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Abstract

Generalized Feynman-Kac transformation and Fukushima’s
decomposition for nearly symmetric Markov processes

Li Ma

In this thesis, we study some problems about nearly symmetric Markov processes,
which are associated with non-symmetric Dirichlet forms or semi-Dirichlet forms.

For a Markov process (X, P;) associated with a non-symmetric Dirichlet form
(&,D(&)) on L*(E;m), we study the strong continuity of the generalized Feynman-
Kac semigroup (FP});>0, which is defined by

P! f(x):= E, [N f(X,)], f>0 and t>0.

Here u € D(E), N/ is the continuous additive functional of zero energy in the
Fukushima’s decomposition. We give two sufficient conditions for (P}*):>o to be
strongly continuous.

The first sufficient condition is that there exists a constant oy > 0 such that for

any f € D(E)y, Q"(f, f) = —ao(f, [)m, where (Q", D(E)y) is defined by
Q"(f.9) :=&(f.9) +&(u, fg), [f.g€D(€)y:=D(E)NL*(E;m).
The second sufficient condition is that there exists a constant ag > 0 such that
| P2 < et Vit > 0.

For a Markov process associated with a semi-Dirichlet form, we establish Fukushima’s
decomposition and give a transformation formula for local martingale additive func-

tionals.
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Chapter 1

Introduction

The one-to-one correspondence between Dirichlet forms and Markov processes pro-
vides a bridge between the classical potential theory and stochastic analysis, by which
we can transfer between some analytic problems and stochastic problems. The Dirich-
let form theory has been developed very quickly and has been used widely. It is an
effective machinery for studying various stochastic models, especially those with non-
smooth coefficients, on fractal-like spaces or spaces of infinite dimensions.

The notion of Dirichlet form was introduced by A. Beurling and J. Deny in 1958-
1959, who essentially established the analytic part of the Dirichlet space theory. The
more recent probabilistic part was initiated by M. Fukushima and M.L. Silverstein,
who connected the regular symmetric Dirichlet forms with Hunt processes on locally
compact separable metric spaces. Later, S. Carillo-Menende and Y. LeJan extended
Dirichlet forms to the non-symmetric case. Then, S. Albeverio and Z.M. Ma showed
that a Dirichlet form on a Lusin space is associated with a pair of right processes if
and only if the Dirichlet form is quasi-regular. One advantage of the correspondence
between Markov processes and Dirichlet forms is that some sample path properties
of the Markov processes can be described by the associated Dirichlet forms. For
example, the continuity of the sample paths of Markov processes is equivalent to the
local property of Dirichlet forms.

Although many researchers have worked on Dirichlet form theory and have gotten

lots of beautiful results, there are still some unsolved problems in the field. In this



thesis, we will focus on two interesting problems.

Let (X, P,) be a Markov process associated with the (non-symmetric) Dirichlet
form (€, D(E)) and (N{);>0 be the continuous additive functionals of zero energy
in the Fukushima’s decomposition. Defined P f(z) := E,[eN f(X;)], f > 0 and
t > 0.The first problem is the strong continuity of the generalized Feynman-Kac
semigroups (P):>o.

The strong continuity of generalized Feynman-Kac semigroups for symmetric Markov
processes has been studied extensively by many people. Note that (N}*);>o is not of
bounded variation (cf. (FOT1994, Example 5.5.2)). Hence the classical results of
S. Albeverio and Z.M. Ma given in (AM1991) do not apply directly. Under the as-
sumption that X is the standard d-dimensional Brownian motion, u is a bounded
continuous function on R? and |Vu|? belongs to the Kato class, J. Glover et al.
proved in (GRSS1994) that (P/);>¢ is a strongly continuous semigroup on L*(R?; dx).
Moreover, they gave an explicit representation for the closed quadratic form corre-
sponding to (P}*)>o. (T2001) generalized the results of (GRSS1994) to symmetric
Lévy processes on R? and removed the assumption that « is bounded continuous.
Furthermore, Z.Q). Chen and T.S. Zhang established in (CZ2002) the correspond-
ing results for general symmetric Markov processes via the Girsanov transformation.
They proved that if s, the energy measure of u, is a measure in the Kato class, then
(P®)¢>0 is a strongly continuous semigroup on L?(E;m). Also, they characterized the
closed quadratic form corresponding to (P}*);>o. P.J. Fitzsimmons and K. Kuwae
(FK2004) established the strong continuity of (P}*);>o under the assumption that X
is a symmetric diffusion process and ji(, is a measure in the Hardy class. Further-
more, Z.Q. Chen et al. (CFKZ2008b) established the strong continuity of (P}*):>o for
general symmetric Markov processes under the assumption that ji(, is a measure in
the Hardy class.

All the results mentioned above only give sufficient conditions for (P});>¢ to be
strongly continuous, where fi(, is assumed to be in the Hardy class. In (C52006),
under the assumption that X is a symmetric diffusion process, C.Z. Chen and W.

Sun showed that the semigroup (P");>¢ is strongly continuous on L*(E;m) if and



only if the bilinear form (Q*, D(E€)) is lower semi-bounded, where

Q“(f.9) = &(f,9) + &(u, fg), [f,g € D(€),:=D(E)NL>(E;m).

Furthermore, C.Z. Chen et al. (CMS2007) generalized this result to general symmetric
Markov processes. Z.Q. Chen et al. (CFKZ2009) studied general perturbations of
symmetric Markov processes and gave another proof for the equivalence of the strong
continuity of (P}");>¢ and the lower semi-boundedness of (Q“, D(E)y).

In the first part of this thesis, by a localization method and the Beurling-Deny
formula of non-symmetric Dirichlet form, which was developed very recently, we give
two sufficient conditions for (P}*);>o to be strongly continuous. Our results generalize
all the previous results on the strong continuity of the generalized Feynman-Kac
semigroup.

The second problem is Fukushima’s decomposition in the framework of semi-
Dirichlet forms. Suppose that X is a right process which is associated with a non-
symmetric Dirichlet form (&€, D(€)) on L?*(E;m). Fukushima’s decomposition tells us
that for u € D(E), u(X;) — u(Xo) = M{* + N/, where M}* is a martingale additive
functional of finite energy and N;* is a continuous additive functional of zero energy.
Fukushima’s decomposition is a generalization of It6’s formula for semi-martingales
and Doob-Meyer decomposition for super-martingales.

Fukushima’s decomposition is very useful. For example, by defining the stochastic
integrals with respect to continuous additive functionals of zero energy, we can define
the stochastic integrals with respect to Dirichlet processes and thus generalize [td6’s
formula. Also, for symmetric Dirichlet forms, by using the time reversal operator, we
have the Lyons-Zheng decomposition, which is a summation of backward and forward
martingales. Then by using martingale inequalities, we can get many good estimates
on additive functionals.

There are many references on Fukushima’s decomposition in the Dirichlet forms
setting. (FOT1994, Theorem 5.2.2) gives Fukushima’s decomposition for u € D(€).,
the extended Dirichlet space, in the case of regular Dirichlet forms. Then (FOT1994,

Theorem 5.5.1) gives Fukushima’s decomposition for « which is locally in D(€) in the



1.1 Introduction to semi-Dirichlet forms

broad sense (see (FOT1994, page 226)) in the framework of regular local Dirichlet
forms (in other words, the associated Markov processes have no jumping parts). Later,
(MR1992, Chapter VI Theorem 2.5) generalizes Fukushima’s decomposition to the
quasi-regular case by the transfer method. Recently (KK2010, Theorem 4.2) gives
Fukushima’s decomposition for u € D(E),. in the case of general symmetric Dirichlet
forms by generalizing stochastic calculus.

Up to now, there is no paper concerning Fukushima’s decomposition in the semi-
Dirichlet forms case. There are big differences between Dirichlet forms and semi-
Dirichlet forms. For example, for Dirichlet forms, the set of bounded functions in the
domain of the Dirichlet forms is an algebra, while this is not true for semi-Dirichlet
forms. Also, there is a pair of Markov processes associated with a Dirichlet form, but
there is only one Markov process associated with a semi-Dirichlet form.

The notations and terminologies of this thesis follow (FOT1994), (MR1992) and
(MS2010b). For the convenience of the reader, we will give a brief introduction to
semi-Dirichlet forms in the first section of this chapter. In the second section, we
will present the main results of this thesis. In the last section, we will describe the

organization of this thesis.

1.1 Introduction to semi-Dirichlet forms

In this section, we recall some basic facts on semigroups, resolvents, generators, semi-
Dirichlet forms and the associated Markov processes. We refer the reader to (MR 1992,
Chapter 1), (FOT1994) and (MS2010b) for the proofs and more details. Throughout

this section, we fix a real Hilbert space H with inner product (, ) and norm || || :=

(’ )1/2_

Definition 1.1. (strongly continuous contraction semigroups) A family (1})i=0 of
linear operators on H whose domain is D(1y) = H for all t > 0 is called a strongly
continuous contraction semigroup on H (abbreviated by semigroup) if (T})i=o0 satisfies
the following three conditions,

(i) limy)o || Tof — f ||=0, Vf € H (strong continuity).

4



1.1 Introduction to semi-Dirichlet forms

(i) |Tof|] < || fIl, Yf € H (contraction).
(iii) Ty(Tsf) = Tiysf, Vt,s >0, f € H (semigroup property).

Definition 1.2. (strongly continuous contraction resolvents) A family (Gyo)as>o0 of
linear operators on H with domain D(G,) = H for any a > 0 is called a strongly
continuous contraction resolvent on H if

(1) imayo0 ||0Gof — fI| =0, Yf € H (strong continuity).

(i) ||aGo f|| < ||fll, Yf € H (contraction).

(1)) Gof — Gpf = (B — a)Gu(Gsf), Ya,3 >0, f € H (resolvent equation).

Proposition 1.1. (the relationship between strongly continuous contraction semi-
groups and strongly continuous contraction resolvents)

(i) Given a strongly continuous contraction semigroup (Ty)io0, define for a >0

Gof = /Ooe_o‘tthdt, VfeH. (1.1)
0

Then (Gy)aso 1S a strongly continuous contraction resolvent.

(ii) Let (Gu)aso be a strongly continuous contraction resolvent on H. Define for

t>0
: ta(aGe—1) : —ta - (ta)n n
T,f := lim e e f:= lim e g (aGL)"f, Vf € H.
a—00 a—00 0 n'

Then (Ti)i=o s a strongly continuous contraction semigroup and G, is expressed by

(1.1) for a > 0.

Definition 1.3. (generators of semigroups) Let (T});o be a strongly continuous con-

traction semigroup on H. Define
D(L) = {feH| 1:1%%(7}]“ — f) ewists in H},
Lf = lm (T~ ), f € D(L) (1.2)
and we call (L, D(L)) the generator of (T})>o-

Proposition 1.2. (the relationship between resolvents and generators) Given a strongly

continuous contraction semigroups (T})i~o, define (L, D(L)) by (1.2) and (Gy)a>o0 by



1.1 Introduction to semi-Dirichlet forms

(1.1). Then, for a >0,

Go = (a—L)"
L = a—G.

Definition 1.4. (resolvent set) Let L be a linear operator on H. If a real number «
satisfies the following condition

(i) (e — L) : D(L) — H is one-to-one,

(i) the range of (o — L) is H,

(iii) the inverse (o — L)™' is continuous on H,

then we say « is in the resolvent set of L, denoted by o € p(L).

Theorem 1.1. (Hille-Yosida) Let (L, D(L)) be a dense (that is, D(L) is dense in
H ) linear operator on H. Then a necessary and sufficient condition for (L, D(L)) to
be the generator of a strongly continuous contraction semigroup (T;)~o on H is that
(L, D(L)) satisfies the following properties:

(L1) (0,00) C p(L).

(L2) |la(a = L) Il < [IfIl, Vo> 0, f € H.
In this case (T})i>o0 is uniquely determined by L.

Proposition 1.3. Let (T})i~0 be a strongly continuous contraction semigroup, (Ga)aso
and (L, D(L)) be its resolvent and generator, respectively. Then the following three
assertions are equivalent to each other:

(i) (T})i>0 is analytic, that is, the complezification of (e 'T})i~o is the restriction
of a holomorphic contraction semigroup on some sector region S(K) (K > 0) of the
complex plane C. Here S(K) is defined by S(K) :={z € C||Imz| < K Rez}.

(ii) G, satisfies the sector condition for one (hence for all) a > 0. (We say that
a positive definite linear operator (A, D(A)) satisfies the (strong) sector condition if
there exists K > 0 such that

|(Au,v)| < K(Au,u)?(Av,v)Y?, VYu,v € D(A)).

(L3) I — L (I := the identity map) satisfies the sector condition.



1.1 Introduction to semi-Dirichlet forms

Definition 1.5. Let (€, D(E)) be a bilinear form on H (that is, € is a bilinear map
from D(E) x D(E) ). We say that (€, D(E)) is a coercive closed form, if it satisfies
the following conditions:

(i) for every f € D(E),E(f, f) > 0 (nonnegative definite).

(13) D(&) is dense in H.

(i17) (€,D(E)) is a symmetric closed form, that is, D(E) is complete under the
norm €%, here &(u,v) = 1/2(&(u,v) + &(v, u)).

(1v) there is a constant K > 0 (called it continuity constant), such that
|81(u’ U)| < K81<u> U)1/281(’U, U)l/Qa
where E,(u,v) = E(u,v) + au,v), Yu,v € D(E) (section condition).

Remark 1.1. (€, D(E)) is said to satisfy the (strong) sector condition if there exists
K > 0 such that

1&(u,v)| < KE&(u,u)Y2E(v,v)V2, Yu,v e D(E).

Lemma 1.1. (MR1992, Lemma 2.12) Let (€, D(E)) be a coercive closed form on
L*(E;m) and f, € D(€),n > 1 such that

sup E(fn, fn) < 00.

n>1
If f € H such that f, — f in H as n — oo, then f € D(E) and f, converges weakly
to f in the Hilbert space (D(E), é%) and there exists a subsequence f,, of {f.} such

that its Cesaro mean w, = =~ > 7' | fn, — f in (D(€),EF) as n — oo. Moreover,

E(f, f) < Timinf E(fy, f).

Theorem 1.2. (i) There is a one-to-one correspondence between all the strongly con-
tinuous contraction resolvents (G )aso satisfying sector condition and all the coercive

closed forms (€, D(E)). The correspondence is given by

Go(H) C D(E) and E,(Gau,v) = (u,v) forallue Hyve D(E),a>0. (1.3)
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(ii) Given a coercive closed form (€, D(E)), the corresponding resolvent (Gy)aso 1S
uniquely determined by (1.3).

(i1i) Given a strongly continuous contraction resolvent (Gy)as0 satisfying sector
condition, the corresponding coercive closed form is uniquely determined by

D(&) = {ue H|supBu— (Gyu,u) < oo},
£5>0

E(u,v) = ﬁlim B(u — BGau,v), Yu,v € D(E).

Theorem 1.3. (i) There is a one-to-one correspondence between all the dense linear
operators (L, D(L)) satisfying (L.1)—(L.3) and all the coercive closed forms (€, D(E)).

The correspondence is given by
D(L) C D(&) and E(u,v) = (—Lu,v) forallu € D(L),v € D(E).

In this case (L, D(L)) is called the generator of (€, D(E)).
(i1) Given a coercive closed form (€, D(E)), the corresponding generator (L, D(L))

1s uniquely determined by

D(L) = {ueD(E)|3we H such that E(u,v) = (—w,v), Yv € D(E)},

Lu = w, ifue D(L) and w is as above.

(iii) Given a dense linear operator (L, D(L)) satisfying (L.1)—(L.3), the corre-
sponding coercive closed form is uniquely determined by
E(u,v) = (=Lu,v), Yu,v e D(L),

&1

D) = D(L)",

where D(L)(El is the completion of D(L) w.r.t. the norm induced by &;.

Therefore there is a one-to-one correspondence among the strongly continuous con-
traction analytic semigroups (7})i~0, the strongly continuous contraction resolvent
(Ga)aso satisfying sector condition, the dense linear operator (L, D(L)) with (L.1)-
(L.3) and coercive closed form (€, D(€)). In addition, given a the strongly continu-

ous contraction analytic semigroup (73);~0, the corresponding coercive closed form is

8



1.1 Introduction to semi-Dirichlet forms

uniquely determined by (see (AFRS1995))

1
D(E) = {ue H|sup Z(u—Ttu,u) < 00},

t>0

1
E(u,v) = lim—(u— Tu,v), Yu,v € D(E).

t—0 ¢

We now replace H by the concrete Hilbert space L*(E;m) := L*(E;B;m) with
usual inner product (, ), where (E;B;m) is a measure space. As usual we set for
u,v: EF—R

u Vv = sup(u,v), uAv:=inf(u,v), v :=uVO0.

Definition 1.6. (i) A strongly continuous contraction semigroup (T})io on L*(E;m)

1s sub-Markovian if
feLl*(E;m),0< f<1m-ae =0<Tif <1m-ae., Vt>0. (1.4)

(i) A strongly continuous contraction resolvent (Gy)aso on L*(E;m) is sub-Markovian

if
feL*E;m),0< f<1m-ae =0<aG.f<1m-ae., Ya>0. (1.5)
(iii) A densely defined linear operator (L, D(L)) on L*(E;m) is Dirichlet if
(Lu, (u—1)*) <0, Yue D(L). (1.6)
(iv) A coercive closed form (€, D(€)) on L*(E;m) is semi-Dirichlet if
ueDE)=u"AN1€ D) and E(u—u" Al,u+ut A1) >0. (1.7)
If

Eu+ut Al,u—utA1)>0
also holds, then we say (€, D(E)) is a Dirichlet form.

Theorem 1.4. Let (1})i>0, (Ga)aso and (L, D(L)) be the semigroups, resolvents and
generators of a coercive closed form (€, D(E)) respectively. Then (1.4)<(1.5) <
(1.6) < (1.7).



1.1 Introduction to semi-Dirichlet forms
Let (&, D(&)) be a semi-Dirichlet form on L?(FE;m), F be a closed subset F, define
DE)r={feD(E)| f(x) =0, m.a.e.for € E—F}.

In the following, we will give the definitions of nest, quasi-continuous and excep-
tional sets in the framework of semi-Dirichlet forms, which are used frequently in this

thesis.

Definition 1.7. (i) Let (&, D(€)) be a semi-Dirichlet form on L*(E;m), {Fy}r>1 be
an increasing sequence of closed sets, if Up>1D(E)p, is é%—dense in D(E), then we
say that {Fy.}r>1 is an E-nest.

(17) We say u € D(E) is quasi-continuous if there exists an E-nest {Fy}x>1 such that
for any k > 1, f is continuous on Fj,.

(i1i) We say N C E is an E—exceptional set if there is an E-nest {Fi}r>1 such that
N C ﬂk21ch' We say that a property of points in E holds €— quasi-everywhere
(abbreviated € — q.e.), if the property holds outside some E—exceptional set.

Definition 1.8. (MR1992, IV, Definition 1.8) Let M = (0, F, (F1)t>0, (Xt)t>05 (Pr)zcEs)
be a Markov process with state space E, life time (, cemetery A, and shift operators
0;, t > 0. M is called a right process if it satisfies the following three conditions:

(i) M is normal, i.e., P,(Xo=12) =1 for all x € Ex.

(i) M is right continuous, i.e., for each w € Q, t — X(w) is right continuous on
0, 00).

(11i) Pp(Rof(Xy) is right continuous on [0, 00)with respect to t) = 1 for all x €
E,a > 0, and nonnegative f € Cy(E). (Hereafter Cy(E) denotes the set of all bounded
continuous functions on E, R, f = fo e~ f(X,;)dt].)

Let M = (Q,F, (F1)1>0, (Xt)t>0, (Pr)zer, ) be a right process, denote the transition
semigroup of M by

Pf(z) = B,[f(X,)], t>0, feBHE).

Definition 1.9. (MOR1995, Definition 3.3) A right process M with state space E
is said to be (properly) associated with a semi-Dirichlet form (&, D(&)) on L*(E;m)

10



1.1 Introduction to semi-Dirichlet forms

if and only if P;f is an (E-quasi-continuous) m-version of Tyf for all f € By(E) N
L*(E;m) and all t > 0.

Definition 1.10. (MOR1995, Definition 3.5) A semi-Dirichlet form (€, D(E)) on
L2(E;m) is called quasi-reqular if:

(i) There ezists an E-nest { By }ren consisting of metrizable compact sets.

(ii) There ezists an é}/z—dense subset of D(E) whose elements have €-quasi-continuous
M-Versions.

(iii) There exist u, € D(E), n € N, having E-quasi-continuous m-versions i,
n € N, and an E-exceptional set N C E such that {u, |n € N} separates the points
of E\N.

Theorem 1.5. (MS2010b, Theorem 1.40) Let (€, D(E)) be a semi-Dirichlet form on
L2*(E;m), where E is a Lusin metrizable space. Then there exists a right process M =
(Q,F, (F1)i>0, (Xt)t>0, (Pr)zer,) associated with (€, D(E)) if and only if (€, D(E)) is
quasi-regular. Moreover, M is always properly associated with (€, D(E)).

Definition 1.11. (HMS20006, Definition 3.7) A semi-Dirichlet form (€, D(E)) on
L*(E,m) is said to be quasi-homeomorphic to a semi-Dirichlet form (%, D(E%)) on
L*(E*;m%), if there exists a map j Uizt Fr = Upsa F}, where { Fi.}ren is an E-nest
in E and {F/Yren an E-nest in E*, such that

(i) j is a topological homeomorphism from Fj onto F,g for each k € N.

(ii) m* =mo ;L.

(iii) (€%, D(E%)) = (&7, D(&7)), where (&7, D(&7)) is the image of (€, D(E)) under
],

The map j is called a quasi-homeomorphism from (&, D(€)) to (&%, D(EF)).

Let E be a locally compact separable metric space and m be a positive Radon
measure on F with supp[m] = E. We say that a semi-Dirichlet form (€, D(€)) on
L2(E;m) is regular if Co(E)N D(€) is dense in D(E) with respect to the &;-norm and
Co(E) N D(€) is dense in Cy(FE) with respect to the uniform norm || ||«. Hereafter

Co(E) denotes the set of all continuous functions on F with compact supports.

11



1.1 Introduction to semi-Dirichlet forms

Theorem 1.6. (HMS2006, Theorem 3.8) A semi-Dirichlet form (€, D(€)) on L*(E;m)
1s quasi-reqular if and only if it is quasi-homeomorphic to a reqular semi-Dirichlet

form (&%, D(E%)) on L2(E*; m¥).

Therefore many results established for regular semi-Dirichlet forms are applicable
to quasi-regular semi-Dirichlet forms.

Next, we introduce Beurling-Deny formula for non-symmetric Dirichlet form.

Definition 1.12. (MS2010b, Definition 1.95) Let Q) be a o-finite positive Borel mea-
sure on E x E\d. A measurable function f on E x E\d is said to be integrable
w.r.t. Q in the sense of symmetric principle value (abbreviated by SPV integrable)
if there exists an increasing sequence {An}nen of subsets of E x E\d satisfying
QUE x EAd)\ (U,»,4n)) = 0, Ia,(7,y) = 1a,(y,x) for all z,y € E, f is inte-
grable on each A,, n > 1, and for any sequence {A,}nen with these properties, the
limat

SPV [ fa)Qd.dy) = i [ f(e.0)Q(dr.dy)

ExE\d n—oJ A,

exists and is independent of the specific choice of the sequence { Ay }nen-
Theorem 1.7. (HMS2010, Theorem 1.3 (i) (ii)) Let (€, D(E)) be a quasi-reqular
non-symmetric Dirichlet form on L*(E;m).
(i) There exist a unique o-finite positive Borel measure J on E x E\d and a unique

positive Radon measure K on E such that for v € Co(E) N D(E) and u € I(v),

&(u,v) :/E E\d2(u(y) —u(x))v(y)J (dz, dy) —i—/u(x)v(x)K(dx).

E
where I,(v) :={u € Co(E)ND(E) |u is constant on a neighbourhood of supplv]}.
(ii) Define

A) :={u e Co(E) N D(&) | (uly) —u(x))v(y) is SPV integrable w.r.t. J(dz,dy)}.
Then forv € Co(E)ND(E) and u € A(v), we have the following unique decomposition:

E(u,v) = E%(u,v)+ SPV/ 2(u(y) — u(x))v(y)J(dz, dy)

ExE\d

+ /E u(x)v(x)K(dr),

12



1.2 Main results

where E° satisfies the left strong local property in the sense that I,[v] C A(v) and
Eu,v) = 0 whenever v € Co(E) N D(E) and u € I(v). €°, J and K are called the

diffusion part, jumping measure and killing measure of (€, D(E)), respectively.

1.2 Main results

For the generalized Feynman-Kac semigroups associated with nearly symmetric Markov

processes, we have the following results:

Theorem 1.8. Suppose that X is a right process which is associated with a (non-
symmetric) Dirichlet form (€, D(&)) on L*(E;m). Let u € D(E). Assume that
J1(E x E\d) < oo, where Jy is the anti-symmetric part of the jumping measure in the
Beurling-Deny decomposition of (€, D(E)) and d means the elements on the diagonal.
Then the following two conditions are equivalent to each other:

(i) There ezists a constant oy > 0 such that

Q“(f. f) = —aw(f, flm, Vf € D(E),

where D(E), = D(E) N L®(E, m).

1) There exists a constant ag > 0 such that
( )
HPtuH2 < ea()t’ Vi > 07

where | PY||a means the operator norm of PY from L*(E,m) to L*(E,m).
Furthermore, if one of these conditions holds, then the semigroup (P*)¢>o is strongly

continuous on L*(E;m).

Theorem 1.9. Let U be an open set of R? and m be a positive Radon measure on
U with supp[m| = U. Suppose that X is a right process which is associated with
a (non-symmetric) Dirichlet form (€, D(&)) on L*(U;m) such that C§°(U) is dense
in D(E). Then the conclusions of Theorem 1.1 remain valid without assuming that

Jl(E X E\d) < 0.

13



1.2 Main results

To get Fukushima’s decomposition in the semi-Dirichlet forms setting, we need to
put one assumption on the quasi-regular semi-Dirichlet form (€, D(&)).

Fix a function ¢ € L?(E;m) with 0 < ¢ < 1 m-a.e. and set h = Gyé. Let V be
a quasi-open subset of E. Define 7y = inf{t > 0 | X; ¢ V'}. Define the part process
XV = (X} )i>0 of X on V as follows

X/ =X, for t<my, XY =A for t>r1y.

Denote (€Y, D(€)y) the part form of (€, D(&)) on L2(V;m). Denote by (GY),>0 and
(GY)aso the resolvent and co-resolvent associated with (€Y, D(E)y), respectively.
Define 1Y := h|y A GY .

For an additive functional (abbreviate as AF) A = (A;)s>0 of XV, we define

1

|4 R FES 2
e’ (A) = ltll%l 2tEhV'm<At)
whenever the limit exists in [0, 0o]. Define
MY = {M|Misan AF of XV, E,(M?) < oo, E,(M;) =0

for all £ > 0 and &-g.e. z € V, eV (M) < oo},

NV = {N|NisaCAF of XV E,(|N]) < oo for all t >0

and E-g.e. v € V,e"(N) = 0},

0 = {{V,}|V, is &-quasi-open, V,, C V, 11 E-q.e.,

VneN, and E=U2,V, Eq.e.},

and
D(&),,, = {u|3{Vo} €© and {u,} C D(E)
such that « = u, m-a.e. on V,,, ¥V n € N}.
Define
Mpe = {M|M isalocal AF of M, 3 {V,,},{E,} € © and {M" | M" € M""}

such that E, C V,,, Mg, = M|, t>0, neN}

tATRE,,

14



1.3 Organization of the thesis
and

Netoe = {N|Nisalocal AF of M, 3{V,,},{E,} € © and {N"|N" € NX"}

such that E, C Vy,, Niar, = N,

t/\TEn )

t >0, n €N}

We use Mg[gf[[ to denote the family of all local martingales on [0, ([ (cf. (HWY1992,
§8.3)).

We put the following assumption:

Assumption 1.1. There exists {V,,} € © such that, for each n € N, there exists a
Dirichlet form (0™, D(n™)) on L?(V,;;m) and a constant C,, > 1 such that D(n™) =
D(&)y, and for any u € D(E)y,,,

1 ¢, n
257_775 )<1L71L) < ézl(?LJTL) < (321775 )(QL,QL).

Theorem 1.10. Suppose that (€, D(&)) is a quasi-reqular local semi-Dirichlet form
on L*(E;m) satisfying Assumption 1.1. Then, for anyu € D(E), , there exist M ¢

Mloc and N™ ¢ Neioc such that

loc?

(X)) —u(Xe) = MM + Nt >0, P-as. for &qe. x € E. (1.8)

Moreover, M™ ¢ velo<l, Decomposition (1.8) is unique up to the equivalence of local

loc
APFs.

For local martingale additive functionals, we have the following result.

Theorem 1.11. Suppose that (€, D(E)) is a quasi-regular local semi-Dirichlet form
on L*(E;m) satisfying Assumption 1.1. Letm € N, ® € CY(R™), andu = (uy, uz, - . ., Up,)
with u; € D(E)ioe, 1 <@ <m. Then ®(u) € D(E)ip. and

MEWhe — Zcbz(u) - MW on [0,¢), Py-a.s. for E-qe. x € E.

=1

1.3 Organization of the thesis

This thesis is organized as follows. In Chapter 2, we will give the results on the

strong continuity of the generalized Feynman-Kac semigroups for Markov processes
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1.3 Organization of the thesis

which are associated with (non-symmetric) Dirichlet forms. In Chapter 3, we will
present the results on Fukushima’s decomposition and a transform formula for local
martingale additive functionals in the semi-Dirichlet forms case. In Chapter 4, we

will state the future work.
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Chapter 2

Generalized Feynman-Kac transfor-

mation

Let E be a metrizable Lusin space and X = ((Xt):>0, (P:)zer, ) be a right (continuous
strong Markov) process on E. Suppose that X is associated with a (non-symmetric)
Dirichlet form (&, D(€)) on L?(E;m), where m is a o-finite measure on the Borel o-
algebra B(F) of E. Then, by (MR1992, IV, Theorem 6.7) (cf. also (F2001, Theorem
3.22)), (€, D(€)) is quasi-regular. Moreover, (€, D(&)) is quasi-homeomorphic to a
regular Dirichlet form (see (CMR1994)).

Let u € D(E). Then, we have Fukushima’s decomposition (cf. (MR1992, VI,
Theorem 2.5))

u(Xy) —u(Xo) = My* + Ny,

where 4 is a quasi-continuous m-version of u, M;" is a square integrable martingale
additive functional (MAF) and N} is a continuous additive functional (CAF) of zero
energy. For x € E, denote by F, the expectation with respect to P,. Define the

generalized Feynman-Kac transformation
P! f(x) = E[e™ f(X,)], f>0andt>0.

In this chapter, we will investigate the strong continuity of the semigroup (P}*)¢>o on
L?(E;m). This part of the thesis is based on the paper (MS2010a), which will appear

in the Journal of Theoretical Probability.
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Note that many useful tools of symmetric Dirichlet forms, e.g. time reversal and
Lyons-Zheng decomposition, do not apply well to the non-symmetric Dirichlet forms
setting. That makes the problem more difficult. Also, we would like to point out that
the Girsanov transformed process of X induced by M;* and the Girsanov transformed
process of X induced by M are not in duality in general (cf. (CS2009)), where
X is the dual process of X and M is the martingale part of @(X;) — @(X,). The
method of this part is inspired by (CMS2007) and (CFKZ2009). We will combine the
h-transform method of (CMS2007) and the localization method used in(CFKZ2009).
It is worth to point out that the Beurling-Deny formula given in (HMS2006) and
LeJan’s transformation rule developed in (HMS2010) play a crucial role here.

Denote by J and K the jumping and killing measures of (£, D(&)), respectively.
Write J(dz, dy) = J(dy, dz). Denote by J; := (J—J)* the positive part of the Jordan
decomposition of J —J. Jyis called the dissymmetric part of J. Note that Jy := J—J;
is the largest symmetric o-finite positive measure dominated by J. Denote by d the
diagonal of the product space F x E; and denote by || - ||z and (+,-),, the norm and
inner product of L?(E;m), respectively.

Now we can state the main results of this chapter.

Theorem 2.1. Suppose that X is a right process which is associated with a (non-
symmetric) Dirichlet form (&, D(E)) on L*(E;m). Let u € D(&). Assume that
J1(E x E\d) < oco. Then the following two conditions are equivalent to each other:

(i) There ezists a constant oy > 0 such that

Q“(f. f) = —ao(fs flm, VI € D(E)y
(ii) There exists a constant oy > 0 such that
| P2 < et V¥t > 0.

Furthermore, if one of these conditions holds, then the semigroup (P}*)i>o is strongly

continuous on L*(E;m).

Theorem 2.2. Let U be an open set of R? and m be a positive Radon measure on

U with supp[m|] = U. Suppose that X is a right process which is associated with
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2.1 Preliminaries

a (non-symmetric) Dirichlet form (€, D(E)) on L*(U;m) such that C3°(U) is dense
in D(E). Then the conclusions of Theorem 2.1 remain valid without assuming that

J(E x E\d) < oo.

The rest of this chapter is organized as follows. In the first section, we will make
necessary preparations. In the second section, we will prove the main results and give

some remarks. In the last section, we will apply the results to some examples.

2.1 Preliminaries

By quasi-homeomorphism, we assume without loss of generality that X is a Hunt
process and (&, D(&)) is a regular (non-symmetric) Dirichlet form on L?(E; m), where
E is a locally compact separable metric space and m is a positive Radon measure
on E with supp[m| = E. We denote by A and ( the cemetery and lifetime of X,
respectively. It is known that every f € D(&) has a quasi-continuous m-version. To
simplify notation, we still denote this version by f.

Let u € D(E). By (MR1992, III, Proposition 1.5), there exists |u|g € D(&€) such
that |u|g > |u| m-a.e. on E and &, (|u|g,w) > 0 for allw € D(€) with w > 0 m-a.e. on
E. Similar to (FOT1994, Theorems 2.2.1 and 2.2.2), we can show that there exists a

positive Radon measure 7, on E such that 7, charges no -exceptional set and

E1(ulg,w) = /Ewdnu, w € D(E). (2.1)

Define
u*r=u+|ulp. (2.2)

Then, u* has a quasi-continuous m-version which is nonnegative q.e. on . Moreover,
there exists an E-nest {F), },en consisting of compact sets of E such that u* is con-
tinuous and hence bounded on F), for each n € N. Define 75, = inf{t > 0| X, ¢ F,}.
By (MR1992, IV, Proposition 5.30), lim,, .o, 7r, = ¢ P,-a.s. for q.e. = € E.

Let (N, H) be a Lévy system of X, that is, N(x, dy) is a kernel on (FEa, B(EA)) and

H, is a positive continuous additive functional (abbreviated as PCAF) with bounded
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2.1 Preliminaries

1-potential such that for any nonnegative Borel function f on Ex x Ea vanishing on
the diagonal and any = € Ex,
B S0 X = Bl [ [ XN )
<t 0 JEa
Let v be the Revuz measure of H. Define
By= 3 [l e)mwt (5 L (i (X, ) — w'(X,))] (2.3)
s<t

Note that for any M > 0 there exists Cjy > 0 such that (e — 1 — z) < Cya?
for all x satisfying o < M. Since (u*(X;—))i>0 is locally bounded, (u*(X}));>o is
nonnegative and M~ is a P,-square integrable martingale for q.e. # € E, hence
(By)i>o is locally P,-integrable on [0,() for q.e. # € E. Here and henceforth the
phrase “on [0,(¢)” is understood as “on the optional set [0, ([ of interval type” in the
sense of (HWY1992, Chap. VIII, 3). By (FOT1994, (A.3.23)), one finds that the

dual predictable projection of (B;)>¢ is given by

t
B — / / [ (K= 0) _ 1 _ (y*(X.) — u*(y))| N (X, dy)dH,.
0 EA

We set
M! =B, — B? (2.4)

and denote

M, = M7 + M2 (2.5)

Note that for any M > 0 there exists Dy; > 0 such that (e* — 1 — x)? < Dja?
for all z satisfying @ < M. Since (u*(X;-))i>0 is locally bounded, (u*(X}))i>o is
nonnegative and M~"" is a P,-square integrable martingale for q.e. = € E, hence
(M), is a locally square integrable martingale additive functional (abbreviated as
MAF) on [0,¢) by (HWY1992, Theorem 7.40). Therefore (M;);>¢ is a locally square
integrable MAF on [0,¢). We denote the Revuz measure of (< M >;)i>0 by prenrs
(cf. (CFKZ2008a, Remark 2.2)).
Let M; " be the continuous part of M, . Define

* 1 *
A :Bf+§<M‘“vc>t. (2.6)
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2.1 Preliminaries

Then (At_“*)tzo is a PCAF. Denote by p_,+ the Revuz measure of (At_u*)tzg. Then
powlds) = [ O 1 (@) ()N ()
Ea

1
+§M<M*U*’C>(d$)- (2.7)

Define
[ = Py + Ny — |ulpm (2.8)
and

ply = pegr + 0+ || pm

Lemma 2.1. There exists an E-nest {F },en consisting of compact sets of E which
satisfies the following condition: Ve > 0, there exists a constant A? > 0 such that
Vfe D(E),

[ Plrdia +1) < (6.0 + 427 1).

Proof. Let (&, D(€)) be the symmetric part of (& D(E)). Denote by {Gqlaso the
resolvent of (é,D(S)). Let ¢ € L2(E,m) and 0 < ¢ <1 m.a.e, set h = G1¢. Define
(€", D(EM)), the h—transform of (&, D(E)), by

D(EM = {ue L3(E;h*m)| uh € D(&)}
éﬁ(u,v) = &(hu, ).

To simplify notation, we denote p := pops + ¢ ,. By (MR1995, Proposition 4.2),
we know that an &"-nest is also an &;-nest, so u € S(EM). Note that (&, D(EM)) is
a symmetric Dirichlet form on L2(E;h*m). By (AM1992, Theorem 2.4), there is an
&h_nest {F}}>1 consisting of compact sets such that Ipip € Sk (EM) (the Kato class
of smooth measure). Set F, = ! F), where {F},};4>; is an &M —nest such that h
is continuous on each Fj. Then {F}};>; is an éi‘—nest and hence an €;—nest. By
(AM1991, Proposition 3.1(i)), for any € > 0, there is a constant ¢ > 0 such that for
g € D(EM),

.
/92IF,;du < =—-E%9,9) + (9. 9o
R

21



2.2 Proofs of the main results

Let f € D(E). Then % € D(&"). Note that any smooth measure dose not charge

set of zero capacity. Then
[ Prgdn = [parngan b [(rnd
B L) vl Ly, = cer.0) + 0l 0).

IN

IN

]

Remark 2.1. Here we use h-transform to prove the following result: Let (€, D(E)) be
a quasi-reqular Dirichlet form and € S. Then there is an E-nest {Fy }x>1 satisfying

the following conditions: for any ¢ > 0, there exist a constant A2 such that for any

/E Tp f2du < €€(f, ) + AP 11 (2.9)

In fact, (2.9) hold for any quasi-reqular semi-Dirichlet form. We will prove it in the
Appendix by another method.

To simplify notation, we still use F), to denote F,, N F) for n € N. Let E,, be the
fine interior of F,, with respect to X. Define D(E),, :={f € D(€)| f =0 q.e. on ES},
T, = inf{t > 0| X; ¢ E,} and

w.n —'u,*_ |u|
P f(x) = By[eM” ~NOT H(X)it < 7, )

2.2 Proofs of the main results

2.2.1 The bilinear form associated with (P{"");>o on L2(E,; m)

For n € N, we define the bilinear form (Q“", D(€),,) by

By Lemma 2.1 and the choice of {F},},>1, we know that for every € > 0, there exists

a constant A” > 0 such that
/ w2 d(preprs + 1) < e€(w,w) + A%||w|j3, w € D(E),.
E
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2.2 Proofs of the main results

Suppose that [£(f, g)| < k1&1(f, f)2€1(g,g)? for all f,g € D(&) and some constant
k1 > 0. Then

@l <= w0+ ( [ aua) ([ dduar )
Qd / 2 2d / ?
+(/Ef u_u) ([Eg u_u)

< k], f)7E1(g,9)7 + (max(e, A7)Z[2E(f, )]2€1(g, 9)*
+max(e, A7) - €1(f, f)7&1(g, 9)
< 0.81(f.)281(g,9)%, (2.11)

where 6,, := (k1 + y/2max(e, A?) + max(e, AZ)).
Fix an ¢ < (v2 —1)/(v/2 + 1) and set a,, := 2A”. Then

Do (F,1) = Q""(f, f) + anlf. f)

e/ f) - ( / du<Mf>) ( 1 du<M>)

- fE Fdiy + on(f, f)
E(f. ) — (e E(f, f) + AZ| FI3)2[28(F, £))2
—(e &(f, f) + AP £112) + an(f. f)
]' n 2
E(F.0) = 1+ ) + A1)
—(e E(f, f) + AP F1IB) + an(f. f)

V2—1-(V2+1)e (V2 —1)A"
> 7 5(f,f)+T||f||2 (2.12)

By (2.11), (2.12) and (MR1992, I, Proposition 3.5), we know that (Q%“", D(€)) is

v

v

v

a coercive closed form on L?*(E,;m).

Theorem 2.3. For each n € N, (P"")i>o is a strongly continuous semigroup of
bounded operators on L*(E,;m) with |P"" ||y < et for every t > 0 and some con-

stant (3, > 0. Moreover, the coercive closed form associated with (e‘ﬂntptu’")tzo 18
given by (an", D(€&),).

Proof. The proof is similar to that of (FK2004, Theorem 1.1), which is based on a key

lemma (see (FK2004, Lemma 3.2)) and a remarkable localization method. In fact, the
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2.2 Proofs of the main results

proof of our Theorem 2.3 is simpler since I, (pi<p> + ") is in the Kato class instead

of the Hardy class and there is no time reversal part in the semigroup (P;"")i>0. We
omit the details of the proof here and only give the following key lemma, which is the

counterpart of (FK2004, Lemma 3.2). O

Lemma 2.2. Let (L?"", D(L2"™)) be the generator of (Q“", D(€),). Then, for any
f e DL, we have

T O R Y
0
b [N X, au,
+ / M N O O s
0
Py-a.s. on{t < 7g,}.
Proof. Let f € D(L"") and g € D(€),. Then, by (2.10), we get
E(f.9) = Q""(f.g9)+ /E 9dpcnr v> + /E fodp—y
= —(L""f,9) + [E 9l cnss ars + /E Fodpi . (2.13)

By (2.1), (2.13) and (O1988, Theorem 5.2.7), we find that (Nt‘u‘E)tZO is a CAF of

bounded variation and
t t .
N/ = / LO"" f(X)ds— < M, M >, —/ F(X)d(A7Y — Nlule)
0 0
for t < 7g,. Therefore, for t < 75, we have

F(X0) = f(Xo) = M{+N/
t
= Mtf+/ L f( X )ds— < M, M >,
0

- [ secaeaz - wte), (214)

By It6’s formula (cf. (P2005, II, Theorem 33)), (2.14) and (2.4)—(2.6), we obtain
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2.2 Proofs of the main results

that for t < 7,
f(Xt)eM;“*—Nt\U\E
= f(Xo) + /t M N g /t M N e a0 e
0 0
+% /t M NLZIEf(Xsf)d C M s, +/0t M NEE g phe ppve s
DI (e N

s<t

M NI A () — (X )M N AM

t * u t —u u Au,mn
= f(Xo) + / M ] / M LR F(X, ) ds
0 0
t t
S [ e ar ar o [ A =
0 0
t
4 [N O ) - N
0
1 [P - pluls . b e e .
+‘/ Mo TN (X )d < MU >, +/ eMem TN d < MY M >,
0 0
£ DI et

M —N?i‘EAf(X )= F(X )M N AL



2.2 Proofs of the main results

DI (e

s<t

M N A () - F(X M N A

= I+ (2.15)
Note that
t
= - / MITNEE £(X, )B4 Y [ N AR(X,)AB,
0 s<t
A { M+ O
s<t
_ Mz -NME M oNME _ Mow _NvE _—
f(X)e™s . e’ = Af(XS) — [(X-)e™s =AM
¢ *
= [ M (X )dBY 4+ 3 e N A R(X) (M — 1)
0 s<t
FF(XL)MT N )M N M N A )

—f(X,_ )eMs_“ Ns'ﬁ'EAMfu*]

P )M (g, e Ns‘i'EAM*“W

t
= [ MM ()Y + / M N f(X, ),
0

0
— / M N (e Yane, (2.16)
0
Therefore (2.13) follows from (2.15) and (2.16). O

2.2.2 The bilinear form associated with (P}"");> on L2(E,;e 2" m)

For n € N, since u*- I, is bounded, (P/"");> is also a strongly continuous semigroup
on L?(E,;e 2*"m) by Theorem 2.3. In the following, we will study the bilinear form
associated with (P"");>o on L2(E,; e *"'m).

Define D(€),, := D(&), N L>®(E;m). Let f,g € D(E),s. Note that e™**'g =
(e7® —1)g + g € D(&),. Define

e (f,9) = Q""(f. e g), f,9 € D(E)np- (2.17)
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2.2 Proofs of the main results
Then, by Theorem 2.3, we get

£47(f,g) = lim +(f — P, e g)y = im 2(f — P17 ) (2.18)

*

(€™, D(€),,) is called the bilinear from associated with (P"");> on L*(E,;e~2""m).
Note that

< M, M >,
= (M, M7}

B {Z[f(Xs) — A [ Ke)mw (X))  (y(X,) — u*(Xs))]}

— /O‘t/; [f(y) _ f(XS)][e(“*(XS)*U*(y)) 1 (u*(XS) . u*(y))]N(Xs,dy)st,

Then

/ gdpic s Md>
E

[E / (@) — F@)™ @0 — 1 (4 (x) — u ()N (z, dy)v(da).
(2.19)

By (2.7) and (2.8), we get
/ fodu, = / [ F@g@)le O -1 (@) - )N dy)v(d)

1
w3 [ fodusvet [ fodn~ [ solulzam (2.20)
E E E

Similar to (FOT1994, Theorem 5.3.1) (cf. also (01988, Chapter 5)), we can show
that J(dz,dy) = 5N (y,dx)v(dy) and K(dz) = N(z, A)v(dz). Therefore, we obtain

by (2.17), (2.10), (2.19) and (2.20) that

E“"(fg) = Q“"(f,e*g)
= &(f,e ™ g) - / e 2 gdpans ars — / e " fgdp_,
E E

= 8(fa 6_2u*g>_/‘3_2u*gd,“<Mf,M—“*> _/6_2u*9d/~L<Mf,Md>
E E

— / e fgdp_y
E
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2.2 Proofs of the main results

= 8(fae_wkg)_/6_2u*gd,“<Mf,Mu">
E

_2/ e 2 Wg(y) fz) [ W@ 1 — (u*(y) — u(2))]J (dz, dy)
ExE\d

1

2 /E e fgdp oy es — E(Julp, e fg).

(2.21)

By using Beurling-Deny formula given in (HMS2006) and LeJan’s transformation rule

developed in (HMS2010), we will prove the following result.

Theorem 2.4. For each n € N, under the assumption of Theorem 2.1 or Theorem

2.2, we have

e (f,9) = Q"(fe™ ,9e™), f,9 € D(E)np- (2.22)

Proof. We fix an n € N. Define

\I]u*m(f?g) = S(f, 672“9) o / e72u*gdlu<Mf,M*“*>

E
- / e=20°0) g ) (@) [ O @) 1 (4 (y) — " (2))) (d, dy)
ExE\d
1 [
_§/E€ 2 fadpic pp—ur s, fr9 € D(E)np. (2.23)

Then, by (2.21) and (2.18), we find that (2.22) is equivalent to
U (fog) = E(fe™ ge )+ E(u e fg), f.g € D(E)np- (2.24)

Since u* - Iy, is bounded, there exists [y € N such that |u*(z)| < for all x € E,.
For I € N, define u} := ((—=I) Vu*) Al. Then uj € D(E), and u* = u; on E, for [ > Io.
Similar to (FOT1994, Lemma 5.3.1), we can show that pi_y;—u*.es
for [ > ly. For ¢ € D(E),, we define

En = IU/<M_uz<70> ’En

VO (f,g) = &(f, e *"g) — / e 2P gdpo s pr-o
FE

o [ e Big(y) ()P0 — 1 (o(y) — p(a)]I(d, dy)
ExE\d
—%L€_2¢fng<M¢vc>7 I, g€ D(E)mb‘ <225)
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2.2 Proofs of the main results
Then, by (2.23) and (2.25), we find that for [ > [,

\I,u*,n(f’ g) = \Ijuf,n(f, 9) _'_/ efzu*gd,u<Mf7M“*‘“7>’ fr9 € D(E)np.

E

Note that by (01988, (5.1.3))

—2u*
/Ee gd'u<Mf,M“*‘“7>

N

< 2%\ g)|l€(f, [)7E(W —uf,ut — )

— 0 asl— oo,
and
E(uf, e fg) — E(u*, e fg) as | — oo.
Hence, to establish (2.24), it is sufficient to show that for any ¢ € D(€), and f, g €
D(E)np
VO (f.g) = E(fe™?,g9e7%) + E(¢, €7 fg). (2.26)

Let ¢ € D(€),. By (01988, (5.3.2)), we have

/gd,u<Mf,M¢> =—E&(f,99) — E(@, 9f) + E(f, 9). (2.27)

By (2.25) and (2.27), we find that (2.26) is equivalent to

E(f,e7g) + &(f,e7*g0) — E(fo,¢7*g)
_2/E o 6_2¢(y)g(y)f(a:)[e(¢(y)_¢($)) 1 - (¢(y) — b(2))) I (dw, dy)

1 _
-5 / e fgdpopr-oes
E
= &(fe % ge?). (2.28)
Denote by Mt_¢’j and ]\@_‘WC the jumping and killing parts of Mt_d), respectively.
Then, similar to (FOT1994, (5.3.9) and (5.3.10)), we get

Hartoss () = 2 / (6(2) — b(y)) T (dy,dr) and jieysoss (dx) = ¢*(2) K (dr).

Thus, for any w € D(E),, we have
/WdM<M¢1C> = /Wd(N<M¢> — fer—6i> = Hap—ok>)
E E
2 [ (o) - S i) e dy) [ widK,
ExE\d

(2.29)
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2.2 Proofs of the main results

By (2.29), we find that (2.28) is equivalent to

1
8(fa 6_2¢g) + S(fa 6_2¢g¢) - 8<f¢7 6_2¢g) - 8(¢7 6_2¢¢fg) + éa(qbzv €_2¢fg)
2 [ () e 1~ (0(y) — o) dy)
ExE\d
1
+ / (6(y) — ¢l@))’e W f(y)g(y)J (d, dy) + 5 / e fgotdK
ExE\d 2 Je
= &(fe %, ge?). (2.30)
Proof of (2.30) under the assumption of Theorem 2.1.
Denote by & the symmetric part of & Then (&, D(€)) is a regular symmetric Dirichlet

form. Denote by J and K the jumping and killing measures of (€, D(&)), respectively.
Then

[ 6 - owpPain.ag + [ ik
ExE\d E

< 2{[ (o)~ o)y + [ i}
< 28(¢,;)\ (2.31)

and

/E o [ 1 (oly) — o))l )

< Cp /E ) = 9@,
< Oy E(9, 0) (2.32)

for some constant Cj4j. > 0. Hence, to establish (2.30) for ¢ € D(€), and f,g €
D(E)np, it is sufficient to establish (2.30) for ¢, f,g € D := Co(E) N D(E) by virtue
of the density of D in D(€) and approximation.
By (HMS2006, Theorem 4.8 and Proposition 5.1), we have the following Beurling-
Deny decomposition
E(f9) = E(fg)+ SPV [ 2(f(u) = F@)g(w)(dr.dy)

ExE\d

4 / f9dK, f.g€ D(E) (2.33)
E
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2.2 Proofs of the main results

where SPV [ denotes the symmetric principle value integral (see (HMS2006, Def-
inition 2.5)) and E¢(f,g) satisfies the left strong local property in the sense that
E°(f,g) = 0 if f is constant E-q.e. on a quasi-open set containing the quasi-support

of g (see (HMS2006, Theorem 4.1)). By (2.33), we obtain that for any w € D(&),,
28(¢7 ¢w> - 8(¢27 'LU)
2 [ (o) - o) ) Idndy) - [ wetdk
ExE\d E
= 28%(p, pw) — (¢, w).
Hence (2.30) is equivalent to
- - - - .. -
8<f,€ 2¢g) + 8(f76 2¢g¢) - 8(f¢76 2¢g> - <¢7€ 2¢¢fg) + 58 (¢2a € 2¢fg>
“2 [ gy ) e — 1= (8(y) — o) (dr )
ExE\d
= &(fe? ge?). (2.34)
In the following, we will establish (2.34) by showing that its left hand side and
its right hand side have the same diffusion, jumping and killing parts. We assume
without loss of generality that ¢, f,g € D.
First, let us consider the diffusion parts of both sides of (2.34). Following (HMS2010,
(3.4)), we introduce a linear functional < L(w,v),- > for w,v € D by
. 1 A
< L(wa U)? f == 8C(w7vf) = 5(8C(w,’()f) - ec(w7vf))’ f € D7 (235)
where &° is the left strong local part of the dual Dirichlet form (&, D(&)). Define

Do := {w| for any relatively compact open set G of E,there

exists a function v € D such that w = v on G}.

Then, the linear functional < L(w,v),- > can be extended and defined for any w, v €
Do (cf. (HMS2010, Definition 3.6)). Note that J; is assumed to be finite. Similar

to (HMS2010, Theorem 3.8), we can prove the following lemma.

Lemma 2.3. Let wy,...,w;,v € Dy and f € D. Denote w := (wy,...,w;). If
¢ € CQ(RZ)7 then ¢(w) € Dloc; wxz(w) € Dloc; 1 S ) S l; and

< L((w),v), f >= Z < L(w;, ), g, (w) f > . (2.36)
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2.2 Proofs of the main results

By (2.35) and (2.36), we get

E°(f.e ) + E°(f, e *Pgp) — E°(fo, e *g)
(g, e Pfg) + SE(F e fg)
= E(feg) + E°(f e *g0) — E(fo,e )
“(f,e72g) — E(6, ¢ fg)
(f.
ol

I |
¢ ¢

“(f,e*g)+E(e % e fg)

= &%(fe ?, ge?). (2.37)
By LeJan’s formula (cf. (FOT1994, Theorem 3.2.2 and Page 117), we can check that

E(f,e 2 g) + E°(f, e 2%gp) — E°(fo, e *g)

oc - 1 cc -
—& (¢76 2¢¢fg)+§8 (¢27€ 2¢fg)
1 1 1 e
= 2 / dlu<f e~ 2¢g> +35 / dlu<f e~ 20gp> 9 / dlu<f¢,e*2¢g>
E E

1 ~C 1 ~C
9 d“<¢,e—2¢¢fg> + 4 d“<¢2,e—2¢fg>
E E

1 ~c
= E/dlu<fe¢,ge¢’>
E

= &(fe?, ge?), (2.38)

where €¢ denotes the strong local part of (€, D(€)) and fi® denotes the local part of
energy measure w.r.t. (&, D(€)). Then the diffusion parts of both sides of (2.34) are
equal by (2.37) and (2.38).

For the jumping parts of (2.34), we have

E(f.e720g) + & (f,e *g0) — &/ (fo,e *Pg) — & (fe ?, ge™?)
—2/E o e 2 Wg(y) f(2)[e W) — 1 — (¢(y) — ¢(x))]J (dz, dy)
= 25PV /E E\d{(f(y) — f(@)e*Wg(y) + (f(y) — f(2)d(y)e **Wg(y)

—(f(W)oly) — f(@)p(x))e > Wg(y) — (f(y)e W — f(x)e e *Wg(y)
—e 2 Wg(y) f(2)[CV ) — 1 — (6(y) — ¢(x))]}J (dx, dy)

= 0.
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2.2 Proofs of the main results
For the killing parts of (2.34), we have

EX(f.e 2g) + EX(f.e gg) — EX(fr e 2g) — EX(fe? ge?)
- / (fe g + fe g6 — fée g — feq)dK
E
= 0.

The proof is complete.

Proof of (2.30) under the assumption of Theorem 2.2.

Let G be a relatively compact open subset of U such that the distance between
the boundary of G and that of U is greater than some constant 6 > 0. Then,
similar to (HMS2010, Theorem 4.8), we can show that (€, C§°(G)) has the following

representation:

d d
ow Ov ow
—avs < F¢, >
Z;L O, 0, i ; oy

+ SPV/UXU\dQ (Z(yz )g;u( Hijamyi<2y (@) 3/)) v(y)J (dz, dy)

i=1

+/U><U\d2< —w(e) =) )I{\z ui<8 (@ y)> v(y)J (dz, dy)

=1

+/ wudK, w,v € CF(G), (2.39)
U

where {v7}1<;j<a are signed Radon measures on U such that for every K C U, K
is compact, S (K) = v5(K) and Z” V&GV (K) > 0 for all € = (&4,..., &) € R
{F}1<i<q are generalized functions on U.

By (2.39), we can check that (2.30) holds for all ¢, f, g € C§°(U). Therefore (2.30)
holds for ¢ € D(€), and f,g € D(E),, by (2.31), (2.32) and approximation. The

proof is complete. O

2.2.3 Proofs of the main results and some remarks
Proof of the main Results

Proof. By Theorem 2.3, for each n € N, (P"");> is a strongly continuous semigroup

of bounded operators on L?(E,;m) with ||P""||z < e’ for every t > 0 and some
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2.2 Proofs of the main results

constant (3, > 0. Moreover, the coercive closed form associated with (efﬁntptu’”)tzo is
given by (Q;;", D(€),). Note that (P,"")s> is also a strongly continuous semigroup of
bounded operators on L?(E,; e~**"m) and the bilinear from associated with (P,"");>q

on L*(E,;e ?""'m) is given by (€™, D(&),,) (see (7?)). Define
P () i= B [e™ f(Xy)it < 78,
Then

u.n u® [ul
PUrf(r) = By [eM TN F(X)it < 7]
* * —u* Jul
= B[ (O OO N ()t <

(). (2.40)

*

— ) P

Hence (P,"");>0 is a strongly continuous semigroup of bounded operators on L*(E,,; m).
Let (Q“™, D(€)n) be the restriction of Q" to D(E),,. Then, by (2.40), (2.18) and
Theorem 2.4, we know that the bilinear from associated with (P,"");>¢ on L*(E,;m)

is given by (Q*", D(€),). That is,

Q" (f.9) = (f =~ P F g, .9 € D(E)us (2.41)

(1) Suppose that there exists a constant ay > 0 such that

Q“(f, f) = —ao(f, fm, Vf € D(E)s.

For n € N, let (L™, D(L")) be the generator of (P,"");>o on L*(E,;m). Then D(L" —
o) is dense in L*(E,;m).

Define
I'f(z) = @ L (e f)(@), feD(L) = {c"glge DIM}.  (242)

Then, by (2.40), (L", D(L")) is the generator of (P,"");>0 on L*(E,;e~2*"m). (L™, D(L"))
is also the generator of (P/"")>o on L*(E,;m) due to the boundedness of u* on E,,.
Since (e #'P/"™);5¢ is a strongly continuous contraction semigroup on L%*(E,;m),
Range(A — L") = L?(E,;m) for all A > (3,. Hence Range(A — (L™ — ap)) = L*(E,;m)
for all A > B, — ap by (2.42).
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2.2 Proofs of the main results
Let f € L*(E,;m). Then, for any o > 0, we obtain by (2.41) that
I = (L" = o)l fllz - 1fll2 = ll[(a+ao) = L] f]l2 - [I £l
> ([(CK + Oéo) - Ln]f7 f)m

= qun(f’f) + (a+a0)(faf)m
Z O‘(faf)m'

Hence L™ — «y is dissipative on L?(E,;m). Therefore (e=*!P,"");5q is a strongly
continuous contraction semigroup on L?(E,;m) by the Hille-Yosida theorem.

Let g € L*(E;m) and t > 0. Then

1PEgll: < 11PPlgl Il
= lm [Pl T |

< liminf liminf [|P/"|g - Ig,| |2
l—o0 nm—oo

< gl
Since g € L*(FE;m) is arbitrary, we get
| P2 < et Vit > 0.
(i) Suppose that there exists a constant oy > 0 such that
| P2 < e Wt > 0. (2.43)
Let n € N and f € L*(E,;m). Then
1P fllz < 1P [Tz < PPz < e[ £l

Hence (e7*'P/"");>o is a strongly continuous contraction semigroup on L?(E,;m).

By (2.41), we get
. 1 — U,n
Qu’n(f7f)+a0(faf)m:12%2(f_6 OtPt, fﬂf)m 207 \V/fE D(E)n,b (244)
By (2.44) and approximation, we find that

Q“(f. f) = —ao(f; fm, VI € D(E)s.
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2.2 Proofs of the main results

Now we show that (P/);>¢ is strongly continuous on L*(E;m). Let n € N and
f € L*(E,;m) satisfying f > 0. Then, we obtain by (2.43) and the strong continuity
of (Ptmn)tzo that

limsup || f — e~ " P |3

t—0
= lil?j(}lp{Q(f — e P = [(fs ) — le " PEf3]}
< 2limsup(f — e P f, flm

t—0

< 2limsup(f — e *" P f, Flm
t—0

0.

Since f and n are arbitrary, (P/);>¢ is strongly continuous on L?(E;m) by (2.43).
The proof is complete. O

Remark 2.2. Let u € D(E). Define

By =) [e@X)mulX) 1 (u(X,) — u(Xy))]- (2.45)

s<t

Note that (By')i>0 may not be locally integrable (cf. (CMS2007, Theorem 3.3) ). To
overcome this difficulty, we introduced the nonnegative function u* and the locally
integrable increasing process (Bi)i>o (see (2.2) and (2.3)). This technique has been
used in (CMS2007) to show that if X is symmetric and u € D(E)., then (P!)i>o
is strongly continuous if and only if (Q", D(&)y) is lower semi-bounded. Here and
henceforth D(E). denotes the extended Dirichlet space of (€, D(E)).

In fact, if we assume that (€, D(E)) satisfies the strong sector condition instead of
the weak sector condition (cf. (MR1992, Pages 15 and 16) for the definitions), then
similar to (CMS2007, Page 158) we can introduce a function |uly, for each w € D(E)e.
Define u* := u-+|ul%,. Using this defined u*, similar to the above proof of this section,
we can show that Theorems 2.1 and 2.2 hold for all u € D(&)..

On the other hand, suppose we still assume that (€, D(E)) satisfies the weak sector
condition and v € D(E).. Define

= Z [e(Xe)=ulXe) 1 — (y(X, ) — u(Xs))]2 _

s<t
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2.2 Proofs of the main results

If (F}")i>0 is locally P.-integrable on [0,() for q.e. x € E, then we can show that
Theorems 2.1 and 2.2 still hold. The proof is similar to the above proof of this section
but we directly apply the (B} )i>o defined in (2.45) instead of the (Bi)i>o defined in
(2.3). Note that if u is lower semi-bounded or e* € D(E). (cf. (CMS2007, Example
3.4 (iii)), then (F})i>o is locally P,-integrable on [0,(C) for gq.e. v € E.

Remark 2.3. If (€, D(&)) is a symmetric Dirichlet form, then the assumption of The-
orem 2.1 is automatically satisfied. Note that (P{);>o is symmetric on L*(E;m). If
(P")i>0 is strongly continuous, then (2.43) holds (cf. (CFKZ2009, Remark 1.6(ii))).
Therefore, the following three assertions are equivalent to each other:

(i) (Q", D(&)y) is lower semi-bounded.
(11) There exists a constant ag > 0 such that ||P*||2 < e** fort > 0.

(iii) (P")>o is strongly continuous on L*(E;m).

Remark 2.4. Denote by S the set of all smooth measures on (E,B(FE)). Let u =
pr — g € S — S, (AD)iso and (A?);>0 be PCAFs with Revuz measures ji; and p,
respectively. Define

PAf(z) = B [e™ M f(X,)], f>0andt>0,

and

En(f.g) =E(f,9) + [ fadp,
f,g€ D(E*) :={w e D(&)|w is (i1 + p2)-square integrable}.

Then, by a localization argument similar to that used in the proof of Theorems 2.1 and
2.2 (cf. also (Z2005), we can show that the following two conditions are equivalent to
each other:

(i) There ezists a constant oy > 0 such that
Eﬂ(fa f) Z _050<f7 f)m7 vf € D(S“)
(ii) There ezists a constant oy > 0 such that

| P22 < et Vt > 0.
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Furthermore, if one of these conditions holds, then the semigroup (P#);>o is strongly
continuous on L*(E;m).

This result generalizes the corresponding results of (AM1991) and (C2007). Note
that, similar to Theorems 2.1 and 2.2, it is not necessary to assume that the bilinear

form (EF, D(EM)) satisfies the sector condition.

2.3 Some applications

Example 2.3.1

Let d > 3, U be an open set of R? and m = dz, the Lebesgue measure on U. Let
L(Usdz), 1 <i,j <d, b,d; € LE (Us;dzx), d; — b; € LYU;dx) U L=(U; dz),
1<i<d, ce L"(U;dx). Define for f,g € C°(U)

d d
af 9dg dg
jzl /U 5. az]dx+; /U f g dide
d
af /
+ cdzx.
;L oz, U fg

Denote a;; := %(aij +aj;) and a;; = %(aij —aj;), 1 <i,j < d. Suppose that the

a;; € L

loc

following conditions hold:
(C1) There exists € (0, 00) such that T4, a6y > 7 X, 6P, VE = (6,1 6) €
RY.

(C2) |aij] < M € (0,00) for1<i,j<d.

(C8) cdx — Zf ) gdl > 0 and cdx — Zf L gb’ >0 (m the sense of Schwartz distribu-
tions, i.e., [, ( cf + 30 1dlgj: dz, [,( cf +30 Zax L)dz > 0 for all f € C°(U) with
f>0).

Then (€,C5°(U)) is closable and its closure (€, D(€)) is a regular Dirichlet form on
L*(U;dz) (see MR(1992) II, Proposition 2.11).
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Let u € C§°(U). Then, for f € C°(U), we have

Q"Uf.f) = &)+ Eu f?)

of2 (d; + b, 4 du

—-— d; —aj; | dx.
+/za< L +;axjaj v
Suppose that the following condition holds:

(C4) There exists a constant oy > 0 such that
Ot ud; + 5, fay)
>0

d
ou j=1 b,
(ao + (14 u) + Zl 7, bi> dv =" o

=1

in the sense of Schwartz distribution.
Then Q“(f, f) > —ao(f, f)m for any f € C°(U) and thus for any f € D(E), by
approximation.

Let X be a Hunt process associated with (€, D(€)) and (P}):;>o be the general-
ized Feynman-Kac semigroup induced by u. Then, by Theorem 2.1 or Theorem 2.2,

(e7*!P),5q is a strongly continuous contraction semigroup on L*(U;dx).

Example 2.3.2 In this example, we study the generalized Feynman-Kac semi-
group for the non-symmetric Dirichlet form given in (MR1992, II, 3 e)).

Let E be a locally convex topological real vector space which is a (topological)
Souslin space. Let m := p be a finite positive measure on B(FE) such that supp u = FE.
Let E’ denote the dual of £ and g/(,)g : E' x E — R the corresponding dualization.
Define

FOX = {f(ly,....ln)|m N, f e CR™),L,...,l, € E'}.

Assume that there exists a separable real Hilbert space (H, (,)y) densely and contin-

uously embedded into E. Identifying H with its dual H we have that
E' C H C E densely and continuously,

and g (, ) p restricted to E' x H coincides with (,)g. For f € FC;° and z € E, define

Vu(z) € H by
_on
~ Oh
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Let (€,,FCy°), defined by

8u(f79):/E<vfavg>Hdll7 f?gegjcl?oa

be closable on L?(E; u) (cf. (MR1992, I, Proposition 3.8 and Corollary 3.13)). Let
Loo(H) denote the set of all bounded linear operators on H with operator norm || ||.
Suppose z — A(z),z € E, is a map from E to L. (H) such that z — (A(2)hy, he)u
is B(FE)-measurable for all hy,hy € H. Furthermore, suppose that the following
conditions hold:

(C1) There exists v € (0,00) such that (A(z)h,h)g > ~||h||% for all h € H.

(C2) || Al € LY(E; p) and || Al|o € L=(E; 1), where A := J(A + A), A= (A - A)
and A(z) denotes the adjoint of A(z), z € E.

(C8) Let c € L®(E, u) and b,d € L>(E — H; p) such that for v € FC° with u > 0

/(<d7 Vu)y + cu)dp > 0, / ((b, Vu) g + cu)dp > 0.

Define for f,g € FC¥°

&(f.g) = /E (AV 1, Vg) sy + / £, V) sy
+/E<b, Vf>Hgdu+fogcdu-

Then (&€, FC) is closable and its closure (€, D(€)) is a quasi-regular Dirichlet form
on L*(E;u) (see by (MR1992, 11, 3 ¢)).
Let u € FCy°. Then, for f € FCg°, we have

Q'(f.f) = &(f. f)+E&(u, f?)
— /E<AVf>Vf>Hd,u+/E(c(l—i-u)—i—(b,vu>H)f2d$

d+b
+/<%+ud+AVu,Vf2> du.
E

H
Suppose that the following condition holds:
(C4) There exists a constant ap > 0 such that

/{(a0+c(1—|—u)—|—<b,Vu>H)f+<¥—I—ud+AVU,Vf> }duzo
E H
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for all f € FC;° with f > 0.
Then Q"(f,f) > —ao(f, f)m for any f € FC° and thus for any f € D(E), by
approximation.

Let X be a p-tight special standard diffusion process associated with (€, D(€)) and
(P!)i>0 be the generalized Feynman-Kac semigroup induced by u. Then, by Theorem

2.1, (e7™!P");5¢ is a strongly continuous contraction semigroup on L%(E; ).
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Chapter 3

Fukushima’s decomposition in the

semi-Dirichlet forms setting

The classical decomposition of Fukushima was originally established for regular sym-
metric Dirichlet forms (cf. (F'1979) and (FOT1994, Theorem 5.2.2)). Later it was ex-
tended to the non-symmetric and quasi-regular cases, respectively (cf. (01988, Theo-
rem 5.1.3) and (MR1992, Theorem VI.2.5)). Suppose that (€, D(€)) is a quasi-regular
Dirichlet form on L?*(FE;m) with associated Markov process ((X;)i>0, (Pr)ecrmy). If
u € D(E), then there exist unique martingale additive functional (abbreviated by
MAF) M of finite energy and continuous additive functional (abbreviated by CAF)

NM of zero energy such that
(X)) — a(Xo) = MM + N, (3.1)

where @ is an €-quasi-continuous m-version of u and the energy of an AF A := (A¢)i>0
is defined to be

— i 1 2
C(A) = lny 52 B [ 47 (32)

whenever the limit exists in [0, 00].

The aim of this chapter is to establish Fukushima’s decomposition for some Markov
processes associated with semi-Dirichlet forms. Note that the assumption of the
existence of dual Markov process (a Markov process X is said to be a dual process

of the Markov process X if any f,g € B (E), (Pf,9)m = (f, Ptg)m, where {P,}i>0
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and {pt}tzo are the semigroup of X and X respectively) plays a crucial role in all the
Fukushima-type decompositions known up to now. In fact, without that assumption,
the usual definition (3.2) of energy of AFs is questionable. First, let us consider a
concrete semi-Dirichlet form as follows.

Let d > 3, U be an open subset of R? and m = dz, the Lebesgue measure, on U. Let
aij € L}, (U;dx), 1 <i,j <d, b;,d; € LE (U;dx), bj — d; € L*(U;dz) U LYU; dx),
1<i<d ce L;lo/f(U dx). Define for u,v € C§°(U) (:= the set of all infinitely

differentiable functions with compact supports in U)

ou Ov
Z/ Dz; 9 al]daj—{—Z/ 8xzvb idx

—i—Z/ /qucdx. (3.3)

Set a;; = %(aij +a;;) and G;; ;= %(aij —aj;), 1 <i,j < d. Suppose that the following

conditions hold:

(C.1) There exists n > 0 such that Z?,j:l ai; &6 > €, VE = (&,...,&) € RL

(C.2) a;; € L>®°(U;dx) for 1 <i,j <d.

(C.3) edz — 00, gdl > 0 and cdz — 30, % > 0 (in the sense of Schwartz
distributions, i.e., [, (cu+>¢ d; 2% )dz, [ ( cu+S0, Vg )dx > 0 for all u € Cg°(U)
with u > 0), where b; = 3; + v; with §; € L*(U;dx) U LP(U;dz) for some p > d,
vi € L}, (U;dz), 1 <i<d.

Then, (&,C5°(U)) is closable on L*(U;dx) and its closure (€, D(€)) is a regular

local semi-Dirichlet form on L*(U;dz). If 3 # 0, (€, D(€)) is in general not a Dirichlet

form. For w € D(€E), it is natural to ask whether a decomposition similar to (3.1)
holds. Based on the results that developed in this chapter, we will see that the
answer is affirmative. Note that the Doob-Meyer decomposition for supermartingales
and Ito’s formula for semimartingales do not apply to this particular case.

The rest of this chapter is organized as follows. In Section 2, we present results
on the potential theory for semi-Dirichlet forms, which are necessary to deriving
Fukushima’s decomposition in the semi-Dirichlet forms setting. In Section 3, we use

a localization method to obtain Fukushima’s decomposition for diffusions associated
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

with semi-Dirichlet forms (see Theorem 3.4 below). Also, we give some concrete
examples. In Section 4, we prove a transformation formula for local MAFs (see
Theorem 3.8 below). Since so far there is no analog of LeJan’s transformation rule
available for semi-Dirichlet forms, a lot of extra efforts are made (cf. Theorem 3.5
and Remark 3.2 below).

This part of the thesis is based on the paper (MMS2011), which has been submitted

for publication.

3.1 Revuz correspondence in the semi-Dirichlet forms
setting

Let E be a metrizable Lusin space (i.e., F is topologically isomorphic to a Borel
subset of a complete separable metric space) and m be a o-finite positive measure on
its Borel o-algebra B(FE). Suppose that (€, D(€)) is a quasi-regular semi-Dirichlet
form on L?(E;m). Let K > 0 be a continuity constant of (&, D(€)), i.e.,

&1 (u,v)| < K& (u,u)Y2E1(v,v)Y2, Yu,v € D(E).

Denote by (T3)is0 and (Ga)aso (resp. (T3)iso and (Ga)aso) the semigroup and resol-
vent (resp. co-semigroup and co-resolvent) associated with (€, D(€)). Then there ex-
ists an m-tight special standard process M = (Q, F, (F4)i>0, (X¢)t>0, (Pr)zer, ) Which
is properly associated with (€, D(&)) in the sense that P, f is an E-quasi-continuous
m-version of T, f for all f € By(E)NL*(E;m) and all t > 0, where (P;);>0 denotes the
semigroups associated with M (cf. (MOR1995, Theorem 3.8)). It is known that any
quasi-regular semi-Dirichlet form is quasi-homeomorphic to a regular semi-Dirichlet
form (cf. (HMS2006, Theorem 3.8)).

Let A C E and f € D(&). Denote by fa (resp. fa) the 1-balayaged (resp. 1-
cobalayaged) function of f on A. Throughout this chapter, we fix ¢ € L*(E;m) with
0< ¢ <1m-a.c. and set h =G0, h = é1¢. Define for U C E, U open,

capy(U) = (hu, ¢)
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

and for any A C F,
capy(A) := inf{cap,(U)| A C U,U open}.

Hereafter, (-, -) denotes the usual inner product of L?(E;m). By (MOR1995, Theorem
2.20), we get

capy(A) = (ha, ¢) = E1(ha, G19).

Definition 3.1. A positive measure p on (E,B(E)) is said to be of finite energy
integral if W(N) = 0 whenever N € B(E) is E-exceptional and

[ #@ln(ds) < Ceo,0)'%, o€ Dee),
E
for some positive constant C'.

We denote by Sy the set of all measures of finite energy integral.

Remark 3.1. (i) Assume that (€, D(E)) is a reqular semi-Dirichlet form. Let p be

a positive Radon measure on E satisfying
/ (@) |u(dz) < CE1(v, )2, Yo € Co(E) N D(E)
E

for some positive constant C', where Co(E) denotes the set of all continuous functions
on E with compact supports. Then one can show that i charges no E-exceptional set
(cf. (HS2010, Lemma 3.5)) and thus u € Sp.

(ii) Let u € Sy and a > 0. Then there exist unique Uqp € D(E) and Uqp € D(E)
such that

Ea(Uaptyv) = /E o(2)p(de) = Eq(v, Uap). (3.4)

We call Uy and Uau a-potential and a-co-potential, respectively.

Letwu € D(E). By quasi-homeomorphism and similar to (FOT199/, Theorem 2.2.1)
(cf. (HS2010, Lemma 1.2)), one can show that the following conditions are equivalent
to each other:

(i) u is a-excessive (resp. a-co-excessive).

(i) w is an a-potential (resp. a-co-potential).

(7ii) Eq(u,v) >0 (resp. Eq(v,u) >0), Yo € D(E), v > 0.
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Theorem 3.1. Define
Sty i=A{p e So|Up < cGro for some constant ¢ > 0}.
Let A€ B(E). If u(A) =0 for all € Sy, then capy(A) = 0.

Proof. By quasi-homeomorphism, without loss of generality, we suppose that (£, D(&))
is a regular semi-Dirichlet form. Assume that A € B(FE) satisfying pu(A) = 0 for all
1 € Sy We will prove that capg(A) = 0.

Step 1. We first show that pu(A) = 0 for all p € Sp. Suppose that p € Sy. By
(MR1995, Proposition 4.13), there exists an E-nest {Fj} such that C/A};zﬁ, /UIL €
C({Fx}) and C?l/gb > 0 on Fj for each k& € N. Then, there exists a sequences of
positive constants {ay} such that

(}\1-/; < aké;ﬁ on Fj, for each k € N.

Define u;, = ﬁl(lpk-u) and set vy, = uk/\akélqb for K € N. Then v, < ﬁlu < akélgb
E-q.e. on Fi. By (3.4), we get

£, (vp ug) = /F Ge(@)ulde) = /F (@) () = & (o, ).

Since vy is a 1-co-potential and vy < uy m-a.e., E1 (v —ug, v, —ug) = E1 (Vg — ug, vy) —
E1(vg — ug,ug) < 0, proving that u, = v, < akélgb m-a.e. Hence 1p, -y € 35‘0.
Therefore 11(A) = 0 by the assumption that A is not charged by each measure of 5’5‘0.
Step 2. Suppose that capy(A4) > 0. By (MOR1995, Corollary 2.22), there exists a
compact set K C B such that caps(K) > 0. Note that (@)K € D(€) is 1-co-

excessive. By Remark 3.1(ii), there exists Fés € Sp such that
19)K

cap,(K) = &1((G19) i, G1)
= &1(G19,(G19)K)

B /E Glédu(@))l{

< (B (35)
For any v € Co(K¢)(D(€), we have fﬁdu(G‘be)K = & (v, (@)K) = 0. Since
Co(K°)N D(E) is dense in Cy(K°), the support of P is contained in K. Thus,
by (3.5), we get u(@))K(K) > 0. Therefore capys(A) = 0 by Step 1. O
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Definition 3.2. A positive measure o on (E, B(E)) is called smooth (w.r.t. (€, D(E)))
if W(N) =0 whenever N € B(E) is E-exceptional and there exists an E-nest {Fi} of

compact subsets of E such that
p(Fy) < oo for all k € N.

We denote by S the set of all smooth measures on E.

Theorem 3.2. The following conditions are equivalent for a positive measure p on
(B, B(E)).

(i) pes.

(ii) There exists an E-nest {Fy} satisfying 1g, - po € Sy for each k € N.

Proof. (i) = (i) is clear. We only prove (i) = (ii). Let (&, D(€)) be the sym-
metric part of (€, D(€)). Then (&, D(E)) is a symmetric positivity preserving form.
Denote by (Gg)aso the resolvent associated with (€, D(€)) and set & := Gyp. Then
(&', D(&M)) is a quasi-regular symmetric Dirichlet form on L2(E; h%m) (the h-transform
of (€1, D(&))).

By (K2008, page 838-839), for an increasing sequence {Fy} of closed sets, {F}}
is an E-nest if and only if it is an éi‘—nest. We select a compact é’%—nest {F;} such
that h is bounded on each Fy. Let p € S(€), the family of smooth measures w.r.t.
(E,B(E)). Then p € S(EF), the family of smooth measures w.r.t. (£ D(E")). By
(FOT1994, Theorem 2.2.4) and quasi-homeomorphism, we know that there exists a
compact &f-nest (hence &-nest) {J;} such that I, -y € So(EF). Then, there exists a

sequence of positive constants {Cj} such that

_ Sho 12 ;
/mmwsqﬁmm . Vg e D(EM.
E

We now show that each 1p s - 1 € So(€) and the proof is done. In fact, let
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

f € D(E). We have % € D(&"). Then

<

/ |f|1FkﬂJkdlu
E

IN

Since f € D(E) is arbitrary, this implies that Ig g, - i € So(E).

Lemma 3.1. For anyu € D(E), v €

P,(sup |u(Xy)| > ¢)

0<t<T

Proof. We take an E-quasi-continuous

2K3eT
<

; f
Blrle [ 117
E

; f
hlrlleo | 15]1.d
Ihlele [ 1217
|kl llooCEL (£ /Ry £ /B
||B‘Fk||oock81<f7f)1/2.

1/2
)

So, 0<T < o0 and e > 0,

1/2

&1(u, u)l/zc‘:l(f]ly, Uly)

Borel version 4 of u. Let A = {x € F||u(z)| >

e}and oy = inf{t > 0] X; € A}. By (K2008, Theorem 4.4), H}|u| := E.[e "4 |u|(X,,)]

is an €-quasi-continuous version of |u|4. Then, by (MOR1995, Proposition 2.8(i)

(2.1)), we get

P,(sup |u(Xy)| >¢e) <
0<t<T

<

<

<

oA
and

"By le” " u|(Xo,)]

9
T
e—/ [ ad
€ JE

el .
?81(|U|A7U1V)

KeT

E1(Jula, |ula)/2E1 (U, Uyv)*/?
K2eT

& (|ul, |ul)/2&1 (T, Uyw)*?
2K3eT
£

81(U, U)1/281((j1V, [/Avll/)l/2.

]

By Lemma 3.1 and Theorem 3.1, similar to (FOT1994, Lemma 5.1.2), we can prove

the following lemma.
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Lemma 3.2. Let {u,} be a sequence of E-quasi continuous functions in D(E). If
{un} is an & -Cauchy sequence, then there exists a subsequence {u,, } satisfying the

condition that for E-q.e. x € K
P, (un, (X:) converges uniformly in t on each compact interval of [0,00)) = 1.

Definition 3.3. A family (A;)i>0 of functions on Q is said to be an additive functional
(AF) of M if:

(i) A, is Fy-measurable for all t > 0.

(ii) There exists a defining set A € F and an exceptional set N C E which is
E-exceptional such that P,[A] = 1 for all x € E\N, 6,(A) C A for allt > 0 and
for each w € A, t — Ay(w) is right continuous on (0,00) and has left limits on
(0,¢(w)), Ao(w) = 0, [Ax(w)| < 00 fort < ((w), Ar(w) = A¢(w) fort = ((w), and
Aps(w) = Ay(w) + As(Oww) for s, t > 0.

Two AFs A = (A)i>0 and B = (By)i>o are called equivalent and we write A = B
if they have a common defining set A and a common exceptional set N such that
Aj(w) = By(w) for all w € A and ¢ > 0. An AF is called a continuous AF (CAF) if
t — Ay(w) is continuous on (0, 00) and a positive continuous AF (PCAF) if A;(w) >0
forallt >0, w € A.

In (F2001), Fitzsimmons has extended the smooth measure characterization of
PCAFs from the Dirichlet forms setting to the semi-Dirichlet forms setting (see
(F2001, Theorem 4.22)). In particular, the following proposition holds.

Proposition 3.1. (c¢f. (F2001, Proposition 4.12)) For any u € Sy, there is a unique
finite PCAF A such that Ex(foOO e 'dA;) is an E-quasi-continuous version of Uy pu.

By Proposition 3.1 and Theorem 3.2, following the arguments of (FOT1994, The-
orems 5.1.3 and 5.1.4) (with necessary, slight modifications by virtue of (MOR1995;
MR1995; K2008)), we can obtain the following theorem, which will play an important

role in developing Fukushima’s decomposition of semi-Dirichlet forms.

Theorem 3.3. Let pn € S and A be a PCAF. Then the following conditions are

equivalent to each other:
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

(i) For any ~y-co-excessive function g (v > 0) in D(E) and f € BT (E),

lim Egm<<fA>> =<f ng>. (3.6)

(ii)For any y-co-excessive function g (v > 0) in D(E) and f € BT (E),

where US f(z E ([ e f(Xy)dAy).
(iii) For any t >0, g € BT(E)( L*(E;m) and f € BT(F),

Eyml(FA),) = / <[ pTog > ds.

(iv) For any a >0, g € BT (E)( L*(E;m) and f € BT(E),

(9. USf) =< f - 1, Gag > .

When 1 € Sy, each of the above four conditions is also equivalent to each of the
following three conditions:

(v) U1 is an &-quasi-continuous version of Uy .

(vi) For any g € BT (E)(D(&) and f € B} (E),

1

lim > Egm((fA)) =< f-p,9> .

The family of all equivalent classes of PCAF's and the family S are in one to one
correspondence under the Revuz correspondence (3.6).

Given a PCAF A, we denote by 14 the Revuz measure of A.

Lemma 3.3. Let A be a PCAF and v € Sj,. Then there exists a positive constant
C, such that for anyt >0

E

Proof. By Theorem 3.2, we may assume without loss of generality that u € Sy. Set

ci(x) = Ey(A:). Similar to (01988, page 137), we can show that for any v € D(E)
E(ct,v) =< pa,v — T > .
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Let v € Sy Then

EV<At) = <V, >
81<Ct,Uly)

<pa, U >+ < ¢, Uy >

IN

< ¢[< pah > +E; (A)].
Therefore the proof is completed by (3.6). O

A subset F of E is said to be an &-quasi-open set if there is an &-nest {F}n>1
such that F'N F;, is open with respect to the relative topology on F,, for each n > 1.
For a nearly Borel set B, denote the é—quasi interior of B by B¢, which is the union
of all é—quasi—open subsets contained in B. One finds that é—quasi interior is same as

E-quasi interior.

Lemma 3.4. Let up € Sy and A be a PCAF with Revuz measure p. Then for any
nearly Borel set B C F,
oB _
aEh.m[/ e O F(X,)dA,] T h(z)f(x)pu(dx), o1 oo,
0 (E—B)°

where h is any y-co-excessive function (v > 0)in D(E), f € BT(E).

Proof. Tt is enough to consider the case that v = 0, h is a bounded L*(E;m)-
function in D(&) and f € B (E). Let (GFB),>0 be the co-resolvent of the part
form (€¥7P D(&)p_p). Denote by h |(5_p). the restriction of h on (E — B)°. Define
Héu(z) = E,[u(X,,)e 8,05 < oo]. Then by (K2008, Proposition 3.3), we get

& B / cUF(X)AA] = o(USS — HSUSS D)
0
G (USf — HRUS S, Cuh)

—_—

— al,(USf,Goah — (Goh)p)
= Ofga(Ua(fM)v éaE_Bh)

—_—

- o /E GE-Bh(z) f (x)u(dz)
= a /E GEB( | ppye) (@) f(2)pu(de),

o1



3.1 Revuz correspondence in the semi-Dirichlet forms setting

Similar to the proof of Lemma 3.7 below, we know that h |z_p). is a O-order co-
excessive function with respect to the part form (€€ D(E)g_p). Hence, by the
monotone convergence theorem, we get
op B
aBunl [ e 0dA) Ta [ ) (ohuld)
0 (E-B)°

as a | oo. O

Let G be a nearly Borel finely open set. Denote by (7/’?)820 be the co-semigroup
of the part form (€9, D(€)g). For a PCAF A and a non-negative Borel measurable
function f, define U f(z) == Eo(f)5C e f(X,)dAy).

Lemma 3.5. Let A be a PCAF and G be a nearly Borel finely open set.
(i) If h is y—co-excessive (v > 0) on G with respect to (Ts\c)szg, h € D(E) and
f € BY(E), then

Oé(h, Ugﬂﬁ_’yf)m T (f[G " A, ﬁ)? a T oo. (37)

(ii) For any t >0, h € BT (E) N L*(E;m) and f € BY(E),

Eh-m(/otf(Xs)dAs/\aEG) = /Ot(fIG 14, TG h)ds.
(iii) Suppose that for m-a.e. v € E,
P,(A: =0, Vt <71g) = 1. (3.8)
Then pa(G) =0 and (3.8) holds for E-q.e. x € E.

Proof. (i) For pa € Sp, this has been proved in Lemma 3.4. For general y € S, by
Theorem 3.2(ii), we can find an E—nest {F),},>1 such that I pa € Sp. Substituting
pa with Iy pua and A with Ir, A in (3.7), then by letting n tend to the infinity, we
get (i).
(ii) By the uniqueness of Laplace transform, we find that (i) and (ii) are equivalent.
(iii) Note that 7¢ = op_¢ A (. By the continuity of A, from (3.8) we know that for

m-a.e. T € I,

Px(At =0, VYt < O'E_G) =1.
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

Then, by (ii), we know that u4(G) = 0. Note that 7¢ < og_¢, hence by Lemma 3.3,

we get that for any v € Si,

0<E,(Ast<7tg) <E, (At <op-¢) < E,(Atrop o) <C,(1+ t)/ iLduA = 0.
G

Therefore, by Theorem 3.1, we know that (3.8) holds for E-q.e. z € E. O

Similar to (FOT1994, Lemma 5.5.2), we can prove the following lemma by noting
that for a semi-Dirichlet form any semi-polar set is exceptional (cf. (F2001, Theorem

4.3)).
Lemma 3.6. For an AF A and a nearly Borel finely open set G,
A(t+8)/\TG = AS/\TG + At/\TG © 98/\T@7 Px —a.s., Va € E— N7

where N is any properly exceptional set containing (E —G) — (E — G)" and an excep-
tional set for A.

3.2 Fukushima’s decomposition in the semi-Dirichlet
forms setting

Throughout this section, we suppose that (€, D(E)) is a quasi-regular local semi-
Dirichlet form on L?*(E;m). Here “local” means that &(u,v) = 0 for all u,v € D(€)
with supp[u]Nsupp[v] = (). Then, there exists a diffusion M = (Q, F, (F1)s>0, (Xi)i>0,
(Py.)zer,) which is properly associated with (€, D(E)) (cf. (2008, Theorem 4.5)).

Here “diffusion” means that M is a right process satisfying
P,[t — X; is continuous on [0,()] =1 for all z € E.

We fix ¢ € L*(E;m) with 0 < ¢ < 1 m-a.e. and set h = G1¢, h = G1¢. Denote
g :=1inf{t > 0| X, ¢ B} for B C E.

Let V be a quasi-open subset of E. We denote by XV = (X))o the part process
of X on V and denote by (€Y, D(€)y) the part form of (&, D(€)) on L?(V;m). Tt is
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

known that XV is a diffusion process and (€Y, D(&)y) is a quasi-regular local semi-
Dirichlet form (cf. (K2008)). Denote by (T)Y )i=0, (T )iz0, (GY)az0 and (GY)aso the
semigroup, co-semigroup, resolvent and co-resolvent associated with (€Y, D(&)y),

respectively.
Lemma 3.7. h|y is 1-co-excessive w.r.t. (&Y, D(E)y).

Proof. 1t is easy to see that iz|v > 0 m-a.e. on V. Let g be a positive measurable

function on V. Then
/ ge 7Y (hly)dm = / TV g)hdm
1% \%
_ / e Eyg(Xo):t < mylh(x)m(de)
Vv

< / e’tTtglAzdm
E

= /ge_tﬁﬁdm
E

< /gﬁ\vdm.
1%

Since g is arbitrary, e *TY (h|y) < hly m-a.e. on V. Therefore hly is 1-co-excessive

w.rt. (&Y, D(E)y). O

Define hY := hly A GY¢. Then hY € D(&)y and BV is 1-co-excessive. For an AF
A= (Ao of XV, we define

1

VIAY o Ty T 2
e’ (A) = ltlirgl 2tEhv_m(At) (3.9)
whenever the limit exists in [0, 0o]. Define
MY = {M|Misan AF of XV, E,(M?) < 0o, E,(M;) =0

for all t > 0 and &-g.e. x € V,e" (M) < oo},

NV = {N|NisaCAF of XV E,(|N;]) < oo for all t >0

and &-g.e. v € V, e (N) = 0},
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

© = {{V,}|V, is E-quasi-open, V,, C V,11 E-q.e.,

forallm € N, and F = U2 |V, €-q.e.},
and

D(&),,, = {u|3{Vn} €O and {u,} C D(€)

loc

such that « = u, m-a.e. on V, }.

We call A = (A;)i>0 a local AF of M if A satisfies all requirements for an AF stated
in Definition 3.3 except that the additivity Ay s(w) = Ay(w) + As(fiw) for w € A is
required only for s, > 0 with t + s < ((w). Two local AFs AWM, A®) are said to be

equivalent if for each t > 0 and &-q.e. z € F,
Px(AzEl) = A§2)§t < () =Pt <().
Define

Mpe = {M|M is alocal AF of M, 3 {V,,},{E,} € © and {M"| M" € M""}

such that E, C Vi, Mipr, = My,

tATE,

t>0, neN}
and

Newoe = {N|Nisalocal AF of M, 3 {V,,},{E,} € © and {N"|N" € N/}

such that E, C Vi, Niar,, = N,

tATE, )

t >0, neN}.

We use Ml[[gf[[ to denote the family of local martingales on [0,([ (cf. (HWY1992,
68.3)).

We put the following assumption:

Assumption 3.1. There exists {V,,} € © such that, for each n € N, there exists a
Dirichlet form (0™, D(n™)) on L?(V,,;m) and a constant C,, > 1 such that D(n™) =
D(&)y, and for any u € D(E)y,,,

L )

C—Th <u7u) < Sl(ua u) < Cnngn) (U, U)

Now we can state the main result of this section.
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

Theorem 3.4. Suppose that (€, D(E)) is a quasi-regular local semi-Dirichlet form on
L*(E;m) satisfying Assumption 3.1. Then, for any u € D(E), , there exist M €

Mloc and N e Nejoc such that

loc?

(X)) —u(Xo) = MM+ NM™, t>0, Py-as. for &-qe. z € E. (3.10)

Moreover, MM € Mggf[[. Decomposition (5.10) is unique up to the equivalence of
local AFs.

Before proving Theorem 3.4, we present some lemmas.

We fix a {V,,} € © satisfying Assumption 3.1. Without loss of generality, we
assume that ;AL/ is bounded on each V,. Denote D(E)y, , = By(E) N D(E)y,. To
simplify notation, we define h,, :== h"».

By Lemma 3.3, (3.9), Theorem 3.3 and Theorem 3.1, similar to (FOT1994, Theo-

rem 5.2.1), we can prove the following lemma.

Lemma 3.8. M"" is a real Hilbert space with inner product €. Moreover, if {M;} C
MY is eVr-Cauchy, then there exist a unique M € MY and a subsequence {l} such

that limy,_.o, €' (M, — M) =0 and for E-q.e. x € V,,

P,(lim M, (t) = M(t) uniformly on each compact interval of [0,00)) = 1.

k—o00

Next we give Fukushima’s decomposition for the part process X"».

Lemma 3.9. Let u € D(€)y,,. Then there exist unique M™ € MV and N™ ¢
NY» such that for E-q.e. © €V,

(X)) — a(xy) = MM 4 NP >0, Peas. (3.11)

Proof. Note that if an AF A € MY with e""(A) = 0 then /L(<72‘><;_1\;) =2¢""(A) =0
by Theorem 3.3 and (3.9). Here M(<721> denotes the Revuz measure of A w.r.t. X",
Hence < A >= 0 since ;L\; > 0 &q.e. on V,. Therefore MY» N NY» = {0} and the
proof of the uniqueness of decomposition (3.11) is complete.

To obtain the existence of decomposition (3.11), we start with the special case that

u = RY"f for some bounded Borel function f € L?*(V,;m), where (R}™);>0 is the
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

resolvent of XV».

Then N™IM ¢ NY»

eVn (Nn,[u}) _

IN

IA

IN

<

By Assumption 3.

(AFRS1995, Theo

€Vn (Mn,[u})

ININ NN

IN

Set
P = (X)) — F(XY))ds
Mt P — u(XY”) —u(Xy") = N >0,

and M™ € MV, In fact,

i 52 Pl (u = XI5y
i 5 Bl | (0= P61

tlo 2

lim — / / hoTY" (u — f)*dmds]
t10 2
lim — / / 2TV b, dmds]
tl0 2

[ = floc lim

(7
l02// lu— f|TY" h,dmds]

= fllotim 51| K / () / () Pdm) ]

t10 2

= Flloo /V (u— F)2dm)2( /V dm) 2l !

t10
0. (3.13)

1, u> € D(8)y,, and uh, € D(&)y,s. Then, by (3.12), (3.13),

rem 3.4) and Assumption 3.1, we get

ltllI(I)l %Ehnm[( (XV”) —U(Xvn)) ]

i i 1 = T1%0) = o = T4}
&V (u, uhy,) — % "(u?, hy)

€1 (u, uhy,)

K& (u ,u)l/QSV"(uhn,uh )1/2
KCY2eVn (u, )0\ (uh,, uhy, )/
()2 ([l oomtt™ (Fay B) Y2+ [ oomtt™ (a1, 20) M2

K Co&y™ (u,w)'([[ull o €1 (R, Fin) 2 + [l | 0 €17 (ut, ) 2). (3.14)

01/28Vn

Next, take any bounded Borel function w € D(€)y, . Define
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

By the uniqueness of decomposition (3.11) for u;’s, we have M™Iul — ppmlud =
M=l Then, by (3.14), we get
eVn(Mm[Ul} _ M’%[uk])
_ GV" (Mn,[ul—uk])
< KCu &Y (up — up, wy — )2 (|| — ul| oo €™ (M, 1)/
[ Pnlloo €17 (s = gy 1w — ) 7?).

Since 1w, € D(&)y,, bounded by ||u|ls, and €Y -convergent to u, we conclude that

{ M)} is an e¥»-Cauchy sequence in the space MV». Define
M™M= lim M™MEL i (Ve ¥, N = (X)) — a(x ) —

Then M™M € MV by Lemma 3.8.
It only remains to show that N™¥ e NY». By Lemmas 3.2 and 3.8, there exists a

subsequence {l;} such that for E-g.e. x € V,,,
P, (N™Mu converges to N™™ uniformly on each compact interval of [0,00)) = 1.
From this and (3.12), we know that N™[ is a CAF. On the other hand, by
NZ’Lv[u] — A?v[u_ul] _ (Mtnv[u] _ Mtnv[ul]) + Nl;nv[ul}
we get
eV (N < 3eVn(Amlu—uly 4 geVn(pgmlul — pymoluly,
which can be made arbitrarily small with large [ by (3.14). Therefore e"»(N™) =0
and N™M € NV, O

We now fix a u € D(€),,.. Then there exist {V,!} € © and {u,} C D(&) such that
u = u, m-a.e. on V.I. By (MOR1995, Proposition 3.6), we may assume without loss
of generality that each wu, is €-quasi-continuous. By (MOR1995, Proposition 2.16),
there exists an E-nest {F?} consisting of compact subsets of E such that {u,} C
C{F?}. Denote by V2 the finely interior of F? for n € N. Then {V?} € ©. Define
V! =VINVZ2 Then {V/} € © and each u, is bounded on V. To simplify notation,
we still use V,, to denote V,, NV for n € N.
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

For n € N, we define E, = {z € Eﬁz\;(m) > 1} where h, := G|"¢. Then
{E,} € O satisfying Ei C Enq1 E-qe.and E,, C 'V, E-q.e. for each n € N (cf. (K2008,
Lemma 3.8)). Here Ei denotes the E-quasi-closure of E,,. Define f,, = niz\; A1l. Then
fo=1on E, and f, = 0 on V¢ Since f, is a 1-excessive function of (€Y, D(&)y;,)
and f, < nh, € D(€E)y,, hence f,, € D(€)y, by (MR1995, Remark 3.4(ii)). Denote by
@y, the bound of |u,| on V,,. Then u, f, = (—Qn) Vu, AQy) fr € D(0)v,» = D(E)v, -

For n € N, we denote by {F}'} the minimum completed admissible filtration of

XVa Forn <1, C FL C F,. Since E, C V,, 7g, is an {F7}-stopping time.

Lemma 3.10. Forn < I, we have M™% = bt gpg ylundsl - ybufil 3 > )

tATE, tATE, tATE, - tA\TR, 7

P.-a.s. for E-q.e. x €V,

Proof. Let n < I. Since M™lunfnl ¢ Vo Mmlenfnl is an {F7}-martingale by the
Markov property. Since 7g, is an {F}}-stopping time, { Mﬁlz:fn]} is an {J7,,, }-
martingale. Denote T} = J{X&TEH |0 < s < t}. Then {Mﬁl’;’;f”]} is a {Y}}-
martingale. Denote Y7 = a{XSVATEn |0 < s < t}. Similarly, we can show that
{M fk[fg:"}} is a {Y"'}-martingale. By the assumption that M is a diffusion, the fact
that f, is quasi-continuous and f, = 1 on E,, we get f,,(Xprp, ) = 1if 0 < sATg, < (.

Hence X;prp, € Vy, if 0 < sA7g, <, since f, =0 on V. Therefore

X = Xonrg, = XVn P.-a.s. for E-q.e. x €V, (3.15)

SA\TE, SN\TE, )

which implies that {M fk[fgjn]} is a {Y} }-martingale.
Let N € N for some j € N. Then, for any 7" > 0,

[rT) [rT]

> Byl (News = No)*) < YT (E(ND), e T hy)

k=1 ’ ’ k=1 ’ g
[rT]

A
)
3
=
=

k=1
< rTe'E; . (N?) —0 as r— oo
Hence
[rT]
Z(Nk“ — Ni)? =0, r—o00, in Py,
k=1



3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

which implies that the quadratic variation process of N w.r.t. P, is 0.
By (K2008, Proposition 3.3), <G1¢)%€§ = Gi¢ — GV ¢. Since VE D V£, (G‘mﬁ)%@s >
(GAlqb)%,ZC. Then GV"¢ < GY'¢ and thus

hy, < hy. (3.16)

Therefore

eV (A) < eV(A) (3.17)

for any AF A = (A;);>0 of XV
Note that NfA[ng"] = (unfn)(XVl

tATE,

Fprrp - By Lemma 3.6 {Nj“2/} is a CAF of X"». By (3.17), e"(Njiml) <

tATE, —

tATE

) = (nf)(X1) = Myl e 1t = 1y €

Vl(NtlA[Z;f"]) = 0. Hence (Nt/\[:f;fn])t>0 € NV which implies that the quadratic varia-
tion process of {Nt ""f"]} w.r.t. Py, is 0. Since for E-q.e. x € V,,, by (3.15),

NTE,
Mg\’[;;;nfn] +Nt [unfn] = unfn(XtV/\nTE ) unfn(Xg/n)

= unfn(Xt‘;(TEn) - unfn(X(Yl)

Lun fn Llunfn
- Mt/\[;LE7{]+Nt/\[ZEZ]7 PI—CL.S.,

and both {M™ [“"f"]} and {M" “"f"]} are { Y} }-martingale, hence M;* [u"f”] = Mtl/\[fgf”]
and NtAEfE"f"] = NM[QTLZI”], P,-a.s. for m-a.e. x € V,. This 1mphes that F,,(<
Mt gl Sy =0, e > 0. Then, by Theorem 3.3(i), Myl =

NTE, tATE,

MtlA[q;Lgic"}, Vt > 0, Py-a.s. for &-q.e. x € V,. Hence Nt/\[;;"f” = Nt,\ljgf" Vi > 0,
P,-a.s. for E-q.e. x € V,.

Since u, f, = w f; = u on E,, similar to (K2010, Lemma 2.4), we can show that
M I — Il when t < 7, Preas. for &-qee. x € Vi. If 7, = C, then by the
fact unfn(Xg/l) = ulfl(Xg/l) = 0 and the continuity of N/'"* and N/ one finds
that Mj}ﬁgf = MZA[Z;]Z] By the quasi-continuity of u, f,, u;f; and the assumption
that M is a diffusion, one finds that M/l and M4/l are continuous on [0, (),
P,-a.s. for E-q.e. x € V|. Hence, if 75, < ¢ we have Mgﬁ"f”] = Mi’g:fl]. Therefore

M&E;:f"] = MZA[%JZ] and N&E;’;f"] = ka[z;’;l], t >0, Py-a.s. for E-g.e. x €V, O

Proof of Theorem 3.4 We define Mt[X]TEn = limy_ MZA[%’Z] and MM = 0 for

t > ( if there exists some n such that 75, = ¢ and ( < oo; or Mt[u] =0 for t > (,
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

otherwise. By Lemma 3.10, M is well defined. Define MP := M5 Hlumerfne] g4

tATE,

t > 0and n € N. Then Mt[u] = My, Pras. for E&-qe x € V1 by Lemma

/\TEn

3.10. Since ES C Eni1 C Vpy E-q.e. implies that P.(tg, = 0) = 1 for x & V44,
M, =M,

that e"»(M™) < eVn+1(M™) for each n € N. Then M"™ € M" and hence MM € M.
Next we show that M™ is also an {F; }-martingale, which implies that M™ € o<l

loc

P,-a.s. for &-q.e. x € E. Similar to (3.16) and (3.17), we can show

In fact, by the fact that 74, is an {F7""'}-stopping time, we find that I, <, is I -

measurable for any s > 0. Let 0 < s; < --- < s, < s <t and g € By(R¥). Then, we
obtain by (3.15) and the fact M"+bnsifanl ¢ MVett that for E-q.e. z € Vyy,

AMfg(Xsl, L X.)dP,

= M]g(Xs,, ..., X, )dP; + M}'g(Xg, ..., X, )dP,
TEHSS TEp>S
= M?g(Xs,, ..., X, )dP,
B <8
+ / Myl gl X Yy ssdPy
Q
= M?g(Xs,, ..., X, )dP,
TE, <8
+ / M el g (VXL L, dPy
Q
= M?g(Xs,, ..., X, )dP; + M?g(Xs,, ..., X, )dP,

TEn >s

5 <s
= / M?g( X, ..., X, )dP,.
Q
Obviously, the equality holds for x ¢ V1. Therefore, M™ is an {F;}-martingale.
Define N/ = a(X;) — a(Xo) — M;". Then, we have Njio = limy_oc Njiet,
Moreover N e Nejoc-

Finally, we prove the uniqueness of decomposition (3.10). Suppose that M! Mioe
and N' € N, such that

a(Xy) —a(Xo) = M} + N}, t>0, Py-a.s. for E-ge. x € E.

Then, there exists {E,} € © such that, for each n € N, {(M™ — M")I,, 1} is a

square integrable martingale and a zero quadratic variation process w.r.t. P,,. This
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

implies that P, (< (M" — M"Y, | >= 0,V € [0,00)) = 0. Consequently by
Lemma 3.5(iii), P(< (M"™ — M"Y, § >=0,Vt € [0,00)) = 0 for &-g.e. x € E.
Therefore M" = M}, 0<t<r7g, P-a.s. for &q.e. x € E. Since n is arbitrary, we
obtain the uniqueness of decomposition (3.10) up to the equivalence of local AFs.

In the rest of this section, we investigate some concrete examples.

Example 3.1. Consider the following bilinear form
1 1
E(u,v) = / u'v'dx +/ bu'vdz, wu,v € D(&) = Hy?(0,1).
0 0

(1) Suppose that b(x) = x2. Then one can show that (&, D(E)) is a regqular local semi-
Dirichlet form (but not a Dirichlet form) on L*((0,1);dx) (cf. (MOR1995, Remark
2.2(i))). Note that anyu € D(E) is bounded and 3—Holder continuous by the Sobolev
embedding theorem. Then we obtain Fukushima’s decomposition, u(X;) — u(Xy) =
MtM —l—Nt[u], by Lemma 3.9, where X is the diffusion process associated with (€, D(E)),
MW" s an MAF of finite energy and N is a CAF of zero energy.

(ii) Suppose that b(x) = \/x. By (MOR1995, Remark 2.2(i1)), (€, D(E)) is a reqular
local semi-Dirichlet form but not a Dirichlet form. Let w € D(E)e. Then we obtain
Fukushima’s decomposition (3.10) by Theorem 3.4.

If w € D(E) satisfying supplu] C (0,1), then we may choose an open subset V' of
(0,1) such that supplu] C V C (0,1). Let XV be the part process of X w.r.t. V.. Then
we obtain Fukushima’s decomposition, u(XY) — u(Xy) = MM NP by Lemma
3.9, where MV is an MAF of finite energy and NV is a CAF of zero energy w.r.t.
XV,

Example 3.2. Let d > 3, U be an open subset of RY, o,p € L. (U;dx), a,p > 0
dz-a.e. For u,v € C3°(U), we define

a ou Ov
Ep(u,v) = Z /U am%pdx.
ij=1 v

Assume that

&,,C(U)) is closable on L*(U;odx).
p 0
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

d Ju Ou d Ju
1 i i

i=1 YU

ov
—l—Z/ 8xzd dx+/qucdx.

Set dz’j = %(CLZ‘]‘ + aj,-) ELij = %(aij - aji) b = (bl, .. .7bd), and C_i = (dh Ce ,dd).
Define F to be the set of all functions g € L . (U;dx) such that the distributional

derivatives g—i, 1<i<d, are in L. (U;dx) such that |Vg|/(go)~2 € L>(U;dz) or

VyllP(grtio?/1) "2 € LYU; dx) for some € (1,00) with 1 +1 =1, p < oo, where
IVgll*(g : p,q € (1, sto=1 p<oo,
| - || denotes Euclidean distance in RY. We say that a B(U)—measurable function f
has property (A,.) if one of the following conditions holds:

(i) f(po)~2 € L*(U; da).

(ii) fP(pPTo?/9) 2 € LYU, dx) for some p,q € (1,00) with %%—é =1, p < oo, and
peF.

Suppose that

(C.1) There exists n > 0 such that szzl ;€& > n)E?, VE = (&,..., &) € RE

(C.II) a;jp~' € L>®(U;dx) for 1 <1i,j <d.

(C.III) For all K C U, K compact, 1x||b+ d|| and 1xc*/? have property (A,,),
and (¢ + ago)de — 3¢ Bdi

(C.IV) ||b— d|| has property (A,.).

(C.V) b= B+~ such that ||B]|, ||| € L;,.(U,dz), (ago +c)dz— 3¢ g% is a positive

(U) for some o € (0,00).

measure on B(U) and ||8|| has property (A,.).

Then, by (RS1995, Theorem 1.2), there exists o > 0 such that (€, C§(U)) is closable
on L*(U;dx) and its closure (€4, D(&4)) is a regular local semi-Dirichlet form on
L*(U;dz). Define no(u,u) == Eq(u,u) — [(Vu, B)udz for u € D(E,). By (RS1995,
Theorem 1.2 (i1) and (1.28)), we know (na, D(€)a) is a Dirichlet form and there exists
C > 1 such that for any u € D(E,),

éna(u;l&) < 8a(u7u> < C’na(u,u).

Let X be the diffusion process associated with (€4, D(Ey)). Then, by Theorem 3.4,
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

Fukushima’s decomposition holds for any uw € D(E)jpe. In particular, if p = o0 =1
then (€, D(E)) is the same as that given by (3.3).

Example 3.3. Let S be a Polish space. Denote by B(S) the Borel o-algebra of S.
Let E := M(S) be the space of probability measures on (S,B(S)). For bounded
B(S)-measurable functions f,g on S and p € E, we define

u(f) = /S Fdu, (Fogh = ulf9) — ulf) - ug)s 1l = () )2

Denote by FCy° the family of all functions on E with the following expression:

ulp) = o(u(fi), - u(fe)), fi € Co(S),1 < i<k pe CPRY),keN.

Let m be a finite positive measure on (E,B(F)), where B(E) denotes the Borel o-
algebra of E. We suppose that supplm| = E. Let b : S x E — R be a measurable

function such that

sup [|b() [ < oo,
neE

where b(p)(x) := b(x, 1),

For u,v € FCY°, we define

where

&(u0) = [ (Tl Vol + (00, Dl (o)),
V() = (Vou())ocs = (%um tse)

d s:O>x€S’ .

We suppose that (E°, FC°) is closable on L*(E;m). Then, by (ORS1995, Theorem
8.5), there exists a > 0 such that (%, FCs°) is closable on L*(E;m) and its closure

(€%, D(EY)) is a quasi-reqular local semi-Dirichlet form on L*(E;m). Moreover, by
(ORS1995, Lemma 2.5), there exists C > 1 such that for any u € D(EY),
1
682‘(”’“) < &P (u,u) < CE (u,u).
Let X be the diffusion process associated with (€%, D(EY)), which is a Fleming-Viot

type process with interactive selection. Then, by Theorem 3.4, Fukushima’s decompo-

sition holds for any u € D(E")ec.
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3.3 Transformation formula for local MAFs

3.3 Transformation formula for local MAF's

In this section, we adopt the setting of § 3.2. Suppose that (€, D(&)) is a quasi-regular
local semi-Dirichlet form on L?(E;m) satisfying Assumption 3.1. We fix a {V,,} € ©
satisfying Assumption 3.1 and Z is bounded on each V,. Let X"V, (&Y D(&)y,), hn,
etc. be the same as in § 3.2. For v € D(€)y, 5, we denote by u(<72> the Revuz measure

of < M™M > (cf. Lemma 3.9 and Theorem 3.3). For u,v € D(€)y, 4, we define
n 1 n n n
s = 2(u(<3+v> s — nlls). (3.18)
Lemma 3.11. Let u,v, f € D(E)y, 5. Then

/ FAul) s = €(u0f) + E(v,uf) — Euv, ). (3.19)

n

Proof. By the polarization identity, (3.19) holds for u, v, f € D(&)y, » is equivalent to

fd,u<u> = 2&(u,uf) — E?, f), Yu, f € D(&)v, . (3.20)

Vi

Below, we will prove (3.20). Without loss of generality, we assume that f > 0.
For k,l € N, we define f; := f A (kh,) and fy; := lGYka. By (MR1995, (3.9)),
fr € D(E)v, » and
E1(fu fr) < &l S fr)- (3.21)

By (MR 1992, Proposition IT1.1.2), fy, is (I+1)-co-excessive. Since h,, is 1-co-excessive,
0 < fog < kh,,. (3.22)

Hence fi; € D(€)y, , by noting that h,, is bounded.

Note that by (3.22)

1 1
lim By, [ (N)?] < ol = By [(NPY)?) = 2keP (V) = 0. (3.23)

Then, by Theorem 3.3(i) and (3.23), we get

T n 1 n,u
foadpl. = lim- Efklm[<M s )

Vi t|0
= 1Efk,m[< (X)) — (X))
= 2t R0~ g - R
= 28&(u,ufr;) — E(U?, fri). (3.24)
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3.3 Transformation formula for local MAFs

By (MR1992, Theorem 1.2.13), for each k € N, fi; — fi in D(E)y, as | — oo.
Furthermore, by Assumption 3.1, (MR1992, Corollary 1.4.15) and (3.22), we can show
that sup;>; €(ufrg, ufry) < co. Thus, we obtain by (MR1992, Lemma 1.2.12) that
ufry — ufy weakly in D(€)y, as | — co. Note that [, Pndp®). = 2eVe (M™M) < 0o
for any u € D(E)y, . Therefore, we obtain by (3.24), (3.22) and the dominated
convergence theorem that

; Fedp D) =28 (u,ufy) — €2, fr), Vu € D(E)y, . (3.25)

By (3.21) and the weak sector condition, we get supys; €1(f, fr) < oo. Fur-
thermore, by Assumption 3.1 and (MR1992, Corollary 1.4.15), we can show that
supy>; E(ufr, ufr) < oo. Thus, we obtain by (MR1992, Lemma [.2.12) that f, — f
and ufy — uf weakly in D(€)y, as k — oo. Therefore (3.20) holds by (3.25) and the

monotone convergence theorem. O

For u € D(&)y, ,, we denote by M nlule and M™W* the continuous and killing parts

of M™" respectively; denote by pC. and p%". the Revuz measures of < Mmluhe >

and < M™* > respectively. Then M™M = pmlule 1 ppmlulk with
L —ﬂ(Xé/(%_)I{dn)g} - (—ﬁ(XX%_)]{gw)gt})py

where (™ denotes the life time of X" and p denotes the dual predictable projection,
and
(n) _ nec n,k 3.96
Pcus> = Hdus> T Hus- (3.26)
Let (N™(z,dy), H™) be a Lévy system of X" and ™ be the Revuz measure
of H®™. Define K™ (dz) := N™(z, A)v™(dz). Similar to (FOT1994, (5.3.8) and
(5.3.10)), we can show that

< M”ﬂ[uLk >, = (7:22(X2.?2)7)-[<(")§t)p
t
_ / @ (XN (XY, A)dH (8:27)
0
and
k. (da) = () K™ (). (8.28)
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3.3 Transformation formula for local M AFs
For u,v € D(&)y, 5, we define
n,c L 1 n,c n,c n,c n,k L 1 n,k n,k n,k 20
Hayp> = §(M<u+v> — H<y> — :u<v>)a H<yp> = §(M<u+v> — H<u> — /L<v>)- (3- )
Theorem 3.5. Let u,v,w € D(E)y, . Then

dﬂ%u,w> = adﬂzg,w> + 5dﬂ2’§,w>~ (330)

Proof. By quasi-homeomorphism and the polarization identity, (3.30) holds for u, v, w €

D(E)y, » is equivalent to

faple, o =2 | fudpZs s, Vfou,we D(E)y,,. (3.31)
Vn Vn

By (3.18) and (3.26)-(3.29), we find that (3.31) is equivalent to

fapl o+ [ JitwdK™ =2 | fudul) ., Vfu,we D€y, (3.32)
Vi Vi Vn

For k € N, we define vy, := kR/",u. Then v, — u in D(€)y, as k — oco. By As-
sumption 3.1 and (MR1992, Corollary 1.4.15), we can show that sup,,; &(vyw, vyw) <
oo. Then, by (MR1992, Lemma 1.2.12), there exists a subsequence {(vj,)}en of
{vk }ren such that upw — ww in D(E)y, as k — oo, where uy, = %Zle vg,. Note
that uy — w in D(E)y, as k — oo and |ugllec < |||l for & € N. Moreover,
| LY"ug||oo < 0o for k € N, where L' is the generator of X",

By Assumption 3.1 and (MR1992, Corollary 1.4.15), we can show that

ili}f[ﬁ(ukfw, upfw) + E(up foul f) + E(uf, upf)] < oo.

Then, we obtain by (MR1992, Lemma 1.2.12) that ufw — wfw, uif — u?f and
upf — uf weakly in D(€)y, as k — oo. Hence by (3.19) and the fact

ilili)[é’(ukfw,ukfw) + E(upf,upf)] < oo

we get
fadpl) e = E(u,ufw)+ E(w,uf) — &(uw, uf)
= lim [E(u, upfw) + E(w, ul f) — E(uw, up f)]

k—o0

= lim [ fipdpl), .. (3.33)

k—o0 Vi,
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3.3 Transformation formula for local MAFs

By Assumption 3.1 and (MR1992, Corollary 1.4.15), we can show that sup,,[€(uj, uj)+
E(udf,uif) + E(uiw,uiw)] < oo. Then, we obtain by (MR1992, Lemma 1.2.12) that
ui — u? uif — v’ f and viw — w*w weakly in D(&)y, as k — oo. Hence by (3.19)

we get

| B = e fw)+ el - Elu, f
= Jim (B, fu) + Elw, ) = Elufu, £)

= lim [ fdul), . (3.34)

k—o0 V.,
By (3.33), (3.34) and the dominated convergence theorem, to prove (3.32), we may

assume without loss of generality that u is equal to some wug. Moreover, we assume
without loss of generality that f > 0.

For k,1 € N, we define f, := f A (kh,) and fi; :== IG)7, fr. By (MR1995, (3.9)),
fx € D(&)y, p; by (MR1992, Proposition 111.1.2), fi; is (I + 1)-co-excessive. Since h,,
is 1-co-excessive,

0 S fk,l S k}_ln

Hence fi; € D(€)y, » by noting that h,, is bounded. By the dominated convergence
theorem, to prove that (3.32) holds for any f € D(E)y, s, it suffices to prove that
(3.32) holds for any f.

Below, we will prove (3.32) for uw =y and f = fg,.

Note that for any g € D(E)y; s,

1 1
lim By, m[(N9)?] < K lim ZE,—Ln.m[(Nfigl)Z] = 2ke"" (N™1)) = 0. (3.35)
t ’ t

By Theorem 3.3(i) and (3.35), we get

e n 1 - .
f’f’ld“izi,w = lim _Efk,l'm[< M i],M s[w] >

v, tlo t

=l %Efkv,.m[@%xm — @A) (X)) — (X))
= i 2 Bl gl (G XE) — G (XE) @OG) — @0

i By (T (X) — GO P () — a(X)))]
= Tim[I(t) + 1I(t)]. (3.36)

t10
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3.3 Transformation formula for local MAFs

By (3.35), Theorem 3.3(iii) and (3.19), we get
2

B 1() = 1 B gon(< M, 2070 )
N
= lms < plug sy T3 (fraur) > ds
tlo t 0 )

t

.2 « .
- ltli%l t (€ (g, wT™ (frpun)) + E(w, ug T (frau))
0

—&(upw, TV (fryur))]ds. (3.37)

By (AFRS1995, Theorem 3.4), TV (fryur) — feyur in D(E)y, as s — 0. Furthermore,
by Assumption 3.1, (MR1992, Corollary 1.4.15) and the fact that |e TV ( fuz)| <
k||uk || oofin, § > 0, we can show that sup,. &(wTV»( friur), wTY*( frgux)) < oo. Thus,
we obtain by (MR1992, Lemma 1.2.12) that w1V (fr ) — w iy, weakly in D(E)y,
as s — 0. Similarly, we get ukTSV”(fk,luk) — Uy fr u weakly in D(E)y, as s — 0.

Therefore, by (3.37) and (3.19), we get

HmI(t) =2 [ frodedply, .. (3.38)
t10 V.
Note that
1 n,[ug],c n,[w],c 1 n,lug],k n,|w],k
H(t) = gl (MPUPM) By [V
= III(t)+ IV (t). (3.39)

By Burkholder-Davis-Gunday inequality, we get

1 1
: : n,[ukl,e\d1\1/2 7 n,[v],c 1/2
<
ltllrgl I11(¢t) (ltll%l tEfk,l‘m[(Mt ) (ltliI(I)l n B ml< M >4])
v 1
< C(2ke "(M"’[”}))l/Q(lglr(r)l n By m[< Mmluele 527)1/2 (3.40)

for some constant C' > 0, which is independent of ¢.

By Theorem 3.3(i), for any § > 0, we get

1
O n,ugl,c 2
ltlf(r)l tEfk,l'm[< M >4

2 t
= lim — fk,l-m[/ < Mn7[uk}vc >(t—s) O@Sd < an[uk]:c >5]
tl0 ¢t 0
2

t
= lim_Efk,l‘m[/ EXV” [< M olukle >(t73)]d < M™Mlule >s]
tlo ¢ 0 s

<2< E[< M™ 5000 > (3.41)
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3.3 Transformation formula for local MAFs

Note that by our choice of uy, there exists a constant Cj > 0 such that E,(<
M >y = B (M) = By[((X;") = Gu(X0") = fy LVun(XF*)ds)?] < Cy for
any 0 < 1 and &-gq.e. x € V,,. Letting 6 — 0, by (3.41), the dominated convergence
theorem and (3.40), we get

ltlf(r)l I11(t) =0. (3.42)

By (P2005, Theorem I1.33, integration by parts (page 68) and Theorem 11.28), we

get
1 ~9 -
1V(t) = ;Efk,z'm[lc(")St{_(quM)(XZZ)—)
+2(a50) (X o ) (@XM <)

(@) (X ) @(X) ) Veme))]
1 9
= EEfk,z-m [— ((quw) (Xg?fl)_)[g(n)gt)p
+2((@0 D) (X0 ) e <)? Ml

(10 (X oy ) e <)M

1 9.
< ;Efk,z'm[_((quw)(XXZ)_)IC("Kt)p]

2 ~ ~ n,uw
FZ B HT0) (X <P PIBY < Mo

fream frem

L B2

fregm

0 (X D e )P PB < MM > ] (3.43)

fr,m

By Theorem 3.3(i), (3.27)-(3.29), we obtain that for 1,19 € D(E)v;, b,

. 1 e - n
lim ;Efk,rm[((d}l%)(Xg/(b,)fc(n)gt)p] = / Feadpl o
Vn
= Featbrthad K™ (3.44)
Vn
and
lim _Efkl'm[< M Lk >t] - / fk’ldl“b<’1121>' (345)
tlot " v
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3.3 Transformation formula for local MAFs

Furthermore, for any 6 > 0,
lim L & 1) (X2 e}
i 5 By {(102) (X )<
2 b~ —~——
= lim — Efk - m[/ ((%%)(XX(L)_)Ig(n>§(t—s))p ° esd((%%)(Xg/(%_)—,g(n)gs)p]

t10 t

= lim 2Efklm[/0 Xvn[((%%)( et Mem<i—s))"1d (rha)( <<n>7)]c(">Ss)p]

tlo t
<< BTl (X o) 5 o Fot >
=< E.[|¢1w2|(X2/(Z)_)[§(n)§5] : N7<L7|Ij/,l|7\¢2|>> Jig > - (3.46)

Letting 6 — 0, by (3.46) and the dominated convergence theorem, we get

i B, 4 (522) (X1 ) eorcY) = 0 (3.47)

tlo t

By (3.43)-(3.45) and (3.47), we get
WmIV(t) = — [ fepinl®dK™, (3.48)
t10 v

Therefore, the proof is completed by (3.36), (3.38), (3.39), (3.42) and (3.48). O

Remark 3.2. When deriving formula (3.30) for non-symmetric Markov processes,
we cannot apply Theorem 3.3(vi) or (vii) to smooth measures which are not of finite
energy integral. To overcome that difficulty and obtain (3.30) in the semi-Dirichlet
forms setting, we have to make some extra efforts as shown in the above proof. The

proof uses some ideas of (K1987, Theorem 5.4) and (01988, Theorem 5.3.2).

Theorem 3.6. Let m € N, ® € CHR™) with ®(0) = 0, and u = (uy, ug, . .., Upy)
with w; € D(E)y, 5, 1 <1 <m. Then ®(u) € D(E)v, and for any v € D(E)y, s,

m

dﬂ<q>(u) v> Z Dy, (U)dpZy, v (3.49)

i=1

Proof. ®(u) € D(E)y, is a direct consequence of Assumption 3.1 and the corre-
sponding property of Dirichlet form. Below we only prove (3.49). Let v € D(E)y,
Then (3.49) is equivalent to

/ Fhndig Z / Fha®, (@)dps, o, Yf € D(E)v, . (3.50)
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3.3 Transformation formula for local MAFs

Let A be the family of all ® € C*(R™) satisfying (3.49). If &, U € A, then ®¥ € A
by Theorem 3.5. Hence A contains all polynomials vanishing at the origin. Let O be
a finite cube containing the range of u(x) = (u1(x),...,un(x)). We take a sequence
{®*} of polynomials vanishing at the origin such that ®* — @, &% — &, 1 <i < m,
uniformly on O. By Assumption 3.1 and (FOT1994, (3.2.27)), ®*(u) converges to
®(u) wr.t. €™ as k — co. Then, by (3.14), we get

| i = [ Fradie, o
SNy R LY N

< I/l / -2 | R
_ 2||f||006V”(Mn @ (u)— @k(u)})l/Qevn (Mn,[u})l/Q
< 2| e (MM V2K CEV () — O (), D(u) — DF(u)) "2
(@) = O (1) (s )2
ol oo (D (1) — P (), D) — B (1)) 2] 2.

Hence

fh dlu<<1>(u)v> = hm / fh d”<<1>k(u ) o>

Vn

It is easy to see that

Vn —Jv,

Therefore (3.50) holds. O

For M, L € M"», there exists a unique CAF < M, L > of bounded variation such
that

EJ;(MtLt) = Ex(< M, L >t)7 t Z 0, 8-q.€. x € Vn

Denote by “(<n12/1,L> the Revuz measure of < M, L >. Then, similar to (FOT1994,

Lemma 5.6.1), we can prove the following lemma.
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3.3 Transformation formula for local MAFs

Lemma 3.12. If f € L*(V,; u<M>) and g € LZ(Vn;ugL2>), then fg is integrable w.r.t.

1y o] and

IREOTIT- Py TN T

Lemma 3.13. Let M € MY and f € LQ(Vn,;L<M>) Then there exists a unique
element f - M € MY such that

1 [ - .
e (f-M,L) = 2/, fhndﬂgﬁu>, VL € M". (3.51)

The mapping f — f- M is continuous and linear from L*(Vy; 2 M>) into the Hilbert
space (MV7; e").

Proof. Let L € MVa. Then, by Lemma 3.12, we get

1 ) 1 T
| 5 v fhnd/ﬁ(ﬂ%d,L> < E( v f2hnd:u(<12/[>)1/2(1/2/ h d <L>>1/2
[1alloo
< R g, VD)
Therefore, the proof is completed by Lemma 3.8. n

Similar to (FOT1994, Lemma 5.6.2, Corollary 5.6.1 and Lemma 5.6.3), we can

prove the following two lemmas.

Lemma 3.14. Let M,L € MY. Then
(i) du(<n;-M,L> fd:u<M 1> Jor [ € LA (Vy; M<M>)

(ii) g- (f - M) = (gf) - M for f € L*(Vo; u22) and g € L*(Vy; f2duy,).

(Z“) eVn(f M g L 2 ffgh d:u<ML> fmnf € L2(Vn’”<M>) andg S L2(Vn7:u<L>)'

Lemma 3.15. The family {f - M*| f € D(&)v, s} is dense in (M"",e").

Theorem 3.7. Let m € N, ® € CY(R™) with ®(0) = 0, and u = (U1, Us, ..., Up)
with u; € D(E)v,p, 1 <i<m. Then

MELe =N "0, (u) - MM, Py-as. for E-qe. x €V, (3.52)

i=1
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3.3 Transformation formula for local MAFs

Proof. Let v € D(E)y,  and f,g € D(E)v, ». Then, by Lemma 3.14(iii) and Theorem
3.6, we get

eVn(f‘ Mn’[q)(u)LCa g- Mm[v]) fgh dﬂ<Mn [@(w)e, pnlv]>

2Vn

N —

- fgh’ dM<‘I>(u) v>
Vn

= —Z fgh O, (u)dpy, o

(n)
= —Z fgh Oq (Wt 2y it ppmiors

= Mo (w) - M G M),

i=1

By Lemma 3.15, we get

f - Mmtele — Z(fq)zz( )) - M™luile P oa.s. for E-qe. x €V,

=1

Therefore, (3.52) is satisfied by Lemma 3.14(ii), since f € D(E)y, p is arbitrary. [

Let M € Moe. Then, there exist {V,,},{E,} € © and {M"| M™ € M"*} such that
E, C Vy, Mipry,, = My, t >0, n € N. We define

tATE,

<M >ipry =< M" Siprp 5 <M >p= li%l <M >, fort>¢(.
S

Then, we can see that < M > is well-defined and < M > is a PCAF. Denote by
l<r~ the Revuz measure of < M >. We define
L2 (E;pens) = {f13 {Vp},{E.} € © and {M"| M™ € M""} such that

En C Vo, Mongy, = M, , [+ 1p, € L(En; pp), t >0, n € N}
For f € L? (E; <), we define f- M on [0,([ b
(f - M)inry, = ((f - Ig,) M")irry,, t>0, n€N.

Then, we can see that f - M is well-defined and f - M € M}Ef“. Denote by M€ the
continuous part of M.

Finally, we obtain the main result of this section.
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3.3 Transformation formula for local MAFs

Theorem 3.8. Suppose that (€, D(E)) is a quasi-regular local semi-Dirichlet form on
L2(E;m) satisfying Assumption 5.1. Letm € N, ® € CY(R™), andu = (uy, ug, . . ., Up,)
with u; € D(&)1pe, 1 < i < m. Then ®(u) € D(E)e and

M©EELe =N "D, (u) - MM on [0,), Pp-a.s. for &-qe. x € E. (3.53)

i=1
Proof. Since 1 € D(E)pe, P(u) € D(E)1pe by Theorem 3.6. (3.53) is a direct conse-
quence of (3.52). O
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Chapter 4

Future research

In the future, we will focus on the following three topics that are closely related to
this thesis.
1. Let (Xy, P;) be a right process associated with a quasi-regular semi-Dirichlet form.
We are interested in the strong continuity of the generalized Feynman-Kac semigroup
Prf(z) = E,[eM f(X;)]. Different from the non-symmetric Dirichlet forms case, we
need to overcome two problems.

For a quasi-regular semi-Dirichlet forms (&, D(€)) on L?(E;m), a smooth measure
1 is said to be in the Kato class if

lim inf sup E,[A}] =0,
=0 Capy(N)=0 ze B\ N

where (A});>o is the PCAF associated with p. Denote by Sk the Kato class of smooth
measures.
The first problem is whether the following property holds: Let u € Sk, then for

any € > 0, there exists a constant A, such that for any f € D(E),

/E P < <e(f, f) + A 1L (4.1)

We have solved this problem and include it in the Appendix.
Define (Q*“", D(€),) as in section 2.1. The second problem is whether this form
is a coercive closed form or not. In semi-Dirichlet forms case, it is not true that

2 [odpcnss < E(f, f), so we can’t follow the same method (see (2.11) and (2.12)) to
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get that (Q“™, D(€),) is a coercive closed form. New method should be considered.
If this problem can be solved, then there is hope to generalize the results of Chapter
2 to the semi-Dirichlet forms case.

2. Fukushima’s decomposition for semi-Dirichlet forms with jumping parts. In
Chapter 3, we use the localization method to get Fukushima’s decomposition for local
semi-Dirichlet forms. If the semi-Dirichlet form has a jumping part, then the method
does not work since the continuity of sample paths is essentially used in the proof.
Recently, in (FU2010), jump-type Hunt processes generated by lower bounded semi-
Dirichlet forms are considered. In that paper, C’éip , the space of uniformly Lipschitz
continuous functions with compact supports, is contained in the domain of the semi-
Dirichlet form, but C’éip is not a subset of the domain of the generator. We hope to
further our method so as to get Fukushima’s decomposition for general semi-Dirichlet
forms which include diffusion, jumping and killing parts.

3. Large deviations problems. In Chapter 2, three transformations: Feynman-Kac
transformation, h-transformation and Girsanov transformation, have been considered.
This method can be used to study large deviations of additive functionals. We hope
to make use of the method of Chapter 2 and paper (CHM2010) to study asymptotic

behavior of additive functionals associated with nearly symmetric Markov processes.
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Appendix

Let (&, D(€)) be a quasi-regular semi-Dirichlet form on L?*(E;m). In this appendix,

we will derive a useful inequality for measures in the Kato class.

Definition 4.1. A smooth measure p is said to be in the Kato class if

lim inf  sup E,[A}]=0,
t=0 Capy(N)=0 ze B\N

where (A})i>o is the PCAF associated with . Denote by Sk the Kato class of smooth

measures.

Theorem 4.1. Let pu € Sk. Then for any e > 0, there exists a constant A, > 0 such
that for any f € D(E),

!éFmeﬂﬁﬂ+AmN§ (4.2)

Proof. By quasi-regular homoemorphism, without loss of generality, we may assume
that (&, D(&)) is a regular semi-Dirichlet form on L?(E;m).
(i) First we assume that p € Sy N Sk, we will show that for a > 0, f € D(E), the

following inequality holds:

[ P < 160 + D2Vl 1) (4.3
Fort >0, let K, = {z € E| |f(z)] >t} and

Li,:={veDE)|v>1E—qe. on K;}.

By (MOR1995, Remark 2.2 (iii)), we get |f| € D(E) and Lk, # (. Let ég, be the

a—order equilibrium co-potential, ex, be the a—order equilibrium potential and e,
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be the symmetric a—order equilibrium potential. Then

-
N

ga(éKm éKt) < (K + 1)8a<éKt7 éKt)Ega(éKﬁ éKt)
= (K + 1)éa(éKt7 éKt)§801<éKt’ éKt)

1

S (K + 1)éa(éKt7éKt)§ea(éKt’éKt)

-
[N

D=

where K is the continuity constant. Thus &,(€x,, éx,) < (K + 1)?E,(ek,, ex,). By
(MR1995, page 832), similar to (FOT1994, Theorem 2.2.1) , we can show that for
u € D(E), u is an a-potential if and only if v is an a—excessive function in the
positive preserving forms setting. Hence similar to (V1991, Proposition 1), we can

show that
| e it < 220171150
Then, by (MOR1995, equation (2.1)), for a > 1, we get
| teatens et < 2005 + 122111 111) < 806+ 1Peul1. )

Define

A

E(u,v) = E(v,u).

Then (é, D(€)) is a regular positivity preserving form and é, is an a—potential with

respect to (€, D(€)). Hence there is a smooth measure v such that éx, = U,v. Since

/E fl@)uldz) = 2 /0 e /E I, pu(d)dt
< 2/Ooot[EéZu(dx)dt

= 2/ tﬁa(Ua,u,éKt)dt
0
. / ¢ / (Unp) (@) (der) dt
0 E
< Al [t [ citdod
0 E

= (Tl / 1€, (Ere, )t
0

< 16(K + 1)2||Uajtlc€a(f, £)-

supp[v] C K,
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(il) Now we consider general pn € Sk. By Theorem 3.2, there exists an E-nest {F}, },,>1
such that p, := Ip, pu € Sy. Denote by A the PCAF whose Revuz measure is p. Then
AP = fg Ig, (Xs)dA? is the PCAF corresponding to p,. By Theorem 3.3, we know
that U%u, is a quasi-continuous version of U3 1. Hence for any n, ||m||m =

US 1|0 < ||U1||oo- Then for any f € D(E), we have

n—oo

< 16(K + 1)U | €a(f, f)- (4.4)

/f?dﬂ = lim | Pduy < lim 16(K + 12U €a(f. f)

Similar to (AM1992, Theorem 4.1), we can show that for u € Sk, limg—oo ||US1]00 =
0. Therefore (4.2) holds by (4.4). O

Remark 4.1. The above proof is based on (V1991, Proposition 2). However, we
have made some modifications since there are many differences between symmetric
Dirichlet forms and (non-symmetric) positive preserving forms. (F2001, Proposition
4.2) also gives an inequality, which is similar to (4.3), by using a different method
under the condition that p satisfies pU < Com, where Cy > 0 is a constant. For a
non-symmetric Dirichlet form, (CS2003, Proposition 4.3) also gives (4.2) by using
Green functions of the dual process, however, the method does not work for semi-

Dirichlet forms since there is no dual process in the semi-Dirichlet forms setting.
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