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Abstract

Delay-Centric Approach for Peer-to-Peer Video Live Streaming

Anis Ouali, Ph.D.

Concordia University, 2011

Peer-to-peer (P2P) systems are quite attractive due to their ability to deliver large
amounts of data at a reduced deployment cost. They offer an interesting paradigm
for media streaming applications that can benefit from the inherent self organization
and resource scalability available in P2P systems.

Recently, some push-pull scheduling strategies have been proposed to replace the
classical pull mechanism in mesh based P2P streaming systems. A push-pull mech-
anism is more efficient in terms of the overheads and leads to much better playback
delay performance since the pull part is mainly used either at the beginning of the
session or to recover missing content.

In order to exploit such an advantage, we propose to revisit peering strategies
based on the use of a push-pull content retrieval mechanism. Our focus is to minimize
the playback delay experienced by participating nodes. We propose two new peering
strategies that we compare to the state-of-the-art strategies using simulation.

To validate the overlay construction results obtained by simulation, we propose
and solve a linear programming model that proceeds by constructing spanning trees
over the obtained mesh. Such validation leads to the evaluation of the peering strate-
gies independently from the scheduling strategy that is used. The model has a good
scalability and can be extended to reflect the view of a P2P designer or to find the

most ISP-friendly strategy among different overlay construction strategies.
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With respect to the content retrieval part, we combine the low scheduling delays
of push scheduling with the resiliency and multi-sender ability of mesh overlays. We
propose a new pure push scheduling strategy, PurePush, where we replace the pull
mechanism by a probabilistic push: Parents of a node push a packet with a relaying
probability to reduce redundancy.

Two variations of PurePush are proposed and compared with respect to playback
delay and redundancy/overhead traffic to a typical Push-Pull algorithm. PurePush
significantly improves the playback delay experienced by peers in the situation where

there is packet loss.
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CHAPTER 1

Introduction

With the evolution and the widespread availability of broadband Internet access
through cable modem, xDSL, LAN and FTTx (Fiber To The Home, Fiber To the
Node, etc.) Internet users have seen their download bandwidth significantly increased.
This opened up the door to multimedia services including, e.g., online gaming, Video
on Demand (VoD) and Audio/Video live streaming which typically require sending
the content from one source to many users.

Although, the best way to achieve multicasting over Internet is to use IP Multicast,
it is, unfortunately, not well deployed due to several constraints. Alternatives to IP
Multicast include server-based architectures such as client-server architecture and
Content Delivery Network (CDN). However, the server may become a bottleneck
in the system because of its capacity limitations in both the number of supported
connections and the total upload bandwidth. Thus, these last solutions have a limited
scalability and are costly to deploy.

An alternative to these infrastructure-based multicasting architectures comes from
P2P networks where heterogeneous end-clients (peers) form, in a distributed or cen-
tralized manner, an overlay network and cooperate to accomplish some tasks. The

P2P paradigm was popularized starting from 1999 through Napster [NAPO06], an MP3
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file sharing application. A P2P architecture is potentially highly scalable and flexible
because it relies on peer resources instead of network infrastructure. P2P applications
include file sharing, distributed computing and streaming.

Although P2P solutions are very attractive for video streaming, there are many
technical issues that limit its efficiency. These issues are still challenging research

problems and include:

1. Churn Resilience [BLBS03, RO03, SR06, WLO05b, LN06]: Typically, any peer
may join or leave (through quit decision or failure) a P2P overlay at any time.
Moreover, a P2P system must be able to handle a large number of simultaneous
join or leave requests (flash crowds), for example at the beginning of an event

and at its end;

2. Peer heterogeneity [PWCS02, LLC09]: This is the consequence of the diversity
of access networks. Peers have different nominal upload and download capacities

that may vary significantly;

3. Efficient and optimized overlay construction [PWCS02, THD03, CDK*03, KRAV03,
PKT*05, RLCO8]: A P2P system must organize peers in an overlay where com-
munication can be conducted efficiently and in a scalable manner. An overlay
can be optimized towards maximizing throughput, minimizing delays, maximiz-
ing resiliency to high churn rates, etc. This implies the use of strategies to select
sending peers. The more an overlay reflects the underlying physical network,

the more it is efficient;

4. Content retrieval mechanisms [ZLLYO05, ZLZY05, MR06, Liu07, BMM™08]:
Once the overlay is constructed, an efficient mechanism must be provided to
allow peers to get the content with optimized quality and delays. Such mecha-

nisms must be able to recover quickly from data loss and to minimize received



data redundancy. This may imply content advertising between some peers;

5. Suitable video coding scheme [PWCS02, SNG05, WL05b, WL07]: To improve
P2P streaming performance, a coding that is able to cope with hard network
conditions must be used. It must be resilient to errors and be able to handle

packet losses;

6. Inter-ISP traffic [AFS07, CB08, XYK™08]: P2P networks are generating a very
high volume of traffic and thus, they are stressing ISP networks specially by
increasing the traffic volume among ISPs. ISPs have a hostile attitude by throt-
tling P2P traffic and limiting the free transfer volume of their consumer clients.
New proposals are investigating a cooperation between ISP’s and P2P platforms
to construct ISP-friendly overlay networks based on the exchange of information

about the network state and also by adding ISP owned super peers.

Despite these challenges, we think that, P2P networks, already gaining in popularity,
are becoming one of the most efficient solutions for multimedia delivery over Internet.
In the present thesis, we are interested in live video streaming using a P2P network.
More specifically, we will focus on the situation where a single source is streaming
live content to end clients. Compared to file sharing or to Video-on-Demand, live
streaming has additional constraints like the need to minimize source-to-end latency?,
the non availability of future video segments and the timely delivery of content.
Although source-to-end delay is a critical point in live streaming, specially for
applications such as video monitoring and video conferencing, existing works do not
propose a complete approach for delay minimization taking instead some intuitive
decisions or focusing mainly on either the overlay construction or the content retrieval
mechanisms. Many delay related issues remain to be addressed, e.g., those dealing

with network delays, with overlay performance, with delay definition/estimation and

'the terms latency and delay will be used interchangeably in this document
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with reduction, among a peer supplying nodes, of content discrepancy that causes
higher latencies and playback interruptions.

Moreover, delay minimization alone is not enough to guarantee the quality of the
video streaming because it has many correlations with other criteria like maximizing
resiliency or throughput. In this research proposal, we describe our approach for delay
minimization at each peer in the streaming session. This objective will be achieved
by both an overlay construction protocol and a content retrieval mechanism.

Overlay construction (peering strategies) has been till now the object of many
research works, e.g., [PWCS02, THD03, CDK*03, RS04, LN06, RLCO08]. Actually
the problem is quite rich and important. An overlay with poor performance will
certainly result in a vulnerable or low quality system. Challenges in overlay construc-
tion include peer membership management, overlay topologies, criteria-based overlay
construction, monitoring of the connectivity quality with neighbors, etc. In addition,
most peering strategies rely on local information only such as peer characteristics or
end-to-end information. We aim at identifying new information, mainly about the
state of a node in the overlay. Such information should help in constructing an overlay
network that reduces the delays experienced by peers and would serve as a basis for
the peering strategies we propose.

Regarding content retrieval, despite several works, recent mechanisms (based on a
pull or a push-pull approach) require content reconciliation to locate missing data and
their explicit request from the receiver. This introduces delay and adds complexity to
the receiver side (it is responsible to schedule and manage data reception from sending
peers). Without advertising, the receiver will face the problem of data redundancy
which degrades the performance of the system.

Although some push scheduling strategies exist, they rely on a heavy process

[BLPL*08, WL07, BMM™*08| and consequently they are not practical enough to be



implemented in real systems, specially mesh-based ones. In addition, some of them
still operate by content advertising to determine needed data or to reduce redundancy.
Therefore, we aim at proposing a pure push scheduling strategy that operates with
almost no scheduling delays and without content advertising. We have to keep the
process as simple as possible while minimizing the risk of redundancy and overhead.
A special mechanism is then needed notably at startup and to recover lost content.

The rest of the document is organized as follows. Chapter 2 gives an overview of
P2P streaming solutions based on the description of overlay topologies, data retrieval
mechanisms and performance metrics. Chapter 3 provides a detailed statement of
the research work. Then, in Chapter 4, we provide a literature review and illustrate
how existing works fall out short of the goal regarding the objectives of the proposed
research.

The first contribution of the thesis lies in Chapter 5 where we investigate the
impact of the characteristics of the streaming source and the participating peers on
the P2P system performance and more specifically on playback delays experienced by
peers. Through the use of a linear programming model, we identify related trade offs
that need to be considered in order to fully exploit the potential of a P2P streaming
system.

The second contribution consists in proposing new peering strategies with different
variations which have been studied in Chapters 6 and 7. In Chapter 6, we propose
to revisit the peering strategies with a focus on playback delay minimization. Such
strategies will benefit from the push-pull mechanism as the pull part is used mainly
at the beginning of the session or to recover lost content. We believe that making the
right decisions about node relationships will boost the performance of P2P systems.
We focus on peering strategy variations where a peer selects the minimum number

of parents that provide it with the full streaming rate. Results show that one of



the proposed strategies outperforms significantly the existing ones with respect to
playback delays experienced by participating nodes.

With resiliency in mind, Chapter 7 reconsiders new variations of the strategies
being compared in Chapter 6: We impose a fixed number of parents to each node.
The two strategies that we propose lead to the lowest playback delays: They lead to
overlays with short paths to the source.

The third contribution deals with the validation of peering strategies: Chapter
8 validates the results obtained in Chapter 7. In addition it lays the first stone
toward evaluating peering strategies independently of simulations/experimentations,
implementations and assumptions. We propose a Mixed Integer Linear Programming
(MILP) model to evaluate peering strategies independently of the scheduling mecha-
nism. Besides being scalable and flexible, it may be used as pre-deployment analysis
of the impact of design decisions.

The fourth contribution is presented in Chapter 9 which deals with scheduling
strategies and proposes a new solution where we combine the low scheduling de-
lays of push scheduling with the resiliency and multi-parent ability of mesh overlays.
We introduce a pure push scheduling strategy, PurePush, where we replace the pull
mechanism by a probabilistic push: Parents of a node push a packet with a relay-
ing probability to reduce redundancy. Through simulations, we show that PurePush
outperforms, with respect to playback delays, the push-pull strategy in the situation
where we consider packet loss.

Finally, Chapter 10 presents the conclusion of the PhD thesis.



CHAPTER 2

P2P Streaming Overview

In this chapter we give a general view of P2P streaming systems. We start by the
motivation of adopting a P2P architecture for video streaming instead of other ex-
isting solutions. Then in Section 2.2, we present different overlay topologies and see
how they impact the streaming performance. In Section 2.3, we discuss mechanisms
used to disseminate the content to all the peers. Section 2.4 describes mechanisms
for overlay maintenance. Finally, in Section 2.5, we describe performance metrics at

both the application level and the overlay level.

2.1 Why P2P Streaming?

2.1.1 Existing Streaming Architectures

IP Multicast. In the late 80’s, it was argued that multicast should be implemented
in the network layer instead of the application layer [Dee95] because the performance
benefits of implementing multicast at the IP layer outweigh the cost of additional
complexity [CRZ00]. IP multicast works through building a multicast tree at the

IP layer. In such a tree, the nodes are routers with high speed transfer and high



reliability but with limited processing and extensibility capacities. IP multicast is
efficient as it neither introduces delays nor duplicates packets on the same physical
link. This is made possible by the fact that routers are being responsible for content
replication. Although most routers support IP Multicast, it is not widely deployed

because of the following reasons [CRZ00]:

e Scalability as routers must maintain per multi-cast group state (which also

violates the stateless architecture of the Internet);

e High level services such as reliability, security, error control and congestion
control are difficult to implement in the multicast case while they are well

mastered in the unicast case;

e Need for infrastructure change.

In addition to the lack of incentives to handle multicast traffic, IP multicast tree
construction is not flexible. For example, it does not take into account criteria such

as bandwidth while constructing the distribution tree.

Client-Server Architecture. This is the classic architecture where each end-client
has a unicast connection to the source server. The same data is sent on each of the
upload links which can be seen as a loss of resources. The main problem with this
architecture is its lack of scalability. Indeed, the streaming server will be a bottleneck
for the system because it has a limited number of simultaneous connections (typically

between hundreds and few thousands) and a limited upload bandwidth.

Content Distribution Network (CDN). CDN is seen as a content delivery
infrastructure-based network. The main idea is to strategically deploy several servers
in different geographic locations in the network. Content is replicated at the servers.

An end-user request is transparently redirected to the best server (that optimizes
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given QoS criteria). CDN is a costly solution with limited scalability: it requires col-
laboration among several ISPs, must avoid bottlenecks at the server side and needs

an optimized decision on where to place those servers.

2.1.2 P2P Architecture for Video Streaming

Application Layer (or Level) Multicast. Application Layer Multicast (ALM)
is a specific example of P2P networks where the multicast functionality is managed
by the application layer instead of the network layer. The multicast is achieved, in
a distributed manner, by using several unicast end to end connections among peers.
This involves content replication and retrieval, membership management, peer group
communication, etc. The idea of ALM was revived in [CRZ00] and, from then on, was
used in Internet conferencing, video streaming, on-line multi-player gaming [RMO5],

VoIP [GWYS05], etc. In [CRZ00], the authors differentiate between two ALM types:

e Proxy-based (or infrastructure-based) ALM where some application-level prox-
ies are located throughout the Internet to assist end-client nodes to form a high

quality overlay;

e P2P architecture where end clients are organized in an overlay network. Each

end-client acts simultaneously as a server and as a client.

The P2P paradigm was made popular by file sharing applications such as Napster,
Kazaa and BitTorrent. A P2P architecture does not require Internet infrastructure
modifications. These clients share their resources (bandwidth, storage, CPU etc).
Moreover, they are software extensible and participate actively in content distribu-
tion. The P2P architecture is potentially highly scalable as the resources grow with
the growing number of joining peers without any administration cost or network in-

frastructure support.

10



In a P2P network, clients are organized in an overlay network. A link between two
nodes in the overlay maps to one or more unicast path(s) in the physical network
(Internet), see Figure 2.1. Thus, the overlay network is independent of the physical

infrastructure.

WAN

Data Flow

Overlay Link
—_— —

Physical Link

Figure 2.1: Overlay Network Example

P2P Streaming. P2P video streaming breaks with the classic client-server view
and provides an architecture where end clients are able to get the same content
from one or many other clients (possibly not including the source server). Each end
client is participating with its own resources. The P2P solution is highly scalable.
Moreover, it eliminates bandwidth bottleneck at the streaming source and reduces
the cost of deployment. P2P paradigm in video streaming leads to many streaming
configurations, i.e., one source to many receivers [KRAV03, ZLZY05], many sources to

many receivers [CRZ00], many sources to one receiver [MAMO06]. These configurations
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are all compatible with live or video on-demand (VoD) streaming. P2P streaming
systems, as any streaming system, are delay sensitive and bandwidth demanding. The
most important objectives are to guarantee playback continuity and video quality.
Unfortunately, along with traditional streaming problems such as network con-
gestion and bandwidth fluctuation, P2P streaming systems must cope with common

issues of overlay networks which include:

e High stress on the network where multiple overlay paths may go through the
same physical link, e.g., link R1-R2 in Figure 2.1. Moreover the same data may

go through the same link several times;

e Unpredictability of peers (churn): dynamic change in overlay membership/topology

caused by joining, leaving and failing peers;

e Heterogeneous and asymmetric (download vs upload) bandwidth of connections

among participating peers;
e Fluctuations in upload bandwidths and in end-to-end delays among peers;

e Inter-client communication which introduces overhead. This communication
will allow overlay maintenance and data retrieval (such that each client knows
what data is needed and from where to get it). Overhead has to be small to

keep P2P streaming efficient.

P2P live streaming adds some other constraints such as the playback delay of frames
or segments and the non availability of future segments. This is in contrast with file
sharing applications where all blocks of data already exist. Video on-demand has an
additional important issue which is the asynchronous availability of content because
peers will start sessions at different times and they must get all the content from the

beginning. This is not the case in live streaming as a joining peer will only get the
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content that is disseminated at that time.

Sripanidkulchai et al. [SGMZ04] have demonstrated the feasibility of large scale live
streaming in overlay networks based on three key requirements: the availability of
resources to construct the overlay, the maintenance of connectivity and stability in

the overlay and the efficiency.

2.2 Overlay topologies

P2P streaming protocols organize peers in an overlay network and specify mechanisms
for content delivery. Some of them differentiate [KRAV03, CRZ00] between the data
plan (overlay used to disseminate data packets) and the control plan (overlay to
disseminate control packets). In the following, we describe the overlay topologies for
data dissemination. These topologies impact both the overlay performance and the

streaming quality. The most used ones are tree, multi-trees and mesh topologies.

2.2.1 Tree

Principle. All nodes are organized in one unique tree rooted at the streaming
source. Some nodes will have direct connections to the source and some will have
other peers as parents. A parent must have the sufficient bandwidth to provide each
of its children with the video stream. Usually, the source is uploading the same data
(or packets) on each of its links. The first studies on overlay networks used the tree

topology trying to emulate the multicast tree of IP, e.g.,|[CRZ00].

Advantages & Drawbacks. An overlay tree is highly scalable and efficient in
terms of physical link stress and control overhead and end-to-end latency [BB04] (de-
pending on the height of the tree). Also, routing decisions are simple and predictable.

However, the tree structure has many drawbacks:
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e Any loss high in the tree will cause a loss down in the tree. Thus tree-based
systems are highly sensitive to network congestion. In addition, the failure or

leaving of a parent can cause the interruption of the playback;

e The incoming bandwidth of a node is limited by the upload bandwidth of its

single parent.

e The transmission rate must be lower than upload bandwidth of the nodes in

order to be able to construct the tree;
e Inability to handle the heterogeneous and the asymmetric bandwidths of peers;

e Bandwidth is wasted as each outgoing link of a peer is carrying almost the same

information;

e Maintaining a high bandwidth overlay tree requires continuous probing for a
possible new parent with higher available bandwidth than the current one. This
is necessary in order to react to the dynamic evolution of the overlay tree but

implies higher overhead [KRAV03];

e The tree must be balanced in order to minimize the number of children of a

failing /leaving node but this increases the number of free-riders.

Free riders are nodes for which available outgoing bandwidths are less than the stream-
ing rate or that are not participating with their upload bandwidth. In a tree, leaf
nodes are also free-riders because they do not have children so they only get the
stream and do not upload it to any other peer. Thus in a tree, where each link carries

all the stream, these nodes can not have children.
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2.2.2 Multi-trees

Principle. Instead of a single tree, the overlay network is organized into several
trees rooted at the streaming source. Each node participates at every tree and is
likely to have different parents and children. To improve efficiency and stability, some
other constraints may be imposed such as the fact that one node is an intermediate
one in exactly one tree [CDK*03]. In the other trees, it must be a leaf node. Thus,
only one tree will be affected by the departure/failure of this node. If the paths from
a node to the source (one in each tree) are not disjoint, then the failure of a common
node will cause the first node to be disconnected from more than one tree.

Each tree will carry a substream of the video stream. All substreams are usually
disjoint or with little redundancy. This is achieved by using encoding techniques such
as layered encoding [HSLG99] or Multiple Description Coding (MDC) [Goy01]. The
advantage of using MDC instead of layered encoding is that each part of the stream
can be understood by the receiver while in layer encoding the client must have a

particular layer called base layer to be able to benefit from the higher layers.

Advantages & Drawbacks. A multi-tree overlay is more resilient because it is
unlikely that one node will see all of its parents fail. The most common case is when
one parent leaves or fails so the node will be affected in probably only one tree. As a
consequence, it may encounter a quality loss but no playback interruption.

Multi-trees with MDC also allow the increase of available bandwidth resources in
the overlay comparing to the single tree case because some free-riders in single trees
can participate with their low upload bandwidth to some of the trees [SGMZ04].
Thus, multi-trees are usually more efficient than a single tree. However, there is

more overhead because each tree has to be maintained. In addition, each node will
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encounter more ancestor changes compared to a single tree. Other issues with multi-
trees includes the difficulty to construct different trees that optimize a given objective.

In addition, connections between trees may depend on a single bottleneck [RS04].

2.2.3 Clustering

Principle. Clustering is used with a high number of peers in order to make the
management process easier. Each cluster has a Membership Server (MS) or head
cluster. A joining node gets a list of head clusters and selects one server to contact.
It gets a fresh list of peers belonging mainly to the cluster managed by the contacted
MS. A new MS is chosen by the old MS or by the Rendez-Vous Point (RP) who
provides a full or partial list of nodes participating in the overlay. Keep-alive message

exchanges are necessary among:
e RP and MSs to recover from MSs departure or failure;
e MSs: some of them will be included in the keep-alive message sent to members;
e MS and its cluster members.

Clustering policies may be [SGMZ04] random, based on delay or based on geographic
proximity. A cluster must have a maximum size (to avoid overloading the MSs) and
enough resources (to use local hosts as download sources) [SGMZ04]. Clustering does
not impact the stability of the overlay as in the case of a tree but improves efficiency
(with delay-based clustering) [SGMZ04]. Clustering is mainly used in tree-based
systems such as ZIG-ZAG [THDO03], Nemo [BB04] and AnySee [LJL*06]. One of its

drawbacks is that it may impose high load on some particular nodes.
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(a) Tree-based content dissemination {b) Mesh-based content dissemination

Figure 2.2: Tree vs Mesh based content dissemination

2.2.4 Mesh

Principle. A mesh topology is an example of an unstructured overlay where any link
between two peers is virtually possible. P2P mesh overlays have been widely used
in file sharing applications and more specifically with the BitTorrent protocol. In
BitTorrent [BIT11], a file is divided into several blocks. Peers that possess the whole
file are called seeds while peers having some part of the file are called leechers. These
peers participate in a swarming activity where, each leecher downloads blocks of data
from different neighbors that are obtained from a tracker server. The downloaded
blocks are not necessarily contiguous (the order is not important). Such a technique
is not feasible in video streaming because there is a timeliness requirement for playing
downloaded content.

In a mesh, a node may receive data from more than one node and simultaneously
send data to one or many nodes. Such node then increases its data reception rate
but has to guarantee that it is not receiving the same data from many parents, i.e.,
the data sets on each of the node’s downlinks must be disjoint. To illustrate the
multi-sender characteristic in a mesh overlay compared to a tree overlay, Figure 2.2.3

gives an example of content distribution of four video segments (1-4) in both a tree
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overlay and a mesh overlay.

In some cases, the node is responsible for selecting some of its parents [KRAV03].
These parents or neighbors must be able (bandwidth and content wise) to provide
missing data to the requesting node. There are two types of mesh topologies: un-
structured mesh (represented by an undirected graph) and Directed Acyclic Graph
(DAG).

A mesh overlay is inherently resilient to churn because there is no need to build and
maintain a specific structure such as a tree or a DAG. Both peer membership manage-
ment and content distribution may follow gossip/epidemic algorithms [EGmKMO04].
Typically, each peer sends a message to a random subset of neighbors until the mes-
sage is forwarded to all peers. The random selection of destination nodes achieves
the resiliency to churn and packet losses. With respect to video streaming, gossip
algorithms may lead to higher delivery times and received data redundancy.

For instance a randomly constructed mesh overlay is usually associated with a
gossip protocol that enables decentralized distributed communications (membership
management and content advertising) among peers [KRAV03, ZLZY05, ZLLY05]. A
node sends a message to a random set of other nodes participating in the streaming
session. Each of these peers sends the same message to another random set.

On the contrary, DAG [LN06, O0i04] imposes some properties on the mesh to
improve connectivity. For example, in [LNO6], each peer has at least k parents so the
vertex connectivity is equal to & which means that every simultaneous failure of £ —1

nodes does not cause the network to be partitioned.

Advantages & Drawbacks. A mesh architecture is more robust and resilient to
high churn rates. It is also able to achieve high throughput. Indeed, downloading
data from many nodes improves both throughput (not limited to available upload

bandwidth of the parent) and reliability (reduces the impact of single node failure).
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Overhead in mesh overlays depends on the maximum number of neighbors per
node. It is usually more important than in tree or multi-tree topologies. Indeed,
each node must continuously check whether its neighbors are still alive. It is also

responsible for identifying nodes that have the content it is looking for.

2.3 Content Retrieval Mechanisms

The two main approaches for content retrieval are the push and pull approaches.

Push Approach. In a push mechanism a node only forwards data to others follow-
ing some rules. The receiver does not request any data. In this type of mechanism,
data loss can be hardly recovered by the receiver. The push mechanism is simple
in a one parent context (for example: trees) but is hard to deploy in a multi-parent
context because of two main issues: data redundancy and data loss. In addition,
when a node is missing a packet, it is difficult to state whether the packet is lost
(so the receiving node has to request it) or will be pushed by a parent and thus, the
receiving node has to wait for it. System examples mostly include tree and multi-tree

based systems.

Retrieval of Content by the Receiver. This is also called pull mechanism. It
may be based on data chunks, i.e., temporal division of the video stream or on sub-
streams, i.e., spatial division of the video stream.

In receiver-driven systems, a node has to be aware of the existing data in some of
the overlay nodes (neighbors for example). Then, it explicitly requests missing data
from a subset of these nodes. This is referred as content reconciliation [BCMRO04].

Many techniques have been proposed [BCMRO04] but they are relatively delay and

resource intensive. They may need larger buffers at both sender and receiver peers.
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When using a pull mechanism, lost data is easily recovered. However, it increases
delay because of the three steps model used: advertise content, request and send.
The pull method can be seen as complementary to the push approach and they can
be combined [ZLZYO05].

Pull-based systems suffer from an efficiency vs. low delay tradeoff. Indeed, in-
creasing the buffer map advertising period among neighbors will reduce the overhead
but will increase the delay. On the opposite, reducing the advertising period will

increase the overhead even if it helps in reducing playback delays.

2.4 Membership Management

Membership management includes operations for a peer to join and leave the overlay
as well as making sure that some peers are still participating in the overlay. Commu-
nication can be centralized in which case a peer or a server must have a global state
information of the overlay which is not a scalable solution [CRZ00]. It can also be
distributed in which case a peer maintains information about a subset of the overlay

only.

Join. The join operation is achieved using a Rendez-vous Point (RP) that provides
a full or partial list of nodes participating in the overlay. The RP is generally different
from the source server and is known to all clients. The received list can be random
as in [SNGO5]. The new peer then selects possible parents and contacts them.

Parents can be selected randomly, based on the Round Trip Time (RTT) or more
generally the end-to-end delay, the available throughput or the geographical prox-
imity. Bandwidth based criteria is not scalable because it requires periodic probing
while delay based criteria does not guarantee enough bandwidth. Indeed, it is possi-

ble that a node has low delay but also low bandwidth while another node have longer
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delay and higher bandwidth. More complex selection criteria may be used. In the
experiments of [SGMZ04], a node tries to predict how long each possible parent will
stay in the overlay using some heuristics and then selects the parent with the highest
lifetime first. The diversity of parents is a good step towards overlay resiliency and

robustness.

Departure. A departure is graceful if before disconnecting, a node informs its par-
ents and its children so they can reorganize themselves. For instance, in a tree based
system, each descendant tries to connect independently to the tree. Non free-riders

nodes are prioritized.

Failure. It is an ungraceful departure due to node failure (hardware or software) or
even network failure. Parents and children are not aware of it and must detect this

failure. This is done through maintenance.

Maintenance. Maintenance is achieved through periodic exchange of hello like
messages. Each node has a life time for each of its neighbors. If it does not receive
anything after some time from its neighbor, it assumes that it has failed. Each node
maintains a list of spare parents to contact if some of the current parents leave or fail.
Maintenance may include dynamic improvement of the overlay with node probing for

other existing members to find better parents [CRZ00, RLCO0S].

2.5 QoS

We can consider that in application layer multicast ALM there are two types of QoS.
The first is related to end-client application performance and the second is related to
the overlay performance. It is obvious that the overlay performance has some impact

on the application performance.
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2.5.1 Overlay Efficiency

Sripanidkulchai et al. [SGMZ04] define the overlay efficiency as the degree at which
the overlay reflects the underlying IP network. Based on that, overlay efficiency
may include the connectivity performance of the overlay and the cost in terms of
overhead.

Some other important metrics include physical link stress and the rate of useless

packets [BB04]: duplicated packets or packets that arrived out of the delivery window.

Quality of Connectivity. We can define the quality of the connectivity as the
ability of the nodes in the overlay to send and to receive data at the right time for
their use. Birrer et al. [BB04], define connectivity as the percentage of nodes that
received at least one packet in 10 sec. Sripanidkulchai et al. [SGMZ04], evaluate
connectivity based on two metrics: Mean interval between two ancestor changes and
Number of descendants of a departing node. The first one is an indication of the con-
nectivity performance seen by a node. The second one is an indication of the system
connectivity. The greater this number is, the poorer is the connectivity because a
departure will affect many descendants. Requirements for a good connectivity include

stability and scalability.

Control Traffic. Control traffic includes communication among peers to exchange
video packets information or messages used in overlay maintenance. A good multicast
protocol must have low overhead. When using a gossip protocol, having a limited
number of neighbors makes the associated overhead independent from the overlay

size. Thus, it adds scalability to the system.
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2.5.2 Streaming Performance

Streaming performance metrics include:
e Bandwidth/throughput;

e Latency, i.e., source to end delay [BB04], time between sampling time at the
server and playback time at the receiver. It may also be estimated by the

number of hops;
e Playback deadline, i.e., playback time of a specific data after which it is useless;

e Playback continuity, .e.g, continuity index, defined in [ZLLY05], which is the
ratio of segments that arrive before or on playback deadlines over the total
number of segments. It does not significantly improve with a rising number of

partners over a given threshold [ZLLY05];
e Start-up delay, i.e., time before the playback begins;

e Delivery ratio, i.e., ratio of in-time delivered packets over total generated packets

[BBO4, ZLZY05).

Although these metrics are known in the classic client-server streaming architecture,
some of them become more critical in the P2P streaming system such as all delay
related metrics, because they are no more related to the physical network only but

also to the overlay performance.
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CHAPTER 3

Problem Statement and
Contributions

In the following, we describe in detail the research conducted within this PhD thesis.
In Section 3.1, we formulate the global problem that we are tackling and which deals
with a delay-centric P2P live video streaming and give the set of assumptions and
limitations. We have defined two main objectives: Proposing a new peering strategy
and a new content retrieval mechanism that are focusing on minimizing playback
delays experienced by peers. For each objective, we discuss its motivations, the
proposed research and the contributions in Section 3.2 and in Section 3.3 respectively.

Finally in Section 3.4 we summarize the research outcomes.

3.1 Main Problem Formulation

3.1.1 Global Problem

Several studies have been conducted in order to design and deploy P2P systems in
the context of live video streaming over Internet, investigating efficient and opti-

mized overlay construction [PWCS02, CDK"03, KRAV03, RLC08], content retrieval
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mechanisms [ATS04, ZLLY05, ZLZY05, MR06], etc. Most of them mainly focus on
maximizing throughput or resiliency while trying to keep the playback delay (source-
to-end streaming latency) bounded, with this latter delay often estimated by the
number of hops, at the overlay level, from the source to the end node.

In addition, most existing systems do not consider situations where delays are
critical to the performance such as interactive applications. Indeed, they focus on
Radio/TV broadcasting, on-demand videos, where delay related requirements are
important but relaxed toward low cost deployment and video quality.

P2P live streaming is not exclusive to such applications. For instance, it may be a
tool to broadcast a live conference or live e-learning session where users want to inter-
act through asking questions using text messages, voice or video. Other applications
may include live video on-line auction, video surveillance and military communication.
The streaming delay is even more critical in such a case.

However, delay has not been given the importance it deserves. Indeed, delay
from the source is a crucial point in live streaming, and thus, from our perspective,
minimizing or bounding it, is a key issue.

In the present study, we are investigating the problem of providing a live video
streaming session using a unique streaming source. We propose to examine the objec-
tive of minimizing the streaming delay experienced by every node in the P2P overlay
network. In addition, we consider an overlay with a mesh topology as mesh overlay
networks are believed to be suitable for P2P streaming and inherently resilient to
failures, see, e.g., [YCM™04].

The possible actions in order to achieve the proposed objective are limited to the
phases of overlay construction/maintenance and of content retrieval. Thus, we will
deal with two main contributions: an overlay construction protocol and a content

retrieval mechanism.
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3.1.2 Assumptions and Limitations

In this section, we describe the main assumptions we make:

1. Sufficient download bandwidth: Every peer in the session has enough download
bandwidth to accommodate the streaming rate. This is a reasonable assumption
because Internet access is continuously evolving with the deployment of recent
technologies like ADSL24 and FTTH access networks. So, in the near future

download bandwidth will not be an issue;

2. Non awareness of underlying physical network: We assume that nodes do not
have any knowledge about the physical underlying network. Although it may
result in some problems related to shared paths for streaming (shared bottle-
neck, unbalanced load, link stress), it is a realistic assumption. Otherwise, nodes
must cooperate to discover physical network topology and to assign paths to
data flows. This adds complexity to the receiver side and we will not address

those issues;

3. Limited upload bandwidth: The upload bandwidth of peers is the most important
resource. A bad utilization will result in a poor performance of the global
session. The uploading is still an issue even with new access technologies. In
our work, we will consider that the upload bandwidth of a peer may be lower

than the streaming rate;

4. Network Address Translation (NAT)/Firewalls: The impact of firewalls or NAT
on node connectivity and effective upload bandwidth is not being considered in

the present work. It is left for future work.

5. Constant bit rate at the source: We consider the situation with a constant

bit rate because it gives more control on the scheduling strategies and on the
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mechanisms that may be used to recover from data loss. Indeed, with a constant
bit rate it is easy to identify which data has been received and which data has

been lost.

6. Same quality for all: In our proposed research, scalable video was not consid-

ered. Thus each participating peer aims at receiving the full video stream.

7. Unfair upload bandwidth exploitation: It is up to a participating user to limit
the upload bandwidth that he wants to offer to the streaming session. Our

solutions will assume that these amounts of bandwidth are available.

8. Jitter: Jitter in packet delivery is not being considered. Studying the impact

of such phenomena is left for future work.

In the present work, we do not tackle practical issues such as security, digital right
management, legal aspects, etc. For video coding, we refer to works providing encod-
ing resilient to errors and packet loss. Also, we will not target P2P streaming in a

mobile environment.

3.2 Delay-centric Overlay Construction

3.2.1 Motivations

In many existing works, the common practice is to propose a P2P streaming protocol
based on a multi-sender receiver-driven approach using a mesh topology. Usually, the
mesh overlay uses a gossip protocol for membership management. A joining node will
get a random initial set of peers known to be in the streaming session and then will
select some parents randomly or using a criterion. However, many uncontrolled and
unwanted situations may occur causing degradation in the streaming performance.

For example, there is no guarantee of efficient utilization of the upload bandwidth of
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a parent as it is the receiver who decides what data the parent has to send.

The authors of [LNO6] point out some connectivity (risk of mesh partitioning) and
loop problems in randomized mesh topologies. It is thus clear that a topology must
have some properties to avoid such problems. Unfortunately, the more constraints
and properties an overlay has, the more it is sensitive to churn. The challenge is to
impose properties that may be recovered easily and quickly.

Although delay is usually expressed in the number of hops between a peer and the
source (e.g., [MR06, SLL06]), it is not enough to precisely describe the effective delay.
Indeed, a peer at a low level in the mesh (low distance from the source in number
of hops) does not necessarily have lower delay than another peer in higher level. For
example, we may prefer high download bandwidth peers to be close to the source but
this does not mean that they have the lowest end-to-end delay to the source. More

relevant information is needed to reflect more realistically the delay state of a node.

3.2.2 Proposed Research

The objective of this step is to propose new peering strategies in order to construct a
mesh overlay that focuses on delay minimization. We exploit the fact that, recently,
several mesh-based P2P live streaming systems are adopting a push-pull mechanism
instead of the classical pull mechanism. A push-pull mechanism is more efficient in
terms of overhead and leads to much better playback delay performance because it
eliminates the need of the three steps of pull content retrieval: Buffer map broadcast,
data request and data sending. Thus, using the pull mechanism is not the best way to
evaluate the performance of peering strategies especially the ones targeting playback
delay minimization.

Since a push-pull mechanism typically leads to low scheduling delays, the content

delivery delay is impacted mostly by the overlay path length. Thus, we propose to
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revisit peering strategies in mesh overlays using the push-pull mechanism proposed
in [ZLZY05, ZZSY07]. In addition, thanks to the fact that the push-pull strategy
restores the importance of the overlay path lengths, the delay estimation by a number
of hops is no more suitable and must be replaced by the delay observed on the overlay
links.

This stage led to the proposal of new a peering strategy, BestParents, that is based
on the selection of parents that offer low delay paths to the source (See Chapters 6
and 7).

Unfortunately, proposing a peering strategy that performs well through simula-
tions or experimentations is not enough to compare them with existing ones. In fact
simulation and implementation scenarios combined with design choices impact the
performance of any strategy. Thus, despite the advances made by P2P streaming
systems, they have failed to be in the foremost of content distribution solutions.

On the one hand, P2P deployment is suffering from the digital rights issue and
from the hostility of ISPs who try to minimize their inter traffic. On the other hand,
it is very difficult to guarantee the QoS performance such as playback delays and
streaming quality as they usually rely on experimental evaluations.

As part of some initiatives for Future Internet, new ideas call for a collaboration
(based on topology information and even hardware support) between P2P systems
and ISPs [ABET09]. To be more effective, we believe that they must be complemented
by a performance evaluation methodology that is less prone to design decisions such
as scheduling strategies and implementation choices. Thus, we will also propose a

MILP model for evaluating peering strategies.
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3.2.3 Contributions

Through working on the overlay construction part, we made the following contribu-

tions:

1. We studied the impact of the characteristics of peers and of the source node
on the experienced delays by peers and the identification of tradeoffs related to

those values, which led to the following publication:

e Anis Ouali, Brigitte Jaumard, Gérard Hébuterne, Trade-offs in Peer Delay
Minimization for Video Streaming in P2P Systems, Eighth International
Workshop on Global and Peer-to-Peer Computing. In Proceedings of the
8th TEEE International Symposium on Cluster Computing and the Grid,
CCGRID’08, May19-22, 2008, Lyon France

2. We proposed new peering strategies that exploit information about the state of
nodes in the overlay mainly their delays to the source to make wiser selection

decisions, and

3. We compared those strategies with the state-of-the art ones using newer content
retrieval mechanisms, mainly a push-pull mechanism instead of a pull mecha-

nism.

e Quali, A., Kerhervé B., Jaumard, B., Toward New Peering Strategies for
Push-Pull Based P2P Streaming Systems. Ultra Modern Telecommuni-
cations & Workshops, 2009. ICUMT ’09. International Conference on |,
P2PNet09, October 12-14 2009, St.Petersburg, Russia.

e Quali, A., Kerhervé B., Jaumard, B., Revisiting Peering Strategies in
Push-Pull Based P2P Streaming Systems, In proceedings the IEEE In-

ternational Symposium on Multimedia ISM’09, December 14-16 2009, San
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Diego,CA, USA. (Acceptance Rate 19.6%)

4. We validated the obtained results through proposing a MILP model. The model
is easily scalable and customizable to reflect the view of a P2P streaming proto-
col designer or an ISP and thus it allows to evaluate a peering strategy without

relying on simulations or specific implementations of the protocol:

e Anis Ouali, Brigitte Jaumard, Brigitte Kerhervé, A MILP Model for the

Validation of Peering Strategies, submitted for publication.

3.3 A New Content Retrieval Mechanism

3.3.1 Motivations

A content retrieval mechanism allows an end-client to receive data from other nodes
using an already constructed overlay. Through existing works [HHB*03, BLBS03,
RS04, ZLLY05, ZLZYO05], it has been demonstrated that a multi-sender mechanism
achieves better results than a single-sender one. In such a context, a receiver-driven
approach was, for some time, the most suitable one as it allows the receiver to cope
with two main challenges: Eliminating data redundancy and recovering from data
loss.

However, a receiver-driven approach adds complexity to the receiver side because
the receiver is responsible for scheduling the data sent by its parents/neighbors. In
[ZLLYO05] for example, the authors use buffer maps to advertise available content
so that a node is able to request a given content from neighbors. These maps are
periodically sent by each node to its neighbors. This adds overhead and load on peers.
In addition, as already mentioned in Section 2.3, there is more delay because of the

three steps of data retrieval (advertise-request-send). Minimizing the use of a pull
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approach will result in minimized delays. Gridmedia [ZLZY05], illustrates the benefit
of a combined push-pull mechanism on observed delay. A client registers itself with
some neighbors that will systematically send data to him (push) and the pull is only
used when there is missing data. This system is presented in more details in Section
4.3.

However, in Gridmedia, there is no guarantee on the pushing rate. In presence of
a complex overlay, the push-pull strategy may trigger the pull part and thus increase
the delivery delays and the overhead.
An efficient content retrieval mechanism will make efficient use of the upload band-
width of peers and minimize the overhead. It has also important impact on minimiz-
ing delay and maximizing throughput or resiliency. Actually, we consider the content
retrieval mechanism as the way to achieve efficient utilization of the constructed over-
lay network. Indeed, the overlay satisfies some quality requirements but it does not
impose how it is used.
For example, a node may have parents with available upload bandwidth but if they
don’t have enough content to send, the bandwidth observed will be lower than ex-
pected: Content Bottleneck [MRO6]. Moreover, when a receiver node assigns the most
part of the content to only one of its parents, it will be sensitive to its departure or
failure and then may experience significant degradation of quality. Hence, the system

has a weak resiliency.

3.3.2 Proposed Research

The objective of this step is to propose a content retrieval mechanism in order to
minimize the delays based on a realistic delay modeling.
Content retrieval is closely related to content granularity which may depend on

the encoding used. When using layered encoding or MDC, the objective is to deliver
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each content layer by layer. The content redundancy and data loss will be dealt at a
layer level. However, rateless encoding, e.g., [BLMR9S8], deals with the delivery of a
minimum number of different blocks of data. Traditional encoding deals with known
blocks.

We set as a starting point the push-pull mechanism used in [ZZSY07]. We observe
that the performance of the strategy depends on the complexity of the mesh overlay
and may degrade when facing packet loss. In both cases, the pull mechanism is
triggered. Thus, we propose to investigate and to propose a pure push scheduling
strategy that eliminates completely the use of the pull mechanism.

Replacing the pull mechanism in a push-pull strategy will require finding a mech-
anism to get packets at startup and a mechanism to recover lost packets. In addition,
at each step, we need to ensure that there is low redundancy and overhead.

To further satisfy the objective of delay minimization, we have to let every peer
implicitly know from where to get the content. Thus, according to some rules a node
knows what content it has to forward and which parents to choose to get a specific
content.

We stick to mesh overlays because of their inherent resiliency to churn and their
multi-parent ability. Push scheduling over mesh overlays is different from multi-trees.
Indeed, we do not construct a multi-tree overlay. We construct a mesh overlay and

then each substream will be distributed over a tree on top of the mesh.

3.3.3 Contributions

Through working on the content retrieval part we made the following contributions:

1. We proposed simpler scheduling mechanisms at both the receiver and sender
side: A receiver is not responsible any more for coordinating the data to be sent

from its parents while a sender does not need to advertise its buffer map any
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more;

2. We designed a basic version of a pure push strategy that outperforms a typical
push-pull mechanism with respect to playback delays of peers in the situation

where there is packet loss:

e Anis Ouali and Brigitte Kerhervé and Brigitte Jaumard, A Packet-loss Re-
silient Push Scheduling for Mesh Overlays, in Proceedings of IEEE Con-

sumer Communications and Networking Conference, January 2011

3. We designed an advanced version of the pure push scheduling strategy that
outperforms the basic version with respect to playback delays and where we
succeeded at having very low redundancy both at startup and when recovering

lost packets:

e Anis Ouali and Brigitte Jaumard and Brigitte Kerhervé, Push Scheduling

and Mesh Overlays: The Best of Both Worlds, submitted for publication.

3.4 Conclusion

In this chapter, we have proposed to achieve delay minimization at each peer in a live
streaming session using a mesh overlay. We divide our work in two parts. The first
one deals with overlay construction and maintenance while the second deals with a
content retrieval mechanism. We have adopted a delay-centric approach for overlay

construction through three main points:

e Using a more accurate delay definition that takes into account the network delay

among nodes;

e Using new information describing the status of a node in the overlay such as its

delay to the source;
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e Determining the best tradeoffs between minimizing delay and other objectives

such as resiliency, throughput and scalability.

The content retrieval mechanism is complementary to the overlay construction. It is

based on two points:

e Eliminating the exchange of buffer maps in order to speed up the startup and

the lost content recovery;

e Reducing the risk of redundancy and overhead.
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CHAPTER 4

Literature Review

In this chapter, we present a literature review of the most representative P2P stream-
ing systems. Section 4.1 describes possible categorizations of P2P streaming systems.
In Section 4.2, we briefly describe the most relevant studies with respect to the prob-
lems we have proposed to study in Chapter 3, i.e., multi-sender overlay construction
and content retrieval mechanisms. In Section 4.3, we present in detail one P2P live
streaming system called GridMedia, to illustrate how current available systems work.
We end this chapter by a critical analysis on the limitations and the drawbacks of

the studies made so far.

4.1 P2P Streaming Systems Categorization

Based on the content retrieval mechanism Liu et al. [LYKMO06] have divided P2P
systems into two classes: Sender-driven and receiver-driven. In the first approach,
the sender is responsible for coordinating related receiving peers and for stream dis-
tribution. In the second approach, the receiver is in charge of coordinating related
sending peers and balancing load among them. The receiver can also use measure-

ment and optimization techniques to help him decide which senders to choose, which
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packets to receive from each receiver in order to, e.g., maximize throughput [RS04]
or to minimize delays [WLO05a]. The authors in [LYKMO6] also propose another cate-
gorization based on the overlay topology: tree-based or treeless-based (DAG, Mesh).
Although they are different, the two aforementioned categorizations are related. In-
deed, usually tree-based systems use the push approach which is a sender-driven
content retrieval while tree-less systems use a receiver-driven approach because of the

multi-parent property.

4.2 Existing Work Review

P2P streaming systems and peering strategies have been studied in early works on
P2P systems [SGMZ04, RS04] as well as recently in, e.g., [RLC08, HRV09, LLR09].
Evaluations of these proposed solutions were based on simulations or experimenta-
tions.

Several theoretical works also exist. They propose mathematical or stochastic
models to study the performance of P2P streaming systems. For instance, the authors
of [CCB07] model a P2P streaming system using stochastic graph theory. The video
stream is divided into stripes. Each stripe will follow a diffusion tree over a mesh
overlay. Arrival and departure of nodes follow an exponential distribution and peers
belong to different classes according to their upload bandwidths. Results show, that
the delay is influenced by the number of stripes. The higher is the number the higher
is the delay. Also it is stated that increasing the redundancy among stripes leads to
a better performance in face of a churn rate.

In [KRO7], the authors propose a stochastic fluid model to analyze the character-
istics of a P2P streaming system. They differentiate between super peers with high
upload bandwidth and ordinary peers. They show that a minimum ratio of super

peers to ordinary ones is necessary for the system to perform well. In addition larger
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systems are believed to be more resilient to churn rates than small ones. Buffering is
shown to improve the quality more than additional bandwidth provisioning.

However, optimizing the overlay construction is not a simple problem because of
the lack of centralized information and the difficulty of dealing with the trade off
end-to-end propagation delay vs. upload bandwidth of nodes: For instance, where do
we have to place a node with a high upload bandwidth but with high end-to-end
delays with the source or available parents/neighbors?

Therefore, several works estimate the delay as the number of hops. This way,
they are able to come up with results such as a maximum theoretical bound for the
playback delay [HRV09] (O(y/logn), where n is the number of nodes, or advanced
peering strategies [LLR09]. However, such approximations ignore the end-to-end
delay and therefore can not be considered as realistic estimations especially with
peers located worldwide.

Alternatively, some works addressing playback delay minimization focused on con-
tent retrieval mechanisms notably through proposing push-pull mechanisms [ZZSY07,
LMSWO7] or improved scheduling strategies [Liu07, CXHO8|. These solutions do not
investigate how to construct an overlay that helps achieving such a goal. Typically,
a joining node chooses neighbors randomly or based on the candidate basic charac-
teristics such as proximity (RTT) and nominal upload bandwidth. Thus, they do not

rely on information describing how well a node is doing in the overlay.

4.2.1 Studies with Main Focus on the Overlay Network

Many studies have addressed the issues related to the overlay construction, mainte-
nance and performance in P2P streaming. Optimizing the overlay construction is not

a simple problem because of the lack of centralized information and the randomness
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that characterizes join/departure processes. Thus, most existing works use either ba-
sic or random techniques for parent selection and concentrate mainly on the topology
being used: Tree, multi-trees, mesh, etc. Therefore, they do not rely on information
describing how well a node is doing in the overlay.

For instance, the common strategies use random selection or a selection based
on either the upload bandwidth of nodes or the RTT among nodes. The authors
of [LNO6] use the hop distance to the source to have an estimation of the delays
experienced by peers. It is a coarse estimation, though, especially with nodes at
different worldwide locations.

[CRZ00] is considered as one of the earliest work on application level multicast.
The authors study the impact of adopting a multicast overlay on an application per-
formance and how a good overlay can be constructed. A protocol for multi source
multicast streaming called Narada is proposed. It is based on a mesh control plan
with desirable performance properties. Over the mesh, and for each data source, a
spanning multicast tree is constructed for data delivery. Membership maintenance is
achieved by distance vector algorithm where each node has the list of all members in
the session. Narada targets medium-size groups and does not scale to large size ones.
Z17Z-ZAG [THDO3] uses hierarchical clustering to minimize transmission delay and
limits the node degree to bound node workloads. It also imposes some rules to log-
arithmically bound the height of the multicast tree and assigns the forwarding task
of data messages and control messages to two different nodes in the cluster. Due to
clustering some nodes will have the additional task of managing clusters and thus,
the system will be vulnerable to their failure.

SplitStream [CDK'03] is a high bandwidth distribution system based on the existing

Scribe overlay network [CDKRO02] and Pastry overlay routing protocol [RDO1]. It
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aims at eliminating the problem of free-riders in a unique tree topology. In Split-
Stream, data is divided into stripes. One multicast tree per stripe is constructed
and is responsible for disseminating the data. Each node has to join each tree but
is an interior node in at most one tree. The last characteristic poses an important
challenge but ensures fairness (a node never uploads more data than it downloads)
and robustness (a leaving node affects only one tree).

CoopNet [PWCS02], differs from SplitStream by using a centralized approach, where
the streaming source is the root of each streaming tree and is also responsible for in-
formation collection to construct and maintain the overlay. This centralized approach
is efficient but obviously not scalable. In addition, the source server has a high load.
CoopNet also proposes the use of MDC to cope with network heterogeneity with each
layer transmitted over one tree.

PRO [RS04] is a framework for constructing P2P overlays designed for non-interactive
streaming and that focuses on bandwidth maximization. PRO is based on a receiver-
driven approach that uses an unstructured overlay mesh. Membership is managed
through a gossip protocol to make a peer aware of a subset of participating nodes.
Each peer maintains a local image containing a list of potentially good parents based
on their access bandwidth (not the available one) and its distances to them. When
needed, it selfishly and randomly selects parents that maximize its received bandwidth
from its local image. Each parent controls congestion on its upload connections. This
makes a receiver able to implicitly detect a change in the overlay structure or the oc-
currence of a shared bottleneck, i.e., a bottleneck at a physical link that is shared by
the physical paths from each parent to the receiving node. PRO only deals with over-
lay construction and maintenance. The content retrieval is based on PALS [RO03]

which allows the delivery of layer encoded content.
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Promise [HHB*03] is a P2P non-live streaming system based on a P2P applica-
tion layer service called CollectCast. CollectCast uses a receiver-driven multi-sender
scheme and exploits topology and performance information of the underlying physical
network to achieve better peer selection, sender and network monitoring, scheduling
of data sending from parents (rate+data) and sender switching to respond to serious
performance degradation. Promise is also built over a P2P substrate that provides
membership management, peer connectivity and object look-up. It uses a topology-
aware peer selection strategy (i.e, it tries to select peers for which the physical paths
are not sharing some specific segments) to avoid correlation between performance
degradation over the multiple paths that are used to deliver data to the receiver.

In [WLO05al, the authors propose a distributed algorithm that computes optimal
streaming rates assignment to the overlay links with the objective of minimizing
source-to-peer latency. The algorithm makes use of a linear programming model that
expresses the streaming as network flows to each peer in the session while minimizing
the average source-to-end latency. Each peer assigns rate to its upstreaming nodes
(parents). This average latency is computed based on delay cost and the streaming
rate of each link in the overlay. Simulations have shown that the obtained solution
outperforms a common heuristic that assigns rate to parents based on their upload
bandwidth.

The authors, Wu and Li [WL05a] assume that the overlay network is already
constructed. However, the delay cost of an overlay link is equal to 1. Such estimation
will definitely not lead to the best possible delay performance. In addition, it is
the source who triggers the computation of the rates for each peer in the session
whenever a new peer joins or a peer becomes unable to recover from a data loss due
to the departure or failure of a parent. This can be heavy to achieve even with a

medium peer churn rate.
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With respect to peers bandwidth management, the authors of [AKR™05] propose
an optimization model for P2P streaming that minimizes the cost of used bandwidth
to serve a receiving peer subject to the constraint of continuous playback even under
one or multiple failures (using transmission redundancy). They use a pricing model
that depends on the data to be transferred, the rate and the duration of the transfer.
The cost can be different from one peer to another. Although it is an important point,
in our work, we assume that we know the amount of available upload bandwidth for
each peer and that there is no additional cost to select one peer instead of another.

DagStream [LNO06] replaces the unstructured mesh overlay by a directed acyclic
graph (DAG), with a specified minimum number of parents. This helps avoiding the
occurrence of loops and partitioning of the mesh overlay which can result in higher de-
lays or playback interruptions for the partitions that are disconnected from the source.
DagStream tries to optimize the efficiency of network resource usage by using a multi-
parent receiver-driven approach that emphasizes locality awareness over bandwidth
maximization. Thus, a node primarily chooses nearby parents (with smaller delays to
itself) but may also choose other parents to increase its receiving bandwidth. It uses
the hop distance to the source to have an estimation of the delays experienced by
peers. It is a coarse estimation, though, especially with nodes at worldwide locations.
Additionally, a DAG will suffer from the same problems as a tree topology, i.e., some
leaf nodes do not participate with their upload bandwidth. The selection process also
prefers parents with lower levels from the source to minimize delays. Membership
management is achieved by a service called RandPeer that maintains information
about peers in the session and their QoS characteristics.

Chunkyspread [VYF06], presents a new tree based mechanism: Distribution trees
are constructed using bloom filters (to avoid loops) over a randomly created graph.

Each tree handles one slice of the original stream. FEach peer specifies two load
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parameters: The maximum load and the Target load. It will have a number of
neighbors that is proportional to its target load. Two phase of tuning are taking
place. In the first one, load tuning, the system tries to alleviate the load on overloaded
parents and shift it to underloaded neighbors to achieve a node load within a specific
interval. In the second one, latency tuning, nodes make parent switches to improve
their latencies without violating the load interval form the first phase. Both phases
require several messages among nodes and their neighbors in order to take the switch
decision.

A more recent work [RLCO8] takes a similar approach as us by trying to minimize
delays based on network link delays of the mesh overlay. It proposes a distributed
algorithm for overlay construction. When a joining node is looking for parents, it
associates with each candidate a Power value depending on the candidate residual
upload bandwidth, its distance to the source and the RTT. Then, a node requests the
upload bandwidth it needs from the most powerful candidate parent. If it is less than
the streaming rate, it looks for another parent. Thus a node may have one parent
only. No mention is given on the retrieval mechanism being used (pull or push-pull).

Another problem is that although the authors claim to use mesh topology, their
definition of the distance to the source as the longest path to the source suffers from
the presence of cycles in the overlay. Such definition will lead the distance of some
nodes to increase indefinitely unless they assume that, at the moment of joining,
a node gets the full streaming rate from nodes already in the session which is not
likely to be the case. In our work, we face the same issue and we propose a distance
computing algorithm to deal with it.

As mentioned in [HRV09], the work in [RLCO8| may lead to low bandwidth uti-
lization in the network because the heuristic being used will assign a low selection

probability to nodes at the edge of the mesh network. Thus, such nodes, will not
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contribute significantly with their resources. This observation has been confirmed
by the results obtained in Figure 6.6 where the Power strategy leads to the lowest
average upload bandwidth utilization per peer.

[RLCO8] also proposes an algorithm to dynamically improve the overlay network
based on the same criteria Power. An improvement of this work has been proposed in
[RLCO09] by considering loops in the overlay. Because it is using an overlay adaptation
mechanism, it is targeting mainly a network of super peers for which a failure is
unlikely to happen.

In [HRV09], the authors prove the NP-Completeness of the problem of minimizing
streaming delays in a P2P session. Then, they propose a centralized approximation
algorithm that leads to a streaming delay which is at most O(y/logn) times the
optimal solution. Peers are partitioned into clusters based on their regional aggregated
streaming capacities. Each cluster has one head peer and all cluster heads form
a virtual backbone overlay. Also, each cluster head has a virtual upload capacity
equal to the aggregated upload capacity of the cluster peers. Mesh links are, then,
extended within clusters. A distributed algorithm is also proposed and evaluated
through simulations.

A collaborative tree-mesh overlay named mTreebone has been proposed in [WXL10].
Through studies of traces of an existing mesh-based P2P system, PPLive, the authors
state that most of the content blocks being delivered to peers follow a tree topology
or a small set of trees which are made of so called stable nodes. Therefore, mTreecbone
operates as follows. Firstly, it identifies stable nodes based on their age (their life-
time duration in the streaming session). Secondly, with those stable peers, it forms
a backbone tree through which most of the data will be pushed to peers. Thirdly, it
constructs an auxiliary mesh overlay to link other peers to each other and to the back-

bone tree. The pull-based mesh overlay is mainly used to fetch missing content and
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to face peer churn. The backbone tree can be optimized to improve delays through
some evolution algorithms.

However, this system is likely to suffer from a non optimized upload bandwidth
utilization. Indeed, leaf nodes in the tree will only serve other peer linked through
the mesh overlay which is targeting missing data and peer churn situations only. In
addition, nodes in that tree may have some performance issue. For instance a stable
node may have a high end-to end delay with the source or may have a low upload
bandwidth. Moreover, as a peer is the only one that decides, based on a threshold
value, whether it can promote itself as a stable node, there may be a situation where
most of the peers join the backbone tree. Such a scenario will result in a poor mesh
overlay with respect to the number of the available links which affects its resiliency.

Most of the mentioned works rely on the overlay and scheduling combinations
(mesh, pull) or (tree/multi-trees, push). Tree/multi-tree based systems are known
to have resiliency issues to preserve the tree structure while pull-based systems have
the problem of high delivery delays. Indeed, playback delay of pull-based systems
is heavily impacted by the number of hops from the source as the delay needed to
perform the content fetching between two nodes (send buffer maps, send requests
and send data) usually outweighs the RTT of the link. With push-pull mechanisms,
the RTT of the link retrieves all its importance as the use of the pull mechanism is
limited.

Compared to the mentioned systems, our work is different as:

1. We use a mesh topology but we replace neighbors by two node lists: Parents
and Children. Moreover, the number of children of a node depends on its upload

capacity;
2. We use an existing push-pull algorithm for content fetching.

3. We exploit more node information such as the distance to the source and the
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upload bandwidth utilization;

4. We validate the simulation results using a MILP model.

4.2.2 Toward Interactivity

Delay minimization and especially delay bounding and how they are affected by source
and peer characteristics have not been deeply addressed in the early literature. In-
deed, according to our reading, existing work has focused mainly on proving the
feasibility of streaming using P2P systems relatively to the issues of churn, band-
width heterogeneity, free-riders, etc. In addition, works addressing playback latency
were mainly focusing on scheduling mechanisms ignoring optimal overlay construction
(peering strategies) due to its inherent difficulty and hardness. In general, overlays
were constructed randomly or using simple strategies such as selecting the nearest
peers.

Recently, some works tried to reconsider overlay construction strategies to offer
systems suitable for interactive/real time streaming. In such cases, the streaming
delay is very critical compared to live streaming systems where some delay can be
tolerated. For instance, the delay requirement to stream a movie is relaxed compared
to streaming a live event such as a soccer world cup final or compared to a video
conference.

For instance, in [LLRO09] the authors propose a multi-tree construction strategy
based on the insights obtained from two optimization steps. The first one computes
the levels of peers in the trees to minimize the delay by placing the highest uploading
nodes near the source. The second one computes the best links to use between each
node in level £ in the tree and nodes in level k£ — 1.

Unfortunately such model ignores the propagation delay by considering the hop

distance only. High uploading nodes are positioned near the source. When dealing
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with peers at worldwide locations, a node may have a high uploading bandwidth as
well as high end-to-end delays with the source or to other peers in the next level.
Clearly, there is a trade off that the hop delay estimation ignores. In our work,
we take into account such a trade off by computing end-to-end delays based on the
propagation delays.

[ZSXY08] proposes to guarantee delay for P2P live streaming over Internet through
the utilization of a push-pull based mechanism within a static environment. The key
idea is to double or to reduce the number of times a packet is sent by the source to
peers without requests in order to meet the delay requirements.

In other words, we would say that the server is covering bad peering decisions
by increasing its upload transfer volume to send more packet copies directly to other

peers.

4.2.3 Studies with Main Focus on Content Retrieval

P2P streaming systems have inherent limitations due to constraints imposed on their
topologies (tree or multi-trees) or their content retrieval mechanism (pull). Tree based
systems, specially multi-trees, are known to lead to good performance. However,
they suffer from resiliency issues to maintain the tree structure in face of a churn
rate. Mesh based systems are more resilient to churn but rely on pull scheduling.
The pull mechanism operates through three steps at each node: Sending buffer maps
to neighbors, requesting content and finally sending content. The resulting delay is
important and thus increases significantly the playback delay experienced by peers.
PRM (Probabilistic Resilient Multicast) [BLBS03] is a content retrieval scheme
for overlay trees that focuses on improving resiliency against large failures and thus
on increasing delivery ratios with low overhead and bounded delay. There are two

base mechanisms. The first one is a proactive randomized forwarding where each peer
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randomly chooses some peers (that are already receiving content from their parents
in the tree) and forwards to them some packets with very low probability p (around
0.01) to alleviate content redundancy. This increases the delivery ratio with high
probability and facilitates the repair of a subtree disconnection. Indeed, in such a
case, only the root of a subtree has lost its connection to its main parent in the tree
(that is not using probabilistic forwarding). Many nodes in the subtree, including the
root, probably remain connected thanks to links to other parents in the initial tree.
The second mechanism uses NAKSs to request packets that are not received. This is
made possible by including a bitmap mask of received packets with each sent packet.

Bullet [KRAV03] is a system for high bandwidth data dissemination. Applications
include large-file or real-time transfer. The main objective of Bullet is to maximize
the bandwidth seen by the receivers. Bullet starts with the construction of an overlay
tree. On its uplinks, a node tries to send disjoint sets of data. The receiving nodes
retrieve missing items by linking to new parents. The overlay becomes a mesh. The
bandwidth observed by a peer is independent from the one in the underlying overlay
tree. The retrieval of missing content is achieved by having each node periodically

disseminating a subset of its state. The subset selection is conducted in two phases:

e Collection: Starting at the leaves and propagating towards the tree root, each
node sends to its parent (in the overlay tree) a collect message containing a
random uniform subset of its descendants. This subset is obtained through

Compacting which takes as input the subsets sent by the children nodes;

e Distribution: starting at the root and propagating towards the leaves, each node
sends to each child a Distribute set that contains a random subset of nodes that

are disjoint with the set of the descendants of that child.

Data is transferred using an unreliable version of TCP-friendly Rate Control (TFRC)

[HFPWO03]. Actually, it was observed that lost packets were more easily recovered
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from other peers than from retransmission mechanisms [KRAV03]. Simulations have
shown that Bullet can achieve an average bandwidth that is twice the one observed
in a typical overlay tree.

Coolstreaming [ZLLY05] adopts a data-centric receiver-driven approach based on
a pull approach. Each node exchanges buffer maps with all its neighbors. Then, it
is able to request disjoint wanted data from neighbors that possess it. Thus, a node
may have different parents for each request. The main problem of this solution is that
it leads to a high delivery delay because of the use of the three-step content retrieval
mechanism: content advertising, request and sending. This problem was tackled in
[ZLZY05], see Section 4.3, where the authors propose a hybrid push-pull approach.

In [YPO5], the authors tackle the problem of frame forwarding in a tree overlay.
They consider that frame-buffer mismatch between a node and its parent may lead to
playback interruption due to frame loss. [YP05] also proposes a frame synchronization
mechanism that tries to minimize the lag between the parent and the child nodes at
the joining process. This mechanism finds the starting frame that must be forwarded
by the parent with the objective that this frame will be played by the parent and the
child at nearly the same time. If the frame is not available, the joining peer may wait
for it. In the case of a reconnection to the tree, a peer may suffer buffer underflow or
local frames loss due to significant mismatch between its own buffer and the parent’s
buffer. However, favoring one situation on the other does not reduce the frame loss
rate. The main contribution of this work is that it is one of the rare studies that
treats the problem of content discrepancy among peers in a streaming session. The
main limitation lies in the fact that it is concentrated on tree topology (one parent)

and thus its synchronization mechanism is not suitable for a multi-sender approach.
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To cope with content discrepancy, the authors in [BCMRO04] study several reconcil-
iation techniques such as existing Bloom filter [FCABO0O] approaches and recoding us-
ing erasure coding [LMSS01] as well as a proposed technique based on a tree structure
combined with Bloom filters. The last technique was used in [KRAV03]. Unfortu-
nately, all these techniques do not try to avoid the appearance of content discrepancy
as they are reactive solutions. Moreover, they increase delay and complexity because
of both computation and the three steps of content fetching: advertise, request and
send.

rStream [WLO5b] tries to eliminate content reconciliation in a multi-sender ap-
proach by using rateless encoding of the content. With high probability, only (1+¢€)k
different blocks are necessary to reconstruct original content, with € being a small
value near zero. To completely eliminate the need of content reconciliation, each
node decodes received blocks to retrieve original content blocks that will be recoded
based on the same parameters used at the source. A node only forwards recoded
blocks which are almost unique. Simulations have shown that rStream achieves a
high throughput rate but at a high computational cost as mentioned in [HRV09].

Using rateless coding may lead to peer waiting for the necessary number of blocks
to be able to decode already received ones which affects the playback delays. In
addition, precise knowledge of receivers updated buffer maps may be necessary to
have a good performance.

We also think that this solution may increase, in a variable manner, the delay at
each overlay node depending on resource availability and hardware/software capaci-
ties (such as the CPU and the RAM). In addition, it will consume more resources at
each overlay node.

In [MRO09], the authors try to propose an optimal streaming pattern over mesh

overlays. They identify two performance bottlenecks: (i) A bandwidth bottleneck
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that occurs when the aggregate available bandwidths of the parents is lower or higher
than the incoming link access of the receiver, (ii) A content bottleneck that occurs
when the data amount of useful content at the parents is below their available upload
bandwidth. The proposed pattern contains two phases: Firstly, content streaming
starts by a phase of segment diffusion where each peer connection to parents is ex-
clusively reserved for periodic pushing of a new segment unit. This phase ends when
peers at the higher level (farthest from the source) receive the first units of the con-
cerned segment. Secondly, a swarming phase starts and peers pull missing data.
The author of [Liu07] derives theoretical minimum delays for P2P streaming sys-
tems, O(logaN'), where N is the number of peers in a session. He proposes a scheduling
strategy called Snow-ball that theoretically achieves minimum average delivery de-
lays. However, it is difficult to implement this strategy in a real environment because

it assumes:

e That the server and each peer are relaying chunks at their maximum upload

capacity at every time instant.
e The server and each peer know exactly the buffer map of destination peers.

In [LYHTOS8], the authors identify redundant traffic as the main issue with push-
pull scheduling strategies and then try to address it. To that purpose, a peer divides
its buffer into three sections: A pull window for packets that will be pulled, a push
window for packets that will be pushed and a tolerance window (of size equal to the
average RTT with its neighbors) for some packets between the two former windows to
avoid redundancy. To schedule substreams, a peer assigns a sending token (number
of substreams that the neighbor may send) to each neighbor based on the estimation
of its upload bandwidth. These estimations are obtained from the initial buffering

phase (pull scheduling). A push request will contain the substream ID and the starting
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chunk ID. To address dynamic changes specially in upload bandwidths of peers, re-
scheduling is done by subscribing for the concerned substream with another neighbor
if the old one fails to deliver more than half of the substream. To avoid loops,
rescheduling to the new neighbor is done only if it has a higher substream head than
the requesting node. Simulations show that it achieves better throughput than a
typical push-pull algorithm.

Several gossip-based broadcast strategies have been proposed as they improve
reliability to churn and data loss. In a typical scenario, each peer sends content to a
randomly selected subset of neighbors, and so forth. Different heuristics are proposed
to let a peer select the content to be sent.

In [WL07], the authors propose a scheduling strategy called R?. Tt is based on a
random push combined with random network coding. The video stream is divided
into large segments (4 seconds each), and each segment is made of blocks. Each peer
is a seed. To limit the coding complexity, blocks encoded by a peer, at a same time
period, belong to the same segment. For a receiving peer, blocks are equally useful
independently of their seed as long as they belong to the same segment. Thus, a
seed randomly picks a receiving peer and then randomly selects a segment that is
needed by that peer. As there are no explicit segment requests, buffer map exchanges
are needed in order to select a needed segment and to ensure there is no segment
redundancy. They are done whenever there is a change in the buffer. Thanks to the
big size of the segments, their exchange is not frequent. The R? strategy also imposes
that there is a synchronized playback among all peers: They play the same segment
at the same time.

However, R? does not investigate the impact of the discrepancy among RTT of
parents of the same node. Indeed, if buffer map information do not arrive at the

same time, it will lead to block redundancy. Moreover, the combination of random
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push and random rateless coding was made possible due to the fact that the authors
only consider streams with a low size, 64kbps. This was necessary in order to obtain
a buffer map with a low number of segments.

The authors of [BMM™08] study the optimality of several push scheduling algo-
rithms with respect to the criteria used to pick the destination peer and the chunk
to send to it. Some of the schemes achieve theoretical optima with respect to delay
or to rate performance. However, those results were obtained with an overlay path
length estimate using its number of hops rather than the network delays. Also, it was
assumed that the overlay is a complete graph and that each sending peer has precise
information about the buffer content of its neighbors. The authors did not address
how to recover lost data.

For instance, a strategy called DP/RU, where a peer sends a randomly selected
useful packet (RU) to the most deprived neighbor (DP) is analytically shown to be
rate-optimal. However, the work presented in [LGLO08] shows through Planetlab-based
experimentations that DP/RU fails to achieve high rates. Indeed, it led to a large
number of duplicate packets at receiving peers (collision) and to high rate of chunks
missing their playback deadline. This was attributed to the fact that DP/RU needs
correct information about the buffer maps of neighbors and that such information
could be easily outdated. Also, a deprived peer may be chosen simultaneously by its
neighbors so collisions will occur.

In [GLLO8], an adaptive queue-based chunk scheduling (AQCS) is presented. Each
peer maintains a forwarding queue in which it stores chunks that were pulled from
the server. The server maintains a pull queue in which it stores the pull requests of
participating peers. A chunk will not be sent more than once following a given peer
pull request. When the pull queue is empty, the server pushes a replicated chunk to

all peers in the session. These identical pushed chunks will not be relayed. Although
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AQCS has been shown to achieve optimal streaming rate in a realistic environment,
it relies on strong assumptions such as a fully connected mesh overlay which raises a
scalability issue.

The authors of [LGLO8] compare different types of scheduling strategies (AQCS,
DP/RU, Random Pull, etc.) to separate situations where a simple random scheduling
is sufficient to achieve good performance from the situations where more elaborated
designs are required. The main results indicate that intelligent scheduling does make
a difference when the resource index is low. However, this conclusion only applies to
the performance related to the rate of missing chunks. It was showed that delays can
be reduced with intelligent scheduling [LGLOS].

In [PMO8] the authors improve the DP/RU algorithm that was proposed in
[BMM™*08]. They replaced the packet selection mechanism: Instead of randomly
selecting a useful packet, the new strategy selects the latest useful packet for the
considered deprived peer. However, the authors also replaced the push mechanism in
DP/RU by token-based pull where a peer sends a token to a potential destination peer
to inform it of what chunks it can provide. The receiving peer may modify the token
with a new number of chunks and/or different sequence numbers and send it back.
Compared to DP/RU, the new DP/LU algorithm improves the delay performance.

In [BLPL"08], the authors propose a push scheduling where a peer relays every
received packet to the maximum number of neighbors. Received packets are stored in
a FIFO queue (most likely in different order than the stream one) and then pushed
to neighbors. At each step, there is only one chunk to be uploaded which is the queue
head. The number of neighbors that will receive the chunk is gradually updated at
each step depending on whether the sending queue is empty and on the transmission
time of the last step. To select the neighbors that will receive the chunk, the sending

node advertises the availability of the next chunk so that neighbors send missing
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notifications for the current chunk. The peer classifies interested nodes into classes
based on the ratio of its own uplink bandwidth estimation to the download bandwidth
estimation of each neighbor.

The authors of [ZCLB09] also propose a push scheduling in mesh overlays. Parents
of a node actively forward packets to receiving child according to a pattern already set
by him. The pattern contains the bitmap of a packet cycle and a starting packet ID.
Lost packets are explicitly requested through backup parents that piggybacks their
buffer maps with sent packets.

Although the last few works try to propose push scheduling strategies, they still
rely on advertisements to let potential receiving peers know from where to get a
specific piece of data. In Chapter 9, we propose a push strategy which is different

from the aforementioned approach as:

1. We are not proposing a random push strategy as we do not randomly pick a

packet to be sent or a neighbor to send to;

2. We eliminate the need of buffer map exchanges. Specific requests are only made
for missing packets and are sent to all or to a subset of the parents. At no time,

we need to know the buffer map of a node;

3. We eliminate chunk/packet scheduling. If there is an available space in the
upload buffer, a packet is pushed as soon as it is received by the concerned
parent. We do not impose the substream that will be scheduled by a peer: It

will subscribe to the first received one;

4. We impose the fact that each node controls the acceptance of incoming requests

(push or connection).
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4.3 GridMedia

Description. GridMedia [ZLZY05, ZZT*05, ZZSY07] is a large-scale live media
streaming system. We present this system in more details because its push-pull
mechanism is being used in several parts in our work as it will be seen in the coming
chapters.

Gridmedia uses an unstructured mesh overlay based on a gossip-like protocol and
a streaming management based on a combined push-pull approach. A joining node
contacts a rendez-vous point and gets a number of random existing nodes. Then, it
selects some nodes with minimum RTT and some other nodes randomly to enhance
the connectivity of the overlay.

The stream is divided into n substreams according to the sequence number of
packets. Contiguous packets from different substreams form a packet group. A set
of k contiguous groups forms a packet party. Each group has a group ID from 0 to
kE—1.

For instance, the group with ID equal to 0 is chosen as the base to take push
scheduling decisions, i.e., requesting a push subscription from one peer or canceling
it. The pusher of a substream is the parent from which the node has successfully
pulled a packet that belongs to both the wanted substream and a group with ID 0.
This way, the switching between pushers is not done too frequently.

At startup, a node requests packets using the pull mechanism with random schedul-
ing until receiving packets from specific substreams. Then, it subscribes to the sender
so that the latter relays the packets of that substream directly to it. If the receiving
quality of a node is greater than 95%, it does not request buffer maps anymore.

Lost packets are recovered the same way. If a streaming packet has not been
pushed and has been pulled by another node, then the subscription with the first

node is replaced by a subscription with the new one, (always at the beginning of a
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group with ID 0).

This dynamic behavior makes the algorithm able to adapt with more or less success
to the overlay structure. If the overlay contains complex dependencies among nodes,
cycles for instance, there is no guarantee that all packets being received are pushed.
Some of them will be pulled.

The content distribution does not necessarily follow exactly the constructed over-
lay. A node may have 5 parents but, for instance, only 2 are active and sending the

full content.

Performance Evaluation. The performance criteria used to evaluate GridMedia

are as follows.

e Absolute delay: Delay between playback time at a user and sampling time at

the server;

e Absolute Playback Deadline: Playback time (after which the received packet is

useless);

e Delivery ratio: The number of packets that arrive at the receiver before the

absolute playback time over the total number of packets;

e «a-playback time: The minimum absolute delay at which the delivery ratio is

a < 1.

Group size 310
Max. Neighbors )
Period of BM and RP exchange 1 sec.
Average packet rate 30 packets/s
Bit rate 310 Kbps

Table 4.1: GridMedia Experimentation Setup
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The playback delay depends on the ratio r of the received packets to the needed
packets within buffer intervals of one second. Every two consecutive intervals have a
time slot lag of 250ms. The playback delay is then determined by the lowest i** time
slot for which the corresponding buffer interval satisfies r > 99%. The playback delay
is then equal to i x 250ms, i starting at 160 downward 0. Zhang et al. [ZLZYO05],
present some experimentation results (based on the setup of Table 4.1) with no up-
loading limit for each node.
In static environment, (zero churn rate), with the proposed pure pull mechanism, the
average 0.97-playback time is 10 seconds. In the proposed push-pull mechanism, it
drops down to 2-3 seconds. The last node which is supposed to be far away from the
source took 20 seconds to see its average 0.97-playback dropping to the average.
In dynamic environment, with on-line and offline duration per node exponentially dis-
tributed and respectively of an average of 100 and 10 seconds, average 0.95-playback
is 22 seconds for pull approach and 13 seconds for the combined push-pull mechanism.
Control overhead which is defined as the ratio of control traffic to total traffic for each
node is less than 2%. It includes keep and probe messages between neighbors, mem-
ber table packets, buffer map packets, request packets and push management packets.
Overhead in push-pull approach is less than pure-pull approach because there are less
requests between nodes.
Link stress performance has also been measured. It refers to ratio of total packets
passing through that link over the average packet rate at the streaming server.
Experimentations show that 50% of the links have a link stress less than 0.5 and
that only 1% have a link stress greater than 4.
In the case of a limited upload (500kbps in the experimentations) the delays become
larger. Thus, in static environment, pull and push-pull achieve respectively 18 and

13 seconds. In dynamic environment, it rises to 24 and 20 seconds. Link stress is
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globally the same as in the unlimited case.

4.4 Technical Issues

Despite the amount of works that have been conducted to address P2P streaming

issues, P2P streaming systems still face several challenges:

Correlated objectives. There are many objectives that were tackled by existing
work on P2P live streaming in the phase of overlay construction. However, it is
not easy to define an optimal solution as several tradeoffs must be made to reconcile
many criteria. We observe that a non negligible set of studies that tackle resiliency and
throughput maximization were implicitly targeting the design of a P2P streaming that
can face issues such as peer churn and bandwidth heterogeneity and asymmetry. On
the contrary, an approach that focuses on delay minimization can be seen as having
an objective to provide a given QoS to end-clients. Moreover, delay is correlated
with other objectives. Indeed, weak resiliency and low throughput will imperatively
result in delay increase due to time and resources that are spent in repairing failures
(reconnecting peers or selecting new parents) and in getting the content. Maximizing
resiliency and throughput must not be seen as an objective but as a mean to provide

a QoS such as delay minimization.

Lack of Delay-centred approach. Most of the existing works do not provide a
complete approach to minimize source-to-peer latency. Generally, they try to bound
the delay to be acceptable and to take some related intuitive decisions. In addition,
they do not minimize delay based on both the overlay construction/maintenance
and the content retrieval mechanism, although we think that better results could be

achieved. Also, there is no accurate delay estimation: Existing studies usually model
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the delay as the minimum or maximum number of hops between the source and the
node depending on the optimized criteria. Hence, we state that several research issues

related to better delay management are still to be addressed.

Lack of complementarity between content distribution and overlay con-
struction. When targeting an objective, most of existing works focus on the con-
tent distribution mechanism or the overlay construction protocol. Actually, these two
parts are complementary and considering both of them will help to achieve better re-

sults.

Peers content discrepancy. This issue occurs due to networks and overlay charac-
teristics, like data loss, bandwidth heterogeneity, churn rate and overlay maintenance
(reconfiguration, reconnection...). Nodes will have significant different working sets,
i.e., buffer content. If parents of a same node experience such discrepancy, it will
result in higher delay or playback interruption at the receiver side. Although content
reconciliation techniques have been proposed [BCMRO04], they are time and resource

intensive.

Reactive fetching strategy. Content reconciliation is commonly used in multi-
sender based approach. We consider that it is a reactive approach to the issue of
working set discrepancy. The problem is that it results in more delay and overhead.
The use of a rateless encoding, see [WLO05b|, can be seen as a proactive approach
but delay is increased because each node must receive enough blocks before decod-
ing them and then recodes original blocks before sending them to another peer. A
proactive approach that deals with a content distribution pattern and a local fetching
strategy (between a peer and its parents) will help eliminating the need of content

reconciliation and thus, will save delay and resources.
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Overlay and Application Performance. Existing overlay and application per-
formance metrics present a high diversity. In addition, sometimes a metric with the
same name may have different definitions such as ”Delivery ratio” in [ZLZY05] and
[BB04]. Consequently, it is difficult to really evaluate a system or conduct a compar-
ative study. In addition, as it is the case in any streaming system, there is no quality
evaluation by an end-user. However, metrics such as delay and playback continuity

can be good indicators.

Content advertising. In most content retrieval mechanisms used with mesh over-
lays, a content advertising is needed so that a receiving peer knows from where to
get specific blocks of data. Therefore, the performance of such strategies relies on the
accuracy of the exchanged buffer maps to send useful data while avoiding redundancy.

In addition, the delay and the overhead being incurred are still significant.

4.5 Deployment Issues

In this section, we present some issues related to existing works with respect to the

expected enhancements of the streaming needs in the future.

Resource Exploitation. Usually, existing P2P streaming systems set the source
transmission rate to hundreds of kbps. This is the case in both Internet oriented
[PPL10, PPS06, Sop10] or academic-oriented [ZLZY05] P2P streaming applications.
Moreover, based on existing codecs, this range of rate is unable, to compete with the
quality of the traditional terrestrial TV broadcast for example. However, Internet
access keeps evolving and thus providing both increased upload and download capac-
ities. Therefore, multimedia services are getting more and more resources. This leads

us to say that we have to formulate the streaming problem based on the percentage
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of bandwidth utilization at the end-user instead of choosing specific rates.

Traffic of Internet Service Providers ISP(s). ISPs are worrying about their
networks being flooded with the costly P2P traffic specially cross-ISP traffic. Subse-
quently, many ISPs are throttling known P2P protocols such as BitTorrent [BCC™06].
Thus, it is necessary for a P2P streaming protocol to make efficient use of the band-

width resources. New proposals call for ISP-friendly P2P protocols.

Interoperability Between Protocols. The crucial point that makes the P2P
streaming architecture an attractive solution is the number of participating peers.
The problem is that there are many protocols and related based client applications
that are available both in Internet and academic environments. Hence, if a same live
event is broadcast by many streaming sources using different protocols, the users will
be splatted according to the application protocol they are using. This may affect the

streaming quality if there are not enough users within a particular session.
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Part 11

Overlay Construction
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CHAPTER 5

Trade-offs in Peer Delay
Minimization for Video Streaming
in P2P Systems

5.1 Introduction

Peer-to-Peer (P2P) architecture is considered as an attractive and scalable solution
for content distribution which does not require Internet infrastructure changes and
which helps eliminating bandwidth bottleneck at the content source server. Appli-
cations include content delivery such as file sharing (see, e.g., Gnutella [Rip01], etc.)
and streaming (see, e.g., pplive [PPL10], sopcast [Sopl0], etc.). Nevertheless, spe-
cially for live video streaming, P2P systems face many challenging issues such as
efficient and optimized overlay construction [PWCS02, CDK*03, KRAV03], content
retrieval mechanisms [ZLLY05, ZLZY05, MR06], and suitable video coding schemes
[PWCS02, WL05b]. Most of these works focus mainly on maximizing throughput or
maximizing resiliency while trying to bound source-to-end delay which are estimated
by the number of hops from the source.

Little work has been done to investigate the impact of the source and peer char-

acteristics on playback delays. Such characteristics include the video streaming rate,
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the upload bandwidth of the nodes including the source, the maximum transmission
rate over an overlay link, the end-to-end network delays, etc.

In the present study, we are interested in providing a live video streaming session
to the maximum number of end-users using a unique streaming source at a constant
bit rate. We believe that low playback delays are a key issue in live video streaming.
Thus, without a study of how they are affected by the aforementioned characteristics,
one cannot have a clear view on how a P2P system will perform.

This chapter describes a linear optimization model for delay minimization at every
peer in the streaming session. Through the study of a static model (no churn rate), we
would like to investigate the key challenges in order to achieve the best performance
before focusing on the dynamic aspects of a real P2P network.

The chapter is organized as follows. In Section 5.2, we detail the motivations of
the present work. In Section 5.3, we describe the linear programming model that is
based on upstream peer delay balancing at each peer of the P2P system. Numerical

results are presented in Section 5.4 and conclusions are drawn in the last section.

5.2 Motivation

The performance of a P2P streaming system is tightly related to the characteristics
of the video being streamed (mainly the streaming rate) and to the upload capacity
of participating peers. The performance can be relative to the perceived video quality
and the playback delay. In this work, we are concerned by playback delay performance
and how it is affected by peers and source characteristics.

Unfortunately, the fact that there is no global or preliminary knowledge of par-

ticipating peers may lead to some problematic situations. For instance, the content
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provider of a P2P system must choose in advance the streaming rate of the video. De-
pending on the upload capacity of upcoming participating peers, the selected stream-
ing rate may be too high or too low. In the former case, the P2P system will have
difficulties to handle the intended streaming rate. Thus, playback interruptions will
be frequent and new connecting peers may face a denial of service. In addition, play-
back delays will be higher. In the case of a low streaming rate, the potential of the
P2P system may be under-exploited as it is not taking full advantage of its upload
capacity. Clearly, there is a trade off to make.

Before designing and deploying a P2P system, we need to study how playback
delay can be affected by the source and participating peers resources in order to

avoid streaming quality issues and to better exploit the P2P system.

5.3 OCDB problem

In this chapter we make use of a mixed integer linear programming model to conduct
our study. The objective of the Overlay Construction with Delay Balancing (OCDB)
problem is to establish the best compromise between the minimum delay and a new
criteria that we call upstream peer delay balancing. As a content retrieval mechanism
is complementary to the overlay construction, delay balancing ensures that a node

chooses, as much as possible, parents with similar playback delays.

5.3.1 Assumptions

In the optimization model we propose, we assume that the playback rate at end-nodes
is always equal to the streaming rate, i.e., there is no playback interruption. This
is a realistic assumption as even with data loss there are some correction techniques

(redundancy or interpolation) that compensates for data loss. Finally, at this stage,

66



we do not take into account the churn rate.

5.3.2 Notations and Definitions

Let V' be the set of peers in the network. Let P, and C, be the parents and the
children of a peer v, respectively. S is the streaming source with rate R. We have
S € V and Ps is empty. Denote by V* the set of nodes deprived from the source
node: V* =V \ {S}.

Denote by by* (respectively b2") the available upload (respectively download) band-

width of node v. We have:

7 UL

0<b<b, and 0<B*<Db wvelV.

Upper bounds, l_)ZL and BiL, come from the performance characteristics of the peers.
Let d¥ be the end-to-end latency, at the physical network level at node v relatively

to node u for u,v € V,u # v.

5.3.3 Variables

We have 5 different vectors, one state vector (e), one rate transmission vector (r),
and three delay vectors (d4, dPmax, gPmin),

Let e € V x V be a state vector such that e,, = 1 if there is an overlay link
from node u (parent) to node v (one child of u), u,v € V, u # v and v # S, i.e., u
transmits data directly to v and e,, = 0 otherwise.

Next, let r be the transmission rate vector where each component r,, denotes the
transmission rate from node u to node v, for u # v. r must satisfy the following

relations:

Tup = 0,
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eww = 0 if and only if r,, = 0,
ew = 1 if and only if r,, > 0.

The third vector d* corresponds to playback delays, i.e., d? is equal to the playback
delay of v relatively to S, v € V*.

d? > max(d + d7)

u€e P,

Finally, we have two more vectors to measure the largest and the smallest parent delay
at every peer. Components d/>ma and /™ of these vectors measure the largest and

the smallest playback delays experienced by the parents of v, respectively. Indeed,

df A — max df,
u€ Py

dPmin — min g7
UEPU

At last, we have two more variables in order to later linearize the objective function
which we will define in the next section. Let d*™* and od” be two variables which
measures the maximum playback delays, and the maximum discrepancy of playback

delays among the parents of a given child:

A4 = max dA,
vev* Y

O'dP _ m%}f {df,max o d?mm} '
ve

5.3.4 Optimization Criterion

We propose to consider an objective which is a combination of the playback delay, d2,
and of the delay balancing, for each node in the overlay network. Moreover, for each

criterion, we propose to consider a weighted sum of the maximum value and of the
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mean value in order to overcome the drawback of each objective (no control on the
different values in the case of the maximum value, no control on the extreme values

in the case of the mean value). It can be written as follows:

Z df Z df,max _ df,min
fOBJ _ 0.5 dA,max + veV* + a x 05 O’dP + UGV*( )
Vi-1 V-1

where o denotes a scaling factor between the two components of the objective.

5.3.5 Mathematical Model

The mathematical model is presented in Figure 5.1. It uses M, a large constant such
that constraints where M appears become redundant if p is not a parent of v. In that
case, those contraints have no impact on the optimization process. In the context of

the current model, M can be set, e.g., to the duration of the streaming session.

5.3.6 Constraints

Delay Balancing Constraints. Constraints (1) express that d4™® is an upper
bound on the playback delay of any node v € V*. Constraints (2) state that a
source-to-node streaming delay is greater than the maximum playback streaming
delay of its parents increased with the parent-child network delay. Independently of
the numerical results, we can see that these constraints will yield overlays that are
directed acyclic graphs. Eliminating cycles improves overlay performance by avoiding
inter-dependency between nodes. Constraints (3) and (4) give an upper and a lower
bound of the playback delays of the parents of a node. Constraint (5) gives an upper
bound of the delay discrepancy of parents of a given node. In the remaining of the

thesis, we will also refer to that delay discrepancy as the delay variance of a node.
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min f° subject to:

dd < gAmax veV*
dfzdpAdef,\L—M(l—em) v,p eV,
pFuv,v#S

dvaaxzd;‘—M(l—epv) peViveVip#uv
df’mingdﬁ—l—M(l—em) peViveV p#£wv
od” > ghmax — gfmin veVv*

S re <, veV

ceV*\{v}

> Tpo < by veVv*

peV\{v}

> rw>R vevV*

peV\{v}
Teuw < Tuy ST ey u,v €V u#uv,
res, <rsy < Resy veV”
Cuy > 0 ueVioeV\{u}
Typ > 0 uweViveV\{u}
dUAEO veV

Figure 5.1: OCDB Linear Model
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Rate vs. Bandwidth Constraints Constraints (6) state that a node v € V' can
not upload more than its maximum capacity. Similarly, constraints (7) state that
each node v € V* can not download more than its maximum capacity. Constraints
(8) state that each node v € V* has enough download capacity to accommodate the

video streaming rate.

Performance Constraints The goal of these constraints is to help constructing
an efficient and resilient overlay network. Constraints (9) express conditions on the
transmission rate from a parent p to a child node v. This rate is at least r to avoid
useless parents (transmission rate equal to 0) or fragmentation of the rate assignment
(parents with a small fraction of the transmission rate) and, at most 7 to avoid relying
mainly on one parent.

Constraints (10) state that the transmission rate from the source to any other
node v is at least r and at most R: here, we allow the source to send at full streaming

rate to one peer because, if the source fails, the P2P session will be over.

5.4 Numerical Results

In this section, we describe the results obtained through the solutions of the OCDB
model. We used CPLEX [CPL10] to solve the MILP (Mixed Integer Linear Program)
associated with the OCDB model. For more clarity, we present here the results
for 8 nodes including the source. We start by detailing the data set used for the
experiments. Then we explore and comment the different results. The resulting
overlay network with default parameters is shown in Figure 5.2. For each node in
the overlay, we show its identification, the value of its parents delay discrepancy
(between parenthesis) and its playback delay (on the right side of the figure). Delays

and variances are expressed in milliseconds (ms). We do not show the values of
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Table 5.1: Bandwidth Characteristics of Nodes

| Node ID || Upload BW (kbps) || Download BW (kbps) |
0 (source) 900 N/A
1 200 500
2 200 500
3 200 500
4 300 500
5 400 1000
6 500 1000
7 600 1000

transmission rates on the overlay links to preserve the readability of the figure. The
upload and download bandwidth capacities (in kbps) for each node are provided in
Table 5.1. We also provide a delay table, Table 5.2, where we assume that the end-
to-end delays are the same between any pair of nodes in both directions. In order to
build Table 5.2, we have made use of some typical values obtained through pinging
some websites (such as yahoo, ebay, google, ...) located worldwide and observing the
average RT'T values as they are less prone to variations. In the next chapters, more

realistic delay values will be used.

5.4.1 Data set

Unless explicitly stated, the parameters R, r, 7 and «, take the default values 442kbps,
50kbps, 250kbps and 0.5, respectively. We have determined, through experiments,
that R = 442kbps was the maximum streaming rate that led to a feasible solution
using the described data values. We will now evaluate the performance of the proposed

model in such extreme situations.
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Table 5.2: Peer-to-Peer Network Delays
Nodes || 1 2 3 4 ) 6 7

0 20 || 50 || 110 || 140 || 150 | 180 | 200

1 - | 50 || 60 || 145 | 155 || 190 || 195
2 - - 20 || 160 || 200 || 110 || 130
3 - - - 40 || 45 | 260 || 255
4 - - - - 20 || 270 || 280
5 - - - - - 290 || 300
6 - - - - - - 30

Table 5.3: Impact of the Transmission Rate Limit, R = 442kbps
T 221 || 250 || 350 | 442 || 450

Max. Delay (MD) 665 | 665 | 605 | 600 || 600
Av. Delay (AD) 414.3 | 380 || 405 | 400 || 400
Max. Variance (MV) || 300 | 310 | 210 || 200 || 200
Av. Variance (AV) | 159.3 || 130.7 136.4 | 110 || 110

5.4.2 Impact of the limitation of transmission rate between

two nodes

In order to explore the impact of the limitations of the transmission rate between two
nodes (7 in the OCDB model), we have varied 7 below and over the streaming rate.
In Table 5.3, we present the most significant results. We conclude that the optimal
solution depends on the value of 7. For 7 > R, a case where there are no constraints
on the transmission rate over an overlay link, we obtain the best performance in terms
of delay minimization and parent delay variance. This is due to the fact that there
is more flexibility in choosing parents and transmission rates. However, with such 7
values, we loose control over load balancing. We also weaken resiliency as a receiving
node can take most of the content from only one parent.

Actually we can say that the interval [350 — €,350 + ¢] is likely to contain the
values for which there is the best trade off between delay and variance performance
on the one hand, and resiliency on the other hand. Indeed, the gain in variance and

delay is very important compared to lower values (250 or 221) but it is close to the
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Playback Delay

Figure 5.2: An Optimal Solution for the OCDB Problem with 8 Nodes and
R=442kbps
best values (obtained with 7 = 450). Obviously, the value 350 depends on the data

set used, but for each one, such rate probably exists.

5.4.3 Impact of the Streaming Rate

In order to study the impact of the streaming rate on the performance, we used the
same data set and only changed the value of 7 to 350 instead of the default value 250.

Results are presented in Table 5.4. The main deduction is that when the streaming

Table 5.4: Impact of the Streaming Rate, 7 = 350kbps
R | 200 | 300 350 400 442
MD | 180 210 290 405 605
AD || 110 | 127.14 || 186.43 || 259.29 | 405
MV || 0 60 55 180 210
AV 0 12.9 13.6 81.4 || 136.4
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rate is higher, delay and variance performances degrade. This is due to the fact that
when increasing the streaming rate, the amount of upload bandwidth that is used by
the P2P network is higher. Indeed, the closer is the streaming rate to the maximum
feasible one (after which there is no feasible solution), the worse is the performance,
as we reduce the flexibility and restrict the possible choices for the parents in the
overlay construction.

In addition, we note that, for some streaming rates that are not so far from the
maximum allowable rate (442kbps) such as 350kbps and 400kbps, the performance is

much better:
e Reduction of 52% and 33% respectively, for the maximum delay;
e Reduction of 54% and 36% respectively, for the average delay;
e Reduction of 74% and 14% respectively, for the maximum variance;
e Reduction of 90% and 40% respectively, for the mean variance.

At the same time, the performance is not much worse than lower values of the
streaming rate (300kbps for example). Thus, we should avoid loading the P2P network
with streaming rate that is close to the maximum feasible one. In addition, we have
to look for the rate that achieves the best trade off between high streaming rate vs.

low delay performance.

5.4.4 Impact of the source Upload Bandwidth

In order to discover the impact of the source upload bandwidth on the delay perfor-
mance, we have modified the maximum upload bandwidth of the source, while keeping
identical the overall upload bandwidth provided by the P2P network. In addition,

we choose 7 = 350 and R = 442. The results are summarized in Table 5.5. Here
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Table 5.5: Impact of the source Upload Bandwidth, R = 442kbps, 7 = 350kbps
b%" [l 600 || 900 | 1200 || 1500
MD | 695 | 605 || 420 360
AD || 435 || 405 || 259 212
MV | 180 || 210 || 180 180
AV || 88 | 136 97 81

again, we can see that not all the values of the upload bandwidth of the source give
the best trade off for the delay performance vs. the bandwidth amount. In our case
study, when the source has a capacity of 1200kbps, the P2P system reaches the best
trade off as it has the best gain in delay per added source bandwidth. In addition, it
is clear that increasing b%% helps minimizing the delay because the source can serve
more peers either fully or partially and thus the number of levels in the overlay will

decrease.

5.4.5 Impact of heterogeneous bandwidth

To explore the impact of the non heterogeneity of upload bandwidths provided by
participating peers, we assigned to each peer (not including the source) an upload
bandwidth of 343kbps and we considered 7 = 250. This way, the global upload
bandwidth provided by the system is the same as with the initial values. Then, we did
the experimentations with different streaming rates. The main results are provided
in Table 5.6. The first conclusion we draw is that, as long as the streaming rate is
lower than the upload bandwidth, we obtain low average delays with a low parent
delay discrepancy. With a little higher streaming rate, the performance deteriorates
dramatically.

Secondly, with a streaming rate 442kbps there is no solution which translates to a
denial of service in the real case. This means that having enough upload bandwidth

in the P2P system is not the sole important point. How this bandwidth is distributed
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Table 5.6: Impact of Non Heterogeneous Upload Bandwidths, 7 = 250kbps
R 251 300 343 355 400 442
MD 200 200 210 410 470 || N/A
AD || 124.29 || 130.36 || 127.14 || 153.57 | 201.43 || N/A
MV 60 72.5 100 80 270 || N/A
AV || 22.86 40.71 45.71 42.14 84.29 || N/A

among peers, where it is located relatively to the source and what topology is being
used, are important points too. In Figure 5.2, we can see that nodes with the highest
upload bandwidths are located near the source.

Based on these observations and on the results described in Section 5.4.4, we
believe that most of the upload bandwidth must be concentrated near the streaming
source. This will maximize the number of peers being served for a given streaming
rate and will lead to better performance in terms of playback delays.

Thirdly, when comparing these results with those obtained with initial upload
bandwidth values (see Table 5.7), we note that for a given streaming rate, the system
with non heterogeneous bandwidth performs better in terms of delay. This is due to
the fact that, in an heterogeneous situation, there is a penalty associated with putting
nodes, with low end-to-end network delays (but with small upload bandwidth), or
nodes, with high upload bandwidth (but with high end-to-end delays), at a specific
location, specially near the source. In the homogeneous/other case, such penalty does
not exist. It is as if the solution finds the best overlay in terms of delay and then
assigns the rates to the links.

Table 5.7: Results with Heterogeneous Upload Bandwidths, 7 = 250kbps
R 343 355 400 | 442
MD 340 420 515 || 600
AD | 221.43 || 252.14 || 320 || 400

MV 180 140 180 || 200
AV || 71.43 45 57.86 || 110
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5.5 Conclusion

In this chapter, we have proposed a linear programming model that minimizes experi-
enced playback delays of peers in a streaming session. Thanks to this model, we have
studied the impact of the characteristics of the streaming source and the participating
peers on the playback delay.

To fully exploit a P2P system and take benefits from its advantages, one needs to
adjust the streaming rate and the limits of transmission rates of overlay links to suit
the upload bandwidth made available by the source and the peers.

We have shown that there are many tradeoffs to be considered such as low playback
delay vs. high streaming rate, low delay vs. maximum transmission rate on an overlay
link or low delay vs. low source upload bandwidth.

These tradeoffs come from the fact that having a high streaming rate, a low
maximum transmission rate on an overlay link or a low source upload bandwidth will
make the system use more overlay links, and more specifically end client overlay links,
as well as putting a higher stress on individual peers.

In this study, we have assumed a total knowledge about participating peers. In a
realistic environment, we do not have such a priori knowledge which makes it more

difficult to achieve an optimal performance.
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CHAPTER 6

Toward New Peering Strategies
For Push-Pull Based P2P
Streaming Systems

6.1 Introduction

During the last decade, several P2P live video streaming systems have been success-
fully deployed in both Internet and academic worlds. The technical success of such
systems comes from the fact that they are providing seamlessly enough upload re-
sources at a low cost (since the bandwidth cost is distributed on participating peers),
leveraging both cost and load on the content source server.

Available Internet systems mostly originated from China and focused on deploy-
ment simplicity while trying to satisfy acceptable video quality [PPS06, PPL10,
Sop10]. Academic systems tried to push the quality further to improve other per-
formance criteria such as playback delay and resiliency to churn rates [CDK'03,
PWCS02, RS04, LNO6].

Several works addressing playback delay minimization focused on content retrieval
mechanisms notably through proposing push-pull mechanisms [ZZSY07, LMSWO07] or

improved scheduling strategies [Liu07, CXHO08]. These solutions do not investigate
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how to construct an overlay that helps achieving such a goal. Typically, a joining
node will choose neighbors randomly or based on basic characteristics of candidate
neighbors such as proximity (RTT:Round Trip Time) and upload bandwidth.

In this chapter, we show that constructing an overlay with a focus on reducing
video delivery delays is a necessary step toward minimizing playback delays. Node
relationships are critical for the performance. To make the right decisions, a node
needs relevant information about the other peers.

With the relatively new push-pull mechanisms, the use of the pull mechanism is
generally limited to the initial phase of content fetching and to the recovery of lost
data. Thus, its impact on the performance of a P2P system is greatly reduced. These
facts open large possibilities for comparing peering strategies in a new and suitable
context and even for proposing new strategies that probably do not have a big impact
on playback delays with a classical pull mechanism but recover all their influence in
conjunction with a push-pull mechanism.

In the following, we propose to revisit peering strategies based on the use of
a push-pull content retrieval mechanism. Our focus is to minimize the playback
delay experienced by participating nodes. We propose two new peering strategies
that we compare to the state-of-the-art strategies using simulation. One of these
new strategies is suitable for push-pull based systems and performs better than the
compared ones.

In the remaining of the thesis, the names of existing and proposed strategies will
be written in [talic and Italic Bold respectively.

This chapter is organized as follows. In section 6.2, we describe briefly the resource
management scheme we use. Section 6.3 presents the different algorithms being com-
pared. Simulation conditions are described in Section 6.4. In Section 6.5, we discuss

the simulation results. We conclude in Section 6.6.
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6.2 Parent-Child based Mesh

In mesh-based P2P systems, the common practice is that each node has N neighbors.
If a node is able to serve more than N nodes then its capacity is under-exploited. If
its capacity does not allow him to serve N nodes fairly, then it is overloaded, which
results in congestion, increased delays and packet loss.

To be able to use the upload bandwidth of a peer efficiently, we use a resource
organization scheme based on the concepts of parents and children. This scheme
increases the upload bandwidth utilization when needed, as each node is in full control
of the utilization of its resources. We divide the upload bandwidth of a node into
equal slots that will be assigned to its children.

Based on this idea, a node accepts requests to be a parent until it reaches its
maximum number of used slots, then it starts refusing any request. A request may
ask for one or more upload slots. Meanwhile, when a node joins the session, it keeps
looking for parents until it reaches the number of needed slots or there is no new
nodes to request from.

More concisely, let R be the streaming rate of a P2P live streaming session. Let
P be the number of slots needed by each node in the session. In the ideal case, the
upload bandwidth of each node will be divided into slots of size %. Denote by U(p)
the nominal upload capacity of a node p. Thus the maximum number of slots that p

may offer is equal to:
P x U(p)

=
To take into account the overhead and useless utilized bandwidth (lost packets for

example) we compute the maximum number of slots as:

U(p)
(1+a)x £

I J.
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where o < 1 is a positive real number to account for the overhead and retransmissions.
This way, we are likely to achieve a high success ratio of sent packets per slot.
The proposed resource organization scheme will be used in all the strategies being

compared in the present thesis.

6.3 Peering Strategies

In this section, we propose different peering strategies that we compare to the strategy

proposed in [RLCOS].

6.3.1 Strategy Classification

According to the information being used, we classify most existing peering strategies

into:

e Basic Strategies (BS) that use intrinsic and peer relationship quality information

such as the upload bandwidth and the RTT;

e Partially Overlay-aware Strategies (POS) that exploit information about the
status of a node in the overlay (such as its distance to the source node). They

do not have global overlay information though.

BS strategies are usually simple to deploy. However, as they rely on restricted
local information, they will likely fall short of achieving the best possible performance.
On the opposite, POS strategies take better informed decisions that serve the global
performance of the system. POS strategies result in more deployment challenges as
information collection about a subset of other peers costs resources, increases delays

and may lack timely accuracy.
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6.3.2 Strategy Operation

As we no more deal with neighbors, a joining node focuses only on finding new parents
so it may impose selection criteria that were not possible with neighbor selection.

The algorithms being presented in the sequel do not allow for eliminations of
existing relationships: If a node has reached its maximum number of children, it will
not eliminate one of its children to accommodate a new request. This way, we are
able to make the parent selection procedure converge.

When a node is joining, it tries to get the minimum number of parents that pro-
vides it with the intended number of slots, P. This means that it gets the maximum
number of slots available at each parent until reaching P slots. So a node may end
up with one to P parents. Nodes with a single parent may suffer in real context, for
instance, because of churn rate, node failure, performance degradation of the parent,
etc. In the next chapter, we address such situation by imposing a number of parents
to each node. In the sequel, the name of the strategies in the present chapter will be

suffixed with MP for Minimum number of Parents.

6.3.3 The BP-MP Strategy

The Best Parents strategy, see Algorithm 6.1, is the first strategy we propose: A node
selects the best available parents according to their distance to the source node (in
ms) and to the relative RT'T. The distance of a node to the source is defined as the
distance of the longest path from that node to the source through all of its parents.
The objective is to minimize the length of the node paths to the source. We evaluate
the longest path to the source according to the method maxDtoS that we propose in
Algorithm 6.2. To reduce evaluating the distance indefinitely due to cycles, a node
will update its distance only relatively to a parent who joined the session previously.

This is a realistic heuristic as in [WXL10], the authors show that lifetime of peers in
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Algorithm 6.1 Best Parent Selection

Input: L: List of potential parents of a node ¢
Output: LP: List of parents (may be empty) {LP has a size between 0 and P
(number of needed slots)}
Begin
¢ < current_node
sort nodes p € L, in ascending order of the maximum distance of ¢ to the source
through p: maxzDtoS(p) + %(p’c)
while L is not empty and Needed_Slots > 0 do
p < Head(L)
if Needed_Slots < AvailableSlots(p) then
n < Needed_Slots
else
n < AvailableSlots(p)
end if
success < RequestSlotsFromNode(p,n)
if success then
Needed_Slots < Needed_Slots —n
LP.insert(p)
end if
end while
End
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the session is a good indicator of their stability and thus, we suppose that a stable

node has a relatively stable playback delay.

Algorithm 6.2 maxDtoS(c)

Input: ¢: Current node
Output: maxDtoS: Maximum distance to the source of node ¢ in
milliseconds(ms)
Begin
c.maxDtoS < 0
for each parent node p of the current node ¢ do
if JoinTime(c) > JoinTime(p) then
if p.maxDtoS + rtt(p,c)/2 > c.maxDtoS then
c.maxDtoS « p.maxDtoS + rtt(p, c)/2
end if
end if
end for

return c.maxDtoS
End

6.3.4 The Power-MP Strategy

The Power-MP strategy is based on a variation of the distributed algorithm proposed
in [RLCO8|. In the original algorithm, each peer ¢ associates with each candidate

parent p a Power value that is the ratio:

min(RB(p), R)
"9 | mazDtoS (p)

Powery, =

where RB(p) is th residual upload bandwidth of node p and R is the streaming
rate. Node c tries to select parents with highest Power until achieving the intended
streaming rate. In our variation, instead of dealing with residual upload bandwidth,

we deal with the residual upload slots. Thus, the Power of a potential parent p
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Algorithm 6.3 RequestSlotsFromNode(p,n)

Input: p: Node to request slots from, n: Number of requested slots
Output: SUCCESS if request sent, FAIL otherwise
Begin
if p is not already a parent of the current node ¢ then
if p still accepts children then
ask p to be a parent and request n slots from it
return SUCCESS
else
skip node p
return FAIL
end if
else
skip the node p
return FAIL
end if
End

relatively to a node c is:

min(AvailableSlots(p), P)

?“ttgﬂ + mazxDtoS(p)

Power,, =

6.3.5 The Rtt-MP Strategy

The Rtt-MP strategy is based on a variation of the BP-MP algorithm. The only
difference is that the candidate nodes are sorted in the ascendant order of their RT'T
to the requesting node: A node will choose the nearest parents. Variations of this

strategy exist in the literature.

6.3.6 The PowerRtt-MP Strategy

The PowerRtt strategy we propose, is similar to the Power strategy except that it

takes into account the RTT among nodes instead of the distance to the source of a
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node. Thus the Power of a potential parent p relatively to a node c is:

min(AvailableSlots(p), P)
rtt(p, c)

Power,, =

Such a strategy is simple and favors trade-offs between nearest nodes and high up-

loading ones.

6.4 Simulation

The objective of the conducted simulations is to measure the impact of the compared
peering strategies on the average playback delay observed by peers in the streaming

session. The best strategy is the one that leads to the lower average playback delay.

6.4.1 Simulator

We make use of the discrete event based simulator for P2P single source live streaming
built by Zhang et al. and detailed in [ZZSY07]. This simulator operates at the packet
level and has already many useful functionalities implemented. However, it suffers
from the lack of documentation. The source code of the simulator is available at
[Zha09].

In the simulator, the streaming data is divided into packets of size 1250 bytes, not
including headers. Some parameter values are detailed in Table 6.1. Network end-
to-end latencies (RTT) between nodes are real-world values taken by default from a
latency matrix computed within the Meridian project [WSS05].

For each simulated algorithm, we execute the simulation three times. The number
of executions is enough to obtain relevant results because we are not considering a
churn rate. The results shown are the ones computed for the last 10 seconds (this

behavior is by default in the simulator). We limit each execution to a duration of
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Table 6.1: Simulation Parameters

Streaming Rate 250kbps
Pull Request Window Size 125 packets = 5's
a: Slot overhead /retransmissions 0.25
Needed Slots per Node 5

180 seconds as the system reaches a steady state well before that time. Indeed,
this duration does not impact the final results as, thanks to the absence of churn,
the obtained overlay is stable and each node has terminated the process of parent
selection. We ensure that the results are stable by comparing them to the preceding

periods (150, 160 and 170 seconds).

6.4.2 Scenario
Node Information.

We have conducted simulations for the six sets of nodes from Table 6.2. For these
sets, the resource index (RI), the ratio of the upload capacity available to the needed
bandwidth so that each node receives the full streaming rate, is near 1.44. We have
chosen a high RI, to be able to compare the performance of the strategies free of
resource constraints.

However, we believe that the RI is not precise enough as it does not take into
account the overhead and the eventual retransmissions. Thus, we propose a more
suitable indicator: The slot index (SI). We define the SI as the fraction of all upload
slots made available by peers to the total number of needed slots for all nodes. The
slots index depends on the resource index and on the o parameter proposed in Section
6.2.

It is assumed that nodes have DSL connections and that bandwidth bottlenecks
are located at the edge of the network, i.e., end-node access networks [ZZSY07].

Table 6.3 shows how bandwidth capacities are distributed. The source (node 0) has
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Table 6.2: Node Sets
N 51 101 201 401 701 1001

RI || 1.441 || 1.446 || 1.448 | 1.448 || 1.449 || 1.439
SI| 1.14 || 1.14 || 1.14 | 1.14 | 1.14 || 1.14

Table 6.3: Bandwidth Capacities of End Nodes

Download Rate || 3 Mbps || 1.5 Mbps || 768 kbps

Upload Rate 1 Mbps || 384 kbps || 128 kbps
N=51 10 % 40 % 50 %
N=101 12 % 42 % 46 %
N=201 13 % 43 % 44 %
N=401 13 % 45 % 42 %
N=701 13 % 46 % 41 %
N=1001 14 % 42 % 44 %

an upload bandwidth equal to 1000kbps. Nodes are organized into three classes based

on their upload bandwidths: 128kbps, 384kbps and 1000kbps.

Join Process.

By join process we mean the way nodes join the session. The default behavior is ran-
dom join. Although this is a realistic behavior, it makes it difficult to compare overlay
construction algorithms since, because of the heterogeneous upload bandwidth, the
order of joining of nodes has an impact on the quality of the overlay. Thus, we have
implemented a deterministic join process depending on the class of nodes. The join
process is described in Table 6.4. It results in an identical arrival rate for the three

node types until there is no more nodes, from a specific class, to join the session.

Table 6.4: Join Process of End Nodes
Node Upload Rate (kbps) || 1000 || 384 || 128

First Join Time (ms) 40 || 20 1
Join Period (ms) 50 || 50 | 50
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Push-Pull Algorithm.

In the conducted simulations, we use the push-pull mechanism as already implemented
in the simulator [ZZSY07] (see Section 4.3).

The algorithm divides the video stream into substreams based on the sequence
number of streaming packets. A node requests packets using the pull mechanism until
receiving packets from specific substreams. Then, the receiving node subscribes with
the sender so that it relays the packets of that substream directly to it. Lost packets
are recovered using the pull mechanism with random scheduling.

We introduce two modifications to the push-pull mechanism being used to make it
more suitable to the simulations being conducted. Firstly, we impose that the number
of substreams being pushed by a node is lower or equal to the maximum number of
its upload slots. This ensures that a node will not be overloaded.

Secondly, we drop the dynamic selection of substream pushers. In the original
algorithm [ZZSY07], the stream is divided into n substreams according to the sequence
number of packets. Contiguous packets from different substreams form a packet
group. k contiguous groups form a packet party. Each group has a group ID from
0 to k — 1. For instance, the group with ID equal to 0 is chosen as the base to take
push decisions. The pusher of a substream is the parent from which the node has
successfully pulled a packet that belongs to both the wanted substream and a group
with ID 0. With these two behaviors, the content distribution does not necessarily
follow exactly the constructed overlay. A node may have 5 parents but, for instance,
only 2 are sending the full content.

To resolve this issue, we deactivated this dynamic selection. Such deactivation
would be problematic if there are cyclic dependencies in the overlay. The original
push-pull algorithm avoids cycles of length equal to two links but there is no guarantee

to avoid cycles of length higher than two.
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With the adopted join process, we ensure that each node finds its needed slots at
his first parent selection procedure so that no cycles may occur and thus the static
push-pull variation will work without troubles. Moreover, this way we ensure that
each selected link in the overlay will be used. Thus, the performance of the compared
strategies depends totally on the constructed overlay and no more on the pusher

selection made by the push-pull algorithm.

6.5 Results

In the following, we compare the presented strategies in the best possible context (no
churn) as our focus is on how to construct a good quality overlay. In addition, we
are not considering jitter for the delivery of packets. Studying the impact of such
phenomena is left for future work.

In this section, we present and comment the results obtained through the simula-
tions. For each figure, the number of nodes is indicated on the X-axis (51, 101, 201,
401, 701. and 1001). We made sure that the presented results are measured when
all streaming packets are pushed, i.e., the system is not using the pull mechanism as
in the beginning of the session. This is made possible because we assume that there
is no packet loss due to network conditions. Thus, the overhead has no significant

value.

6.5.1 Total Upload Utilization

The total upload utilization is the utilization ratio of the upload resource of the P2P
system, (see [ZZSYO07] for more details). The results of the total upload utilization
of the P2P system are presented in Figure 6.1. Some curves are difficult to identify

as they are overlapping, since many strategies have identical curve points. The first
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conclusion we draw is that the total upload utilization is almost the same for all
compared strategies: The maximum difference is about 0.3% or less for the same
number of nodes. This is a very important result as it means that the compared
strategies have almost the same efficiency with respect to resource utilization. Thus,
we are able to state that the difference of performance of the compared strategies is
not related to the upload resource utilization but rather to the quality of the strategy
itself: If a strategy outperforms another one while using the same ressource, then the
first one manages to create a better overlay network with resepect to the objective of

minimizing playback delays.

6.5.2 Average Playback Delay

We define the average playback delay as the average of playback delays of all nodes
except the source. We keep the method of evaluating the playback delay of a node
as it is described in [ZZSYO07]. The playback delay depends on the ratio r of the

received packets to the needed packets within buffer intervals of one second. Every
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Figure 6.2: Average Playback Delay - MP

two consecutive intervals have a time slot lag of 250ms. The playback delay is then
determined by the lowest i time slot for which the corresponding buffer interval
satisfies 7 > 99%. The playback delay is then equal to 7 x 250ms, ¢ starting at 160
downward 0.

Figure 6.2 depicts the average playback delays of the compared strategies. We
observe that the BP-MP and Rtt-MP strategies perform better than their power
based counterparts Power-MP and PowerRTT-MP. This means that power based
strategies are taking some peering decisions that are not optimal. One explanation
lies in the way the Power value is calculated as a fraction: Some side effects may
occur and lead to poor decisions. For instance, a peer may select one parent with a
high delay because it has a high available upload bandwidth.

Actually, by using Power strategies, there is a sort of gambling about the future
decisions that do not prove to be right in several occasions. Thus, such strategies lack
result stability: Performance may vary significantly from one scenario to the next.

For instance Power-MP performs better with 701 nodes than with both 401 and 1001
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nodes.

On the opposite, BP-MP and Rtt-MP have a more systematic greedy behavior
that consists in taking the maximum quantity of content from the best parents. The
criteria in these strategies do not suffer from side effects as they are based on one
parameter only.

BP-MP starts to perform better than Rtt-MP starting from a medium number
of nodes, greater than 400. This means that, the distance to the source is a relevant
criterion only when paths to the source start to have different enough lengths and
high enough costs.

If it was not for our resource reservation scheme which was proposed in Section 6.2,
BP-MP would probably lead to a poor performance. Indeed, this strategy assigns
high packet forwarding load to the best nodes and less to the worst. So a good node

may be overloaded if there is no upload resource organization scheme.
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6.5.3 Global Average Packet Delay

The average packet delay of a packet is the average of delivery times needed for that
packet to reach to all nodes after its creation at the source. The global average
packet delay is obtained by computing the mean of average packet delay of all nodes
except the source. It is calculated with the same manner as in [ZZSY07]. Each
node maintains its own average packet delay for packets that have been successfully
received. The average packet delay at a node is a combination of the scheduling delay
(due to the push and mainly pull mechanism) and of the overlay path length. When
the pull mechanism is not being used, all packets are being pushed, the average packet
delay is almost equal to the average overlay path length.

From Figure 6.3, we can see that having a low global average packet delay is not
enough to guarantee a low playback delay. The reason is that the packet delay deals
with the successful reception of individual packets. Thus, it does not consider the
contiguity of the received packets while the playback delay does. The contiguity of
received packets is not guaranteed because substreams may take paths with signifi-
cantly different lengths. As a consequence, a node may have parents with significantly
different playback delays. For instance, for the scenarios with 701 nodes and 1001
nodes, PowerRTT-MP and Power-MP have similar playback delay performance
although PowerRTT-MP has a better average packet delay.

To explain this result, we propose the concept of variance. The variance of a node
is the difference between its highest parent streaming delay and its lowest parent
streaming delay. Figure 6.4, which depicts the average variance of nodes in the
session, shows that for both scenarios (701 and 1001 nodes) PowerRTT-MP have
an average variance significantly worse than Power-MP. Thus, the advantage of having
a low packet delay has been canceled by having a high variance.

Another example lies in the fact that, although BP-MP usually has the lowest
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average packet delay, we can note that for the scenario with 1001 nodes, BP-MP
has a higher average packet delay than Rtt-MP but still performs better with respect
to the average playback delay(250 vs. 300). The reason is given by Figure 6.4 where

Rtt-MP has a much worse variance.

6.5.4 Maximum Playback Delay

The maximum playback delays obtained for each strategy are drawn in Figure 6.5.
The maximum delays obtained with PowerRTT-MP are the same as those of Rtt-
MP except for the scenario with 51 nodes where it is the same as the BP-MP
strategy. Power-MP performs the worst because it leads to long paths from nodes to
the source. This is observable through Figure 6.3 where this strategy has significantly
higher packet delays than the others. Our proposed strategy, BP-MP performs the
best because it leads to the shortest paths to the source. Such a claim is confirmed

by Figure 6.3 where BP-MP usually has the lowest average packet delay.
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6.5.5 Global Average Node Upload Utilization

The global average node upload utilization is the mean of the average node utilization
as computed in [ZZSY07]. The global average node upload utilization results are given
in Figure 6.6. We note that Power based strategies have the lowest node utilization
ratio. Since these strategies are involving the available upload slots at nodes, it leads
to a balanced load distribution among nodes. Another reason lies in the fact that
nodes at the edge of the mesh overlay are likely to be less involved because they have
have high delays.

The two other strategies are likely to impose high load on better nodes. For
instance, the BP-MP strategy, having the highest node utilization according to
Figure 6.6, gives preference to nodes near the source to be selected as parents. So it
has a high forwarding load. The upload resource scheme we proposed in Section 6.2

ensures that the node is not overloaded.

6.6 Conclusion

In the present chapter we have compared several peering strategies for P2P video live
streaming based on a push-pull scheduling strategy in a mesh overlay.

The significant difference among average playback delays of the compared strate-
gies proves that the overlay has an important impact on the performance. Thus,
constructing a good, i.e. low weight, overlay is a necessary step toward minimizing
playback delays.

With respect to playback delays, one of the strategies we propose, BP-MP, (Best
Parents, Minimum Parents) performed the best under some scenarios and outper-
formed a recent strategy [RLCOS8] targeting reducing playback delays in mesh over-

lays. BP-MP is a POS strategy exploiting partial overlay information describing
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the overlay distance of a node to the source.

The MP variations have the advantage to lead to simple overlays. Indeed, the
number of overlay links is small thanks to a small parent degree per node. This had
a positive impact on the playback delays.

In the undertaken simulations, the constructed overlays had no overlay cycles
and thus all the streaming packets were pushed. Therefore, we can state that, in
such a situation, each considered strategy was performing at its best, i.e., there is no
other situation where it can lead to a better playback delays for the considered P2P
streaming scenario.

Unfortunately, such an ideal situation is unlikely to happen within a realistic
environment with churn rate and packet loss. To protect itself, each peer needs to
increase its number of parents/neighbors and to distribute the load of the video stream
forwarding among them.

Subsequently, in order to improve the proposed MP variations and to make them
resilient to real context problems such as churn rate, node failure, performance degra-
dation of the parent, etc, we propose variations of the same strategies, in which we
impose a number of parents to each node. This adds more challenges since the overlay
structure is more complex and it may result in peer interdependencies. These vari-
ations will be studied in Chapter 7 and will be designated with the suffix FP (fixed

number of parents).
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CHAPTER 7

Revisiting Peering Strategies in
Push-Pull Based P2P Streaming
Systems

7.1 Introduction

Studying peering strategies has been done in early works on P2P systems [SGMZ04,
RS04] and more recent ones as well [RLC08]. Such systems had inherent limitations
due to constraints imposed on their topologies (tree or multi-trees) or their content
retrieval mechanism (pull). In the last case, the content retrieval is based on three
steps at each hop: Sending buffer maps to neighbors, analyzing and requesting content
and finally sending content. The additional delay resulting from such a heavy process
is enough to impact the performance of good overlays and to make them struggle.
Thus, we believe that a push-pull scheduling mechanism [ZZSY07, LMSWO07] is
more suitable for comparing peering strategies in mesh overlays as it leads to much
lower overheads and playback delays compared to the pull mechanism. In addition,
it allows the proposal of new strategies that are based on overlay link delays: Such
strategies were obsolete in pull-based system as the delay due to pull scheduling

outweighs significantly the RTT (Round Trip Time) of an overlay link.
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In Chapter 6, we have demonstrated that constructing a good overlay is a nec-
essary step toward minimizing playback delay. We have proposed strategies that we
compared, to state-of the art ones, using a push-pull scheduling algorithm. One of
the strategies we propose, BP-MP, (Best Parents, Minimum Parents) performed the
best under some given scenarios and outperformed the strategy proposed in [RLCO0S]
targeting at reducing playback delays in mesh overlays. However, the context of com-
parison was ideal: There were no overlay cycles and no dynamic selection of pushing
nodes. As a consequence, after a start-up time, all streamed packets are being pushed.

In addition, the variations being compared consist in selecting the minimum num-
ber of parents until theoretically achieving the full streaming rate as done in [RLCO8].
So, in these variations, a node may have a single parent or few parents. We designated
variations with minimum number of parents by the suffix MP.

Having nodes with a small number of parents may be problematic in a real context
because of the peer churn rate. For that reason, through simulations, the present
chapter compares different variations of the same strategies, where each node has the
same number of parents (when possible). Although such variations are more suitable
to address churn, they result in complex mesh overlays. Some peer dependencies may
occur which triggers the pull mechanism to come into action. In the remaining of the
chapter, we designate variations with a specific number of parents by the suffix FP.

Thus, we propose two new variations BP-FP and PowerRTT-FP that we
compare to two variations of the strategy proposed in [RLCO08|: Power-MP and
Power-FP. Results show that both BP-FP and PowerRTT-FP benefit better
from the push-pull scheduling mechanism and lead to overlays with short source-to-
end paths and thus to low playback delays.

This chapter is organized as follows. Section 7.2 presents the different strategy

variations being compared. Simulation conditions are described in Section 7.3. In
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Section 7.4, we present and comment the simulation results. We conclude in Section

7.5 and give hints on future work.

7.2 Peering Strategies

In the present section, we describe the variations of the peering strategies that we
evaluate through simulations. These variations differ from the ones being compared
in Chapter 6: Each node has a fixed number of parents instead of a minimum number
of parents that provide him with the full streaming rate.

Therefore, we propose two new variations BP-FP and PowerRTT-FP that we
compare to two variations of the strategy proposed in [RLCO8]: Power-MP where a
node selects the minimum number of parents (as in the original algorithm detailed in
Section 6.3.4) and Power-FP where a node selects a fixed number of parents.

The comparison is based on the playback delay of peers. As we are addressing
live video streaming, the playback delay is important especially if we want to move
toward real time live video streaming where some sort of interaction can be possible
among peers.

For each strategy, a joining node tries periodically to find new parents until reach-
ing the number of needed parents. A node rejects a request for being a parent of
another node if it has no more available upload slots. In that case the requesting
node needs to look for a new parent.

We do not address the issue of the churn rate as our focus is on how to construct
a good quality overlay. The algorithm of overlay construction can then be adapted

to integrate some strategies to deal with churn.
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Algorithm 7.4 BP-FP Selection

Input: L: List of eventual parents
Output: LP: List of parents (may be empty) {LP has a size between 0 and P
(number of needed parents)}
Begin
¢ < current_node
sort nodes p € L, in ascending order of the maximum distance of ¢ through p:
p.maxDtoS() + RTTT(”’C)
while L is not empty and Needed_Slots > 0 do
p < Head(L)
success < RequestSlotsFromNode(p, 1)
if success then
Needed_Slots «+— Needed_Slots — 1
LP.insert(p)
end if
end while
End

7.2.1 The BP-FP Strategy

In the BP-FP strategy, a node tries to select P parents that provides it with the
shortest paths to the source node. BP-FP is described in Algorithm 7.4: We evaluate
the distance to the source according to the function maxDtoS that we proposed in
Algorithm 6.2. To reduce evaluating the distance indefinitely due to cycles in the
overlay, a node will only update its distance relatively to a parent that has joined the
session before it. Proposing the BP-FP strategy in a mesh overlay has been made
possible thanks to the resource upload schema being used (see Section 6.2), where
we drop the concept of neighbors and we use the concept of parents and children.
Indeed, in neighbor based mesh systems, the symmetric relationship among nodes

makes unsuitable such strategy.

7.2.2 The Power-FP Strategy

The Power-FP algorithm is a variation of The Power-MP: The only difference resides

in the fact that in Power-FP each node has, when possible, a fixed number of parents,
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P, while in Power-MP a node have at most P parents.

7.2.3 The PowerRtt-FP Strategy

The PowerRTT-FP algorithm is similar to the Power-FP algorithm except that it
considers the RTT instead of the distance of the candidate node. Thus the Power of

a potential parent p relatively to a node c is:

min(AvailableSlots(p), P)
rtt(p, c) '

Power,. =

PowerRTT-FP has the merit to be simple and to consider the overlay link delay as
an important criteria for parent selection. Although, BP-FP considers the RTT in
the selection, its value is likely to be outweighed by the corresponding overlay path

delay to the source.

7.3 Simulation

The objective of the conducted simulations is to measure the impact of the different
compared peering strategies on the average playback delay observed by peers in the
streaming session. The best strategy is the one that leads to the lower average
playback delay. Through our proposed strategies, BP-FP and PowerRTT-FP, we
will show that taking informed and good peering decisions will result in a significant

performance gain.

7.3.1 Simulator

We make use of the same simulator, node information and scenarios as in Section

6.4.1.
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Push-Pull Algorithm

Like in Chapter 6, we are using the push-pull mechanism as already implemented in
the simulator [ZZSYO07](see Section 4.3 also).

This push-pull mechanism has a dynamic behavior that makes it able to adapt
with more and less success to the overlay structure: If a streaming packet has not
been pushed and has been pulled by another node then the subscription with the
first node is replaced by a subscription with the new one. If the overlay contains
complex dependencies between nodes, cycles for instance, there is no guarantee that
all packets being received are pushed. Some of them will be pulled.

Before running the simulations, we introduced one modification in the push-pull
algorithm which lies in the fact that we impose that the number of substreams being
pushed by a node to be less or equal to the maximum number of its upload slots.

This ensures that a node will not be overloaded.

7.4 Results

In this section, we present and comment the results obtained through the simulations.
For each figure, the X coordinate axis designates the number of nodes (51, 101, 201,
401, 701 and 1001). Thanks to the fact that the push-pull scheduling mechanism
restores the importance of an overlay link delay, we are able to come up with new
strategies that do not necessarily have a big impact with a classical pull mechanism
but recover all their power and relevance within the push-pull mechanism. The pro-
posed strategies, BP-FP and PowerRTT-FP, exploit this advantage to lead to

low playback delays.
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Figure 7.1: Total Upload Utilization - FP

7.4.1 Total Upload Utilization

The total upload utilization is the utilization ratio of the upload resource of all the
P2P system, (see [ZZSY07]). The results of the total upload utilization of the P2P
system are presented in Figure 7.1. The conclusion we draw is that the total upload
utilization is almost the same for all compared strategies (maximum difference is
about 0.3% or less for the same number of nodes). This is a very important result as
it means that the compared strategies have almost the same efficiency with respect
to resource utilization. Thus, we are able to state that the difference of performance
of the compared strategies is not related to the upload resource utilization but rather
to the quality of the strategy itself: If a strategy outperforms another one while using
the same ressource, then the first one creates a better overlay. A similar result was

obtained with MP variations in Chapter 6.
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Figure 7.2: Average Push Rate - FP

7.4.2 Average Push Rate

The average push rate is the average over all nodes of the rate of packets that has
been pushed (vs. pulled). The push rates of the different strategies are depicted
in Figure 7.2. All the strategies led to a high pushed packet rate (> 95%), for all
scenarios. Thus the overhead has no significant value. We also note that starting from
the scenario with 401 nodes all compared strategies have almost the same push rate:
The difference is within 0.4%. Thus, any significant difference in the performance
is not due to a difference of utilization of the pull mechanism but rather due to the

quality of the overlay that has been constructed.

7.4.3 Average Playback Delay

We define the average playback delay as the average of playback delays of all nodes
except the source. As in [ZZSY07], the playback delay depends on the ratio r of the

received packets to the needed packets within buffer intervals of one second. Every
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two consecutive intervals have a time slot lag of 250ms. The playback delay is then
determined by the lowest i time slot for which the corresponding buffer interval
satisfies 7 > 99%. The playback delay is then equal to 7 x 250ms, ¢ starting at 160
downward 0.

The results of the average playback delays of the peers are depicted in Figure 7.3.
We note that the BP-FP and PowerRTT-FP strategies perform the best along
with RTT-FP. BP-FP, which is based on the maximum distance to the source, is
successful at finding very short paths to the source. This has a good impact on the
performance.

PowerRTT-FP, surprisingly, performs almost as best as BP-FP. To analyze
this result, we refer to Figure 7.4. We can see that PowerRTT-FP has usually the
lowest average packet delay. Thus, this last strategy succeeds in building short paths

to the source. Power-MP performs worse than PowerRTT-FP and BP-FP since:

e A node has the possibility to take the full content from one parent node while
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Figure 7.4: Average Packet Delay - FP
its upload bandwidth is lower than the streaming rate.

e In such strategy a node is sensitive to its parent performance. For instance, if a
node is using the pull mechanism to get some part of the content it will expe-
rience a significant increase in its playback delay which will affect the playback

delays of its descendants.

o A side effect may occur when calculating the fraction Power,. which may lead
to bad peering decisions. As a consequence, we observe that the performance of

this strategy is not stable: Zig-zags in the playback delay curve in Figure 7.3.

Power-FP performs relatively well with a low number of nodes. However, it leads to
a serious performance degradation with a medium or a high number of nodes (> 401).
Figure 7.4, shows that starting at 401 nodes Power-FP starts to have a high average
packet delay meaning that the available overlay paths are long.

Compared to the BP-FP variation (see Figure 7.5), BP-MP leads to a better

playback delays. This is due to the fact that it uses a minimum number of parents per
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Figure 7.5: Average Playback Delay - BP-FPvs.BP-MP

peer and thus, it only introduces little discrepancy in the delivery delays experienced

by a peer.

7.4.4 Average Packet Delay

The global average packet delay is obtained by computing the mean of average packet
delay of all nodes except the source. It is calculated as in [ZZSYO07]. Each node main-
tains its own average packet delay for packets that have been successfully received.
The average packet delay at a node is a combination of the scheduling delay (due
to the push and mainly pull mechanism) and of the overlay path length. When the
pull mechanism is not used, all packets are being pushed, the average packet delay is
almost equal to the average overlay path length.

Figure 7.4 shows that an average low packet delay is not enough to guarantee a
low playback delay. The reason is that the packet delay deals with the successful

reception of individual packets. Thus, it does not consider the contiguity of the
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received packets while the playback delay does. For instance, in all scenarios but the
one with 1001 nodes, although PowerRTT-FP has the best average packet delay, it

is outperformed by the BP-FP strategy with respect to the average playback delay.

7.4.5 Maximum Playback Delay

The maximum playback delay results are presented in Figure 7.6. We observe that
the BP-FP, PowerRTT-FP and RTT-FP strategies perform generally better than
the others. Despite the fact that it leads to an overall bad performance, Power-FP
performs well with respect to the maximum experienced playback delay. This means
that such a strategy leads to uneven playback delay distribution among nodes: Most
of the nodes have a high playback delay comparatively to the other strategies. Since
Power-FP has a high pushed packet rate, the main reason why this strategy leads to

bad results resides in the fact that it constructs long overlay paths as already noticed
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through Figure 7.4.

Despite the fact that the Power-MP strategy has the worst maximum playback
delay, it outperforms Power-FP for the scenarios with 701 and 1001 nodes with
respect to the average playback delay. This means that Power-MP leads to a better

playback delay distribution.

7.4.6 Average Node Upload Utilization

The global average node upload utilization is the mean of the average node utilization
as computed in [ZZSYO07]. The average node upload utilization results are presented
in Figure 7.7. As the total upload bandwidth of the system is almost the same inde-
pendently of the strategy being used (result obtained from Figure 7.1), the average
node upload utilization becomes very interesting as it indicates how fair the load is
divided among nodes. From Figure 7.7, we can see that Power-MP has the highest

node upload load. This is due to the fact that when selecting a parent, a node tries
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to reserve and use the maximum number of available upload slots until it reaches the
number of upload slots needed to fully receive the streaming rate.

The BP-FP strategy usually has a high average node upload utilization which
means that some nodes are experiencing high transmission loads comparatively to the
others. This is due to the fact that the BP-FP strategy imposes high loads on the
best nodes: A good node, i.e., with low distance to the source, has high probability
to use all of its upload slots.

Power-FP and PowerRTT-FP strategies have the advantage of distributing
the forwarding load more evenly over nodes since they take into account the available

upload bandwidth of a potential parent at the moment of selection.

7.5 Conclusion

In this chapter, we have proposed two new peering strategy variations, PowerRT T-
FP and BP-FP, that are suitable for mesh based P2P streaming with a push-pull
mechanism. With respect to playback delays experienced by peers, both strategies,
especially BP-F P, outperformed two variations of a recent peering strategy aiming at
minimizing delays in P2P mesh systems. BP-FP has the best performance because it
is based on a greedy approach where a node selects parents so that it has the shortest
available paths to the source. This was confirmed by the fact that this strategy has
usually the lowest average packet delivery delay.

When comparing the performance of BP-FP vs. BP-MP, we note that the MP
variation leads to lower playback delays because it uses less overlay links. Indeed, an
MP variation selects the minimum number of needed parents and, subsequently, it
will use a minimal number of links with the lowest delay.

In addition, and because F'P variations leads to a more active parents per peer, it

raises an additional issue which is the jitter caused by the discrepancy in the active
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delivery path delays from the source to the concerned peer.

Subsequently, we have observed that a low average packet delay is not enough to
guarantee that a strategy leads to a low playback delay since such a criteria does not
consider the contiguity of received packets. We believe that having parents with too
much different playback delays leads to a higher playback delay. Upcoming chapters,
will partially investigate this issue and propose a pure push algorithm that reduces
the impact of such a situation on the observed delays.

In order to validate the obtained results we propose a MILP model, through
which we compare the overlay construction strategies independently from the push-

pull scheduling strategy.
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CHAPTER 8

A MILP Model for the Validation
of Peering Strategies

8.1 Introduction

Although considered as a breakthrough technology not so long ago, P2P streaming
has, so far, failed to break to the normal consumer who has been reduced to watch
specific content, specially right protected materials and broadcasts, for free. There-
fore, new initiatives are growing to allow P2P streaming systems to achieve their
potential in the future Internet. This includes P2P NEXT and NAPA WINE from
the European Future Internet Initiative [hil0]. In [ABET09], there were discussions
about P2P deployment issues related to digital rights protection and to the hostility
of ISPs who try to minimize their inter traffic. Some suggestions were pointing that
there must be a collaboration between P2P systems and ISPs about network topology
and possibly hardware support through ISP based super peers.

The future Internet being seen as a network of applications more than a network
of physical nodes, we strongly believe that P2P streaming systems should also focus
on the unexplored perspectives that they offer and that are impossible with classical

systems. For instance, besides the video delivery, we can easily build many other
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services such as a social network where friend peers interact and react to the content
being displayed. Therefore, based on the advantages that derive from the use of a
P2P architecture such as the resource scalability, we still believe that a P2P streaming
system has its place in the jungle of content distribution providing that we find the
right way to evaluate and to guarantee its performance.

Due to many random factors, such as the node join distribution and characteristics,
it is difficult to evaluate a P2P system. Each system has its own combination of
a peering strategy and a scheduling mechanism. The evaluation depends on the
implementation of each part, including a set of assumptions and parameter tuning
procedures.

To help addressing this issue, we propose a Mixed Integer Linear Programming
(MILP) model that allows us to evaluate a peering strategy independently from the
scheduling mechanism. Based on our previous works [OKJ09b, OKJ09a], we claim
that new peering strategies should be proposed with the objective of collecting and
taking advantage of information about the overlay, such as the distance of a node
to the source. Such strategies were found to construct better overlays that help
decreasing the playback delay of peers.

However, the results presented in Chapter 6, were obtained in an ideal situation
(all streaming packets being pushed) while results in Chapter 7 were dependent on
the scheduling algorithm. Resolving these issues constitutes the scope of the current
chapter. We validate the results obtained in Chapter 7, by solving the MILP model.
With respect to a specific objective, this model constructs an optimal push scheduling
strategy and thus the playback delay will depend solely on the overlay quality.

This chapter is organized as follows. Section 8.2 describes the different algorithms
being compared. In Section 8.3 we validate the simulation results obtained in Chapter

7 through a MILP model. We conclude in Section 8.4 and give hints on future work.
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8.2 Peering Strategies

In this section, we describe the peering strategies being compared. Through previous
Chapters 6 and 7, we showed that POS strategies combined with push-pull scheduling
have the potential to outperform BS strategies with respect to playback delay. We
also proposed a new peering strategy Best Parents, (BP). It is a POS strategy as
it exploits information about the maximum distance of an end node to the source to
make peering decisions. We compare it to a well known BS strategy, RTT or Closest
Parents, where a node selects the nearest parents based on the RTT, and to a POS
strategy Power proposed by Ren et al. [RLCO08]. This led us to propose another new
POS strategy, PowerRTT, that has a hybrid selection criterion inspired by RTT
and Power strategies.

We compare these strategies using a slot based resource schema (see Section 6.2 for
more details): We divide the video stream into SR substreams and the upload band-
width of a node into slots. Each slot size is obtained by multiplying the substream
size by a parameter 0 < o < 1. «a accounts for overhead and retransmissions.

In Section 6.5 and [OKJ09b], we dealt with Minimum Parents (MP) variation
of the strategies: A peer requests all the available upload bandwidth of a potential
parent until totalizing the streaming rate. In Section 7.4 and [OKJ09a], we dealt with
Fized Parents (FP) variations: we impose the same number of parents P = SR to

each node.

8.3 FP Result Validation

As mentioned in Chapter 7, the performance of a P2P session depends on some
random decisions taken to map substreams to be pushed to corresponding parents.

For that reason we had to simulate each streaming session several times and then
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take the average values of the results. Thus, the performance depends strongly on
the content retrieval mechanism being used.

In this section, we propose a validation process that allows the comparison of the
overlays being constructed by the different FP algorithms with an optimized retrieval
mechanism. Subsequently, the overlay leading to the best results is considered to be

constructed by the best algorithm.

8.3.1 Validation Process

The validation process we propose is based on two steps. Firstly, using the simulator,
we construct the overlay according to the selected strategy. Secondly, the constructed
overlay represents the input of a MILP model that outputs an optimal rate assignment
for the overlay links. The overlays being used are the ones obtained in Section 7.4.We
use IBM ILOG CPLEX [CPL10] to solve the proposed MILP model. This process is
repeated three times for each strategy/node scenario. The best strategy is the one

that leads to the lowest average playback delay.

8.3.2 MILP for the FP Validation problem

We propose a MILP model that proceeds by constructing a distribution tree (spanning
tree) for each substream. Solving the proposed model provides us with the transmis-
sion rates over the overlay links. The transmission rate distribution is optimal with
respect to the selected objective function and is equivalent to a pure push scheduling

mechanism.

Notations and Definitions

Let V be the set of peers in the network. Let P, be the parents of a peer v. S is the

streaming source. We have S € V and Ps is empty. Denote by V* the set of nodes
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deprived from the source node. Let SR be the streaming rate in slot unit. In our
specific case, we selected SR = 5 as it is the maximum streaming rate that can be

handled by the considered P2P system.

Parameters and Variables

As mentioned before, the overlay links are obtained from the result of the simulation.
Let e € V x V be a state vector such that e,, = 1 if there is an overlay link from node
u (parent) to node v (one child of u), u,v € V, u # v and v # S, i.e., v may transmit
data directly to v. We denote by b the maximum upload bandwidth of node v.

Let d” be the end-to-end latency, at the physical network level, of the node v
relatively to the node u for u,v € V,u # v.

We have 2 x SR different vectors: SR rate transmission vectors (r',1 < i < SR),
and SR delay vectors d, which are described next.

r* is the transmission rate vector relatively to substream i, where each component
r' denotes the transmission rate from node u to node v, for u # v, with respect to
the substream 1.

r* must satisfy the following relations:
e ife,,=0thenr! =0,1<:<SR.
e ife,,=1thenr! =0o0r099<ri <1,1<i<SR.

Vectors d*% correspond to delivery delays, i.e., d’ is equal to the delivery delay,
from the source S to a node v € V*, of a packet that belongs to substream i. For the

source node S we have:

d*(S) =0, 1<i<SR.
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Optimization Criterion

We propose to consider an objective with two characteristics in mind. First, the
objective function must be simple: As we are dealing with a MILP problem that may
be hard to solve, we need a function that is easy to optimize. Second, the objective
function must help toward minimizing the playback delay experienced by the nodes.

Thus, we propose the following objective:

XX X T X dy,

veV* ueV 1<i<SR

I = V= 1) x 5k

The proposed objective minimizes the delay weight of the delivery trees that are
being constructed. It can be seen as a minimization of the global delivery cost, in
terms of delay, of one slot of the video content. It is simple because the only variables
being used are semi-continuous ones with small range (equal to 0 or to a value between
0.99 and 1). It helps minimizing the playback delay because it favors links with low
latencies.

The obtained solutions are within 1% of the optimal solution.

Constraints

Delay Constraints. They express upper (14) and lower (15) bounds of the delay
experienced by a node in one of the trees. They help minimizing the playback delays

by enforcing the smallest possible values.
Ai Aji | N i .
dy' > d> 4 dy, — M(1—1,,) vpeVip#uvv#S1<i<SR (14)

Ay <14+dM+dy+M(1-1r) vpeVip#uvv#£S1<i<SR  (15)

The constraints (14) and (15) use M, a constant such that constraints where M
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appears become redundant if Tziw = 0.

Rate vs. Bandwidth Constraints. The first set of constraints states that a node

v € V can not upload more than its maximum capacity:

> > r.<h, veV (16)

ceV*\{v} 1<i<SR

The next set of constraints states that each node v € V* is receiving enough data to

handle each video substream i:

> o, >0.99, veV*1<i<SR (17)
peV\{v}

The last set expresses conditions on the transmission rate from a parent p to a child
node v.
i

< euw u,v € V5u#v,1<i<SR. (18)

uv —

Solution Constraints. Their goal is to impose some characteristics on the obtained
solution. The first set expresses that a peer can send no more than MazOccurence

substreams to a given child:

> rl. < MazOccurence, veV,eceV* MaxOccurence > 1. (19)
1<i<SR

In our experiments, we considered the worst scenario as it leads to the highest delay
cost. Hence, we have MaxOccurence = 1: A client peer can send no more than one
substream to a child. This is the worst case because the more links we use, the more
the delivery delay increases.

To reduce the solution space, the second set imposes an upper bound, var, on the
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difference among the average delivery delays in the trees:

Ai Ay
ZUEV* dv ! . Z’UEV* dv !

12%31% V] —13-131%3 V] + var (20)

We set var to the time interval between two consecutive packets in the video stream,
ie.,
1000

var = ——ms;.

SR

Let us assume that the first packet is created and sent at time ¢ = 0. The average

time at which a packet will be received by each node in the corresponding i, tree is

1000
SR

Ay
Z’UEV* dv '

(i —1)+ V]

,1<i<SR

The time lag between receiving a packet of the first substream (assumed to be

d*') and a consecutive packet of the last substream (assumed to be d4“%) is:

(SR—1) % % + dSR g

If we impose such lag to be less than 1000ms, we set var, in our specific case, to 200ms.

Experimentally, this value leads to good results without impacting the execution time.

MILP Model Flexibility

The proposed MILP model has many advantages. First, it is independent from the
peering strategies. If we obtain a solution, it means that we have enough distribution
trees. If there is no solution, it means that there is no push scheduling possible for
the given overlay.

Additionally, the proposed model can be seen as scalable enough. Indeed, we have

obtained solutions for overlays with 1001 nodes and 5000 links in reasonable times.
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Reducing the streaming rate to SR = 4, for instance, will allow us to increase the
number of nodes. In a future work, we will analyze the model in more depth and try
to provide more solid evaluation of its scalability.

From a P2P designer perspective, it is possible to extend the model to analyze
the performance of design choices. For instance, we may want to construct SR + 1
trees instead of SR trees. The additional tree is used for protection purpose in case of
node failure/departure. The proposed model will help analyzing the impact of such
an additional tree on the performance.

From an ISP perspective, the model can easily be extended with constraints to
bound RT'T links between nodes, and thus reduce inter-ISP traffic or with constraints
that bound traffic volumes between nodes with high RTT (likely not belonging to the
same ISP).

8.3.3 Results

The first observation that we obtain from the results is that all overlays lead to
solutions with the MILP model, i.e., it was possible to construct a spanning tree for
each substream. Thus, we conclude that the push-pull scheduling strategy, which has
been used in the simulations in Chapter 7, was unable to construct these distribution
trees. If that was the case, all the packets would have been pushed and the pull

scheduling would not have been triggered.

Average Playback Delay (AvgPlayD)

The playback delay of a node v € V*, PlayD(v), is defined as the maximum delivery

delay experienced by a node to receive a substream:

PlayD(v) = max d.

1<i<SR "

123



With the assumption that overlay link delays remain unchanged, PlayD(v) is the
lowest time at which v may start playing the received video stream without taking a

risk of running out of packets. Then we get

> vev+ PlayD(v)

AvgPlayD =
[V~

The results of the average playback delay are presented in Figure 8.1. The BP-
FP strategy generally performs the best compared to the FP strategies. This is a
confirmation of the results obtained by simulation in Section 7.4. So we can state
that the BP-FP strategy constructs the best overlay, within compared strategies,
with respect to end-to-source distance which leads to lower playback delays than the
other strategies.

The Power-MP strategy performs best with a low number of nodes (51 to 201).
For the other scenarios, it leads to an average playback delay that is 10% to 21%
higher than BP-FP. This is due to the fact that the average packet delay (see section
8.3.3) of Power-MP is significantly higher (25% to 49%) than the one obtained with
BP-FP as it can be seen in Figure 8.1.

The Power-FP strategy performs the worst as it usually has the worst average
packet delay. PowerRtt-FP and RTT-FP perform generally very well. PowerRtt-
FP leads to average playback delays that are 1.15% to 21%, higher than the ones of
BP-FP while RTT-FP leads to average playback delays that are, —4.7% to 26.83%,
higher than BP-FP.

124



800

700

600

500

400

300

200

100

Average Playback Delay (ms)

PowerRtl_FP ——
BP_FP —x—
Power_FP —¥—
Power_MP —H—
Rit-FP —m—

100 200 300 400 500 600 700 800 900 1000 1100
Node Number

Figure 8.1: Average Playback Delay - Val-

idation
Average Variance of Peers (ms)
450 T T T T : | T
400 Power-FP —#— |

350

300

250

200

150

100

50

Power-MP —H—
Rit-FP —m—

100 200 300 400 500 600 700 800 900 10001100
Node Number

Figure 8.3: Average Variance - Validation

500

450

400

350

300

250

200

150

100

Average Packet Delay (ms)

PowerRtL FP ——
BP_FP —x¢—
Power_FP —¥—
Power MP —H—
Rit-FP —i_

100 200 300 400 500 600 700 800 900 10001100
Node Number

Figure 8.2: Average Packet Delay - Vali-
dation

1600

1400

1200

1000

800

600

400

200

Maximum Playback Delay (ms)

PowerRtt_ FP ——
BP: FP =
Power_FP —3—
Power MP —85—
R"tt—FP‘ ——

100 200 300 400 500 600 700 800 900 10001100
Node Number

Figure 8.4: Maximum Playback Delay -
Validation

125



Average Packet Delay (AvgPackD)

The average packet delay is defined as the average delivery delay of all packets to all

client nodes:

D A<i<SR DoveV* dvA7i

AvgPackD =
e V+ x SR

Figure 8.2 depicts the average packet delays obtained by the compared strategies.
PowerRtt-FP and BP-FP have usually the lowest AvgPackD for each scenario.
Figure 8.2 also shows that having a low average packet delay is not sufficient to
guarantee a low playback delay. For instance, in the scenario with 401 nodes, the
RTT-FP strategy has a lower AvgPackD than Power-MP. However, the latter has a
better playback delay. We observe a similar situation in the scenario with 1001 nodes
where the PowerRtt-FP has a better AvgPackD than Power-MP while having a
worse AvgPlayD.

To analyze these observations, we use Figure 8.3 which depicts the average end-to-
source distance variance of the client nodes. We define the average maximum variance
of a node as the difference in delivery delay between the latest received substream
and the earliest received one :

MazVar(v) = |nax d* (v) — 1£n<i%R d(v),v e V*.
<1< YA

The variance can be seen as a jitter at the overlay level. Then, we obtain:

>vevs MaxVar(v)
V|

AvgMazVar =

Thanks to Figure 8.3, we observe that the degradation of performance of PowerRtt-
FP with 1001 nodes, and RTT-FP with 401 nodes, comes with a dramatic increase

in the average variance.
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Actually, an increase in the average variance has a good probability to result in an
increase in the playback delay. Indeed, the latter is computed as the maximum of the
delivery delays throughout the distribution trees. We conclude that a low playback
delay is the result of the combination of a low average packet delay with a low average
variance. This is confirmed, for instance for the BP-FP strategy as it usually has
the lowest average packet delay and the lowest average variance, as observed in Figure
8.2 and Figure 8.3. This also means that it did not suffer much from the increase of
the parent degree i.e., comparatively to its MP variation.

Power-MP has the lowest average variance (thanks to a reduced parent degree),
while having the second worst average packet delay. The low variance has shortened
the impact of the high packet delay to lead to a good playback delay performance
(usually within the best three, see Figure 8.1). This strategy suffers, however, from

an increase in parent degree as Power-FP has the worst performance in every aspect.

Maximum Playback Delay (MaxzPlayD)

We define the maximum playback delay as:
MaxPlayD = max PlayD(v).

The maximum playback delay results are depicted in Figure 8.4. We can see that
the BP-FP strategy leads to the lowest MaxzPlayD’s.

Although Power-MP has high MaxPlayD’s, it performs well with respect to the
average playback delay. This observation stands even when Power-MP performs
the best (with 101 and 201 nodes). This means that the playback distribution is
not evenly distributed: some nodes have high playback delays while others have low

delays.
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8.4 Conclusion

In the present work, we have compared and analyzed several peering strategies. We
have investigated two types of strategies. The first ones, Basic Strategies (BS), use
local or relative information about peers while the second ones, Partially Overlay-
aware Strategies (POS), exploit some information on how a node is doing in the
overlay such as its end to source delay.

We have proposed the Best Parents POS strategy, BP, that has proved to be the
best in all considered scenarios. Thus, the informed peering decisions had a positive
impact on the performance. POS strategies benefit greatly from the utilization of the
push-pull scheduling mechanism, as the overlay link delay is no more outweighed by
the pull scheduling delay.

Through the simulations and the result validation, we have showed that an overlay
with a low global average packet delay is not a sufficient condition to lead to an average
low playback delay. We have identified the Variance concept, difference in source to
end path distances to the same end node, as a dominant criteria for the performance.
A low playback-delay is a combination of a low packet delay and a low variance.

To validate results, we have proposed a new process using a mixed integer linear
programming model. This process can be used to validate the delay performance of
any overlay created following a specific strategy. It is equivalent to having a solution
using an optimal push scheduling approach. Using the push approach leaves the
overlay quality as the main criteria that impacts the playback delay performance.

Unlike simulations and experimentations, the proposed evaluation process is in-
dependent from the scheduling strategy or implementation choices and thus gives a
more stable and authentic evaluation of a peering strategy. The proposed model can
be extended to suit the view of a P2P designer or an ISP and, therefore, to study the

impact of design decision such as locality awareness based on the RTT or protection
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against churn.

The performance of a P2P system is still dependent on random events such as
the node join distribution. Addressing such an issue is a big challenge but is worth
investigating because, when combined with our evaluation process, we will have a
P2P system that has a near deterministic behavior.

We have also seen that overlays with a high parent degree are complex and may
contain cyclic dependencies that lead to the utilization of the pull mechanism and,
consequently, to a playback delay increase. The used push-pull algorithm did not
manage to get rid of the interdependencies. Thus, we plan to propose a new pure
push scheduling strategy as it seems to be the best solution. Although some recent
works exist on such an approach, it is still challenging to deploy it on mesh overlay

networks.
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Part 111

Content Retrieval
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CHAPTER 9

Push Scheduling and Mesh
Overlays: The Best of Both Worlds

Due to their multi-parent ability, mesh based P2P systems need an elaborated schedul-
ing strategy to retrieve content from different peers and to avoid redundancy. One
common approach is based on the pull mechanism where a peer requests content
based on the buffer maps of its neighbors/parents. Alternate approaches have been
proposed such as push-pull and more recently some push strategies. Unfortunately,
although push-pull strategies improve the playback delays compared to pull ones,
they do not perform well at startup and at handling the recovery of lost packets be-
cause they still rely on the pull mechanism. The few existing push strategies follow
complex algorithms and still rely on the exchange of buffer map information among
nodes to avoid redundancy.

In this chapter, we propose a new pure push strategy, PurePush. PurePush is
derived from a push-pull real world mechanism developed by Zhang et al. (2005),
in which we eliminate the pull part and replace it by a probabilistic push. We next
propose two variations, BPP and APP, which both outperform the initial push-pull

strategy with respect to playback delay in the realistic case where we consider packet
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losses. Moreover, APP leads to the best result while having the lowest overhead and

redundancy.

9.1 Introduction

Peer-to-Peer (P2P) architectures are considered as attractive and scalable solutions
for video streaming. They do not require Internet infrastructure modifications and
they help eliminating bandwidth bottlenecks at the content source server. The perfor-
mance of a P2P system depends on the overlay that it constructs. For instance, while
tree-based P2P systems have an inherent push scheduling strategy but a weak re-
siliency, mesh-based systems need more elaborated scheduling strategies. Such strate-
gies need to deal with the complexity of mesh overlays and to avoid redundancy due
to the multi-parent ability. Therefore, they result in high playback delays.

Some recent works addressing playback delays, propose push-pull mechanisms
[ZZSYO07, LMSWO7] or improved scheduling strategies [Liu07, CXHO08]. Although few
push strategies have been proposed, they rely on a heavy scheduling of substreams
to avoid data redundancy [BLPLT08]. Some other works use random network coding
to resolve the redundancy issue [WL07] but seems to be efficient with low streaming
rates only (64kbps). Another common approach is to utilize gossip/epidemic push
strategies where either receiving nodes or packets to be sent are picked randomly
or according to certain criteria [BMM™08]. All the above solutions did not make it
through to real P2P applications. In addition, the delays resulting from scheduling
and from recovering lost packets are a big obstacle toward bringing more interactive
applications to P2P content delivery systems.

The authors of [ZSXYO08] propose to guarantee delay for P2P live streaming over
Internet through the utilization of a push-pull based mechanism within a static en-

vironment. The key idea is that, in order to meet the delay requirements, the source
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doubles or reduces the number of times a packet is sent directly to peers without
explicit requests. In other words, the server is responsible for covering bad peering
and scheduling decisions by increasing its upload transfer volume in order to send
more packet copies directly to other peers.

Scheduling strategies have a critical role in reducing the playback delays through
reducing the scheduling delay. Thus, in the present work, we propose a new schedul-
ing strategy for live video streaming, called PurePush, which combines the best of
both worlds: Mesh overlays known for their resiliency, and push scheduling strategies
known for their low delays. Our starting point is the real world push-pull algorithm
of [ZZSYO07]. The PurePush design eliminates completely the pull mechanism and
replaces it by a probabilistic push. Therefore, it leads to a fast delivery of packets
and to a fast recovery of lost packets. This makes it suitable for interactive but non
critical applications as it is a best effort solution.

PurePush acts like a multi-tree when packets are not lost as only parents in the
distribution trees (over the mesh overlay) are involved while it acts like a mesh in
the case of packet loss as all parents are involved in the recovery process. PurePush
does not require any buffer map exchange, no special video encoding and is simple to
implement.

Although PurePush has some similarities with gossip protocols, it is different in

the sense that:

e A peer does not select the packet to be sent randomly. It randomly forwards
the last received packet to its neighbors: All or some neighbors will receive the

packet while the others will not.

e The probabilistic forwarding of packets is used only at startup and to recover

lost packets.

e A peer tries to assign the task of forwarding a video substream to a specific
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parent. Non lost packets that belong to the assigned substream will be relayed

by that parent as long as it is able to do it.

We consider two variations of PurePush: Basic PurePush, a straightforward im-
plementation called BPP, and, Advanced PurePush, an improvement of the BPP
strategy called APP. We proposed an earlier version of BPP in [OKJ11]. However,
it was evaluated in a different context than in the present work: The packet loss rate
was equal to 1% under the assumption that a streaming packet cannot be lost twice
between the same peers. The current chapter presents a more detailed desccription
and performance evaluation of the BPP variation specially with respect to the over-
head and the redundancy. In addition, we consider higher packet loss rate (2%) under
the assumption that a packet can be lost more than once on the same overlay link.

Compared to BPP, APP integrates more intelligence in the choice of potential
pushers at startup and following a request of lost packets. It leads to a very low
redundancy and overhead, even less than the push-pull algorithm of GridMedia (see
Section 4.3).

Simulation results show that PurePush outperforms by far the push-pull algorithm
of [ZZSYO07] in a packet loss context. In particular, APP succeeds in fulfilling the
potential of combining the low scheduling delay of push strategy with the resiliency
of mesh overlays.

This chapter is organized as follows. In Section 9.2, we recall the push-pull algo-
rithm of [ZZSYO07] that represents our starting point. Section 9.3 presents the pure
push approach we propose. Simulation conditions are described in Section 9.4. In
Section 9.5, we present and comment the simulation results. We conclude in Section

9.6 and give hints on future work.
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9.2 Push-Pull Algorithm

9.2.1 The Original Push-Pull Mechanism

In the present work, the starting point is the push-pull mechanism proposed by Zhang
et al. [ZZSYO07] and that we designate by PushPull (See Section 4.3). In PushPull,
the stream is divided into n substreams according to the sequence number of packets.
Contiguous packets from different substreams form a packet group. k contiguous
groups form a packet party. Each group has a group ID from 0 to £ — 1.

The group with ID equal to 0 is chosen as the base to take push scheduling de-
cisions, i.e., requesting a push subscription from one peer or canceling an existing
subscription. The pusher of a substream is the parent from which the node has suc-
cessfully pulled a packet that belongs to both the wanted substream and a group with
ID 0. This way, the switching among pushers does not occur too frequently. Other
received packets that do not belong to group 0 do not impact push subscriptions.

At startup, a node requests packets using the pull mechanism with random schedul-
ing until receiving packets from specific substreams. Then, it subscribes to senders
so that each sender relays the packets of subscribed substreams directly to it. If
the receiving quality of a node is greater than 95%, it does not request buffer maps
anymore.

Lost packets are recovered the same way. If a streaming packet has not been
pushed and has been pulled by another node then, the current subscription with the
first node is replaced by a subscription with the latter one, (always at the beginning
of a group with ID 0).

This dynamic behavior allows the algorithm to adapt with limited success to the
overlay structure. If the overlay contains complex dependencies among nodes such as,

e.g., cycles, there is no guarantee that all packets being received are pushed. Some
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of them will be pulled.
The content distribution does not necessarily follow exactly the constructed over-

lay. A node may have 5 parents but, for instance, only 2 are sending the full content.

9.2.2 Modifications

We introduced two main modifications to improve the original algorithm. Firstly, as
we divide the bandwidth into slots (see Section 6.2), we impose that the number of
substreams being pushed by a node be lower or equal to the maximum number of its
upload slots. This ensures that a node will not be overloaded. Secondly, there is a
periodic monitoring of pushers. If, at node ¢, there is no pusher for a given substream,
then ¢ eliminates its worst parent, i.e., the parent with the lowest transfer volume
to ¢, provided it is less than a substream size. Then, ¢ looks for a new parent even
if there is no elimination. Indeed, if each current parent is providing at least one
substream to ¢ then, ¢ has not enough parents and thus, has to look for an additional
one.

The last modification enhances the dynamic adaptation of the algorithm to the
overlay topology. Indeed, in Chapter 7, simulations in an environment without packet
loss have shown that not all packets were pushed. Some of them were pulled. We
attributed this result to the complexity of the overlay and to the interdependencies

among nodes that the algorithm failed to deal with.

9.3 Pure Push

As long as the pull part in a push-pull scheduling strategy is not triggered into action,
it is possible to achieve excellent results with respect to throughput and playback

delays. Thus, in this section, we propose a pure push approach that takes, as a starting
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point, the enhanced push-pull algorithm of the last section and then eliminates the
pull part. As already observed, the pull part was mainly used at the startup when
new nodes join the session and to recover lost packets. We replace it by a probabilistic
push in both situations. We also eliminate all exchanges of buffer maps at any time

during the session.

Algorithm 9.5 Relaying a Packet in BPP

Input:
p: Current node
ChildInfo: Array of children information of p
SeqNum: Sequence number of the packet to be relayed
RPgpp: Relay probability equal to 1/NumberO f Parents
RN D : Integer random number between 1 and 100
Begin
SubStream < SeqNum mod NumberO fSubstreams
for each child ¢ of p do
c.Child_Missing-Pusher < (ChildInfo(c).PushersMap is empty or
ChildInfo(c).PushersMap[SubStream] is unknown)
if c.Child_Missing_Pusher is true then
if RND < 100 x RPBPP then
Relay packet SeqNum to ¢
else
Do not relay packet
end if
end if
end for
End

9.3.1 Start up and substream scheduling

At startup, an overlay network is constructed using the peering BP-FP strategy
variation we proposed in Chapter 7 including the modifications suggested in Section
9.4.2. A node looks for P parents such as P = S where S is the number of substreams
of the video. When a node p receives a request in order to be a parent of a node ¢, it

checks if it has any available upload slots. If not, it sends back a denial message to c.
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Algorithm 9.6 Relaying a Packet in APP

Input: p: Current node
ChildInfo: Array of children information of p
SeqNum: Sequence Number of The packet to be relayed
RPgpp: Maximum Relay probability equal to 1/NumberO f Parents
RND: Randomly generated integer between 1 and 100
Begin
SubStream < SeqNum mod NumberO f Substreams
for each c child of p do
c.Child_Missing_Pusher < (ChildInfo(c).PushersMap is empty or
ChildInfo(c).PushersMap[SubStream] is unknown)
if c.Child_Missing_Pusher is true then

if p.PushersMap|[[SubStream]lis known && p.AvaliableUploadSlots > 0
then

. 1000+ 8 xrtt(p,c) p.AvailableUploadSlots
RPAPP - mlIl( RPBPP/( 1000 >’ p.MaximumUploadSlots)

{5: Integer to amplify the RTT value}

else
— RPppp
REAPP " NumberO f Parents
end if
end if

if RND <100 x RPspp then
Relay packet SeqNum to ¢
else
Do not relay packet
end if
end for
End
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Algorithm 9.7 Detecting packet loss and Request Process in BPP

Input:

c: Current node

SeqNum: Sequence number of the received packet

LastReceived|i]: Sequence number of the last received packet of the substream i
MaxMissing: Maximum number of packets that can be recovered

Begin {This processing is executed at the reception of each packet}

SubStream < SeqNum mod NumberO f Substreams

if SeqNum — Last Received[SubStream] > NumberO fSubstreams then

SeqNum— LastReceived[SubStream] 1)

MissingNumber = min(MaxMissing, NamberOf Subsireams

create a Request Packet Array ReqPackFromParents
for i =0 to MissingNumber — 1 do
for each parent p do
Insert packet(SeqgNum — (i + 1) x NumberO f Substreams) into
ReqPackFromParent|p]
end for
end for
end if
End {The request period is fixed in BPP}

Otherwise, it adds c to its list of children. Additionally, each node ¢ has a push map.
i.e., an array of S bits indicating whether ¢ has a pusher or not for each substream.
The size of a push map is far less than the size of buffer maps that are used in most
existing systems. When the push map of a node changes, it is sent to all parents.

Thus, we expect to have a low overhead.

Parent Side: Starting from the time when p accepts the request to be a parent of
¢, every packet received by p is eligible to be pushed to c¢. First, p determines the
substream of the received packet. Then, if ¢ has already subscribed to this substream
with p, the packet is pushed to c¢. Otherwise, p needs to know whether ¢ is missing
a pusher for the concerned substream or whether ¢ has subscribed to this substream
with another parent. If ¢ is missing a pusher, the packet is relayed. These steps are

detailed in Algorithm 9.5 for BPP and Algorithm 9.6 for APP.
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Algorithm 9.8 Detecting packet loss and Request Process in APP

Input:

c: Current node

SeqNum: Sequence Number of The received packet

LastReceived|i]: Sequence number of the last packet received for the substream ¢
PackSourceNode: Node ID of the sender of the received packet

MaxMissing: Maximum number of packets that can be recovered

t: Current node local time in milliseconds (ms)

Begin

SubStream < SeqNum mod NumberO fSubstream

if SeqNum — LastReceived[SubStream] > NumberO f Substreams then

SeqNum— Last Received[SubStream] 1)

MissingNumber = min(MazMissing, NumberO fSubstreams

create a Request Packet ReqPackFromPusher
create a Request Packet Array ReqPackFromParents
for i = 0 to MissingNumber — 1 do
Insert packet (SeqgNum — (i + 1) x NumberO fSubstreams) into
ReqPackFromPusher
schedule to send ReqPackFromPusher at time t + 1;
for each parent p # PackSourceNode do
Insert packet(SeqNum — (i + 1) x NumberO f Substreams)
ReqPackFromParent|p]
end for
schedule to send ReqPackFromParent at time ¢t + 201; {the waiting time
201ms may be changed according to the RTTs of ¢ with its parents to provide
enough time to the packets that have been requested from the pusher to arrive}
end for
end if
End
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Algorithm 9.9 Request Packet Processing on Reception in BPP

Input:
p: Current node
Begin
for each packet pack being requested do
if p.inBuf fer(pack) then
generate RN D randomly (1 to 100)
if RND <100 x RPlossgpp then
send requested packet
end if
end if
end for
End

Algorithm 9.10 Request Packet Processing on Reception in APP

Input:
p: Current node
PackSourceNode: Node ID of the sender of the received request
t: Current node local time in milliseconds (ms)
Begin
for each packet pack being requested do
if p.inBuf fer(pack) is true then
if t > p.received_time(pack) + rtt(p, PackSourceNode) then
if p.isPusherFor(PackSourceNode, Substream) is true then
send requested packet
else
generate RN D randomly (1 to 100)
if RND <100 x RPlossapp then
send requested packet
end if
end if
end if
end if
end for
End
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Due to the fact that these steps will be executed by each parent of ¢, in both BPP
and APP, we use relay probabilities, RPgpp and RP4pp. This way, we can reduce
the redundancy of packets. Discussion about the value of RPgpp and RP,pp is made
in Section 9.3.3.

In BPP and PushPull, the push group ID is set to the same value for each node
and for each substream, see Section 9.2. So, to make push decisions, a node needs
to wait for the packets that belong to that group. Delayed push decisions increase
the redundancy because all parents of a node will relay the received packets of a
substream until ¢ makes a push subscription.

In APP, we manage to speed up the start up process while reducing the startup
redundancy by assigning for each receiving node ¢ a different value of the group 1D
for each received substream. This way, push subscriptions are faster, which results in

lower redundancy.

Child Side: When a peer ¢ sends a request to a peer p to be its parent, it adds p
in its list of parents and waits for receiving packets from p. If the received packet is
a request refusal, then ¢ removes p from its parent list. When ¢ receives a streaming
packet, it first determines the substream of the packet. Then, if the packet belongs
to the group on which push decisions are based, there are two possible situations

(inherited from the original push-pull algorithm of [ZZSY07)):

e c is missing a pusher for the related substream either because it is in a startup
phase or because it canceled a subscription to the old pusher. In this case, ¢

sends a subscription request to p and updates the pusher list.

e The pusher of the concerned substream is different from the packet sender. If
the packet initiates a push cycle then the current substream pusher is replaced

by the packet sender. A push cancel request is sent to the current pusher while
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a push subscription request is sent to the packet sender.

In BPP and APP, we impose that push decisions must not be based on requested
packets. In addition, each peer ¢ makes a periodic monitoring of its pusher map. If
one substream has no pusher, ¢ determines its worst parent. The worst parent is the
one with the lowest traffic volume to c. If its transfer volume to c is less than the size

of one substream, then, ¢ eliminates it and looks for a new one.

9.3.2 Loss Recovery
Detection and Request.

To detect packet loss, a peer ¢ monitors the sequence number of the received streaming
packets. S being the number of substreams, packets of the same substream have
numbers of the form k4 ¢ x S, where k, ¢ are integers and k < S. If peer ¢ receives
both packets with IDs n and n + ¢ x .S, then it concludes that the corresponding
pusher is working fine but the packets with ID n + 7 x S,0 < j < ¢ have been lost.
These IDs are added to the list of missing packets.

In BPP, the list of missing packets will be sent to all parents. It is an explicit
request of missing packets. Such a request is sent periodically. A lost packet is
requested one time only. Parents who receive such requests will send the missing
packets if they have them in their buffers. Here again, a parent will send a packet
with the probability RPgpp to reduce redundant traffic, see Algorithm 9.7.

In APP, see Algorithm 9.8, we split the request process into two steps based on the
fact that we are dealing with packet loss and not with parent failure. Indeed, when
a node ¢ detects that it did not receive a specific packet pack, only two situations
are possible. Either pack was lost on the overlay link between its pusher p and the
receiver ¢, or p itself did not receive pack. In the first situation, a simple request to

p is needed and has a high success ratio as the probability that the same packet is
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lost two successive times or on two successive overlay links is very low. In the second
situation, the request to p will be unsatisfied. However, if p receives pack, it will relay
it to c right away as it does for substreams for which ¢ has subscribed with it.

In the case where the request to the pusher proved to be unsuccessful, APP uses
the multi-parent ability of the mesh by requesting the lost packets from its parents,

excluding the designated pusher.

Request Processing.

When a node p receives a request for a lost packet pack from a node ¢, it checks if it
has it. If the packet is still in its buffer, then p is able to satisfy the request. In BPP,
p will send the requested packet with a a probability RPloss. As in BPP, we do not
differentiate among parents, we set RPlossgppp = RPgpp = 1/NumberO f Parents,
see Algorithm 9.9.

On the opposite, APP does differentiate among parents, see Algorithm 9.10. p
determines the substream of pack and then checks if ¢ has subscribed to this substream
with it. If it is the case, the packet is sent to c¢. Otherwise, the packet is sent with a

low probability RPlosspp.

9.3.3 Tuning
BPP.

The relay probability RPgpp is the most critical parameter for the performance of the
probabilistic push strategy. A too high RPgpp is likely to result in a high redundancy
ratio while a too low value will result in a low success rate for requested packets
and a long start up. The events of peers sending packets to a same receiver being

independent, the probability that a peer ¢ with n parents receives exactly one copy
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of the same packet, F.;, can be written as follow:

1
Poin,= (n) x RPgpp(1 — RPgpp)" "

Let D =1 — RPgpp be the probability that a node does not relay a packet. Then,

we can write:

1
Pc,l,n = ( ) X (Dn_l - Dn)
n

Optimum values are obtained for:
(n—1)xD"?—nxD"!'=0.

And therefore P, ; , is maximized when:

Then the best value of the relay probability is equal to
1
RPppp = —.
n

APP.

BPP is a basic version of the probabilistic push strategy. More developed versions
can be proposed. For instance, the relay probability may be different from one parent
to another, depending on its performance. APP implements such an idea by differ-
entiating among potential good pushers for a specific substream, at both startup and
loss recovery.

At startup, the relay probability RPapp, see Algorithm 9.6, is likely to be different

from a parent to another. The maximum value of RP,pp is equal to RPgpp as
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computed in the BPP version. Then, the APP algorithm assigns a different value to
favor the choice of potentially better pushers, for a given substream s and a receiving

node. APP will prefer a potential pusher having:

e a low RTT to the concerned child ¢,
e high available upload slots,

e already a pusher for substream s.

A low RTT with ¢ would favor the use of low delay links and would speed up the
startup process and the delivery. A high number of available upload slots means that
the potential pusher p would accept a pushing subscription from node c if needed.
The fact that p has already a pusher for substream s means that, unless there is a
problem with its pusher, peer p would be provided with the substream content on a
regular basis.

Algorithm 9.6 shows how we exploit these criteria. Parents that are judged not
to be good pushers for a given substream and a given child, will still relay the packet
with a low probability:

RPgpp/NumberO f Parents.

9.3.4 Summary of advantages
The pure push strategy presents the following advantages:

e Low Overhead: There is no buffer map exchanges among nodes which is usually

the main cause for the overhead along with redundancy.

e No use of the pull mechanism at the start up or at packet loss. It is replaced

by a probabilistic push.

e Low Redundancy: It only occurs for lost packets or at the startup.
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e Rapidity: Parents start sending before receiving push requests. As soon as a
node becomes a child of another, it starts receiving packets of different sub-

streams from it.

e Simplicity: There is no decision process on what to push. A packet is pushed

as soon as it is received if there is a spare space in the upload buffer.

e Resiliency to inaccurate information: The inaccuracy of push map information

has less impact than than a buffer map inaccuracy.

9.4 Simulations

The objective of the simulations is to measure the impact of the different scheduling
strategies on the average playback delay observed by peers in the streaming session.
In the following, we will describe the simulation environment and scenarios we are

using. We use the upload resource organization schema presented in Section 6.2.

9.4.1 Simulator

We make use of the discrete event based simulator for P2P live streaming built by
Zhang et al. and detailed in [ZZSYO07]. This simulator operates at the packet level
and its source code is available at [Zha09].

Some parameter values are detailed in Table 9.1. Network end-to-end latencies
(RTT) are real-world values taken from a latency matrix computed within the Merid-
ian project [WSSO05].

In the simulator, the streaming data is divided into packets of size 1250 bytes,
not including headers. For each algorithm, we execute the simulation three times
and take the average values. Such number is sufficient: As we are not considering

churn rate at the startup of the session, the overlay construction algorithm leads to
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Table 9.1: Simulation Parameters

Streaming Rate 200kbps
a: Slot overhead /retransmissions 0.25
Needed Parents per Node 4
Missing Packets Request Period 200ms
Push Map Monitoring Period 5,000ms
Sending Buffer Map Period (push-pull only) || 1,000ms

the same overlay for all the strategies being considered. We limit each execution to
a duration of 180 seconds. This duration does not impact the final results as the
system reaches its steady state in less than 100 seconds. The results shown are the

ones computed for the last 10 seconds.

9.4.2 Scenario
The BP-FP Peering Strategy.

We next describe the peering strategy used in the simulations. The BP-FP strategy
has been proposed in [OKJ09a]: A node looks for exactly P parents that will provide
it with shortest paths to the source node. A path length is the sum of all link delays
and depends on the end-to-end RTT among peers.

We have improved the overlay construction algorithm through the following;:
e a child of the source receives the full stream from it.

e a child whose upload bandwidth is less than the streaming rate cannot be a

child of the source.

Node Information.

We have conducted simulations for the six sets of nodes from Table 9.2. These nodes
have typical real world values of the upload bandwidths. For each set, the slot index,

(SI), is the fraction of all upload slots made available by peers to the total number
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Table 9.2: Upload Bandwidth Capacities of Nodes

Clients || 1 Mbps || 384 kbps || 128 kbps S
(N) (%) (%) (%) || (kbps)
51 10 13 7 1,000
101 10 20 70 1,000
201 10 25 65 1,000
401 10 25 65 3,000
701 10 25 65 5,000

1,001 10 25 65 8,500

of needed slots for all nodes and is equal to 1.14. It is assumed that nodes have DSL
connections and that bandwidth bottlenecks are located on the edge of the network,
i.e., end-node access networks [ZZSYO07]. Table 9.2 shows how bandwidth capacities
are distributed.

Nodes join the session following an identical arrival rate for the three node types.

Packet Loss.

We have considered two situations. The first one is an ideal case where there are
no lost packets. In the second situation, each peer in the session is experiencing
a streaming packet loss rate of 2%. This is a typical value as measurements in

[WHLRO09] show.

9.5 Results

In this section, we present and comment the results obtained through the simulations.
PurePush-LF, BPP-LF and APP-LF (respectively PurePush-LR2, BPP-LR2 and
APP-LR2), designates the compared strategies in the situation without packet loss
(respectively, with packet loss). All strategy variations led to 100% in reception

quality in the ideal case and higher than 98.9% in the loss case.
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Figure 9.1: Average Push Rate, without Churn Rate

9.5.1 Average Push Rate

The average push rate is the average, over all nodes, of the rate of packets that have
been pushed (vs. requested). The push rates of the different strategies are depicted in
Figure 9.1. All the strategies led to a high push packet rate (> 80%), for all scenarios.
We note that APP-LF, BPP-LF and PushPull-LF led to the same push rate (100%).
The reason is that the push-pull strategy has managed to construct a distribution
tree for each substream and thus all packets are pushed. As a consequence, we expect
that all loss free variations will lead to similar playback delay performances. APP-
LR2 is second best but performs very well as the pushing rate is always greater
than 98%. BPP-LR2 leads to a slightly lower pushing rate. It is less than 100% for
both, because we count neither redundant nor explicitely requested packets as pushed
packets. PushPull-LR2 performs the worst by far. Thus, the pull mechanism is very
active and, as we will see in Section 9.5.2, the playback delay of such a strategy will

be high comparatively to the others.
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9.5.2 Average Playback Delay

We define the average playback delay as the average of playback delays of all nodes
except the source. As in [ZZSYO07], the playback delay depends on the ratio r of
the received packets to the needed packets per buffer intervals of one second. Every
two consecutive intervals have a time slot lag of 250ms. The playback delay is then
determined by the lowest it time slot for which the corresponding buffer interval
satisfies r > 99%. The playback delay is then equal to i x 250ms, i starting at 160
downward 0.

The average playback delays of the peers, at the instant 180 seconds, are depicted
in Figure 9.2a. We note that the BPP-LF, APP-LF and PushPull-LF perform the
best and lead to very similar performance as there is no packet loss.

APP-LR2 performs second best and leads to low playback delays (between 250ms
and 120ms for all scenarios). This means that it succeeds at recovering lost content
quickly and efficiently. BPP-LR2 does the same with a slightly lower success than
APP-LR2.

The fact that PushPull-LR2 has the worst performance by far confirms that push-
pull strategies are not suitable for applications needing low delays in the real context
because packet loss is a common event.

As we are dealing with random packet loss, we expect that the playback delay
performance will vary from time to time. Thus, for each strategy, we consider the
best execution with N = 1001 (the one leading to the lowest average playback delay).
Then, in Figure 9.2b, we depict the playback delays, obtained at each 10 seconds
time period starting at the instant 20 seconds to 180 seconds. Results confirm the

observations we already made at the beginning of the current section.
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9.5.3 Average Packet Delay

The global average packet delay is obtained by computing the mean of average packet
delay at all nodes except the source. It is calculated the same way as in [ZZSY07].
The packet delay is made of the scheduling delay and of the delivery delay.

As shown in Figure 9.3a, APP-LR2 and BPP-LR2 have the same packet delay.
It is slightly higher than the LF variations due to the longer delay needed to recover
lost packets. It is clear that the pure push approach recovers lost packets quickly: A
node does not wait for buffer maps to request a packet. In addition, in the case of
interactive application, the average packet delay may be regarded as a more relevant
metric than the playback delay as defined in Section 9.5.2. The obtained values are
very low, less than 100ms in most cases, and confirm the fact that push scheduling

is suitable for some interactive applications.

9.5.4 Maximum Playback Delay

The maximum playback delay results are presented in Figure 9.3b. APP-LR2 has a
higher maximum than the LF variations. This is due to the fact that lost packets up
in the mesh (near the source) either will take longer time or will never reach to nodes
down in the distribution trees. The same problem causes PushPull-LR2 to perform

the worst but it is amplified by the pull mechanism.

9.5.5 Redundant traffic

The redundant traffic is defined as the ratio of the number of redundant packets
received by a node to the total received streaming packets. The average redundancy
is the average of the redundant traffic over all nodes. In Figure 9.4a, we depict the
redundancy rate obtained at time t = 180s. At that time, the system has already

reached a steady state and thus redundancy is mainly due to the request of lost
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packets.

APP-LR2 has a very low redundancy thanks to the two steps of the request
process of missing packets: Firstly, to request from the assigned pusher and then, if
content is still missing, to request from the other parents. BPP-LR2 leads to the
highest redundancy because it requests a lost packet from all parents at the same
time. PushPull-LR2 is more efficient in terms of redundancy because the requests
are based on content availability at parents.

Figure 9.4b shows how redundant traffic varies during a session. BPP-LR2 expe-
riences a high redundancy at startup that decreases until the session reaches a steady
state. APP-LR2 has the lowest redundancy. It is effective at speeding up the startup
process and thus at reducing the use of the probabilistic push. This is helped by the
fact that it assigns different relay probabilities to parents depending on their poten-
tial to be pushers of a specific substream to a given child. PushPull-LR2 has higher
redundancy because the delay for retrieving a lost packet is sometimes higher than

the request period. Also, re-scheduling substreams may lead to redundancy as noted

in [LYHTO08).

9.5.6 Overhead traffic (Session)

In Figure 9.5, we depict the overhead experienced by the system during a session.
BPP-LR2 and APP-LR2 lead to lower overhead than PushPull-LR2 because we
eliminate the mandatory exchange of buffer maps and we replace it by a push map
sending when necessary. Information is thus exchanged at smaller size and frequency.
In addition, BPP-LR2 and APP-LR2 request a missing packet once at most from
each parent.

All strategies experience some overhead increase at startup because of the in-

formation exchange. BPP-LR2 has higher overhead than APP-LR2 because of its
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request process in which it sends the same request to all its parents at the same time.

9.5.7 Impact Of Churn Rate

To measure the impact of the peer churn rate on the performance, we impose that
10% of nodes leave the session at a random time between the instants 100s and 160s.
In such a context, we only consider the APP and the Push-Pull strategies. For each
strategy, we repeat the execution three times and then take the average values. The
results are depicted in Figure 9.6. For all the strategies and the executions, the nodes
leaving the session are the same but the departure times are random. The departues
are abrupt, i.e., nodes do not inform their neighbors when leaving.

Figure 9.6a shows that the push-pull strategy is the one that suffers the most from
the churn rate. The average playback delay increases exponentially. APP is more
resilient to churn rate as the average playback does not change significantly.

To better show the impact of the churn, we refer to Figure 9.6b. For APP, we
have two peaks. The first one is due to the start up process of nodes. The second
one happens after the steady state has been reached and is due to the churn rate.
However, the increase is less significant than with the Push-Pull strategy and more
importantly. we observe that the system is recovering from the node departures as
the maximum playback delay is decreasing with time.

It is also worth noting that with the Push-Pull strategy, the number of affected
nodes is big and continuously growing. Indeed, the maximum playback delay cannot
go beyond 40s (limit imposed by the simulator design and equivalent to undefined
delay) and the average playback delay increases continuously. The fact that the
average playback delay of the APP strategy does not show a significant peak (although
the maximum playback delay does) means that the number of affected nodes remains

small.
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With respect to redundancy, A PP does not show any significant increase in redun-
dancy. However, Push-Pull presents a significant increase in redundancy compared to
the steady state and even to the startup state. This confirms the conclusion that the
number of affected nodes is very big. Thus the pull mechanism is being used heavily

which results in the redundancy increase.

9.6 Conclusion

In the present work, we point out that although push-pull scheduling leads to low
playback delays in ideal situations, its performance degrades when dealing with packet
loss or at the startup process. As P2P video applications tend to move toward
interactivity, there is a need for a lighter but more efficient scheduling. We addressed
this need by proposing the PurePush approach: Starting from a push-pull approach,
we replaced the pull mechanism by a probabilistic push.

The most challenging part was to eliminate packet redundancy. We managed to
achieve that in two stages: Speeding up the startup process and implementing a two-
step lost packet request. The Advanced Pure Push (APP) variation led to low delays
and even to lower redundancy and overhead than push-pull scheduling.

Although APP showed good resiliency for a parent loss rate equal to 10% some
individual peers may experience high performance degradation. Indeed, there is no
guarantee on either how long or how strong is the degradation. Thus, we plan to
extend the APP variation with a mechanism that bounds both the degradation time

and intensity.

158



CHAPTER 10

Conclusion and Future Work

The work described in this thesis aims at providing hints and solutions in order to
minimize playback delays experienced by peers in a P2P live streaming session using
a single source server. We have addressed two main aspects: the overlay construction
and the content scheduling.

With respect to overlay construction, and beside proposing a strategy that per-
formed the best in the scenarios we have considered, we had two main contributions.
Firstly, we have showed the importance of relying on some information about the
overlay network when selecting neighbors/parents. Such information relate to the
delivery delays experienced by a node (path to the source) and the usage status of
its upload bandwidth. We have called strategies that use such information, partially
overlay-aware strategies (POS) in opposition to basic strategies (BS) which only rely
on local information related to the characteristics of peers, such as RTTs and nominal
upload bandwidth.

Secondly, we have proposed a MILP model to validate the results of overlay con-
struction strategies. Due to the differences of scenarios either in simulation environ-

ments or a real-world context, it is difficult to evaluate a P2P system performance
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independently of the design and implementation choices. None can claim that a
specific strategy will always lead to the best performance.

However, a lot of work is still needed to stabilize the performance of a P2P stream-
ing system. For instance such a system is sensitive to the join distribution of peers.
Indeed, P2P systems have no reproducible behavior as they depend on some random
events and they rely on many random decisions at different stages. Such an issue
needs to be resolved if we want to deploy a P2P system that can be adopted by
regular consumers. Here, the issues of quality of service, or the quality of experience,
arise. Existing solutions try to alleviate these problems through increasing the avail-
able resources, or modifying the overlay. These are reactive solutions and we think
that we need to propose proactive approaches in order to have a good control on the
service degradation if it happens.

With respect to content scheduling, the fact that existing scheduling strategies in
mesh overlays are based on knowledge of buffer maps of neighbors/parents make them
less resilient to churn rate and packet loss. We addressed this issue by proposing a pure
push scheduling algorithm where buffer map exchanges are completely eliminated.
Although results show that PurePush has a good resiliency to churn and to packet
loss, it does not offer any performance guarantee.

Such situation is annoying as, when deployed in a free P2P system or a commercial
one, the consumer will not be satisfied and is likely not to use the system anymore.
Indeed, it is very critical to propose solutions for quality guarantee if we want the use
of P2P streaming systems to move further than streaming rights protected content
for free.

In addition, the fact that PurePush leads to very low delivery delays opens wide
possibilities for the use of P2P streaming systems with some non critical interactive

applications. Thus, we are planning to implement PurePush in a real P2P system
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and evaluate it with some interactive multimedia applications.

We also think that existing P2P streaming systems have focused mainly on the
technical aspect. However, we believe that the social aspect is important as the P2P
system has already the infrastructure to deploy strong social networking applications
that can be combined with the video streaming functionality. For instance, each peer
may act as a source server to stream a movie or to watch a live event with friends
from the social network providing real time stream messages to share their thoughts
or emotions.

However, here again rises the issue of content copyright. How to prevent a user
from streaming a copyright protected content? How to ensure that the peers in the
session have the rights to watch the video stream? These are still sensible issues
that prevent content providers and consumers alike from adopting the P2P content
distribution paradigm.

So far, P2P systems have never been considered as business opportunities that
can generate profit for the ISPs. However, we think that with the G-PON (specially
FTTH) networks being widely deployed and the IPTV /Triple Play (Phone + Internet
+ TV) services up and running, there is a room to use a P2P network of subscribers
within the same provider or regional providers. The benefit lies in alleviating the load

on the provider servers and the possibility to add the social networking service.
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