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Abstract

Generalized Feynman-Kac transformation and Fukushima’s

decomposition for nearly symmetric Markov processes

Li Ma

In this thesis, we study some problems about nearly symmetric Markov processes,

which are associated with non-symmetric Dirichlet forms or semi-Dirichlet forms.

For a Markov process (Xt, Px) associated with a non-symmetric Dirichlet form

(E, D(E)) on L2(E; m), we study the strong continuity of the generalized Feynman-

Kac semigroup (P u
t )t≥0, which is defined by

P u
t f(x) := Ex[e

Nu
t f(Xt)], f ≥ 0 and t ≥ 0.

Here u ∈ D(E), Nu
t is the continuous additive functional of zero energy in the

Fukushima’s decomposition. We give two sufficient conditions for (P u
t )t≥0 to be

strongly continuous.

The first sufficient condition is that there exists a constant α0 ≥ 0 such that for

any f ∈ D(E)b, Qu(f, f) ≥ −α0(f, f)m, where (Qu, D(E)b) is defined by

Qu(f, g) := E(f, g) + E(u, fg), f, g ∈ D(E)b := D(E) ∩ L∞(E; m).

The second sufficient condition is that there exists a constant α0 ≥ 0 such that

‖P u
t ‖2 ≤ eα0t, ∀t > 0.

For a Markov process associated with a semi-Dirichlet form, we establish Fukushima’s

decomposition and give a transformation formula for local martingale additive func-

tionals.
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Chapter 1

Introduction

The one-to-one correspondence between Dirichlet forms and Markov processes pro-

vides a bridge between the classical potential theory and stochastic analysis, by which

we can transfer between some analytic problems and stochastic problems. The Dirich-

let form theory has been developed very quickly and has been used widely. It is an

effective machinery for studying various stochastic models, especially those with non-

smooth coefficients, on fractal-like spaces or spaces of infinite dimensions.

The notion of Dirichlet form was introduced by A. Beurling and J. Deny in 1958-

1959, who essentially established the analytic part of the Dirichlet space theory. The

more recent probabilistic part was initiated by M. Fukushima and M.L. Silverstein,

who connected the regular symmetric Dirichlet forms with Hunt processes on locally

compact separable metric spaces. Later, S. Carillo-Menende and Y. LeJan extended

Dirichlet forms to the non-symmetric case. Then, S. Albeverio and Z.M. Ma showed

that a Dirichlet form on a Lusin space is associated with a pair of right processes if

and only if the Dirichlet form is quasi-regular. One advantage of the correspondence

between Markov processes and Dirichlet forms is that some sample path properties

of the Markov processes can be described by the associated Dirichlet forms. For

example, the continuity of the sample paths of Markov processes is equivalent to the

local property of Dirichlet forms.

Although many researchers have worked on Dirichlet form theory and have gotten

lots of beautiful results, there are still some unsolved problems in the field. In this
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thesis, we will focus on two interesting problems.

Let (Xt, Px) be a Markov process associated with the (non-symmetric) Dirichlet

form (E, D(E)) and (Nu
t )t≥0 be the continuous additive functionals of zero energy

in the Fukushima’s decomposition. Defined P u
t f(x) := Ex[e

Nu
t f(Xt)], f ≥ 0 and

t ≥ 0.The first problem is the strong continuity of the generalized Feynman-Kac

semigroups (P u
t )t≥0.

The strong continuity of generalized Feynman-Kac semigroups for symmetric Markov

processes has been studied extensively by many people. Note that (Nu
t )t≥0 is not of

bounded variation (cf. (FOT1994, Example 5.5.2)). Hence the classical results of

S. Albeverio and Z.M. Ma given in (AM1991) do not apply directly. Under the as-

sumption that X is the standard d-dimensional Brownian motion, u is a bounded

continuous function on Rd and |∇u|2 belongs to the Kato class, J. Glover et al.

proved in (GRSS1994) that (P u
t )t≥0 is a strongly continuous semigroup on L2(Rd; dx).

Moreover, they gave an explicit representation for the closed quadratic form corre-

sponding to (P u
t )t≥0. (T2001) generalized the results of (GRSS1994) to symmetric

Lévy processes on Rd and removed the assumption that u is bounded continuous.

Furthermore, Z.Q. Chen and T.S. Zhang established in (CZ2002) the correspond-

ing results for general symmetric Markov processes via the Girsanov transformation.

They proved that if μ〈u〉, the energy measure of u, is a measure in the Kato class, then

(P u
t )t≥0 is a strongly continuous semigroup on L2(E; m). Also, they characterized the

closed quadratic form corresponding to (P u
t )t≥0. P.J. Fitzsimmons and K. Kuwae

(FK2004) established the strong continuity of (P u
t )t≥0 under the assumption that X

is a symmetric diffusion process and μ〈u〉 is a measure in the Hardy class. Further-

more, Z.Q. Chen et al. (CFKZ2008b) established the strong continuity of (P u
t )t≥0 for

general symmetric Markov processes under the assumption that μ〈u〉 is a measure in

the Hardy class.

All the results mentioned above only give sufficient conditions for (P u
t )t≥0 to be

strongly continuous, where μ〈u〉 is assumed to be in the Hardy class. In (CS2006),

under the assumption that X is a symmetric diffusion process, C.Z. Chen and W.

Sun showed that the semigroup (P u
t )t≥0 is strongly continuous on L2(E; m) if and
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only if the bilinear form (Qu, D(E)b) is lower semi-bounded, where

Qu(f, g) := E(f, g) + E(u, fg), f, g ∈ D(E)b := D(E) ∩ L∞(E; m).

Furthermore, C.Z. Chen et al. (CMS2007) generalized this result to general symmetric

Markov processes. Z.Q. Chen et al. (CFKZ2009) studied general perturbations of

symmetric Markov processes and gave another proof for the equivalence of the strong

continuity of (P u
t )t≥0 and the lower semi-boundedness of (Qu, D(E)b).

In the first part of this thesis, by a localization method and the Beurling-Deny

formula of non-symmetric Dirichlet form, which was developed very recently, we give

two sufficient conditions for (P u
t )t≥0 to be strongly continuous. Our results generalize

all the previous results on the strong continuity of the generalized Feynman-Kac

semigroup.

The second problem is Fukushima’s decomposition in the framework of semi-

Dirichlet forms. Suppose that X is a right process which is associated with a non-

symmetric Dirichlet form (E, D(E)) on L2(E; m). Fukushima’s decomposition tells us

that for u ∈ D(E), u(Xt) − u(X0) = Mu
t + Nu

t , where Mu
t is a martingale additive

functional of finite energy and Nu
t is a continuous additive functional of zero energy.

Fukushima’s decomposition is a generalization of Itô’s formula for semi-martingales

and Doob-Meyer decomposition for super-martingales.

Fukushima’s decomposition is very useful. For example, by defining the stochastic

integrals with respect to continuous additive functionals of zero energy, we can define

the stochastic integrals with respect to Dirichlet processes and thus generalize Itô’s

formula. Also, for symmetric Dirichlet forms, by using the time reversal operator, we

have the Lyons-Zheng decomposition, which is a summation of backward and forward

martingales. Then by using martingale inequalities, we can get many good estimates

on additive functionals.

There are many references on Fukushima’s decomposition in the Dirichlet forms

setting. (FOT1994, Theorem 5.2.2) gives Fukushima’s decomposition for u ∈ D(E)e,

the extended Dirichlet space, in the case of regular Dirichlet forms. Then (FOT1994,

Theorem 5.5.1) gives Fukushima’s decomposition for u which is locally in D(E) in the
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1.1 Introduction to semi-Dirichlet forms

broad sense (see (FOT1994, page 226)) in the framework of regular local Dirichlet

forms (in other words, the associated Markov processes have no jumping parts). Later,

(MR1992, Chapter VI Theorem 2.5) generalizes Fukushima’s decomposition to the

quasi-regular case by the transfer method. Recently (K2010, Theorem 4.2) gives

Fukushima’s decomposition for u ∈ D(E)loc in the case of general symmetric Dirichlet

forms by generalizing stochastic calculus.

Up to now, there is no paper concerning Fukushima’s decomposition in the semi-

Dirichlet forms case. There are big differences between Dirichlet forms and semi-

Dirichlet forms. For example, for Dirichlet forms, the set of bounded functions in the

domain of the Dirichlet forms is an algebra, while this is not true for semi-Dirichlet

forms. Also, there is a pair of Markov processes associated with a Dirichlet form, but

there is only one Markov process associated with a semi-Dirichlet form.

The notations and terminologies of this thesis follow (FOT1994), (MR1992) and

(MS2010b). For the convenience of the reader, we will give a brief introduction to

semi-Dirichlet forms in the first section of this chapter. In the second section, we

will present the main results of this thesis. In the last section, we will describe the

organization of this thesis.

1.1 Introduction to semi-Dirichlet forms

In this section, we recall some basic facts on semigroups, resolvents, generators, semi-

Dirichlet forms and the associated Markov processes. We refer the reader to (MR1992,

Chapter 1), (FOT1994) and (MS2010b) for the proofs and more details. Throughout

this section, we fix a real Hilbert space H with inner product ( , ) and norm ‖ ‖ :=

( , )1/2.

Definition 1.1. (strongly continuous contraction semigroups) A family (Tt)t>0 of

linear operators on H whose domain is D(Tt) = H for all t > 0 is called a strongly

continuous contraction semigroup on H (abbreviated by semigroup) if (Tt)t>0 satisfies

the following three conditions,

(i) limt↓0 ‖ Ttf − f ‖= 0, ∀f ∈ H (strong continuity).
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1.1 Introduction to semi-Dirichlet forms

(ii) ||Ttf || ≤ ||f ||, ∀f ∈ H (contraction).

(iii) Tt(Tsf) = Tt+sf, ∀t, s > 0, f ∈ H (semigroup property).

Definition 1.2. (strongly continuous contraction resolvents) A family (Gα)α>0 of

linear operators on H with domain D(Gα) = H for any α > 0 is called a strongly

continuous contraction resolvent on H if

(i) limα↑∞ ||αGαf − f || = 0, ∀f ∈ H (strong continuity).

(ii) ||αGαf || ≤ ||f ||, ∀f ∈ H (contraction).

(iii) Gαf − Gβf = (β − α)Gα(Gβf), ∀α, β > 0, f ∈ H (resolvent equation).

Proposition 1.1. (the relationship between strongly continuous contraction semi-

groups and strongly continuous contraction resolvents)

(i) Given a strongly continuous contraction semigroup (Tt)t>0, define for α > 0

Gαf :=

∫ ∞

0

e−αtTtf dt, ∀f ∈ H. (1.1)

Then (Gα)α>0 is a strongly continuous contraction resolvent.

(ii) Let (Gα)α>0 be a strongly continuous contraction resolvent on H. Define for

t > 0

Ttf := lim
α→∞

etα(αGα−1)f := lim
α→∞

e−tα

∞∑
n=0

(tα)n

n!
(αGα)nf, ∀f ∈ H.

Then (Tt)t>0 is a strongly continuous contraction semigroup and Gα is expressed by

(1.1) for α > 0.

Definition 1.3. (generators of semigroups) Let (Tt)t>0 be a strongly continuous con-

traction semigroup on H. Define

D(L) := {f ∈ H | lim
t→0

1

t
(Ttf − f) exists in H},

Lf := lim
t→0

1

t
(Ttf − f), f ∈ D(L). (1.2)

and we call (L,D(L)) the generator of (Tt)t>0.

Proposition 1.2. (the relationship between resolvents and generators) Given a strongly

continuous contraction semigroups (Tt)t>0, define (L,D(L)) by (1.2) and (Gα)α>0 by

5



1.1 Introduction to semi-Dirichlet forms

(1.1). Then, for α > 0,

Gα = (α − L)−1,

L = α − G−1
α .

Definition 1.4. (resolvent set) Let L be a linear operator on H. If a real number α

satisfies the following condition

(i) (α − L) : D(L) → H is one-to-one,

(ii) the range of (α − L) is H,

(iii) the inverse (α − L)−1 is continuous on H,

then we say α is in the resolvent set of L, denoted by α ∈ ρ(L).

Theorem 1.1. (Hille-Yosida) Let (L,D(L)) be a dense (that is, D(L) is dense in

H) linear operator on H. Then a necessary and sufficient condition for (L,D(L)) to

be the generator of a strongly continuous contraction semigroup (Tt)t>0 on H is that

(L,D(L)) satisfies the following properties:

(L1) (0,∞) ⊂ ρ(L).

(L2) ||α(α − L)−1f || ≤ ||f ||, ∀α > 0, f ∈ H.

In this case (Tt)t>0 is uniquely determined by L.

Proposition 1.3. Let (Tt)t>0 be a strongly continuous contraction semigroup, (Gα)α>0

and (L,D(L)) be its resolvent and generator, respectively. Then the following three

assertions are equivalent to each other:

(i) (Tt)t>0 is analytic, that is, the complexification of (e−tTt)t>0 is the restriction

of a holomorphic contraction semigroup on some sector region S(K) (K > 0) of the

complex plane C. Here S(K) is defined by S(K) := {z ∈ C | |Imz| ≤ KRez}.
(ii) Gα satisfies the sector condition for one (hence for all) α > 0. (We say that

a positive definite linear operator (A,D(A)) satisfies the (strong) sector condition if

there exists K > 0 such that

|(Au, v)| ≤ K(Au, u)1/2(Av, v)1/2, ∀u, v ∈ D(A)).

(L3) I − L (I := the identity map) satisfies the sector condition.

6



1.1 Introduction to semi-Dirichlet forms

Definition 1.5. Let (E, D(E)) be a bilinear form on H (that is, E is a bilinear map

from D(E) × D(E) ). We say that (E, D(E)) is a coercive closed form, if it satisfies

the following conditions:

(i) for every f ∈ D(E), E(f, f) ≥ 0 (nonnegative definite).

(ii) D(E) is dense in H.

(iii) (Ẽ, D(E)) is a symmetric closed form, that is, D(E) is complete under the

norm Ẽ
1/2
1 , here Ẽ(u, v) = 1/2(E(u, v) + E(v, u)).

(iv) there is a constant K > 0 (called it continuity constant), such that

|E1(u, v)| ≤ KE1(u, u)1/2E1(v, v)1/2,

where Eα(u, v) = E(u, v) + α(u, v), ∀u, v ∈ D(E) (section condition).

Remark 1.1. (E, D(E)) is said to satisfy the (strong) sector condition if there exists

K > 0 such that

|E(u, v)| ≤ KE(u, u)1/2E(v, v)1/2, ∀u, v ∈ D(E).

Lemma 1.1. (MR1992, Lemma 2.12) Let (E, D(E)) be a coercive closed form on

L2(E; m) and fn ∈ D(E), n ≥ 1 such that

sup
n≥1

E(fn, fn) < ∞.

If f ∈ H such that fn → f in H as n → ∞, then f ∈ D(E) and fn converges weakly

to f in the Hilbert space (D(E), Ẽ
1
2
1 ) and there exists a subsequence fnk

of {fn} such

that its Cesaro mean wn = 1
n

∑n
k=1 fnk

→ f in (D(E), Ẽ
1
2
1 ) as n → ∞. Moreover,

E(f, f) ≤ lim inf
n→∞

E(fn, fn).

Theorem 1.2. (i) There is a one-to-one correspondence between all the strongly con-

tinuous contraction resolvents (Gα)α>0 satisfying sector condition and all the coercive

closed forms (E, D(E)). The correspondence is given by

Gα(H) ⊂ D(E) and Eα(Gαu, v) = (u, v) for all u ∈ H, v ∈ D(E), α > 0. (1.3)

7



1.1 Introduction to semi-Dirichlet forms

(ii) Given a coercive closed form (E, D(E)), the corresponding resolvent (Gα)α>0 is

uniquely determined by (1.3).

(iii) Given a strongly continuous contraction resolvent (Gα)α>0 satisfying sector

condition, the corresponding coercive closed form is uniquely determined by

D(E) = {u ∈ H | sup
β>0

β(u − βGβu, u) < ∞},
E(u, v) = lim

β→∞
β(u − βGβu, v), ∀u, v ∈ D(E).

Theorem 1.3. (i) There is a one-to-one correspondence between all the dense linear

operators (L,D(L)) satisfying (L.1)−(L.3) and all the coercive closed forms (E, D(E)).

The correspondence is given by

D(L) ⊂ D(E) and E(u, v) = (−Lu, v) for all u ∈ D(L), v ∈ D(E).

In this case (L,D(L)) is called the generator of (E, D(E)).

(ii) Given a coercive closed form (E, D(E)), the corresponding generator (L,D(L))

is uniquely determined by

D(L) = {u ∈ D(E) | ∃ w ∈ H such that E(u, v) = (−w, v), ∀v ∈ D(E)},
Lu = w, if u ∈ D(L) and w is as above.

(iii) Given a dense linear operator (L,D(L)) satisfying (L.1)−(L.3), the corre-

sponding coercive closed form is uniquely determined by

E(u, v) = (−Lu, v), ∀u, v ∈ D(L),

D(E) = D(L)
Ẽ1

,

where D(L)
Ẽ1

is the completion of D(L) w.r.t. the norm induced by Ẽ1.

Therefore there is a one-to-one correspondence among the strongly continuous con-

traction analytic semigroups (Tt)t>0, the strongly continuous contraction resolvent

(Gα)α>0 satisfying sector condition, the dense linear operator (L,D(L)) with (L.1)-

(L.3) and coercive closed form (E, D(E)). In addition, given a the strongly continu-

ous contraction analytic semigroup (Tt)t>0, the corresponding coercive closed form is

8



1.1 Introduction to semi-Dirichlet forms

uniquely determined by (see (AFRS1995))

D(E) = {u ∈ H | sup
t>0

1

t
(u − Ttu, u) < ∞},

E(u, v) = lim
t→0

1

t
(u − Ttu, v), ∀u, v ∈ D(E).

We now replace H by the concrete Hilbert space L2(E; m) := L2(E; B; m) with

usual inner product ( , ), where (E; B; m) is a measure space. As usual we set for

u, v : E → R

u ∨ v := sup(u, v), u ∧ v := inf(u, v), u+ := u ∨ 0.

Definition 1.6. (i) A strongly continuous contraction semigroup (Tt)t>0 on L2(E; m)

is sub-Markovian if

f ∈ L2(E; m), 0 ≤ f ≤ 1 m-a.e. ⇒ 0 ≤ Ttf ≤ 1 m-a.e., ∀t > 0. (1.4)

(ii) A strongly continuous contraction resolvent (Gα)α>0 on L2(E; m) is sub-Markovian

if

f ∈ L2(E; m), 0 ≤ f ≤ 1 m-a.e. ⇒ 0 ≤ αGαf ≤ 1 m-a.e., ∀α > 0. (1.5)

(iii) A densely defined linear operator (L,D(L)) on L2(E; m) is Dirichlet if

(Lu, (u − 1)+) ≤ 0, ∀u ∈ D(L). (1.6)

(iv) A coercive closed form (E, D(E)) on L2(E; m) is semi-Dirichlet if

u ∈ D(E) ⇒ u+ ∧ 1 ∈ D(E) and E(u − u+ ∧ 1, u + u+ ∧ 1) ≥ 0. (1.7)

If

E(u + u+ ∧ 1, u − u+ ∧ 1) ≥ 0

also holds, then we say (E, D(E)) is a Dirichlet form.

Theorem 1.4. Let (Tt)t>0, (Gα)α>0 and (L,D(L)) be the semigroups, resolvents and

generators of a coercive closed form (E, D(E)) respectively. Then (1.4)⇔(1.5) ⇔
(1.6) ⇔(1.7).
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1.1 Introduction to semi-Dirichlet forms

Let (E, D(E)) be a semi-Dirichlet form on L2(E; m), F be a closed subset E, define

D(E)F = {f ∈ D(E) | f(x) = 0, m.a.e. for x ∈ E − F}.

In the following, we will give the definitions of nest, quasi-continuous and excep-

tional sets in the framework of semi-Dirichlet forms, which are used frequently in this

thesis.

Definition 1.7. (i) Let (E, D(E)) be a semi-Dirichlet form on L2(E; m), {Fk}k≥1 be

an increasing sequence of closed sets, if ∪k≥1D(E)Fk
is Ẽ

1
2
1 -dense in D(E), then we

say that {Fk}k≥1 is an E-nest.

(ii) We say u ∈ D(E) is quasi-continuous if there exists an E-nest {Fk}k≥1 such that

for any k ≥ 1, f is continuous on Fk.

(iii) We say N ⊂ E is an E−exceptional set if there is an E-nest {Fk}k≥1 such that

N ⊂ ⋂
k≥1 F c

k . We say that a property of points in E holds E−quasi-everywhere

(abbreviated E − q.e.), if the property holds outside some E−exceptional set.

Definition 1.8. (MR1992, IV, Definition 1.8) Let M = (Ω, F, (Ft)t≥0, (Xt)t≥0, (Px)x∈EΔ
)

be a Markov process with state space E, life time ζ, cemetery Δ, and shift operators

θt, t ≥ 0. M is called a right process if it satisfies the following three conditions:

(i) M is normal, i.e., Px(X0 = x) = 1 for all x ∈ EΔ.

(ii) M is right continuous, i.e., for each ω ∈ Ω, t �→ Xt(ω) is right continuous on

[0,∞).

(iii) Px(Rαf(Xt) is right continuous on [0,∞)with respect to t) = 1 for all x ∈
E, α > 0, and nonnegative f ∈ Cb(E). (Hereafter Cb(E) denotes the set of all bounded

continuous functions on E, Rαf := E·[
∫ ∞

0
e−αtf(Xt)dt].)

Let M = (Ω, F, (Ft)t≥0, (Xt)t≥0, (Px)x∈EΔ
) be a right process, denote the transition

semigroup of M by

Ptf(x) := Ex[f(Xt)], t ≥ 0, f ∈ B+(E).

Definition 1.9. (MOR1995, Definition 3.3) A right process M with state space E

is said to be (properly) associated with a semi-Dirichlet form (E, D(E)) on L2(E; m)

10



1.1 Introduction to semi-Dirichlet forms

if and only if Ptf is an (E-quasi-continuous) m-version of Ttf for all f ∈ Bb(E) ∩
L2(E; m) and all t > 0.

Definition 1.10. (MOR1995, Definition 3.5) A semi-Dirichlet form (E, D(E)) on

L2(E; m) is called quasi-regular if:

(i) There exists an E-nest {Ek}k∈N consisting of metrizable compact sets.

(ii) There exists an Ẽ
1/2
1 -dense subset of D(E) whose elements have E-quasi-continuous

m-versions.

(iii) There exist un ∈ D(E), n ∈ N, having E-quasi-continuous m-versions ũn,

n ∈ N, and an E-exceptional set N ⊂ E such that {ũn |n ∈ N} separates the points

of E\N .

Theorem 1.5. (MS2010b, Theorem 1.40) Let (E, D(E)) be a semi-Dirichlet form on

L2(E; m), where E is a Lusin metrizable space. Then there exists a right process M =

(Ω, F, (Ft)t≥0, (Xt)t≥0, (Px)x∈EΔ
) associated with (E, D(E)) if and only if (E, D(E)) is

quasi-regular. Moreover, M is always properly associated with (E, D(E)).

Definition 1.11. (HMS2006, Definition 3.7) A semi-Dirichlet form (E, D(E)) on

L2(E, m) is said to be quasi-homeomorphic to a semi-Dirichlet form (E�, D(E�)) on

L2(E�; m�), if there exists a map j :
⋃

k≥1 Fk → ⋃
k≥1 F �

k, where {Fk}k∈N is an E-nest

in E and {F �
k}k∈N an E�-nest in E�, such that

(i) j is a topological homeomorphism from Fk onto F �
k for each k ∈ N.

(ii) m� = m ◦ j−1.

(iii) (E�, D(E�)) = (Ej, D(Ej)), where (Ej, D(Ej)) is the image of (E, D(E)) under

j.

The map j is called a quasi-homeomorphism from (E, D(E)) to (E�, D(E�)).

Let E be a locally compact separable metric space and m be a positive Radon

measure on E with supp[m] = E. We say that a semi-Dirichlet form (E, D(E)) on

L2(E; m) is regular if C0(E)∩D(E) is dense in D(E) with respect to the E1-norm and

C0(E) ∩ D(E) is dense in C0(E) with respect to the uniform norm ‖ ‖∞. Hereafter

C0(E) denotes the set of all continuous functions on E with compact supports.

11



1.1 Introduction to semi-Dirichlet forms

Theorem 1.6. (HMS2006, Theorem 3.8) A semi-Dirichlet form (E, D(E)) on L2(E; m)

is quasi-regular if and only if it is quasi-homeomorphic to a regular semi-Dirichlet

form (E�, D(E�)) on L2(E�; m�).

Therefore many results established for regular semi-Dirichlet forms are applicable

to quasi-regular semi-Dirichlet forms.

Next, we introduce Beurling-Deny formula for non-symmetric Dirichlet form.

Definition 1.12. (MS2010b, Definition 1.95) Let Q be a σ-finite positive Borel mea-

sure on E × E\d. A measurable function f on E × E\d is said to be integrable

w.r.t. Q in the sense of symmetric principle value (abbreviated by SPV integrable)

if there exists an increasing sequence {An}n∈N of subsets of E × E\d satisfying

Q( (E × E\d) \ (
⋃

n≥1 An) ) = 0, IAn(x, y) = IAn(y, x) for all x, y ∈ E, f is inte-

grable on each An, n ≥ 1, and for any sequence {An}n∈N with these properties, the

limit

SPV

∫
E×E\d

f(x, y)Q(dx, dy) := lim
n→∞

∫
An

f(x, y)Q(dx, dy)

exists and is independent of the specific choice of the sequence {An}n∈N.

Theorem 1.7. (HMS2010, Theorem 1.3 (i) (ii)) Let (E, D(E)) be a quasi-regular

non-symmetric Dirichlet form on L2(E; m).

(i) There exist a unique σ-finite positive Borel measure J on E × E\d and a unique

positive Radon measure K on E such that for v ∈ C0(E) ∩ D(E) and u ∈ I(v),

E(u, v) =

∫
E×E\d

2(u(y) − u(x))v(y)J(dx, dy) +

∫
E

u(x)v(x)K(dx).

where Iq(v) := {u ∈ C0(E) ∩ D(E) |u is constant on a neighbourhood of supp[v]}.
(ii) Define

A(v) := {u ∈ C0(E) ∩ D(E) | (u(y) − u(x))v(y) is SPV integrable w.r.t. J(dx, dy)}.

Then for v ∈ C0(E)∩D(E) and u ∈ A(v), we have the following unique decomposition:

E(u, v) = Ec(u, v) + SPV

∫
E×E\d

2(u(y) − u(x))v(y)J(dx, dy)

+

∫
E

u(x)v(x)K(dx),

12



1.2 Main results

where Ec satisfies the left strong local property in the sense that Iq[v] ⊂ A(v) and

Ec(u, v) = 0 whenever v ∈ C0(E) ∩ D(E) and u ∈ I(v). Ec, J and K are called the

diffusion part, jumping measure and killing measure of (E, D(E)), respectively.

1.2 Main results

For the generalized Feynman-Kac semigroups associated with nearly symmetric Markov

processes, we have the following results:

Theorem 1.8. Suppose that X is a right process which is associated with a (non-

symmetric) Dirichlet form (E, D(E)) on L2(E; m). Let u ∈ D(E). Assume that

J1(E×E\d) < ∞, where J1 is the anti-symmetric part of the jumping measure in the

Beurling-Deny decomposition of (E, D(E)) and d means the elements on the diagonal.

Then the following two conditions are equivalent to each other:

(i) There exists a constant α0 ≥ 0 such that

Qu(f, f) ≥ −α0(f, f)m, ∀f ∈ D(E)b,

where D(E)b = D(E) ∩ L∞(E, m).

(ii) There exists a constant α0 ≥ 0 such that

‖P u
t ‖2 ≤ eα0t, ∀t > 0,

where ‖P u
t ‖2 means the operator norm of P u

t from L2(E, m) to L2(E, m).

Furthermore, if one of these conditions holds, then the semigroup (P u
t )t≥0 is strongly

continuous on L2(E; m).

Theorem 1.9. Let U be an open set of Rd and m be a positive Radon measure on

U with supp[m] = U . Suppose that X is a right process which is associated with

a (non-symmetric) Dirichlet form (E, D(E)) on L2(U ; m) such that C∞
0 (U) is dense

in D(E). Then the conclusions of Theorem 1.1 remain valid without assuming that

J1(E × E\d) < ∞.

13



1.2 Main results

To get Fukushima’s decomposition in the semi-Dirichlet forms setting, we need to

put one assumption on the quasi-regular semi-Dirichlet form (E, D(E)).

Fix a function φ ∈ L2(E; m) with 0 < φ ≤ 1 m-a.e. and set ĥ = Ĝ1φ. Let V be

a quasi-open subset of E. Define τV = inf{t ≥ 0 | Xt /∈ V }. Define the part process

XV = (XV
t )t≥0 of X on V as follows

XV
t = Xt for t < τV , XV

t = Δ for t ≥ τV .

Denote (EV , D(E)V ) the part form of (E, D(E)) on L2(V ; m). Denote by (GV
α )α≥0 and

(ĜV
α )α≥0 the resolvent and co-resolvent associated with (EV , D(E)V ), respectively.

Define h̄V := ĥ|V ∧ ĜV
1 φ.

For an additive functional (abbreviate as AF) A = (At)t≥0 of XV , we define

eV (A) := lim
t↓0

1

2t
Eh̄V ·m(A2

t )

whenever the limit exists in [0,∞]. Define

ṀV := {M |M is an AF of XV , Ex(M
2
t ) < ∞, Ex(Mt) = 0

for all t ≥ 0 and E-q.e. x ∈ V, eV (M) < ∞},

NV
c := {N |N is a CAF of XV , Ex(|Nt|) < ∞ for all t ≥ 0

and E-q.e. x ∈ V, eV (N) = 0},

Θ := {{Vn} |Vn is E-quasi-open, Vn ⊂ Vn+1 E-q.e.,

∀ n ∈ N, and E = ∪∞
n=1Vn E-q.e.},

and

D(E)loc := {u | ∃ {Vn} ∈ Θ and {un} ⊂ D(E)

such that u = un m-a.e. on Vn, ∀ n ∈ N}.

Define

Ṁloc := {M |M is a local AF of M, ∃ {Vn}, {En} ∈ Θ and {Mn |Mn ∈ ṀVn}
such that En ⊂ Vn, Mt∧τEn

= Mn
t∧τEn

, t ≥ 0, n ∈ N}

14



1.3 Organization of the thesis

and

Nc,loc := {N |N is a local AF of M, ∃ {Vn}, {En} ∈ Θ and {Nn |Nn ∈ NVn
c }

such that En ⊂ Vn, Nt∧τEn
= Nn

t∧τEn
, t ≥ 0, n ∈ N}.

We use M
[[0,ζ[[
loc to denote the family of all local martingales on [[0, ζ[[ (cf. (HWY1992,

§8.3)).

We put the following assumption:

Assumption 1.1. There exists {Vn} ∈ Θ such that, for each n ∈ N, there exists a

Dirichlet form (η(n), D(η(n))) on L2(Vn; m) and a constant Cn > 1 such that D(η(n)) =

D(E)Vn and for any u ∈ D(E)Vn,

1

Cn

η
(n)
1 (u, u) ≤ E1(u, u) ≤ Cnη

(n)
1 (u, u).

Theorem 1.10. Suppose that (E, D(E)) is a quasi-regular local semi-Dirichlet form

on L2(E; m) satisfying Assumption 1.1. Then, for any u ∈ D(E)loc, there exist M [u] ∈
Ṁloc and N [u] ∈ Nc,loc such that

ũ(Xt) − ũ(X0) = M
[u]
t + N

[u]
t , t ≥ 0, Px-a.s. for E-q.e. x ∈ E. (1.8)

Moreover, M [u] ∈ M
[[0,ζ[[
loc . Decomposition (1.8) is unique up to the equivalence of local

AFs.

For local martingale additive functionals, we have the following result.

Theorem 1.11. Suppose that (E, D(E)) is a quasi-regular local semi-Dirichlet form

on L2(E; m) satisfying Assumption 1.1. Let m ∈ N, Φ ∈ C1(Rm), and u = (u1, u2, . . . , um)

with ui ∈ D(E)loc, 1 ≤ i ≤ m. Then Φ(u) ∈ D(E)loc and

M [Φ(u)],c =
m∑

i=1

Φxi
(u) · M [ui],c on [0, ζ), Px-a.s. for E-q.e. x ∈ E.

1.3 Organization of the thesis

This thesis is organized as follows. In Chapter 2, we will give the results on the

strong continuity of the generalized Feynman-Kac semigroups for Markov processes
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1.3 Organization of the thesis

which are associated with (non-symmetric) Dirichlet forms. In Chapter 3, we will

present the results on Fukushima’s decomposition and a transform formula for local

martingale additive functionals in the semi-Dirichlet forms case. In Chapter 4, we

will state the future work.
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Chapter 2

Generalized Feynman-Kac transfor-

mation

Let E be a metrizable Lusin space and X = ((Xt)t≥0, (Px)x∈EΔ
) be a right (continuous

strong Markov) process on E. Suppose that X is associated with a (non-symmetric)

Dirichlet form (E, D(E)) on L2(E; m), where m is a σ-finite measure on the Borel σ-

algebra B(E) of E. Then, by (MR1992, IV, Theorem 6.7) (cf. also (F2001, Theorem

3.22)), (E, D(E)) is quasi-regular. Moreover, (E, D(E)) is quasi-homeomorphic to a

regular Dirichlet form (see (CMR1994)).

Let u ∈ D(E). Then, we have Fukushima’s decomposition (cf. (MR1992, VI,

Theorem 2.5))

ũ(Xt) − ũ(X0) = Mu
t + Nu

t ,

where ũ is a quasi-continuous m-version of u, Mu
t is a square integrable martingale

additive functional (MAF) and Nu
t is a continuous additive functional (CAF) of zero

energy. For x ∈ E, denote by Ex the expectation with respect to Px. Define the

generalized Feynman-Kac transformation

P u
t f(x) = Ex[e

Nu
t f(Xt)], f ≥ 0 and t ≥ 0.

In this chapter, we will investigate the strong continuity of the semigroup (P u
t )t≥0 on

L2(E; m). This part of the thesis is based on the paper (MS2010a), which will appear

in the Journal of Theoretical Probability.
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Note that many useful tools of symmetric Dirichlet forms, e.g. time reversal and

Lyons-Zheng decomposition, do not apply well to the non-symmetric Dirichlet forms

setting. That makes the problem more difficult. Also, we would like to point out that

the Girsanov transformed process of X induced by Mu
t and the Girsanov transformed

process of X̂ induced by M̂u
t are not in duality in general (cf. (CS2009)), where

X̂ is the dual process of X and M̂u
t is the martingale part of ũ(X̂t) − ũ(X̂0). The

method of this part is inspired by (CMS2007) and (CFKZ2009). We will combine the

h-transform method of (CMS2007) and the localization method used in(CFKZ2009).

It is worth to point out that the Beurling-Deny formula given in (HMS2006) and

LeJan’s transformation rule developed in (HMS2010) play a crucial role here.

Denote by J and K the jumping and killing measures of (E, D(E)), respectively.

Write Ĵ(dx, dy) = J(dy, dx). Denote by J1 := (J−Ĵ)+ the positive part of the Jordan

decomposition of J−Ĵ . J1 is called the dissymmetric part of J . Note that J0 := J−J1

is the largest symmetric σ-finite positive measure dominated by J . Denote by d the

diagonal of the product space E × E; and denote by ‖ · ‖2 and (·, ·)m the norm and

inner product of L2(E; m), respectively.

Now we can state the main results of this chapter.

Theorem 2.1. Suppose that X is a right process which is associated with a (non-

symmetric) Dirichlet form (E, D(E)) on L2(E; m). Let u ∈ D(E). Assume that

J1(E × E\d) < ∞. Then the following two conditions are equivalent to each other:

(i) There exists a constant α0 ≥ 0 such that

Qu(f, f) ≥ −α0(f, f)m, ∀f ∈ D(E)b.

(ii) There exists a constant α0 ≥ 0 such that

‖P u
t ‖2 ≤ eα0t, ∀t > 0.

Furthermore, if one of these conditions holds, then the semigroup (P u
t )t≥0 is strongly

continuous on L2(E; m).

Theorem 2.2. Let U be an open set of Rd and m be a positive Radon measure on

U with supp[m] = U . Suppose that X is a right process which is associated with
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2.1 Preliminaries

a (non-symmetric) Dirichlet form (E, D(E)) on L2(U ; m) such that C∞
0 (U) is dense

in D(E). Then the conclusions of Theorem 2.1 remain valid without assuming that

J1(E × E\d) < ∞.

The rest of this chapter is organized as follows. In the first section, we will make

necessary preparations. In the second section, we will prove the main results and give

some remarks. In the last section, we will apply the results to some examples.

2.1 Preliminaries

By quasi-homeomorphism, we assume without loss of generality that X is a Hunt

process and (E, D(E)) is a regular (non-symmetric) Dirichlet form on L2(E; m), where

E is a locally compact separable metric space and m is a positive Radon measure

on E with supp[m] = E. We denote by Δ and ζ the cemetery and lifetime of X,

respectively. It is known that every f ∈ D(E) has a quasi-continuous m-version. To

simplify notation, we still denote this version by f .

Let u ∈ D(E). By (MR1992, III, Proposition 1.5), there exists |u|E ∈ D(E) such

that |u|E ≥ |u| m-a.e. on E and E1(|u|E, w) ≥ 0 for all w ∈ D(E) with w ≥ 0 m-a.e. on

E. Similar to (FOT1994, Theorems 2.2.1 and 2.2.2), we can show that there exists a

positive Radon measure ηu on E such that ηu charges no E-exceptional set and

E1(|u|E, w) =

∫
E

wdηu, w ∈ D(E). (2.1)

Define

u∗ := u + |u|E. (2.2)

Then, u∗ has a quasi-continuous m-version which is nonnegative q.e. on E. Moreover,

there exists an E-nest {Fn}n∈N consisting of compact sets of E such that u∗ is con-

tinuous and hence bounded on Fn for each n ∈ N. Define τFn = inf{t > 0 |Xt /∈ Fn}.
By (MR1992, IV, Proposition 5.30), limn→∞ τFn = ζ Px-a.s. for q.e. x ∈ E.

Let (N,H) be a Lévy system of X, that is, N(x, dy) is a kernel on (EΔ, B(EΔ)) and

Ht is a positive continuous additive functional (abbreviated as PCAF) with bounded
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2.1 Preliminaries

1-potential such that for any nonnegative Borel function f on EΔ × EΔ vanishing on

the diagonal and any x ∈ EΔ,

Ex[
∑
s≤t

f(Xs−, Xs)] = Ex[

∫ t

0

∫
EΔ

f(Xs, y)N(Xs, dy)dHs].

Let ν be the Revuz measure of H. Define

Bt =
∑
s≤t

[
e(u∗(Xs−)−u∗(Xs)) − 1 − (u∗(Xs−) − u∗(Xs))

]
. (2.3)

Note that for any M > 0 there exists CM > 0 such that (ex − 1 − x) ≤ CMx2

for all x satisfying x ≤ M . Since (u∗(Xt−))t≥0 is locally bounded, (u∗(Xt))t≥0 is

nonnegative and M−u∗
is a Px-square integrable martingale for q.e. x ∈ E, hence

(Bt)t≥0 is locally Px-integrable on [0, ζ) for q.e. x ∈ E. Here and henceforth the

phrase “on [0, ζ)” is understood as “on the optional set [[0, ζ[[ of interval type” in the

sense of (HWY1992, Chap. VIII, 3). By (FOT1994, (A.3.23)), one finds that the

dual predictable projection of (Bt)t≥0 is given by

Bp
t =

∫ t

0

∫
E�

[e(u∗(Xs)−u∗(y)) − 1 − (u∗(Xs) − u∗(y))]N(Xs, dy)dHs.

We set

Md
t = Bt − Bp

t (2.4)

and denote

Mt = M−u∗
t + Md

t . (2.5)

Note that for any M > 0 there exists DM > 0 such that (ex − 1 − x)2 ≤ DMx2

for all x satisfying x ≤ M . Since (u∗(Xt−))t≥0 is locally bounded, (u∗(Xt))t≥0 is

nonnegative and M−u∗
is a Px-square integrable martingale for q.e. x ∈ E, hence

(Md
t )t≥0 is a locally square integrable martingale additive functional (abbreviated as

MAF) on [0, ζ) by (HWY1992, Theorem 7.40). Therefore (Mt)t≥0 is a locally square

integrable MAF on [0, ζ). We denote the Revuz measure of (< M >t)t≥0 by μ<M>

(cf. (CFKZ2008a, Remark 2.2)).

Let M−u∗,c
t be the continuous part of M−u∗

t . Define

A−u∗
t = Bp

t +
1

2
< M−u∗,c >t . (2.6)
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Then (A−u∗
t )t≥0 is a PCAF. Denote by μ−u∗ the Revuz measure of (A−u∗

t )t≥0. Then

μ−u∗(dx) =

∫
E�

[e(u∗(x)−u∗(y)) − 1 − (u∗(x) − u∗(y))]N(x, dy)ν(dx)

+
1

2
μ<M−u∗,c>(dx). (2.7)

Define

μ−u := μ−u∗ + ηu − |u|Em (2.8)

and

μ′
−u := μ−u∗ + ηu + |u|Em.

Lemma 2.1. There exists an E-nest {F ′
n}n∈N consisting of compact sets of E which

satisfies the following condition: ∀ε > 0, there exists a constant An
ε > 0 such that

∀f ∈ D(E), ∫
E

f 2IF ′
n
d(μ<M> + μ′

−u) ≤ εE(f, f) + An
ε (f, f).

Proof. Let (Ẽ, D(E)) be the symmetric part of (E, D(E)). Denote by {G̃α}α≥0 the

resolvent of (Ẽ, D(E)). Let φ ∈ L2(E, m) and 0 < φ ≤ 1 m.a.e, set h̃ = G̃1φ. Define

(Ẽh̃, D(Ẽh̃)), the h̃−transform of (Ẽ, D(E)), by

D(Ẽh̃) := {u ∈ L2(E; h̃2m)| uh̃ ∈ D(E)}
Ẽh̃(u, v) := Ẽ(h̃u, h̃v).

To simplify notation, we denote μ := μ<M> + μ′
−u. By (MR1995, Proposition 4.2),

we know that an Ẽh̃
1-nest is also an E1-nest, so μ ∈ S(Ẽh̃

1). Note that (Ẽh̃
1 , D(Ẽh̃)) is

a symmetric Dirichlet form on L2(E; h̃2m). By (AM1992, Theorem 2.4), there is an

Ẽh̃
1−nest {F 1

k }k≥1 consisting of compact sets such that IF 1
k
μ ∈ SK(Ẽh̃

1) (the Kato class

of smooth measure). Set F
′
k = F 1

k

⋂
Fk, where {Fk}k≥1 is an Ẽh̃

1−nest such that h̃

is continuous on each Fk. Then {F ′
k}k≥1 is an Ẽh̃

1−nest and hence an E1−nest. By

(AM1991, Proposition 3.1(i)), for any ε > 0, there is a constant σ > 0 such that for

g ∈ D(Ẽh̃), ∫
g2IF

′
k
dμ ≤ ε

‖ h̃ |F ′
k
‖2∞

Ẽh̃(g, g) + σ(g, g)h̃2m.
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Let f ∈ D(E). Then f

h̃
∈ D(Ẽh̃). Note that any smooth measure dose not charge

set of zero capacity. Then∫
f 2IF

′
k
dμ =

∫
(
f

h̃
)2(h̃)2IF

′
k
dμ ≤‖ h̃ |F ′

k
‖2
∞

∫
(
f

h̃
)2IF

′
k
dμ

≤ εẼh̃(
f

h̃
,
f

h̃
) + σ(

f

h̃
,
f

h̃
)h̃2m = εE(f, f) + σ(f, f).

Remark 2.1. Here we use h̃-transform to prove the following result: Let (E, D(E)) be

a quasi-regular Dirichlet form and μ ∈ S. Then there is an E-nest {Fk}k≥1 satisfying

the following conditions: for any ε > 0, there exist a constant An
ε such that for any

f ∈ D(E), ∫
E

IFnf 2dμ ≤ εE(f, f) + An
ε‖f‖2

2. (2.9)

In fact, (2.9) hold for any quasi-regular semi-Dirichlet form. We will prove it in the

Appendix by another method.

To simplify notation, we still use Fn to denote Fn ∩ F ′
n for n ∈ N. Let En be the

fine interior of Fn with respect to X. Define D(E)n := {f ∈ D(E) | f = 0 q.e. on Ec
n},

τEn = inf{t > 0 |Xt /∈ En} and

P̄ u,n
t f(x) := Ex[e

M−u∗
t −N

|u|E
t f(Xt); t < τEn ].

2.2 Proofs of the main results

2.2.1 The bilinear form associated with (P̄u,n
t )t≥0 on L2(En;m)

For n ∈ N, we define the bilinear form (Q̄u,n, D(E)n) by

Q̄u,n(f, g) = E(f, g) −
∫

E

gdμ<Mf ,M> −
∫

E

fgdμ−u, f, g ∈ D(E)n. (2.10)

By Lemma 2.1 and the choice of {Fn}n≥1, we know that for every ε > 0, there exists

a constant An
ε > 0 such that∫

E

w2d(μ<M> + μ′
−u) ≤ εE(w, w) + An

ε‖w‖2
2, w ∈ D(E)n.
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2.2 Proofs of the main results

Suppose that |E(f, g)| ≤ k1E1(f, f)
1
2 E1(g, g)

1
2 for all f, g ∈ D(E) and some constant

k1 > 0. Then

|Q̄u,n(f, g)| ≤ k1E1(f, f)
1
2 E1(g, g)

1
2 +

(∫
E

dμ<Mf >

) 1
2
(∫

E

g2dμ<M>

) 1
2

+

(∫
E

f 2dμ′
−u

) 1
2
(∫

E

g2dμ′
−u

) 1
2

≤ k1E1(f, f)
1
2 E1(g, g)

1
2 + (max(ε, An

ε ))
1
2 [2E(f, f)]

1
2 E1(g, g)

1
2

+ max(ε, An
ε ) · E1(f, f)

1
2 E1(g, g)

1
2

≤ θnE1(f, f)
1
2 E1(g, g)

1
2 , (2.11)

where θn := (k1 +
√

2 max(ε, An
ε ) + max(ε, An

ε )).

Fix an ε < (
√

2 − 1)/(
√

2 + 1) and set αn := 2An
ε . Then

Q̄u,n
αn

(f, f) := Q̄u,n(f, f) + αn(f, f)

≥ E(f, f) −
(∫

E

dμ<Mf >

) 1
2
(∫

E

f 2dμ<M>

) 1
2

−
∫

E

f 2dμ′
−u + αn(f, f)

≥ E(f, f) − (ε E(f, f) + An
ε‖f‖2

2)
1
2 [2E(f, f)]

1
2

−(ε E(f, f) + An
ε‖f‖2

2) + αn(f, f)

≥ E(f, f) − 1√
2
((1 + ε)E(f, f) + An

ε‖f‖2
2)

−(ε E(f, f) + An
ε‖f‖2

2) + αn(f, f)

≥
√

2 − 1 − (
√

2 + 1)ε√
2

E(f, f) +
(
√

2 − 1)An
ε√

2
‖f‖2

2. (2.12)

By (2.11), (2.12) and (MR1992, I, Proposition 3.5), we know that (Q̄u,n
αn

, D(E)) is

a coercive closed form on L2(En; m).

Theorem 2.3. For each n ∈ N, (P̄ u,n
t )t≥0 is a strongly continuous semigroup of

bounded operators on L2(En; m) with ‖P̄ u,n
t ‖2 ≤ eβnt for every t > 0 and some con-

stant βn > 0. Moreover, the coercive closed form associated with (e−βntP̄ u,n
t )t≥0 is

given by (Q̄u,n
βn

, D(E)n).

Proof. The proof is similar to that of (FK2004, Theorem 1.1), which is based on a key

lemma (see (FK2004, Lemma 3.2)) and a remarkable localization method. In fact, the

23



2.2 Proofs of the main results

proof of our Theorem 2.3 is simpler since IFn(μ<M> +μ′
−u) is in the Kato class instead

of the Hardy class and there is no time reversal part in the semigroup (P̄ u,n
t )t≥0. We

omit the details of the proof here and only give the following key lemma, which is the

counterpart of (FK2004, Lemma 3.2).

Lemma 2.2. Let (LQ̄u,n
, D(LQ̄u.n

)) be the generator of (Q̄u,n, D(E)n). Then, for any

f ∈ D(LQ̄u,n
), we have

f(Xt)e
M−u∗

t −N
|u|E
t = f(X0) +

∫ t

0

eM−u∗
s− −N

|u|E
s− dM f

s

+

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dMs

+

∫ t

0

eM−u∗
s− −N

|u|E
s− LQ̄u,n

f(Xs)ds

Pm-a.s. on {t < τEn}.

Proof. Let f ∈ D(LQ̄u,n
) and g ∈ D(E)n. Then, by (2.10), we get

E(f, g) = Q̄u,n(f, g) +

∫
E

gdμ<Mf ,M> +

∫
E

fgdμ−u

= −(LQ̄u,n

f, g) +

∫
E

gdμ<Mf ,M> +

∫
E

fgdμ−u. (2.13)

By (2.1), (2.13) and (O1988, Theorem 5.2.7), we find that (N
|u|E
t )t≥0 is a CAF of

bounded variation and

N f
t =

∫ t

0

LQ̄u,n

f(Xs)ds− < M f ,M >t −
∫ t

0

f(Xs)d(A−u∗
s − N |u|E

s )

for t < τEn . Therefore, for t < τEn , we have

f(Xt) − f(X0) = M f
t + N f

t

= M f
t +

∫ t

0

LQ̄u,n

f(Xs)ds− < M f ,M >t

−
∫ t

0

f(Xs)d(A−u∗
s − N |u|E

s ). (2.14)

By Itô’s formula (cf. (P2005, II, Theorem 33)), (2.14) and (2.4)−(2.6), we obtain
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that for t < τEn

f(Xt)e
M−u∗

t −N
|u|E
t

= f(X0) +

∫ t

0

eM−u∗
s− −N

|u|E
s− df(Xs) +

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)d(M−u∗

s − N |u|E
s )

+
1

2

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)d < M−u∗,c >s +

∫ t

0

eM−u∗
s− −N

|u|E
s− d < M f,c,M−u∗,c >s

+
∑
s≤t

[f(Xs)e
M−u∗

s −N
|u|E
s − f(Xs−)eM−u∗

s− −N
|u|E
s−

−eM−u∗
s− −N

|u|E
s− �f(Xs) − f(Xs−)eM−u∗

s− −N
|u|E
s− �M−u∗

s ]

= f(X0) +

∫ t

0

eM−u∗
s− −N

|u|E
s− dM f

s +

∫ t

0

eM−u∗
s− −N

|u|E
s− LQ̄u,n

f(Xs)ds

−
∫ t

0

eM−u∗
s− −N

|u|E
s− d < M f ,M >s −

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs)d(A−u∗

s − N |u|E
s )

+

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)d(M−u∗

s − N |u|E
s )

+
1

2

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)d < M−u∗,c >s +

∫ t

0

eM−u∗
s− −N

|u|E
s− d < M f,c,M−u∗,c >s

+
∑
s≤t

[f(Xs)e
M−u∗

s −N
|u|E
s − f(Xs−)eM−u∗

s− −N
|u|E
s−

−eM−u∗
s− −N

|u|E
s− �f(Xs) − f(Xs−)eM−u∗

s− −N
|u|E
s− �M−u∗

s ]

=

{
f(X0) +

∫ t

0

eM−u∗
s− −N

|u|E
s− dM f

s +

∫ t

0

eM−u∗
s− −N

|u|E
s− LQ̄u,n

f(Xs)ds

+

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dM−u∗

s

}
+

{
−

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs)dA−u∗

s +
1

2

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)d < M−u∗,c >s

−
∫ t

0

eM−u∗
s− −N

|u|E
s− d < M f ,M >s +

∫ t

0

eM−u∗
s− −N

|u|E
s− d < M f,c,M−u∗,c >s

+
∑
s≤t

[f(Xs)e
M−u∗

s −N
|u|E
s − f(Xs−)eM−u∗

s− −N
|u|E
s−

−eM−u∗
s− −N

|u|E
s− �f(Xs) − f(Xs−)eM−u∗

s− −N
|u|E
s− �M−u∗

s ]
}

=

{
f(X0) +

∫ t

0

eM−u∗
s− −N

|u|E
s− dM f

s +

∫ t

0

eM−u∗
s− −N

|u|E
s− LQ̄u,n

f(Xs)ds

+

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dM−u∗

s

}
+

{
−

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dBp

s −
∫ t

0

eM−u∗
s− −N

|u|E
s− d < M f,d,Md >s

−
∫ t

0

eM−u∗
s− −N

|u|E
s− d < M f,d,M−u∗,d >s
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+
∑
s≤t

[f(Xs)e
M−u∗

s −N
|u|E
s − f(Xs−)eM−u∗

s− −N
|u|E
s−

−eM−u∗
s− −N

|u|E
s− �f(Xs) − f(Xs−)eM−u∗

s− −N
|u|E
s− �M−u∗

s ]
}

:= I + II. (2.15)

Note that

II = −
∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dBp

s +
∑
s≤t

[−eM−u∗
s− −N

|u|E
s− �f(Xs)�Bs

−eM−u∗
s− −N

|u|E
s− �f(Xs)�M−u∗

s ] +
∑
s≤t

[f(Xs)e
M−u

s −N
|u|E
s

−f(Xs−)eM−u∗
s− −N

|u|E
s− − eM−u∗

s− −N
|u|E
s− �f(Xs) − f(Xs−)eM−u∗

s− −N
|u|E
s− �M−u∗

s ]

= −
∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dBp

s +
∑
s≤t

[−eM−u∗
s− −N

|u|E
s− �f(Xs)(e

�M−u∗
s − 1)

+f(Xs)e
M−u∗

s −N
|u|E
s − f(Xs−)eM−u∗

s− −N
|u|E
s− − eM−u∗

s− −N
|u|E
s− �f(Xs))

−f(Xs−)eM−u∗
s− −N

|u|E
s− �M−u∗

s ]

= −
∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dBp

s +
∑
s≤t

[eM−u∗
s− −N

|u|E
s− f(Xs−)e�M−u∗

s

−f(Xs−)eM−u∗
s− −N

|u|E
s− − f(Xs−)eM−u∗

s− −N
|u|E
s− �M−u∗

s ]

= −
∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dBp

s +

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dBs

=

∫ t

0

eM−u∗
s− −N

|u|E
s− f(Xs−)dMd

s . (2.16)

Therefore (2.13) follows from (2.15) and (2.16).

2.2.2 The bilinear form associated with (P̄u,n
t )t≥0 on L2(En; e−2u∗

m)

For n ∈ N, since u∗ ·IEn is bounded, (P̄ u,n
t )t≥0 is also a strongly continuous semigroup

on L2(En; e−2u∗
m) by Theorem 2.3. In the following, we will study the bilinear form

associated with (P̄ u,n
t )t≥0 on L2(En; e−2u∗

m).

Define D(E)n,b := D(E)n ∩ L∞(E; m). Let f, g ∈ D(E)n,b. Note that e−2u∗
g =

(e−2u∗ − 1)g + g ∈ D(E)n,b. Define

Eu,n(f, g) := Q̄u,n(f, e−2u∗
g), f, g ∈ D(E)n,b. (2.17)
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Then, by Theorem 2.3, we get

Eu,n(f, g) = lim
t→0

1

t
(f − P̄ u,n

t f, e−2u∗
g)m = lim

t→0

1

t
(f − P̄ u.n

t f, g)e−2u∗
m. (2.18)

(Eu,n, D(E)n,b) is called the bilinear from associated with (P̄ u,n
t )t≥0 on L2(En; e−2u∗

m).

Note that

< M f,Md >t

= [M f ,Md]pt

=

{∑
s≤t

[f(Xs) − f(Xs−)][e(u∗(Xs−)−u∗(Xs)) − 1 − (u∗(Xs−) − u∗(Xs))]

}p

=

∫ t

0

∫
E�

[f(y) − f(Xs)][e
(u∗(Xs)−u∗(y)) − 1 − (u∗(Xs) − u∗(y))]N(Xs, dy)dHs.

Then∫
E

gdμ<Mf ,Md>

=

∫
E

∫
E�

g(x)[f(y) − f(x)][e(u∗(x)−u∗(y)) − 1 − (u∗(x) − u∗(y))]N(x, dy)ν(dx).

(2.19)

By (2.7) and (2.8), we get∫
E

fgdμ−u =

∫
E

∫
E�

f(x)g(x)[e(u∗(x)−u∗(y)) − 1 − (u∗(x) − u∗(y))]N(x, dy)ν(dx)

+
1

2

∫
E

fgdμ<M−u∗,c> +

∫
E

fgdηu −
∫

E

fg|u|Edm. (2.20)

Similar to (FOT1994, Theorem 5.3.1) (cf. also (O1988, Chapter 5)), we can show

that J(dx, dy) = 1
2
N(y, dx)ν(dy) and K(dx) = N(x,�)ν(dx). Therefore, we obtain

by (2.17), (2.10), (2.19) and (2.20) that

Eu,n(f, g) = Q̄u.n(f, e−2u∗
g)

= E(f, e−2u∗
g) −

∫
E

e−2u∗
gdμ<Mf ,M> −

∫
E

e−2u∗
fgdμ−u

= E(f, e−2u∗
g) −

∫
E

e−2u∗
gdμ<Mf ,M−u∗

> −
∫

E

e−2u∗
gdμ<Mf ,Md>

−
∫

E

e−2u∗
fgdμ−u
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= E(f, e−2u∗
g) −

∫
E

e−2u∗
gdμ<Mf ,M−u∗

>

−2

∫
E×E\d

e−2u∗(y)g(y)f(x)[e(u∗(y)−u∗(x)) − 1 − (u∗(y) − u∗(x))]J(dx, dy)

−1

2

∫
E

e−2u∗
fgdμ<M−u∗,c> − E(|u|E, e−2u∗

fg).

(2.21)

By using Beurling-Deny formula given in (HMS2006) and LeJan’s transformation rule

developed in (HMS2010), we will prove the following result.

Theorem 2.4. For each n ∈ N, under the assumption of Theorem 2.1 or Theorem

2.2, we have

Eu,n(f, g) = Qu(fe−u∗
, ge−u∗

), f, g ∈ D(E)n,b. (2.22)

Proof. We fix an n ∈ N. Define

Ψu∗,n(f,g) := E(f, e−2u∗
g) −

∫
E

e−2u∗
gdμ<Mf ,M−u∗

>

−2

∫
E×E\d

e−2u∗(y)g(y)f(x)[e(u∗(y)−u∗(x)) − 1 − (u∗(y) − u∗(x))]J(dx, dy)

−1

2

∫
E

e−2u∗
fgdμ<M−u∗,c>, f, g ∈ D(E)n,b. (2.23)

Then, by (2.21) and (2.18), we find that (2.22) is equivalent to

Ψu∗,n(f, g) = E(fe−u∗
, ge−u∗

) + E(u∗, e−2u∗
fg), f, g ∈ D(E)n,b. (2.24)

Since u∗ · IEn is bounded, there exists l0 ∈ N such that |u∗(x)| ≤ l0 for all x ∈ En.

For l ∈ N, define u∗
l := ((−l)∨u∗)∧ l. Then u∗

l ∈ D(E)b and u∗ = u∗
l on En for l ≥ l0.

Similar to (FOT1994, Lemma 5.3.1), we can show that μ<M−u∗,c>|En = μ
<M

−u∗
l

,c
>
|En

for l ≥ l0. For φ ∈ D(E)b, we define

Ψφ,n(f,g) := E(f, e−2φg) −
∫

E

e−2φgdμ<Mf ,M−φ>

−2

∫
E×E\d

e−2φ(y)g(y)f(x)[e(φ(y)−φ(x)) − 1 − (φ(y) − φ(x))]J(dx, dy)

−1

2

∫
E

e−2φfgdμ<M−φ,c>, f, g ∈ D(E)n,b. (2.25)
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Then, by (2.23) and (2.25), we find that for l ≥ l0

Ψu∗,n(f, g) = Ψu∗
l ,n(f, g) +

∫
E

e−2u∗
gdμ

<Mf ,M
u∗−u∗

l >
, f, g ∈ D(E)n,b.

Note that by (O1988, (5.1.3))∣∣∣∣∫
E

e−2u∗
gdμ

<Mf ,M
u∗−u∗

l >

∣∣∣∣ ≤ 2e2l0‖g‖∞E(f, f)
1
2 E(u∗ − u∗

l , u
∗ − u∗

l )
1
2

→ 0 as l → ∞,

and

E(u∗
l , e

−2u∗
fg) → E(u∗, e−2u∗

fg) as l → ∞.

Hence, to establish (2.24), it is sufficient to show that for any φ ∈ D(E)b and f, g ∈
D(E)n,b

Ψφ,n(f, g) = E(fe−φ, ge−φ) + E(φ, e−2φfg). (2.26)

Let φ ∈ D(E)b. By (O1988, (5.3.2)), we have∫
gdμ<Mf ,M−φ> = −E(f, gφ) − E(φ, gf) + E(fφ, g). (2.27)

By (2.25) and (2.27), we find that (2.26) is equivalent to

E(f, e−2φg) + E(f, e−2φgφ) − E(fφ, e−2φg)

−2

∫
E×E\d

e−2φ(y)g(y)f(x)[e(φ(y)−φ(x)) − 1 − (φ(y) − φ(x))]J(dx, dy)

−1

2

∫
E

e−2φfgdμ<M−φ,c>

= E(fe−φ, ge−φ). (2.28)

Denote by M−φ,j
t and M−φ,k

t the jumping and killing parts of M−φ
t , respectively.

Then, similar to (FOT1994, (5.3.9) and (5.3.10)), we get

μ<M−φ,j>(dx) = 2

∫
E

(φ(x) − φ(y))2J(dy, dx) and μ<M−φ,k>(dx) = φ2(x)K(dx).

Thus, for any w ∈ D(E)b, we have∫
E

wdμ<M−φ,c> =

∫
E

wd(μ<M−φ> − μ<M−φ,j> − μ<M−φ,k>)

= 2E(φ, φw) − E(φ2, w)

−2

∫
E×E\d

(φ(y) − φ(x))2w(y)J(dx, dy) −
∫

E

wφ2dK.

(2.29)

29



2.2 Proofs of the main results

By (2.29), we find that (2.28) is equivalent to

E(f, e−2φg) + E(f, e−2φgφ) − E(fφ, e−2φg) − E(φ, e−2φφfg) +
1

2
E(φ2, e−2φfg)

−2

∫
E×E\d

e−2φ(y)g(y)f(x)[e(φ(y)−φ(x)) − 1 − (φ(y) − φ(x))]J(dx, dy)

+

∫
E×E\d

(φ(y) − φ(x))2e−2φ(y)f(y)g(y)J(dx, dy) +
1

2

∫
E

e−2φfgφ2dK

= E(fe−φ, ge−φ). (2.30)

Proof of (2.30) under the assumption of Theorem 2.1.

Denote by Ẽ the symmetric part of E. Then (Ẽ, D(E)) is a regular symmetric Dirichlet

form. Denote by J̃ and K̃ the jumping and killing measures of (Ẽ, D(E)), respectively.

Then ∫
E×E\d

(φ(y) − φ(x))2J(dx, dy) +

∫
E

φ2dK

≤ 2

{∫
E×E\d

(φ(y) − φ(x))2J̃(dx, dy) +

∫
E

φ2dK̃

}
≤ 2E(φ, φ) (2.31)

and ∫
E×E\d

[e(φ(y)−φ(x)) − 1 − (φ(y) − φ(x))]J(dx, dy)

≤ C‖φ‖∞

∫
E×E\d

(φ(y) − φ(x))2J(dx, dy)

≤ C‖φ‖∞E(φ, φ) (2.32)

for some constant C‖φ‖∞ > 0. Hence, to establish (2.30) for φ ∈ D(E)b and f, g ∈
D(E)n,b, it is sufficient to establish (2.30) for φ, f, g ∈ D := C0(E) ∩ D(E) by virtue

of the density of D in D(E) and approximation.

By (HMS2006, Theorem 4.8 and Proposition 5.1), we have the following Beurling-

Deny decomposition

E(f, g) = Ec(f, g) + SPV

∫
E×E\d

2(f(y) − f(x))g(y)J(dx, dy)

+

∫
E

fgdK, f, g ∈ D(E)b, (2.33)
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where SPV
∫

denotes the symmetric principle value integral (see (HMS2006, Def-

inition 2.5)) and Ec(f, g) satisfies the left strong local property in the sense that

Ec(f, g) = 0 if f is constant E-q.e. on a quasi-open set containing the quasi-support

of g (see (HMS2006, Theorem 4.1)). By (2.33), we obtain that for any w ∈ D(E)b,

2E(φ,φw) − E(φ2, w)

−2

∫
E×E\d

(φ(y) − φ(x))2w(y)J(dx, dy) −
∫

E

wφ2dK

= 2Ec(φ, φw) − Ec(φ2, w).

Hence (2.30) is equivalent to

E(f, e−2φg) + E(f, e−2φgφ) − E(fφ, e−2φg) − Ec(φ, e−2φφfg) +
1

2
Ec(φ2, e−2φfg)

−2

∫
E×E\d

e−2φ(y)g(y)f(x)[e(φ(y)−φ(x)) − 1 − (φ(y) − φ(x))]J(dx, dy)

= E(fe−φ, ge−φ). (2.34)

In the following, we will establish (2.34) by showing that its left hand side and

its right hand side have the same diffusion, jumping and killing parts. We assume

without loss of generality that φ, f, g ∈ D.

First, let us consider the diffusion parts of both sides of (2.34). Following (HMS2010,

(3.4)), we introduce a linear functional < L(w, v), · > for w, v ∈ D by

< L(w, v), f >:= Ěc(w, vf) :=
1

2
(Ec(w, vf) − Êc(w, vf)), f ∈ D, (2.35)

where Êc is the left strong local part of the dual Dirichlet form (Ê, D(E)). Define

Dloc := {w | for any relatively compact open set G of E, there

exists a function v ∈ D such that w = v on G}.

Then, the linear functional < L(w, v), · > can be extended and defined for any w, v ∈
Dloc (cf. (HMS2010, Definition 3.6)). Note that J1 is assumed to be finite. Similar

to (HMS2010, Theorem 3.8), we can prove the following lemma.

Lemma 2.3. Let w1, . . . , wl, v ∈ Dloc and f ∈ D. Denote w := (w1, . . . , wl). If

ψ ∈ C2(Rl), then ψ(w) ∈ Dloc, ψxi
(w) ∈ Dloc, 1 ≤ i ≤ l, and

< L(ψ(w), v), f >=
l∑

i=1

< L(wi, v), ψxi
(w)f > . (2.36)
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2.2 Proofs of the main results

By (2.35) and (2.36), we get

Ěc(f, e−2φg) + Ěc(f, e−2φgφ) − Ěc(fφ, e−2φg)

−Ěc(φ, e−2φφfg) +
1

2
Ěc(φ2, e−2φfg)

= Ěc(f, e−2φg) + Ěc(f, e−2φgφ) − Ěc(fφ, e−2φg)

= Ěc(f, e−2φg) − Ěc(φ, e−2φfg)

= Ěc(f, e−2φg) + Ěc(e−φ, e−φfg)

= Ěc(fe−φ, ge−φ). (2.37)

By LeJan’s formula (cf. (FOT1994, Theorem 3.2.2 and Page 117), we can check that

Ẽc(f, e−2φg) + Ẽc(f, e−2φgφ) − Ẽc(fφ, e−2φg)

−Ẽc(φ, e−2φφfg) +
1

2
Ẽc(φ2, e−2φfg)

=
1

2

∫
E

dμ̃c
<f,e−2φg> +

1

2

∫
E

dμ̃c
<f,e−2φgφ> − 1

2

∫
E

dμ̃c
<fφ,e−2φg>

−1

2

∫
E

dμ̃c
<φ,e−2φφfg> +

1

4

∫
E

dμ̃c
<φ2,e−2φfg>

=
1

2

∫
E

dμ̃c
<fe−φ,ge−φ>

= Ẽc(fe−φ, ge−φ), (2.38)

where Ẽc denotes the strong local part of (Ẽ, D(E)) and μ̃c denotes the local part of

energy measure w.r.t. (Ẽ, D(E)). Then the diffusion parts of both sides of (2.34) are

equal by (2.37) and (2.38).

For the jumping parts of (2.34), we have

Ej(f, e−2φg) + Ej(f, e−2φgφ) − Ej(fφ, e−2φg) − Ej(fe−φ, ge−φ)

−2

∫
E×E\d

e−2φ(y)g(y)f(x)[e(φ(y)−φ(x)) − 1 − (φ(y) − φ(x))]J(dx, dy)

= 2SPV

∫
E×E\d

{(f(y) − f(x))e−2φ(y)g(y) + (f(y) − f(x))φ(y)e−2φ(y)g(y)

−(f(y)φ(y) − f(x)φ(x))e−2φ(y)g(y) − (f(y)e−φ(y) − f(x)e−φ(x))e−φ(y)g(y)

−e−2φ(y)g(y)f(x)[e(φ(y)−φ(x)) − 1 − (φ(y) − φ(x))]}J(dx, dy)

= 0.
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2.2 Proofs of the main results

For the killing parts of (2.34), we have

Ek(f, e−2φg) + Ek(f, e−2φgφ) − Ek(fφ, e−2φg) − Ek(fe−φ, ge−φ)

=

∫
E

(fe−2φg + fe−2φgφ − fφe−2φg − fe−2φg)dK

= 0.

The proof is complete.

Proof of (2.30) under the assumption of Theorem 2.2.

Let G be a relatively compact open subset of U such that the distance between

the boundary of G and that of U is greater than some constant δ > 0. Then,

similar to (HMS2010, Theorem 4.8), we can show that (E, C∞
0 (G)) has the following

representation:

E(w, v) =
d∑

i,j=1

∫
U

∂w

∂xi

∂v

∂xj

dνG
ij +

d∑
i=1

< FG
i ,

∂w

∂xi

v >

+ SPV

∫
U×U\d

2

(
d∑

i=1

(yi − xi)
∂w

∂yi

(y)I{|x−y|≤ δ
2
}(x, y)

)
v(y)J̃(dx, dy)

+

∫
U×U\d

2

(
w(y) − w(x) −

d∑
i=1

(yi − xi)
∂w

∂yi

(y)I{|x−y|≤ δ
2
}(x, y)

)
v(y)J(dx, dy)

+

∫
U

wvdK, w, v ∈ C∞
0 (G), (2.39)

where {νG
ij}1≤i,j≤d are signed Radon measures on U such that for every K ⊂ U , K

is compact, νG
ij (K) = νG

ji(K) and
∑d

i,j=1 ξiξjν
G
ij (K) ≥ 0 for all ξ = (ξ1, . . . , ξd) ∈ Rd,

{FG
i }1≤i≤d are generalized functions on U .

By (2.39), we can check that (2.30) holds for all φ, f, g ∈ C∞
0 (U). Therefore (2.30)

holds for φ ∈ D(E)b and f, g ∈ D(E)n,b by (2.31), (2.32) and approximation. The

proof is complete.

2.2.3 Proofs of the main results and some remarks

Proof of the main Results

Proof. By Theorem 2.3, for each n ∈ N, (P̄ u,n
t )t≥0 is a strongly continuous semigroup

of bounded operators on L2(En; m) with ‖P̄ u,n
t ‖2 ≤ eβnt for every t > 0 and some
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2.2 Proofs of the main results

constant βn > 0. Moreover, the coercive closed form associated with (e−βntP̄ u,n
t )t≥0 is

given by (Q̄u,n
βn

, D(E)n). Note that (P̄ u,n
t )t≥0 is also a strongly continuous semigroup of

bounded operators on L2(En; e−2u∗
m) and the bilinear from associated with (P̄ u,n

t )t≥0

on L2(En; e−2u∗
m) is given by (Eu,n, D(E)n,b) (see (??)). Define

P u,n
t f(x) := Ex[e

Nu
t f(Xt); t < τEn ].

Then

P u,n
t f(x) = Ex[e

Nu∗
t −N

|u|E
t f(Xt); t < τEn ]

= Ex[e
u∗(Xt)−u∗(X0)+M−u∗

t −N
|u|E
t f(Xt); t < τEn ]

= e−u∗(x)P̄ u,n
t (eu∗

f)(x). (2.40)

Hence (P u,n
t )t≥0 is a strongly continuous semigroup of bounded operators on L2(En; m).

Let (Qu,n, D(E)n,b) be the restriction of Qu to D(E)n,b. Then, by (2.40), (2.18) and

Theorem 2.4, we know that the bilinear from associated with (P u,n
t )t≥0 on L2(En; m)

is given by (Qu,n, D(E)n,b). That is,

Qu,n(f, g) = lim
t→0

1

t
(f − P u,n

t f, g)m, f, g ∈ D(E)n,b. (2.41)

(i) Suppose that there exists a constant α0 ≥ 0 such that

Qu(f, f) ≥ −α0(f, f)m, ∀f ∈ D(E)b.

For n ∈ N, let (Ln, D(Ln)) be the generator of (P u,n
t )t≥0 on L2(En; m). Then D(Ln−

α0) is dense in L2(En; m).

Define

L̄nf(x) = eu∗(x)Ln(e−u∗
f)(x), f ∈ D(L̄n) := {eu∗

g | g ∈ D(Ln)}. (2.42)

Then, by (2.40), (L̄n, D(L̄n)) is the generator of (P̄ u,n
t )t≥0 on L2(En; e−2u∗

m). (L̄n, D(L̄n))

is also the generator of (P̄ u,n
t )t≥0 on L2(En; m) due to the boundedness of u∗ on En.

Since (e−βntP̄ u,n
t )t≥0 is a strongly continuous contraction semigroup on L2(En; m),

Range(λ− L̄n) = L2(En; m) for all λ > βn. Hence Range(λ− (Ln −α0)) = L2(En; m)

for all λ > βn − α0 by (2.42).

34



2.2 Proofs of the main results

Let f ∈ L2(En; m). Then, for any α > 0, we obtain by (2.41) that

‖[α − (Ln − α0)]f‖2 · ‖f‖2 = ‖[(α + α0) − Ln]f‖2 · ‖f‖2

≥ ([(α + α0) − Ln]f, f)m

= Qu,n(f, f) + (α + α0)(f, f)m

≥ α(f, f)m.

Hence Ln − α0 is dissipative on L2(En; m). Therefore (e−α0tP u,n
t )t≥0 is a strongly

continuous contraction semigroup on L2(En; m) by the Hille-Yosida theorem.

Let g ∈ L2(E; m) and t > 0. Then

‖P u
t g‖2 ≤ ‖P u

t |g| ‖2

= lim
l→∞

‖P u
t |g · IEl

| ‖2

≤ lim inf
l→∞

lim inf
n→∞

‖P u,n
t |g · IEl

| ‖2

≤ eα0t‖g‖2.

Since g ∈ L2(E; m) is arbitrary, we get

‖P u
t ‖2 ≤ eα0t, ∀t > 0.

(ii) Suppose that there exists a constant α0 ≥ 0 such that

‖P u
t ‖2 ≤ eα0t, ∀t > 0. (2.43)

Let n ∈ N and f ∈ L2(En; m). Then

‖P u,n
t f‖2 ≤ ‖P u,n

t |f | ‖2 ≤ ‖P u
t |f | ‖2 ≤ eα0t‖f‖2.

Hence (e−α0tP u,n
t )t≥0 is a strongly continuous contraction semigroup on L2(En; m).

By (2.41), we get

Qu,n(f, f) + α0(f, f)m = lim
t→0

1

t
(f − e−α0tP u,n

t f, f)m ≥ 0, ∀f ∈ D(E)n,b. (2.44)

By (2.44) and approximation, we find that

Qu(f, f) ≥ −α0(f, f)m, ∀f ∈ D(E)b.
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2.2 Proofs of the main results

Now we show that (P u
t )t≥0 is strongly continuous on L2(E; m). Let n ∈ N and

f ∈ L2(En; m) satisfying f ≥ 0. Then, we obtain by (2.43) and the strong continuity

of (P u,n
t )t≥0 that

lim sup
t→0

‖f − e−α0tP u
t f‖2

2

= lim sup
t→0

{2(f − e−α0tP u
t f, f)m − [(f, f)m − ‖e−α0tP u

t f‖2
2]}

≤ 2 lim sup
t→0

(f − e−α0tP u
t f, f)m

≤ 2 lim sup
t→0

(f − e−α0tP u,n
t f, f)m

= 0.

Since f and n are arbitrary, (P u
t )t≥0 is strongly continuous on L2(E; m) by (2.43).

The proof is complete.

Remark 2.2. Let u ∈ D(E). Define

Bu
t =

∑
s≤t

[
e(u(Xs−)−u(Xs)) − 1 − (u(Xs−) − u(Xs))

]
. (2.45)

Note that (Bu
t )t≥0 may not be locally integrable (cf. (CMS2007, Theorem 3.3) ). To

overcome this difficulty, we introduced the nonnegative function u∗ and the locally

integrable increasing process (Bt)t≥0 (see (2.2) and (2.3)). This technique has been

used in (CMS2007) to show that if X is symmetric and u ∈ D(E)e, then (P u
t )t≥0

is strongly continuous if and only if (Qu, D(E)b) is lower semi-bounded. Here and

henceforth D(E)e denotes the extended Dirichlet space of (E, D(E)).

In fact, if we assume that (E, D(E)) satisfies the strong sector condition instead of

the weak sector condition (cf. (MR1992, Pages 15 and 16) for the definitions), then

similar to (CMS2007, Page 158) we can introduce a function |u|gE for each u ∈ D(E)e.

Define u∗ := u+ |u|gE. Using this defined u∗, similar to the above proof of this section,

we can show that Theorems 2.1 and 2.2 hold for all u ∈ D(E)e.

On the other hand, suppose we still assume that (E, D(E)) satisfies the weak sector

condition and u ∈ D(E)e. Define

F u
t =

∑
s≤t

[
e(u(Xs−)−u(Xs)) − 1 − (u(Xs−) − u(Xs))

]2
.

36



2.2 Proofs of the main results

If (F u
t )t≥0 is locally Px-integrable on [0, ζ) for q.e. x ∈ E, then we can show that

Theorems 2.1 and 2.2 still hold. The proof is similar to the above proof of this section

but we directly apply the (Bu
t )t≥0 defined in (2.45) instead of the (Bt)t≥0 defined in

(2.3). Note that if u is lower semi-bounded or eu ∈ D(E)e (cf. (CMS2007, Example

3.4 (iii)), then (F u
t )t≥0 is locally Px-integrable on [0, ζ) for q.e. x ∈ E.

Remark 2.3. If (E, D(E)) is a symmetric Dirichlet form, then the assumption of The-

orem 2.1 is automatically satisfied. Note that (P u
t )t≥0 is symmetric on L2(E; m). If

(P u
t )t≥0 is strongly continuous, then (2.43) holds (cf. (CFKZ2009, Remark 1.6(ii))).

Therefore, the following three assertions are equivalent to each other:

(i) (Qu, D(E)b) is lower semi-bounded.

(ii) There exists a constant α0 ≥ 0 such that ‖P u
t ‖2 ≤ eα0t for t > 0.

(iii) (P u
t )t≥0 is strongly continuous on L2(E; m).

Remark 2.4. Denote by S the set of all smooth measures on (E, B(E)). Let μ =

μ1 − μ2 ∈ S − S, (A1
t )t≥0 and (A2

t )t≥0 be PCAFs with Revuz measures μ1 and μ2,

respectively. Define

P̄A
t f(x) = Ex[e

A2
t−A1

t f(Xt)], f ≥ 0 and t ≥ 0,

and ⎧⎨⎩ Eμ(f, g) := E(f, g) +
∫

E
fgdμ,

f, g ∈ D(Eμ) := {w ∈ D(E) |w is (μ1 + μ2)-square integrable}.

Then, by a localization argument similar to that used in the proof of Theorems 2.1 and

2.2 (cf. also (Z2005), we can show that the following two conditions are equivalent to

each other:

(i) There exists a constant α0 ≥ 0 such that

Eμ(f, f) ≥ −α0(f, f)m, ∀f ∈ D(Eμ).

(ii) There exists a constant α0 ≥ 0 such that

‖P̄A
t ‖2 ≤ eα0t, ∀t > 0.
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Furthermore, if one of these conditions holds, then the semigroup (P̄A
t )t≥0 is strongly

continuous on L2(E; m).

This result generalizes the corresponding results of (AM1991) and (C2007). Note

that, similar to Theorems 2.1 and 2.2, it is not necessary to assume that the bilinear

form (Eμ, D(Eμ)) satisfies the sector condition.

2.3 Some applications

Example 2.3.1

Let d ≥ 3, U be an open set of Rd and m = dx, the Lebesgue measure on U . Let

aij ∈ L1
loc(U ; dx), 1 ≤ i, j ≤ d, bi, di ∈ Ld

loc(U ; dx), di − bi ∈ Ld(U ; dx) ∪ L∞(U ; dx),

1 ≤ i ≤ d, c ∈ L
d/2
loc (U ; dx). Define for f, g ∈ C∞

0 (U)

E(f, g) =
d∑

i,j=1

∫
U

∂f

∂xi

∂g

∂xj

aijdx +
d∑

i=1

∫
U

f
∂g

∂xi

didx

+
d∑

i=1

∫
U

∂f

∂xi

gbidx +

∫
U

fgcdx.

Denote ãij := 1
2
(aij + aji) and ǎij := 1

2
(aij − aji), 1 ≤ i, j ≤ d. Suppose that the

following conditions hold:

(C1) There exists γ ∈ (0,∞) such that
∑d

i,j=1 ãijξiξj ≥ γ
∑d

i=1 |ξi|2, ∀ξ = (ξ1, . . . , ξd) ∈
Rd.

(C2) |ǎij| ≤ M ∈ (0,∞) for 1 ≤ i, j ≤ d.

(C3) cdx − ∑d
i=1

∂di

∂xi
≥ 0 and cdx − ∑d

i=1
∂bi

∂xi
≥ 0 (in the sense of Schwartz distribu-

tions, i.e.,
∫

U
(cf +

∑d
i=1 di

∂f
∂xi

)dx,
∫

U
(cf +

∑d
i=1 bi

∂f
∂xi

)dx ≥ 0 for all f ∈ C∞
0 (U) with

f ≥ 0).

Then (E, C∞
0 (U)) is closable and its closure (E, D(E)) is a regular Dirichlet form on

L2(U ; dx) (see MR(1992) II, Proposition 2.11).
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Let u ∈ C∞
0 (U). Then, for f ∈ C∞

0 (U), we have

Qu(f, f) = E(f, f) + E(u, f 2)

=
d∑

i,j=1

∫
U

∂f

∂xi

∂f

∂xj

aijdx +

∫
U

f 2

(
c(1 + u) +

d∑
i=1

∂u

∂xi

bi

)
dx

+

∫
U

d∑
i=1

∂f 2

∂xi

(
di + bi

2
+ udi +

d∑
j=1

∂u

∂xj

aji

)
dx.

Suppose that the following condition holds:

(C4) There exists a constant α0 ≥ 0 such that(
α0 + c(1 + u) +

d∑
i=1

∂u

∂xi

bi

)
dx −

d∑
i=1

∂(di+bi

2
+ udi +

∑d
j=1

∂u
∂xj

aji)

∂xi

≥ 0

in the sense of Schwartz distribution.

Then Qu(f, f) ≥ −α0(f, f)m for any f ∈ C∞
0 (U) and thus for any f ∈ D(E)b by

approximation.

Let X be a Hunt process associated with (E, D(E)) and (P u
t )t≥0 be the general-

ized Feynman-Kac semigroup induced by u. Then, by Theorem 2.1 or Theorem 2.2,

(e−α0tP u
t )t≥0 is a strongly continuous contraction semigroup on L2(U ; dx).

Example 2.3.2 In this example, we study the generalized Feynman-Kac semi-

group for the non-symmetric Dirichlet form given in (MR1992, II, 3 e)).

Let E be a locally convex topological real vector space which is a (topological)

Souslin space. Let m := μ be a finite positive measure on B(E) such that suppμ = E.

Let E ′ denote the dual of E and E′〈, 〉E : E ′ ×E → R the corresponding dualization.

Define

FC∞
b := {f(l1, . . . , lm) |m ∈ N, f ∈ C∞

b (Rm), l1, . . . , lm ∈ E
′}.

Assume that there exists a separable real Hilbert space (H, 〈, 〉H) densely and contin-

uously embedded into E. Identifying H with its dual H
′
we have that

E ′ ⊂ H ⊂ E densely and continuously,

and E′〈, 〉E restricted to E ′ ×H coincides with 〈, 〉H . For f ∈ FC∞
b and z ∈ E, define

∇u(z) ∈ H by

〈∇u(z), h〉H =
∂u

∂h
(z), h ∈ H.
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Let (Eμ, FC∞
b ), defined by

Eμ(f, g) =

∫
E

〈∇f,∇g〉Hdμ, f, g ∈ FC∞
b ,

be closable on L2(E; μ) (cf. (MR1992, II, Proposition 3.8 and Corollary 3.13)). Let

L∞(H) denote the set of all bounded linear operators on H with operator norm ‖ ‖.
Suppose z �→ A(z), z ∈ E, is a map from E to L∞(H) such that z �→ 〈A(z)h1, h2〉H
is B(E)-measurable for all h1, h2 ∈ H. Furthermore, suppose that the following

conditions hold:

(C1) There exists γ ∈ (0,∞) such that 〈A(z)h, h〉H ≥ γ‖h‖2
H for all h ∈ H.

(C2) ‖Ã‖∞ ∈ L1(E; μ) and ‖Ǎ‖∞ ∈ L∞(E; μ), where Ã := 1
2
(A + Â), Ǎ := 1

2
(A − Â)

and Â(z) denotes the adjoint of A(z), z ∈ E.

(C3) Let c ∈ L∞(E, μ) and b, d ∈ L∞(E → H; μ) such that for u ∈ FC∞
b with u ≥ 0∫

E

(〈d,∇u〉H + cu)dμ ≥ 0,

∫
E

(〈b,∇u〉H + cu)dμ ≥ 0.

Define for f, g ∈ FC∞
b

E(f, g) =

∫
E

〈A∇f,∇g〉Hdμ +

∫
E

f〈d,∇g〉Hdμ

+

∫
E

〈b,∇f〉Hgdμ +

∫
E

fgcdμ.

Then (E, FC∞
b ) is closable and its closure (E, D(E)) is a quasi-regular Dirichlet form

on L2(E; μ) (see by (MR1992, II, 3 e)).

Let u ∈ FC∞
b . Then, for f ∈ FC∞

b , we have

Qu(f, f) = E(f, f) + E(u, f 2)

=

∫
E

〈A∇f,∇f〉Hdμ +

∫
E

(c(1 + u) + 〈b,∇u〉H)f 2dx

+

∫
E

〈
d + b

2
+ ud + A∇u,∇f 2

〉
H

dμ.

Suppose that the following condition holds:

(C4) There exists a constant α0 ≥ 0 such that∫
E

{
(α0 + c(1 + u) + 〈b,∇u〉H)f +

〈
d + b

2
+ ud + A∇u,∇f

〉
H

}
dμ ≥ 0
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for all f ∈ FC∞
b with f ≥ 0.

Then Qu(f, f) ≥ −α0(f, f)m for any f ∈ FC∞
b and thus for any f ∈ D(E)b by

approximation.

Let X be a μ-tight special standard diffusion process associated with (E, D(E)) and

(P u
t )t≥0 be the generalized Feynman-Kac semigroup induced by u. Then, by Theorem

2.1, (e−α0tP u
t )t≥0 is a strongly continuous contraction semigroup on L2(E; μ).
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Chapter 3

Fukushima’s decomposition in the

semi-Dirichlet forms setting

The classical decomposition of Fukushima was originally established for regular sym-

metric Dirichlet forms (cf. (F1979) and (FOT1994, Theorem 5.2.2)). Later it was ex-

tended to the non-symmetric and quasi-regular cases, respectively (cf. (O1988, Theo-

rem 5.1.3) and (MR1992, Theorem VI.2.5)). Suppose that (E, D(E)) is a quasi-regular

Dirichlet form on L2(E; m) with associated Markov process ((Xt)t≥0, (Px)x∈EΔ
). If

u ∈ D(E), then there exist unique martingale additive functional (abbreviated by

MAF) M [u] of finite energy and continuous additive functional (abbreviated by CAF)

N [u] of zero energy such that

ũ(Xt) − ũ(X0) = M
[u]
t + N

[u]
t , (3.1)

where ũ is an E-quasi-continuous m-version of u and the energy of an AF A := (At)t≥0

is defined to be

e(A) := lim
t→0

1

2t
Em[A2

t ] (3.2)

whenever the limit exists in [0,∞].

The aim of this chapter is to establish Fukushima’s decomposition for some Markov

processes associated with semi-Dirichlet forms. Note that the assumption of the

existence of dual Markov process (a Markov process X̂ is said to be a dual process

of the Markov process X if any f, g ∈ B+
b (E), (Ptf, g)m = (f, P̂tg)m, where {Pt}t≥0
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and {P̂t}t≥0 are the semigroup of X and X̂ respectively) plays a crucial role in all the

Fukushima-type decompositions known up to now. In fact, without that assumption,

the usual definition (3.2) of energy of AFs is questionable. First, let us consider a

concrete semi-Dirichlet form as follows.

Let d ≥ 3, U be an open subset of Rd and m = dx, the Lebesgue measure, on U . Let

aij ∈ L1
loc(U ; dx), 1 ≤ i, j ≤ d, bi, di ∈ Ld

loc(U ; dx), bi − di ∈ L∞(U ; dx) ∪ Ld(U ; dx),

1 ≤ i ≤ d, c ∈ L
d/2
loc (U ; dx). Define for u, v ∈ C∞

0 (U) (:= the set of all infinitely

differentiable functions with compact supports in U)

E(u, v) =
d∑

i,j=1

∫
U

∂u

∂xi

∂v

∂xj

aijdx +
d∑

i=1

∫
U

∂u

∂xi

vbidx

+
d∑

i=1

∫
U

u
∂v

∂xi

didx +

∫
U

uvcdx. (3.3)

Set ãij := 1
2
(aij + aji) and ǎij := 1

2
(aij − aji), 1 ≤ i, j ≤ d. Suppose that the following

conditions hold:

(C.1) There exists η > 0 such that
∑d

i,j=1 ãijξiξj ≥ η|ξ|2, ∀ξ = (ξ1, . . . , ξd) ∈ Rd.

(C.2) ǎij ∈ L∞(U ; dx) for 1 ≤ i, j ≤ d.

(C.3) cdx − ∑d
i=1

∂di

∂xi
≥ 0 and cdx − ∑d

i=1
∂γi

∂xi
≥ 0 (in the sense of Schwartz

distributions, i.e.,
∫

U
(cu+

∑d
i=1 di

∂u
∂xi

)dx,
∫

U
(cu+

∑d
i=1 γi

∂u
∂xi

)dx ≥ 0 for all u ∈ C∞
0 (U)

with u ≥ 0), where bi = βi + γi with βi ∈ L∞(U ; dx) ∪ Lp(U ; dx) for some p ≥ d,

γi ∈ L1
loc(U ; dx), 1 ≤ i ≤ d.

Then, (E, C∞
0 (U)) is closable on L2(U ; dx) and its closure (E, D(E)) is a regular

local semi-Dirichlet form on L2(U ; dx). If β �= 0, (E, D(E)) is in general not a Dirichlet

form. For u ∈ D(E), it is natural to ask whether a decomposition similar to (3.1)

holds. Based on the results that developed in this chapter, we will see that the

answer is affirmative. Note that the Doob-Meyer decomposition for supermartingales

and Itô’s formula for semimartingales do not apply to this particular case.

The rest of this chapter is organized as follows. In Section 2, we present results

on the potential theory for semi-Dirichlet forms, which are necessary to deriving

Fukushima’s decomposition in the semi-Dirichlet forms setting. In Section 3, we use

a localization method to obtain Fukushima’s decomposition for diffusions associated

43



3.1 Revuz correspondence in the semi-Dirichlet forms setting

with semi-Dirichlet forms (see Theorem 3.4 below). Also, we give some concrete

examples. In Section 4, we prove a transformation formula for local MAFs (see

Theorem 3.8 below). Since so far there is no analog of LeJan’s transformation rule

available for semi-Dirichlet forms, a lot of extra efforts are made (cf. Theorem 3.5

and Remark 3.2 below).

This part of the thesis is based on the paper (MMS2011), which has been submitted

for publication.

3.1 Revuz correspondence in the semi-Dirichlet forms

setting

Let E be a metrizable Lusin space (i.e., E is topologically isomorphic to a Borel

subset of a complete separable metric space) and m be a σ-finite positive measure on

its Borel σ-algebra B(E). Suppose that (E, D(E)) is a quasi-regular semi-Dirichlet

form on L2(E; m). Let K > 0 be a continuity constant of (E, D(E)), i.e.,

|E1(u, v)| ≤ KE1(u, u)1/2E1(v, v)1/2, ∀u, v ∈ D(E).

Denote by (Tt)t≥0 and (Gα)α≥0 (resp. (T̂t)t≥0 and (Ĝα)α≥0) the semigroup and resol-

vent (resp. co-semigroup and co-resolvent) associated with (E, D(E)). Then there ex-

ists an m-tight special standard process M = (Ω, F, (Ft)t≥0, (Xt)t≥0, (Px)x∈EΔ
) which

is properly associated with (E, D(E)) in the sense that Ptf is an E-quasi-continuous

m-version of Ttf for all f ∈ Bb(E)∩L2(E; m) and all t > 0, where (Pt)t≥0 denotes the

semigroups associated with M (cf. (MOR1995, Theorem 3.8)). It is known that any

quasi-regular semi-Dirichlet form is quasi-homeomorphic to a regular semi-Dirichlet

form (cf. (HMS2006, Theorem 3.8)).

Let A ⊂ E and f ∈ D(E). Denote by fA (resp. f̂A) the 1-balayaged (resp. 1-

cobalayaged) function of f on A. Throughout this chapter, we fix φ ∈ L2(E; m) with

0 < φ ≤ 1 m-a.e. and set h = G1φ, ĥ = Ĝ1φ. Define for U ⊂ E, U open,

capφ(U) := (hU , φ)
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

and for any A ⊂ E,

capφ(A) := inf{capφ(U) |A ⊂ U,U open}.

Hereafter, (·, ·) denotes the usual inner product of L2(E; m). By (MOR1995, Theorem

2.20), we get

capφ(A) = (hA, φ) = E1(hA, Ĝ1φ).

Definition 3.1. A positive measure μ on (E, B(E)) is said to be of finite energy

integral if μ(N) = 0 whenever N ∈ B(E) is E-exceptional and∫
E

|ṽ(x)|μ(dx) ≤ CE1(v, v)1/2, ∀v ∈ D(E),

for some positive constant C.

We denote by S0 the set of all measures of finite energy integral.

Remark 3.1. (i) Assume that (E, D(E)) is a regular semi-Dirichlet form. Let μ be

a positive Radon measure on E satisfying∫
E

|v(x)|μ(dx) ≤ CE1(v, v)1/2, ∀v ∈ C0(E) ∩ D(E)

for some positive constant C, where C0(E) denotes the set of all continuous functions

on E with compact supports. Then one can show that μ charges no E-exceptional set

(cf. (HS2010, Lemma 3.5)) and thus μ ∈ S0.

(ii) Let μ ∈ S0 and α > 0. Then there exist unique Uαμ ∈ D(E) and Ûαμ ∈ D(E)

such that

Eα(Uαμ, v) =

∫
E

ṽ(x)μ(dx) = Eα(v, Ûαμ). (3.4)

We call Uαμ and Ûαμ α-potential and α-co-potential, respectively.

Let u ∈ D(E). By quasi-homeomorphism and similar to (FOT1994, Theorem 2.2.1)

(cf. (HS2010, Lemma 1.2)), one can show that the following conditions are equivalent

to each other:

(i) u is α-excessive (resp. α-co-excessive).

(ii) u is an α-potential (resp. α-co-potential).

(iii) Eα(u, v) ≥ 0 (resp. Eα(v, u) ≥ 0), ∀v ∈ D(E), v ≥ 0.
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Theorem 3.1. Define

Ŝ∗
00 := {μ ∈ S0 | Û1μ ≤ cĜ1φ for some constant c > 0}.

Let A ∈ B(E). If μ(A) = 0 for all μ ∈ Ŝ∗
00, then capφ(A) = 0.

Proof. By quasi-homeomorphism, without loss of generality, we suppose that (E, D(E))

is a regular semi-Dirichlet form. Assume that A ∈ B(E) satisfying μ(A) = 0 for all

μ ∈ Ŝ∗
00. We will prove that capφ(A) = 0.

Step 1. We first show that μ(A) = 0 for all μ ∈ S0. Suppose that μ ∈ S0. By

(MR1995, Proposition 4.13), there exists an E-nest {Fk} such that
˜̂
G1φ,

˜̂
U1μ ∈

C({Fk}) and
˜̂
G1φ > 0 on Fk for each k ∈ N. Then, there exists a sequences of

positive constants {ak} such that˜̂
U1μ ≤ ak

˜̂
G1φ on Fk for each k ∈ N.

Define uk = Û1(1Fk
·μ) and set vk = uk∧akĜ1φ for k ∈ N. Then ũk ≤ ˜̂

U1μ ≤ ak
˜̂
G1φ

E-q.e. on Fk. By (3.4), we get

E1(vk, uk) =

∫
Fk

ṽk(x)μ(dx) =

∫
Fk

ũk(x)μ(dx) = E1(uk, uk).

Since vk is a 1-co-potential and vk ≤ uk m-a.e., E1(vk−uk, vk−uk) = E1(vk−uk, vk)−
E1(vk − uk, uk) ≤ 0, proving that uk = vk ≤ akĜ1φ m-a.e. Hence 1Fk

· μ ∈ Ŝ∗
00.

Therefore μ(A) = 0 by the assumption that A is not charged by each measure of Ŝ∗
00.

Step 2. Suppose that capφ(A) > 0. By (MOR1995, Corollary 2.22), there exists a

compact set K ⊂ B such that capφ(K) > 0. Note that (
̂̂
G1φ)K ∈ D(E) is 1-co-

excessive. By Remark 3.1(ii), there exists μ
(
̂̂
G1φ)K

∈ S0 such that

capφ(K) = E1((G1φ)K , Ĝ1φ)

= E1(G1φ, (
̂̂
G1φ)K)

=

∫
E

G̃1φdμ
(
̂̂
G1φ)K

≤ μ
(
̂̂
G1φ)K

(E). (3.5)

For any v ∈ C0(K
c)

⋂
D(E), we have

∫
ṽdμ

(
̂̂
G1φ)K

= E1(v, (
̂̂
G1φ)K) = 0. Since

C0(K
c)

⋂
D(E) is dense in C0(K

c), the support of μ
(
̂̂
G1φ)K

is contained in K. Thus,

by (3.5), we get μ
(
̂̂
G1φ)K

(K) > 0. Therefore capφ(A) = 0 by Step 1.
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Definition 3.2. A positive measure μ on (E, B(E)) is called smooth (w.r.t. (E, D(E)))

if μ(N) = 0 whenever N ∈ B(E) is E-exceptional and there exists an E-nest {Fk} of

compact subsets of E such that

μ(Fk) < ∞ for all k ∈ N.

We denote by S the set of all smooth measures on E.

Theorem 3.2. The following conditions are equivalent for a positive measure μ on

(E, B(E)).

(i) μ ∈ S.

(ii) There exists an E-nest {Fk} satisfying 1Fk
· μ ∈ S0 for each k ∈ N.

Proof. (ii) ⇒ (i) is clear. We only prove (i) ⇒ (ii). Let (Ẽ, D(E)) be the sym-

metric part of (E, D(E)). Then (Ẽ, D(E)) is a symmetric positivity preserving form.

Denote by (G̃α)α≥0 the resolvent associated with (Ẽ, D(E)) and set h̄ := G̃1ϕ. Then

(Ẽh̄
1 , D(Eh̄)) is a quasi-regular symmetric Dirichlet form on L2(E; h̄2m) (the h̄-transform

of (Ẽ1, D(E))).

By (K2008, page 838-839), for an increasing sequence {Fk} of closed sets, {Fk}
is an E-nest if and only if it is an Ẽh̄

1-nest. We select a compact Ẽh̄
1-nest {Fk} such

that ˜̄h is bounded on each Fk. Let μ ∈ S(E), the family of smooth measures w.r.t.

(E, B(E)). Then μ ∈ S(Ẽh̄
1), the family of smooth measures w.r.t. (Ẽh̄

1 , D(Eh̄)). By

(FOT1994, Theorem 2.2.4) and quasi-homeomorphism, we know that there exists a

compact Ẽh̄
1-nest (hence E-nest) {Jk} such that IJk

· μ ∈ S0(Ẽ
h̄
1). Then, there exists a

sequence of positive constants {Ck} such that∫
E

|g̃|IJk
dμ ≤ CkẼ

h̄
1(g, g)

1/2
, ∀g ∈ D(Eh̄).

We now show that each 1Fk∩Jk
· μ ∈ S0(E) and the proof is done. In fact, let
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

f ∈ D(E). We have f
h̄
∈ D(Eh̄). Then∫

E

|f̃ |1Fk∩Jk
dμ ≤ ‖ h̄|Fk

‖∞
∫

E

| f̃
h̄
|1Fk∩Jk

dμ

≤ ‖ h̄|Fk
‖∞

∫
E

| f̃
h̄
|IJk

dμ

≤ ‖h|Fn‖∞CkẼ
h̄
1(f/h̄, f/h̄)

1/2

= ‖ h̄|Fk
‖∞CkE1(f, f)1/2.

Since f ∈ D(E) is arbitrary, this implies that IFk∩Jk
· μ ∈ S0(E).

Lemma 3.1. For any u ∈ D(E), ν ∈ S0, 0 < T < ∞ and ε > 0,

Pν( sup
0≤t≤T

|ũ(Xt)| > ε) ≤ 2K3eT

ε
E1(u, u)1/2

E1(Û1ν, Û1ν)
1/2

.

Proof. We take an E-quasi-continuous Borel version ũ of u. Let A = {x ∈ E | |ũ(x)| >

ε} and σA := inf{t > 0 |Xt ∈ A}. By (K2008, Theorem 4.4), H1
A|u| := E·[e−σA|u|(XσA

)]

is an E-quasi-continuous version of |u|A. Then, by (MOR1995, Proposition 2.8(i) and

(2.1)), we get

Pν( sup
0≤t≤T

|ũ(Xt)| > ε) ≤ eT Eν [e
−σA|u|(XσA

)]

ε

=
eT

ε

∫
E

|u|Adν

=
eT

ε
E1(|u|A, Û1ν)

≤ KeT

ε
E1(|u|A, |u|A)1/2E1(Û1ν, Û1ν)1/2

≤ K2eT

ε
E1(|u|, |u|)1/2E1(Û1ν, Û1ν)1/2

≤ 2K3eT

ε
E1(u, u)1/2E1(Û1ν, Û1ν)1/2.

By Lemma 3.1 and Theorem 3.1, similar to (FOT1994, Lemma 5.1.2), we can prove

the following lemma.
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Lemma 3.2. Let {un} be a sequence of E-quasi continuous functions in D(E). If

{un} is an E1-Cauchy sequence, then there exists a subsequence {unk
} satisfying the

condition that for E-q.e. x ∈ E

Px(unk
(Xt) converges uniformly in t on each compact interval of [0,∞)) = 1.

Definition 3.3. A family (At)t≥0 of functions on Ω is said to be an additive functional

(AF) of M if:

(i) At is Ft-measurable for all t ≥ 0.

(ii) There exists a defining set Λ ∈ F and an exceptional set N ⊂ E which is

E-exceptional such that Px[Λ] = 1 for all x ∈ E\N , θt(Λ) ⊂ Λ for all t > 0 and

for each ω ∈ Λ, t → At(ω) is right continuous on (0,∞) and has left limits on

(0, ζ(ω)), A0(ω) = 0, |At(ω)| < ∞ for t < ζ(ω), At(ω) = Aζ(ω) for t ≥ ζ(ω), and

At+s(ω) = At(ω) + As(θtω) for s, t ≥ 0.

Two AFs A = (At)t≥0 and B = (Bt)t≥0 are called equivalent and we write A = B

if they have a common defining set Λ and a common exceptional set N such that

At(ω) = Bt(ω) for all ω ∈ Λ and t ≥ 0. An AF is called a continuous AF (CAF) if

t → At(ω) is continuous on (0,∞) and a positive continuous AF (PCAF) if At(ω) ≥ 0

for all t ≥ 0, ω ∈ Λ.

In (F2001), Fitzsimmons has extended the smooth measure characterization of

PCAFs from the Dirichlet forms setting to the semi-Dirichlet forms setting (see

(F2001, Theorem 4.22)). In particular, the following proposition holds.

Proposition 3.1. (cf. (F2001, Proposition 4.12)) For any μ ∈ S0, there is a unique

finite PCAF A such that Ex(
∫ ∞

0
e−tdAt) is an E-quasi-continuous version of U1μ.

By Proposition 3.1 and Theorem 3.2, following the arguments of (FOT1994, The-

orems 5.1.3 and 5.1.4) (with necessary, slight modifications by virtue of (MOR1995;

MR1995; K2008)), we can obtain the following theorem, which will play an important

role in developing Fukushima’s decomposition of semi-Dirichlet forms.

Theorem 3.3. Let μ ∈ S and A be a PCAF. Then the following conditions are

equivalent to each other:
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

(i) For any γ-co-excessive function g (γ ≥ 0) in D(E) and f ∈ B+(E),

lim
t↓0

1

t
Eg·m((fA)t) =< f · μ, g̃ > . (3.6)

(ii)For any γ-co-excessive function g (γ ≥ 0) in D(E) and f ∈ B+(E),

α(g, Uα+γ
A f) ↑ < f · μ, g̃ >, α ↑ ∞,

where Uα
Af(x) := Ex(

∫ ∞
0

e−αtf(Xt)dAt).

(iii) For any t > 0, g ∈ B+(E)
⋂

L2(E; m) and f ∈ B+(E),

Eg·m((fA)t) =

∫ t

0

< f · μ,
˜̂
Tsg > ds.

(iv) For any α > 0, g ∈ B+(E)
⋂

L2(E; m) and f ∈ B+(E),

(g, Uα
Af) =< f · μ,

˜̂
Gαg > .

When μ ∈ S0, each of the above four conditions is also equivalent to each of the

following three conditions:

(v) U1
A1 is an E-quasi-continuous version of U1μ.

(vi) For any g ∈ B+(E)
⋂

D(E) and f ∈ B+
b (E),

lim
t↓0

1

t
Eg·m((fA)t) =< f · μ, g̃ > .

The family of all equivalent classes of PCAFs and the family S are in one to one

correspondence under the Revuz correspondence (3.6).

Given a PCAF A, we denote by μA the Revuz measure of A.

Lemma 3.3. Let A be a PCAF and ν ∈ Ŝ∗
00. Then there exists a positive constant

Cν such that for any t > 0

Eν(At) ≤ Cν(1 + t)

∫
E

˜̂
hdμA.

Proof. By Theorem 3.2, we may assume without loss of generality that μ ∈ S0. Set

ct(x) = Ex(At). Similar to (O1988, page 137), we can show that for any v ∈ D(E)

E(ct, v) =< μA, v − T̂tv > .
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Let ν ∈ Ŝ∗
00. Then

Eν(At) = < ν, ct >

= E1(ct, Û1ν)

≤ < μA, Û1ν > + < ct, Û1ν >

≤ cν [< μA, ĥ > +Eĥ·m(At)].

Therefore the proof is completed by (3.6).

A subset F of E is said to be an Ê-quasi-open set if there is an Ê-nest {Fn}n≥1

such that F ∩ Fn is open with respect to the relative topology on Fn for each n ≥ 1.

For a nearly Borel set B, denote the Ê-quasi interior of B by Bo, which is the union

of all Ê-quasi-open subsets contained in B. One finds that Ê-quasi interior is same as

E-quasi interior.

Lemma 3.4. Let μ ∈ S0 and A be a PCAF with Revuz measure μ. Then for any

nearly Borel set B ⊂ E,

αEh·m[

∫ σB

0

e−(α+γ)tf(Xt)dAt] ↑
∫

(E−B)o

h̃(x)f(x)μ(dx), α ↑ ∞,

where h is any γ-co-excessive function (γ ≥ 0) in D(E), f ∈ B+(E).

Proof. It is enough to consider the case that γ = 0, h is a bounded L2(E; m)-

function in D(E) and f ∈ B+
b (E). Let (ĜE−B

α )α≥0 be the co-resolvent of the part

form (EE−B, D(E)E−B). Denote by h |(E−B)o the restriction of h on (E −B)o. Define

Hα
Bu(x) := Ex[u(XσB

)e−ασB ; σB < ∞]. Then by (K2008, Proposition 3.3), we get

αEh·m[

∫ σB

0

e−αtf(Xt)dAt] = α(Uα
Af − Hα

BUα
Af, h)

= αEα(Uα
Af − Hα

BUα
Af, Ĝαh)

= αEα(Uα
Af, Ĝαh − ̂(Ĝαh)

α

B)

= αEα(Uα(fμ), ĜE−B
α h)

= α

∫
E

˜ĜE−B
α h(x)f(x)μ(dx)

= α

∫
E

˜ĜE−B
α (h |(E−B)o)(x)f(x)μ(dx),
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3.1 Revuz correspondence in the semi-Dirichlet forms setting

Similar to the proof of Lemma 3.7 below, we know that h |(E−B)o is a 0-order co-

excessive function with respect to the part form (EE−B, D(E)E−B). Hence, by the

monotone convergence theorem, we get

αEh·m[

∫ σB

0

e−αtf(Xt)dAt] ↑ α

∫
(E−B)o

h̃(x)f(x)μ(dx)

as α ↑ ∞.

Let G be a nearly Borel finely open set. Denote by (T̂G
s )s≥0 be the co-semigroup

of the part form (EG, D(E)G). For a PCAF A and a non-negative Borel measurable

function f , define UG,α
A f(x) := Ex(

∫ σE−G

0
e−αtf(Xt)dAt).

Lemma 3.5. Let A be a PCAF and G be a nearly Borel finely open set.

(i) If h is γ−co-excessive (γ ≥ 0) on G with respect to (T̂G
s )s≥0, h ∈ D(E) and

f ∈ B+(E), then

α(h, UG,α+γ
A f)m ↑ (fIG · μA, h̃), α ↑ ∞. (3.7)

(ii) For any t > 0, h ∈ B+(E) ∩ L2(E; m) and f ∈ B+(E),

Eh·m(

∫ t

0

f(Xs)dAs∧σE−G
) =

∫ t

0

(fIG · μA,
˜̂
TG

s h)ds.

(iii) Suppose that for m-a.e. x ∈ E,

Px(At = 0, ∀t < τG) = 1. (3.8)

Then μA(G) = 0 and (3.8) holds for E-q.e. x ∈ E.

Proof. (i) For μA ∈ S0, this has been proved in Lemma 3.4. For general μ ∈ S, by

Theorem 3.2(ii), we can find an E−nest {Fn}n≥1 such that IFnμA ∈ S0. Substituting

μA with IFnμA and A with IFnA in (3.7), then by letting n tend to the infinity, we

get (i).

(ii) By the uniqueness of Laplace transform, we find that (i) and (ii) are equivalent.

(iii) Note that τG = σE−G ∧ ζ. By the continuity of A, from (3.8) we know that for

m-a.e. x ∈ E,

Px(At = 0, ∀t < σE−G) = 1.

52



3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

Then, by (ii), we know that μA(G) = 0. Note that τG ≤ σE−G, hence by Lemma 3.3,

we get that for any ν ∈ Ŝ∗
00

0 ≤ Eν(At; t < τG) ≤ Eν(At; t < σE−G) ≤ Eν(At∧σE−G
) ≤ Cν(1 + t)

∫
G

˜̂
hdμA = 0.

Therefore, by Theorem 3.1, we know that (3.8) holds for E-q.e. x ∈ E.

Similar to (FOT1994, Lemma 5.5.2), we can prove the following lemma by noting

that for a semi-Dirichlet form any semi-polar set is exceptional (cf. (F2001, Theorem

4.3)).

Lemma 3.6. For an AF A and a nearly Borel finely open set G,

A(t+s)∧τG
= As∧τG

+ At∧τG
◦ θs∧τG

, Px − a.s., ∀x ∈ E − N,

where N is any properly exceptional set containing (E −G)− (E −G)r and an excep-

tional set for A.

3.2 Fukushima’s decomposition in the semi-Dirichlet

forms setting

Throughout this section, we suppose that (E, D(E)) is a quasi-regular local semi-

Dirichlet form on L2(E; m). Here “local” means that E(u, v) = 0 for all u, v ∈ D(E)

with supp[u]∩supp[v] = ∅. Then, there exists a diffusion M = (Ω, F, (Ft)t≥0, (Xt)t≥0,

(Px)x∈EΔ
) which is properly associated with (E, D(E)) (cf. (K2008, Theorem 4.5)).

Here “diffusion” means that M is a right process satisfying

Px[t → Xt is continuous on [0, ζ)] = 1 for all x ∈ E.

We fix φ ∈ L2(E; m) with 0 < φ ≤ 1 m-a.e. and set h = G1φ, ĥ = Ĝ1φ. Denote

τB := inf{t > 0 |Xt /∈ B} for B ⊂ E.

Let V be a quasi-open subset of E. We denote by XV = (XV
t )t≥0 the part process

of X on V and denote by (EV , D(E)V ) the part form of (E, D(E)) on L2(V ; m). It is
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

known that XV is a diffusion process and (EV , D(E)V ) is a quasi-regular local semi-

Dirichlet form (cf. (K2008)). Denote by (T V
t )t≥0, (T̂ V

t )t≥0, (GV
α )α≥0 and (ĜV

α )α≥0 the

semigroup, co-semigroup, resolvent and co-resolvent associated with (EV , D(E)V ),

respectively.

Lemma 3.7. ĥ|V is 1-co-excessive w.r.t. (EV , D(E)V ).

Proof. It is easy to see that ĥ|V ≥ 0 m-a.e. on V . Let g be a positive measurable

function on V . Then∫
V

ge−tT̂ V
t (ĥ|V )dm =

∫
V

e−t(T V
t g)ĥdm

=

∫
V

e−tEx[g(Xt); t < τV ]ĥ(x)m(dx)

≤
∫

E

e−tTtgĥdm

=

∫
E

ge−tT̂tĥdm

≤
∫

V

gĥ|V dm.

Since g is arbitrary, e−tT̂ V
t (ĥ|V ) ≤ ĥ|V m-a.e. on V . Therefore ĥ|V is 1-co-excessive

w.r.t. (EV , D(E)V ).

Define h̄V := ĥ|V ∧ ĜV
1 φ. Then h̄V ∈ D(E)V and h̄V is 1-co-excessive. For an AF

A = (At)t≥0 of XV , we define

eV (A) := lim
t↓0

1

2t
Eh̄V ·m(A2

t ) (3.9)

whenever the limit exists in [0,∞]. Define

ṀV := {M |M is an AF of XV , Ex(M
2
t ) < ∞, Ex(Mt) = 0

for all t ≥ 0 and E-q.e. x ∈ V, eV (M) < ∞},

NV
c := {N |N is a CAF of XV , Ex(|Nt|) < ∞ for all t ≥ 0

and E-q.e. x ∈ V, eV (N) = 0},

54



3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

Θ := {{Vn} |Vn is E-quasi-open, Vn ⊂ Vn+1 E-q.e.,

for all n ∈ N, and E = ∪∞
n=1Vn E-q.e.},

and

D(E)loc := {u | ∃ {Vn} ∈ Θ and {un} ⊂ D(E)

such that u = un m-a.e. on Vn}.

We call A = (At)t≥0 a local AF of M if A satisfies all requirements for an AF stated

in Definition 3.3 except that the additivity At+s(ω) = At(ω) + As(θtω) for ω ∈ Λ is

required only for s, t ≥ 0 with t + s < ζ(ω). Two local AFs A(1), A(2) are said to be

equivalent if for each t ≥ 0 and E-q.e. x ∈ E,

Px(A
(1)
t = A

(2)
t ; t < ζ) = Px(t < ζ).

Define

Ṁloc := {M |M is a local AF of M, ∃ {Vn}, {En} ∈ Θ and {Mn |Mn ∈ ṀVn}
such that En ⊂ Vn, Mt∧τEn

= Mn
t∧τEn

, t ≥ 0, n ∈ N}

and

Nc,loc := {N |N is a local AF of M, ∃ {Vn}, {En} ∈ Θ and {Nn |Nn ∈ NVn
c }

such that En ⊂ Vn, Nt∧τEn
= Nn

t∧τEn
, t ≥ 0, n ∈ N}.

We use M
[[0,ζ[[
loc to denote the family of local martingales on [[0, ζ[[ (cf. (HWY1992,

§8.3)).

We put the following assumption:

Assumption 3.1. There exists {Vn} ∈ Θ such that, for each n ∈ N, there exists a

Dirichlet form (η(n), D(η(n))) on L2(Vn; m) and a constant Cn > 1 such that D(η(n)) =

D(E)Vn and for any u ∈ D(E)Vn,

1

Cn

η
(n)
1 (u, u) ≤ E1(u, u) ≤ Cnη

(n)
1 (u, u).

Now we can state the main result of this section.
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

Theorem 3.4. Suppose that (E, D(E)) is a quasi-regular local semi-Dirichlet form on

L2(E; m) satisfying Assumption 3.1. Then, for any u ∈ D(E)loc, there exist M [u] ∈
Ṁloc and N [u] ∈ Nc,loc such that

ũ(Xt) − ũ(X0) = M
[u]
t + N

[u]
t , t ≥ 0, Px-a.s. for E-q.e. x ∈ E. (3.10)

Moreover, M [u] ∈ M
[[0,ζ[[
loc . Decomposition (3.10) is unique up to the equivalence of

local AFs.

Before proving Theorem 3.4, we present some lemmas.

We fix a {Vn} ∈ Θ satisfying Assumption 3.1. Without loss of generality, we

assume that
˜̂
h is bounded on each Vn. Denote D(E)Vn,b := Bb(E) ∩ D(E)Vn . To

simplify notation, we define h̄n := h̄Vn .

By Lemma 3.3, (3.9), Theorem 3.3 and Theorem 3.1, similar to (FOT1994, Theo-

rem 5.2.1), we can prove the following lemma.

Lemma 3.8. ṀVn is a real Hilbert space with inner product eVn. Moreover, if {Ml} ⊂
ṀVn is eVn-Cauchy, then there exist a unique M ∈ ṀVn and a subsequence {lk} such

that limk→∞ eVn(Mlk − M) = 0 and for E-q.e. x ∈ Vn,

Px( lim
k→∞

Mlk(t) = M(t) uniformly on each compact interval of [0,∞)) = 1.

Next we give Fukushima’s decomposition for the part process XVn .

Lemma 3.9. Let u ∈ D(E)Vn,b. Then there exist unique Mn,[u] ∈ ṀVn and Nn,[u] ∈
NVn

c such that for E-q.e. x ∈ Vn,

ũ(XVn
t ) − ũ(XVn

0 ) = M
n,[u]
t + N

n,[u]
t , t ≥ 0, Px-a.s. (3.11)

Proof. Note that if an AF A ∈ ṀVn with eVn(A) = 0 then μ
(n)
<A>(˜̄hn) = 2eVn(A) = 0

by Theorem 3.3 and (3.9). Here μ
(n)
<A> denotes the Revuz measure of A w.r.t. XVn .

Hence < A >= 0 since ˜̄hn > 0 E-q.e. on Vn. Therefore ṀVn ∩ NVn
c = {0} and the

proof of the uniqueness of decomposition (3.11) is complete.

To obtain the existence of decomposition (3.11), we start with the special case that

u = RVn
1 f for some bounded Borel function f ∈ L2(Vn; m), where (RVn

t )t≥0 is the
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

resolvent of XVn . Set⎧⎨⎩ N
n,[u]
t =

∫ t

0
(u(XVn

s ) − f(XVn
s ))ds,

M
n,[u]
t = u(XVn

t ) − u(XVn
0 ) − N

n,[u]
t , t ≥ 0.

(3.12)

Then Nn,[u] ∈ NVn
c and Mn,[u] ∈ ṀVn . In fact,

eVn(Nn,[u]) = lim
t↓0

1

2t
Eh̄n·m[(

∫ t

0

(u − f)(XVn
s )ds)2]

≤ lim
t↓0

1

2
Eh̄n·m[

∫ t

0

(u − f)2(XVn
s )ds]

= lim
t↓0

1

2
[

∫ t

0

∫
Vn

h̄nT
Vn
s (u − f)2dmds]

= lim
t↓0

1

2
[

∫ t

0

∫
Vn

(u − f)2T̂ Vn
s h̄ndmds]

≤ ‖u − f‖∞ lim
t↓0

1

2
[

∫ t

0

∫
Vn

|u − f |T̂ Vn
s h̄ndmds]

≤ ‖u − f‖∞ lim
t↓0

1

2
[

∫ t

0

(

∫
Vn

(u − f)2dm)1/2(

∫
Vn

(T̂ Vn
s h̄n)2dm)1/2ds]

≤ ‖u − f‖∞(

∫
Vn

(u − f)2dm)1/2(

∫
Vn

h̄2
ndm)1/2 lim

t↓0
t

2

= 0. (3.13)

By Assumption 3.1, u2 ∈ D(E)Vn,b and uh̄n ∈ D(E)Vn,b. Then, by (3.12), (3.13),

(AFRS1995, Theorem 3.4) and Assumption 3.1, we get

eVn(Mn,[u]) = lim
t↓0

1

2t
Eh̄n·m[(u(XVn

t ) − u(XVn
0 ))2]

= lim
t↓0

{1

t
(uh̄n, u − T Vn

t u) − 1

2t
(h̄n, u

2 − T Vn
t u2)}

= EVn(u, uh̄n) − 1

2
EVn(u2, h̄n)

≤ EVn
1 (u, uh̄n)

≤ KEVn
1 (u, u)1/2EVn

1 (uh̄n, uh̄n)1/2

≤ KC1/2
n EVn

1 (u, u)1/2η
(n)
1 (uh̄n, uh̄n)1/2

≤ KC1/2
n EVn

1 (u, u)1/2(‖u‖∞η
(n)
1 (h̄n, h̄n)1/2 + ‖h̄n‖∞η

(n)
1 (u, u)1/2)

≤ KCnE
Vn
1 (u, u)1/2(‖u‖∞EVn

1 (h̄n, h̄n)1/2 + ‖h̄n‖∞EVn
1 (u, u)1/2). (3.14)

Next, take any bounded Borel function u ∈ D(E)Vn . Define

ul = lRVn
l+1u = RVn

1 gl, gl = l(u − lRVn
l+1u).
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By the uniqueness of decomposition (3.11) for ul’s, we have Mn,[ul] − Mn,[uk] =

Mn,[ul−uk]. Then, by (3.14), we get

eVn(Mn,[ul] − Mn,[uk])

= eVn(Mn,[ul−uk])

≤ KCnE
Vn
1 (ul − uk, ul − uk)

1/2(‖ul − uk‖∞EVn
1 (h̄n, h̄n)1/2

+‖h̄n‖∞EVn
1 (ul − uk, ul − uk)

1/2).

Since ul ∈ D(E)Vn , bounded by ‖u‖∞, and EVn
1 -convergent to u, we conclude that

{Mn,[ul]} is an eVn-Cauchy sequence in the space ṀVn . Define

Mn,[u] = lim
l→∞

Mn,[ul] in (ṀVn , eVn), Nn,[u] = ũ(XVn
t ) − ũ(XVn

0 ) − Mn,[u].

Then Mn,[u] ∈ ṀVn by Lemma 3.8.

It only remains to show that Nn,[u] ∈ NVn
c . By Lemmas 3.2 and 3.8, there exists a

subsequence {lk} such that for E-q.e. x ∈ Vn,

Px(N
n,[ulk

] converges to Nn,[u] uniformly on each compact interval of [0,∞)) = 1.

From this and (3.12), we know that Nn,[u] is a CAF. On the other hand, by

N
n,[u]
t = A

n,[u−ul]
t − (M

n,[u]
t − M

n,[ul]
t ) + N

n,[ul]
t ,

we get

eVn(Nn,[u]) ≤ 3eVn(An,[u−ul]) + 3eVn(Mn,[u] − Mn,[ul]),

which can be made arbitrarily small with large l by (3.14). Therefore eVn(Nn,[u]) = 0

and Nn,[u] ∈ NVn
c .

We now fix a u ∈ D(E)loc. Then there exist {V 1
n } ∈ Θ and {un} ⊂ D(E) such that

u = un m-a.e. on V 1
n . By (MOR1995, Proposition 3.6), we may assume without loss

of generality that each un is E-quasi-continuous. By (MOR1995, Proposition 2.16),

there exists an E-nest {F 2
n} consisting of compact subsets of E such that {un} ⊂

C{F 2
n}. Denote by V 2

n the finely interior of F 2
n for n ∈ N. Then {V 2

n } ∈ Θ. Define

V ′
n = V 1

n ∩ V 2
n . Then {V ′

n} ∈ Θ and each un is bounded on V ′
n. To simplify notation,

we still use Vn to denote Vn ∩ V ′
n for n ∈ N.
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For n ∈ N, we define En = {x ∈ E | h̃n(x) > 1
n
}, where hn := GVn

1 φ. Then

{En} ∈ Θ satisfying E
E

n ⊂ En+1 E-q.e. and En ⊂ Vn E-q.e. for each n ∈ N (cf. (K2008,

Lemma 3.8)). Here E
E

n denotes the E-quasi-closure of En. Define fn = nh̃n ∧ 1. Then

fn = 1 on En and fn = 0 on V c
n . Since fn is a 1-excessive function of (EVn , D(E)Vn)

and fn ≤ nh̃n ∈ D(E)Vn , hence fn ∈ D(E)Vn by (MR1995, Remark 3.4(ii)). Denote by

Qn the bound of |un| on Vn. Then unfn = ((−Qn)∨un∧Qn)fn ∈ D(η)Vn,b = D(E)Vn,b.

For n ∈ N, we denote by {Fn
t } the minimum completed admissible filtration of

XVn . For n < l, Fn
t ⊂ Fl

t ⊂ Ft. Since En ⊂ Vn, τEn is an {Fn
t }-stopping time.

Lemma 3.10. For n < l, we have M
n,[unfn]
t∧τEn

= M
l,[ulfl]
t∧τEn

and N
n,[unfn]
t∧τEn

= N
l,[ulfl]
t∧τEn

, t ≥ 0,

Px-a.s. for E-q.e. x ∈ Vn.

Proof. Let n < l. Since Mn,[unfn] ∈ ṀVn , Mn,[unfn] is an {Fn
t }-martingale by the

Markov property. Since τEn is an {Fn
t }-stopping time, {Mn,[unfn]

t∧τEn
} is an {Fn

t∧τEn
}-

martingale. Denote Υn
t = σ{XVn

s∧τEn
| 0 ≤ s ≤ t}. Then {Mn,[unfn]

t∧τEn
} is a {Υn

t }-
martingale. Denote Υn,l

t = σ{XVl
s∧τEn

| 0 ≤ s ≤ t}. Similarly, we can show that

{M l,[unfn]
t∧τEn

} is a {Υn,l
t }-martingale. By the assumption that M is a diffusion, the fact

that fn is quasi-continuous and fn = 1 on En, we get fn(Xs∧τEn
) = 1 if 0 < s∧τEn < ζ.

Hence Xs∧τEn
∈ Vn, if 0 < s ∧ τEn < ζ, since fn = 0 on V c

n . Therefore

XVl
s∧τEn

= Xs∧τEn
= XVn

s∧τEn
, Px-a.s. for E-q.e. x ∈ Vn, (3.15)

which implies that {M l,[unfn]
t∧τEn

} is a {Υn
t }-martingale.

Let N ∈ N
Vj
c for some j ∈ N. Then, for any T > 0,

[rT ]∑
k=1

Eh̄j ·m[(N k+1
r

− N k
r
)2] ≤

[rT ]∑
k=1

eT (E·(N2
1
r
), e−

k
r T̂

Vj
k
r

h̄j)

≤
[rT ]∑
k=1

eT (E·(N2
1
r
), h̄j)

≤ rTeT Eh̄j ·m(N2
1
r
) → 0 as r → ∞.

Hence
[rT ]∑
k=1

(N k+1
r

− N k
r
)2 → 0, r → ∞, in Pm,
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which implies that the quadratic variation process of N w.r.t. Pm is 0.

By (K2008, Proposition 3.3), (
̂̂
G1φ)1

V c
n

= Ĝ1φ − ĜVn
1 φ. Since V c

n ⊃ V c
l , (

̂̂
G1φ)1

V c
n
≥

(
̂̂
G1φ)1

V c
l
. Then ĜVn

1 φ ≤ ĜVl
1 φ and thus

h̄n ≤ h̄l. (3.16)

Therefore

eVn(A) ≤ eVl(A) (3.17)

for any AF A = (At)t≥0 of XVn .

Note that N
l,[unfn]
t∧τEn

= (ũnfn)(XVl
t∧τEn

) − (ũnfn)(XVl
0 ) − M

l,[unfn]
t∧τEn

∈ Υn,l
t = Υn

t ⊂
Fn

t∧τEn
. By Lemma 3.6 {N l,[unfn]

t∧τEn
} is a CAF of XVn . By (3.17), eVn(N

l,[unfn]
t∧τEn

) ≤
eVl(N

l,[unfn]
t∧τEn

) = 0. Hence (N
l,[unfn]
t∧τEn

)t≥0 ∈ NVn
c , which implies that the quadratic varia-

tion process of {N l,[unfn]
t∧τEn

} w.r.t. Pm is 0. Since for E-q.e. x ∈ Vn, by (3.15),

M
n,[unfn]
t∧τEn

+ N
n,[unfn]
t∧τEn

= ũnfn(XVn
t∧τEn

) − ũnfn(XVn
0 )

= ũnfn(XVl
t∧τEn

) − ũnfn(XVl
0 )

= M
l,[unfn]
t∧τEn

+ N
l,[unfn]
t∧τEn

, Px − a.s.,

and both {Mn,[unfn]
t∧τEn

} and {M l,[unfn]
t∧τEn

} are {Υn
t }-martingale, hence M

n,[unfn]
t∧τEn

= M
l,[unfn]
t∧τEn

and N
n,[unfn]
t∧τEn

= N
l,[unfn]
t∧τEn

, Px-a.s. for m-a.e. x ∈ Vn. This implies that Em(<

M
n,[unfn]
·∧τEn

− M
l,[unfn]
·∧τEn

>t) = 0, ∀t ≥ 0. Then, by Theorem 3.3(i), M
n,[unfn]
t∧τEn

=

M
l,[unfn]
t∧τEn

, ∀t ≥ 0, Px-a.s. for E-q.e. x ∈ Vn. Hence N
n,[unfn]
t∧τEn

= N
l,[unfn]
t∧τEn

, ∀t ≥ 0,

Px-a.s. for E-q.e. x ∈ Vn.

Since unfn = ulfl = u on En, similar to (K2010, Lemma 2.4), we can show that

M
l,[unfn]
t = M

l,[ulfl]
t when t < τEn , Px-a.s. for E-q.e. x ∈ Vl. If τEn = ζ, then by the

fact unfn(XVl
ζ ) = ulfl(X

Vl
ζ ) = 0 and the continuity of N

l,[unfn]
t and N

l,[ulfl]
t , one finds

that M
l,[unfn]
t∧τEn

= M
l,[ulfl]
t∧τEn

. By the quasi-continuity of unfn, ulfl and the assumption

that M is a diffusion, one finds that M l,[unfn] and M l,[ulfl] are continuous on [0, ζ),

Px-a.s. for E-q.e. x ∈ Vl. Hence, if τEn < ζ we have M
l,[unfn]
τEn

= M
l,[ulfl]
τEn

. Therefore

M
n,[unfn]
t∧τEn

= M
l,[ulfl]
t∧τEn

and N
n,[unfn]
t∧τEn

= N
l,[ulfl]
t∧τEn

, t ≥ 0, Px-a.s. for E-q.e. x ∈ Vn.

Proof of Theorem 3.4 We define M
[u]
t∧τEn

:= liml→∞ M
l,[ulfl]
t∧τEn

and M
[u]
t := 0 for

t > ζ if there exists some n such that τEn = ζ and ζ < ∞; or M
[u]
t := 0 for t ≥ ζ,
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otherwise. By Lemma 3.10, M [u] is well defined. Define Mn
t := M

n+1,[un+1fn+1]
t∧τEn

for

t ≥ 0 and n ∈ N. Then M
[u]
t∧τEn

= Mn
t∧τEn

Px-a.s. for E-q.e. x ∈ Vn+1 by Lemma

3.10. Since E
E

n ⊂ En+1 ⊂ Vn+1 E-q.e. implies that Px(τEn = 0) = 1 for x /∈ Vn+1,

M
[u]
t∧τEn

= Mn
t∧τEn

Px-a.s. for E-q.e. x ∈ E. Similar to (3.16) and (3.17), we can show

that eVn(Mn) ≤ eVn+1(Mn) for each n ∈ N. Then Mn ∈ ṀVn and hence M [u] ∈ Ṁloc.

Next we show that Mn is also an {Ft}-martingale, which implies that M [u] ∈ M
[[0,ζ[[
loc .

In fact, by the fact that τEn is an {Fn+1
t }-stopping time, we find that IτEn≤s is Fn+1

s∧τEn
-

measurable for any s ≥ 0. Let 0 ≤ s1 < · · · < sk ≤ s < t and g ∈ Bb(R
k). Then, we

obtain by (3.15) and the fact Mn+1,[un+1fn+1] ∈ ṀVn+1 that for E-q.e. x ∈ Vn+1,∫
Ω

Mn
t g(Xs1 , . . . , Xsk

)dPx

=

∫
τEn≤s

Mn
t g(Xs1 , . . . , Xsk

)dPx +

∫
τEn>s

Mn
t g(Xs1 , . . . , Xsk

)dPx

=

∫
τEn≤s

Mn
s g(Xs1 , . . . , Xsk

)dPx

+

∫
Ω

M
n+1,[un+1fn+1]
t∧τEn

g(X
Vn+1
s1∧τEn

, . . . , X
Vn+1
sk∧τEn

)IτEn>sdPx

=

∫
τEn≤s

Mn
s g(Xs1 , . . . , Xsk

)dPx

+

∫
Ω

M
n+1,[un+1fn+1]
s∧τEn

g(X
Vn+1
s1∧τEn

, . . . , X
Vn+1
sk∧τEn

)IτEn>sdPx

=

∫
τEn≤s

Mn
s g(Xs1 , . . . , Xsk

)dPx +

∫
τEn>s

Mn
s g(Xs1 , . . . , Xsk

)dPx

=

∫
Ω

Mn
s g(Xs1 , . . . , Xsk

)dPx.

Obviously, the equality holds for x /∈ Vn+1. Therefore, Mn is an {Ft}-martingale.

Define N
[u]
t = ũ(Xt) − ũ(X0) − M

[u]
t . Then, we have N

[u]
t∧τEn

= liml→∞ N
l,[ulfl]
t∧τEn

.

Moreover N [u] ∈ Nc,loc.

Finally, we prove the uniqueness of decomposition (3.10). Suppose that M1 ∈ Ṁloc

and N1 ∈ Nc,loc such that

ũ(Xt) − ũ(X0) = M1
t + N1

t , t ≥ 0, Px-a.s. for E-q.e. x ∈ E.

Then, there exists {En} ∈ Θ such that, for each n ∈ N, {(M [u] − M1)I[[0,τEn ]]} is a

square integrable martingale and a zero quadratic variation process w.r.t. Pm. This
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

implies that Pm(< (M [u] − M1)I[[0,τEn ]] >t= 0,∀t ∈ [0,∞)) = 0. Consequently by

Lemma 3.5(iii), Px(< (M [u] − M1)I[[0,τEn ]] >t= 0,∀t ∈ [0,∞)) = 0 for E-q.e. x ∈ E.

Therefore M
[u]
t = M1

t , 0 ≤ t ≤ τEn , Px-a.s. for E-q.e. x ∈ E. Since n is arbitrary, we

obtain the uniqueness of decomposition (3.10) up to the equivalence of local AFs.

In the rest of this section, we investigate some concrete examples.

Example 3.1. Consider the following bilinear form

E(u, v) =

∫ 1

0

u′v′dx +

∫ 1

0

bu′vdx, u, v ∈ D(E) := H1,2
0 (0, 1).

(i) Suppose that b(x) = x2. Then one can show that (E, D(E)) is a regular local semi-

Dirichlet form (but not a Dirichlet form) on L2((0, 1); dx) (cf. (MOR1995, Remark

2.2(ii))). Note that any u ∈ D(E) is bounded and 1
2
−Hölder continuous by the Sobolev

embedding theorem. Then we obtain Fukushima’s decomposition, u(Xt) − u(X0) =

M
[u]
t +N

[u]
t , by Lemma 3.9, where X is the diffusion process associated with (E, D(E)),

M [u] is an MAF of finite energy and N [u] is a CAF of zero energy.

(ii) Suppose that b(x) =
√

x. By (MOR1995, Remark 2.2(ii)), (E, D(E)) is a regular

local semi-Dirichlet form but not a Dirichlet form. Let u ∈ D(E)loc. Then we obtain

Fukushima’s decomposition (3.10) by Theorem 3.4.

If u ∈ D(E) satisfying supp[u] ⊂ (0, 1), then we may choose an open subset V of

(0, 1) such that supp[u] ⊂ V ⊂ (0, 1). Let XV be the part process of X w.r.t. V . Then

we obtain Fukushima’s decomposition, u(XV
t ) − u(XV

0 ) = M
V,[u]
t + N

V,[u]
t , by Lemma

3.9, where MV,[u] is an MAF of finite energy and NV,[u] is a CAF of zero energy w.r.t.

XV .

Example 3.2. Let d ≥ 3, U be an open subset of Rd, σ, ρ ∈ L1
loc(U ; dx), σ, ρ > 0

dx-a.e. For u, v ∈ C∞
0 (U), we define

Eρ(u, v) =
d∑

i,j=1

∫
U

∂u

∂xi

∂v

∂xj

ρdx.

Assume that

(Eρ, C
∞
0 (U)) is closable on L2(U ; σdx).
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

Let aij, bi, di ∈ L1
loc(U ; dx), 1 ≤ i, j ≤ d. For u, v ∈ C∞

0 (U), we define

E(u, v) =
d∑

i,j=1

∫
U

∂u

∂xi

∂u

∂xj

aijdx +
d∑

i=1

∫
U

∂u

∂xi

vbidx

+
d∑

i=1

∫
U

u
∂v

∂xi

didx +

∫
U

uvcdx.

Set ãij := 1
2
(aij + aji), ǎij := 1

2
(aij − aji), b := (b1, . . . , bd), and d := (d1, . . . , dd).

Define F to be the set of all functions g ∈ L1
loc(U ; dx) such that the distributional

derivatives ∂g
∂xi

, 1 ≤ i ≤ d, are in L1
loc(U ; dx) such that ‖∇g‖(gσ)−

1
2 ∈ L∞(U ; dx) or

‖∇g‖p(gp+1σp/q)−
1
2 ∈ Ld(U ; dx) for some p, q ∈ (1,∞) with 1

p
+ 1

q
= 1, p < ∞, where

‖ · ‖ denotes Euclidean distance in Rd. We say that a B(U)−measurable function f

has property (Aρ,σ) if one of the following conditions holds:

(i) f(ρσ)−
1
2 ∈ L∞(U ; dx).

(ii) fp(ρp+1σp/q)−
1
2 ∈ Ld(U, dx) for some p, q ∈ (1,∞) with 1

p
+ 1

q
= 1, p < ∞, and

ρ ∈ F .

Suppose that

(C.I) There exists η > 0 such that
∑d

i,j=1 ãijξiξj ≥ η|ξ|2, ∀ξ = (ξ1, . . . , ξd) ∈ Rd.

(C.II) ǎijρ
−1 ∈ L∞(U ; dx) for 1 ≤ i, j ≤ d.

(C.III) For all K ⊂ U , K compact, 1K‖b + d‖ and 1Kc1/2 have property (Aρ,σ),

and (c + α0σ)dx − ∑d
i=1

∂di

∂xi
is a positive measure on B(U) for some α0 ∈ (0,∞).

(C.IV) ||b − d|| has property (Aρ,σ).

(C.V) b = β+γ such that ‖β‖, ‖γ‖ ∈ L1
loc(U, dx), (α0σ+c)dx−∑d

1
∂γi

∂xi
is a positive

measure on B(U) and ‖β‖ has property (Aρ,σ).

Then, by (RS1995, Theorem 1.2), there exists α > 0 such that (Eα, C∞
0 (U)) is closable

on L2(U ; dx) and its closure (Eα, D(Eα)) is a regular local semi-Dirichlet form on

L2(U ; dx). Define ηα(u, u) := Eα(u, u) − ∫ 〈�u, β〉udx for u ∈ D(Eα). By (RS1995,

Theorem 1.2 (ii) and (1.28)), we know (ηα, D(E)α) is a Dirichlet form and there exists

C > 1 such that for any u ∈ D(Eα),

1

C
ηα(u, u) ≤ Eα(u, u) ≤ Cηα(u, u).

Let X be the diffusion process associated with (Eα, D(Eα)). Then, by Theorem 3.4,
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3.2 Fukushima’s decomposition in the semi-Dirichlet forms setting

Fukushima’s decomposition holds for any u ∈ D(E)loc. In particular, if ρ = σ = 1

then (E, D(E)) is the same as that given by (3.3).

Example 3.3. Let S be a Polish space. Denote by B(S) the Borel σ-algebra of S.

Let E := M1(S) be the space of probability measures on (S, B(S)). For bounded

B(S)-measurable functions f, g on S and μ ∈ E, we define

μ(f) :=

∫
S

fdμ, 〈f, g〉μ := μ(fg) − μ(f) · μ(g), ‖f‖μ := 〈f, f〉1/2
μ .

Denote by FC∞
b the family of all functions on E with the following expression:

u(μ) = ϕ(μ(f1), . . . , μ(fk)), fi ∈ Cb(S), 1 ≤ i ≤ k, ϕ ∈ C∞
0 (Rk), k ∈ N.

Let m be a finite positive measure on (E, B(E)), where B(E) denotes the Borel σ-

algebra of E. We suppose that supp[m] = E. Let b : S × E → R be a measurable

function such that

sup
μ∈E

‖b(μ)‖μ < ∞,

where b(μ)(x) := b(x, μ).

For u, v ∈ FC∞
b , we define

Eb(u, v) :=

∫
E

(〈∇u(μ),∇v(μ)〉μ + 〈b(μ),∇u(μ)〉μv(μ))m(dμ),

where

∇u(μ) := (∇xu(μ))x∈S :=

(
d

ds
u(μ + sεx)

∣∣∣∣
s=0

)
x∈S

.

We suppose that (E0, FC∞
b ) is closable on L2(E; m). Then, by (ORS1995, Theorem

3.5), there exists α > 0 such that (Eb
α, FC∞

b ) is closable on L2(E; m) and its closure

(Eb
α, D(Eb

α)) is a quasi-regular local semi-Dirichlet form on L2(E; m). Moreover, by

(ORS1995, Lemma 2.5), there exists C > 1 such that for any u ∈ D(Eb
α),

1

C
E0

α(u, u) ≤ Eb
α(u, u) ≤ CE0

α(u, u).

Let X be the diffusion process associated with (Eb
α, D(Eb

α)), which is a Fleming-Viot

type process with interactive selection. Then, by Theorem 3.4, Fukushima’s decompo-

sition holds for any u ∈ D(Eb)loc.
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3.3 Transformation formula for local MAFs

3.3 Transformation formula for local MAFs

In this section, we adopt the setting of § 3.2. Suppose that (E, D(E)) is a quasi-regular

local semi-Dirichlet form on L2(E; m) satisfying Assumption 3.1. We fix a {Vn} ∈ Θ

satisfying Assumption 3.1 and
˜̂
h is bounded on each Vn. Let XVn , (EVn , D(E)Vn), h̄n,

etc. be the same as in § 3.2. For u ∈ D(E)Vn,b, we denote by μ
(n)
<u> the Revuz measure

of < Mn,[u] > (cf. Lemma 3.9 and Theorem 3.3). For u, v ∈ D(E)Vn,b, we define

μ
(n)
<u,v> :=

1

2
(μ

(n)
<u+v> − μ

(n)
<u> − μ

(n)
<v>). (3.18)

Lemma 3.11. Let u, v, f ∈ D(E)Vn,b. Then∫
Vn

f̃dμ
(n)
<u,v> = E(u, vf) + E(v, uf) − E(uv, f). (3.19)

Proof. By the polarization identity, (3.19) holds for u, v, f ∈ D(E)Vn,b is equivalent to∫
Vn

f̃dμ
(n)
<u> = 2E(u, uf) − E(u2, f), ∀u, f ∈ D(E)Vn,b. (3.20)

Below, we will prove (3.20). Without loss of generality, we assume that f ≥ 0.

For k, l ∈ N, we define fk := f ∧ (kh̄n) and fk,l := lĜVn
l+1fk. By (MR1995, (3.9)),

fk ∈ D(E)Vn,b and

E1(fk, fk) ≤ E1(f, fk). (3.21)

By (MR1992, Proposition III.1.2), fk,l is (l+1)-co-excessive. Since h̄n is 1-co-excessive,

0 ≤ fk,l ≤ kh̄n. (3.22)

Hence fk,l ∈ D(E)Vn,b by noting that h̄n is bounded.

Note that by (3.22)

lim
t↓0

1

t
Efk,l·m[(N

n,[u]
t )2] ≤ k lim

t↓0
1

t
Eh̄n·m[(N

n,[u]
t )2] = 2keVn(Nn,[u]) = 0. (3.23)

Then, by Theorem 3.3(i) and (3.23), we get∫
Vn

f̃k,ldμ
(n)
<u> = lim

t↓0
1

t
Efk,l·m[< Mn,[u] >t]

= lim
t↓0

1

t
Efk,l·m[(ũ(XVn

t ) − ũ(XVn
0 ))2]

= lim
t↓0

2

t
(ufk,l, u − P Vn

t u) − lim
t↓0

1

t
(fk,l, u

2 − P Vn
t u2)

= 2E(u, ufk,l) − E(u2, fk,l). (3.24)
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3.3 Transformation formula for local MAFs

By (MR1992, Theorem I.2.13), for each k ∈ N, fk,l → fk in D(E)Vn as l → ∞.

Furthermore, by Assumption 3.1, (MR1992, Corollary I.4.15) and (3.22), we can show

that supl≥1 E(ufk,l, ufk,l) < ∞. Thus, we obtain by (MR1992, Lemma I.2.12) that

ufk,l → ufk weakly in D(E)Vn as l → ∞. Note that
∫

Vn

˜̄hndμ
(n)
<u> = 2eVn(Mn,[u]) < ∞

for any u ∈ D(E)Vn,b. Therefore, we obtain by (3.24), (3.22) and the dominated

convergence theorem that∫
Vn

f̃kdμ
(n)
<u> = 2E(u, ufk) − E(u2, fk), ∀u ∈ D(E)Vn,b. (3.25)

By (3.21) and the weak sector condition, we get supk≥1 E1(fk, fk) < ∞. Fur-

thermore, by Assumption 3.1 and (MR1992, Corollary I.4.15), we can show that

supk≥1 E(ufk, ufk) < ∞. Thus, we obtain by (MR1992, Lemma I.2.12) that fk → f

and ufk → uf weakly in D(E)Vn as k → ∞. Therefore (3.20) holds by (3.25) and the

monotone convergence theorem.

For u ∈ D(E)Vn,b, we denote by Mn,[u],c and Mn,[u],k the continuous and killing parts

of Mn,[u], respectively; denote by μn,c
<u> and μn,k

<u> the Revuz measures of < Mn,[u],c >

and < Mn,[u],k >, respectively. Then Mn,[u] = Mn,[u],c + Mn,[u],k with

Mn,[u],k = −ũ(XVn

ζ(n)−)I{ζ(n)≤t} − (−ũ(XVn

ζ(n)−)I{ζ(n)≤t})
p,

where ζ(n) denotes the life time of XVn and p denotes the dual predictable projection,

and

μ
(n)
<u> = μn,c

<u> + μn,k
<u>. (3.26)

Let (N (n)(x, dy), H(n)) be a Lévy system of XVn and ν(n) be the Revuz measure

of H(n). Define K(n)(dx) := N (n)(x, Δ)ν(n)(dx). Similar to (FOT1994, (5.3.8) and

(5.3.10)), we can show that

< Mn,[u],k >t = (ũ2(XVn

ζ(n)−)Iζ(n)≤t)
p

=

∫ t

0

ũ2(XVn
s )N (n)(XVn

s , Δ)dH(n)
s (3.27)

and

μn,k
<u>(dx) = ũ2(x)K(n)(dx). (3.28)
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3.3 Transformation formula for local MAFs

For u, v ∈ D(E)Vn,b, we define

μn,c
<u,v> :=

1

2
(μn,c

<u+v> − μn,c
<u> − μn,c

<v>), μn,k
<u,v> :=

1

2
(μn,k

<u+v> − μn,k
<u> − μn,k

<v>). (3.29)

Theorem 3.5. Let u, v, w ∈ D(E)Vn,b. Then

dμn,c
<uv,w> = ũdμn,c

<v,w> + ṽdμn,c
<u,w>. (3.30)

Proof. By quasi-homeomorphism and the polarization identity, (3.30) holds for u, v, w ∈
D(E)Vn,b is equivalent to∫

Vn

f̃dμn,c
<u2,w> = 2

∫
Vn

f̃ ũdμn,c
<u,w>, ∀f, u, w ∈ D(E)Vn,b. (3.31)

By (3.18) and (3.26)-(3.29), we find that (3.31) is equivalent to∫
Vn

f̃dμ
(n)

<u2,w> +

∫
Vn

f̃ ũ2w̃dK(n) = 2

∫
Vn

f̃ ũdμ
(n)
<u,w>, ∀f, u, w ∈ D(E)Vn,b. (3.32)

For k ∈ N, we define vk := kRVn
k+1u. Then vk → u in D(E)Vn as k → ∞. By As-

sumption 3.1 and (MR1992, Corollary I.4.15), we can show that supk≥1 E(vkw, vkw) <

∞. Then, by (MR1992, Lemma I.2.12), there exists a subsequence {(vkl
)}l∈N of

{vk}k∈N such that ukw → uw in D(E)Vn as k → ∞, where uk := 1
k

∑k
l=1 vkl

. Note

that uk → u in D(E)Vn as k → ∞ and ‖uk‖∞ ≤ ‖u‖∞ for k ∈ N. Moreover,

‖LVnuk‖∞ < ∞ for k ∈ N, where LVn is the generator of XVn .

By Assumption 3.1 and (MR1992, Corollary I.4.15), we can show that

sup
k≥1

[E(ukfw, ukfw) + E(u2
kf, u2

kf) + E(ukf, ukf)] < ∞.

Then, we obtain by (MR1992, Lemma I.2.12) that ukfw → ufw, u2
kf → u2f and

ukf → uf weakly in D(E)Vn as k → ∞. Hence by (3.19) and the fact

sup
k≥1

[E(ukfw, ukfw) + E(ukf, ukf)] < ∞

we get ∫
Vn

f̃ ũdμ
(n)
<u,w> = E(u, ufw) + E(w, u2f) − E(uw, uf)

= lim
k→∞

[E(u, ukfw) + E(w, u2
kf) − E(uw, ukf)]

= lim
k→∞

[E(uk, ukfw) + E(w, u2
kf) − E(ukw, ukf)]

= lim
k→∞

∫
Vn

f̃ ũkdμ
(n)
<uk,w>. (3.33)
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By Assumption 3.1 and (MR1992, Corollary I.4.15), we can show that supk≥1[E(u2
k, u

2
k)+

E(u2
kf, u2

kf) + E(u2
kw, u2

kw)] < ∞. Then, we obtain by (MR1992, Lemma I.2.12) that

u2
k → u2, u2

kf → u2f and u2
kw → u2w weakly in D(E)Vn as k → ∞. Hence by (3.19)

we get ∫
Vn

f̃dμ
(n)

<u2,w> = E(u2, fw) + E(w, u2f) − E(u2w, f)

= lim
k→∞

[E(u2
k, fw) + E(w, u2

kf) − E(u2
kw, f)]

= lim
k→∞

∫
Vn

f̃dμ
(n)

<u2
k,w>

. (3.34)

By (3.33), (3.34) and the dominated convergence theorem, to prove (3.32), we may

assume without loss of generality that u is equal to some uk. Moreover, we assume

without loss of generality that f ≥ 0.

For k, l ∈ N, we define fk := f ∧ (kh̄n) and fk,l := lĜVn
l+1fk. By (MR1995, (3.9)),

fk ∈ D(E)Vn,b; by (MR1992, Proposition III.1.2), fk,l is (l + 1)-co-excessive. Since h̄n

is 1-co-excessive,

0 ≤ fk,l ≤ kh̄n.

Hence fk,l ∈ D(E)Vn,b by noting that h̄n is bounded. By the dominated convergence

theorem, to prove that (3.32) holds for any f ∈ D(E)Vn,b, it suffices to prove that

(3.32) holds for any fk,l.

Below, we will prove (3.32) for u = uk and f = fk,l.

Note that for any g ∈ D(E)Vn,b,

lim
t↓0

1

t
Efk,l·m[(N

n,[g]
t )2] ≤ k lim

t↓0
1

t
Eh̄n·m[(N

n,[g]
t )2] = 2keVn(Nn,[g]) = 0. (3.35)

By Theorem 3.3(i) and (3.35), we get∫
Vn

f̃k,ldμ
(n)

<u2
k,w>

= lim
t↓0

1

t
Efk,l·m[< Mn,[u2

k],Mn,[w] >t]

= lim
t↓0

1

t
Efk,l·m[(ũk

2(XVn
t ) − ũk

2(XVn
0 ))(w̃(XVn

t ) − w̃(XVn
0 ))]

= lim
t↓0

2

t
E(fk,luk)·m[(ũk(X

Vn
t ) − ũk(X

Vn
0 ))(w̃(XVn

t ) − w̃(XVn
0 ))]

+ lim
t↓0

1

t
Efk,l·m[(ũk(X

Vn
t ) − ũk(X

Vn
0 ))2(w̃(XVn

t ) − w̃(XVn
0 ))]

:= lim
t↓0

[I(t) + II(t)]. (3.36)
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By (3.35), Theorem 3.3(iii) and (3.19), we get

lim
t↓0

I(t) = lim
t↓0

2

t
E(fk,luk)·m(< Mn,[uk],Mn,[w] >t)

= lim
t↓0

2

t

∫ t

0

< μ
(n)
<uk,w>, ˜T̂ Vn

s (fk,luk) > ds

= lim
t↓0

2

t

∫ t

0

[E(uk, wT̂ Vn
s (fk,luk)) + E(w, ukT̂

Vn
s (fk,luk))

−E(ukw, T̂ Vn
s (fk,luk))]ds. (3.37)

By (AFRS1995, Theorem 3.4), T̂ Vn
s (fk,luk) → fk,luk in D(E)Vn as s → 0. Furthermore,

by Assumption 3.1, (MR1992, Corollary I.4.15) and the fact that |e−sT̂ Vn
s (fk,luk)| ≤

k‖uk‖∞h̄n, s > 0, we can show that sups>0 E(wT̂ Vn
s (fk,luk), wT̂ Vn

s (fk,luk)) < ∞. Thus,

we obtain by (MR1992, Lemma I.2.12) that wT̂ Vn
s (fk,luk) → wfk,luk weakly in D(E)Vn

as s → 0. Similarly, we get ukT̂
Vn
s (fk,luk) → ukfk,lu weakly in D(E)Vn as s → 0.

Therefore, by (3.37) and (3.19), we get

lim
t↓0

I(t) = 2

∫
Vn

f̃k,lũkdμ
(n)
<uk,w>. (3.38)

Note that

II(t) =
1

t
Efk,l·m[(M

n,[uk],c
t )2M

n,[w],c
t ] +

1

t
Efk,l·m[(M

n,[uk],k
t )2M

n,[w],k
t ]

:= III(t) + IV (t). (3.39)

By Burkholder-Davis-Gunday inequality, we get

lim
t↓0

III(t) ≤ (lim
t↓0

1

t
Efk,l·m[(M

n,[uk],c
t )4])1/2(lim

t↓0
1

t
Efk,l·m[< Mn,[v],c >t])

1/2

≤ C(2keVn(Mn,[v]))1/2(lim
t↓0

1

t
Efk,l·m[< Mn,[uk],c >2

t ])
1/2 (3.40)

for some constant C > 0, which is independent of t.

By Theorem 3.3(i), for any δ > 0, we get

lim
t↓0

1

t
Efk,l·m[< Mn,[uk],c >2

t ]

= lim
t↓0

2

t
Efk,l·m[

∫ t

0

< Mn,[uk],c >(t−s) ◦θsd < Mn,[uk],c >s]

= lim
t↓0

2

t
Efk,l·m[

∫ t

0

EXVn
s

[< Mn,[uk],c >(t−s)]d < Mn,[uk],c >s]

≤ 2 < E·[< Mn,[uk] >δ] · μ(n)
<uk>, f̃k,l > . (3.41)
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3.3 Transformation formula for local MAFs

Note that by our choice of uk, there exists a constant Ck > 0 such that Ex(<

Mn,[uk] >δ) = Ex[(M
n,[uk]
δ )2] = Ex[(ũk(X

Vn
δ )− ũk(X

Vn
0 )−∫ δ

0
LVnuk(X

Vn
s )ds)2] ≤ Ck for

any δ ≤ 1 and E-q.e. x ∈ Vn. Letting δ → 0, by (3.41), the dominated convergence

theorem and (3.40), we get

lim
t↓0

III(t) = 0. (3.42)

By (P2005, Theorem II.33, integration by parts (page 68) and Theorem II.28), we

get

IV (t) =
1

t
Efk,l·m[Iζ(n)≤t{−(ũk

2w̃)(XVn

ζ(n)−)

+2(ũkw̃)(XVn

ζ(n)−)(ũk(X
Vn

ζ(n)−)Iζ(n)≤t)
p

+(ũk
2)(XVn

ζ(n)−)(w̃(XVn

ζ(n)−)Iζ(n)≤t)
p}]

=
1

t
Efk,l·m[−((ũk

2w̃)(XVn

ζ(n)−)Iζ(n)≤t)
p

+2((ũkw̃)(XVn

ζ(n)−)Iζ(n)≤t)
pM

n,[uk],k
t

+(ũk
2(XVn

ζ(n)−)Iζ(n)≤t)
pM

n,[w],k
t ]

≤ 1

t
Efk,l·m[−((ũk

2w̃)(XVn

ζ(n)−)Iζ(n)≤t)
p]

+
2

t
E

1/2
fk,l·m[{((ũkw̃)(XVn

ζ(n)−)Iζ(n)≤t)
p}2]E

1/2
fk,l·m[< Mn,[uk],k >t]

+E
1/2
fk,l·m[{(ũk

2(XVn

ζ(n)−)Iζ(n)≤t)
p}2]E

1/2
fk,l·m[< Mn,[w],k >t]. (3.43)

By Theorem 3.3(i), (3.27)-(3.29), we obtain that for ψ1, ψ2 ∈ D(E)Vn,b,

lim
t↓0

1

t
Efk,l·m[((ψ̃1ψ̃2)(X

Vn

ζ(n)−)Iζ(n)≤t)
p] =

∫
Vn

f̃k,ldμn,k
<ψ1,ψ2>

=

∫
Vn

f̃k,lψ̃1ψ̃2dK(n) (3.44)

and

lim
t↓0

1

t
Efk,l·m[< Mn,[ψ1],k >t] =

∫
Vn

f̃k,ldμn,k
<ψ1>. (3.45)
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3.3 Transformation formula for local MAFs

Furthermore, for any δ > 0,

lim
t↓0

1

t
Efk,l·m[{((ψ̃1ψ̃2)(X

Vn

ζ(n)−)Iζ(n)≤t)
p}2]

= lim
t↓0

2

t
Efk,l·m[

∫ t

0

((ψ̃1ψ̃2)(X
Vn

ζ(n)−)Iζ(n)≤(t−s))
p ◦ θsd((ψ̃1ψ̃2)(X

Vn

ζ(n)−)Iζ(n)≤s)
p]

= lim
t↓0

2

t
Efk,l·m[

∫ t

0

EXVn
s

[((ψ̃1ψ̃2)(X
Vn

ζ(n)−)Iζ(n)≤(t−s))
p]d((ψ̃1ψ̃2)(X

Vn

ζ(n)−)Iζ(n)≤s)
p]

≤< E·[(|̃ψ1ψ2|(XVn

ζ(n)−)Iζ(n)≤δ)
p] · μn,k

<|ψ1|,|ψ2|>, f̃k,l >

=< E·[|̃ψ1ψ2|(XVn

ζ(n)−)Iζ(n)≤δ] · μn,k
<|ψ1|,|ψ2|>, f̃k,l > . (3.46)

Letting δ → 0, by (3.46) and the dominated convergence theorem, we get

lim
t↓0

1

t
Efk,l·m[{((ψ̃1ψ̃2)(X

Vn

ζ(n)−)Iζ(n)≤t)
p}2] = 0. (3.47)

By (3.43)-(3.45) and (3.47), we get

lim
t↓0

IV (t) = −
∫

Vn

f̃k,lũk
2w̃dK(n). (3.48)

Therefore, the proof is completed by (3.36), (3.38), (3.39), (3.42) and (3.48).

Remark 3.2. When deriving formula (3.30) for non-symmetric Markov processes,

we cannot apply Theorem 3.3(vi) or (vii) to smooth measures which are not of finite

energy integral. To overcome that difficulty and obtain (3.30) in the semi-Dirichlet

forms setting, we have to make some extra efforts as shown in the above proof. The

proof uses some ideas of (K1987, Theorem 5.4) and (O1988, Theorem 5.3.2).

Theorem 3.6. Let m ∈ N, Φ ∈ C1(Rm) with Φ(0) = 0, and u = (u1, u2, . . . , um)

with ui ∈ D(E)Vn,b, 1 ≤ i ≤ m. Then Φ(u) ∈ D(E)Vn,b and for any v ∈ D(E)Vn,b,

dμn,c
<Φ(u),v> =

m∑
i=1

Φxi
(ũ)dμn,c

<ui,v>. (3.49)

Proof. Φ(u) ∈ D(E)Vn,b is a direct consequence of Assumption 3.1 and the corre-

sponding property of Dirichlet form. Below we only prove (3.49). Let v ∈ D(E)Vn,b.

Then (3.49) is equivalent to∫
Vn

f̃ h̄ndμn,c
<Φ(u),v> =

m∑
i=1

∫
Vn

f̃ h̄nΦxi
(ũ)dμn,c

<ui,v>, ∀f ∈ D(E)Vn,b. (3.50)
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3.3 Transformation formula for local MAFs

Let A be the family of all Φ ∈ C1(Rm) satisfying (3.49). If Φ, Ψ ∈ A, then ΦΨ ∈ A

by Theorem 3.5. Hence A contains all polynomials vanishing at the origin. Let O be

a finite cube containing the range of u(x) = (u1(x), . . . , um(x)). We take a sequence

{Φk} of polynomials vanishing at the origin such that Φk → Φ, Φk
xi
→ Φxi

, 1 ≤ i ≤ m,

uniformly on O. By Assumption 3.1 and (FOT1994, (3.2.27)), Φk(u) converges to

Φ(u) w.r.t. EVn
1 as k → ∞. Then, by (3.14), we get

|
∫

Vn

f̃ h̄ndμn,c
<Φ(u),v> −

∫
Vn

f̃ h̄ndμn,c
<Φk(u),v>

|

≤ ‖f‖∞|
∫

Vn

h̄ndμn,c
<Φ(u)−Φk(u)>

|1/2|
∫

Vn

h̄ndμn,c
<v>|1/2

≤ ‖f‖∞|
∫

Vn

h̄ndμ
(n)

<Φ(u)−Φk(u)>
|1/2|

∫
Vn

h̄ndμ
(n)
<v>|1/2

= 2‖f‖∞eVn(Mn,[Φ(u)−Φk(u)])1/2eVn(Mn,[v])1/2

≤ 2‖f‖∞eVn(Mn,[v])1/2[KCnE
Vn
1 (Φ(u) − Φk(u), Φ(u) − Φk(u))1/2

·(‖Φ(u) − Φk(u)‖∞EVn
1 (h̄n, h̄n)1/2

+‖h̄n‖∞EVn
1 (Φ(u) − Φk(u), Φ(u) − Φk(u))1/2)]1/2.

Hence ∫
Vn

f̃ h̄ndμn,c
<Φ(u),v> = lim

k→∞

∫
Vn

f̃ h̄ndμn,c
<Φk(u),v>

.

It is easy to see that∫
Vn

f̃ h̄nΦxi
(ũ)dμn,c

<ui,v> = lim
k→∞

∫
Vn

f̃ h̄nΦk
xi

(ũ)dμn,c
<ui,v>, 1 ≤ i ≤ m.

Therefore (3.50) holds.

For M,L ∈ ṀVn , there exists a unique CAF < M, L > of bounded variation such

that

Ex(MtLt) = Ex(< M, L >t), t ≥ 0, E-q.e. x ∈ Vn.

Denote by μ
(n)
<M,L> the Revuz measure of < M, L >. Then, similar to (FOT1994,

Lemma 5.6.1), we can prove the following lemma.
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3.3 Transformation formula for local MAFs

Lemma 3.12. If f ∈ L2(Vn; μ
(n)
<M>) and g ∈ L2(Vn; μ

(n)
<L>), then fg is integrable w.r.t.

|μ(n)
<M,L>| and

(

∫
Vn

| fg | d | μ
(n)
<M,L> |)2 ≤

∫
Vn

f 2dμ
(n)
<M>

∫
Vn

g2dμ
(n)
<L>.

Lemma 3.13. Let M ∈ ṀVn and f ∈ L2(Vn; μ
(n)
<M>). Then there exists a unique

element f · M ∈ ṀVn such that

eVn(f · M,L) =
1

2

∫
Vn

fh̄ndμ
(n)
<M,L>, ∀L ∈ ṀVn . (3.51)

The mapping f → f ·M is continuous and linear from L2(Vn; μ
(n)
<M>) into the Hilbert

space (ṀVn ; eVn).

Proof. Let L ∈ ṀVn . Then, by Lemma 3.12, we get

| 1

2

∫
Vn

fh̄ndμ
(n)
<M,L> | ≤ 1√

2
(

∫
Vn

f 2h̄ndμ
(n)
<M>)1/2(1/2

∫
Vn

h̄ndμ
(n)
<L>)1/2

≤ ‖h̄n‖∞√
2

‖ f ‖
L2(Vn;μ

(n)
<M>)

√
eVn(L).

Therefore, the proof is completed by Lemma 3.8.

Similar to (FOT1994, Lemma 5.6.2, Corollary 5.6.1 and Lemma 5.6.3), we can

prove the following two lemmas.

Lemma 3.14. Let M,L ∈ ṀVn. Then

(i) dμ
(n)
<f ·M,L> = fdμ

(n)
<M,L> for f ∈ L2(Vn; μ

(n)
<M>).

(ii) g · (f · M) = (gf) · M for f ∈ L2(Vn; μ
(n)
<M>) and g ∈ L2(Vn; f 2dμ

(n)
<M>).

(iii) eVn(f ·M, g·L) = 1
2

∫
fgh̄ndμ

(n)
<M,L> for f ∈ L2(Vn; μ

(n)
<M>) and g ∈ L2(Vn; μ

(n)
<L>).

Lemma 3.15. The family {f̃ · Mu | f ∈ D(E)Vn,b} is dense in (ṀVn , eVn).

Theorem 3.7. Let m ∈ N, Φ ∈ C1(Rm) with Φ(0) = 0, and u = (u1, u2, . . . , um)

with ui ∈ D(E)Vn,b, 1 ≤ i ≤ m. Then

M [Φ(u)],c =
m∑

i=1

Φxi
(u) · M [ui],c, Px-a.s. for E-q.e. x ∈ Vn. (3.52)
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3.3 Transformation formula for local MAFs

Proof. Let v ∈ D(E)Vn,b and f, g ∈ D(E)Vn,b. Then, by Lemma 3.14(iii) and Theorem

3.6, we get

eVn(f̃ · Mn,[Φ(u)],c, g̃ · Mn,[v]) =
1

2

∫
Vn

f̃ g̃h̄ndμ
(n)

<Mn,[Φ(u)],c,Mn,[v]>

=
1

2

∫
Vn

f̃ g̃h̄ndμn,c
<Φ(u),v>

=
1

2

m∑
i=1

∫
Vn

f̃ g̃h̄nΦxi
(u)dμn,c

<ui,v>

=
1

2

m∑
i=1

∫
Vn

f̃ g̃h̄nΦxi
(u)dμ

(n)

<Mn,[ui],c,Mn,[v]>

= eVn(
m∑

i=1

(f̃Φxi
(u)) · Mn,[ui],c, g̃ · Mn,[v]).

By Lemma 3.15, we get

f̃ · Mn,[Φ(u)],c =
m∑

i=1

(f̃Φxi
(u)) · Mn,[ui],c, Px-a.s. for E-q.e. x ∈ Vn.

Therefore, (3.52) is satisfied by Lemma 3.14(ii), since f ∈ D(E)Vn,b is arbitrary.

Let M ∈ Ṁloc. Then, there exist {Vn}, {En} ∈ Θ and {Mn |Mn ∈ ṀVn} such that

En ⊂ Vn, Mt∧τEn
= Mn

t∧τEn
, t ≥ 0, n ∈ N. We define

< M >t∧τEn
:=< Mn >t∧τEn

; < M >t:= lim
s↑ζ

< M >s for t ≥ ζ.

Then, we can see that < M > is well-defined and < M > is a PCAF. Denote by

μ<M> the Revuz measure of < M >. We define

L2
loc(E; μ<M>) := {f | ∃ {Vn}, {En} ∈ Θ and {Mn |Mn ∈ ṀVn} such that

En ⊂ Vn,Mt∧τEn
= Mn

t∧τEn
, f · IEn ∈ L2(En; μ

(n)
<Mn>), t ≥ 0, n ∈ N}

For f ∈ L2
loc(E; μ<M>), we define f · M on [[0, ζ[[ by

(f · M)t∧τEn
:= ((f · IEn) · Mn)t∧τEn

, t ≥ 0, n ∈ N.

Then, we can see that f · M is well-defined and f · M ∈ M
[[0,ζ[[
loc . Denote by M c the

continuous part of M .

Finally, we obtain the main result of this section.
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3.3 Transformation formula for local MAFs

Theorem 3.8. Suppose that (E, D(E)) is a quasi-regular local semi-Dirichlet form on

L2(E; m) satisfying Assumption 3.1. Let m ∈ N, Φ ∈ C1(Rm), and u = (u1, u2, . . . , um)

with ui ∈ D(E)loc, 1 ≤ i ≤ m. Then Φ(u) ∈ D(E)loc and

M [Φ(u)],c =
m∑

i=1

Φxi
(u) · M [ui],c on [0, ζ), Px-a.s. for E-q.e. x ∈ E. (3.53)

Proof. Since 1 ∈ D(E)loc, Φ(u) ∈ D(E)loc by Theorem 3.6. (3.53) is a direct conse-

quence of (3.52).
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Chapter 4

Future research

In the future, we will focus on the following three topics that are closely related to

this thesis.

1. Let (Xt, Px) be a right process associated with a quasi-regular semi-Dirichlet form.

We are interested in the strong continuity of the generalized Feynman-Kac semigroup

P u
t f(x) = Ex[e

Nu
t f(Xt)]. Different from the non-symmetric Dirichlet forms case, we

need to overcome two problems.

For a quasi-regular semi-Dirichlet forms (E, D(E)) on L2(E; m), a smooth measure

μ is said to be in the Kato class if

lim
t→0

inf
Capφ(N)=0

sup
x∈E\N

Ex[A
μ
t ] = 0,

where (Aμ
t )t≥0 is the PCAF associated with μ. Denote by SK the Kato class of smooth

measures.

The first problem is whether the following property holds: Let μ ∈ SK , then for

any ε > 0, there exists a constant Aε such that for any f ∈ D(E),∫
E

f̃ 2dμ ≤ εE(f, f) + Aε‖f‖2
2. (4.1)

We have solved this problem and include it in the Appendix.

Define (Q̄u,n, D(E)n) as in section 2.1. The second problem is whether this form

is a coercive closed form or not. In semi-Dirichlet forms case, it is not true that

1
2

∫
E

dμ<Mf > ≤ E(f, f), so we can’t follow the same method (see (2.11) and (2.12)) to
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get that (Q̄u,n, D(E)n) is a coercive closed form. New method should be considered.

If this problem can be solved, then there is hope to generalize the results of Chapter

2 to the semi-Dirichlet forms case.

2. Fukushima’s decomposition for semi-Dirichlet forms with jumping parts. In

Chapter 3, we use the localization method to get Fukushima’s decomposition for local

semi-Dirichlet forms. If the semi-Dirichlet form has a jumping part, then the method

does not work since the continuity of sample paths is essentially used in the proof.

Recently, in (FU2010), jump-type Hunt processes generated by lower bounded semi-

Dirichlet forms are considered. In that paper, C lip
0 , the space of uniformly Lipschitz

continuous functions with compact supports, is contained in the domain of the semi-

Dirichlet form, but C lip
0 is not a subset of the domain of the generator. We hope to

further our method so as to get Fukushima’s decomposition for general semi-Dirichlet

forms which include diffusion, jumping and killing parts.

3. Large deviations problems. In Chapter 2, three transformations: Feynman-Kac

transformation, h-transformation and Girsanov transformation, have been considered.

This method can be used to study large deviations of additive functionals. We hope

to make use of the method of Chapter 2 and paper (CHM2010) to study asymptotic

behavior of additive functionals associated with nearly symmetric Markov processes.
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Appendix

Let (E, D(E)) be a quasi-regular semi-Dirichlet form on L2(E; m). In this appendix,

we will derive a useful inequality for measures in the Kato class.

Definition 4.1. A smooth measure μ is said to be in the Kato class if

lim
t→0

inf
Capφ(N)=0

sup
x∈E\N

Ex[A
μ
t ] = 0,

where (Aμ
t )t≥0 is the PCAF associated with μ. Denote by SK the Kato class of smooth

measures.

Theorem 4.1. Let μ ∈ SK. Then for any ε > 0, there exists a constant Aε > 0 such

that for any f ∈ D(E), ∫
E

f̃ 2dμ ≤ εE(f, f) + Aε‖f‖2
2. (4.2)

Proof. By quasi-regular homoemorphism, without loss of generality, we may assume

that (E, D(E)) is a regular semi-Dirichlet form on L2(E; m).

(i) First we assume that μ ∈ S0 ∩ SK , we will show that for α ≥ 0, f ∈ D(E), the

following inequality holds:∫
E

f̃ 2dμ ≤ 16(K + 1)2||Uαμ||∞Eα(f, f). (4.3)

For t > 0, let Kt = {x ∈ E | |f̃(x)| ≥ t} and

LKt := {v ∈ D(E) | ṽ ≥ 1 E − q.e. on Kt}.

By (MOR1995, Remark 2.2 (iii)), we get |f | ∈ D(E) and LKt �= ∅. Let êKt be the

α−order equilibrium co-potential, eKt be the α−order equilibrium potential and ēKt
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be the symmetric α−order equilibrium potential. Then

Eα(ēKt , êKt) ≤ (K + 1)Eα(ēKt , ēKt)
1
2 Eα(êKt , êKt)

1
2

= (K + 1)Ẽα(ēKt , ēKt)
1
2 Eα(êKt , êKt)

1
2

≤ (K + 1)Ẽα(ēKt , ēKt)
1
2 Eα(ēKt , êKt)

1
2

where K is the continuity constant. Thus Eα(ēKt , êKt) ≤ (K + 1)2Ẽα(ēKt , ēKt). By

(MR1995, page 832), similar to (FOT1994, Theorem 2.2.1) , we can show that for

u ∈ D(E), u is an α-potential if and only if u is an α−excessive function in the

positive preserving forms setting. Hence similar to (V1991, Proposition 1), we can

show that ∫ ∞

0

tẼα(ēKt , ēKt)dt ≤ 2Ẽα(|f |, |f |)

Then, by (MOR1995, equation (2.1)), for α ≥ 1, we get∫ ∞

0

tEα(ēKt , êKt)dt ≤ 2(K + 1)2Ẽα(|f |, |f |) ≤ 8(K + 1)2Eα(f, f).

Define

Ê(u, v) := E(v, u).

Then (Ê, D(E)) is a regular positivity preserving form and êKt is an α−potential with

respect to (Ê, D(E)). Hence there is a smooth measure ν such that êKt = Ûαν. Since

supp[ν] ⊂ Kt, ∫
E

f̃(x)2μ(dx) = 2

∫ ∞

0

t

∫
E

IKtμ(dx)dt

≤ 2

∫ ∞

0

t

∫
E

˜̂eKtμ(dx)dt

= 2

∫ ∞

0

tEα(Uαμ, êKt)dt

= 2

∫ ∞

0

t

∫
E

˜(Uαμ)(x)ν(dx)dt

≤ 2||Ũαμ||∞
∫ ∞

0

t

∫
E

˜̄eKtν(dx)dt

= 2||Ũαμ||∞
∫ ∞

0

tEα(ēKt , êKt)dt

≤ 16(K + 1)2||Ũαμ||∞Eα(f, f).
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(ii) Now we consider general μ ∈ SK . By Theorem 3.2, there exists an E-nest {Fn}n≥1

such that μn := IFnμ ∈ S0. Denote by A the PCAF whose Revuz measure is μ. Then

An
t :=

∫ t

0
IFn(Xs)dAn

s is the PCAF corresponding to μn. By Theorem 3.3, we know

that Uαμn is a quasi-continuous version of Uα
An

1. Hence for any n, ||Ũαμn||∞ =

||Uα
An1||∞ ≤ ||Uα

A1||∞. Then for any f ∈ D(E), we have∫
f̃2dμ = lim

n→∞

∫
f̃ 2dμn ≤ lim

n→∞
16(K + 1)2||Ũαμn||∞Eα(f, f)

≤ 16(K + 1)2||Uα
A1||∞Eα(f, f). (4.4)

Similar to (AM1992, Theorem 4.1), we can show that for μ ∈ SK , limα→∞ ||Uα
A1||∞ =

0. Therefore (4.2) holds by (4.4).

Remark 4.1. The above proof is based on (V1991, Proposition 2). However, we

have made some modifications since there are many differences between symmetric

Dirichlet forms and (non-symmetric) positive preserving forms. (F2001, Proposition

4.2) also gives an inequality, which is similar to (4.3), by using a different method

under the condition that μ satisfies μU ≤ C0m, where C0 > 0 is a constant. For a

non-symmetric Dirichlet form, (CS2003, Proposition 4.3) also gives (4.2) by using

Green functions of the dual process, however, the method does not work for semi-

Dirichlet forms since there is no dual process in the semi-Dirichlet forms setting.
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[MR1992] Z.M. Ma and M. Röckner: Introduction to the Theory of (Non-Symmetric)

Dirichlet Forms, Springer-Verlag, Berlin, 1992. 4, 7, 10, 17, 19, 23, 36, 39, 40, 42,

65, 66, 67, 68, 69
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