sections were also explained.
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Arabnia et al. [5, 19] presented an optimization process which combines

GA, ANN with CFD flow solver to improve the E/TU-3 turbine stage aerodynamic

performance. The blade stacking line is parameterized using a QRBC and the param-

eters which control the blade shape like lean, sweep and bowing intensity are taken

as the optimization design variables. Single- and multi-objective aerodynamic opti-

mization was carried out to maximize the aerodynamic efficiency and simultaneously

minimize the secondary losses.

1.1.2 Current work

The current work is an extension of the work done by Arabnia et al. [5, 19] to include

the structure discipline into the optimization. In Arabnia’s work, the blade geometry

is divided into several two dimensional sections at different radial locations and joined

with the stacking curve in the third direction. The stacking curve is parameterized

using a quadratic rational Bezier curve (QRBC), whose parameters are related to the

blade design variables used in the optimization such as the blade lean, sweep and

bow. The QRBC representation of the stacking curve results in a smooth curve with

continuous second order derivative, it can generate wide range of shapes without

violating any geometric constraints. The current optimization method combines a

genetic algorithm (GA) with Artificial Neural Networks (ANN). The main objectives

of the current work are,

1. Improving the approximation capability of the response surface model (RSM).

2. Developing a structural optimization methodology for turbine blades.

3. Integrating aerodynamic and structural disciplines in order to develop a three

dimensional aero-structural shape optimization algorithm for turbomachinery

blades.
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1.2. Thesis outline

The work done on this particular topic detailed in the following manner. Chapter −

1 gives the introduction to the topic, motivation, previous work done, scope and

organization of the thesis. The numerical optimization and computational design tools

used in this thesis i.e Artificial Neural Networks, Genetic Algorithm, ANSYS Fluent

and ANSYS Simulation are discussed in Chapter − 2. Optimization methodology

followed in the current work in addition to the blade parametrization scheme are

presented in Chapter−3. In Chapter−4, the current methodology applied to optimize

an existing turbine stage and turbine blade row, namely single point aero-structural

optimization of the E/TU-3 turbine stage and turbine blade row are presented in

detail. The last chapter summarizes the findings and concludes the thesis, it presents

also some of the challenges that need to be addressed, and some recommendations

for future work.
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Chapter 2

Numerical Implementation

2.1. Introduction

The main components of any shape optimization procedure are:

1. Blade shape parameterization

2. Numerical optimization algorithm and

3. Objective function computation

These components can be applied manually or they can be integrated into an auto-

mated shape optimization methodology by providing proper coupling between them.

The use of high fidelity simulation tools (Navier-Stokes and Finite elements

methods) to compute the aerodynamic and structural objectives always comes with a

prohibitively large computing time. For this reason, Response Surface Approximation

(RSA) is an important element in the design process so as to reduce the optimization

cycle time by providing a good approximation of objectives and constraints.

This chapter focuses mainly on presenting the numerical optimization meth-

ods that were used namely GA and RSA to approximate the output variables. It also

outlines the high fidelity tools that were used to predict the flow field properties and
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stress contours so as to compute an accurate value of the objective function and the

constraints.

2.2. Numerical Optimization

Numerical optimization schemes are categorized into two broad classes:

• Gradient based and

• Non-gradient based or Stochastic schemes or Evolutionary based

2.2.1 Gradient Optimization

Gradient based optimization schemes are fast and needs relatively small number of

function evaluations when compared with non-gradient based schemes. However they

are local optimizers and will probably stop at the first optimum obtained during the

search process. This method will outperform almost all other numerical optimization

schemes while solving continuous, unimodal problems but it is not suitable when

searching for global optimum in a multi-modal optimization problem [40].

The most popular and common gradient based algorithm is the sequential

quadratic programming (SQP). The SQP method works very well and relatively fast

for the problems that do not have multi modal extrema. This issue could be addressed

to a certain extent by starting the optimization process from different points however

the final optimum may not be the global optimum; this ultimately increases the

optimization cycle time.

Coupling of the gradient method with global stochastic search schemes is

an idea found to perform well in many cases [41, 42]. Gradient and non-gradient

schemes were tested for different cases of multi-modal problems and for the aero-

structural optimization.
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2.2.2 Non-Gradient or Direct Optimization Methods

Global optimizers such as GA and SA are found to perform best in most cases due to

their robust and random nature of search but with a relatively high computing cost.

The high computing cost involved in calculating the objectives can be greatly reduced

by approximating the objective functions using RSA, hence taking advantage of their

global optimization behavior.

For the current work, combination of GA and ANN used as an optimizer

and back propagation based neural networks (BPNN) used to build the response

surface model. The basic GA and ANN tools which are used in this work, were

originally implemented by Mengistu [43]. Extensive work has been done on the basic

ANN improve the robustness, multi discipline and variable handling capability of the

ANN; this will be presented in detail in Sec. 3.4.

Genetic Algorithm

Genetic algorithms are increasingly used to handle aerodynamic, structural and mul-

tidisciplinary optimization problems [14, 16, 31, 32, 44, 45] in turbomachinery blade

designs. They provide a robust search mechanism to find the near global minimum

in a problem that contains many local minima.

Genetic algorithms are general purpose random search algorithms based on

the principles of evolution observed in nature. Genetic algorithms combine selection,

crossover, mutation and elitism operators with the goal of finding the best solution to

a particular problem. It searches for the optimal solution until a specified termination

criterion is met [46].

The representation of variables in the GA (the genes or chromosomes) can

be either binary coded or real coded. If the variable is continuous (i.e floating-point

number), it is more tedious to represent the variable with 0′s and 1′s and to get

the accurate results. A real coded genetic algorithm is used in this work and has the
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capability to handle floating point numbers with ease. Following are some advantages

of real coded GA over binary GA [46]

1. Less storage required due its use of single floating-point number to represent

the variable and

2. Faster because chromosomes need not be decoded prior to the evaluation of the

cost function.

These advantages plus the need to have more accurate results make the real coded

GA an ideal candidate for highly complex optimization problems like multidisciplinary

optimization of turbomachinery blades.

The basic operations that make up the genetic algorithm are selection,

crossover, mutation and elitism. Figure 2.1 gives the overview of the GA operation.

Population

The population size is the number of candidate solutions in one generation. The

larger the population size the more diverse it is but the search becomes computation-

ally more intensive. In nature, the bigger the gene pool the more diverse the genetic

makeup of the population with many individuals each with its own set of character-

istics that enable it to survive. One advantage of this diversity is that there will be

no dominant gene that may be susceptible to a particular disease and may result in

the elimination of the whole species in certain circumstances.

If the population size is small, then a strong individual quickly becomes

dominant and the diversity of the gene pool is reduced. The result is that good

individuals (local optima) are quickly created but the dominance of particular genes

restricts the search space.

GA is a global search technique, it is usually set to explore a given region

of the design space to maintain the balance between computing cost and effective
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optimization. This is effectively done by imposing constraints on the objectives and

specifying upper and lower bounds for the design variables. It should be noted that

enough diversity in the initial population should be given if the promising search

region (where the optimum solution lies) is not known a priori to the optimization

(most of the optimization problems fall in this category) [46]. Moreover the size of

the population should always be even.

For all new generations, the population size is kept constant by replacing

the old individuals with new ones. During each generation the candidates could be

completely replaced by their offspring, or as a new offspring is created, it could be

accepted or rejected depending on its fitness, which is based on the value of the

objective function. The use of computers helped to retain the good individuals for

indefinite reproduction without dying though which is not possible in nature. The

retention of certain fit individuals is known as elitism.

Selection

It is one of the critical parts in the GA operation and plays a major role in creating new

offsprings. This operation basically selects candidates (parents) on which crossover is

performed later to create new offspring. The offspring created from the parents will

have the favorable qualities of each parent and preferably better than the parents.

There are two commonly used selection procedures which are mainly driven

by fitness value:

1. Roulette wheel

2. Tournament selection

In roulette wheel, each individual is assigned a slice of a wheel. The size of

the slice is proportional to the fitness of the candidate. The wheel is then spun and

the individual having better fitness has a better chance of being selected.
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Tournament selection approach closely mimics the mating competition in

nature. From the main population, subset of individuals are selected in a random

manner and the best candidate is selected as a first parent, the second parent also

selected in the same approach. A large value for the subset indicates more elitist

selection and a small value corresponds to less fit parents. This makes the population

more diverse. Complete optimization strategy depends on retaining the best of the

two individuals selected. Harinck et al. [47] proposed two elite individuals, which is

more effective. Both tournament selection and roulette wheel are common for most

GA. Some of the facts regarding both methods are:

• In some cases roulette wheel selection method is slower than slower than the

tournament selection in reaching to the optimum

• Less fit individuals are given a chance to reproduce in the tournament selection

which provides more diversity to the population

• In the roulette wheel selection, elite individuals are always given more prefer-

ence. This makes the population less diverse

Crossover

Crossover is the main operator that is responsible in creating new candidate solutions,

even though mutation operator is also used for the same purpose sparingly [40]. The

main idea behind crossover is that the new chromosome may be better than both

of the parents if it takes the best traits from each of the parents and sometimes it

could even be better. Crossover occurs during the evolution process based on a user

definable crossover probability Pc. The typical range for Pc varies from 0.1 to 0.9

and in this work, Pc was maintained as 0.7. Two kinds of crossover operations are

available in the real coded GA, arithmetic and heuristic crossover operators.
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Arithmetic crossover is a linear combination of two parent chromosome

vectors to produce two new offspring’s given as:

Child1 = a ∗ Parent1 + (1− a) ∗ Parent2

Child2 = (1− a) ∗ Parent1 + a ∗ Parent2

Where ′a′ is the random number between 0 and 1.

Heuristic crossover operator uses fitness values of the best parent chro-

mosome and the worst parent chromosome to determine the search direction and to

create the new offspring. The following formulae are used create the offsprings:

Child1 = Bestparent1 + a ∗ (Bestparent−Worstparent)

Child2 = Bestparent

Where ′a′ is the random number between 0 and 1.

Mutation

Mutation is a generic operator that alters one or more gene values in a chromosome

from its initial state after the crossover operation. This can result in entirely new

chromosome values being added to the population and may result in a better solution

than was not previously possible. Mutation is important in the convergence process

to avoid GA being trapped in local minima and also prevents the chromosomes from

becoming too similar to each other, which ultimately slow down the evolution process.

It is controlled through a user defined mutation probability Pm and typically the value

of mutation should be kept as low as possible, in this case 0.15 used. Uniform type

mutation is used for the algorithms used in this work; it replaces the value of the

18



chosen gene with a uniform random value selected between the user-specified upper

and lower bounds for that gene.

Elitism

During the evolutionary process, the best individuals may be lost due to crossover and

mutation operations. To prevent this loss of valuable candidates, elitism operator is

introduced in many genetic algorithms. Generally elitism makes few identical copies

(e.g two) of the best performer in the old pool and places them in the new pool,

thus ensuring the survival of the fittest. It simply ensures that the fit solutions found

during the evolutionary process would remain within the population. In the current

work two (constant) elite candidates are moved to the next generation.

Following are the three stopping criteria for GA, if any one of them is

reached during the evolutionary process it will automatically stop.

1. If the best fitness in the current population becomes less than the specified

fitness threshold for the minimization problem

2. After reaching a predetermined maximum number of generations or

3. When the elapsed evolution time exceeds the specified maximum computing

time.

In summary, GA is an evolutionary optimization method. It does not use

gradient information during the process instead it uses function value, which makes

GA more computationally intensive than SQP (i.e it requires a larger number of

iterations). GA cannot be easily trapped in local minima or maxima due to crossover

and mutation operations, which makes it an ideal method to effectively handle multi-

modal optimization problems with several extrema multidisciplinary optimization of

turbomachinery blades.
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2.3. Response Surface Approximations (RSA)

Response surface function approximates the output of a given system as a function

of some input variables (design variables). This method is widely employed as an

inexpensive low order approximation of the objectives and constraints instead of the

more time consuming but accurate calculations using CFD and FEM simulations.

The initial approximations are achieved by fitting the system response for a number

of chosen combinations of the control variables (design points). The approximation

model can then be used inside the optimization loop to compute the objective function

in place of the original expensive high fidelity model; hence eliminating the associated

prohibitive computing time. In addition to the above mentioned advantages, the

approximation models can eliminate the computational noise which has a strong

adverse effect on numerical optimization techniques by creating some non-physical

local optima, see Lai and Yuan [48]. Some of the most commonly used approximation

methods are polynomial approximations and artificial neural networks (ANN). RSA

are more accurate when the number of design variables is small. However as the

number of design variables increases, these methods need more number of evaluations

to find a solution with reasonably acceptable accuracy levels. In the polynomial

approximation method, the response surface model is a polynomial of nth degree whose

coefficients are determined from a linear system of equations. The linear system is set

using least square minimization of the error between the polynomial and the actual

method.

2.3.1 Design of Experiments (DOE)

The selection of the sampling points for building an approximation model is cru-

cial and challenging. The prediction capabilities of the approximation function is
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highly influenced by the sampling points in the given design space. The latin hy-

percube based Design of experiments (DOE) techniques is so as to ensure that the

sampling points are evenly distributed over the design space. This method gives a

systematic and efficient means of analyzing the complete design space. It explores the

high-dimensional design space and screens the most influential design points corre-

sponding to the set of design variables. Quadratic model is widely used in polynomial

approximation scheme due to its flexibility and ease of use.

2.3.2 Artificial Neural Networks (ANN)

ANN is a very powerful interpolator that can be used to map functions with multiple

inputs/outputs. The concept of ANN has been widely used in most of the engineering

and scientific fields due to its proven efficiency in capturing the physics of complex

design analysis problems. Following are some of the notable applications of ANN

• Image processing

• Pattern recognition

• Medicine

• Military and aerospace system deign

• Artificial intelligence(in expert systems)

• Financial market forecasting and market analysis etc.

Researchers have used ANN-based approximation successfully for turbo-

machinery blade design optimization [5, 16, 19, 37, 45, 49]. Performance of ANN

and polynomial approximations were compared by Papilla et al. [50, 49] from as-

pects like computational effort, noise and handling of complex functions. Compare to
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polynomial based approximations, ANNs were found more suitable in handling multi-

dimensional interpolation of data that lacks structure, because of their flexibility in

functional form [51].

In the current work ANN is used as a low order RSA model to predict

the objective function and constraints at relatively low computing cost. ANN is a

mathematical model of a human brain. It is a network of multiple layers of simple

processing elements called neurons. Each neuron is linked to some of its neighbors

with varying coefficients of connectivity that represent the strengths of these con-

nections. Learning is accomplished by adjusting these strengths to cause the overall

network to output results for a certain set of inputs [52].

The most basic element of the human brain is a neuron (specific type of

cell), which provides us with the abilities to remember, think, and apply previous

experiences to each of our every actions. Each of these cells can connect with up to

2× 105 other neurons. Brain capacity to work effectively is a function of the number

of these basic components (neurons) and the interconnectivity between them [53].

General functionality of a biological neuron is to receive inputs from other

sources, combines them in some way, performs a generally nonlinear operation on

the result, and then provides its own output as the final result. Fig. 2.2 shows a

simplified biological neuron and the relationship of its four components.

The basis of ANN is to emulate the basic functions of natural neurons;

however it is much simpler than the biological neuron. Fig. 2.3 shows the basic

operation of each artificial neuron in ANN.

The basic building blocks of ANN are the artificial neurons which is anal-

ogous to the natural ones. The various inputs to each neuron are multiplied by its

connection weights and then their products are summed up. It is then fed to a transfer

function which could linear or non-linear (most of the times) to generate the output.

22



The following equation mimics the action of neuron network:

Y = f(I)

I = Σ(Wi ∗Xi)

Where the neuron output Y is a function of the weighted sum I of inputs / or the

input layer from the previous layer of neurons. Wi and Xi are the connection weights

and input variables respectively.

As the brain basically learns from its previous experiences, ANN also learns

from the given training data. It is sometimes called machine learning algorithms.

Change in connection weights (training) helps the network to approximate the design

space and to learn the solution for the particular problem. By adjusting its connection

weights Wi, the neural net acquires new knowledge using an optimization algorithm

which minimizes its error of prediction.

The ability of a neural network to learn the data set is determined by its

architecture and the algorithmic method chosen for training. These are generally two

kinds of training schemes [52]:

1. Unsupervised learning

2. Supervised learning

In unsupervised learning, the sample output is not provided and the net-

work learns from the given input data only. It will automatically find a way to

organize or cluster the data without seeing the outputs by capturing the patterns of

the inputs [52].

In supervised learning, the network provided with the input and output

sample data and it learns from that. This is method widely used and computationally

more effective compare to unsupervised learning. For current work supervised learning
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is employed.

Back propagation algorithm (BP) is a gradient based method that is proven

highly successful in training of multilayered neural nets using supervised learning. It

is believed based on a semi-theoretical proof that a feed-forward neural net (FFNN)

with at least one hidden layer can approximate any continuous nonlinear function

arbitrarily well, provided that sufficient numbers of hidden neurons are available [54].

A typical back propagation neural network (BPNN) has an input layer

with several neurons (depends on the number of design variables), one or more hidden

layers and an output layer. Each one of them are connected by adjustable weights

with values closer to ′0′ which enable the network to capture complex associations

between the input and output variables. Fig. 2.4 shows a typical neural net with one

input layer having four neurons or nodes, one hidden layer with several nodes and

one output layer with two nodes. The design of ANN involves two steps: a training

step followed by a testing step.

2.3.3 ANN training

ANN is response surface approximation method that is based on the notion of Arti-

ficial Intelligence (AI). The data set obtained from the DOE analysis is divided into

a training set and a testing set. ANN approximation model is obtained by training

it with some representative data (training set) and testing it with data that was not

a part of training set.

The ANN training involves finding an appropriate ANN model for a given

problem, i.e. determining the type of ANN network, its architecture, transfer func-

tions, learning rates and choosing a right training strategy. These choices depend on

the function being approximated, like the presence of local minima, high dimension-

ality, disparity in input scales, etc. ANN model and its results are highly dependent

on the training data set provided, it is necessary to ensure that the training data is
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not clustered around one part of the design domain. The diversity of the training set

should always be maintained to get a good prediction model.

The training algorithm in this work is a mainly gradient based back prop-

agation neural network but in some cases GA used to explore the design space for

optimum weights. The weights are initialized randomly at the start of each run and

gradient of error (different between ANN predicted and real outputs value) is added

with the weights for the epoch. During the ANN training process, the approximation

model first trained using the training set and then a validation set (testing set) is

given to gauge its effectiveness for the unknown data. The final approximation model

and corresponding weights are saved and are used for future experimentation and in

the optimizer.

The error is measured based on the maximum relative error or average

error or percentage of the exact prediction out of the total cases under consideration

at certain predefined accuracy. The error measures used in this work are explained

in Appendix A.

The steps in designing ANN model are:

• Choosing an appropriate structure: The multi-layer feed forward network is the

most popular, it is the hierarchy of processing units, organized in a series of two

or more mutually exclusive set of neurons or layers [52]. The first is the input

layer which accepts input from the external. The last layer is the output layer

which returns the output of the neural net. One or more hidden layers placed

in between the input and output layers, where the computational process of the

network is concentrated. The inter connectivity between layers are established

by weights which connect each unit in one layer to those in the next layer.

• Training strategy : The complete training strategy is problem dependent. The

following factors must be given importance to get a right training strategy:
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– Order of training set

– Training algorithm convergence and divergence

– Trap at local minimum error

– Measure of error

• Setting and updating initial conditions for the weights : The weights are initial-

ized in a random manner and this is mainly depends on the characteristics of

the error surface. If the error surface changes rapidly, the gradient calculated

based on local information alone will give a poor indication of the right path

[55]. Learning rate value depends on the smoothness of the surface; a smaller

learning rate is a preferred for a surface which is not smooth. If the surface is

relatively smooth, a larger learning rate will speed convergence and it sometimes

causes oscillation. However the shape of the error surface is rarely available at

the beginning, thus a general rule might be to use a larger learning rate that

works and does not cause any oscillations. Learning rates are problem depen-

dent and basically fixed by trial and error method by varying the values from

its lower bound to upper bound. It also depends on the transfer function and

training data sets. Proper initialization of the weights overcomes local mini-

mum and make the training more efficient [56] but the weights are initialized in

a random manner when using the BPNN so it is mandatory to run the BPNN

multiple times to get the right weight combinations at the end.

• Choosing the number of hidden layers and units : The choice of the number

of hidden layers and units requires experience and engineering judgment. The

number of hidden nodes should be as low as possible for a good generalization.

When the number of hidden nodes increases larger then certain limit, it over

fits the function which makes the network brittle with less generalization capa-

bility. The number of hidden nodes is a function of number of inputs, transfer
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functions, number of hidden layers, and number of samples in the training set

etc. Trade-offs between training time and network accuracy lead to iterative

adjustment of the network using simulations. It is highly problem dependent.

It is vital to have right number of hidden nodes to get a good approximation

model which predicts the true optimum results.

2.3.4 ANN testing

The accuracy and generalization capability of the neural network is measured by ANN

testing. Generalization is the ability of the trained neural network model to predict

the outputs for an input data which is not a part of training set. Practically, there is

always been a trade off involved between a model which generalizes well and robust,

and the one which is more accurate but brittle. The main aim of the ANN training

and testing is to get a model which generalizes the new and unforseen inputs well

with some degree of accuracy.

During the training process, a decreasing trend in error is not an indication

of the better model because the ANN units could memorize the I/O data of the train

set without any generalization capability. Due to this reason, the optimum stopping

point of the training is determined by the test set which is not a part of train data

set. The training of the neural network has to be stopped at the point where the

training and testing error is minimum and within acceptable error limits, sample

graph is shown in Fig. 2.5. When the neural network is overtrained, it results

more accurate and brittle model with fitting more points in the training set but the

generalization capability of the network vanishes [57]. Overtrained (or overfitted)

model also captures the noise in the training set which reflects in the subsequent

outputs as shown in the Fig. 2.6.

BPNN is most commonly used ANN method in many practical applica-

tions. In this method, supervised learning strategy is coupled with the ANN topology.
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During the ANN training, the difference (or error) between the neural network out-

put and actual output is estimated and propagated back through the neural network.

ANN training process shown as a flowchart in Fig. 2.7. This algorithm basically

works on the ’Delta rule’ principle, which is basically reducing the difference between

the actual and neural output by continuously varying the strength of the connection

weights from input towards output. This rule changes the connection weights in such

a way that the errors measures like, average relative error, root mean square, corre-

lation, R square etc to decrease. The back propagation of errors starts from the last

layer and progresses towards the input layer, updating each layer at a time until it

reaches the first layer. The name of the method feed forward back propagation neural

networks basically derived from the way in which error term is computed.

Data for the training set given in the following formats, input/target data

[X,T ] = {(x1, t1), (x2, t2), ...., (xn, tn)} (2.1)

n denotes the number of training set provided.

The basic steps in designing a back propagation based ANN described as

follows:

1. Number of input and output variables of the neural network decided based on

the problem at hand.

2. Number of hidden layers (most of the problems could be solved with a single

hidden layer-universal model) required to solve the problem.

3. Number of hidden nodes required to generalize the design space and transfer

function.

4. Connection weights are randomly generated.

5. Input vector (set of design variables) is fed forward.
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6. The output of the given vector is calculated based on the Eq. 2.1 that mimics

the actual neuron behavior by provide weights for each input, summing up and

passing it through the specific transfer function.

7. The error of the network is estimated by calculating the difference between the

actual and neural net outputs.

8. Then the network minimizes the error by a methodological training process

based on gradient based back propagation method.

ANN Error Estimation

Many practical optimization problems could be effectively modeled using a three layer

neural network. The first layer is an input layer, last being the output layer between

the two lies the hidden layer. The input to each layer (except first layer) given by the

weighted sum of outputs coming from the previous layers.

netj =
∑
i

wijxi (2.2)

i denotes the index for the node in the previous layer while j is the current layer.

The total output is obtained by applying the transfer function for the Eq.

2.2

Yj = ϕ(netj) = ϕ(
∑
i

WijXi) (2.3)

ϕ is called transfer or activation function. It could be any function that is used to

covert the activation input into an output. It should be continuously differentiable

and an analytic function. There are different type of transfer functions available

• Step function (to simulate binary decisions)

• Sigmoid function (for non linear, continuous and differentiable replacement for

step function)
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• Tan hyperbolic (same as above)

Sigmoid Function

This is one of the most used transfer function in the ANN training,

ϕ(x) =
1

1 + e−x
(2.4)

This is one of the robust activation function, due to its non-symmetric nature (Fig.

2.8), may take slightly longer time while training.

Tanh Function

ϕ(x) = tanh(x) =
ex − e−x

ex + e−x
(2.5)

The asymmetric nature of the function (Fig. 2.9) aides to improve the learning speed

[57]. This function is highly sensitive to the initial ANN weights.

The difference or error between the output of the neural net and target

output given by the equation 2.1 calculated as follows:

E =
1

2

∑
i

(ti − oi)2 (2.6)

E = Sum of squared errors

t = Target output

o = Neural net predicted output

The network weights are adjusted to minimize the error according to the

learning rule imposed in the algorithm which looks as follows:

Wi ←− Wi +4Wi,4Wi = −η ∂E
∂Wi

(2.7)
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∂E
∂Wi

is the gradient of error function with respect to the given connection

weights Wi, and4W is the change in connection weight with η as learning rate (takes

the values between 0 and 1). The learning rate value varies based on the nature of the

error surface (or problem dependent). The larger value for the learning rate speed up

the convergence but in most of the cases the information about the error surface in

not known prior so it is always better to start the training process with lower learning

rate.

Performance of the ANN model is measured from different aspects such as

accuracy, robustness, efficiency, transparency and conceptual simplicity [58]. Good-

ness of fit obtained from the training data doesn’t represent the accuracy of the model,

because of this reason test data set which is not a part of training set used to evaluate

the model. Appendix A explains in detail about the error measures used in this work

to effectively judge the generalization availabilities of metamodel parameters.

2.4. Flow Field Analysis

The commercial CFD software ANSYS Fluent were used to simulate the flow in

order to compute the aerodynamic forces acting on a given turbomachinery blade.

An accurate evaluation of the flow field is necessary to calculate the aerodynamic

performance parameters such as total pressure loss, aerodynamic efficiency, pressure

ratio, mass flow rate which will help to build better prediction model and to sweep

the complete design space for optimum configurations. If the flow simulation captures

the flow physics accurately, it is reasonable to expect the optimizer to capture the

flow physics and give the optimum solution. In other words, the optimum design is

at best as good as flow simulation tool. ANSYS Fluent was used as a CFD tool in

this work along with K−ω turbulence model and mixing plane interface between the

stator and rotor passage. Geometry and mesh generated using GAMBIT GTurbo.
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2.5. Structural Analysis

2.5.1 Finite element analysis

Structural analysis is carried out to determine the blade structural stress, displace-

ment and integrity; to this end. ANSYS workbench 11.0 - Mechanical was used. The

CAD geometry for different turbine blade configurations was generated using AN-

SYS GAMBIT and the CAD geometry is trimmed using ANSYS ICEMCFD. Mesh

was generated inside ANSYS Mechanical, and three dimensional solid tetrahedral

elements were used with midside nodes for the blade. Solid elements with midside

nodes were chosen since they capture the highly complex and curved profiles better

than many other elements. Changes in the stacking line result in highly complex

blade shapes that are difficult to mesh with hexagonal elements. A fine mesh with

approximately 100, 000 elements was used for structural analysis in ANSYS.

Pressure loads from CFD pressure loads on the blade are obtained from

ANSYS Fluent which is one of the boundary conditions (loads) for structural analysis.

Since the numerical mesh used in Fluent is different from ANSYS finite element mesh,

the surface loads obtained from Fluent were automatically interpolated in ANSYS

Workbench according to the structural mesh. All the nodes at the blade root are

assumed as fixed and will have zero displacement. Normally this problem is solved in

two steps, the first will solve the flow domain using ANSYS Fluent and the second will

analyze the structure subject to pressure and centrifugal loads in ANSYS Workbench

- Simulation. The von Mises stress are considered as the main output parameter from

the structural analysis and the maximum is used as an objective in aero-structural

optimization. In this particular problem structural optimization was carried out to

reduce the maximum von Mises stress.

From structural consideration, the sharp corner at the hub represents a

stress discontinuity where the stress would tend to be infinite. To minimize the
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impact of such singularity on the computation of max. stress, the mesh density and

topology near the corner was kept the same for all blade profiles that were tested.

This ensured that the relative stress improvement is a genuine one.

2.5.2 Modal Analysis

It is important that the consecutive natural frequencies are not very close to other

for good vibration characteristics which is done through modal analysis. ANSYS

Workbench simulation is used to setup the modal and calculate the modal frequencies.

The same blade geometry used for structural analysis used here also. Modal analysis

doesn’t require higher number of mesh elements to calculate the frequencies so less

number of elements is used and only first five modes were calculated. Further, only

centrifugal load is applied for modal analysis with root fixed boundary condition.

The Block Lanczos method is used to extract the first five nodes. Static structural

analysis results used as an initial condition for the modal analysis.
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Figure 2.2: A sample bio-neuron [1]

Figure 2.3: A sample artificial neuron [2]
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Figure 2.4: A sample artificial neuron [3]
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Figure 2.5: Typical training and testing trends with optimum stopping point
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Figure 2.6: A typical example of over fitted and properly fitted curves [4]
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Chapter 3

Optimization Methodology

3.1. Introduction

Selection of the optimization methodology is highly problem dependent. Arriving at

the right optimization strategy based on the problem description and objectives are

the main keys in achieving a successful optimum design at the end. This chapter

focuses mainly on the optimization methodology selected for the current work. The

optimization methodology is expected to have an ability to handle different response

surface methodologies, design variables, outputs simultaneously and also to be modu-

lar and able to handle multiple disciplines without much change in the code. Finally,

the methodology should be simple, effective and easy to use.

For the present work, an ANN based GA is used as optimizer. Individual

ANNs are assigned to approximate each component of the objective function and

constraints separately including the objectives and constraints. A Quadratic Rational

Bezier Curve (QRBC) is used in the shape parametrization of the stacking curve

[5, 19]. The overall optimization process is shown as a flowchart in Fig. 3.1.
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3.2. Geometric representation

Blade parameterization and representation of the profile is a vital part of the shape

optimization process. Selecting the least and right number of design variables to

represent the geometry throughout the complete design space is one of the most

challenging tasks. Three dimensional blade geometry is usually defined interms of

several 2D airfoils at different spanwise locations, these airfoils are then stacked in

the spanwise direction. Traditionally multidisciplinary optimization of turbine blades

deal with blade lean, sweep, bow and the set of geometric parameters to represent

the blade thickness, leading and trailing edge radius and the other parameters in the

hub and tip section etc [16, 31, 32, 44, 37]. If all these parameters are included in

the optimization, the number of design variables will increase significantly, it will also

make the problem more complex by increasing its dimensionality. So it was decided

to keep the 2D airfoil profiles unchanged and to allow only the lean, sweep, bowing

in the radial direction, bowing in the circumferential direction and bowing intensity

of the blade to vary so as to get a physical insight into the design space. For this

reason and due to its flexibility and suitability, a quadratic rational Bezier curve

(QRBC) was used to parameterize the stacking line. It also helps to define the design

parameters directly in terms of QRBC parameters.

This work focuses on optimizing the stacking line so as to improve the

aerodynamic and structural performance of the turbine blades mainly by translating

the two dimensional sections but without altering the 2D profiles or their orientation

with respect to the rotor axial direction.
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3.2.1 Quadratic Rational Bezier Curve (QRBC)

A QRBC represents the conic curve in an oblique coordinate system, it can be ex-

pressed parametrically in terms of u ∈ [0,1] as [59]:

−→
C (u) =

(1− u)2w0
−→
P 0 + 2u(1− u)w1

−→
P 1 + u2w2

−→
P 2

(1− u)2w0 + 2u(1− u)w1 + u2w2

(3.1)

Where
−→
C (u) gives the cartesian or cylindrical coordinates of any point on the stacking

curve in terms of the parameter u,
−→
P i are the cartesian (or cylindrical) coordinates

of control points i. QRBC is a smooth second order curve which could be used to

represent any conic section e.g. an ellipse, a parabola, a circle or a hyperbola. The

design variables are represented in terms of QRBC parameters namely P1, P2, and

w1, so that the design space is estimated and the optimum shape is interpreted in

terms of design variables.

3.2.2 Design variables

Based on the QRBC representation given in Eq. 3.1, the QRBC parameters namely,

Pi, and wi for i = 0−2, can be selected to parameterize the stacking curve. P0 is fixed

at some point on the hub surface in most of the cases, blade center of gravity or blade

leading edge and P2 moves on the tip surface as shown in Fig. 3.2 in other words,

without loss of generality, the coordinates of P0 and the radial coordinate of P2 are

fixed. Since P0 and P2 are end points, w0 and w2 are set to 1. The axial coordinate

of P1 was chosen to be equal to that of P0, this poses a rather weak restriction on

the flexibility of QRBC to generate a variety of geometries by modifying the stacking

line.

According to Fig. 3.3.a, the sweep angle is defined as β and is controlled

by the axial coordinate of P2. Fig. 3.3.b shows the lean angle α, which is set by the

circumferential coordinate of P2. Fig. 3.3.c shows the blade bowing which can be

42



controlled by the circumferential and radial coordinates of P1 as well as the weight

w1. The circumferential coordinate of P1 is controlled by angle P̂1P0B as shown in

Fig. 3.3.c. The lean angle is positive in the direction of the rotation (or suction side)

and the sweep angle is positive in the axial direction. The positive sign makes the

pressure side concave as shown in Fig. 3.3.c and a negative value makes it convex.

With this set up of the QRBC parameters, we end up with 5 design variables per

blade row namely the lean angle, sweep angle, the percent span of P1 which specifies

this radial location, the angle - which specifies circumferential location of P1 and the

bowing intensity is measured by w1.

The design variables and their range of variations are first chosen through

a parametric study as explained by Arabnia et al. [5, 19]. An important design

concern is to keep the design space within a feasible range from blade structural and

manufacturing points of view and at the same time be large enough for an adequate

exploration.

3.3. Sensitivity analysis

Selection and handling of the design variables for the turbine stage optimization

is an involved process. Axial turbine stator design is based purely based on the

aerodynamic and manufacturing considerations and assuming a non-cooled stator.

This is possible further, since the stator is not a rotating part and the resulting stress

due to pressure forces is considered negligible, this automatically eliminates the need

for including the stator in structural optimization. This results in a change in number

of design variables considered for the aerodynamic and structural metamodels. So

for the stage optimization only rotor related design variables are considered for the

structural discipline and for the aerodynamic discipline the design variables for both

stator and rotor are considered.
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In order to apply QRBC parametrization for stage optimization a sensitiv-

ity analysis has been carried out to select most important design variables affecting

the aerodynamic and structural performances. It is a two stage process, in the first

stage design variables affecting the aerodynamic performance are identified and in the

second stage (based on the aerodynamic design variables) most effective structural

design variables pertaining to rotor are identified.

Initially for the aerodynamic discipline five design variables are assumed

for each of stator and rotor blade. Since a large number of design variables makes

the optimization implementation not only time consuming but also makes the design

space more complex, a sensitivity analysis of the objective function to all ten design

variables is performed. The goal is to find the most influential parameters amongst

the described ten design variables. First order variance-based method is used, it as-

sumes no interaction between the different design variables, hence the effect of each

one on the objective function is studied one at a time. The variance of the objective

function around original geometry objective function can be calculated with changing

one parameter within its specified range while fixing the rest. Then all the calculated

variances are normalized by total variances and measure of importance of each pa-

rameter are calculated in terms of percentage as indicated in Fig. 3.4. This exercise

was done for both stator and rotor. The results indicate that there are four important

design variables which are lean and sweep angles for both stator and rotor. Bowing

intensity for the stator is neglected because of its lower percentage contribution to

the optimization objective. Sensitivity of total pressure loss coefficient to bowing

intensity of rotor (wr) and percent span of P1 (γr) are relatively equal. Hence bowing

intensity is chosen as fifth parameter (design variable) of the aerodynamic discipline

because if there is no bowing (w1 = 0) then radial location of P1 will not change the

stacking curve. This reduction of design variables is not very restrictive, at least for

the rotor and for cooled vanes; but it results in a significant saving in terms of the
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Table 3.1: Design variables used in the aerodynamic and structure optimization

Case Aerodynamic Structure
design variables design variables

Stator αs, βs Not included
Rotor αr, βr, wr αr, βr, wr

number of CFD flow simulations required to build the ANN model.

For the rotor based structural sensitivity analysis, design variables αr, βr,

wr and percent span of P1 (γr) are only considered. Sensitivity of von Mises stress and

first natural frequency to design variables is analyzed and explained in the previous

paragraph. Measure of importance of each design variable is calculated in terms

of percentage as indicated in Fig. 3.5. Based on the aerodynamic and structural

sensitivity analysis it was decided to keep three design variables (αr,βr and wr) to

represent the rotor shape. In fact the reduction of design variables is not only based

on sensitivity analysis but also on the basis of earlier work [5]. In that work, the stator

and rotor were separately optimized each with all 5 design variables and the results

showed that, for aerodynamic stage optimization, the 5 design variables suggested

by the sensitivity analysis were the ones that need to be kept. Final set of design

variables for aerodynamic and structural optimization is shown in Table 3.1.

3.4. Optimizer

Genetic Algorithm

A real coded MOGA is applied to multi-objective optimization by introducing a

non-dominated sorting procedure [60]. The initial population is generated randomly

within the design space and the fitness in each generation is based on the non-

domination level and a niche count factor, which depends on the number and prox-

imity of neighboring solutions. All sets in the first non-domination level are assigned
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a maximum value of equal dummy fitness and this value may be reduced based on

the factor called niche count if that solution is located in the dense region of the so-

lution space, see [60] for details. The population in the second non-domination level

is assigned a dummy fitness, which is smaller than the smallest fitness value of the

previous front. The same kind of fitness reduction is carried out based on the niche

count. These procedures are repeated until all the individuals are assigned a fitness

value. The genetic algorithm operations like selection, crossover, mutation, elitism

and reproduction are then carried out on the individuals to provide a search direction

towards the Pareto-optimal region and the solution becomes well diversified due to

the inclusion of a sharing strategy [60]. The main difference between single-objective

and multiple-objective optimization is the fitness assignment. For multi objective

optimization NSGA-II [60] is used. Basically having the same evolutionary operators

as GA, it uses non-dominated solutions concept and Niche count factor to specify the

fitness function.

Artificial Neural Networks

In the current work, ANN based RSA model is used to predict the objective function

and constraints, which reduces the computing cost to a significant level [19, 37].

Multi-layer feed forward network is a universal approximation tool for any non linear

and finite function [55] and is built with back propagation algorithm [52]. The ANN

training and testing has already been discussed in Chapter 2.

The ANN training process is challenging and requires careful selection of

parameters, architecture (number of hidden layers, number of hidden and output

nodes), transfer functions and effective training strategy. These choices completely

depend on the function being approximated, like the presence of local minima, high

dimensionality, disparity in input scales, etc. ANN model and its results are highly

dependent on the training data set provided, it is very important to ensure that the
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training data are not clustered around one part of the design domain. The diversity

of the training set should always be maintained to get a good prediction model.

Following are some contributions made to the ANN model to improve its

generalization capability, accuracy of approximation, variable handling and training

time:

1. Multiple ANNs: The capabilities of artificial neural networks to handle multi

dimensional outputs are well known. However, it is preferred to use individual

ANN models to predict each output. This method of multiple neural networks

was employed by Norgaard et al. [61] to predict the lift, drag, moment of inertia

and lift to drag ratio (CL, CD, CM and L/D) for different angles of attack and

flap settings to improve the aerodynamic design. Optimization of a compressor

for micro gas turbine was done by Verstraete [45] using multiple neural networks

to predict efficiency, mass flow rate, Mach number distribution and maximum

stress of the geometry. Use of multiple neural networks is like a divide and

conquer policy, here are some of the practical advantages of using multiple

ANNs,

(a) Different number of sample points (or patterns) are used to prepare aero

and structural database. To train both domains which contain different

patterns is not feasible by using a single ANN (to predict all the output

variables)

(b) Continuous database enrichment is required to get a better prediction

model in this case RSA, so during the enrichment process individual output

variable databases could be updated based on the performance.

(c) Enhances the prediction accuracy because of only one output

(d) Improves the handling capability of the optimizer during the optimization

process. Each metamodel can handle different number of hidden nodes,
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inputs, outputs, transfer functions, bounds (upper and lower) etc, these

characteristics makes them more attractive and ideal for complex problems

like the current one.

(e) Handling of multiple disciplines becomes very effective and simple.

(f) The main disadvantage could be an increase in training time and it linearly

varies depending on the total number of output variables considered for

the problem at hand.

The difference between single ANN Fig. 3.6 to predict all the outputs and

individual ANN to predict each output is shown in Fig. 3.7.

2. Database enrichment: Though the ANN is trained and tested with the right

number of patterns in the database, enriching the database during the opti-

mization process improves the capability of the metamodel to predict the better

optimum. This process also reduces the difference between the ANN predicted

objective and high fidelity solutions. Generally enrichment of database indi-

cates the right path for the metamodel by means of correcting its mistakes.

Care should be taken not to include multiple optimum candidates which have

similar design variables closer to each other because it might dominate the op-

timization process and result in an untrue optimum.

3. Handling of design variables: Selection and handling of the design variables for

the turbine stage optimization is a tricky process. Aero-structural optimization

of turbine stage could be done with six design variables (2 for stator and re-

maining 4 for rotor) but optimizing the stage which contains stator and rotor

needs more design variables and raises additional problems in terms of response

surface modeling and variable handling. Selection of design variables corre-

sponding to stator completely depends on the aerodynamics performance of the

stage and manufacturing difficulties. So for the stage optimization there are only
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two stator related design variables (lean and sweep) and both are included in

the aerodynamic design variables set but not considered for structure analysis.

Finally for the structural optimization only rotor related design variables are

considered and aerodynamic optimization contains variables related to stator

and rotor. Different number of design variables for aero and structural domains

are effectively handled by the multiple ANNs and MOGA developed in this

work. The results presented are only for the turbine blade row aero structural

optimization and turbine stage optimization will be carried out subsequently as

the continuation of the present results. In the current work, ANN based RSA

model is used to predict the objective function and constraints, which reduces

the computing cost significantly [19, 37]. Multi-layer feed forward network is a

universal approximation tool for any non linear, finite function [55] and is built

with back propogation algorithm [52]. Building an ANN based RSA model

involves two steps: Training the ANN with the sample database followed by

testing the ANN model.

3.5. Present optimization cycle

The flow chart in Fig. 3.8 describes the complete flow of optimization process used in

the current work. All the modules can work individually as well as in groups which

makes it easy to evaluate their performance whenever required. Moreover, due to

modular approach followed in handling different disciplines, it is easy to customize

for the problem at hand and add other disciplines such as heat transfer, blade life

estimation, manufacturing cost estimation etc without any major modifications.
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Figure 3.2: Quadratic Rational Bezier Curve (QRBC) representation [5]
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Figure 3.3: Stacking curve parametrization using QRBC [5]
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Figure 3.4: Aerodynamic sensitivity analysis of objective functions to design variables
[5]
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Chapter 4

Redesign cases

4.1. Introduction

In this chapter, the optimization scheme described in the previous chapter is applied

to a well documented, single stage low speed subsonic turbine, referred to as the

E/TU-3 turbine. The work is divided into different sections as mentioned below:

• E/TU-3 turbine stage optimization

1. Structural optimization of E/TU-3 turbine blade with three design vari-

ables

2. Aero-Structural optimization of E/TU-3 turbine stage with five design

variables

• E/TU-3 turbine blade row with four design variables

1. Aero-Structural optimization of E/TU-3 turbine blade

The notable aerodynamic and structural performance improvements obtained from

the redesigned cases reiterates the robustness and accuracy of the optimizer as well

as the developed methodology. Results also underline the advantages of modularizing

the ANN’s while integrating multiple disciplines.
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Table 4.1: E/TU-3 single stage turbine specifications

Data Stator Rotor

Number of blades 20 31
Blade aspect ratio 0.56 0.95
Blade solidity 1.56 1.51
Flow deflection 69◦ 105◦

Table 4.2: E/TU-3 single stage turbine design point specifications

Inlet total temperature (K) 346
Rotor speed (RPM) 7800
Stage pressure ratio 0.51
Reynold number 1.5× 106

Mid-span flow coefficient 0.74
Mid-span stage loading 1.93
Average reaction (%) 31

4.2. E/TU-3 Turbine Stage Redesign

E/TU-3 is a single stage low speed subsonic turbine, built and tested at DLR, Cologne

[6], this turbine is used as a test case to prove the effectiveness of the proposed

optimization methodology. The turbine stage geometry is given as a set of x and y

coordinates describing the 2D airfoils profiles at five different radial locations from

hub to tip. Several geometric and aerodynamic features of that stage are provided in

Tables 4.1 and 4.2. The additional details on the geometry and aerodynamic features

that are provided in Fottner [6] help in redesigning the turbine stage for performance

improvements. The original stator and rotor blade profiles are sketched in Fig. 4.2.

The rotor tip clearance was ignored in simulating the flow in the turbine

stage.
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4.3. Geometry preparation and boundary condi-

tions

Obtaining a CAD model for structural analysis is not a straightforward process, the

steps involved in achieving the final CAD model is shown as a flow chart in Fig.

4.1. Blade geometry generated using GAMBIT preprocessor [62] and the geometry

clean up was done using ANSYS ICEMCFD which is a part of ANSYS Workbench

[63]. ANSYS workbench - Simulation option was used for mesh generation and finite

element analysis. Three dimensional solid tetrahedral elements with midside nodes

was selected to discretize the solid blade as it can capture highly complex and curved

profiles. All the nodes at root of the blade are assumed as fixed (like a cantilever).

Turbine materials

The E/TU-3 turbine stage is basically an aerodynamic test case hence details of

the structural tests and materials used for the blades are not available in the open

literature. Different materials are used for turbine blades based on their proximity

to the combustion chamber, rpm and loading, normally for turbine blades which are

operating at high temperature and rpm require high strength materials like Inconel

718, etc [64]. For this work two different materials were used

• Stainless steel (Optimization of turbine blade row using four design variables)

– Elastic modulus 1.93× 1011Pa

– Poisson’s ratio 0.31

– Mass density 7750Kg/m3

– Tensile yield strength 2.07× 108Pa

– Compressive yield strength 2.07× 108Pa

– Tensile ultimate yield strength 5.86× 108Pa
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• Inconel 718 (Optimization of turbine stage using three design variables)

– Elastic modulus 2.00× 108Pa

– Poisson’s ratio 0.284 and

– Mass density 8220Kg/m3

Other facts

In reality turbine blade which is fitted on the turbine disk will have some definite

amount of stiffness value but for the current work all the nodes at the blade root

are assumed as fixed (like a cantilever) with zero displacement (worst case scenario).

Turbine blades are normally thicker and heavier then compressor blades due to their

operating conditions so the stresses due to pressure forces acting on the turbine blade

are negligible compared with the centrifugal forces [65]. This is not the case for

compressor blades which are much thinner resulting in aerodynamic and centrifugal

forces to be comparable. For the current work, pressure forces are neglected when

performing the stress analysis, only centrifugal forces are simulated by imposing the

blade rotation. Von Mises stress considered as the main output parameter from the

structural analysis and used as one of the objectives in structural optimization.

Large tensile stresses developed during rotation (due to the centrifugal

forces) can be captured by carrying out a static structure analysis. This also causes

significant stiffening of the blade. Performing a prestressed modal analysis would

provide more realistic values for natural frequencies. Hence, static structure analysis

results are taken as an initial solution for the modal analysis.

4.4. Effect of design variables on turbine blade stress

Design variables and their lower and upper bounds control the feasible optimum

shapes and the amount of aero-structural performance improvements achieved at
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the end of optimization. Understanding the effect of individual variables on the

performance of the blade is essential to limit the allowable change in variables.

Optimizing the stacking line to improve the aerodynamic performance has

been addressed by several researchers [5, 19, 34], where the optimization focuses on

decreasing the three dimensional losses in turbine and compressor. The importance of

stacking line optimization in improving the aerodynamic and structural performance

of the blade were also emphasized by Moustapha et al. [66]. Basically stacking line

optimization helps to improve the aerodynamic performance of the blade by unloading

the tip and the root (loading more on the blade mid section) and reducing the three

dimensional losses, on the structural side can redistribute the stresses on the suction

side to decrease the maximum stresses.

Leaning the blade towards the pressure side considered as negative and

leaning towards the suction side (direction of the rotation) is positive. The range for

lean considered varied between −5o and 20o in intervals of 5o. In general, negative

lean increases the maximum stress and positive lean decreases the maximum stress

up to 10o lean and then the stress increases again. The applied negative lean, moves

the blade center of mass closer to the axis of rotation compared to the original ge-

ometry, and addition of centrifugal forces creates larger tangential moments. When

the leaned blade is rotating, the combination of blade mass and centrifugal forces,

will try to straighten the blade which results in increasing the tangential moment.

This increased moment results in higher stress at the root of the blade leading and

trailing edges (minimum thickness area location) due to its highly cambered pro-

file when the blade is rotating. However the application of positive lean decreases

the maximum stress compared to the original geometry due to the blade camber

and thickness distribution. Combination of positive lean and blade rotation tries to

straighten the blade due to centrifugal forces, which increases the tangential moment

but the increase in tangential moment is effectively handled by the available higher

61



blade thickness. Moreover the thickness distribution and shape of the turbine blade

from hub to tip also helps to effectively handle the increase in the stress due to the

tangential moment. Again the maximum stress starts increasing after 10o lean and it

occurs at the root of blade near the maximum camber location (on the suction side).

The comparison of suction side stress contours for different lean angles is shown in

Fig. 4.4 and pressure side stress contours are shown in Fig. 4.5.

Original E/TU-3 blade sections are stacked radially. Leaning the stacking

line in the flow direction indicates a positive sweep and opposite to the flow direction

is considered as negative sweep. Sweep angles −10o, 0, 5o, 10o, 15o were considered in

this analysis. A decrease in maximum stress value was observed compared to the

original E/TU-3 blade when negative sweep is applied, this is due to an increase in

tangential moment. This effect also relieves the stress at the root trailing edge and

maximum stress occurs in the root leading edge region. Positive sweep increases the

maximum stress because of the increase in tangential moment and change in center of

mass, hence increases load in the root trailing edge region. The comparison of suction

side stress contours for different sweep angles and pressure side stress contours are

given in Fig. 4.6 and Fig. 4.7.

An increase in bowing intensity always raises the maximum stress values.

The max. magnitude of bowing occurs at 50% span, which gives the blade a curved

look from hub to tip from the front view. When the rotor is spinning the centrifugal

forces, try to untwist the blade which causes more stress near the blade trailing edge

at 50% span and near the maximum thickness distribution area at the root. The

stress increase is also due to the increase in axial moment and change is center of

mass relative to the original E/TU-3 turbine blade. Variation in stress with respect

to different bowing intensities is shown in Fig. 4.8 and Fig. 4.9 for suction and

pressure sides respectively.

Based on the above analysis discussion it can be concluded that the design
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variables lean, sweep and bowing intensity have a great impact on the blade maximum

stress. It could also be seen from the previous results that the combination of positive

lean and small amount positive and negative sweep could decrease the maximum stress

on the blade, but the bowing intensity always increases the stress.

4.5. Objectives and Constraints

Objective functions and constraints used for the current structural and aero-structural

optimization problems are given in this section.

4.5.1 Single objective structural optimization

FObj(X) = Min(σvm) + PT (4.1)

Where PT is the penalty term which is given by an inequality constraints that restricts

the first three natural frequencies of the blade to be larger that the original blade

frequencies.

ω1 > ωetu3 (4.2)

ω2 > ωetu3 (4.3)

ω3 > ωetu3 (4.4)

4.5.2 Multi objective aero-structural optimization

For the aero-structural optimization the objective takes the following form:

Fobj(X) = {Min(−ηtt′ + PTa),

Min(σvm
′ + PTs)} (4.5)

Where X is the vector of design variables, which includes the stator and

63



rotor lean and sweep angles, and the rotor bowing intensity.

PTa = 0.5 when
|ṁ− ṁorg|

ṁorg

> 0.005

= 0 otherwise

PTs = 0.5 when f1 < f1,org

= 0 otherwise

where f1,org = 2294Hz is the first natural frequency of the original rotor. The first

term on the right hand side of the objective function indicates the aerodynamic loss

−η’ and second term corresponds to von Mises stress σvm’. Reduction of loss increases

the aerodynamic efficiency and at the same time reduction in von Mises stress reduces

the maximum stress due to centrifugal forces. The penalty terms are given by the

mass flow rate (PTa) and the rotor first fundamental frequency (PTs).

f ′ =
f − fmin

fmax − fmin
(4.6)

The objectives, −η’ and σvm’, are normalized between 0 and 1 according to Eq. 4.6, so

as to have an equal weight for all disciplines and eliminate the possibility of reaching

a biased optimum.

64



4.6. E/TU-3 turbine stage optimization

4.6.1 Structural optimization of turbine blade with three de-

sign variables

Preparation of structural database

23 sample points were selected for the structural database including the initial E/TU-

3 configuration. Latin hypercube model developed by Temesgen [43] was used as a

DOE model to distribute the data samples in the design space. Only rotor related de-

sign variables were considered for structural optimization. It was decided to maintain

the same range of design variables for structural and subsequent aero structural opti-

mization due to structural and manufacturing reasons. The lean, sweep and bowing

intensity were varied between −5◦ to 20◦, −10◦ to 15◦ and 0 to 3, respectively, during

the optimization process. The upper and lower bound for output variables such as

von Mises stress and fundamental frequencies were calculated from the database ex-

tremes by adding 15% to the upper bound and subtracting 30% from the lower bound.

For minimization problems expanding the lower bound range helps the optimizer to

improve its effective search region.

ANN Training and Error analysis

ANN was trained with the structural database which contains 23 candidates and the

range for training is given in Table 4.3. ANN training is an involved process, and get-

ting a right combination of ANN parameters such as hidden nodes, transfer functions,

learning rates (input and output), number of epochs is a kind of optimization process

by itself. Two approaches were followed in building the ANN metamodels; in the first

approach each output variable is predicted by individual ANN trained to predict only

one output variable, this method is called multi input single output ANN or MISO

ANN. In the second approach all four outputs are predicted using single ANN, which
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Table 4.3: E/TU-3 Turbine stage operating conditions

Variables Lower bound Upper bound
αr -5 20
βr -10 15
wr 0 3

σvm MPa 189 1231
ω1 Hz 945 2885
ω2 Hz 1820 5580
ω3 Hz 1981 6779

is called multi input multi output ANN or MIMO ANN. In both cases the number of

input variables is kept the same. The flow chart for ANN training is give in Fig. 2.7

and the final ANN training parameters are given in Table 4.10. The accuracy of the

ANN approximation could be verified from the ANN performance measures. MISO

ANN performs or approximates the error function better than the MIMO ANN which

can be seen from the main performance measures (Appendix A) such as ARE, RMS,

Max error, R square and correlation are better than the RAAE, RMAE.

Results and validation with high fidelity results

GA was used as a global optimizer along with ANN metamodel and optimum results

proposed by GA + ANN and corresponding high-fidelity evaluations are given in

Table 4.4. From the design variables proposed by MIMO ANN and MISO ANN, it is

evident that the optimum lean varies with respect to the metamodel and other two

design variables remains almost same. The MISO ANN over predicts the objective by

25% and MIMO under predicts it by 33%, prediction of constraints are almost close

but overall MISO ANN predicts better optimum designs (with lower maximum stress

values) than MIMO ANN. The proposed MISO ANN produced (or resulted in) more

accurate approximation of the stress when it was used in optimization, with maximum

stress 177.33MPa which is 37.45% lower than the original E/TU-3. In turn MIMO

ANN proposed optimum shape resulted in a maximum stress of 271MPa which is
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Table 4.4: ANN proposed optimum values and its corresponding high fidelity solutions

MISO ANSYS % change MIMO ANSYS % change
Design αr 7.38182 7.38182 19.5422 19.5422

variables βr -9.73835 -9.73835 -9.83017 -9.83017
wr 1.75E-05 1.75E-05 0.000452 0.000452

Objectives σvm 235.79 177.33 25 203.391 271.1 33
Constraints ω1 2529.39 2584.7 2 2610.18 2841.7 8.8

ω2 4820.49 4914 2 4754.42 4758.4 0.08
ω3 6101.87 6024.5 1.3 6141.69 6239 1.6

just 4% less compared to original E/TU-3. Subsequent comparisons between the

two approaches revealed that the MISO ANN performs consistently better than the

MIMO ANN and due to their flexibility and better approximation capabilities, for

subsequent optimization cases it was decided to use only MISO ANN. The selected

approach also helps to effectively handle different number of design variables as input,

apart from removing inter dependency among the outputs, however the time taken

to train individual ANNs is relatively high compared with MIMO ANN.

Need for more samples in the structural database

Need

A larger no of samples in the design space automatically improves the approximation

capability of the metamodel which helps in finding the real global minimum. Training

ANN with more samples could also help in decreasing the difference between the

proposed optimum values of ANN and its corresponding high fidelity solutions.

Issues

Building a database with a large number of samples increases the number of high

fidelity simulation runs. High fidelity simulations always require more time due to

geometry modeling, meshing, analysis and post processing the results. In case of
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aerodynamic analysis, each simulation needs more than 24 hrs on a single CPU and

structural analysis needs less than an hour from geometry generation till postprocess-

ing the results. So it was decided to increase the number of samples from 23 cases to

100 cases only for the structural database due to its lower computational cost. The

main purpose for this exercise is to build a more accurate metamodel to predict the

von Mises stresses. Moreover the use of MISO ANN provides a greater flexibility in

handling the individual outputs and their sample points, otherwise it could be very

complex to handle them with the single MIMO ANN. It is not possible to increase

number of sample points for one domain (like structures or aero) without considering

the other domains.

Structural database

Need for better approximation of the design space and lower computational cost

involved in getting the structural results prompted to develop a larger database. Latin

hypercube model was used to discretize the design space with 100 sample points. A

larger database generally requires more training time and a larger number of nodes

in the hidden layer. To get an ANN which could generalize the complete design

space, 70% of the samples in the database were used for training and the rest for

testing. The ANN training/testing algorithm is given in Fig. 2.7. For this case the

hyperbolic tangent transfer function is used with a range of [−1, 1]. It was found that

the use of hyperbolic tan transfer function speeds up the ANN learning process and

approximates the design space with less number of hidden nodes. The complete ANN

training parameters are given in Table 4.11. The prediction capability of the trained

ANN model was analyzed and tabulated from the train and test individual sample

error measures. Complete distribution errors are plotted in Fig. 4.12.

Single objective structural optimization was carried out with an updated

metamodel trained and tested with 100 sample points in order to reduce the von
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Table 4.5: ANN proposed optimum values and its corresponding high fidelity solutions
with updated database

E/TU-3 Case 1 ANSYS % change Case 2 ANSYS % change
Design αr 0 6.8524 6.8524 7.10493 7.10493

variables βr 0 -1.59525 -1.59525 -1.08041 -1.08041
wr 0 0.00253 0.00253 0 0

Objectives σvm 287 172.62 145.00 19.05 172.60 147.70 16.859
Constraints ω1 2273 2396.34 2427 1.263 2390.37 2424 1.387

Mises stress at design point conditions. Combination of GA + ANN was used as an

optimizer, the convergence history of the GA is shown in Fig. 4.13. Metamodel built

with 23 candidates reduced the von Mises stress to 177MPa from an original value

of 287MPa, see Table 4.4 around 38% reduction. The current updated metamodel

trained with a new database with 100 sample points was found to reduce the von

Mises stress by 48%. New optimum values proposed by optimizer and corresponding

high fidelity solutions are given in Table 4.5. The stress contours along the SS, PS

and along the hub of the original and redesigned E/TU-3 are compared in Fig. 4.14.

4.6.2 Database enrichment and optimization

The need and use of database enrichment in the optimization process is already dis-

cussed in Sec. 3.4. Care should be taken not to include multiple optimum candidates

with design variables closer to each other because it might dominate the optimization

process hence ending up with the same optimum solution. The enriched database

was divided into training and testing sets with 73 and 30 samples respectively to

approximate the objective function and new ANN training parameters were given in

Table 4.15. The optimum configurations proposed by optimizer were better than all

the previous optima in terms of objective function, there is a 52% reduction in von

Mises stress achieved compare to the original E/TU-3 blade. The original E/TU-3
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Table 4.6: ANN proposed optimum values and its corresponding high fidelity solutions
with updated database

E/TU-3 Optimum ANSYS % change
Design αr 0 7.46389 7.46389

variables βr 0 -2.80523 -2.80523
wr 0 0 0

Objectives σvm 287 162.48 137.97 17
Constraints ω1 2273 2425.24 2465.32 1.6

and optimum shape design variables, objectives and constraints are given in Table

4.6. In the E/TU-3 configuration, the maximum stress was located at the hub trail-

ing edge region (lowest thickness area). Leaning the blade in the rotational direction

combined with forward sweep and zero bowing intensity redistributed the stresses in

the maximum thickness region along the span direction. In the optimum configura-

tion, on the pressure and hub surface average equivalent stress is decreased and on

the suction side it got increased due to lean and sweep of the blade. So E/TU-3 tur-

bine blade was structurally optimized for lower stress by optimizing the stacking line

parameters. Stress contours of the optimum and original E/TU-3 shapes are given in

Fig. 4.17.

Optimizing the turbomachinery blade with a structural objective will not

improve the overall performance of the turbine stage instead it might act as a detri-

mental factor for aerodynamic efficiency. So combining aerodynamic and structural

disciplines and performing multi objective optimization would be the right solution

to address this issue. In the following section, the aero-structural optimization of the

turbine stage is carried out to achieve an overall performance improvement in stator

and rotor.
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4.6.3 Single point aero-structural Multi objective optimiza-

tion of E/TU-3 stage

The optimization of stacking line is the best way to obtain the better performance

without modifying the two dimensional airfoil profiles since it is the main parameter

affecting the 3D-related flow phenomena. Change in stacking line affects the aerody-

namic performance by varying the three dimensional flow field around, and structural

loadings on, the blade so it is essential to consider simultaneously both disciplines

during the optimization process to get a better performance for both disciplines.

Turbine stage aerodynamic optimization of the rotor is highly dependent

on the stator that is located upstream of it. Optimization of rotor or stator alone

may not provide as much improvement in performance as the stage. So it is advanta-

geous to include the stator in the aero-structural optimization to improve the stage

performance and the overall effectiveness of the optimization process. The initial

aerodynamic database was taken from the previous work of Arabnia et al. [5, 19].

The design parameters are given by the lean angle, sweep angle and bow-

ing intensity (controlled by weight w1). Individual output variables (objectives and

constraints) are approximated by individual back propagation based ANNs (MISO

ANN) with a single hidden layer between the input and output layers. It improves

the approximation model accuracy and allows for a better control of the error surface

for each particular output. To approximate the efficiency and mass flow rate, two

ANN modules with 5 and 6 nodes in the hidden layers were used. A set of 23 cases

selected through LHM were used to build the aerodynamic database and approxi-

mately 70% of the samples were selected for ANN training and the rest used to test

the ANN model. Structural ANN model from Sec. 4.6.2 with 103 sample points were

used with the aerodynamic model. Two ANN modules were used to approximate the

von Mises stress and fundamental frequency with 10 and 7 nodes used at the hidden

layers, respectively. GA or MOGA were employed as the optimizer to search the
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Table 4.7: Comparison of initial E/TU-3 and optimum design variables and their
range used in optimization

Case αs βs αr βr wr

E/TU-3 -7.3 ◦ 6.9 ◦ 0 ◦ 0 ◦ 0
Optimum -14.26 ◦ -7.99 ◦ 5.55 ◦ -1.17 ◦ 0.012

min -36 ◦ -8 ◦ -5 ◦ -10 ◦ 0
max 0 ◦ 12 ◦ 20 ◦ 15 ◦ 3

design space, each generation consisted of 50 individuals, the mutation constant 0.15

and a crossover probability value of 0.7 were used. During each generation two elite

individuals were selected for passing to the next generation. Totally 4 ANN modules

were trained and tested to predict the 4 outputs. An aero-structural optimization

is done based on the above mentioned ANN metamodel, the optimum proposed by

the optimizer (GA+ANN) was analyzed with the high fidelity CFD and FEM sim-

ulations. The mathematical form of objective function and constraints are already

explained in Sec. 4.5.2.

Aero improvements

On the aero-structural multi objective optimization, the aerodynamic objective is to

increase the total to total efficiency and it is penalized by mass flow rate and first

fundamental frequency (Eq.4.5). The optimization is carried out for the constant

operating conditions i.e inlet and exit boundary conditions, rotor speed is fixed and

mass flow rate is allowed to increase within 0.5%. Very few flow simulations were

used to build the aero database. The lower and upper bounds of the design variables

are given in Table 4.7.

The above mentioned methodology was applied to redesign the E/TU-

3 turbine stage. The initial and optimum design variables are given in Table 4.7.

The aero structural optimization cycle was carried out and the proposed optimum

configuration was simulated in CFD to confirm the optimizer results. The efficiency
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Table 4.8: Comparison of original and optimum objectives and constraints

Case ηtt change ṁ σvm change ω1

E/TU-3 87.53 0.3347 287.1 2273
0.8 % 48.68 %

Optimum 88.20 0.3357 147.4 2390

increased from 87.5% to 88.2%, see Table 4.8. The redesigned rotor has a forward

lean and sweep (in the direction of the rotation) Fig. 4.18. The stacking lines for

the original and optimum configurations are shown in Fig. 4.19.a and Fig. 4.19.b,

which clearly indicates the change in lean and sweep angles for the optimum shapes

from the initial E/TU-3 rotor. As expected the magnitude of the bowing intensity is

negligible. The increase in efficiency is mainly due to the decrease in secondary losses

associated with the large flow turning and thick leading edges [67].

The blade lean and sweep change the blade spanwise loading. Leaning

towards the direction of rotation (i.e suction side) will unload the tip and increase

the loading at the hub and vice versa. The effect of this can be seen in Fig. 4.20

and Fig. 4.21 which basically explains the change in pressure coefficient at different

radial locations. Hence the original separation region near the hub-SS corner was

reduced in the redesigned stator, see Fig. 4.24.a. Moreover the Mach number level

in the redesigned stator is reduced near the hub hence reducing the sonic region

and associated total pressure loss and increasing the stage efficiency. Change in

blade loading also modifies the velocity triangles. During the initial analysis it was

assumed that the change in velocity triangles at the inlet and exit were not due to

lean and sweep. But, it was observed that the combined lean and sweep can change

the spanwise distribution of axial velocity and flow angles. The effect of lean and

sweep on the exit flow angle distribution in the radial direction is shown in Fig.

4.22. Increasing the axial velocity indicates an increase in loading at the mid section

because of the higher circumferential velocity at that section. This change in loading
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is also reflected in the spanwise distribution of incidence angle, see Fig. 4.25.a. and

axial velocity distribution in the radial direction at the rotor exit as shown in Fig.

4.23. The optimum rotor has a lower incidence near the hub and a higher incidence

near the tip. Unloading the tip reduces the vortices intensity (loses) and directly

increases the efficiency of the rotor.

Restacking of the profiles also redistributed the stage loading as shown in

Fig. 4.26. The stage loading near hub and tip has not changed between the optimum

and original stages. This is because the blade loading and mass flux balance each

other at these regions, see Fig. 4.25.a and Fig. 4.25.b. Near the hub there is a

lower incidence in the optimum case but higher mass flux at rotor inlet. This trend

is reversed near the tip.

It should be noted that an increase in the rotor lean would further improve

the aerodynamic performance [19], however such an increase would be in conflict

with the structure objective. Further Arabnia et al. [19] also gives detailed phys-

ical interpretations of the effects of lean, sweep and bowing intensity on the blade

efficiency.

Structural improvements

The E/TU-3 turbine blade is thicker at the root and tapered from hub to tip to reduce

mass and hence the centrifugal stresses. The main component of stress in a turbine

blade is due to blade rotation rather than aerodynamic forces but for a compressor

the aerodynamic loads play an important role in the overall blade stress and blade

rotation. Further, high blade stiffness in turbine blades helps to minimize the stress

due to pressure forces. For the current work only centrifugal force is considered for

stress analysis. The computational time required for ANSYS to simulate a single

static stress simulation is less than 2 minutes on a single desktop PC, which is very

cheap compare to the time taken to solve a single CFD simulation.
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Table 4.9: Comparison of average von Mises stress at different surfaces of the original
and optimum blades.

Surface Type E/TU-3(MPa) Optimum(MPa) % change
Hub 9.982 9.1863 -8

Pressure 10.646 6.7546 -36
Suction 7.7614 8.6659 +11.65

Figures 4.27, 4.28, and 4.29 compare the von Mises stress distribution of the

initial and optimized configurations. On the initial configuration the maximum stress

occurs at the root of the blade near the trailing edge because of the lowest thickness

distribution and due to straightening of the blade because of centrifugal forces. The

root is fixed which also results in a high stress concentration at the hub trailing

edge. The optimum blade has a combined lean and sweep with a negligible bowing

intensity, which basically changes the center for mass, as well as the tangential and

axial moments. The increase in tangential moment due to lean is effectively handled

by the blade spanwise thickness distribution. Due to the shift in center of mass and

the change in moments, the trailing edge untwisting effect is reduced and the resulting

maximum stress is 45% less compare to original von Mises stress. Location of the

maximum stress (with less intensity) also shifts from hub trailing edge location to

the suction side maximum thickness location Fig. 4.29, and no longer hub trailing

edge (minimum thickness area) is considered critical from the stress point of view.

To understand the overall effect of lean and sweep, von Mises stress was averaged on

the pressure, suction and hub surfaces using ANSYS APDL programming and the

averaged values are given in Table 4.9. Due to lean, the stress on the suction side of

the blade increases up to 11% but this is effectively handled by the blade thickness

distribution. The design speed of the turbine is 7800RPM which is lower compare to

current high speed turbine stages, so the improvements achieved are highly problem

dependent.
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Table 4.10: Multi objective aero-structural optimization - Optimum design variables,
objectives and constraints

Case αr βr γ w1 Yr σvm ω1 ṁ

Original 0◦ 0◦ 0 0 0.1854 175.94 2292.9 0.3205
Optimum 11.8605◦ 2.1461◦ 0.0075 0.782 0.1671 111.3 2460 0.3206
min −5◦ −10◦ 0 0.2 − − − −
max 20◦ 15◦ 3 0.8 − − − −

4.7. E/TU-3 turbine blade row optimization

4.7.1 Single point multi objective aero-structural optimiza-

tion of E/TU-3 turbine blade row

This case was mainly carried out to identify the effect of non uniform inlet conditions

(aerodynamic) on the blade optimum shape and design variables. Optimization of

turbine stage carried out in the previous Sec. 4.6.3 contains only five design variables

in which three design variables (lean, sweep and bowing intensity) controls the turbine

stacking line but inclusion of non uniform inlet conditions automatically necessitates

the need for an additional design variable i.e location of the bowing in the radial

direction. Section 3.3 explains in detail the sensitivity analysis carried out in finalizing

the most effective design variables affecting the aerodynamic and structural objectives

and constraints. The location of the bowing in the radial direction is one of the main

parameter which controls the blade shape according to the non uniformity in the inlet

conditions, moreover it also affects the structural stress and natural frequencies.

Aerodynamic improvements

The original and optimum rotor blade shapes are shown in Fig. 4.30. The pressure loss

coefficient decreased from 0.1854 to 0.1670, a decrease of 9.8%; the blade has a lean of

11.8◦, a sweep of 2.1◦ (backward sweep) and zero bowing, see Table 4.10. The bowing

intensity is zero as a compromise between the selected aerodynamic and the structural
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objective functions. This parameter is non zero when considering the aerodynamic

optimization only. Further reduction of radial velocity component throughout the

flow domain indicates the reduction in secondary velocity in the optimum blade hence

more work is extracted from the flow. Also the level of non dimensional secondary

vorticity is reduced from 0.9118 to 0.8299. Detailed physical interpretations of the

aerodynamic results are given in Arabnia et al. [7].

Structural improvements

Modification of the stacking line profile changes the structural loading on the blade.

The initial ANN database is prepared with 51 sampling points covering the design

space. To improve the prediction capability of the ANN model, database enrichment

was carried out as explained in Sec. 3.4. During the enrichment process, the optimum

candidate obtained at the end of the optimization process is added to the database and

the ANN model is retrained with the updated database, according to the optimization

cycle shown in Fig. 3.1. The database is enriched until the objective predicted by

ANN is better than the previous predictions and also the difference between ANN

predicted and high fidelity simulation is getting reduced. Seven cycles of database

enrichment were carried out and the reduction achieved in von Mises stress at the end

of the enrichment process is 46.5% i.e 94.23 MPa compared to the original E/TU-3

blade stress level of 175.94 MPa. Figure 4.31 shows the convergence of the ANN-

based prediction to the CSD-based predictions. For multi-objective optimization, the

final ANN model obtained from the enrichment process is selected.

From a structural point, the increase in bowing intensity is always detri-

mental to the blade structure as it results in high stresses, and the current optimum

results clearly confirm this fact. Figures 4.33, 4.34, and 4.32 compare the von Mises

stress distribution of the initial and optimized rotor. The same contour range is

maintained for all the stress contours to identify the relative stress levels. On the
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initial configuration, the maximum stress occurs at the blade root near the trailing

edge because of the lowest trailing edge thickness distribution. But on the optimum

configuration, the maximum stress occurs on the suction side near the hub maximum

thickness area location. Large tensile forces that are developed due to centrifugal

forces, tend to straighten the blade and also result in an increased stress level at the

blade root. The fixed-root boundary condition results in a high stress concentration

at the hub.

The optimum blade has a combined lean and sweep with almost zero bow-

ing intensity, which modifies the center for mass, tangential and axial moments. The

change in lean and sweep increases the tangential moment and these changes in struc-

tural loading are effectively handled by the available blade thickness distribution along

the span. The shift in center of mass and change in moments, the trailing edge un-

twisting effect is reduced and the resulting maximum stress is reduced by 36.73%

compared with the original E/TU-3 blade von Mises stress. The initial and optimum

stress values are compared in Table 4.11.

Location of the maximum stress (with less intensity) shifts from hub trail-

ing edge location to the suction side maximum thickness location Fig. 4.32, and no

longer hub trailing edge (minimum thickness area) is considered as critical from the

stress point of view. To understand the overall effect of lean and sweep, von Mises

stress was averaged on the pressure, suction and hub surfaces using ANSYS APDL

programming and the averaged values are given in Table 4.12. Due to lean, the av-

erage von Mises stress on the suction side of the blade increases by 73% but this

is effectively handled by the available spanwise thickness distribution of the blade.

Hence the average stress on the hub and pressure surface were reduced by 12% and

3% respectively. This result would be more drastic if this was a high speed turbine

stage. As a last comment, the improvements achieved are highly problem dependent,

however the optimization methodology will remain the same.
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Table 4.11: Original and Optimum output comparisons

Case σvm %Change ω1 %Change

Original 175.94 2292.9
36.7 7.28

Optimum 111.3 2460

Table 4.12: Surface based comparison of von Mises stress at hub, pressure and suction
sides for original and optimum configurations(single and multi objective

Surfacetype Original Multiobjective %Change

(Stress unit MPa) (E/TU − 3) Optimum

Hub 7.2849 6.426 −11.79
Pressure 5.93 5.7413 −3.1821
Suction 6.1425 10.652 +73.4147
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Stacking profile generation by 

QRBC 

2D blade sections are moved to the new 
stacking line & generation of GAMBIT 

GTurbo input file by Turbogen code 

3D CFD flow domain for turbine 
stage and turbine blade CAD (for 

structural analysis) model generation 
by GAMBIT GTurbo 

CAD model clean up and 
meshing in GAMBIT

CFD flow domain 

Unstructured finite element 
meshing in ANSYS 

Workbench 11.0–Mechanical 

Turbine blade 
CAD model

CAD model clean up in 
ICEMCFD 

Boundary conditions and flow 
solver selection

Boundary conditions and flow 
solver selection 

CFD analysis: ANSYS Fluent 
or CFX

Structural analysis: ANSYS 
Mechanical

Figure 4.1: Steps in getting the geometry for CFD and FEA
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Figure 4.2: E/TU-3 Original geometry [6]
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a.Suction side

b.Pressure side

Figure 4.3: Stress contours: E/TU-3 Original turbine blade
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a.Lean −5ob.Lean 0 (E/TU-3)

c.Lean 5o d.Lean 10o

e.Lean 20o

Figure 4.4: Suction side stress contours for different lean angles
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a.Lean −5ob.Lean 0 (E/TU-3)

c.Lean 5o d.Lean 10o

e.Lean 20o

Figure 4.5: Pressure side stress contours for different lean angles
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a.Sweep −10ob.Sweep 0 (E/TU-3)

c.Sweep 5o d.Sweep 10o

e.Sweep 15o

Figure 4.6: Suction side stress contours for different Sweep angles
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a.Sweep −10ob.Sweep 0 (E/TU-3)

c.Sweep 5o d.Sweep 10o

e.Sweep 15o

Figure 4.7: Pressure side stress contours for different sweep angles
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a.Bowing intensity 0 b.Bowing intensity 1

c.Bowing intensity 2 d.Bowing intensity 3

Figure 4.8: Suction side stress contours at different bowing intensity values
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a.Bowing intensity 0 b.Bowing intensity 1

c.Bowing intensity 2 d.Bowing intensity 3

Figure 4.9: Pressure side stress contours at different bowing intensity values
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 𝜎𝜎𝑣𝑣𝑣𝑣  𝜔𝜔1 𝜔𝜔2 𝜔𝜔3 
 MISO MIMO MISO MIMO MISO MIMO MISO MIMO 

Epoch 45000 55000 41000 55000 67400 55000 73800 55000 
Scaling 0 to 1 
Transfer 
Function Sigmoid 

No of 
hidden 
nodes 

30 

LR_IH 0.67 0.83 0.5 0.83 0.23 0.83 0.75 0.83 
LR_HO 0.07 0.07 0.07 0.07 0.065 0.07 0.07 0.07 

Errors 
ARE 7.5504 8.3351 1.0928 1.4907 0.6743 1.5180 1.0839 1.2983 
RMS 56.6966 60.4724 27.4969 36.7636 25.5540 64.3925 67.1507 78.1204 

Max Error 97.9028 129.2215 59.50148 61.8029 38.1838 133.1623 109.9396 155.5295 
Correlation 0.9946 0.999759 0.9955 0.9998 0.9926 0.9998 0.9914 0.9998 
R Squared 0.9663 0.9998 0.9835 0.9999 0.9812 0.9998 0.9611 0.9998 

RAAE 0.1385 0.0146 0.0945 0.0121 0.1134 0.0115 0.1745 0.0114 
RMAE 0.3168 0.0298 0.2781 0.0118 0.2048 0.0243 0.3230 0.02814 

 

MISO - Multi Input Single Output, MIMO - Multi Input Multi Output

Figure 4.10: ANN training parameters and its performance variables (Errors)

 Training Testing 
Epoch 4200 
Scaling -1 to 1 

Transfer Function Tangent hyperbolic 
No of hidden nodes 17 

LR_IH 0.3 
LR_HO 0.12 

Errors 
ARE 4.9339 6.3833 
RMS 24.92 32.754 

Max Error 74.619 90.255 
Correlation 0.9628 0.9207 
R Squared 0.9227 0.8371 

RAAE 0.2138 0.2831 
RMAE 0.8323 1.1123 

 

 

 Figure 4.11: ANN training parameters and its performance variables (Updated errors
with 100 sample points)
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ANN Training Error Band(100 Samples)
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Figure 4.12: ANN training error bands (100 sample points)
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Figure 4.13: Genetic algorithm convergence history
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Suction side stress contours a.Initial E/TU-3 b. Optimum blade

Pressure side stress contours a.Initial E/TU-3 b. Optimum blade

Hub stress contours a.Initial E/TU-3 b. Optimum blade

Figure 4.14: Suction side stress contours at different bowing intensity values
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 Training Testing 
Epoch 2200 
Scaling -1 to 1 

Transfer Function Tangent hyperbolic 
No of hidden nodes 10 

LR_IH 0.3 
LR_HO 0.12 

Errors 
ARE 4.7648 7.7474 
RMS 20.517 38.231 

Max Error 49.177 85.774 
Correlation 0.9752 0.9106 
R Squared 0.9501 0.8136 

RAAE 0.1755 0.3243 
RMAE 0.5356 0.9686 

 

Figure 4.15: ANN training parameters and its performance variables (Er-
rors)(updated with 103 sample points)
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Figure 4.16: ANN training error bands (103 sample points)
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Suction side stress contours a.Initial E/TU-3 b. Optimum blade

Pressure side stress contours a.Initial E/TU-3 b. Optimum blade

Hub stress contours a.Initial E/TU-3 b. Optimum blade

Figure 4.17: Suction side stress contours at different bowing intensity values
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a.Stator view

b.Rotor view

Figure 4.18: Stacking of the optimum blade (Initial E/TU-3 shown by wire frame)
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a.Lean angle (in the direction of rotation)

b.Sweep angle (in the axial direction)

Figure 4.19: Original and optimized stacking line representations
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Figure 4.20: Distribution of stator pressure coefficient at hub, mid-span and tip
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Figure 4.21: Distribution of rotor pressure coefficient at hub, mid-span and tip
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Figure 4.22: Exit flow angle comparison

Figure 4.23: Axial velocity comparison
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a. Original stator

b. Optimum stator

Figure 4.24: SS flow separation and sonic surface for original & optimum stators [7]

100



Incidenceo

S
p

an
(%

)
0 5 100

0.2

0.4

0.6

0.8

1

Orginal
Optimum

Frame 001 ⏐ 08 Mar 2010 ⏐

a. Incidence

ρCa2 (Kg/s.m2)

S
p

an
(%

)

100 120 140 160 180

0.2

0.4

0.6

0.8 Orginal
Optimum

Frame 001 ⏐ 08 Mar 2010 ⏐

b. Mass flux

Figure 4.25: Spanwise distribution of original and optimum incidence and mass flux
[7]
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Figure 4.26: Spanwise distribution of stage loading [7]
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a. E/TU-3 (Original)

b. Optimized

Figure 4.27: Pressure side von Mises stress contour comparison
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a. E/TU-3 (Original)

b. Optimized

Figure 4.28: Suction side von Mises stress contour comparison
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a. E/TU-3 (Original)

b. Optimized

Figure 4.29: Hub von Mises stress contour comparison
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Figure 4.30: Original and optimum blade shapes
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Figure 4.31: Database enrichment
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a. E/TU-3 (Original)

b. Optimized

Figure 4.32: Comparison of stress contours on the hub surface
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a. E/TU-3 (Original)

b. Optimized

Figure 4.33: Comparison of stress contours on the pressure surface
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a. E/TU-3 (Original)

b. Optimized

Figure 4.34: Comparison of stress contours on the suction surface
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Chapter 5

Conclusion

5.1. Summary

A structural shape optimization method was successfully developed, implemented

and tested. Further, a multiobjective aero-structural optimization strategy has been

developed by integrating the aerodynamic and structural disciplines. The aero-

structural optimization methodology was successfully applied to redesign a turbine

stage with the objective of improving the aerodynamic efficiency and minimizing the

maximum operating stress. The optimizer is a combination of GA, multiple ANN,

and have an option to include other response surface models such as RBF. In the

process of approximating the design space by ANN (RSM), each output variable is

approximated by an individual ANN. The addition of this technique to the optimizer

greatly improved the accuracy of the response surface model in addition to giving

complete control over the metamodel errors, handling different design variables and

disciplines. The blade design variables are the blade lean and sweep and the bowing

intensity, they are derived from QRBC parametrization scheme which helps to control

and represent the stacking curve very effectively. The optimization of the E/TU-3
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turbine stage is achieved with just 5 design variables controlling the shape of the sta-

tor and rotor blades. Finally, a highly flexible and robust optimization procedure was

developed and tested. The notable improvements obtained from aerodynamic and

structural performance demonstrates the robustness and accuracy of the optimizer as

well as the developed methodology. The applicability and the way in which design

variables are handled could be different for different problems, therefore care should

be taken to fine tune the procedure according to the problem at hand.

5.2. Future work

• The current optimization procedure could be applied to optimize a compressor

stage, which is probably more challenging and complex.

• In the current work, the turbine weight was not considered as an objective

because the 2D airfoil profiles were fixed. A parameterization scheme such as

the MRATD model [68] could be used in the optimization process, to include

weight of the blade as an objective function. This will make the optimization

space more complex but it may result in an innovative shape.

• Addition of manufacturing constraints to the optimization problem would add

an interesting dimension to the optimization problem and would make the prob-

lem more attractive to the industries.

• The current optimization work is a combination of aerodynamic and structural

disciplines however the methodology has the ability to handle other disciplines

like heat transfer with cooling holes, blade life optimization, end wall contouring,

and tip clearance could be added to the current aero-structural optimization

process. This could result in a more comprehensive, a complete optimization

tool which could be applied to many turbomachinery designs.

111



Bibliography

[1] http://www.neuralpower.com/technology.htm.

[2] http://www.en.wikibooks.org.

[3] http://www.interwet.psu.edu/chapter4.htm.

[4] H. Adeli and M. Wu, “Regularization neural network for contruction cost esti-

mation,” Journal of construction engineering and management, 1998.

[5] M. Arabnia and W. Ghaly, “A strategy for multi-objective optimization of tur-

bine stages in three-dimensional flow,” AIAA-2008-5808, 2008.

[6] L. Fottner, Test cases for computation of internal flows in aero engine compo-

nents. AGARD - AR - 275, Propulsion and Energetics Panel, 1990.

[7] V. K. Sivashanmugam, M. Arabnia, and W. Ghaly, “Aero-structural optimiza-

tion of an axial turbine stage in three-dimensional flow,” Proceedings of ASME

Turbo Expo 2010 Power for Land, Sea and Air, Glasgow, 2010.

[8] I. Kroo, “Aeronautical applications of evolutionary design,” VKI Lecture series

on Optimization methods & Tools for Multicriteria Multidisciplinary Design, Nov

15-19, 2004.

[9] J. Sobieszczanski-Sobieski and R. T. Haftka, “Multidisciplinary aerospace design

optimization: Survey and recent developments,” AIAA paper, 2002.

112



[10] A. Oyama, M. S. Liou, and S. Obayashi, “Transonic axial flow blade shape

optimization using evolutionary algorithm and three dimensional naviers-stokes

solver,” AIAA Paper 2002-5642, 2002.

[11] T. T. Mengistu and W. Ghaly, “Aerodynamic design of gas turbine cascades

using global optimizers and artificial neural networks,” ICCFD3, Jul., 2004.

[12] Y. Lian and M. S. Liou, “Multiobjective optimization using coupled response

surface model and evolutionary algorithm,” AIAA Journal, Vol.43, No.6, June

2005, 2005.

[13] Y. Lian and M. S. Liou, “Aero-structural optimization of a transonic compressor

rotor,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,

AIAA 2005-3634, 2005.

[14] S. Pierret, “Multi-objective and multi-disciplinary optimization of three-

dimensional turbomachinery blades,” 6th World Congress of Structural and Mul-

tidisciplinary optimization, 2005.

[15] C. Vob, M. Aulich, B. Kaplan, and E. Nicke, “Automated multiobjective op-

timization in axial compressor blade design,” Proceedings of Turbo Expo 2006,

GT2006-90420, 2006.

[16] S. Pierret, R. F. Coelho, and H. Kato, “Multidisciplinary and multiple operating

points shape optimization of three dimensional compressor blades,” Journal of

Structure and Multidisciplary optimization, 2007.

[17] T. T. Mengistu and W. Ghaly, “Gas turbine blade design using multi-objective

optimization and dual geometry representation,” ISROMAC12-2008-20005,

Feb., 2008.

113



[18] C. Luo, L. Song, J. Li, and J. Feng, “Multiobjective optimization approach

to multidisciplinary design of a three dimensional transoni compressor blade,”

Proceedings of Turbo Expo 2009, GT2009-59982, 2009.

[19] M. Arabnia and W. Ghaly, “A strategy for multi-point shape optimization of tur-

bine stages in three-dimensional flow,” Proceedings of Turbo Expo 2009, GT2009-

59708, 2009.

[20] R. T. Haftka and R. V. Grandhi, “Structural shape optimization - a survey,”

Computer Methods in Applied mechanics and engineering 57, 91-106, 1986.

[21] Y. Ding, “Shape optimization of structures - a literature survey,” Computers and

Structures Vol.24, No.6, pp. 985-1004, 1986.

[22] J. Frischbier, “Application of structural optimization in the design of jet engine

turbine blades,” Transactions on the built Environment vol. 13, WIT Press, ISSN

1743-3509, 1995.
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Appendix A

ANN Error Measures

In this appendix different error measures used in this work to understand the general-

ization capability of the ANN explained in detail with their mathematical descriptions

[69]. The details of these error terms are given explained below.

Notations used:

yi is the actual output

ŷi is the neural net output

ȳi is the mean of outputs

A.1. Root mean squared Error (RMSE)

The root mean squared error is given by equation.

RMSE =

√∑nerror
i=1 (yi − ŷi)2

nerror
(A.1)

MSE which is the square of RMSE is also used for the BPNN to change the weights,

as the weight change depends on the negative gradient of this error. Therefore it is

used extensively in literature.
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A.2. Maximum Error

The maximum error is given by equation

MAX = max{|yi − ŷi|}i=1,...,nerror (A.2)

Maximum error will indicate only the maximum. This can be useful if there is a

criterion for which a limit is set and anything above is considered unacceptable.

A.3. R squared

The R squared error is defined by equation

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

= 1− MSE

V ariance
(A.3)

R2 is more of a statistical measure for error. It is also known as the coefficient of

determination and it gives information about the goodness of fit for the model. The

value of MSE represents the departure of the metamodel from the real model, and

the variance captures the irregularities of the problem. So the higher the value of R2,

the better is the approximation of the model. Range for R squared value is [-∞, 1].
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A.4. Relative Average Absolute Error (RAAE)

The RAAE is defined by equation

RAAE =

∑n
i=1 |yi − ŷi|
n ∗ STD

(A.4)

RAAE takes the average of the errors and divides it by the standard deviation.

Smaller the value for RAAE the better is the approximation.

A.5. Relative Maximum Absolute Error (RMAE)

The RMAE is defined by equation

RMAE =
max(|yi − ŷ1|, |yi − ŷ2|, ...|yn − ŷn|)

STD
(A.5)

RMAE takes the maximum error and divides it by the standard deviation (spread of

the output values about the mean measured in same units as the data). Large value of

the RMAE indicates more error in one region of the error surface then others though

the overall R square and RAAE values are really good. So a low value of RMAE

will indicate good approximation for the ANN. But this metric is not as important as

R square and RAAE due to its nature of not representing the whole error surface [58].

A.6. Average Relative Error (ARE)

The average relative error is defined by equation

ARE =

∑i=n
i=1 |yi−ŷi|

yi

n
× 100 (A.6)
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