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ABSTRACT
Adaptive Control of Nonlinear Discrete-Time Systems and
its Application to Control of a Flexible-Link Manipulator

Mohammad Reza Rokui, Ph.D.
Concordia University, 1997

The objectives of this research work are to develop direct and indirect adap-
tive control strategies for discrete-time nonlinear systems and to investigate the
applicability of the proposed schemes to adaptive tracking control of a flexible-link
manipulator. The first problem considered is indirect adaptive control of a fully as
well as a partially input-output feedback linearizable nth order affine SISO nonlinear
system represented in the state-space form. The objective is to make the output
y(k) track a reference trajectory y,,(k) despite the fact that the parameters of the
system are unknown. Towards this end, a local diffeomorphism for the change of
coordinates and a nonlinear feedback control law are obtained so that the nonlinear
system is rendered input to output equivalent into a linear system. The resulting
linear system is then used to solve the output tracking control problem using conven-
tional linear control theory. A multi-output recursive-least-square (RLS) algorithm
is employed to identify the unknown parameters. Using the Lyapunov technique
it is shown that provided the zero dynamics is exponentially stable the adaptively
controlled closed-loop system is stable .

The second problem addressed is the direct adaptive tracking control problem of
a class of SISO discrete-time nonlinear systems represented in the input-output form.
To solve the problem, the state-space model is first derived and the appropriate
control input is obtained. By employing the projection algorithm as a parameter
estimator, the closed-loop stability of the adaptively controlled system is addressed

using Lyapunov technique.
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As an application, the indirect adaptive control strategy is employed to con-
trol a single link flexible manipulator. Towards this end, the discrete-time model
of the manipulator and its zero dynamics are derived first. By using the output
re-definition technique, the adaptive input-output linearization scheme is then ap-
plied. The regressor form of the link’s dynamic equations is also developed for the
multi-output RLS identification algorithm. The performance of the adaptively con-
trolled closed-loop system is investigated through numerical simulations to show the
advantages and the main features of the proposed strategy.

Finally to evaluate the performance of the proposed controller, an experimental
test-bed of a single-link flexible manipulator is used for implementation. The real-
time controller and estimator are implemented on a TMS system board which uses
a TMS320C30 Digital Signal Processing (DSP) chip. The actual results are then

compared with the simulation results to verify and validate the theoretical findings.
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Chapter 1

Introduction

In this chapter several issues related to the adaptive tracking control of discrete-time
nonlinear systems and their applications to control of a flexible-link manipulator
are investigated. In Section 1.1 a general overview on control design of a physical
system is outlined. The main features of nonlinear feedback linearization technique
are then compared to the local linearization technique that is commonly used in
practice. In Section 1.2 the main objectives of the proposed research are described.
In Section 1.2.1 existing methods in the literature that deal with adaptive control
problem of continuous-time as well as discrete-time systems represented in both
state-space and input-output forms are reviewed. Section 1.2.2 covers a literature
review on modeling, non-adaptive and adaptive control of flexible-link manipulator.
The contributions and accomplishments of this dissertation are stated in Section

1.3.

1.1 General overview

The objective of control design can basically be stated as follows. Given a physical
system to be controlled and the desired specifications, construct a feedback control

law so to make the closed-loop system display the desired behavior. For example if



the desired task involves large and high speed motions, then nonlinear effects of the
plant will be significant and therefore, it may be necessary to consider the nonlin-

earities in order to achieve the desired performance.

Generally the task of the control system can be divided into two categories: stabi-
lization (or regulation) and tracking (or servo). In stabilization problem, a control
system, called a stabilizer or a regulator, is to be designed so that the states of
the closed-loop system will be stabilized around an equilibrium point. Examples of
stabilization tasks are temperature control, altitude control of a aircraft and posi-
tion control of robot arms. In tracking control problem, the design objective is to
construct a controller, called a tracker, so that the system output tracks a given pre-
defined trajectory. Problems such as making an aircraft fly along a specified path or
making the end effector of a robot manipulator following some desired trajectories

are typical tracking examples.

As in the analysis of nonlinear control systems, there are only a few methods avail-
able for designing a nonlinear controller. The first step in designing a control sys-
tem for a given physical plant is to derive a meaningful model of the plant, i.e., a
model that captures the key dynamics of the plant in the operational range of inter-
est. Models of physical systems come in various forms, depending on the adopted
methodology and given assumptions. Some forms, however, lend themselves more
easily to control design. Specifically feedback linearization technique deals with
transforming an original nonlinear system model into an equivalent model of a sim-

pler linear form.

Feedback linearization techniques for nonlinear control design have attracted a great
deal of research interest in the past few years. The central idea is to transform the

nonlinear system dynamics into a fully or partially linearized form. Once this is



accomplished, feedback linearization strategy opens the door for applying linear de-
sign methodology to nonlinear systems. This design methodology differs entirely
from conventional linearization (i.e., local Jacobian linearization) technique in that
feedback linearization is achieved by exact state transformation and nonlinear feed-

back rather than by linear Taylor series approximations of the dynamics.

The idea of simplifying a system’s dynamics form by choosing a different state
representation is not totally novel. In mechanics, for instance, it is well known that
the form and complexity of a system model depend considerably on the choice of
reference frames or coordinates system. Feedback linearization techniques can be
viewed as a way of transforming original system models into an equivalent model
of a simple form. Feedback linearization techniques have been used successfully to
address some practical control problems. These include the control of helicopter,
high performance aircraft, spacecraft attitude control [64], industrial robots and
biomedical devices. More applications of this control methodology are currently
being developed in industry. However, feedback linearization approach has also a
number of shortcomings and limitations that are still very much topics of current

research.

1.1.1 Local Linearization

Lyapunov’s linearization method is concerned with the local stability of a nonlinear
system. It is a formalization of the intuition that a nonlinear system should behave
very close to its linearized approximation for small range of motions. Since virtu-
ally all physical systems are inherently nonlinear to a certain extent, Lyapunov’s
linearization method serves as the fundamental justification for using linear control

techniques in practice. Consider the nonlinear discrete-time system

2(k +1) = f(a(k), u(k)) (L.1)



where function f(z(k),u(k)) is continuously differentiable. To linearize system (1.1)
around some operating point z = zo and u = ug, we have

zo(k + 1) + Az(k+ 1) = f(zo,u0) + (ﬂ) A z(k) + (g—i—) Au(k) + froe (1.2)

oz
To,uo Zo,ug

where Az(k) = z(k) — zo, Au(k) 2 u(k) — uo and fr,: stands for the higher-
order-terms. However, since at operation point zo(k+1) = f(zo, o), equation (1.2)
yields the following linear approximation of the original nonlinear system at the

equilibrium point z = z¢,u = yo as
Az(k+1)=AAz(k)+ B Au(k)

where constant matrix A = (g—ﬁ) denotes the Jacobian matrix of vector field f
Zo,uo

with respect to z at £ = ¢, u = uo and matrix B = (gﬁ) denotes the Jacobian

Zg,ug

matrix of vector field f with respect to u at the same operating point.

1.1.2 Feedback Linearization

Since in this thesis we are concerned with the adaptive control of nonlinear discrete-
time systems with application to a single-link flexible manipulator, some concepts
such as normal forms, internal dynamics, zero dynamics and non-minimum phase
characteristics in the nonlinear framework are reviewed next for convenience. To-
ward this ends, consider the following nonlinear discrete-time system which is affine

in input ug

Ty = f(zk) + g(ze)us
Ye = h(zk) (1.3)
where zx € R*, yr € R and ur € R. It is further assumed that f, g and A are
analytic functions and origin is the equilibrium of the system. The objective is to

have the output yi track a reference trajectory ym; using a change of coordinate and

a bounded nonlinear feedback. But first let us introduce the notion of the relative

4



degree of a system.
Definition 1.1 The system (1.8) is said to have relative degree v < n if for all
zr € R" and u € R,

OYr+i _ _

Bus =0, :=0,...,7v—-1
aka

Sus # 0.

Through state-dependent coordinate transformation z, = ®(z¢) £ [¢F nZ]T and in-
put transformation (nonlinear feedback control), one may linearize the whole system
from input to output so that in new coordinates it takes the following equivalence

representation called normal form (Isidori [26], Nijmeijer & Van der Shaft [59])

Zik4l = Ziglk t=1,2,---9y—1
zyprr = &k, Mk Uk) = vk
M1 = (&, M)
Ye = 21k (1.4)
where £ 2 (216 226 -+ ZyklT = [Ye Yk+1 -+ Yrsy—1]T characterizes the

observable states, v is the new input to the system and the unobservable states
Mk 2 Mk -+ Maeqi]T is to be specified such that the Jacobian matrix of the state
transformation z; = &(zx) is locally full rank, i.e., #(z;) is a local diffeomorphism
at the origin. The structure of the above equations is best illustrated in the block
diagram form depicted in Figure (1.1). This system clearly appears decomposed
into a linear subsystem of dimension ~y called ezternal dynamics, that is responsible
for the input-output behavior, and a possibly nonlinear system of dimension n — v

called internal dynamics, that its dynamics however does not affect the output.

Note that if ¥ = n, the nonlinear system (1.3) is said to be input to state (or fully)
linearizable where the nonlinear system does not have any internal dynamics. We

can define an intrinsic property of a nonlinear system by considering the system’s

S



External Dynamics
z=y

i
N.,=(§& N ) Internal Dynamics

Figure 1.1: External and internal dynamics of a nonlinear system

internal dynamics when the control input is such that the output y is maintained
at zero for all time. Studying this so-called zero dynamics will allow us to make
some conclusions about the stability of the internal dynamics. Therefore, based on

the normal form (1.4), the zero dynamics will be

Me+1 = q(0, M)

Note that yx = 0 implies £ = 0 for all time. The nonlinear system (1.3) is said to
be minimum phase if its zero dynamics is asymptotically stable and otherwise it is
called nonminimum phase. The above terminology is adopted from linear system
theory where a transfer function, which has a zero in the right half of the complex

plane, is called nonminimum phase.

This dissertation aims to address two major issues: (i) Adaptive control of nonlin-
ear discrete-time systems and (ii) Application of the proposed method to tracking
control of a single-link flexible manipulator. For the first part, the plant to be
considered is a discrete-time system represented in the state-space form. It is as-
sumed that the system could be either fully or partially linearizable with parametric
uncertainties. The certainty equivalence principle will be invoked so that the esti-
mates of the unknown parameters may be used in designing the feedback linearizing

controller. The aim of the second part is to apply the nonlinear adaptive scheme



proposed in the first part to a single-link flexible manipulator and to compare the
simulation results with performance results obtained for an actual flexible-link ma-
nipulator. In this part after deriving the discrete-time model of the flexible-link,
the output re-definition scheme is used so that the resulting zero dynamics is expo-
nentially stable. Finally, the indirect adaptive feedback linearization and tracking
control problem proposed in first part are utilized by assuming that the payload
mass is unknown. The performance of the adaptively controlled closed-loop sys-
tem is examined through numerical simulations. Experiments are also performed to
demonstrate the main features of the proposed strategies. To gain more insight into

the nature of the problem, the existing literature is reviewed in the following .

1.2 Literature Review

1.2.1 Adaptive Control of Nonlinear Systems

Adaptive control of different classes of feedback linearizable continuous-time non-
linear systems has been studied extensively over the past few years. Few examples,
Kanellakopoulos et al. [31, 33] developed a direct adaptive regulator and tracking
scheme for a class of feedback linearizable nonlinear system that is transformable
into a so-called parametric-pure-feedback form. In [56], Nam & Arapostathis pre-
sented a model reference adaptive control scheme for a class of nonlinear systems
when the relative degree is equal to degree of system. Sastry & Isidori in [73] in-
troduced adaptive control of minimum phase nonlinear systems using input-output
linearization method. Krstic et al. [39] proposed a design procedure for adaptive
nonlinear control in which the number of parameter estimates is minimal, that is,
without overparametrization. Teel et al. in [80, 81] and Lin & Kanellakopoulos [46]
utilized indirect techniques for adaptive input-output linearization. There has been
also research on employing the output feedback instead of the full-state feedback in
Kanellakopoulos et al. [32, 34] and by utilizing observer-based identifier along with

7



output feedback in Krstic et al. [41] and Kanellakopoulos et al. [35].

Unfortunately the above adaptive schemes for continuous-time systems cannot be
directly extended to nonlinear discrete-time systems, a topic to which so far only
a few papers have been devoted. This is partly due to the fact that one is faced
with considerable technical difficulties in generalizing the continuous-time results to
discrete-time systems. The most important difficulty has to do with the lack of appli-
cability of Lyapunov techniques to design adaptive control for discrete-time systems.
This is due to the fact that in the continuous-time domain the derivative of a Lya-
punov function is linearly parameterized with respect to the unknown parameters
(provided that the continuous-time system is linear with respect to its parameters)
whereas in the discrete-time domain the difference of a Lyapunov function is not
linear with respect to the unknown parameters (Kanellakopoulos et al. [30], Song &
Grizzle [77]). The other difficulty is due to the fact that in continuous-time domain
differentiation is a linear operation whereas in discrete-time domain the composition
is a nonlinear operation and this often results in loss of linear parameterization even
when the plant is linearly parameterized. Finally, the problem of state stabilization
is less understood in the discrete-time domain than in the continuous-time domain

(Byrnes et al. [3] & Yeh & Kokotovic [90]).

It is worth pointing out that as a first step in using any adaptive algorithm, one
must find conditions under which the nonlinear discrete-time system can be repre-
sented in an equivalent controllable/observable linear system. This topic has been
investigated extensively for continuous-time systems (Isidori [26], Nijmeijer & Van
der Shaft [59]) and the necessary and sufficient conditions for feedback linearizability
of a continuous-time system using the differential geometry have been obtained. To
construct the local coordinate transformation and feedback control law, one needs

to solve a set of partial differential equations dependent on the vector fields of the



system model. The equivalent necessary and sufficient conditions for transforming
a nonlinear discrete-time system into an equivalent linear system were developed by
Grizzle [21] and Jakubczyk [27]. These conditions are given in terms of distribu-
tions that are defined using the system map. However, these conditions are fairly
tedious to check for a given system. Lee et al. [43] presented a constructive proof
of necessary and sufficient conditions for linearization of single-input single-output
discrete-time system by a state-coordinate transformation and a state-coordinate
change and nonlinear feedback. Once the Lee et al. [43] conditions are satisfied, the
linearizing transformation can be obtained as the inverse of a diffeomorphism, that
is an n-times composition of the system map with respect to the input arguments.
In another work Nam [55] has obtained necessary and sufficient conditions for a
nonlinear system that can be put in the form z4y; = Gy, o F(zt). Also Jayaraman
& Chizeck in [28] has formulated the feedback linearization problem for discrete-
time systems in terins of a set of partial differential equations that are similar in
structure to their continuous-time counterparts. Finally, the necessary and suffi-
cient conditions for approximate linearizability are given by Lee & Marcus [45], and
input-output linearization using Volterra series expansion is given by Lee & Marcus

[44].

Although a great deal of progress has been made in the area of control of continuous-
time nonlinear systems in recent years, in contrast, adaptive control of discrete-
time nonlinear systems remains a largely unsolved problem. In what follows the
most significant results for discrete-time nonlinear systems that are available in
the literature to date are reviewed. Recently Yeh & Kokotovic [90] designed a
state feedback controller to achieve tracking of a reference signal for a class of SISO

nonlinear discrete-time systems in the so-called parametric-strict-feedback form given

by



ik +1) = z2(k) + 0741 (z1(k))

Ttk +1) = zu(k)+ 0T ¢nor(z1(k), -, Tacr(k))
zo(k+1) = u(k)+ 0T¢n(l‘1(k), o, za(k))
y(k) = zi(k) ‘ (1.5)

where § € R? is the unknown parameter vector and ¢;(z1,---,zn) : R = RP i =
l,---,n are known nonlinear functions. Depending on the growth conditions of the
nonlinearities, global boundedness and convergence are achieved with various up-
date laws. Indeed, the above work is the discrete-time version of the results given
in Kanellakopoulos et al. [31]. Zhao & Kanellakopoulos in [94] proposed another
approach for system (1.5) to yield global stability and tracking without imposing
any growth conditions on the nonlinearities. They replaced the traditional parame-
ter estimator with an uncertainty identifier scheme which in a finite number of time
steps collects all the information necessary to completely identify the uncertain part
of the system. Beyond this interval, the control law becomes a straightforward “look

ahead” design which utilizes the information at the identification phase.

The adaptive output feedback design is developed by Yeh & Kokotovic [89] for
the following class of systems that may be viewed as a discrete-time version of the

continuous-time systems considered in Kanellakopoulos et al. [34], namely

2(k +1) = Az(k) + aoy(k)) + 3 ajs(y(k)) + BBy (k) )u(k)

Jj=1
y(k) = cz(k) (1.6)
0 I(no1)x(n—1)
0 0
¢=[1,---,0]7 and a;( = 1,---,p) and b;(i = 0,---,m) are the unknown param-
eters. Also o € C®(R,R") with ai(y) = [en(k),---,am(k)]F,{ = 0,---,p and

wherez e R*, ye R, u e R, A = l: }, b=1[0,--+,0,bm,---,b0]7,
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B € C®(R,R). A systematic design procedure was developed for the determinis-
tic case and dependent on the characteristics of the nonlinearities, global conver-
gence can be ensured. A new Least-Square estimator with nonlinear data weighting
was developed by Kanellakopoulos [30] for a simple discrete-time nonlinear system
z(k + 1) = u(k) + 6¢(z(k)) where z € R is both the state and the output, § € R
is a constant unknown parameter and ¢(z(k)) is a known nonlinear function which
is bounded for a bounded z(k). It was shown that global stability is achievable
through Lyapunov analysis without imposing any growth conditions. Also for a
class of MISO systems, Stubbs & Svoronos [79] proposed a simple feedback lin-

earization scheme and used it in developing an adaptive control strategy.

In Kung & Womack [42] stability and convergence for the adaptive control of a cas-
cade connection of a finite odd order polynomial followed by a linear system were
addressed. Recker & Kokotovic [63] considered the indirect adaptive control of the
same class when the nonlinearity is a deadzone and Lin & Yong in [47] has general-
ized these methods to MIMO systems with more general nonlinear input. By using
output feedback, the model reference adaptive control for a class of discrete-time
systems consisting of a linear system followed by a nonlinear element and other non-
linearities dependent on the delayed outputs were developed by Song and Grizzle
[77]. In this paper they have tried to extend the existing conventional method for
model reference adaptive control of discrete-time linear systems to their nonlinear
models. Using a different viewpoint, Yu & Muller [91] and Ossman [60] have ex-
amined indirect adaptive control of interconnected systems where each subsystem
is subjected to bounded disturbances and to possibly unbounded interconnections
with the other subsystems. For such a system an adaptive feedback law is described
that stabilizes the interconnected system and result in bounded subsystem input and
output signals. Furthermore, Cook [10] has considered the effect of plant nonlinear-

ities on the operation of an adaptive control system designed with the assumption
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of a linear structure and Guillaume et al. in [22, 23] have addressed the sampled-
data adaptive regulation control of a class of continuous-time nonlinear systems that
are state linearly stabilizable, namely, a nonlinear continuous-time system which can
be linearized using a static feedback control strategy. Finally, Chen & Khalil in
[8, 6, 7] have addressed the adaptive control of the following discrete-time system

using neural networks
y(k+1) = fo(., W) + go(-, Vi )u(k —d + 1) (1.7)

where d is the relative degree, f,(., W1) and g,(., V1) are smooth functions of unknown
parameter vectors Wi and V; and known functions [y(k —n + 1), ... ,y(k),u(k —
d—m+1),...,u(k —d)]T where m < n. Also, Chen & Tsao [9] have considered the
adaptive control of (1.7) when d = 1.

1.2.2 Control of Flexible-Link Manipulators

In recent years the study of flexible-link manipulators has received a great deal of
attention because the flexible-link robots have a few advantages over the rigid-link
robots. For instance, flexible robots can be driven at higher speeds and have lighter
weight and therefore use lower energy. These properties are of significant importance
for some applications such as light weight space robots. Despite these advantages,
the major drawback of flexibility arises during the control of the tip position. It is
well-known that the model of a flexible-link manipulator when the output is taken
as the tip position exhibits, in general, a non-minimum phase behavior [83], namely,
its zero dynamics is unstable. The zero dynamics may be viewed as the evolution
of the internal dynamics subject to a particular input that causes the output to be
kept identically equal to zero for all time. The source of this behavior may be traced
to the non-colocated nature of the sensor and actuator used for controlling the tip
position. This property hinders perfect tracking of the desired tip position when a
bounded and a causal input is used with output feedback. The other aspect of the
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problem deals with the use of an appropriate model for designing control schemes.
Clearly, a dynamic model that describes the system behavior in an accurate way is
highly desirable. Theoretically, the dynamic equations of a flexible-link manipulator
is of infinite dimension since it is described by a set of partial differential equations
(PDE). In other words, an infinite number of coordinates are required to kinemat-
ically describe each link. However, an infinite dimensional model may not suitable
for control system design due to factors such as the complexity of the dynamic model
and the band-limited nature of the sensors and actuators. In modeling of flexible
manipulators commonly one truncates the number of flexible modes. The dynamic
equations are still highly nonlinear and form a coupled set of ordinary differential
equations that possess a two-time-scale nature, namely, a slow time-scale associated
with the rigid modes and a fast time-scale associated with the flexible modes. An-
other major question in controller design is the number and type of sensors. An
important information that should be provided to the controller is an accurate es-
timate of the tip position which can be provided by using a camera or strain gauge

measurements, although tip rate measurements are not directly obtainable.

To model a flexible-link manipulator Cannon & Schmitz [4] used the assumed modes
method. They have assumed zero payload and pinned-free eigenfunctions for mode
shapes. With this approximation, the mode shapes form a complete set of orthog-
onal functions. Finally using the Lagrangian formulation and taking into account
the structural damping of the beam, a set of decoupled differential equations were
obtained. Wang & Vidyasagar [83] have used clamped-free mode shapes and have
shown that the transfer function from torque input to tip position output does not
have a well-defined relative degree even if the number of modes is increased to obtain

a more accurate model of the flexible-link arm.
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The problem of control of flexible-link manipulators have received considerable at-
tention in the past several years. Although most of the research results have been
applied to single-link flexible manipulators, the experiments conducted for a single-
link robot provide a basis for further investigations to multi-link arms. The nonmin-
imum phase property is always present when the output is taken as the tip position
[49]. In this case any attempt to achieve exact tracking through inverse dynamics
results in an unstable closed-loop system. Note that the tracking of joint angles can
always be obtained in a stable fashion since the system with this output is always
minimum phase. However, this control may of course yield unacceptable tip deflec-

tions.

Of the early experimental work in this area, the work of Cannon & Schmitz [4] aimed
at the end-point regulation problem. Also, De Luca & Siciliano [14] considered the
trajectory tracking control problem of a single-link flexible manipulator when out-
put is joint angle and a suitable point along the link using inverse dynamics. Since
output re-definition is key to achieving smaller tip error in a stable fashion, Wang
& Vidyasagar [83] introduced the reflected-tip position as a new output for a single-
link flexible arm. De Luca & Lanari in [13] studied the regions of sensor-actuator
locations to achieve minimum phase property for a single-link arm. Based on the
concept of transmission zero assignment introduced in Patel & Misra [61], Geniele
et al. [19] have applied it to a single-link flexible manipulator. The basic idea is
to add a feedforward block to the plant so that the zeros of the new system are
at prescribed locations in the left half-plane. The nonlinear approach to design a
joint controller based on the singular perturbation theory was introduced by Sicil-
iano & Book [75]. A singularly perturbed model for a multi-link manipulators was
derived based on a modeling approach that was developed for flexible-joint manipu-

lator introduced by Khorasani & Spong [38]. To overcome the limitation associated
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with the above joint control strategies, several researchers used integral manifold ap-
proach introduced in Khorasani [37] and Spong et at. [78] to control the flexible-link
manipulator [24, 25, 51, 52, 74]. The work of Hashtrudi-Zaad & Khorasani [24, 25]
which is based on an integral manifold approach may also be interpreted as a form
of output re-definition. In this work, new fast and slow outputs are defined and
the original tracking problem is reduced to tracking the slow output and stabilizing
the fast dynamics. A nonlinear model of a two-link flexible manipulator is used
in Moallem et at. [51]. Also the inverse dynamics control strategy for tip position

tracking of multi-link flexible manipulators was introduced in Moallem et at. [53].

The majority of the proposed control schemes require knowledge about the system’s
parameters including payload. However, during robot operation change of payload
may occur and therefore, adaptive control techniques should be employed. Adap-
tive control of a single-link flexible manipulator with the linearized model of the link
has been investigated in [16] by Feliu et al. and in [76] by Siciliano et al. using the
continuous-time model and in [92] and [93] using the discrete-time model of the link
by Yuh and Yurkovich & Pacheco, respectively. Also, Koivo & Lee [40] and Yang
& Gibson [88] have considered the problem of discrete-time adaptive control of the
linearized dynamics of a two-link flexible manipulator. The problem of controlling
the tip position trajectory of a two-link flexible manipulator using a continuous-
time self-tuning scheme and a least-square identification scheme was considered by
Lucibello & Bellezza [48] where the payload variations are allowed. Also, a neu-
ral network based adaptive control of a flexible-link manipulator was presented in
Donne & Ozgiiner [15] and Mahmood & Walcott [50]. The former considered the
control of a single-link flexible manipulator whose dynamics are only partially un-
known; in a sense that the rigid body dynamics are assumed to be known and
the flexible dynamics are learned by neural networks, while the latter considered

the on-line learning of a neural networks for both system identification and control
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stages. Also, the non-adaptive feedback linearization of a rigid robot based on a
discrete-time model was studied in Ganguly et al. [17] where the relative degree of

the system is equal to the degree of the system.

Warshaw & Schwartz in [84, 85] have investigated the performance and stability of
sampled-data version of Slotine & Li’s direct adaptive controller for a rigid robot
because Slotine & Li’s method is relaiively simple computationally, does not require
measurement of accelerations and furthermore has good stability and convergence
properties. The continuous-time reference adaptive control scheme was extended
to discrete-time domain by Yang et al. [87] and sufficient conditions for stability of
the resulting controlled system were also obtained. A predictive adaptive control
algorithm for tip position based on the ZOH equivalent of the dynamic model of a
flexible link was developed by Centinkunt & Wu [5] where a lattice filter was used
for purpose of parameter identification. The proposed control algorithm together
with the lattice filter form a special self-tuning regulator. Finally Qian & Ma [62]
designed a discontinuous control law for a single-link flexible manipulator based on

the variable structure theory.
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1.3 Contributions of this Dissertation

This thesis focuses on three main steps in engineering practice and problem solving,
namely, theoretical development, numerical simulations and experimental implemen-
tation. In the first part of the thesis, we are specifically dealing with indirect and
direct adaptive control of discrete-time nonlinear systems. In the second part, after
addressing the discretization problem of a single-link flexible manipulator dynamic
equations, the application of the proposed adaptive feedback linearization and track-
ing control strategies were investigated. In the last part, experimental results are
included to confirm both the numerical simulations and theoretical findings. The

contributions and achievements of this research are now summarized as follows.

1. Indirect Adaptive Control of Fully Linearizable Discrete-Time Nonlin-

ear Systems

The first problem addressed in this thesis is the indirect adaptive control of the

following nth order affine SISO nonlinear system represented in the state-space form

Tir1 = f(zx,0) + g(zk, O)us
Ye = h(zx,0) (1.8)

where z; € M is the state vector, ux € U is the control input, § € RP? is the vector of
unknown parameters, y(k) € R is the output and M and U are submanifolds of "
and R, respectively. It is also assumed that f, g and h are analytic nonlinear func-
tions that are linearly parameterized. Since it is assumed that the system (1.8) is
fully input-output linearizable, it has no internal and zero dynamics. The objective
is to have the output y(k) track a reference trajectory y.(k) as k goes to infinity
despite the fact that the parameters vector 8 is unknown. Towards this end, we first
assume that 6 is known and try to find a local diffeomorphism for the change of

coordinates and a nonlinear feedback control law such that system (1.8) is rendered
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input to output equivalent into a linear system. The resulting linear system is then
used to solve the output tracking control problem using conventional linear control
theory. Next the multi-output Recursive-Least-Square (RLS) algorithm is employed
to identify the unknown vector 6. Based upon a certainty equivalence principle the
estimated parameters are then utilized in the controller. Finally, by using the Lya-
punov technique the adaptively controlled closed-loop system is shown to be stable.
The main contributions of this chapter are the proof of stability of the closed-loop
system and application of the multi-output RLS identification algorithm to indirect
feedback linearization problem. This work can be considered as the discrete-time
version of the results developed by Teel et al. in [81] for continuous-time nonlinear
systems. This topic is considered in Chapter 2 and has appeared in Rokui & Kho-
rasani [65, 70].

2. Adaptive Tracking Control of Partially Linearizable Discrete-Time Non-

linear Systems

Since most of the practical systems are not fully feedback linearizable, this part
of the thesis is essentially concerned with generalizing the approach introduced in
Chapter 2 to partially input-output linearizable discrete-time nonlinear systems.
The system considered has internal and zero dynamics in addition to external dy-
namics. The main steps to design the controller and identifier are the same as those
steps considered in Chapter 2 but the proof of stability is considerably more differ-
ent since the effects of internal and zero dynamics have to be taken into account.

This topic is addressed in Chapter 3 and has appeared in Rokui & Khorasani [68, 69].

3. Discrete-Time Nonlinear Adaptive Tracking Control of a Flexible-Link

Manipulator
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Although in recent years the output re-definition method of a flexible-link manipu-
lator based on the continuous model has received a great deal of attention currently
there is no work in the literature on the applicability of this method to discrete-time
model of flexible link manipulators. Therefore, the aim of this part is to apply the
nonlinear adaptive control scheme proposed in Chapter 3 to a single-link flexible ma-
nipulator. The discrete-time model of the flexible-link manipulator is derived using
two methods: forward difference method (Euler approximation) and a new method
that enjoys the properties of both the forward difference and the step-invariance
schemes. It is shown that both methods result in a similar discrete-time model with
only a slight difference in forward dynamics and zero dynamics. The output re-
definition scheme is used so that the resulting zero dynamics is exponentially stable.
Finally, the indirect adaptive feedback linearization and tracking control problem
proposed in Chapter 3 is utilized where it is assumed that the “payload mass” is
unknown. The performance of the adaptively controlled closed-loop system is exam-
ined through numerical simulations to illustrate the main features of the proposed
strategy. This topic is covered in Chapter 4 and has appeared in Rokui & Khorasani
(66, 67].

4. Input-Output Model Based Adaptive Control for a Class of Discrete-

Time Nonlinear Systems

The direct adaptive tracking control problem for SISO nonlinear systems represented
in the input-output form

y(k +d) = FT(2(k))W + GT (2(k))Vu(k) (1.9)
is investigated where F'(z(k)) and GT (2(k)) are smooth functions of known functions
yk—n+d), ... ,y(k+d—1),u(k —m),...,u(k —1)]T with m < n. Note that the
constant d is the relative degree of the system and the unknown vectors W € R?!
and V € R, This class of systems are also considered in [6, 7, 8, 9]. To solve the
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direct adaptive tracking control of system (1.9), a state-space model is first obtained
and the input that renders the system input-output equivalent into a linear system is
derived. Note that the internal and zero dynamics are also taken into consideration.
Finally, by employing the Projection Algorithm (or Normalized Least-Mean-Square)
as a parameter estimator, the closed-loop stability of the adaptively controlled sys-
tem is addressed, where it is shown that under certain conditions the tracking error
is {o-bounded. This topic is addressed in Chapter 5 and was presented in Rokui &
Khorasani [71].

5. Experimental Results

To evaluate and demonstrate the performance of the proposed adaptive feedback
linearization controller to a single-link flexible manipulator, experiments on a test
bed are conducted. The setup has two significant features that highlight the main
characteristics of flexible manipulators: nonlinear dynamics and nonminimum phase
behavior. The control and identification algorithms were coded in TMS320C30 C-
language and tailored for execution in a real-time environment to the PC TURBO
C-language program which acts as a monitor program for downloading the DSP
program into the TMS system board and transferring the real-time data from board

memory to the hard disk. The experimental results are given in Chapter 6.
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Chapter 2

Indirect Adaptive Control of
Fully Linearizable Discrete-Time

Nonlinear Systems

In this chapter an indirect adaptive control for a class of discrete-time nonlinear
systems shown in Figure 2.1 is developed. Since it is assumed that the system
is fully input-output linearizable, the system has no zero dynamics. The unknown
parameters of the system are first identified by using a multi-output Recursive Least-
Square (RLS) algorithm. Certainty equivalence principle is then used to design an
adaptive controller using the feedback linearization strategy. The stability properties
of the closed-loop system are investigated by invoking the Lyapunov theory where
it is shown that the closed-loop system consisting of the identifier and the nonlinear
controller is stable. Finally, numerical simulations are included to illustrate the

performance of the proposed controller [65, 70].
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2.1 Introduction

In recent years the study of nonlinear adaptive control of continuous-time systems
has received a great deal of attention in the literature (cf. Kanellakopoulos et al.
[33], Nam & Arapostathis [56], Sastry & Isidori [73] and the references therein).
However, adaptive control of discrete-time nonlinear systems has been emphasized
to a much lesser extent. This is partly due to the fact that Lyapunov techniques are
not conveniently applicable to discrete-time systems. Specifically for discrete-time
systems the unknown parameters do not appear linearly in the time difference of
the Lyapunov function candidate, whereas for the continuous-time systems the un-
known parameters do indeed appear linearly in the time derivative of the Lyapunov
function candidate. Therefore, a different approach has to employed for discrete-

time systems.

In the following the most relevant results that are available in the literature for
adaptive control of discrete-time nonlinear systems are reviewed. In [86] an indirect
adaptive control strategy for a bilinear system is introduced by Wen & Hill. A direct
adaptive control approach with a very simple nonlinearity is developed in [10] by

Cook. Datta in [12], Ossman in [60] and Yu & Miller in [91] examined different
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Figure 2.1: Block diagram of an indirect adaptive controller
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aspects of adaptive control of interconnected systems and Song & Grizzle investi-
gated in [77] an adaptive output feedback control for a class of nonlinear systems.
Recently Kanellakopoulos in [30] developed a direct adaptive control scheme for a
first order nonlinear system. It is important to point out that all the above work
have considered an input-output model of a discrete-time system for designing the
controller. In [90] a state feedback controller is designed to achieve tracking of a
reference signal for a class of SISO nonlinear discrete-time systems by Yeh & Koko-
tovic. The adaptive output feedback design developed by Yeh & Kokotovic in [89]
may be viewed as a discrete-time version of the continuous-time scheme considered

in [34] by Kanellakopoulos et al..

This chapter is organized as follows. In Section 2.1, the non-adaptive feedback lin-
earization and tracking controller for a discrete-time nonlinear system is considered.
In Section 2.2, the adaptive version of the results in Section 2.1 are developed. The
stability analysis motivated by the Lyapunov technique is included in Section 2.3.
Numerical simulations are included in Section 2.4 to illustrate the advantages of the

proposed controller.

2.2 Non-Adaptive Feedback Linearization of

Discrete-Time Nonlinear Systems

In this section, the non-adaptive input-output feedback linearization for a discrete-

time nonlinear SISO system is first examined. Consider the following system

1 =  f(zk) + g(zr)ur
ye = h(zi) (2.1)

where zx € M is the state vector, ux € U is the control input and yx € R is the

output with M and U are submanifolds of R™ and R, respectively. It is also assumed
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that f: M — M, g: M — M and h : M — R are analytic functions and the origin
is the equilibrium of the system. Let us denote the function f(zx) + g(zk)us by
F(zk,ur) and F(zk,0) = f(zk) by fo. Then, f: denotes the i-times composition of
fo, that is, foo0 f,--- 0 f,. We first need to introduce the following definition:

i—-times

Definition 2.1 The system (2.1) is said to have relative degree v < n if for all
states zr € M € R™ and all inputs ur € U, € R

Oeri  Oho fi

Oug Oup
ayk'i"y_ahof;’—loF(zk)uk) #O
Buk - 6‘uk )

According to the above definition yry; = ho fi, i=0,...,7— 1 are all independent
of ur and yryy = ho f)7' o F(zx,us) is the first output affected by the input uy.
By using the above definition, a new appropriate coordinate system may be defined
to transform the nonlinear system into a controllable linear system. Towards this
end, by assuming that the relative degree v is equal to order of system n, then
Yrei = ko fi(z), ¢ =0,...,n—1 are independent of u; but yx,, depends explicitly
on u;. Consequently, the change of coordinates given locally for all z, € U, C M
by

2 = [Zl,k 22k Zn,k]T
= [yx Yr41 - yk+n—1]T
= [h(zk) hofo(zk) --- hofi ' (ze)]” (2.2)

defines a local diffeomorphism z; = @(zi) that should transform the nonlinear
system (2.1) into a linear equivalent system. Note that by construction the Jacobian

matrix of the change of coordinates z; = ®(z) is full rank for all z, € U, C M.
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Using these new coordinates the dynamical system (2.1) becomes

Z1k41 = ho fo (xk) = 22k
Zn—1h+1 = ho fi7Nzk) = znk
Znkt1 = ho fi7lo F(zg, ug)

At this stage by treating h o f?~! o F(zk,ux) as a new input v to the system, an
explicit nonlinear feedback control law ux = T(zk,vr) may be obtained where it is
assumed that the feedback law is non-singular, that is, % # 0. To find the feedback

control law, we need the following theorem:

Theorem 2.1 (Implicit Function Theorem) (Khalil [36])

Assume that F : R* x R™ — R™ is a continuously differentiable function at each
point (z,y) of an open set s C R™ x R™. Let (zo,y0) be a point in s for which
F(zo,90) = 0 and 2E|(z0,40) is nonsingular. Then, there ezist neighborhoods V, C R™
for zg and V, C R™ for yo such that for each y € V, the equation F(z,y) = 0 has
a unique solution z = g(y) where g(y) is continuously differentiable at y = yo. In

other words, T can be parameterized in term of y near (zo,Yo)-

Assuming now that zero belongs to image of h o f3 ' F(z,.), it is then evident
that around the point (uk,vi) = (uk,0) the conditions of above Theorem 2.1 for the
function G(ug, vk, k) Lho & F(zk, uz) — vi are met since %kuo.om) # 0 due to
the “relative degree definition”. As a result, there exists a function T : R**! — R as
an explicit nonlinear control law u; = Y (zk, vx) which linearizes the whole dynamics.

To find such a nonlinear feedback let us rewrite the feedback law as
ve=ho f7" o F(zk,ux) = h o f(ze) + S(zk, k) 2 Yitn

where S(zk, ux) = ho f3' o F(zk, ug) —ho f*(zi). From the definition of the relative

degree it follows that asg’::"‘) = agZ:,, # 0. Therefore, there exists a feedback law
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T:R* x ® = R such that
Ye4n = ho f:—l 0 F(xkvr(zkavk)) = Uk

or vx — h o f}}(zt) = S(zk, T(zk, vk)). Therefore, the function Y(zk,v:) is nothing

but the inverse of the function S(z,.) or
up = Y(zg,ve) = S (zk,v6 — ko f7) (2.3)

To summarize, by using the state transformation z; = @(zy) given by (2.2) and the
nonlinear feedback control law u; = T(z,vk) given by (2.3), the system (2.1) may
now be described locally in the normal form (Isidori [26], Nijmeijer & Van der Shaft

[59])

Z1,k41 010 0 21k 0
29 k+1 0 01 0 22k 0
= : -+ Vg
Zn—1 k+1 0 00 ---1 Zn-1,k 0
Znksl | |0 00 --- 0] | znsk ] | 1]
Yk = Z1k (2.4)

We are now in a position to introduce the tracking control problem for the linearized
system (2.4). The objective of the controller is to guarantee that the output y tracks
asymptotically a reference trajectory ymg as & — oo. Towards this end, the input

v is chosen according to

Vg = YMiyn + al(ymk+n—1 - yk+n-1) +---+ an(ymk - yk)

where a;’s 2 = 1,- .-, n are selected such that Z* + ¢; Z*! + - .- + @, is a Hurwitz
polynomial. Since yryn—i = Zn—it1,k6, ¢ = 1,---,n and 2, k41 = Yr4n = Uk, therefore
by substituting vt in (2.4) it yields

Yk+n = YMppn — A1€1,k4n—-1 — X2€1 k4n—-2 — """ — Qn€1 k
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or equivalently, € t4n + a1€1 k4n—1 + - -+ + ane1x = 0, where the tracking error is
defined by e; & 2 Yx — ymi. Consequently, the error signal e; x goes to zero asymp-

totically as time k goes to infinity.

In the next section an indirect adaptive version of the above feedback linearization

scheme and the nonlinear tracking controller is developed.

Remark 2.1 Because the relative degree v is equal to the degree of the nonlinear
system n, the input-output linearization method discussed is identical to the input-

state linearization.

2.3 Indirect Adaptive Feedback Linearization

The proposed adaptive control approach introduced in this section is developed
based on the fact that there exist a state space coordinate transformation and a
nonlinear state feedback control law that renders the known nonlinear system (2.1)
into a linear controllable system (2.4). Since parametric uncertainties are present,
the “certainty equivalence principle” will be invoked so that the estimates of the
unknown parameters may be used in designing the controller. It is worthwhile to
note that such a technique was employed by Teel et. al [81] for continuous-time
nonlinear systems. The details of the identifier structure and the adaptive tracking

controller are elaborated in the following subsections.

2.3.1 Identification Part

Let us consider the system of the form

i1 = f(zk,0) + g(zk, O)us
h(zx, 6) (2.5)

Yk
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where z; € R" is the state vector, yr € R is the output, ur € R is the control input
and § € R? is the vector of unknown parameters. It is further assumed that f, ¢
and h are linear with respect to 0, i.e., we have
P
f(ze,0) =D 8:fi(zk)

i=1

9(zk,0) = ieigi(l‘k)

=1

h(:):k, 0) = Zp: 0;h,—(zk) (26)

=1
where § = [0, 0, ... 6,]T is the vector of unknown parameters and the functions f;,
gi and hy; t =1,---,p are assumed to be known a priori. To identify the vector 8,
the multi-output RLS algorithm discussed in Goodwin & Sin [20] is used. Towards

this end, let’s rearrange system (2.1) into the following nonlinear regressor form
Yigr = 076 (2.7)

where Yi41 € R” is the observation vector, § € R? is the unknown parameters vector
and U7 € R™ x RP is the regressor matrix. Equation (2.7) is derived by observing

that zi41 = Yiy: and the regressor U7 contains all the known nonlinear functions

U = [fi(ze) + quze)ue -+ fo(ze) + gp(z)us]

We are now in a position to use the RLS algorithm to estimate #. In the case of
a single output RLS algorithm, the objective is to estimate 8 in yryy = ¥70 where

Ykt+1 € R, 6 € R? and ¥ € R? such that the following cost function is minimized
1 g \T p—1 ) 1 & T 2
In(0) = 5(6 —00)" F5 (6 — bo) + 5 > (yr — i_16)
k=1

where 6 = [HAL/c ép'k]T is the estimate of the unknown parameters at time k, o is
its initial estimate and Py = P{ > 0 is a positive definite matrix. Similarly, for the
multi-output RLS algorithm, the cost function to minimize is chosen as

1 o o 1 X
In(0) = 5(0 — 60)T Py (0 — o) + 3 Y (Ve — ¥_10)" R (Yi — ¥F_106)
k=1
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where R = RT > 0. It is shown in Goodwin & Sin [20] that the value of § minimizing

Jn(0) can be computed using the following update law

-

O = Oio1 + Pea Wt [U7_ PeaWhoy + R Vi — 0L 16,y]  (28)
Piov = Pig— P oWy [¥F_ PV + RITWE_ P, (2.9)

where P_; = Py > 0. The stability property of this algorithm may be studied by
using the Lyapunov function candidate V(fj) S 0T P%,0), where the estimation

error is G 2 6 — 6. Subtracting 8 from both sides of (2.8) yields
Ok = Oy — Pec2 Wit [UT_ Pea Wiy + R|7'OT_ 6, (2.10)
and in view of (2.9) and the matrix inversion lemma, it may be shown that
0 = Py PrL0k s (2.11)
Therefore, using (2.10) and (2.11) AV&I = V(8ks1) — V(i) satisfies
Avki-l = 5Z+1P;15k+1 - g}z'Pk——llék
= é£+1PEIPkP;J1§k - 551"{_1151: = (9?-;-1 - éE)PI:jlék

= T, VTP, U+ R'9T4, <0 (2.12)

Consequently, the dynamical process (2.8)-(2.9) is stable and in particular the pre-
diction error 4, and parameter estimates 6 are bounded (belong to [ ). The bound-
edness of the parameter estimates will be used subsequently in the proof of stability

of the closed-loop adaptively controlled system.

2.3.2 Control Part

Motivated by the results of previous section, system (2.5) may be transformed into
a normal form by using a coordinate transformation and a nonlinear state feedback

control law that depend on the unknown parameter §. By substituting 8 with its
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estimate 6, the coordinate transformation becomes % = [2;; Zok - én,k]T

where
éi,k = ?}k-{-z’—l = i?, o f:i-l y 1= 1, ceey 12 (2.13)

with A & h(zk, ék) and fo =] fz, ék) Furthermore, the feedback control law (2.3)

becomes
U = T(zk, i}k) = S_I(:Bk, v —ho f:) (2.14)
where O = ymin + 8L, i(ymkin—i — Jktni) a0d Jrtnei = Znoiprk, 1= 1,7+, n.

Now define the tracking error signals as
N .
€ik = Ykti-1 — YMipio1 = Zik — YMkti-1, t =1,---,n (2.15)
Note that, 2, 41 which is equal to 9, may be written as

Znk+l = YMpyn + Z i (YMetn—i — Zn_it1k) (2.16)

=1
If 350, aiza_iy1,k and 2z, 441 are now added to and subtracted from the right hand

side of (2.16), it yields

n n
enkt1 T (Zngtl = Znkt1) = — Y Gi€noivih + 9 0 Znoidih — Zn—it1 k)
=1 =1
In other words, we get en 1 = — Y0 ®i€n—it1k + Tr Where
N A . = .
Tk = T(Tk, Uk, 0, 0k) = (Zn 41 — Znpsr) + D i(Znoitrk — Znmivi k) (2.17)
=1

The above results characterize the dynamics of the tracking error system, namely
Cik+l = Zig1 bk — YMpys = Citl,k 1= 1, ery W — 1
€nk+l = —Qp€1k — Op_1€24 — **° — Qi1€nk + Tk

or in the matrix form

e | [ 0 1 0 - 0 || ex] [o]
€2.k41 0 0 1 e 0 €2k 0
=| : : oo o+ ] (218)
€n—1 ki1 0 0 0o - 1 €n-1k 0
€n,k+1 ] | 7% —Qp-1 —Qp2 - T 1L €n.k ] | Tk i
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Equivalently, the closed-loop system becomes
exs1 = Anex + Bo(zk, uk, 0, 0x) (2.19)

where A, is the Hurwitz matrix in (2.18) and B, (z, u, 9, ék) E Bnir=[00 --- 7]7%.
In the next section the stability properties of the closed-loop system consisting

of (2.8)-(2.9) and (2.19) are investigated.

2.4 Stability Analysis of the Adaptively Con-
trolled Closed-Loop System

In order to prove the stability of the closed-loop system the vector B, is first
expressed as a product of two terms I’y and X where [, &r (zk,uk) is a matrix

and X, £ X (9,6¢) is a vector. Towards this end, two cases are considered next.

2.4.1 Case I: Linear Output

Suppose h(zg, ) in (2.5) is linear with respect to zg, i.e., h(zk,8) = ¥;0;z; k. Using

the results from the previous section, the function 74 in (2.17) may be expressed as
Tk = 01(Znk—Zn k)t o2(Zn-1k—2n-16)F - - +n(21p—210)+ (k1= Znpe1) (2.20)
The term z; x — Z; 4 may be written as
h(zk,0) — h(zx, 0k) = Z bizin — Z Oirzip = Z 0: kzik

where é,-,k = 0; — é;,k. The next term z; & — 22« has the form

h(z,0) o fo — h(zk, k) 0 f, = (Z 0izik) o (Z 0;f;) — (Z bikzik) (Zé',kfj)

i ] i i

which after simplification becomes

Zak— 22k =D ~{2j(07 ék)Hfj(wk, ug)
L )
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where ~,-2j(0, ék) 2 eiGj—é{,kéj’k and H,?]-(:ck, k) = zixo f; € R. It now follows that by
overparameterizing and by using additional functions, 23 x—2; ¢ and z; x—2,  may be
expressed as a product of [y and X. By proceeding along this line it is easy to show
that f! = (Z;0if;)" may be expressed as f. = 5; ri(6)G%(z, ux) for some known
functions r}(#) and G%(zk, ut). Consequently, zix — ik = ho f. — hofl,1=3,---,n

may be expressed as

2 — 2 = (29 iTik) O (ET‘ G%) - (Z 0:xz:i ) O (Z kGl
= EZ ij(g,ak) {j(ﬂ?k,ﬂk) N l=3,"‘,n
i
where ﬂ’ (9, 01:) =0t - 0 it and HY(zk, uk) = zix 0 G;'. Finally by using the
above procedure the last term in (2.20), namely, z, £4+1 — 2a £+1 may be expressed as

a ~ 5 . A A - .
Znk+l —2nk+1 = Z{ Ej 71’,'_1'(0, Ok)N;j(zk, uk), where Wi; = G;wj—é?;,kwj. To suminarize,

the function 7, may be written as
T = anza KkTik + a1 2,321:[2 + an-zz 3H3 -4+ o 2 ~:;H:; + fo’;ij
ij i

or in general 7 has the form 7 = >, pi(zx, ur) Ai(6, ék) with g a positive integer.

Consequently, the vector B, may now be expressed in the form
Bop =[00 -+ 154]7 = T(zk, ux)X(6, b;) (2.21)

where 'y and X} are given by

[0 0 --- 0] [ 4,
o 0 --- 0 A,

[y = , Xk =
| K1 K2t fq ] _Aq,

Remark 2.2 It is important to emphasize that the overparametrization and over-
representation in X and 'y are only introduced to facilitate the proof of stability of

the closed-loop system. For the purpose of control design and parameter estimation

32



only the minimal number of parameters and functions are used as in (2.8)-(2.9)

and (2.18)-(2.14).

2.4.2 Case II: Nonlinear Output

When h(zg,0) = Y%, 0:h:(zx) is nonlinear with respect to zx, then the procedure
developed for Case I to separate 7 into functions ['(zx,ux) and X(6,8;) becomes
more complicated. To overcome this problem observe that the function 7 consists

of a sum of n 4+ 1 terms where each term may be represented in the general form
h(zk,0) © fi(Tk, tk, 0) — h(zk, Ok) 0 fi(zk, uk, O) (2.22)
Therefore, we have
h(zx,8) o fi(zk, uk,8) — h(zk, 0k) o fi(zk, uk, ) = Zc}(e,ék)L,-(zk, ug) (2.23)
i

Consequently, (2.23) is partitioned into a function of (zk,ux) and a function of
(6,6:). We may now proceed along the lines that were used for Case I without loss
of generality to separate 74 into 'y and X%. To summarize, in both Cases I and II
we have shown that the vector B,x = [0 0 --- 7¢]7 may be expressed as in (2.21).

Therefore, the equations of the adaptively controlled closed-loop system becomes
er+1 = Aner + F(zk, uk)X(ﬂ, ék) (2.24)
In the next section, stability properties of the above closed-loop system with the

estimator dynamics given by (2.8)-(2.9) will be investigated.

2.4.3 Proof of Stability

The following discussion is partially inspired from the results in Johansson [29] which
was developed for direct adaptive control of linear systems. However, we are going

to use them to investigate the stability conditions of our proposed indirect adaptive
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controller. There are several essential differences between proposed results and those
in Johansson [29] that would make the following derivations completely different.

Let A be the positive definite solution of
ATAA, - A+T1=-Q (2.25)

where @ is an arbitrary positive definite matrix. Apply the Cholesky factorization

to A, ie, A=LTL. Alsolet K? £ Anio(ATAA,), F2 LLA,, Ge £ KLT:, 22

K2+ 1. By using (2.24) it then follows that
e£+1Aek+1 - efAek = (Aner + Fka)TA(Anek + D Xy) — eZAek
= el ATAAner — ef Aer + eF ATAT X, (2.26)
+ XITTAAqer + XITTAT X
Adding and subtracting efF' TFe, + xr G{,I; Gr X to and from the right hand side
of (2.26) gives
er Aery1 —erAer = eF(ATAA, — A+ FTF)e;
+ XI(GEIG, + TEAT )X
— (Fer — GeXe)T(Fer — GrXy) (2.27)

The first term in (2.27) satisfies e (ATAA, — A + FTF)ex < —elQey in view of the

above choice of K, and the third term is always non-positive. Hence,
eriiAeri: — ef Aep < —eF Qer + AXTITTAT L X (2.28)

A partial Lyapunov function candidate V;(ex) = In(1 + wefAer), g > 0 is now
selected for the error dynamics (2.24). The time difference of V;(ex) along the
trajectory (2.24), that is, AV, = Va(ers1) — Va(ex) satisfies the following inequality

AVE, = In(l+ pef  Aerr) — In(1 + pef Aer)
(1 + MCZ+1A6k+1) =In(1+ #e"[_,_lAek.,_l - efAek)
1+ pef Aeg 1 + pelAey
T T
eiriNers1 —ep Aeg
< .
s w 1+ pefAe ) (2.29)
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We now need to formally state our assumptions:

Assumption 2.1 The reference output trajectory ymi and its next n — 1 samples

are all bounded by a constant b.
Assumption 2.2 ['(zk,ui) is cone-bounded in z; and uniform in uy.

Assumption 2.3 The unknown parameter vector 0 is upperbounded by O, i.e.

oll<e.
Using Assumption 2.1 and (2.15) one gets
Iz 1<l ex [l +b (2.30)
Since z; is a local diffeomorphism in z, it follows that
lze IS & | 2 I, 2k € Uz (2.31)
with [; > 0. Furthermore, from Assumption 2.2 we have
| Tz, un) IS Ll za |l Vur € Uy (2.32)

with [, > 0. Defining the total Lyapunov function candidate as V (e, 0x) S Va(er) +
Vi(6%) for the closed-loop system (2.8)-(2.9) and (2.24) it may be shown that

AVipr = A ,f+1+AV,f_*_1

—el Qe + PXITTAL X, - 7]
< k k * Kk _ GT\D ‘I’TP _ -1lIIT9
< T+ pel Aex ) — 0, Ui[Vy Py Wi + R 77U 6
< —ef Qe + 2XITT AI‘ka) (2.33)
- 1 + pef Aex ’

where AV:-H is defined in section 3.1. By taking the [® norm from both sides
of (2.33) and using (2.30)-(2.32) and the fact that 1 < |1 + pelAer] <14+pul Al

ex ||?, one obtains

— 1 Amin (@) || ex |2 2 2 ) ,
AV, < +uct||AYIT X, 2.34
w S T LA eqE T AT 1P A (2.34)

_ /\min 2 2
< Tl A (et ee 07 1 2 1P
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Since X in general may be expressed as T'(8) — T'(8;) where T is a known vector

function, we can conclude that

I& < 1T I+ 1 T@) I
< S+ T | (2-35)

where § é” T(0) || is known with || 8 ||< © in view of Assumption 2.3. Substitut-
ing (2.35) in (2.34) one gets

—pAmin(Q) || ex ”2 2 2 i 2
AVian < TRl LA (et e 406+ 11 700 17 (230

Provided that AViy; < 0, then the closed-loop system is stable in the sense of
Lyapunov. Therefore, using (2.36) it is sufficient that T'(6;) satisfies the following

inequality

/\min(Q) ” (4% ”2
AT (clale)?(l ex | +0)2(1+ 4 [T A ]l ex I1?) (2.37)

Consequently, a bounded region Uj; for the parameter estimates 6r may be con-
structed so that U; = {(ék, er)] A Viy1 < 0}. Note that by selecting a sufficiently
small || A || from the Lyapunov equation the right hand side of (2.37) may be made

(6+ I T(6) I)* <

larger given the fact that the matrix A, and therefore, matrix A is at our disposal.
Provided that the bound (2.37) holds, it then follows that AVi,; < 0. Hence, ex
and 6z remain locally bounded. This implies that zj is also locally bounded. Fur-
thermore, if the parameter estimation error approaches to zero, then the tracking
error e also converges to zero, since X3 — 0 and A, is a Hurwitz matrix in (2.24).
On the other hand, if the parameter estimation error does not approach to zero,
then the bound for the tracking error may be obtained as follows. From (2.24) one

gets
k-1
ex = P(k,0)e0 + Y (k,i+1)Bns (2.38)
1=0
where By, ; 2 mklk=i =[0 0 --- T(z;,u;)X(0, é,)] and ¥(k, 5) is the state transition

matrix associated with A,, that is, ¥(k,7) = A7, Since A, is a Hurwitz matrix,
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therefore the state transition matrix satisfies |(k, )| < aq(az)* 7 for 0 < a; < 1
and 0 < oy < oco. Thus, from (2.38) it follows that

k-1

Il e 1Nl cx(e)®eo [ + 1| 3 r(ee)* " Basi || (2.39)

1=0
When & — oo, the first term in the right hand side of (2.39) vanishes to zero,

therefore

841
l—ag

o0
Iex 1< 3 en(az)’ || B 1|l B |l

7=0

. ) . | 2 1 pAmin(Q)(lex])? H
Now from previous discussion we have || Bnx |2< ZAT TrafAllled - lence, it

follows that in steady state || e || satisfies the following inequality

lewiPs 222 (2.40)

where 2 _a 1/“’\'I’I“‘\'h(g). Given the fact that Vi is a function of §; we need

c(l—a2)

to express it as a function of ék in order to characterize the region of stability.
Observe that V(e 0k) = Va(er) + Vi(0k) with Vi =|| P4 Il 6 I1P<ll P4 |l
Al e |2 + 20 || 6k | + ©%) where © represents the upper bound of the pa-
rameter 6 as in Assumption 2.3. Therefore, defining V, as a new function of )
instead of G, we get Va(er,0k) = Va(er)+ || B2 I (Il 6 I + 20 || 6k || + ©2)
so that V < V, < ¢, ¢ > 0 and V;, = c is the largest level set contained in
AViyy < 0. Consequently, for all (ek,ék) € §. the closed-loop system is stable,
where Q. 2 {(ek,ék)IVn(ek, ék) < c}, ¢ > 0 and V(e ék) = c is the largest level
set contained in AVi4; < 0. The following theorem summarizes the results of this

section.

Theorem Consider the nonlinear discrete-time system (2.5) with unknown param-
eter vector . The closed-loop system consisting of an identifier (2.8)-(2.9), a state

space coordinate transformation (2.13) and a nonlinear feedback control law (2.14) is
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locally stable for all states (e, ék) € Q., if the Assumptions 2.1-2.8 and the inequal-
ity (2.37) are satisfied. In other words, in steady state the closed-loop adaptively
controlled system has a bounded tracking error given by (2.40).

Remark 2.3 If the input of the identifier is "persistently ezciting " (this needs to
be specified formally and precisely for discrete-time systems), the estimation error
approaches to zero (i.e. if 0. — 6, then X — 0). Consequently, the error dy-
namics (2.24) is driven by an input that is approaching to zero and is therefore

asymptotically stable. In other words, e; converges to zero as k — oco.

2.5 Numerical Simulations

In this section the main features and the advantages of the proposed adaptive control
algorithm over a non-adaptive strategy are illustrated through a numerical example.

Consider the following discrete-time nonlinear system

Lik+l = 91-732,/:

Toker = O1Tap + 0271 kT2 k

Z3pp1r = Oazai + 03(1 + zop)us
Ye = 91-‘81,k

where it is assumed that the parameters ;, 8, and 63 are unknown. It is easy to
verify that the relative degree of the above system is ¥ = 3. Therefore, the method
proposed in this chapter may be used to find an input signal u; such that the
output y tracks a reference trajectory ym; with bounded error despite uncertainty
in the parameters of the system. Towards this end, define the new coordinates as

2= [zik 226 2uT 2 [h ko f, ho f2T, where

91$2,k
A
fo=fzi) = 0123k + 2y kT2 k

92$2,k
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and

21,k = 91331,k
_— —_ 02
22k = Z1k4+1 = V1T

2
23k = Zo kg1 = 07(1z3 % + 0221 6T2k)

Therefore, in the new coordinate system we have

21 k+1 010 21k 0
22 k41 = 0 01 zok |+ 0|
23, k+1 0 00 23k 1
Ye = 21k (2.41)

where v, 2 ar + brur and
b = 0303(1 + z2k) , ak = 030,72 4(0123 % + O2z1 kT2 k) + 630225 1 (2.42)

The feedback linearizing control is given by u; = %52k, where the external input v
is selected as vy = ymiis + a1(ymes2 — 23x) + o2 (ymasr — 224) + as(yme — z1k)

and a1, a2 and a3 are chosen so that 23+ a; Z2+4 a3 Z + a3 is a Hurwitz polynomial.

For the adaptive case, we have to substitute 8, z and v with 4, 3 and 9, respectively.
To identify the unknown parameters the open-loop system is written in a regressor

form Yy, = U740, where Vi = [z1k T2 z34]T. In other words,

Ty k41 Tk 0 0 6,

A T
Toktr | = | T3k T1kTak 0 6, | =V, 0
T3 k41 0 ok (14 zok)uk b3

may now be used to identify the unknown parameters using the multi-output RLS
algorithm given in (2.8)-(2.9). Application of the parameter dependent coordinate
transformation 2, ; = é1,k$1,k, Zok = éikxzyk and 23 = éf,k(él,kz&k + ég,k"l?l’]c.'lig‘k)

results in an equivalent linearized system (2.41). The new input is given by 9 =
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ar + Ekuk, where a; and b; are obtained from (2.42) with 0 replaced with fy.

The simulations are performed for a plant with 8; = 1, ; = 2, and 63 = 3. Also, the
reference trajectory is chosen as ymg = 0.1 [sin(ZZE) +sin(2%)]. The constants o;’s
are designed such that the roots of Z3 + o Z2 + a3 Z + a3 are located at -0.1, -0.15,
and -0.33. The results are shown in Figure 2.2. It follows that after the transient
response dies out, the tracking error converges to zero. This is due to the fact that
the estimation error (|| 6k — 6% ) approaches to zero asymptotically. For the sake
of comparison the non-adaptive tracking results (using the true system parameters

in the controller) are shown in Figure 2.3.

The advantage of the proposed adaptive scheme is now illustrated by considering
the situation in which the actual values of 6,, 82, and 63 are 1.2, 2.4, and 3.6 (rep-
resenting a 20% parametric uncertainty from the nominal values). Figure 2.4 shows
the performance of the non-adaptive controller designed based on the nominal pa-
rameter values §; = 1, 8, = 2, and 83 = 3. It can be seen that the closed-loop system
is unstable. For comparison, Figure 2.5 depicts the simulation results for the pro-
posed indirect adaptive controller. The results clearly illustrate that the closed-loop
system is asymptotically stable. The adaptive and non-adaptive feedback lineariza-
tion are compared in Table (2.1). These results reveal that the maximum tracking
error and maximum input of adaptive tracking control are higher than those of non-
adaptive case when there is no uncertainty on parameters. However when there is
20% parameter uncertainty, the adaptive controller behaves in the same fashion as

before but the non-adaptive controller is unstable.
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Max. Tracking | Steady State | Maximum Steady state
Error Error Input Estimation Error
Adaptive Control 3.9 0 6.25 0
(No Uncertainty)
Non-Adaptive Control 1.44 0 4.6 -
(No Uncertainty)
Adaptive Control 12.3 0 10 0
(20% Uncertainty)
Non-Adaptive Control unstable unstable unstable -
(20% Uncertainty)

Table 2.1: Comparison between adaptive and non-adaptive tracking control problem
2.6 Conclusions

In this chapter an indirect adaptive control scheme for a discrete-time nonlinear
system that is fully input-output linearizable is developed. The identifier is con-
structed based on the multi-output RLS algorithm that uses full state and input
of the system. The controller is designed by utilizing the feedback linearization
technique and the certainty equivalence principle. The main contribution of this
chapter is the proof of stability of the closed-loop adaptive system. In contradis-
tinction to continuous-time systems where the Lie derivatives are linear operators
in the unknown parameters, for discrete-time systems this linear parameterization
is not preserved by the composition operators. Consequently, the control problem
is considerably more complicated. This problem is resolved by overparametrization
and overrepresentation of the error dynamics in the proof of the stability. Based
on Lyapunov analysis it is shown that all the signals of the closed-loop system re-
main bounded (belong to /) and furthermore, if the parameter estimation error
approaches to zero, then the output tracking error does also approach to zero and

consequently, asymptotic tracking is achieved.
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Figure 2.2: Indirect adaptive tracking control.  (a) the actual output yz _ and
the desired output ymy ..., (b) the tracking error, (c) estimation of unknown
parameters Ty =0y, T, =0 ..., T3 = 03 —— (d) the control input u.
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Figure 2.3: Indirect non-adaptive tracking control. (a) the actual output yr —
and the desired output ymy ..., (b) the tracking error, (c) the control input ux.
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Chapter 3

Adaptive Tracking Control of
Partially Linearizable

Discrete-Time Nonlinear Systems

This chapter is concerned with the tracking control problem of a discrete-time non-
linear systems that is partially input-output linearizable. The objective here is to
generalize the approach introduced in Chapter 2 to partially input-output lineariz-
able discrete-time systems with zero dynamics. Towards this end, similar to the
procedure in Chapter 2, a multi-output RLS algorithm is utilized as a discrete-time
parameter estimator whose output is used in the feedback linearization process. The
linearized system is then used for the output tracking control problem. It is shown
that by using the Lyapunov stability technique and provided that the zero dynam-
ics are exponentially stable, all signals in the closed-loop system remain bounded.
Moreover, if the estimation error goes to zero asymptotically, the tracking error

approaches to zero as well [68, 69].
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3.1 Introduction

Adaptive control of feedback linearizable continuous-time nonlinear systems has
been studied extensively over the past few years by Kanellakopoulos et al.[34], Nam
& Arapostathis [56], Sastry & Isidori [73] and Teel et al. [81]. However, only re-
cently adaptive control of linearizable discrete-time systems is investigated by Chen
& Khalil [6, 7], Chen & Tsao [9], Lin & Yong [47] and Yeh & Kokotovic [90, 89]. Also
sampled-data control of continuous-time nonlinear systems is investigated by Guil-
laume et al. [22, 23] . Unfortunately, adaptive schemes developed for continuous-
time systems cannot be directly extended to discrete-time systems due to some
technical difficulties. The most important one in our opinion is the lack of direct
applicability of Lyapunov techniques for designing the adaptive laws. This is due to
the fact that for linearly parameterizable continuous-time systems the derivative of
a Lyapunov function is linear with respect to the unknown parameters, whereas for
discrete-time systems the difference of a Lyapunov function is nonlinear with respect
to the unknown parameters. Another difference is that for continuous-time systems
differentiation is a linear operation while for discrete-time systems the composition

is a nonlinear operation.

In this chapter the approach proposed in Chapter 2 and in [65, 70] is generalized
to discrete-time systems that are not fully input-output linearizable. The internal
and zero dynamics of the system are taken into consideration in both the definition
of the state-space coordinate transformation as well as the proof of the closed-
loop stability. A state-space representation of the system where the nonlinearities
are linear with respect to the unknown parameters is considered. The unknown
parameters of the system are estimated using a multi-output RLS algorithm. The
certainty equivalence principle is then invoked to design an adaptive control system.
Using Lyapunov stability theory, it is shown that provided the zero dynamics are

exponentially stable, then the adaptively controlled closed-loop system will be also
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stable [69]. Moreover, if the parameter estimation error goes to zero asymptotically,
then the tracking error will approach to zero as well. Numerical simulations are

included to illustrate and validate the performance of the proposed strategy.

3.2 Input-Output Linearization and Tracking Con-
trol Problem

Consider the SISO affine discrete-time nonlinear system

Ty = f(zx,0) + g(zk, O)us
Yy = h(zx,0) (3.1)

where z; € M is the state vector, ux € U, is the control input, § € R? is the vector
of unknown parameters and M and U, are submanifolds of R™ and R, respectively.
It is also assumed that f: M — M, g: M — M and h : M — R are analytic
functions and origin is the equilibrium of the system. It is further assumed that f
and g are linearly parameterized with respect to the unknown parameters vector 6,
that is, (2.6) is valid for system (3.1) as well. The objective is to have the output
Yx track asymptotically a reference trajectory ymy as k goes to infinity despite the
fact that the parameters vector 6 is unknown.

Following the method proposed in Chapter 2, it is first assumed that 8 is known and
a local diffeomorphism is obtained for the change of coordinates and the nonlinear
feedback control such that system (3.1) is rendered input to output equivalent into a
linear system. The resulting linear system is then used to solve the output tracking
control problem using conventional linear control theory. Finally, based upon a cer-
tainty equivalence principle the estimated parameters are utilized in the controller.
In the following the local diffeomorphism, the nonlinear feedback control and the

internal dynamics are obtained. It is then shown how to integrate these concepts in
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order to develop the proposed adaptive scheme.

To find out the new coordinates for system (3.1), according to the Definition 2.1,
Yeri = ho ff'o F = ho ff, i=1,..,7—1 are all independent of u; and
Yrty = h o fY7! o F is the first output affected by input ug. This implies that the
nonlinear system (3.1) is partially input to output linearizable. In this case the
transformation zp = $(zy) 2 [€F nT]T consists of two coordinates £ and 7ng. The
first coordinate & € R which characterizes the observable states, and is defined for

all zx € U; € M, is specified by

& & [zip zap - zpal”
= (e vkt1 -0 Yrar]”
= [h(zk) hofolzi) -+ hofI (=" (3:2)
The second coordinate n; € R, where 1; = [mi - M-k, is to be specified

to characterize the unobservable states. The choice of the coordinate 7 is at our
disposal as long as the Jacobian matrix of the transformation z; = &(z;) = [¢F nf]T
is locally full rank. Proceeding along the same lines as in Chapter 2, it may be
shown that in the new coordinate system &(zi) with the feedback control law uy =

T(z, vk), system (3.1) may be described locally in the normal form

.
21,k+1 = 22,&

] (3.3)

Zy—1,k41 = 24k

Zyker = ho f171 o F(zk, ux, 0)

M k+1 = Nk © F(zk, v, 0)

Thn—~v,k+1 = Nn—v,k © F(zky Uk, 0)
Ye = 21k

where vr = h o f)~! o F(zy, uk,6) is a new control input to be selected. Observe
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that the dynamics of (3.3) is partitioned into a linear subsystem of dimension « that
characterizes the input-output behavior of the system (a chain of vy delays from input
to output) and a possibly nonlinear subsystem of dimension n — v whose dynamics

does not affect the output.

To have the output y; track a reference trajectory ymy, the input vg is chosen as

Uk = YMpgry + Q1 (YMpgy—1 — Yktr—1) + -+ + ay(yme — yi) (3.4)

where «;, 1 = 1,...,v are selected such that the polynomial Z7 + oy Z7"! + ... 4+
o, is Hurwitz. Using (3.3) and (3.4) and defining the output tracking error as
€1k £ Yk — ymy, it may be shown that the governing dynamics for e; x is given by,

€1 k+y + Q181 k4y1 + -+ ye1 6 = 0.

When the parameter vector 8 is considered to be unknown, the multi-output RLS
identifier (2.8)-(2.8) is employed to give an estimate of § which in turn is used to
define the change of coordinates as 2, = [€F 7nF]T, where & = [214 -+ 2,4|T and
Sk =Trrici=hofil i=1,...,7 (3.5)
Therefore, the nonlinear feedback controller becomes
ug = Y(zk, 0%) = S~ (zk, 0 — h o f7) (3.6)

with 9 = ympy, + Y % (ymMek4y—i — Jksy—i)- Now defining the tracking error
. N . .
signals as e;r = Yktio1 — YMkti=1 = Zik — YMi4i-1, ¢ = 1,...,7 and proceeding

along the same lines as Section 2, the dynamics of the tracking error system becomes

€lk+1 = 22k — YMi41 = €2k
€2,k+1 = 23,k — YMiy2 = €3k
Cy—1k+1 = Zyk T YMhpy—1 = Eqk
Eyktl = —O€1f — Cy_1€2k — -+ — Q1€ + Ty(Tk, Uk, 0, 0k)
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or in the compact form
Ck+1 = A’Yek + B‘Y(zkv U, 0, ék) (3‘7)

where e, £ lerr ezx ... eyx]T is the tracking error state vector and Hurwitz

matrix A, and vector B,(zk, ux, 8, ) £ B,  are given by

[ 0 1 e 0 | [ 0 |
AAI= ) : ) ) 3 B,Y'kz
0 0 1 0
| — &%y —Oy—1 -t T | | Tk |

with 7, & 2 T (Tk, Uk, 0, O) = (Zypt1 — Bykpr) + 2ot @i(Zy—it1k — Zy—is1,k). Note
that 7., consists of » + 1 terms z;x — 2; 4, therefore, (z) by substituting for z;
in terms of the functions h(zk,f) and f,, (¢i) by substituting for 2 in terms of
functions h(zy, ék) and f, and (#i7) by defining additional unknown parameters and
known functions (that is by overparameterization and overrepresentation), one gets

B, x = Dy(zk, ur) Xy (0, 0;) (cf. Chapter 2).

3.3 Internal and Zero Dynamics

Let us now examine the internal dynamics of (3.1) that are governed by ;i x+1 =
Nk 0 F(zg,uk,0), 1 =1,...,n—+. To simplify the proof of the stability of the adap-
tively controlled closed-loop system, which is presented in Section 4, the functions
Nik © F'(zk,uk, ) should be made independent of ug. Specifically, if the functions
niko F, 2 =1,---,n — v are considered as n — v fictitious new outputs, then the
relative degree of system (3.1) with respect to each new output must be at least two.
Provided that the coordinate 7 is defined (a constructive procedure for finding these
fictitious outputs is given in Appendix A), then the internal dynamics which are now

independent of ux may be written as
A .
Mik+1 = Mik © F (T, uk,0) = qi(€esme), i=1,...,n— 7 (3.8)
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or in the compact form ng4+1 = q(€k, 77x), where ¢ 2 [q1 -+ gn—y]T. Note that 6 is an
unknown but constant vector, therefore for notational simplicity we have dropped it
from the above equation. Consequently, the equations of the adaptively controlled

closed-loop system are given by

ert1 = Ayer + Ty (zx, ue) Xy (6, 6) (3.9)

Me+1 = q(&ky k) (3.10)

Given the above internal dynamics, the notion of zero dynamics are now given by
the following. If system (3.1) starts from an initial condition z; 0 2 z1,k|k=0 = 0 with
v = 0, then £ = 0 for all time and the output stays at zero. In other words, the
solutions starting from z;0 = 0 with vy = 0 are contained in Ho = {zk|2z1+ = 0}.
Hence for system (3.1) any solution starting from zo € Hy = {z € Uz|zip1x =
ho fi(zx) = 0, i = 0,...,7 — 1} with u(zx) = T(z,0) is contained into Ha.
These solutions, which are characterized by the dynamics of 7, give rise to the
concept of “zero dynamics” for discrete-time systems (Chen & Khalil [7], Monaco
& Normand-Cyrot [54]). The following definition characterizes formally the notion

of zero dynamics.

Definition 3.1 [Chen & Khalil [7], Monaco & Normand-Cyrot [54]] The zero dy-

namics of system (8.1) are governed by

et = q(0,7) = qo(ne) (3.11)

Furthermore system (8.1) is said to be minimum phase if the zero dynamics (3.11)
are asymptotically stable at origin and strongly minimum phase if the zero dynamics

are ezponentially stable at origin.

In the next section the stability properties of the adaptively controlled closed-loop

system are investigated.
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3.4 Stability Analysis of the Closed-Loop Sys-
tem

The proof of stability of the closed-loop system consisting of the error dynamics (3.7)
and the internal dynamics (3.8) is outlined in this section. Towards this end, we need
to make the following assumptions regarding the zero and the internal dynamics of

system (3.1).

Assumption 3.1 The zero dynamics (8.11) are exponentially stable at origin.

Assumption 3.2 The internal dynamics (8.8) are locally Lipschitz in both & and
% for all & € U, andmi. € U, with known regions U and U, and & & (216 <o zy4)T.

Using Assumption 3.1, it was shown in Chen & Khalil [7] that the Converse Lya-
punov Theorem is applicable to discrete-time systems and in particular there exists

a Lyapunov function W(n) such that on any compact set we have

Eollne P < Wine) <k || me |
A

AWin W(nes1) — Wine) = Wo go(me) — W(ne) < —ks || |I?

OW ()
I o Il

IA

ko || e | (3.12)

where k; — k4 are positive constants. According to Assumption 3.2 it now follows

that for all (&1, &2k) € Ue and (m1k,m2x) € Uy, we have

Il a(&ars m2e) — q(&iks k) IS La(ll G2k — &uk | + 1l 26 — 72 1) (3.13)

with Lipschitz constant L, > 0. To prove the stability of system (3.7)-(3.8) and (2.8)-
(2.9) , the Lyapunov function candidates V;(f:) for the identification process and
Va(ex) for the error dynamics are selected as before according to V;(6) = oT P16,

and V;(ex) £ In(1 + pefAer), where 1 > 0 and A is the positive definite solution of
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Az'AA,, — A+ I = —Q for an arbitrary positive definite symmetric matrix Q. Also,
the Lyapunov function candidate W (nx) for the zero dynamics (3.11) are selected
to satisfy conditions in (3.12). Therefore, the total Lyapunov function candidate for

the closed-loop system becomes

Viewm0k) = Vi(Be) + Va(er) + W(nk)
= In(1 + pelAer) + Vi(Br) + W(ne) (3-14)

Following along the the lines as in [65] and Chapter 2, it can be shown that AV, +
AV,f+1 S Va(ers1) — Va(er) + Vi(frq1) — Va(0i) satisfies the following inequality

—ei Qex + X7 T7 ALy kX,
1 + pefAes

AVE + AV < u( ) (3.15)

where ¢? £ 14+ Amaz (ATAA,). To compute AW/, we substitute for n¢4; from (3.8)
and add and subtract W o go(n:) to and from AW, ,, to get

>

AW/, W o q(&,ne) — W(nk)

= [Woq(m)— W(m)] + [Woq(&e,m) — Woqo(nk)] (3.16)

According to (3.12), the first term in the right hand side of (3.16) is less than
—ks || 7 ||?. Thus,

A l?+1 < —k3 || m ”2 +W o q(&,mk) — W o qo(nk) (3.17)

Also, from (3.12) we know that the Lyapunov function W(n:) is decrescent, i.e.
W(nk) < ka2 || n& ||?. Therefore, the function W o q(&,m:) satisfies

Woq(bk,me) < e |l q(&ksme) 1%, &k € Ue, me € U, (3.18)

for some constant ¢;. Using the above argument, it follows that the function W o

qo(nk) satisfies

Wogo(m) < ez |l go(me) P, me € Uy (3.19)
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for some constant c;. Substituting (3.18) and (3.19) into (3.17) gives
AWy < —ks || e |I” +er (| @(€esme) 7 —e2 Il go(me) I (3-20)

On the other hand, according to Assumption 3.2, q(é,n%) is Lipschitz in both &
and 7. Hence, using (B.2) and the fact that ¢(0,0) = 0, then g(&k,nx) and qo(7k)

may be expressed as

Il g(€eme) | =1l q(&> me) — q(0,0) I La(ll & I + If 7 1) (3-21)
I a(0,7¢) — ¢(0,0) < La([ 7« ID) (3-22)

Il qo(me) ||

for & € Ug, mx € U,. Therefore, by substituting (3.21) and (3.22) into (3.20) we

obtain
AWE < ~ks [l e 1P +er L3N & I+ 1 e 1)? = c2 L3 || o 1P (3.23)

To summarize, using (3.14), (3.15) and (3.23) and the fact that 1 < [1 + peFAes| <
L+p | Allll ek II* we get

>

V(ekt1, Tests Or1) — V(ews ks Ox) = AV + AV, + AW,
—“( eZQek -+ 02X$kFTkAP7,kX ,k)

s
— ksl me lI* +en L3N & Nl + 1l me ID? — 2L [l e |1

1+ pefAex
/1/\min Q € >
—frmn kel Gt cot) e [Pt | A D T P 2

+ e Lyl & Il + 1 e 1)

AV

IN

IN

(3.24)

We now need to make the following additional assumptions:

Assumption 3.3 The reference output trajectory ym; and its next n — 1 samples

are all bounded by a constant b.
Assumption 3.4 T',(zi,ux) is cone-bounded in z; and uniform in uy.
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Assumption 3.5 The unknown parameter vector 6 is upperbounded by O, i.e.

él<®.

Using Assumptions 3.3 and 3.4 and the fact that zi is a local diffeomorphism in &

and 7, we get

&l < IFexll +5,
Hzell = Gl &l + 1 me ) < Ll e Il + Il 7 || +0)
I Tr(zesue) | < Ll 2 1S L]l ex Il + Nl 7 || +8) (3.25)

where [; > 0, [; > 0, zx € U, & € Ue and n € U,. Therefore, using (3.25) the
inequality (3.24) becomes

/"\min(Q) ” €L ||2 ) ,
S TTxaAffe E - e teala) ol

+ du(llex |l + T me I +8)° | Xy II* +er L3I ex 1| + I m || +5)*(3.26)

AVt

Since X, in general may be expressed as T(6) — T'(fx) with T a known vector

function, we can conclude that
I X ISIHT(O) | + 11 T(06) II< 6+ 1| T(G6) | (3.27)
where § é” T(0) || is known using || & ||< © (in view of Assumption 3.5). Substi-

tuting (4.2) in (3.26) one gets

,U/\mm.(Q) ” Ck ”2 2 2
< - — (k3 + o L 3.28
= 1 l L “ A ”” ek ”2 ( 3 C2 2) “ ul3 ” ( )

+ di(ll er Il + Il e | +0)*(6+ 1| TBr) 1* + o L3(I e Il + || me I| +5)?

AV

where d; = | A |l (clzl.)®. To guarantee the stability of the closed-loop sys-

tem (3.7) and (3.8) it is sufficient to have AViy; < 0. Therefore, we need to

guarantee that

(s 1l + 1l e 1| 482 [ (6t 1| T(B0) N2 + cu 22 |

EAmin(Q) || ex ”2

STrplalep tFetels) el
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The above inequality gives rise to the following bound for || T'(d) || in terms of

| 7e || and |f ex ||, namely

] 2 1 [ t‘l\min(Q!”e ”2 2 2 ] —_— Cng
6+ T(G) 1) < dr([ex | + |l 7 || +0)2 raiiaiesie + (ks + c2L3) || me | d;
(3.29)

Since T(ék) is a function of dx, inequality (3.29) in principle characterizes a bounded
region Uj; for 0; such that the adaptively controlled closed-loop system (3.7) and (3.8)
remains locally stable. Furthermore, if the parameter estimation error approaches
to zero, then &, (0, 5k) — 0 and therefore, the output tracking error converges to

zero. This follows from (3.7) and the fact that A, is a Hurwitz matrix.

In conclusion, provided that (3.29) is satisfied for all zx € Uy, nx € U, and §; € U;,
we get AViyy, < 0. Now given the fact that V; is a function of 6, we need to express
it as a function of §; in order to characterize the region of attraction. We have
Ve, B,me) = VA(6k) + Va(ex) + W) with Vi =|| P4 I 6 IP<Il P24 I (I
O |12 + 20 Il e || + ©%). Therefore, defining V; as a new Lyapunov function that
is expressed in 6y instead of 6, we get Vj (e, Ok, k) é” P06k (12 + 20 |
i || + ©2) + Va(ex) + W(me) so that V < V, < ¢, ¢ > 0 and V, = c is the
largest level set contained in AViy; < 0. Consequently, for all (e, ék,nk) € Q.
the closed-loop system remains stable (e € lo, 0, € loo, and mx € lo), where
Q.2 {(ex, ék,nk)an(ek, Ok, me) < c}, ¢> 0 and Vi(ek, Ok, k) = c is the largest level
set contained in AV,4; < 0. The following theorem summarizes the results of this

section.

Theorem 3.1 Consider the nonlinear discrete-time system (8.1) with unknown pa-
rameter vector §. The adaptively controlled closed-loop system obtained by utilizing
a multi-output RLS parameter estimator (2.8)-(2.9), a state-space coordinate trans-
formation 3, = [T T]T with & defined in (3.5) and a nonlinear feedback control

law (8.6) is locally stable for all states (e, by, k) € Qe, if the Assumptions 8.1 to
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3.5 and the inequality (3.29) are satisfied. In other words, the adaptively controlled
closed-loop system has a bounded tracking error. Moreover, if the parameter esti-

mation error approaches to zero, then the output tracking error also converges to

ZEeTo.

In the next section, the main features of the proposed adaptive control algorithm

will be illustrated through a numerical example.

3.5 Numerical Simulations

In this section the main features and the advantages of the proposed adaptive control
strategy over a non-adaptive strategy will be demonstrated by an example. Consider

the discrete-time nonlinear system

Tieer = ZTyx+ 01(1 + zo6)us
Zoksr = 0.2z2% + 0271 kT3
Zakr1 = 0.5z34% + 933’2,;: (3.30)
Tart1 = ZTak+0sz1k
Ye = ZTak+ Tak

where it is assumed that the parameter vector 6 2 [016 O2x O3k 04,;:]7' is unknown.
The control objective is to find a suitable input u; such that the output y tracks
a reference trajectory ymyg. Assuming that # is known, it may be shown that the

relative degree of the system « is 2, that is, we get
Yr+2 = A(zx) + B(ze)ux (3.31)
where z; = [z1x T2k Tax T4l and

A(zg) £ 0.5(0.5z3 & + 03273,1:) + 03(zak + 0471 £)? + Tag + 041k + 04z 1
B(z) £ 0104(1 + z2) (3.32)
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Therefore, the first and the second new coordinates z; x and z; are defined as

A
21,k = Yk = T3k + Tak

Zak 2 Ykt1 = 0.523 & + O3(zak)® + Tap + Osz 1k (3.33)

Since the dimension of the internal dynamics are also 2(n — v = 4 — 2), therefore

two more coordinates 7, r and 7, are to be specified so that the map
zr = D(zx) = [z 22k Mk Mkl” =6 nil” (3.34)

is a diffeomorphism around zy = 0. Furthermore, since the internal dynamics gov-
erned by 7, k41 and 7 k41 should be independent of the input ug, therefore 7, x and
72, must be selected so that the relative degree of (3.30) with respect to each of
these new coordinates is at least 2 (cf. Appendix A). In this example, it turns out
that without using the formal procedure outlined in the Appendix the following are

suitable coordinates
Mk = Tak, M2k = T2k (3.35)
Consequently, the internal dynamics become

Mkl = Takt1 = Tak + 0471k

Mokt1 = Tokt1 = 0.2Z24 + 0271 T3k (3.36)

It is easy to show that the Jacobian of the coordinate transformation (3.34) is full
rank if and only if 4 # 0. Therefore, system (3.30) may be expressed in the new

coordinates as

ZLk+1 = 22k

22,k+1 = Vg

Me+r = Mk + 0aT1k

Nok+1 = 0.2nmp4% + 021 xz34
Ye = 21k
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where the control input u; is selected as u; = "LB"—(%’Q and the new input v is

defined as
Vg = YMiy2 + a1(YMmeyr — 22) + a2(yme — z1,5)

The parameters a; and «, are selected such that Z2? 4+ a1 Z + a9 is a Hurwitz
polynomial. The zero dynamics of the system are obtained by first computing the

inverse of () at z; & = 224, = 0, that is

0.571k + 6307

Tik=—

04
T2,k = N2,k (337)
I3,k = — M,k
Tak =M,k

By substituting (3.37) into (3.36), the zero dynamics are given by

Mi+1 = 0.57% —6an?,
0.5 + 031k

Meksr = 0.2mpk + 0] ——p——- (3.38)

4
The above system must be exponentially stable around nx = 0. We know that
system (3.38) is locally exponentially stable if and only if its linearized model is
exponentially stable. The linearized model of (3.38) around 7 = 0 is obtained as

Nk+1 = Eni, where FE is the Jacobian matrix

0.5 —26 0 0.5 0
E= 3k = (3.39)

%11,%(0.25 + 363m14) 0.2 _— 0 0.2
Since the linearized model of the zero dynamics is a time-invariant system and E
is a Hurwitz matrix, therefore, the zero dynamics are locally exponentially stable

around 7 = 0.
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To design the indirect adaptive controller the unknown parameter vector 6 is re-
placed with its estimate § in the above derivations. To identify 6 we rewrite sys-

tem (3.30) in the regressor form Yi41 = ¥76, where the observation vector Yi;; and

the regressor matrix ¥y are given by

[ T1k+1 — Z1k (1 + zo.6)ux 0 0 0
Yoo, = Z2,k+1 — 0.2z g, = 0 Tyezze 0 O
Z3,k+1 — 0.5z 0 0 i, 0

| Tak+1 — Tak | 0 0 0 x4k |

The multi-output RLS algorithm (2.8)-(2.9) is used to identify the unknown param-
eter vector #. The control input u; becomes u; = %%i%l, where A(zi) and B(zy)

are defined from (3.32) with 8 replaced by 6, = [f14 G2 G5k 044]7,

Ok = ymeyo + 1 (ymes1 — 224) + ca(yme — 21.4)

and 2, x and 2, are given by (3.33) with 6 replaced by ék. For simulation purposes
it is assumed that the nominal value of 8 is § = [0.01 0.05 0.1 0.15]T. Also the
reference trajectory ymy is selected as ymy = 0.3(sin(0.3k) + sin(0.05k)), and the
constants ¢; and a, are chosen such that the roots of 22 + a1 Z + a5, are located
at 0.9 and 0.9. Figure 3.1 shows the simulation results for the proposed indirect
adaptive controller. It follows that after the transients have died out the output
tracking error approaches to zero. This is due to the fact that the estimator has

perfectly identified the unknown parameters.

The robustness of the proposed scheme is demonstrated by assuming a 30% varia-
tion in the parameters of the system. Figure 3.2 shows the results for the adaptively
controlled system and Figure 3.3 shows the results for the non-adaptive controlled
system where the nominal value of @ is directly used in the controller design. Note
that although the performance of the adaptive controller is unchanged, the output

tracking error for the non-adaptive controller becomes larger.
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Max. Tracking | Steady State | Maximum Steady state
Error Error Input Estimation Error
Adaptive Control 0.175 0 19.8 0
(No Uncertainty)
Non-Adaptive Control 0.166 0 18.8 -
(No Uncertainty)
Adaptive Control 0.2 0 15.5 0
(30% Uncertainty)
Non-Adaptive Control 0.24 0.17 19.1 -
(30% Uncertainty)
Adaptive Control 0.45 0 6.5 0
(120% Uncertainty)
Non-Adaptive Control unstable unstable unstable —
(120% Uncertainty)

Table 3.1: Comparison between adaptive and non-adaptive tracking control

It is important to note that for a sufficiently large variation in the parameters the
non-adaptive controller may become even unstable. To demonstrate this, Figures 3.4
and 3.5 depict the results of the adaptive and the non-adaptive controllers, respec-
tively, subject to 120% variation in the parameters of the system. Clearly, the
non-adaptive controller is unstable whereas the proposed adaptive controller results
in a stable operation of the closed-loop system. Table (3.1) summarizes the simu-
lation results of adaptive and non-adaptive tracking control problem. These results
reveals that as the parameter uncertainty is increased, the maximum tracking error
of adaptive controller increases as well but in all cases the steady state tracking error
is zero. However the performance of non-adaptive controller is deteriorated as the

parameter uncertainty is increased and finally it becomes unstable.

3.6 Conclusions

An indirect adaptive control scheme for a partially input-output linearizable discrete-

time nonlinear system is developed. Using the Lyapunov analysis, it is shown that
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provided the zero dynamics are exponentially stable, then the adaptively controlled
closed-loop system consisting of a nonlinear controller, a discrete-time parameter
estimator developed based on the multi-output RLS algorithm and that uses full
state feedback of the system is locally stable. In addition, if the parameter estimation
error approaches to zero, then the output tracking error also approaches to zero as

t — oo.
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Figure 3.1: Indirect adaptive tracking control. (a) output yr — — and desired
trajectory ymye —  (b) internal dynamics m 4 = Ftal — — and nx = Eta2
(c) system input u(k) (d) tracking error e(k) = yx —ymx  (e) estimation of
unknown parameters Ty =6y x —, To =024 — ., T3 =034 ..., Ty = b4 — —

64



(@)

b,

Eta2 ———

()

T
M H 7]
0 50 100 150
— 20
% § 0.2F - -r-mmrr b e N
: é 5
£ 0 i CSJ'! O e kR ARREEREEREE
E : S
2 : g 0
g z =
? 20 1 -0.1 : -
50 100 150 50 100 150
! () Samples
=
: 0.2 " T T e e e T e T e
)
'._
C\IJ 0.1 b ST T S g
~ s ]
|
= ‘ '
0 50 100 150
Samples
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Chapter 4

Discrete-Time Nonlinear
Adaptive Tracking Control of a
Flexible-Link Manipulator

The aim of this chapter is to apply the nonlinear adaptive control scheme proposed
in Chapter 3 to a single-link flexible manipulator. The discrete-time model of the
flexible-link manipulator is derived using two methods: forward difference method
(Euler approximation) and a new method that enjoys the properties of both the
forward difference and the step-invariance schemes. It is shown that both meth-
ods result in a similar discrete-time model with only a slight difference in forward
dynamics and zero dynamics. The output re-definition scheme is used so that the
resulting zero dynamics is exponentially stable. Finally, the indirect adaptive feed-
back linearization and tracking control problem proposed in Chapter 3 are utilized
where it is assumed that the “payload mass” is unknown. The performance of the
adaptively controlled closed-loop system is examined through numerical simulations

to show the main features of the proposed strategy [66, 67].
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4.1 Introduction

The problems of modeling and control of flexible-link manipulators have received
considerable attention in the past few years (Book [2], Cannon & Schmitz [4],
De Luca & Lanari [13], Geniel et. al [19], Madhavan & Singh [49] and Wang &
Vidyasagar [83]). The majority of the proposed control schemes require knowledge
about the system’s parameters including payload. However, during robot operation
change of payload may occur and therefore, adaptive control techniques should be
employed. Adaptive control of a single-link flexible manipulator with the linearized
model of the link has been investigated in [16] by Feliu et. al and in [76] by Siciliano
et. al using the continuous-time model and in [92] and [93] using the discrete-time
model of the link by Yuh and Yurkovich & Pacheco, respectively. Also, Koivo & Lee
[40] and Yang & Gibson [88] have considered the problem of discrete-time adaptive
control of the linearized dynamics of a two-link flexible manipulator. The problem
of controlling the tip position trajectory of a two-link flexible manipulator using
a continuous-time self-tuning scheme and a least-square identification scheme was
considered by Lucibello & Bellezza [48] where the payload variations are allowed.
Also, a neural network based adaptive control of a flexible-link manipulator was
presented in Donne & Ozgiiner [15] and Mahmood & Walcott [50]. The former
considered the control of a single-link flexible manipulator whose dynamics are only
partially unknown; in a sense that the rigid body dynamics are assumed to be known
and the flexible dynamics are learned by neural networks, while the latter considered
the on-line learning of a neural networks for both system identification and control
stages. Also, the non-adaptive feedback linearization of a rigid robot based on a
discrete-time model with no zero dynamics were given in Ganguly et al. [17] (the

relative degree of the system is equal to the degree of the system).

In this chapter we consider the problem of indirect adaptive control of a single-link

flexible manipulator. First the discrete-time model of the manipulator is derived.
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The unknown payload is identified by using a new regressor form of the system
dynamics and the multi-output recursive-least-square (RLS) algorithm. The input-
output adaptive feedback linearization scheme proposed in Chapter 3 and [69] is
applied to the re-defined output so that the map between the hub and the new output
is made minimum phase and stable. The stability of the adaptively controlled closed-
loop system is shown by using the Lyapunov analysis and by taking into account

both the internal and the zero dynamics of the system.

4.2 Continuous-Time Model of a Single-Link Flex-
ible Manipulator

Consider the dynamic equation of a single-link flexible manipulator shown in Fig-

ure 4.1 derived by using assumed modes formulation along with the Lagrangian

method (cf. Appendix C)
Q| | M@d0)+Fri@| |0 0 |)q
0 ko é

M(é) [

é h2(q.76)
n Dy 0 q — 7(2)
0 D, é 0
(4.1)
where ¢ € R is the joint (hub) angle, § = [§; & ... 6.]T € R™ is the

vector of flexible modes, M represents the inertia matrix, A 2 (k1 hI]T rep-

resents the Coriolis and centrifugal forces, Fri(4) is the Coulomb friction, D £

Dy 0
l' ' J € R(m+x(m+1) represents the viscous and structural damping matrix,
0 D,

0 0

0 ko
the input torque. Note that integer m represents the number of flexible modes or

€ Rm+Ux(m+1) represents the stiffness matrix and u(t) £ T(t) is

kK &
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Figure 4.1: Single Link Flexible Manipulator

equivalently the number of mode shape functions considered in the model.

To obtain the state space representation of (4.1), the state vector is first defined as

z(t) = [XT(t) XZT(t)]T where

X1(t) S [z1(t) za(t) - zompr(B)]T =g 67T =[q & -+ 67

Xa(t) & [22(t) a(t) - Tomp2(O]T =[3 6 1" =1[¢ b1 - 6m)T

Therefore, equation (4.1) may be written as

FY 5 I Pty
. = = (4'2)
X —M~1Fi(z) + M~ Fyu(t) L{z,u)

where F, 2 [1 0] and

Fu(z) & { Pt Frild) + Dug } = [h(s) + KXu(8) + DX (1)
h; + k,d + D,d
L(z,u) & ~M~'Fy(z) + M~ Fyu(t) (4.3)

Following [49] and assuming that the beam deflection w(z,t) is small compared

to the link length L, the normalized output may be written as g + ﬂf—tl with
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w(z, t) 2 Sy aidi(L)S; where ¢;(L) represents the i** mode shape and o; rep-
resents a constant. Note that by changing «; from —1 to 0 to 1, the normalized
output will change from the normalized reflected tip position to the joint angle to
the normalized tip position, respectively. Therefore, for the normalized tip position
denoted by y,(t) it is set to oz = 1 and for the normalized re-defined output denoted
by y(t) it is set to a; # 1. Therefore, y:(¢) and y(¢) are given by

wl) = g+ KD

y(t) = g+ 73 ad(L)d £ Xy (4.4)

=1

where row vectors 8 £ (1 8,) and B, = [B1 --- Bm] with B:(L) £ “'—‘i’i}g In the

next section we will obtain the discrete-time model of (4.2).

4.3 Discrete-Time Model of a Single-Link Flex-
ible Manipulator

A suitable discretization scheme for the nonlinear continuous-time system (4.2) is
now developed. While there are several methods available to obtain the discrete-
time equivalence of a linear continuous-time system, most of these techniques cannot
be used directly for nonlinear systems. The step-invariance, impulse-invariance and
pole-zero mapping methods are not applicable since Z-transform cannot be used for
nonlinear systems. Also, by using the bilinear transformation the affine structure
of (4.2)-(4.3) will be lost. By using the backward difference a solution to a set of
nonlinear transcendental equations is needed where, in general, the existence and
uniqueness of the solution is very difficult to guarantee. As a result, the only viable
choice would seem to be the forward difference method (Euler approximation). This
method also was used by Nicosia at al. [58] but the discrete-time model is too

complex and is not suitable for adaptive feedback linearization. Also it will be
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shown that due to the special structure of the continuous-time model (4.2),namely
due to the fact that the first m + 1 states are linear, it is then possible to find
another discretization model. Incidentally the Euler method has also been applied
successfully to rigid robot manipulators Ganguly et al.[17]. Note that the relative
degree of a rigid robot model is equal to the order of the system and the system
has no internal dynamics. Therefore, results in [17] are straight forward application
of feedback linearization scheme. The forward difference method approximates the

derivative of z(t) at instant ¢ = kT by

+(kT) = —;;[(x(kT +T) — 2(kT)]
where T is the sampling period of the discretization process. Using the above rela-
tionship the discrete-time equivalence of (4.2) is given by

5 [Xl(k+1)J _ [ X1 (k) + TXa(k) } w3
1 Xa(k+1) Xa(k) + TL(z,u)

where X;(k + 1) £ X;(kT + T) and X;(k) 2 X;(kT) fori = 1,2.

To find the other discretization model, equation (4.3) may be first rewritten as

z = Az + B(z,u) where

Aé[o I},Bé[ 0 } (4.6)
00 L(z,u)

and [ is the identity matrix of dimension m x m. A new method is now developed
that uses both the step-invariance and the forward difference methods. Therefore,
let us assume that the input u(t) is constant over two consecutive sampling instants
and that the input changes only at sampling instants, that is u(t) = u(kT), kT <
t < (K +1)T. Moreover, similar to the forward difference method it is assumed that
the vector B(z(t), u(t)) is equal to B(kT) £ B(z(kT),u(kT))for kT <t < (K+1)T.

Therefore, the discrete-time model of (4.3) becomes

z(k+1) = e Tx(k) + /(;T eAT=")dr B(kT) (4.7)
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Substituting now (4.6) into (4.7) and doing some algebraic manipulations give the

following discrete-time model,

- [Xl(k+l)} _ Wi T[][Xl(k)}+[TI %IH 0 }
A X(k +1) 0 1 || Xa(k) 0 TI || L(z,u)
[ X,(k) + TXa(k) + 1T%L(z, u)
X;(k) + TL(z, ) }

(4.8)

Comparing (4.5) with (4.8) reveals that both equations are almost the same except
that (4.8) has an extra term in its first row. Note that the model above may be
obtained directly by using the Taylors series expansion of the vector z(¢ + T') about
t = kT that is
ok +1) 2 (kT + T) = z(kT) + f; %z(f)(kT)

where z()(kT') stands for the i-th derivative of the state vector z(t) computed at
time t = kT. As a result, the model (4.8) can be obtained when the Taylors series
expansion of X;(k 4+ 1) is truncated at ¢ = 2 and that of X,(k + 1) is truncated at
¢ = 1. In the following section the non-adaptive and adaptive feedback linearization

of (4.5) and (4.8) are considered.

4.4 Non-Adaptive Feedback Linearization and
Tracking Control Problem

In this section, using the input-output linearization scheme discussed in Chapter 3
the tracking control problem for the discrete-time model (4.5) and (4.8) is considered.
It is well-known that the model of a single-link flexible manipulator with a non-
collocated sensor and actuator exhibits a non-minimum phase behavior (Wang &
Vidyasagar [83]). This property, in general, hinders perfect tracking of the desired

tip position when a bounded and a causal input is used. To achieve a minimum phase
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property, namely to have an exponentially stable zero dynamics, one may utilize the
output re-definition described in De Luca & Lanari [13], Madhavan & Singh [49] and
Wang & Vidyasagar [83] or use the transmission zero assignment method discussed in
Geniel et al. [19] and Patel & Misra [61] . For example, the authors in [83] proposed
the reflected tip position as the new output for a single-link manipulator expressed
in the continuous-time domain. However, it is not clear that this method is also
applicable to discrete-time models of the flexible-link manipulator. In the following
we will investigate the applicability of the reflected tip (or in general an output
re-definition) strategy to the discrete-time model of a flexible-link manipulator.

4.4.1 3 ; Discrete-Time Model

Consider the discrete-time system (4.4)-(4.5) where the row vector 8 = [1 81 - -+ Bm]
is assumed to be unknown. The problem of output re-definition is to select the vec-
tor B such that the associated zero dynamics of the system are exponentially stable

around z = 0.

Towards this end, let us first perform the input-output linearization of system (4.4)-
(4.5) where one would find the successive advances of the re-defined output y(k)
until the input u(k) appears explicitly. For our system

y(k +2) = A(z) + B(z)u(k) (4.9)
is the first output affected by the input where
A(z(k)) £ B[ Xy (k) + 2T X2(k) — T*M ™' Fy(z)]
B(z(k)) £ T?8M'F, (4.10)

Therefore, the “relative degree”of system (4.5) with respect to output (4.4) is v = 2.

Consequently, if T and vector 8 are selected such that B(z) # 0, by using u(k) =

v(k)-A(z)

B(z) 25 the control and v(k) as a new input, then the input-output linearized
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model becomes y(k+2) = v(k). To make the re-defined output y(k) track a reference
trajectory ym(k), the new input v(k) is selected as

v(k) = ym(k +2) + o1(ym(k + 1) —y(k + 1)) + ca(ym (k) — y(k)) (4.11)

where o and a, are selected such that the polynomial Z% + a;Z + a5 is Hurwitz.
Consequently, the re-defined output tracking error e;(k) £ y(k) — ym(k) may ap-

proach to zero as £ — oo provided that the internal dynamics are stable.

To derive the zero dynamics of system (4.4)-(4.5) observe that y(k) and y(k + 1)
are independent of input, hence the first two new coordinates z;(k) and z3(k) of the

state-space coordinate transformation may be selected as

21(k) = y(k) = BXu(k)
2(k) 2 y(k + 1) = B[X1(k) + T X (k)] (4.12)

Also, since the relative degree (y = 2) is less than the number of states (n =
2m + 2), one may conclude that » — v = 2m modes are unobservable from the
output. Therefore, to construct the full coordinate transformation, 2m(= n — ¥)
additional coordinates 7;(k), 1 < ¢ < 2m are to be found. This is to be accomplished

by ensuring that the map z = #(z) = [¢(k) n(k)]T is a diffeomorphism where
£(k) = [aa(k) z(R)], (k) £ [ (k) nf (k)"

with 9T (k) £ [n1(k) ... 7m(k)]T and pF(k) 2 [7ms1(k) ... 72m(k)]T. The choice of
the states n(k) are at our disposal as long as the Jacobian matrix of &(z) is full
rank. Furthermore, to ensure that the zero dynamics of the adaptive system do not

depend explicitly on the unknown parameter the states (k) are selected as follows

ni (k) =TXi(k), n;(k) = JX,(k)
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where T’ £ [Omxl Imxm]y J = [Jl(mxl) Jz(mxm)] and

= 1 0 0 0
S B A B ! 0 0 (4.13)
| o | 0 0 - —cm 1]
with ¢; 2 45, i=1,2,---,m and g;’s are found from M~'F, 2 o192 - GmalT

(A is the determinant of the inertia matrix). As a result, the state transformation

&(z) now becomes

ak) | [1 8 0 o0

5(s) = nfk) | _ |0 In 0 0 [Xl(k) (10
22(k) 1 B, T T8, || Xk
k)| [0 0 4 A |

It can be shown that the map &(z) is a diffecomorphism provided that 7' # 0 and
det(J, — J18,) # 0 which is equivalent to G # 0 where G £ [91 92 -+ Gmi1]T.
(Note that X(k) = [¢ 6T]T and X,(k) = [¢ ST]T). Consequently, the internal

dynamics are governed by

m(k+1) =X (k+ 1) = n,(k) + TT X2 (k)
Mmk+1)=JX(k+ 1) =ny(k) + TJL(z,u) (4.15)

The state transformation (4.14) will transform the discrete-time system (4.5) with

the re-defined output (4.4) into

[ 2k +1) ] [ 2a(k)
2k+1) | | Alz(k) + B(z(k))u(k)
mk+1) | | m(E) + TOXy(k)
i n,(k+1) ] i 1n,(k) + TJ L(z,u) ]
y(k) = z(k) (4.16)
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To find the zero dynamics of (4.16) we need to find the inverse of the diffeomorphism,
i.e. #71(£,n) when the states z;(k) and z;(k) are identically set to zero for all time,
namely, @7'(0,7). This results in

X1(k) = Aimy (k)
Xg(k) = All\z‘l]z(k) (4.17)

-5,

m

ing (4.17) into (4.15) and using the definition of L(z,u) given in (4.3) yields the

where A;(8) 2 and Aq(8, My) = (J2 — J18;)~!. Therefore, substitut-

zero dynamics

M (k + 1) = n,(k) + TTA1A2n,(k)
mo(k + 1) = ny(k) — TIM~'F(z) + TJ M~ Fyu(k)
=172(k) —TJM—IFl(.'B) (4.18)

Note that (4.18) does not depend on input u(k) since JM~'F; = 0 because of
selection of J. Since the zero dynamics are a nonlinear system, therefore to guarantee
a locally exponentially stable zero dynamics at origin, the linearized model of (4.18)

is first obtained [36]

N (k + 1) = (k) + T'Aan,(k)
M2(k + 1) = n,(k) — T[Q2ken, (k) + (Q2D2 — @18;)Aamy(k)]  (4.19)

where scalar Q1(8, ML) =] T(JiHy + J2H21)(Dy + ¢fr:) and matrix Q2(8, M) £
T(JiHi2 + J2H32) and matrices Hy;y, Hyz, Hz; and H,, are linearized about z = 0
and cf.q is the linearized model of the Coulomb friction F'ri(q) used in (4.1). The
objective is to choose the re-defined output such that the linearized zero dynamics
given by (4.19), and written in the compact form n(k + 1) 2 En(k), is locally
exponentially stable. In other words, a vector # and sampling period T should be
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found such that the matrix F is made Hurwitz, where

Al In TA,
E(B, ML) = (4.20)
—Q2ks I + Qo2

2mXx2m

and Qo = Q18; — Q:D..

4.4.2 5 Discrete-Time Model

The input-output linearization for system (4.8) with output (4.4) is impossible to
accomplish due to the fact that the linearized model of system (4.8) associated with
output (4.4) has a marginally stable zero dynamics for all values of 8 (the model
has a pole at Z = —1). Consequently, to get around this difficulty one should define
a different output so that the minimum phase property can be ensured. To find this

new output we need to use the following proposition:

Proposition 4.1 (Bartbot et al.)[1]
Given the following continuous-time dynamical system of relative degree v described

in normal form

ia,i=$a,i+1 ’ ISl S7_1
Ty = b(za,zs) + a(Ta, To)u

-'i:b = Q(xa, xb)

Y= ZTq
Then, there exists a modified output y,(t) as yn(t) = T, = Tz, with respect to
which the relative degree of discrete-time system is equal to v where z, 2 [Za1 Taz - Zo)T
is the vector of the observable states of the continuous-time system and ct 2 a1 2 - )T

where ¢; € R.
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Using the above proposition we will now show that the re-defined output for sys-

tem (4.8) should have the form

2m+2 Xl k
yn(k) = ; a;zi(k) = [ a a; ] [X Ek; } (4.21)

where m is the number of flexible modes and X; (k) 2 [z1(k) z3(k) -+ zomer(R)]T
and X,(k) £ [z2(k) z4(k) - Zams2(K)]T. Also a; £ [a; a3 ... azm+1]T € R™+! and
a; 2 [@2 a4 ... azmi2]T € R™+! should be obtained such that the relative degree of
system (4.8) associated with output (4.4) is v and the corresponding zero dynamics

are exponentially stable.

To show that (4.21) is the suitable output note that to find the normal form of (4.2)-
(4.4) one takes the successive derivatives of the output until the input u(k) appears.
In this case the first and second derivatives of y(t) = BX:(t) are y(t) = BX,(t)
and §j(t) = BX2(t) = BL(z,u), respectively. As a result, the relative degree of the
continuous-time system is ¥ = 2 and the observable states of the continuous-time
system are z,; = y(t) and zq2 = §(t). According to the proposition, the new output
of the discrete-time system (4.8) should be a linear combination of y(¢) and F(t),
or equivalently X;(¢) and X;(t). This confirms the choice of the new output given
by (4.21).

To find the unknown coefficients a;, 7 = 1,...,2m + 2, the relative degree of sys-
tem (4.8) associated with the output (4.21) is matched with that of the continuous-
time system (4.2) associated with the output (4.4). Therefore, calculating y,(k + 1)

gives

Xy (k +1) J . [Xl(k)+TX2(k)+T72L(z,u)

n(k =la a;

(4.22)
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If we set a; = —Za,, then (4.22) becomes y,(k + 1) = [ a, Za; ] z(k) which
becomes input independent. Thus, computing y.(k + 2) gives

w(k+2) = a Za;] [xl(k)+TX2(k)+§L(z,u)} A

= An(z) + Ba(z)u(k)
Xo(k) + TL(z, u)

(4.23)

where A, (z) and B,(z) are given by

An(z) 2 au[ X (k) + %Xz(k) _TM-'Fy(z)] , Bu(z)2T'aM~'F, (4.24)

Therefore, the relative degree of system (4.8) with respect to the new output (4.21)
is 2 and consequently, the dimension of the unobservable states (internal dynamics)
is 2m(= n—+). Now the first two new coordinates z,;(k) and zn2(k) may be selected
as

(k) 2 4a(k) = a1 X (k) — Ja1Xa(h)

22(k) & ya(k + 1) = a1 X1 (k) + galxz(k) (4.25)

and the other 2m new coordinates may be chosen as before as 1, (k) = [ X;(k) and
Maa(k) = JX,(k) where T 2 [Omx1 Imxm], J = (J1(mx1) J2(mxm)] and J; and J, are

defined in (4.13). Therefore, the resulting internal dynamics become

Ma(k +1) = TXq (K +1) = 1, (k) + TT Xz (k)
Mok +1) =JXo(k+1) =n,,(k) + TJL(z,u) (4.26)

To summarize, if a, is defined as [3, B,], the coordinate transformation becomes

[ Zn1(k) - i ,32 :31 “'%ﬂz ‘%,31 ‘
M) | _| 0 I 0 0 [ Xa() } (4.27)
an(k) .32 :31 %:32 %.31 X2(k)

| Mna(k) | 00 J1 2
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which is a global diffeomorphism if T # 0, B8, # 0 and det(8,J> — J18,) # 0. Also
the internal dynamics take the form
T (k+1) =T Xy (k + 1) = 1,,(k) + TTX2(k)
Mk +1) =TXao(k+1) =n,,(k) + TJL(z,u) (4.28)
To find the zero dynamics, first the inverse of diffeomorphism (4.28) when z,;(k) =
zan(k) = 0 should be found. After doing some algebraic manipulation one gets,
T
Xl(k) = Anlnnl(k) + EﬂzAnIAnﬂnrﬂ(k)
Xa(k) = An1An2n, (k) (4.29)

where An; 2 ,: —P :l and An £ (B2J2 — J18,)7". Therefore, substituting (4.29)

Balm
into (4.28) yields the zero dynamics as

N (k+1) = mu(k) + TTArAn2n,,(K)
Ma(E+1) = (k) +TJ [-M 7 Fi(z) + M~ Fyu(k)]

= n.(k) — TIM~'Fi(z) (4.30)
Hy Hyp

Hy Hoy
Q2 2 T(J1H12 + J2Hyp) where ¢f.:q is the linearized model of the Coulomb friction

Now using M~ ljz =0 2 l: }, Q1 = T(J1Hy + J2Hor )(efri + D1) and

Fri(q), the linearized model of the nonlinear zero dynamics (4.30) becomes

nnl(k + 1) = T"nl(k) + T:B2Aﬂ2nn2(k)
Nna(k + 1) = 12(k) — [Q2k21,1(K) + QoAn2n,0(K)] (4.31)

where matrix Qo 2 —Q28,(D; + %kz) + @18,.- Hence, the output should be re-
defined such that the linearized model of the zero dynamics given by (4.31) and
written in the compact form 7,(k + 1) £ E.n.(k) is exponentially stable. In other

words, a vector § should be found to make the matrix E,, Hurwitz, where

I TByAn } 32)
2mXx2m

E.(8,M) =
—Q2k2 I — Qoln2
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Comparing (4.32) with (4.20) reveals that both matrices have the same structure.
However in this case we have more parameters to play with to make E, a Hurwitz
matrix. Since the effect of viscous and structural damping is very important to make
E, Hurwitz, in this case it is increased to D, + %kz. Now suppose that the payload
mass is unknown but its upper bound is known e priori. The objective is to find
B, B, and T given uncertainty in M}, so that matrix FE or E, is Hurwitz. This in

turn would characterize the re-defined output.

4.5 Adaptive Feedback Linearization and Track-
ing Control Problem

In this section, using the scheme proposed in Chapter 3, the indirect adaptive feed-
back linearization and tracking control problem for a single-link flexible manipulator
with an unknown payload mass My, is considered. The first step is to identify the
unknown parameter M}, with expressing it in the regressor form Y (k +1) = ¥7 (k)0
where Y (k + 1), UT(k) and 8 represent the measurement vector, the regressor vec-
tor and the unknown parameter (payload), respectively. To construct the above

regressor equation note that the second row of (4.2) may be expressed as
MX; + Fi(z) = Fyu(k) (4.33)

where X, = X—”@_TX’Q‘—‘—Q and the inertia matrix M and vector Fy(z) depend linearly
on payload mass M. Therefore, one can rewrite inertia matrix as M = M; + M M,
with known matrices M; and M, belonging to R(™+1)*(m+1) and vector Fi(z) =
Fi1(z) + ML Fi2(z) with known vectors Fy;(z) and Fjz(z) belonging to R(™+1). By
substituting for the above M and Fi(z) into (4.33), the regressor form becomes

Y(E+1) 2 ZM[Xa(k) — Xa(k — 1)] + Fu(z) — Fya(k)

T
UT(k) & MXy(k) - Xa(k — 1)] - Fia(o)
06 &2 M
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where Y(k + 1) € R™*, ¥T(k) € R™+! and 6 € R. Note that Y(k + 1) contains
the information about the system consisting of the states and the input up to time
k+1. An estimate §(k) of the unknown vector 6 may now be found so that the cost

function
In(0) = £ S () = W7k — 1O R [Y () - W7 (6 - 1)6] + Lo — G PO - 80
k=1

is minimized where R and P(0) are given positive definite matrices and 6(0) is an
initial estimate of §. Following Goodwin & Sin [20], it can be shown that the §(k)

that minimizes Jx(6) is given by the following recursive algorithm

(k) = b(k — 1) + P(k — 2)¥(k — )X\ (k — 1)[V (k) — UT(k — 1)(k — 1)]

P(k—1)=P(k—2)— P(k-2)¥(k - 1) X7 (k)T (k —1)P(k —-2) (4.34)
where X, (k — 1) = UT(k —1)P(k —2)¥(k —1) + R and P(—1) = P(0). The above
multi-output RLS algorithm may be shown to be stable, that is, the estimation
error O(k) £ 4(k) — 0 remains bounded by using the Lyapunov function candidate
of the form V;(4(k)) £ §T(k)P~1(k — 1)4(k). To show that the above multi-output

RLS algorithm is stable and results in a bounded estimate of 8 first let’s substitute
Y (k) = ¥(k — 1)6 into (4.34) which yields

(k) = 6(k — 1) — P(k — 2)¥(k — 1) X, (k — 1) ¥ (k)Td(k — 1) (4.35)
Our goal is to show that the algorithm above is stable, that is §(k) € [o,. Therefore,

AVp(k+1) = Va(B(k +1)) — Va(B(k)) (4.36)
= 0T(k+ )P (k)d(k+ 1) — 67 (k)P (k — 1)6(k)

Using the matrix inversion lemma it can be shown that the estimation error satisfies

the relationship
(k) = P(k —1)P~*(k — 2)f(k — 1) (4.37)
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Consequently, using (4.37) in (4.36) one gets
AVy(k+1) = [0(k +1) — (k)T P~ (k — 1)87 (k) (4.38)
Now using (4.35) in (4.38) results in
AVy(k + 1) = —[¥T(K)G(R)] T XT (k)T (k)b(K)] (4.39)

Hence, given that X,(k) = ¥T(k)P(k — 1)¥(k) + R > 0, it then follows that
AV,(k + 1) is negative semi-definite, and so V3(6(k)) is always non-decreasing. This
implies that 8(k) remains bounded for all time (i.e. € l). Also, it can be shown

that || 8(k) |[><|| 6(0) — 6 ||2.

For developing the control strategy, the certainty equivalence principle is utilized.
That is, the estimate of the payload mass (k) = M; (k) given by the multi-output
RLS algorithm will be used in designing the tracking control strategy. Therefore,
using (4.9)-(4.11) the adaptive control law becomes
v(k) — A(z)

B(z)
v(k) = ym(k+2) + on(ym(k + 1) = 22(K)) + c2(ym(k) — z1(k))  (4.40)

(k) =

where A(z) £ A(z(k), Mp(k)) and B(z) £ B(z(k), Mi(k)) are A(z) and B(z)
defined in (4.10) with the payload replaced with its estimate, respectively. Define

the re-defined error signals as

er(k) £ y(k) — ym(k) = 21(k) — ym(k) (4.41)
ex(k) = y(k +1) — ym(k + 1) = 2,(k) — ym(k + 1)

By adding the term v(k) -- A(z) — B(z)a(k) (which is zero) to y(k + 2) = A(z) +
B(z)u(k) one gets

y(k +2) = v(k) + (k)
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where by using the definitions of A and B, we have
(k) £ [A(z) — A(2)] + [B(=) ~ B(=)}i(k)
= BTHM™' — M~ (k))=(z, (k) (4.42)
and =(z, u(k)) 2 —Fy(z)+ Fyia(k) and Fi(z) and F; are defined in (4.3). Therefore,
by using v(k) given in (4.40), the error dynamics (4.41) becomes e;(k + 1) = ey(k)

and ex(k + 1) = —azei(k) — azez(k) + 7(k). Also, the internal dynamics (4.15)

or (4.28) may be written in the compact form

n(k + 1) = q(§(k),n(k)) (4.43)

Consequently, the zero dynamics become

1(k +1) = q(0,n(k)) £ qo(n(k)) (4.49)
The governing equations for the closed-loop system may now be expressed as

e(k + 1) = He(k) + G(z(k), u(k),6(k))

n(k +1) = q(§(k), n(k)) (4.45)

0
7(k)

0 1

where e(k) = [er(k) ex(k))T, H = and G =

J . To complete

—Qz —ag
our analysis we need the following assumptions:

Assumption 4.1 The zero dynamics ({.44) are ezponentially stable at origin by
properly selecting the vector B and sampling period T so that matriz E in (4.20) is

Hurwitz.

Assumption 4.2 The internal dynamics (4.48) are locally Lipschitz in £(k) € Q,
and n(k) € Q.

Assumption 4.3 The reference output trajectory y,(k) and its next n — 1 samples

are all bounded by a constant b,.
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Assumption 4.4 Z(z,4(k)) is locally sector bounded in z(k) and (k) for £(k) €
Q, n(k) € Q and §(k) € Q;.

The following theorem summarizes the characteristics of the adaptively controlled

closed-loop system:

Theorem 4.1 Consider the nonlinear discrete-time model (4.5) of a single-link flez-
ible manipulator ({.2) where the payload mass is assumed to be a constant parameter
but unknown. The adaptively controlled closed-loop system obtained by utilizing a
multi-output RLS parameter estimator (4.34), a state space coordinate transforma-
tion (4.14) or (4.27) and a nonlinear feedback control (4.40) is locally stable provided
that the upper bound of payload is known a priori, Assumptions (4.1) to (4.4) are
satisfied and é(k) is maintained in a bounded region specified in (B.18) (cf. Appendiz
B). Consequently, the closed-loop system has a bounded re-defined output tracking
error e1(k). Moreover, the tip position tracking error e,(k) remains bounded. Also,
if the parameter estimation error approaches to zero, then the re-defined output

tracking error ey (k) converges locally to zero as k — oo.

Proof : See Appendix B for the details.

4.6 Case Study

The adaptive feedback linearization and tracking control strategy developed in the
previous section is now applied to a single-link flexible manipulator (which is con-
structed in our laboratory) using one mode shape for both modeling the flexible-link

and designing the controller, i.e. m = 1. Referring to Appendix C the dynamic
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equations of such a link are given by

[ z ] [ T ]
I3 _ T4
T2 Li(z,u)
| 24 | | La(z,u) ]

y(t) = z1+4+ Pizs

T
yn(t) = a1z1 + azzs — ;(all'z + azzy)
with z £ [z1 z3 22 z4]T=[q & ¢ 8T and

l: Ly(z,u) J _ [ my; Miz }_1 [ —hy — Dyzy — Fri(z;) + u(t)

Lz(il?, u) mi2 Mo —h; — Dz — kozs

where F'ri(z,) is the Coulomb friction and m;; = ri+ry+r3Mpz2, myy = p; +p. My,
ma2 = q1+ @My, hy = 202 Mpzox3z4 + 2pATo7324 and hy = —p2 My 2323 — pAzies.
The parameters ry, ro, 73, p1, P2, q1, g2 and ¢, are all assumed to be known except
the payload mass My that is assumed to be constant but unknown. The forward

difference method yields the following discrete-time model

zi(k +1) z1(k) + Tza(k)
z3(k+1) | | za(k) + Tzy(k)
2ok +1) | | za(k) + TLu(k)

| za(k+1) | za(k) + T Lao(k) |

y(k) = 21(k) + Frzs(k)
yn(k) = alzl(k) + a3:1:3(k) b %(alxz(k) + 03$4(k)) (4.46)

Due to the fact that the relative degree v is equal to 2, the first two new coordinates
z1(k) and z3(k) when y(k) is taken as output are selected as

zi(k) = y(k) = z1(k) + Przs(k)
zo(k) = y(k + 1) = z1(k) + Brzs(k) + Tz2(k) + TPrza(k)
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Sincem =1, wehave ' =[0 1] and J =[J; J] =[—c; 1] with¢; = —m—;z-z Hence,

the third and fourth new coordinates are

:z:l(k) _
(k) =TXy(k) = [0 1] ) = z3(k)

3

zo(k
ma(k) = 13608 = [es 1] | | 2 iz 6) 42
T4 k)
The linearizing input is given by (4.40) where A(z) and B(z) are A(z, M) and

B(z, ML) with My, replaced with M, respectively and
Az, M) = z1(k) + Brza(k) + 2T z2(k) + 2T Brz4(k)
T2
(m22 - ,Blmlz)(hl + Dlxg(k) + FTZ($2))

+TA_(m12 — Bimu)(hz + D2z4(k) + koza(k))

T2
B(z, Mp) = A ——(ma2 — Bimy2)

where A is the determinant of the inertia matrix M. Using the above new coordi-

nates and the linearizing input, the linearized model of the zero dynamics become

T
k+1) | | ~Ze 1- I ® | '
2 ™Moz (1- —lzﬁx)mzz 2

In order to have an exponentially stable zero dynamics the linear system (4.47)
should have a Hurwitz matrix E. Therefore, using the Jury’s stability test the

following conditions for the sampling period T and parameter 3; are found

D, TD Tk
Z T< : ,31 m22_ 2 + 2

1 miz  2mya dmy,

(4.48)

Following the same procedure, It can be shown that if y,, (k) is taken as the normal-

ized re-defined output, the linearized model of the zero dynamics become

Ta
[ mak+1) | | 1 e m®) | o )
- Ta;(D2+Zk - enin )
Tna(k + 1) _Tke p_ (ali(m:;:);; Tna2(k)
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which by means of Jury’s test, the following conditions will be found

z T<% , a3<a1(@_TD2
2

2 mi2 2my,

) (4.50)

To specify [3; we first select the sampling period T such that T < %. Since my, =
p1+p2 My and moy = g1 + g2 M|, then (4.48) gives the proper bound for B, provided
that a bounded interval for payload My, is initially specified. We are now in a position
to consider the adaptive tracking control problem for system (4.46) by re-writing it

in the regressor form Y (k + 1) = U7 (k)0 where § = My and

Y(k+1) = rilzy(k) + prAzy(k) + Diz2(k) + Fri(zz) — a(k)
p1QAza(k) + i Azy(k) + Dazy(k) + koza(k)
\I/T(k) - [ (7'2 + Tsxg(k))A$2(k) + PzA:u(k) + 2¢¥$2(k)$3(k)$4(k) }
p2Qza(k) + g2 Aza(k) — ¢f:1:§(k):1:3(k)

where Az,(k) £ 3&);;—"’—("——11 =~ £9(kT) and Azy(k) £ ﬂﬂ:;‘:—‘(k;ll ~ £4(kT). For
the purpose of numerical simulations the reference output y,,(k) consists of three
quintic functions whose fundamental frequency is around %" ~ 1-"—‘54. Also the con-
stants a; and a; are chosen such that the poles of the closed-loop feedback linearized

system are located at A\, = .45 and A\, = .5.

The numerical values used in the simulations are taken from the single-flexible
manipulator in our lab and are given by: link’s length L = 1.2 m, link’s mass
mm = 1.42 kg, the flexural rigidity EI = 2.44 Nm?, stiffness k; = 17.45, damping
D, =0.59 and D; = 0.4, link moment of inertia Jo = immnl? = 0.6797 kgm?, pay-
load moment of inertia /o = 0.27 kgm? and payload mass My, = 0.5 kg. In addition,
the Coulomb friction is modeled as a sigmoidal function Fri(z,) = 4.77[H_—e:2mg—1].
The natural frequency of the flexible mode is at w; = 3.511% and we have r; =

0.9497, r; = 1.44, r3 = 4.00, p; = 0.9983, p» = 2.00, ¢; = 1.5035, ¢ = 4.00 and
finally ¢,(L) = 2.00.
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Figure 4.2: Variation of g, o —.—.and a; — with respect to payload M|,

Using the above numerical values, the conditions for the sampling period and §;

: 1.50354-4M 0.2T 4.363T2
for 3°; model yields T < 0.0229 and 8; < 5988512 M’L‘ — osessianr; T ossesraary TS

spectively and for the sampling period and a3 for 3", model yields T' < 0.0458 and

1.5035+4M; _ __ 0.2T : iati %3 wi
az < a1(53053 M 0598543 ML)’ respectively. The variation of #; and - with re-

spect to payload M is depicted in Figure (4.2). As this figure shows 3; < 1.51 and

ar < 1.51 should be selected to ensure that the system is minimum-phase for all
payloads. Since in this example there is no difference between 3=, and 3°,, therefore

21 is considered in the sequel.

Note that since 8; = 28 we get a; < 15LL or a; < 0.906. Therefore, for numerical
L g 1

simulations we take T' = 0.01 and B; = 1. Given that L = 1.2 and ¢,(L) = 2,

the constant oy becomes a; = %2 = 0.6. Simulations are performed using the
SIMULINK environment and Figure (4.3) shows the block diagram of the simulated

system.

Figure (4.4) shows the results for the normalized value of the reference trajec-
tory ym = yn(k), the normalized re-defined output y = y(k) and the normalized
tip position yt = y.(k), the tracking errors for the normalized re-defined output
e = y(k) — ym(k) and for the normalized tip position et = y;(k) — ym (k), the internal
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Figure 4.3: Block diagram of an adaptive tracking control of a single-link flexible
manipulator using SIMULINK when the discrete-time controller is applied to a ZOH
followed by the continuous-time model

dynamics Etal = n,(k) and Eta2 = n,(k), the estimate of the unknown parameter
Teta = My, and finally the input torque u(k).

For real implementation, the designed discrete-time controller will be applied to a
continuous-time system preceded by a ZOH. Therefore, simulations are also per-
formed when the discrete-time controller is used in the continuous-time system with
a ZOH. Figure (4.5) depicts the results. Note the closeness of the tracking errors
obtained in Figure (4.4) to those shown in Figure (4.5).

Since we are more concerned with the tracking of the tip position (and not much the
re-defined output), it is preferable to select 8, as close as possible to its maximum
value, namely, 1.51 (or equivalently to select a close to 0.906). Figure (4.6) shows
the results with T = -1= and f; = 1.35 (or « = 0.81) and Figure (4.7) shows the
results for T = 0.01 and 8, = 72 = —1.667 (or @ = —1). Comparing the results of
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Figures (4.5), (4.6) and (4.7) reveals the impact that 8; has as a trade-off between a
lower tracking error of tip position and a higher control effort. Specifically when 3;
is far from 1.51 the good tracking of the tip position is sacrificed for a relatively low
control effort (Figure (4.7)). On the other hand, in order to achieve good tracking
of tip position a higher control effort is needed (Figure (4.6)).

Finally two more simulations are included to illustrate the effect of the ZOH on the
minimum phase property conditions of the zero dynamics, namely 8; < 1.51 and
T < 0.0229. Figure (4.8) shows the results with 8; = 1.4 and T = 35 resulting in
an unstable closed-loop system. At first, one may interpret instability result as a
contradiction to the previous minimum phase conditions. But after a closer look one
notes that the above minimum phase conditions are obtained without having a ZOH
in the closed-loop system. In other words, the delay associated with the ZOH does
now tightened our bound (e.g. from 1.51 to 1.4). Figure (4.9) shows the simulation
results with 8; = 1.1 and T = 0.02 where the instability is now due to the improper
choice of T' (compared to Figure (4.6)). In this case we would have expected that
the closed-loop system without the ZOH would be unstable for T > 0.0229, however
instability has occurred for T less than 0.0229 due to the presence of the ZOH in

the closed-loop system.

In addition, simulations are performed when the desired trajectory consists of quin-
tic and step functions. Figures (4.10) to (4.13) show the results. Figure (4.10) shows
the result when both sampling period T' and parameter 3; are selected to satisfy
the stability conditions 7' < 0.0229 and B; < 1.51. As expected, the adaptively
controlled system is stable and the performance of the closed-loop is satisfactory.
To observe the effect of T' and 3; on stability of the closed-loop system, B is in-
creased to 1.4 while keeping T = z{5. As Figure (4.11) shows the system is unstable
since f; > 1.4. Conversely when the sampling period is increased to T' = 0.02 with
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B1 = 1 the closed-loop system is also unstable. Figure (4.12) depicts the results and
the instability should be attributed to improper value of . When both T and 8;
are decreased to 0.01 and 1, respectively the system behaves in a stable fashion as

shown in Figure (4.13).

Finally Figures (4.14) and (4.15) illustrate the performance of the closed-loop sys-
tem when the conventional PD controller is applied with K, = 150, K; = 50 and
K, = 200, K; = 100, respectively. As it clear the PD controller results in the steady
state error and therefore, its performance is unsatisfactory. It is possible to reduce

the steady state error by increasing K, and K but the closed-loop becomes unstable.

Remark : The formal robustness analysis of the proposed adaptive control scheme
to unmodeled dynamics is not considered in this thesis. This important issue should
be investigated in future. It is expected that the bounds for 8; and T would be
further tightened as unmodeled dynamics are incorporated into the analysis. This is
postulated based on the following observations reached when the ZOH is included in
the closed-loop system. To illustrate the robustness of the adaptive controller which
is designed with m = 1 to a manipulator model with m =1, m = 2 and m = 3,
the simulations results with #; = 1 and T = 0.005 are summarized in Table (4.1).
It follows that the controller that is designed using m =1 is robust with respect to
the unmodeled dynamics of the link (flexible modes). As expected the maximum
errors for e; and e; and the input u for m = 2 is higher than those for m = 1.
Although, the maximum tip position tracking error e, is higher for m = 3 than that
for m = 1, however the maximum input u is lower than that for m = 1. The last
row of Table (4.1) shows that the closed-loop system stability conditions occur for

lower values of 8; and T when m is increased.
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Number of Modes 1 2 3
Max Re-defined output | 4.98 x 10~* | 4.723 x 10~* | 2.557 x 10~*
tracking error(|| e; |])
Max Tip position 0.5645 0.6437 0.5916
tracking error(|| e ||)
Max Input(]] u |)) 18.2609 19.163 16.2616
™ 0.847 0.938 0.8417
72 4.0247 4.3316 3.3882
z; | 1.4058 1.4386 1.2081
z3 | 0.7764 0.938 0.8417
Conditions for closed-loop | T > 0.02 T > 0.02 T >0.01
instability bG1>1.4 b1 >1.3 G >1.2

Table 4.1: The performance of the adaptively closed-loop system when controller
which is designed with m =1 is applied to a manipulator model with m = 1,2 and
3.

4.7 Conclusions

In this chapter an indirect adaptive feedback linearized controller for a single-link
flexible manipulator represented in the discrete-time domain has been developed.
Using the discrete-time model the associated internal and the zero dynamics of the
system have been obtained. The output re-definition strategy is employed so that the
resulting map between the hub and the new output is guaranteed to be minimum
phase. The discrete-time model is then expressed in a new regressor form and a
multi-output RLS algorithm is used to identify the unknown payload parameter.
Stability of the adaptively controlled closed-loop system is guaranteed by applying
Lyapunov analysis. The simulation results show that the output re-definition and
the proposed feedback linearization method may be successfully applied to adaptive

control of single-link flexible manipulators.
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Figure 4.4: Adaptive tracking control of a single-link flexible manipulator when
both controller and system model are represented in discrete-time. (A) re-defined
output y(k) — and desired trajectory ym(k) — —, (B) tip position y:(k) — and
desired trajectory ym(k) — —, (C) tracking errors e(k) = y(k) — ym(k) — and
el(k) = ye(k) — ym(k) — —, (D) internal dynamics m(k) — and no(k) — —,
(E) estimate of the payload theta = M, (F) input torque 7(k) = u(k) for
My =0.5, T =0.01, 8, = 1 and M(0) = 0.1.
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Figure 4.5: Adaptive tracking control of a single-link flexible manipulator when
the discrete-time controller is applied to a ZOH followed by the continuous-time
model. (A) re-defined output y(k) — and desired trajectory ym(k) ——, (B) tip
position y;(k) — and desired trajectory ym(k) — —, (C) tracking errors e(k) =
y(k) — ym(k) — and e (k) = yi(k) — ym(k) — —, (D) internal dynamics n;(k) —
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Figure 4.6: Adaptive tracking control of a single-link flexible manipulator when
the discrete-time controller is applied to a ZOH followed by the continuous-time
model. (A) re-defined output y(k) — and desired trajectory y,(k) — —, (B) tip
position y:(k) — and desired trajectory ym(k) — —, (C) tracking errors e(k) =
y(k) — ym(k) — and e, (k) = ye(k) — ym(k) — —, (D) internal dynamics 7;(k) —
and ma(k) — —, (E) estimate of the payload theta = M, (F) input torque
T(k) = u(k) for M = 0.5, T = 335, B1 = 1.35 (or & = 0.81) and M.(0) =0.1.
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Figure 4.7: Adaptive tracking control of a single-link flexible manipulator when
the discrete-time controller is applied to a ZOH followed by the continuous-time
model. (A) re-defined output y(k) — and desired trajectory y,(k) — —, (B) tip
position y;(k) — and desired trajectory ym(k) — —, (C) tracking errors e(k) =
y(k) — ym(k) —and e;(k) = yi(k) — ym(k) — —, (D) internal dynamics (k)
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Figure 4.8: Adaptive tracking control of a single-link flexible manipulator when
the discrete-time controller is applied to a ZOH followed by the continuous-time
model. The system is unstable due to the 8;. (A) re-defined output y(k) _ and
desired trajectory ym(k) — —, (B) tip position y,(k) __ and desired trajectory
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By = 1.4 (or o = 0.84) and ML (0) = 0.1.
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Figure 4.9: Adaptive tracking control of a single-link flexible manipulator when
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(F) estimate of the payload theta = M, (F) input torque 7(k) = u(k) for
My =05, T =0.02, 8; = 1.1 (or a = 0.66) and M.(0) = 0.1.
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Figure 4.10: Adaptive tracking control of a single-link flexible manipulator when
the discrete-time controller is applied to a ZOH followed by the continuous-time
model. The desired trajectory consists of quintic and step functions. (A) re-
defined output y(k) —and desired trajectory ym(k) ——, (B) tip position y.(k)
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(E) estimate of the payload theta = My, (F) input torque 7(k) = u(k) for
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Figure 4.12: Adaptive tracking control of a single-link flexible manipulator when
the discrete-time controller is applied to a ZOH followed by the continuous-time
model. The desired trajectory consists of quintic and step functions. The system
is unstable due to the sampling period T. (A) re-defined output y(k) — and
desired trajectory yn,(k) — —, (B) tip position y:(k) — and desired trajectory
ym(k) ——,  (C) tracking errors e(k) = y(k) — ym(k) — and e:(k) = y.(k) —
ym(k) — —, (D) internal dynamics m1(k) — and n2(k) — —, (E) estimate of
the payload theta = My, (F) input torque 7(k) = u(k) for My = 0.55, T = 0.02,
B1 =1 (or @ =0.6) and M.(0) =0.1.
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Figure 4.13: Adaptive tracking control of a single-link flexible manipulator when
the discrete-time controller is applied to a ZOH followed by the continuous-time
model. The desired trajectory consists of quintic and step functions. (A) re-
defined output y(k) —_and desired trajectory ym(k) ——, (B) tip position y:(k)
and desired trajectory ym(k) — —, (C) tracking errors e(k) = y(k) — ym(k) —
and e:(k) = yi(k) — ym(k) — —, (D) internal dynamics n;(k) — and n(k) — —,
(E) estimate of the payload theta = M,  (F') input torque 7(k) = wu(k) for
Mp =0.55,T =0.01, 5, =1 (or « =0.6) and M.(0) =0.1.
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discrete-time controller is applied to a ZOH followed by the continuous-time model.
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Ym(k) ——, (C) tracking errors e(k) = y(k) —ym (k) —and e;(k) = y:(k) — ym (k) —
—, (D) input torque 7(k) = u(k) for K, = 200, Kd = 100, My = 0.55, T = 0.01,
B1 = 0.4167 (or a = 0.25) and M(0) = 0.1

108



Chapter 5

Input-Output Model Based
Direct Adaptive Control for a

Class of Discrete-Time Nonlinear

Systems

A direct adaptive tracking controller for a class of nonlinear discrete-time systems
expressed in input-output form is developed. Using a state space representation,
the linearizing input and the internal dynamics are obtained. By employing the
projection algorithm the estimate of the unknown parameters are utilized in the
linearization process. A Lyapunov analysis is used to show that under certain con-
ditions (a priori lower and upper bound of the unknown parameters), the closed-loop
adaptively controlled system is stable and moreover the tracking error converges to
zero asymptotically. Finally, the simulation results are presented to illustrate the

features of the proposed method.
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5.1 Introduction

Adaptive control of different classes of feedback linearizable continuous-time non-
linear systems has been studied extensively over the past few years. Unfortunately,
these adaptive schemes cannot be directly generalized to discrete-time systems due
to certain technical difficulties. Among them one could mention the lack of applica-
bility of Lyapunov techniques (Song & Grizzle [77], Kanellakopoulos [30]) and loss
of linear parameterizability during the linearization process even when the original

discrete-time system is linearly parameterized.

To overcome these difficulties, Yeh & Kokotovic [90] have designed a state feed-
back controller to achieve tracking of a reference signal for a class of SISO nonlin-
ear discrete-time systems in the so-called parametric-strict-feedback form. Also, an
adaptive output feedback design is developed by Yeh & Kokotovic [89] for a class of
nonlinear discrete-time systems. Song & Grizzle [77] attempted to extend the ex-
isting conventional linear model reference adaptive control methods to discrete-time
nonlinear systems and Kanellakopoulos [30] developed a new least-square estimator

with nonlinear data weighting.

This chapter is concerned with the direct adaptive control of a class of nonlinear
discrete-time systems represented by an input-output model. The model was also
considered in Chen & Khalil [6, 7, 8] to control nonlinear systems using neural net-
works as well as in Chen & Tsao [9]. We start by using the state space representation
of the system to find the linearizing controller, where the estimate of the unknown
parameters are employed in the linearization process. We use a projection algorithm
to identify the unknown parameters. Subsequently, by using the Lyapunov analy-
sis, it is shown that under certain assumptions, the adaptively controlled closed-loop
system is stable and furthermore the tracking error approaches to zero as time tends

to infinity.
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The aim is to consider the adaptive control of the following nonlinear discrete-time

system [71]

le(k + 1) = Zlg(k)

Zl,n.—l(k + ].) = Zln(k)

2in(k 4+ 1) = 21 pny1 (k)

o1 mramr(k + 1) = FT(2(k))W + GT(2(k))Vu(k)

Zzl(k + ].) = Zgg(k)

| 2k +1) = u(k—d+1)
y(k) = zin(k) (5.1)

It is shown in Khalil & Chen [8, 6] that the above set of equations is a state space

representation of the following input-output system
y(k + d) = FT(2(k))W + GT(2(k))Vu(k) (5.2)

where F'(2(k)) and GT(z(k)) are smooth functions of known functions [y(k — n +
d), ... ,y(k+d—1),u(k—m),...,u(k—1)]F where m < n. Note that the constant d
is the relative degree of the system and the unknown vectors W € ! and V € RP2.

Let’s define the following vectors,

2H(k) £ [z1(k) ... z10(R)]T
2(k) & [21n(k) ... zinpa1(B)]T
22(k) 2 [21(K) .. zom(R)]T

with z(k) 2 [21T(k) 2¥T(k) =2I(k)]T. Note that system (5.1) consists of two

subsystems. The first subsystem comprising of 27 (k) £ [21T(k) 22T (k)] states yields
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the given input-output dynamics (5.2) and has the relative degree d. The second
subsystem consisting of z5(k) states is unobservable from output and therefore does
not affect the output. In other words, z2(k) states define the internal dynamics
of system (5.2). Using the observable subsystem, and provided that the functions
FT(z;)W and GT(z)V are known, then the input which renders the system input-

output equivalent into a linear system may be found as

1

"0 = v

[~FT(z(k))W + v(k)] (5.3)

where v(k) is an external input that will be defined subsequently. Substituting (5.3)
into (5.1) gives, z1 n1q—1(k+1) = v(k). Also from system equation (5.1) it is evident
that

y(k) = zin(k)
y(k + 1) = Zinti-1(k + 1) =2z104i(k), 1 <i<d—1

Therefore, the closed-loop equivalent subsystem after applying (5.3) into (5.1) be-

y(k + d) = v(k) (5.4)

Now by defining the tracking error as e, (k) = y(k) — ym(k) where yn.(k) is the
desired output trajectory and by taking
d
(k) = ym(k + d) + 3 ulym(k +d ~ 1) — y(k + d — )] (5.5)
=1
the tracking control problem of the output y(k) may now be introduced. Substitut-
ing (5.4) into (5.5) gives
d
yk+d) =ym(k+d) + Za,-en(k +d —2)
=1
or ex(k+d)+aren(k+d—1)+---+ageq(k) =0 where a; , i =1,---,d are selected
such that Z¢ + a; 29! + ... + a4 is a Hurwitz polynomial.
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5.2 Presence of Parametric Uncertainty

When vectors W and V are unknown, their estimates W (k) and V(%) should be
used in control (5.3), that is

1
— GT(2(k))V (k)

Consequently, using (5.6) in (5.4) yields the following input-output representation

[—FT(z(k))W (k) + v()] (5.6)

a(k)

y(k +d) = FT(2(k))W + GT (2(k))Vi(k) (5.7)

Now by adding the term v(k) — FT(2(k))W (k) — GT (2(k))V (k)i(k) (which is zero)
to the right hand side of (5.7), and after regrouping terms one gets, y(k + d) =
v(k) + <(k) where

<(k) £ FT(2(k))(W — W(k)) + GT (2(k))(V — V(k))a(k)
Finally, by using (5.5) and the definition of tracking error e,(k), one gets
en(k+d) = —ajeq(k+d—1)—--- — ageq(k) + (k) (5.8)

The error equation (5.8) is represented in the state-space form by using the following

error signals

eik) £ ylk+i—n)—yn(k+i—n)
= 21i(k) —ym(k+i—n) 1<i<n+d—1 (5.9)

Therefore, using (5.9) one finds

e;(k+l)=e;+1(k), 1San+d—2
en+d—1(k + 1) = en(k + d) = —alen(k +d— 1) — = aden(k) +§(k)

that may be written in the compact form
e(k + 1) = Ae(k) + Bg(k) (5.10)
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with e(k) 2 [e1k €26 - €ntd—1k), and where matrix A and vector B are equal to

(010 - 0 .- 0 | [0 ]
oo01-.-- 0 --- 0 0
A=  B=
000 --- 0 - 1 0
1 000 - —ag --- —o | |1

Note that matrix A is a block upper triangular matrix; therefore, n — 1 eigenvalues

are located at 0 and the other d eigenvalues are dependent on o's.

5.3 Internal and Zero Dynamics

As mentioned before, the internal dynamics of (5.1) is characterized by z;(k) states

when the input u(k) is given by (5.3). This dynamics is written in a compact form

zo(k + 1) = q(21(k), z2(k), v(k — d + 1)) (5.11)

where ¢ £ [235(k) 223(k) - u(k — d + 1)]T and u(k) is defined in (5.3). Now
following the Definition 3.1, the zero dynamics of (5.1) is

2 (k +1) = (0, 22(k), 0) = go(za(k)) (5.12)

A _rT '
where the vector go(z2(k)) = [z22(k) =za3(k) --- W]T. In other words,
equation (5.12) defines the internal dynamics when the output y(k) and external
input v(k) are identically zero for all time.
Assumption 5.1 The zero dynamics (5.12) is exponentially stable at origin; there-
fore, there exists a Lyapunov function V2(2z2(k) such that

e |l z2(k) 12 < Va(za(k)) < c2 || 22(k) ||
AVa(k+1) & Vo qo(22(k)) — Va(22(k)) < —a || zo(E) ||?
Va(z(k))
I “omk) | < L z(k)| (5.13)

in any compact set z3 € Qy CR™ for some positive constants ¢, c; and L.
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5.4 Parameter Estimation

To determine a suitable algorithm for estimating the unknown vector ¢ 2 [WT VT|T,
it is well known that for a linear regressor of the form y(k + d) = %7 (k)d, the
projection algorithm (or normalized least-mean-square) results in

ap(k—d+1)
c+ Yk —d+1)Tep(k—d+1)

O(k +1) = G(k) — [§(k + 1) — y(k +1)]

(5.14)

where §j(k + d) = ¥T(k)6(k) and y(k + d) is the observation vector. By using (5.3)
and substituting v(k) in (5.4) it follows that the output y(k) satisfies

y(k + d) = FT(z(k))W + GT(2(k))Vu(k) £ »T6 (5.15)

where %T 2 [FT(2(k)) GT(z(k))u(k)]. Therefore, the present control algorithm can
be categorized as a direct adaptive control. In the next section it will shown that

algorithm (5.14) applied to system (5.15) will result in a stable closed-loop system.

5.5 Closed-Loop Stability

In this section it is shown that under certain conditions all signals of the closed-
loop system comprising of the error equation (5.10) and parameter estimation (5.14)

belong to /., and furthermore, the tracking error e, (k) approaches to zero as £ — oco.

Theorem 5.1 Given a nonlinear discrete-time system (5.1) where W and V are
unknown vectors, then the adaptively controlled closed-loop system consisting of the
nonlinear feedback input (5.6) and the parameter estimator (5.14) is stable in the
sense of Lyapunov for all (e, z3,0) € ., if Assumptions 5.1-5.4 and inequality (5.29)
are satisfied where Q. = {(e, z2, 0)|V,(e, 22, 6) < c}, ¢ > 0 and V,(e, z2,6) = c is the
largest level set contained in AV(k + 1) < 0. Moreover, the tracking error e,(k)

goes to zero as k — oo.
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Proof :

To prove the stability of the closed-loop system, three separate Lyapunov function
candidates for the error equation (5.10), the internal dynamics (5.11) and the pa-
rameter estimation (5.14) are used. Since in the error equation (5.10), A is a Hurwitz
matrix, therefore for any positive definite matrix @, there exists a positive definite
matrix P such that ATPA — P = —Q, and the Lyapunov function for this system
may be selected as V;(e(k)) = eT(k)Pe(k). Hence, AVi(k + 1) satisfies

AVi(k+1) 2 Vi(e(k+1)) ~ Va(e(k))
= —eT(k)Qe(k) + 2eT(k)AT PBs(k) + <T (k)BT PB<(k)
< =Mnin(@) e II* +eu ll el sl + ealef? (5.16)
where ¢; £ 2 I Al P | and c. é” P ||. The Lyapunov function candidate

associated to the internal dynamics may be selected as Vz(2z2(k)) similar to what
was defined earlier for the zero dynamics. First, the state z,,,(k + 1) of the internal
dynamics (5.11) should be written as
—FT i
zam(k+ 1) = u(ky) = F7(z1(k1), 22(k1)) W (k) + v(ky)

GT(z1(k1), 22(k1)) V (k1)

_ —FT(O, Zg(kl))W
B GT((): 22(k1))v

+i+L+ (5.17)

where k; ék—d+1 and

I 2 | et WE) _ —FT Oa() W) ]
GT(zl(kl),zz(kl))V(kl) GT(O,Zz(kl))V(kl)
L2 [ Fr@a) W) _ ~FTnt)w ]
[ GT(0i22(k1))V (k1) 57'(0,22(k_L1))V
2 [ v(ky) ]
h= | GT(21(k1),22(k1))V (K1) (5.18)

Therefore, the internal dynamics may be written as

z2(k + 1) = go(22(k)) + q1(k)
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where the vector go(22(k)) 2 [z22(k) 2z23(k) --- %]T describes the zero
dynamics and q;(k) 2[00 --- Iy + 1, + [3]T. Using the above results and Assump-
tion 5.1, the Lyapunov function candidate V;(22(k)) satisfies the following inequality

AVa(k+1) £ Va(za(k + 1)) — Va(22(k))
= [Va(qo(k) — Va(22(k))] + [Va(qo(k) + qu(k)) — Va(qo(K))](5.19)
< —all 2z [|* +[Va(g(k) + (k) — Va(qo(k))]

Using the mean value theorem [72], the second bracket of (5.19) becomes

[Va(ao(k) + q1(k)) — Va(qo(R))] = §%& — a1 (k) (5.20)

for some constant 0 < ¢ < 1. By substituting (5.20) into (5.19) and using the last
inequality of (5.13) it follows that

AVe(k+1) € —allzl*+Lllqo+éa il a |
< —aflallf+HLliol+ELlal)lall (5.21)

Also due to the exponential stability of the zero dynamics || go(z2(k) |[< k1 || 22 ||-
In addition, we have || q; ||[<|| 3 {| + || L2 || + || & ||. By using (5.18) and the mean
value theorem, I3 satisfies

9 [F T(z1(K), 22(’9'))"?(”)
021" GT(21(K'), (k")) V (K')
The last inequality is valid since on any compact set (z,8) € (R+m+d=1 x Rel+s2)

%TT%,'- is continuous; therefore, _a_%l_%;vvv is also bounded [36]. Also using the same

Il <II JIE 2 I B2 ] 20 ||

procedure it follows that I, satisfies || < k3 || 6 ||. Hence, q; satisfies
Il 1< kol 22 || +ks || € ]| +I04] (5.22)
Therefore, equation (5.21) may be written as

AVa(k +1) < —a| z |
(ks || 22 Il +ks || 6 1| +IL[)(Lka || 22 || +ELKz || 20 || +€LEs || 6 | +€LI[15.23)
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Finally, the Lyapunov function for the estimator may be chosen as Vz(A(k)) =
0(k)To(k). Thus,

AVak+1) & V((k+1)) — Va(0(K))

= 180 - Sy Y )F(R) 17 ~G(y7a(k)

GGLICY; s
“et 9T (k)p (k) [ ~2 + iy ] (5.24)

where k; 2 k—d+1. Nowif ¢ > 0 and 0 < a < 2 are assumed, the bracketed term is
negative and consequently AV3(k+1) < 0 or 8 € l,,. Since || §(k)—6 ||<|| 6(0)—4 ||
forall k > 1, we can conclude that || § [|< § with || 6(0) || — 8 <|| 6 ||. In other words,
since || 6(0) || is at our disposal, by choosing § to satisfy the previous inequality we
are assuming a priori knowledge about the lower bound for §. At this stage the

Lyapunov function candidate for the whole system may be written as
V(e(k), za(k), 6(k)) = Vi(e(k)) + Va(a(k)) + Va(6(k)

At this stage the Lyapunov function candidate for the whole system is selected as
V(e(k), z2(k), 6(K)) = Vi(e(k)) + Va(z(k)) + Va(8(K)) (5-25)

In view of (5.16), (5.23) and (5.24), AV(k + 1) satisfies

AV(k+1) & AVi(k+1)+ AV(k+1) + AVi(k + 1)
S —Amin(@) [ el (e || e || +ealsl)ls] — e || 22 ||
+ (k2 |l 21 || +K36 + [L])-(Lkz || 22 || +€Lk2 || 20 || +€LKs6 + EL|L))
[67 (k)% (k)] Tk )y
+ “c+¢T(kl)¢(k1)[‘2+aﬁ%5] (5-26)

Now let’s make the following additional assumptions:

Assumption 5.2 The function l; is locally sector bounded, namely, it satisfies

lhl < ar ]| 6 +az ll e || +as || z2 || fore € Qe, 2, € D, and § € Q.

118



Assumption 5.3 The vector (k) is locally sector bounded in z(k) and u(k) for
z€Q, and || 6 ||€ Q. That is, || w(k) IS LIz | + 118 1I-

Assumption 5.4 The reference trajectory ym(k), its nezt d — 1 samples and the
last n — 1 samples are all bounded by constant b > 1, so that || z; ||<|| e || +b-

Since z(k)T = [2f(k) 2F(k)], one may conclude that
zlislzlf +llzli<lell+ 1zl +b (5.27)

As a result, compact set 2, contains the union of 2, and {2, defined in Assump-
tions 5.2 and 5.3. Note that based on previous Assumptions || ¢ ||[= 8L.(|| z || + ||
8 |[). Using Assumptions 2-4 and the fact that & > 1 and I| 22 ||> 0, one may

rewrite (5.26) as

AV(E+1) € —dun(@) el —all 2z |?
+ (lell + 1 z2 || +8)*(1+ 1l 8 [I)(erla + aL26*(1+ (| 6 11))
+ (lell + Il z || +8)*(dr + k26 + a1 || 6 )2 (5-28)

with suitable definitions for constant d;. To guarantee the stability of the closed-
loop system consisting of (5.10), (5.11) and (5.14), we need AV(k+1) < 0. It
then follows that the closed-loop system is stable in the sense of Lyapunov if || ] l

satisfies the following inequality

1

T 5 1o omin(@ l el +all 2 1) (5.29)

M(@,8) <

with M (6,6) £ dy(1+ || 6 ||)? + da(ds+ || 6 ||)2. The above gives a bounded region,
say (3, for || d || in terms of e € Q. and 2z, € 2., such that inside this region,
AV(k+1) < 0. To make sure that §(k), e(k) and z5(k) all belong to l, one should
find the largest level set V (e, 23,8) = ¢ contained in AV(k +1) < 0. Now given the
fact that V is a function of § we express it as a function of § as follows. We observe

that V(e, z2,0) = Vi + Vo + Vs where V5 =|| 8(k) [12<|| 6(k) ||z +26. || (k) || +62

119



with &, as the upper bound of the parameter 4, i.e. || 8 ||< .. Therefore, we get
Vile, z2,0) = Vi + Vot || 8(k) |2 +26, || 6(k) || +62 so that V <V, < ¢, ¢>0 and
V,. = cis the largest level set contained in AV(k+1) < 0. Thus, for all (e, 2y, 6) € Q.
and € Q;, V(k+1) > 0 and AV(k+1) < 0, which in turn implies the boundedness

of all the closed-loop system signals.

Next it is shown that the tracking error e, (k) £ y(k) —ym(k) goes to zero as k — oco.
Since the Lyapunov function of the parameter estimator satisfies AV3(k+1) <0, it
follows that the estimation error §(k) is monotonically non-increasing. Therefore, as
k — oo, O(k) approaches to a steady-state value and 6(k + 1) — 6(k). As a result,
AVs(k +1) = 0T (k +1)8(k + 1) — §T(k)d(k) — 0, so from (5.24) one may conclude
directly that

(67 (k)y(k — d + 1)]?
c+oT(k—d+ )k —d+1)

There are two ways for which (5.30) can approach to zero. One way is for the

—0 (5.30)

numerator to go to zero and the other way for the denominator to go to infinity.
The latter is impossible since we just showed that ¥ € [,. Hence, as k + oo,
¥(k) = p(k —d+ 1) and 87 (k)3(k) — 0. As a result of this, ¢ — 0 and in the error
equation (5.10) B¢ — 0. Since A is a Hurwitz matrix, then one gets e(k) — 0 as k

goes to infinity. This implies that e, (k) S y(k) — ym(k) = 0 as k — oo.

5.6 Numerical Simulations

In this section, we use the following unknown system which is a special case of the

general system (5.1) and was considered in [9].
y(k +1) = wiy(k)y(k — 1) + u(k — 1)] + viu(k) (5.31)

where it is assumed that w; and v; are unknown. The objective is to compare our

results with those given in [9]. Comparing (5.31) with (5.1) reveals that n = 2,
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m = 1 and d = 1. Therefore, by taking z;,(k) = y(k — 1), z12(k) = y(k) and

z21(k) 2 u(k — 1) the state-space realization of (5.31) becomes

zi(k+1) =212
z12(k + 1) = wi[z12(k)z11 (k) + z22(K)] + viu(k)
z21(k + 1) = u(k) (5.32)

Our goal is to control this plant so that its output tracks a reference command y,, (k).
To use the method of this chapter the first requirement is exponential stability of the
zero dynamics. Thus, the appropriate input that keeps y(k), y(k + 1) and y(k +2)
identically zero becomes u(k) = —¥2;(k) which after substituting into internal

dynamics (last row in (5.32)) the zero dynamics is found as
w
Zzl(k + 1) = ——1221(k)
U1

which is globally exponentially stable as long as |%+] < 1. Thus, the linearizing

input becomes

1 R
u(k) = D) [ v(k) — w1 (k)(z12(k)z11(k) + z21(k)) ]

where the new input is defined as v(k) 2 Ym(k + 1) + a(ym(k) — y(k)). It is evident
that to guarantee the closed-loop stability, we should have |a] < 1. To use the
projection algorithm for parameter estimation, system (5.31) should be rewritten

into the regressor form y(k + 1) = %7 (k)8 where

WT(k) £ [y(R)y(k—1) +u(k—1) u(k)]
HT = [wl '01]
The system is adaptively controlled to track the sinusoidal reference trajectory
ym(k) = sin(g). Figure 5.1 shows the result when ,(0) = 4 and %;(0) = 0.8. To

compare our results with the results of [9], let #(0) = 1.2 be fixed. When y(0) = 0,
[9] showed that with w;(0) 2 W1(0) — w; > 3.8 the closed-loop becomes unstable
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whereas with our method we may choose w;(0) > 5.55. Figure 5.2 shows the simu-
lation results for this case. Also when y(0) = 5, they showed that if @,(0) > 1.1 the
system diverges whereas we found that w;(0) > 2.3. For the last comparison, when
y(0) = 10, the instability condition is given as ;(0) > 0.8 whereas our simulation
shows if 1,(0) > 1.95 the closed-loop system becomes unstable. As a result, the
proposed method in this chapter gives a wider region of attraction for closed-loop

system.

5.7 Conclusions

A direct adaptive tracking control approach for a discrete-time nonlinear system
represented in an input-output form with relative degree equal or greater than one is
developed. A projection algorithm is used to identify the unknown parameters that
in turn are utilized in the feedback linearizing controller. It is shown that under
certain assumptions (a priori lower and upper bound of the unknown parameters),
the adaptively controlled closed-loop system is stable locally and moreover, the

tracking error approaches to zero as k tends to infinity.
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Figure 5.1: Direct adaptive tracking control. (A) output y(k) — and the desired
output yn.(k) — —, (B) control input u(k), (C) tracking error y(k) — ym(k),
(D) estimate of the unknown parameters §; __and 6, — — when %;(0) = 0.8 and
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Figure 5.2: Direct adaptive tracking control. (A) output y(k) — and the desired
output ym(k) — —, (B) control input u(k), (C) tracking error y(k) — ym(k),
(D) estimate of the unknown parameters §; __and 6, — — when %;(0) = 1.2 and
@1(0) = 5.55
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Chapter 6

Control of a Flexible-Link
Manipulator: Experimental

Results

The aim of this chapter is two folds. First to show that the proposed adaptive nonlin-
ear feedback linearization technique can be used successfully to control a single-link
flexible manipulator. Second to illustrate the experimental results for the nonlin-
ear adaptive control scheme proposed in chapter 4 and compare the results with
non-adaptive feedback linearization and PD controller schemes. Figure (6.1) shows

the experimental test-bed developed by Geniele [18] that consists of four principal

components:

e Single flexible link manipulator along with UDT camera, camera signal con-
ditioning amplifier, speed reducer, incremental encoder, DC servo motor and

DC servo amplifier.
e Interface board.

e TMS320C30 system board.
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o The host PC.

The TMS system board implements the real-time control and identification algo-
rithms and at the beginning of each sampling period sends the control signal to the
D/A converter. This signal in turn goes to DC servo amplifier which is configured as
a transconductance amplifier, namely, it changes input voltage to output current in
order to control the speed of the DC servo motor. The DC servo motor is connected
to the flexible link through a speed reducer to decrease the speed and increase the
torque since the motor has high speed and relatively low torque. To measure the
hub angle, an incremental optical encoder is employed at the motor side. Also for
measuring the tip deflection, a combination of an infrared emitting diode along with
a camera is used. At the beginning of each sampling period the diode current is
pulsed and the camera reads the tip deflection with respect to the natural position.
The signal conditioning amplifier interfaces the output of the UDT camera to the
A/D converter on the TMS board.

The host PC serves as a platform for TMS board and allows the user to interact
with the control program and at the same time transfers the real-time data from
board memory to hard disk for subsequent analysis. The functions of the interface
board are to protect the DC servo motor when the system becomes unstable, to
decode the incremental encoder output, to trigger the infrared diode and to provide
the regulated voltage for the board. The following specifications of the test-bed

components are taken from [18].

TMS320C30 System Board

The function of this board is to implement the real-time controller and identifier

algorithms. It contains a Texas Instruments TMS320C30 DSP chip that operates
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in 33.3 M Hz clock and achieves a performance of 16.7 million instruction per sec-
ond (MIPS) and 33.3 million floating-point operations per second (MFLOPS). Dual
channel 16-bit A/D and D/A systems are included on the board. Sampling rates of
up to 200 kHz are supported. The input channels include sample/hold amplifiers
and both input and output channels are buffered through 4th order low pass filter.
The full scale analog and output ranges are +3 volt. The board occupies a single
16-bit slot within a COMPAQ 386 host PC expansion bus. The board appears to
the programmer as a block of eight 16-bit words within the I/O space. The board
comes configured with a default I/O base address of 290 hez. The data is ex-
changed between the PC and TMS board by 64k x 32 bit words of Dual-Port-RAM.
The TMS320C30 system board are equipped with the DSPLINK digital system ex-
pansion bus. DSPLINK is a high-speed, bi-directional bus that allows input/output
directly to/from the DSP chip, thereby avoiding the PC bus bottleneck. In our
system this bus is connected to a separate interface board. This board contains
the programming timing circuitry which control the current through the infrared
diode on tip of the flexible-link. It also incorporates the circuitry that decodes the

incremental encoder since the encoder gives only relative motor position.

DC Servo Amplifier

The Copley Controls Corp. Model 215 [11] is a PWM switching amplifier designed
to drive the DC servo motor. This model is configured as a transconductance am-
plifier which gives a linear relationship between input voltage and output current
independent of the output impedance, namely, i,,; = 2Uinput. Since the full scale
voltage of A/D is +3 volts, the maximum current of DC servo amplifier would be

16 A.
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DC Servo Motor

The DC servo used is a permanent magnet DC motor from EG&G Torque Systems,
Model MH3310-055G1 which develops a linear output torque, namely, Toutput =
0.1178 %input Nm. Due to the fact that the maximum output current of DC servo
amplifier is 6 A, the maximum torque range generated by motor will be +0.1175 x

6 = £0.705 Nm.

Incremental Encoder & Decoder

The Motion Control Devices Inc. Model M21 is an optical encoder that provides
incremental resolution of 500 ;j-;%;ﬂ- on each of two quadrature (A & B) signals in

the motor side. The Hewlett Packard HCTL-2020 is an IC that performs quadra-

ture decoder, counter and bus interface functions. The two incoming quadrature

cycle

signals from the incremental encoder are decoded. The resolution of 500 e —

is multiplied by a factor of four to yields a resolution of 2000 —%&e . An on-chip

revolution ”

binary counter allows to compute the absolute position.

Speed Reducer

Since the motor is a high speed and low torque actuator, it is geared down to provide
sufficient torque to derive the flexible link. The HD Systems Inc. Model RH20-CC
speed reducer connect the motor shaft to the link’s hub. A gear ration of 1 : 50
ensures that sufficient torque is available to accelerate the link in reasonable speed.
Since the maximum motor torque is £0.705 N'm, the amplified torque to the hub
will be £0.705 x 50 = +32.25 Nm. Harmonic derive results in a low backlash which
is essential to reduce the position error at hub. The HCTL-2020 decoder gives a

resolution of 2000 —¥*__. Now since the counter of decoder is limited to 16 bits,

revolution ”

the decoder can accommodate 2#2;;&)1 = 65.5357 rad of rotation in motor side or
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855851 = 1.3107x rad in link side before overflowing.

UDT Camera

The United Detector Technology Model 274 camera. [82] consists of a wide angle lens
and a lateral-effect photodiode detector assembly. The 12.5 mm lens has a 55.5° field
of view and includes a visible light blocking filter to filter out the ambient light. The
lens focuses the infrared diode emitted light onto an SC-10D photodiode detector
and induces currents at each of the contacts of the decoder. Since the magnitude of
the current at a particular contact is proportional to the contact’s proximity to the
spot of the light, the relative magnitude of the currents are used to determine the

absolute position of the spot.

Infrared Diode

Since the positional resolution of the tip deflection is proportional to the signal
to noise ration (S/N) of the received signal at the output of camera, one way to
maximizing the S/N is to use a high powered light source. The Opto Diode OD-50L
Super High Power GaAlAs infrared diode supplies up to 0.6 watts of optical power
at a wave length of 880 nm. Due to thermal limitations, the maximum amount of
power is attainable only when the diode current is pulsed at the beginning of each
sampling period with a minimized duty cycle. The current control circuitry on the

interface board allows adjustment of the current level and the duty cycle.

UDT Signal Conditioning Amplifier

The United Detector Technology Model 302DIV [82] signal conditioning amplifier
interfaces the position sensing photodetector to the A/D converter of the TMS

board. The amplifier is configured as transimpedance which converts the incoming
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low level currents to a amplified output voltage. The amplifier is adjusted so that
maximum tip position of +25 ¢m correspond to output voltage of +3 volts. The 55°
lens field of view will allow to measure the tip deflection up to +50 em. However,
as the magnitude of the tip deflection increases, the position of diode rotates viewed
from the camera’s frame of reference. The increasing of tip deflection along with the
narrow beam width of the infrared diode results in a reduction of the optical power
received at the camera. Therefore, beyond a deflection of £25 c¢m, the infrared
diode cannot be detected accurately by the camera even though it is still within
the camera’s field of view. Noise and nonlinearities within the photodiode detector
result in a measurement error of £0.25 crn within a deflection range of £10 cm. As

the tip deflection increases to a maximum of +25 cm, the error increases to +1 cm.

6.1 Real-Time Implementation of the Controller
and the Identifier

To implement the adaptive feedback linearization and tracking control strategy de-
veloped in Chapter 4, we require all states to be available. Since the number of flex-
ible modes considered is one, we should therefore have four states available, namely,
hub angle (g), its derivative (g), the first flexible mode (d;) and its derivative (; ).
For our given test-bed, it is clear that we can only measure ¢ and §;. Therefore,
¢ and §; should be calculated numerically. Since the sampling period is T = 2—:)0-,
it was observed that instead of using a simple backward difference for differentia-

tion, a kind of first order filter gives a better response. Namely, instead of using

G(kT) = 2L “;kT_T » the bilinear (Tustin) discretization of the filter D(s) = 5 =T

is used where the discretized filter becomes

S
D(z) =
(2) s+ 10j=21=2
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Therefore, the above filter results in the following recursions for ¢ and & , respectively

¢(kT) = 9.09091(q(kT) — q(kT — T)) + 0.98024(kT — T)
§1(ET) = 9.09091(6, (kT) — 6,(kT — T)) + 0.98025, (kT — T)

Note that the incremental encoder gives q(kT') in the motor side which in the link
side should be divided by the speed reducer gear ratio 50. In addition, since the
UDT camera gives the tip deflection w(L,t) = 37, é1(L)61(¢) = ¢1(L)61(¢) and not
41, one should calculate é; by dividing the output signal of the camera by ¢,(L). As

a result, the four states considered in both controller and identifier are as follows

-0

g = 9.09091(z (kT) — z1(kT — T)) + 0.9802z, (kT — T)
_ w(L,kT)
T au(L)

9.09091(z3(kT) — z3(kT — T)) + 0.9802z4(kT — T)

Iy

where §(kT') and w(L,kT) are output signal of incremental encoder and UDT cam-
era, respectively. The real-time control and identification algorithms were coded in
DSP C-language. In addition, the PC monitor program, which downloads the DSP
program into the TMS system board and transfers the real-time data from board
memory to the hard disk, was coded in Turbo C-language. In the following, after

showing the model validation results, the real-time controller results are discussed.

6.2 Model Validation

In order to validate the accuracy of the dynamical model of a single-link flexible
manipulator represented by Equation (C.11), the response of the hub (joint) angle
and tip deflection to different motor torque inputs are obtained for both simulation
and real test-bed applications. Simulations in Figures (6.2B) and (6.2C) compare
both the joint angle and tip deflection for different values sets Coulomb friction
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coefficient (cfr;) with those of the actual test-bed subject to the input torque 7 (%)
shown in Figure (6.2A). Looking carefully at these results reveals that the best of
Coulomb frictions for this case is ¢y = 4.8 Nm for 6 > 0 and ¢fri = 4.55 Nm for
 <0.

To further verify the above results, a different torque 7(¢) shown in Figure (6.2D),
is applied to both mathematical model and the test-bed. The results are shown
in Figures (6.2E) and (6.2F) where one set of simulation result is compared with
three different sets of experimental results. The experiments are performed with the
same input torque 72 but with different initial joint positions. As Figures (6.2E)
and (6.2F) illustrate, one can conclude that the Coulomb friction coefficient is not

fixed and does depend on the initial link position.

Furthermore, it may be shown that a single set of coefficients cannot be found that
yields good agreement between the responses of the model and the test-bed. To
demonstrate this, a new torque 73 shown in Figure (6.3A) is applied to both the ac-
tual test-bed and the model and the results are shown in Figures (6.3B) and (6.3C).
Based on these results one can conclude that the previous set of Coulomb friction
coefficients does not necessarily result in the best agreement between the test-bed
and the model responses. Specifically, the set ¢y = 4.95 Nm for § > 0 and
¢fri = 4.6 Nm for § < 0 gives the best agreement in this case. Nevertheless, the
discrepancy between the simulation and experimental results is minimal and the set
of Coulomb friction coefficients mentioned earlier are considered to be the nominal

values.
Finally further model simulations and test-bed experiments are performed when the
open-loop system from input torque to output joint angle is closed by means of a

relatively high gain PD controller. With this new design, the effects of the Coulomb
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Figure 6.2: Model Validation: (A) applied torque 71(t), (B) joint angle ,(t),
(C) tip deflection wq(L,t), where __ represents the experimental result and the
remaining curves are for model simulations with ——, —. —. and .... for (4.8,4.55),
(4.95,4.6) and (4.95,4.55) Coulomb friction coefficients, respectively. (D) applied
torque T(t), (E) joint angle 6(t), (F) tip deflection wp(L,t), where
represents the model simulations with (4.8,4.55) Coulomb friction coefficients and
the remaining curves correspond to experimental results.
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the responses of dynamical model with (4.8, 4.55) Coulomb friction coefficients and
.... represents the experimental results.
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friction will be reduced to a large extent and therefore the remaining dynamics of the
link’s model with those of real test-bed can be compared. Suppose the desired hub
angle trajectory is given by Figure (6.3D). Figure (6.3D) also illustrates the joint
angle of the closed-loop system when a high gain PD controller is used. Obviously
there is a close agreement between the simulated and the experimental joint angles
that in turn confirms the effectiveness of the PD joint controller. To get a better
assessment of the results, the tip deflections are also depicted in Figure (6.3E). Again
there is a good agreement between the simulated hub angle and tip deflection and
those of the real test-bed. These results reveal that when the effects of the Coulomb
friction are reduced significantly, the dynamical equation obtained for the single-link
flexible manipulator can model the test-bed with a good accuracy and is therefore

a suitable model for the design of a controller.

6.3 Experimental Results

Referring to the results of Chapter 4, we have seen that the dynamical equations of
the single-link flexible manipulator is minimum phase for a < 0.906. This condition
was confirmed through several simulations provided that all the states are available
for feedback and are also without measurement noise. For the real implementation,
however, we cannot select a close to 0.906. On one hand, not all of the four states are
available for feedback and actually we have to construct them numerically. On the
other hand, the signals from the incremental encoder and particularly the camera
are corrupted by noise. These corrupted signals when coupled with the saturation
limit of the UDT signal conditioning amplifier result in a further limitation for the
choice of a (or $1). During real-time experiments it is observed that o = 0.25 (or

B = aé}f[') = 222 = (.4167) is quite feasible given the above constraints. Al-

though a larger value of a could have been selected, in some cases when the noise
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level becomes too high or when the amplifier saturates the closed-loop system be-
comes actually unstable. Consequently, all the following experimental results are

obtained with o = 0.25 and the sampling period of T' = 5.

For comparison, Figure (6.4) shows the numerical simulations for the adaptive track-
ing controller with & = 0.25 when the input reference trajectory is a combination
of a quintic and a step functions. The tracking error for the re-defined output
(e = y — ym) is practically zero however, the tracking error for the actual tip po-
sition (e; = y: — ym) is non-zero due to the value of a (Note that a = 1 for the
normalized tip position). Also the identifier works properly and within 0.2 s it con-

verges to the real value of the payload mass (0.55 kg).

The experimental results for the non-adaptive tracking controller are depicted in
Figures (6.5) to (6.8) for different nominal values of payload used in the controller.
In these experiments the actual value of payload is My = 0.55 kg. The values of
payload used in the controller (ML)controtter is varied from 0.1 kg to 2 kg. A Com-
parison of the above figures reveals that although the closed-loop system does not
become unstable for the cases considered, however the re-defined tracking error is
almost zero when (ML )controtter is equal to 0.55 kg. In other words, when the pay-
load is exactly known a priori, a nonlinear feedback controller can be designed that
yields acceptable performance. However, when there is an uncertainty about the

payload the performance of the non-adaptive controller will be compromised.

There is also a difference between the simulation and the experimental results.
Specifically there is no oscillations in the experimental tip position, the re-defined
output and the input torque beyond 5 s. This is most probably due to the additional
damping effects of the Coulomb friction that is inherent in the flexible link manipula-

tor and other damping effects that are treated as unmodeled dynamics in the system.
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To compare the experimental results of the non-adaptive tracking controller with
those of the adaptive controller, Figure (6.9) shows the results for the adaptive con-
troller with initial condition My (0) = 0.1. As Figure (6.9E) illustrates the real-time
identifier converges to 0.4 kg instead of actual payload mass of 0.55 kg. However,
the simulation results in Chapter 4 showed that the identifier converges to the ac-
tual payload mass. The reasons for this discrepancy are two folds. First, due to the
sensor noise (incremental encoder and UDT camera), the RLS algorithm will yield
a biased estimate. Second, since all four states of the system (g,d,q, 6) were not
available for measurement, two of them (¢, ) are constructed numerically that in
turn introduce error to identifier. Figures (6.9A) and (6.9B) depict the normalized
re-defined output and the normalized tip position, respectively. As expected, the
results are satisfactory. In addition, Figures (6.10) and (6.11) illustrate the experi-
mental results for the adaptive controller with different initial conditions Mz (0) = 1
and Mp(0) = 1.5, respectively. Comparing these results with the results of Fig-
ure (6.9) reveals that the real-time identifier suffers from the same problem, namely,
it converges to a biased estimate of payload. Nevertheless, the performance of closed-

loop system consisting of adaptive controller and identifier is acceptable.

Figure (6.12) shows the experimental results for the adaptive controller when the
desired trajectory is chosen as four quintic functions and My (0) = 0.1. In this case
both the normalized re-defined output y and the normalized tip position 3, can track
the desired output y,, since the desired trajectory is slower than the previous case.
Note that there are some spikes in input u(k), error and internal dynamics which

are due to the incremental encoder noise.

Finally to emphasize the advantages of the adaptive and non-adaptive feedback

linearization method over a conventional control technique, experimental results
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are included for a PD controller in Figures (6.13) to (6.16) with different values
of K, and Ky. The closed-loop system becomes unstable for K, greater than 200.
Figure (6.13) shows the results (K, = 100 and Ky = 60) for the experimental tip
position and the re-defined output with noticeable steady state errors. The errors
can be attributed to the presence of the Coulomb friction. To reduce the steady
state error K, is increased. The results are depicted in Figures (6.14) and (6.15).
Although the steady state error is improved as compared to K, = 100, however
the system will become unstable for K, > 200. To summarize, it can be concluded
that the performance of a conventional PD control technique is unsatisfactory when
compared to the results of an adaptive nonlinear feedback linearization technique
since the closed-loop system has steady state error. Note that the selection of
controller has a trade-off between the complexity of controller-identifier and the
acceptable performance of closed-loop system. Although the performance of PD
controller is not as good as that of the adaptive feedback linearization, the price we

are paying is complexity of controller.
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Figure 6.4: Stmulation Results: Adaptive tracking control of a single-link flexible
(A) re-defined output y(k) — and desired trajectory ym (k) — —,
(B) tip position y;(k) — and desired trajectory ym(k) — —, (C) tracking errors
e(k) = y(k) — ym(k) —and e(k) = (k) — ym(k) — —, (D) internal dynamics

771(74:) —and 72(k) — —, (E) estimate of the payload Mz, (F) input torque

(k) = u(k) for My = 0.55, T = 5k and B; = 0.4167 (or a = .25).

manipulator.
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Figure 6.5: Ezperimental Results: Non-Adaptive tracking control of a single-link
flexible manipulator. (A) re-defined output y(k) —and desired trajectory ym (k) —
—, (B) tip position y;(k) —and desired trajectory ym(k) ——, (C) tracking errors
e(k) = y(k)—ym(k) —and e;(k) = y:(k)—ym(k) ——, (F)input torque 7(k) = u(k)
for My, = 0.55, (ML )controlter = 0.1, T = 555 and By = 0.4167 (or o = .25).
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Figure 6.6: Ezperimental Results: Non-Adaptive tracking control of a single-link
flexible manipulator. (A) re-defined output y(k) —and desired trajectory ym (k) —
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Figure 6.7: Ezperimental Results: Non-Adaptive tracking control of a single-link
flexible manipulator. (A) re-defined output y(k) ——and desired trajectory y,,(k) —
—, (B) tip position y;(k) —and desired trajectory ym(k) ——, (C) tracking errors
(k) = y(F)—yn (k) —and ex(k) = 5e(E)—ym(k) ——,  (F) input torque 7(k) = u(k)
for M = 0.55, (ML) controtter = 1.5, T = ﬁ and ) = 0.4167 (or a = .25).
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Figure 6.8: FEzperimental Results: Non-Adaptive tracking control of a single-link
flexible manipulator. (A) re-defined output y(k) —and desired trajectory ym (k) —
—, (B) tip position y:(k) — and desired trajectory yn,(k) — —, (C) tracking
errors e(k) = y(k) — ym(k) —and e(k) = ye(k) — ym(k) — —, (F) input torque
T(k) = u(k) for My, = 0.55, (ML) controtter =2, T = 2_c1>o and £, = 0.4167 (or a = .25).
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Figure 6.9: Ezperimental Results: Adaptive tracking control of a single-link flexible
manipulator. (A) re-defined output y(k) — and desired trajectory ym(k) — —,

(B) tip position y:(k) — and desired trajectory ym(k) — —, (C) tracking errors
e(k) = y(k) — ym(k) — and e;(k) = y:(k) — ym(k) ——, (D) internal dynamics
m(k) — and n2(k) — —, (E) estimate of the payload My, (F) input torque

7(k) = u(k) for My = 0.55, Mz(0) = 0.1, T = ;%5 and B, = 0.4167 (or « = .25).
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Figure 6.10: Ezperimental Results: Adaptive tracking control of a single-link flexible
manipulator.  (A) re-defined output y(k) — and desired trajectory y,(k) — —,
(B) tip position y;(k) — and desired trajectory ym(k) — —, (C) tracking errors
e(k) = y(k) — ym(k) —and ey(k) = ye(k) — ym(k) — —, _(D) internal dynamics
Mm(k) —and n2(k) ——, (E) estimate of the payload My, (F) input torque
(k) = u(k) for My = 0.55, M (0) = 1, T = ;% and B; = 0.4167 (or a = .25).
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Figure 6.11: Ezperimental Results: Adaptive tracking control of a single-link flexible
manipulator. (A) re-defined output y(k) — and desired trajectory ym.(k) — —,

(B) tip position y,(k) — and desired trajectory y,(k) — —, (C) tracking errors
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7(k) = u(k) for M, = 0.55, M(0) = 1.5, T = 3% and §; = 0.4167 (or o = .25).
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Figure 6.12: Ezperimental Results: Adaptive tracking control of a single-link flexible
manipulator when the desired trajectory in four quintic functions. (A) re-defined
output y(k) — and desired trajectory ym.(k) — —, (B) tip position y:(k) — and
desired trajectory ym(k) — —, (C) tracking errors e(k) = y(k) — ym(k) — and
el(k) = yu(k) — ym(k) — —, (D) internal dynamics n;(k) — and no(k) — —,
(E) estimate of the payload My, (F) input torque 7(k) = u(k) for My = 0.55,
Mp(0) =0.1, T = 55 and B; = 0.4167 (or a = .25).
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Figure 6.13: Ezperimental Results: PD controller for a single-link flexible manip-
ulator. (A) re-defined output y(k) — and desired trajectory ym(k) — —,
(B) tip position y,(k) — and desired trajectory yn,(k) — —, (C) tracking er-
rors e(k) = y(k) — ym(k) — and ey(k) = ys(k) — ym(k) — —,  (E) input torque
7(k) = u(k) — —, for My, = 0.55, T = 5} and B; = 0.4167 (or a = .25), K, = 100
and Kd = 60.
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Figure 6.14: Ezperimental Results: PD controller for a single-link flexible manip-

ulator. (A) re-defined output y(k) — and desired trajectory ym(k) — —,
(B) tip position y;(k) _ and desired trajectory ym(k) ——, (C) tracking er-
rors e(k) = y(k) — ym(k) — and ey(k) = yi(k) — ym(k) — —, (E) input torque

7(k) = u(k) ~ —, for M = 0.55, T = ;L., By = 0.4167 (or a = .25), K, = 150 and
K, = 100.
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Figure 6.15: FEzperimental Results PD controller for a single-link flexible manip-

ulator. (A) re-defined output y(k) — and desired trajectory ym(k) — —,
(B) tip position y.;(k) — and desired trajectory yn,(k) — —, (C) tracking er-
rors e(k) = y(k) — ym(k) — and e,(k) = ys(k) — ym(k) — —, (E) input torque
7(k) = u(k) ~ —, for M, = 0.55, T = 5%, B1 = 0.4167 (or a = .25), K, = 200 and
K4 = 50.
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Figure 6.16: Ezperimental Results PD controller for a single-link flexible manipulator
when desired trajectory is four quintic functions.  (A) re-defined output y(k)
and desired trajectory ym(k) ——, (B) tip position y;(k) — and desired trajectory
ym(k) — —,  (C) tracking errors e(k) = y(k) — ym(k) — and e,(k) = y:(k) —
Ym(k) — —, (D) input torque (k) = u(k) — —, for My = 0.55, T = 3k,
Br = 0.4167 (or o = .25), K, = 150 and Ky = 100.
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Chapter 7

Concluding Remarks and

Suggestions for Future Research

This dissertation aimed at addressing two major issues: adaptive control of nonlinear
discrete-time systems and the application of the proposed method to tracking control
of a single-link flexible manipulator. For the first part, the plant is a discrete-time
system represented in the state-space form which could be either fully or partially
feedback linearizable. The objective is to have the output y(k) track a reference
trajectory ym(k) as k goes to infinity despite the parametric uncertainties that are
present. Towards this end, a local diffeomorphism for the change of coordinates and
a nonlinear feedback control law are obtained such that the original nonlinear sys-
tem is rendered input to output equivalent into a linear system. The resulting linear
system is then used to solve the output tracking control problem using conventional
linear control theory. The multi-output Recursive-Least-Square (RLS) algorithm is
employed to identify the unknown parameters of the system. Based upon a certainty
equivalence principle, the estimated parameters are then utilized in the controller.
By using Lyapunov technique the adaptively controlled closed-loop system is shown
to be stable. The main contributions here are the proof of stability of the closed-

loop system and the application of the multi-output RLS identification algorithm
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to indirect feedback linearization of discrete-time nonlinear systems. In contradis-
tinction to continuous-time systems where the Lie derivatives are linear operators
in the unknown parameters, for discrete-time systems this linear parameterization
is not preserved by the composition operators. Consequently, the control problem
is considerably more complicated. This problem is resolved by overparametrization

and overrepresentation of the error dynamics in the proof of the stability.

In recent years output re-definition methods for continuous model of flexible-link
manipulators have received a great deal of attention, however currently there is no
work in the literature on the applicability of this concept to discrete-time models of
flexible-link manipulators. Therefore, the aim of the second part of this dissertation
is to apply the nonlinear adaptive control scheme proposed in the first part to a
single-link flexible manipulator. The proposed adaptive control strategy further was
implemented and tested on an experimental single-link flexible manipulator that
had been constructed in the laboratory. This system is both nonlinear and nonmin-
imum phase, that make the control design particularly difficult. The discrete-time
model] of the flexible-link manipulator is derived using two methods: forward differ-
ence method (Euler approximation) and a new method that enjoys the properties of
both the forward difference and the step-invariance schemes. It is shown that both
methods result in a similar discrete-time model with only a slight difference in for-
ward dynamics and zero dynamics. The output re-definition scheme is used so that
the resulting zero dynamics is exponentially stable. Finally, the proposed indirect
adaptive feedback linearization and tracking controller is physically implemented
where the payload mess is assumed to be unknown. Based on the experience gained

during the course of this research, the following issues may be investigated in future.

The first issue to investigate is the development of indirect adaptive control strate-

gies proposed in Chapters 2 and 3 by using output feedback. The proposed control
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laws in Chapters 2 and 3 assume that all the states are measurable and available for
feedback. In many practical systems it is physically or economically impractical to
install all the necessary transducers and sensors to measure the states. Therefore,
the study of observer structures and observer-based nonlinear adaptive controllers

in the discrete-time domain is an important problem.

The other issue that needs to be investigated deals with the effects of the sampling
period and the discretization strategy on the performance of the feedback linearizing
control scheme. This is due to the fact that in designing discrete-time controllers
based on sampled-data models of continuous-time systems (a subject that has been
addressed by Guillaume et al. [22, 23]) these issues have a profound impact on the

success of a proposed control strategy.

Since input-output models do not have the problems associated with state mea-
surements, therefore development of direct and indirect adaptive controllers based
on input-output models is envisaged to be very promising. In Chapter 5, we have
considered a class of nonlinear discrete-time systems. However, this class is not a
general input-output model. Note that, Narendra and Parthasarathy [57] have pro-
posed other models that are more suitable and attractive for neural network-based
control and identification applications. Therefore, another issue for future research
will be to investigate the applicability of the above models (or possibly other mod-

els) to adaptive control of discrete-time nonlinear systems.

Finally, it would be of great interest to investigate adaptive control of multi-link
flexible manipulators based on discrete-time models. This problem should be more
challenging as multi-link flexible manipulators are significantly more nonlinear in

nature.
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Appendix A

Internal Dynamics Construction

In this Appendix a systematic procedure for finding the internal dynamics of the
system discussed in Chapter 3 which is associated with the states 7 is presented.

The problem may be stated as follow. Consider the SISO discrete-time nonlinear

system
k41 = f(zk,0) + g(zk, O)ur (A.1)

where z, € M, ux € U, and 0 € R? and M and U, are the submanifolds of R*
and R, respectively. The problem is to find n — v outputs 7z, ¢ = 1,---,n —
such that the relative degree of (A.1) with respect to each such output is at least 2,
where 7 is the relative degree of system (A.1). It is possible to show that the above
problem may be reduced to that of finding only a single output. Suppose we can
find a fictitious output A(zx) such that the relative degree of (A.1) with respect to
it is 4/ En- v + 1. Therefore, the n — v desired outputs n; ¢, 2 = 1,---,n — vy may

be selected as

M.k Mzk)
M2k = AMzk) o fo(zk, 0)

Tn—vk = AzZk)o 7777 (zk,0) (A.2)
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Note that the relative degree of (A.1) with respect to i, 1 =1,--- ,n—yisy' —z+1.
The problem may now be reformulated as simply finding a single function A(zg).
In the following, by referring to the results of Jayaraman & Chizeck (1993), the
necessary and sufficient conditions for constructing such a function are given briefly

using the geometric approach.

Given system (A.l), in local coordinates (zk,ux) the canonical projection mas :
MxU — M and 7y : M x U — U, satisfy mar(zk, ur) = z and my(ze, ur) = ug-
The input uy is treated as an additional state in Jayaraman & Chizeck (1993) and
is augmented to (A.l) to define the extended system

[ Trar } _ [f(zk) + gze)we } . [ 0 } N
Wit 0 1

or in compact representation Xi; = Fi(Xi) + g1(Xi)ur where X; = [zf ui]T and

FiX,) = [ F(zx) +0g(zk)wk } X [ (1) }

Define the vector field D}, g1 by utilizing the following algorithm:

step 0 : Set s = 0.

step 1 : Define the vector field D g1 = g1 that belongs to ker(ma). and the

distribution Gy = span{g; }.

step2 : Set s =s+1.

step 3 : Given the vector field Df, g1 and the tangent mapping of Fi as Fi. :

T(M xU) = TM, if [Dy, g1 , kerF1.] € ker Fi., then define a unique vector field
s+1

Di'gy € T(M x U) such that Ditlg, C ker(my). and satisfies (ma).Di'g1 =
F’l,‘ngv1 g1- The distribution Gi4; can be defined as

Gk+1 = span{g,---, D}‘flgl}
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However, if [Df, g1 , kerF1.] & ker F1. then stop.
step 4 : Go to step 2.

Using the above algorithm, it can be shown that there exists a function A : M xU —
R such that for 0 < s < «/,
<d\ Dgg1 >=0 (A.3)
in a neighborhood of equilibrium (z° u°) and
< dA, D}ll“gl > (z%u?) £ 0 (A.4)

if and only if the distributions Gy, Ga,---, G4 are all involutive and constant di-
mension in a neighborhood of (2% u%), where d\ € T*“(M,U) is an exact one-form.
Finally, the function A may be obtained by simultaneously solving the set of differ-
ential equations (A.3) and the condition (A.4).
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Appendix B

Stability Proof

This Appendix provides the stability proof of Theorem 4.1. For the sake of notational
simplicity & is used as a subscript. Using Assumption (4.1) and the results of Chen &
khalil [7] where it was shown that the Converse Lyapunov Theorem is also applicable
to discrete-time systems, we conclude that for zero dynamics (4.44) there exists a

Lyapunov function W (ni) such that on any compact set we have

Bl P < W) <k || ne |)?
A

AW, W (nks1) = W(ne) = W o qo(ne) — W(nk) < —ks || nx |I?
oW
122 <y e (B.1)
13

where k; — k4 are positive constants. Using Assumption (4.2) yields

| @(&2xs m2k) — q(€ks k) IS La(ll €2k — vk | + || 72k — 1k 1) (B.2)

for all & € @, and 7 € Q with Lipschitz constant L, > 0. To prove the stability of

the closed-loop system a Lyapunov function candidate is selected as

Uler,me,0) = Viler) + W(ne) + Va(6r)
= In(1 + pef Aex) + W(ne) + Va(Gr) (B-3)

where 2 > 0 and A is the positive definite solution of HTAH — A+ [ = —Q for an
arbitrary positive definite symmetric matrix Q. As shown in [65, 70] and chapter
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3, AVE, + AV 1 £y ers1) — Vi(er) + Va(fks1) — Va(Br) satisfies the following
+ +

inequality
—eZQek + CZG(Ik'AGk
1+ pefAex

where ¢? = 1 + Apnoz(ATAA) with G defined in (4.45). Furthermore, using (B.1) it
follows that

AV + Ve < i ) (B.4)

AW], & Woq(&, ) — Wi(n)
= [Woqo(m)— W)l + [W o q(ék, mx) — W o go(ni)]
< —ks |l e I +W o q(&, k) — W o go(mx) (B.5)

In view of (B.2) and by using the results in [69], one may then express ¢(&k, %) and
go(nk) according to

| aCee,m) | < La(ll & Il + |l 7 1))
|l go(me) | < La(llme ), V& € Q1 me €Q (B.6)

Also since W (n;) is decrescent, W oq=W(q) < k2 || ¢ || and W o go = W(q) <
k2 || go ||? - Therefore, by substituting (B.6) into (B.5), it yields

AW S —ks [ me |I* +o2Lo(ll & || + 1 me ) — k2 Lz |f 7 12 (B-7)
In conclusion, using (B.3), (B.4) and (B.7), AUky; satisfies

AUlc+1 = U(€k+1a77k+1,5k+1) - U(ek’ Mk, ék)

= AVE, +AVE, + AW, (B.8)

—ef Qe + AGTAGy
1 + pef Ae
Using Assumptions (4.1) to (4.4) and the fact that z is a local diffeomorphism in

< u(

&k and 7, we get

&Il < Ilexll +b,
lzell = L0l & il + me ) < (I e Il + Il e Il +01) (B-9)
IS a®m) | < Ll 2 | +0el) < Lolo(ll ex [l + 1| 7 1| +b1) + LGl
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where I > 0,1, > 0, & € Qu, 7 € Q and b, € ;. Therefore, by using (B.9)
in (B.8) and the fact that 1 < [1 + pefAer] <1+ || e |?|| A || it may be shown

that
~Amin(Q) | e |1 2
—k
S rpfAfey ol
+ u | AN Il + ko Lo || € 1P +2K2Le || Gl me | (B-10)

AU

Furthermore, according to (4.42), 7| =|| 8 || T2(| M~ —M7* |[) || Z« ||- Now since
matrix M has a special structure, we can find the upper bound of || M~ — M;! |.

First note that
| M~Y =M< M7+ M| (B.11)

Therefore, in the following our goal is to find the upper bound of || M~! || and

| MZ' ||. Since M-1 = A—d’;gﬂ—’rl, where Adj(M) and A are adjoint matrix and

determinant of mass matrix M, respectively, one can conclude that

| Adj(M) ||

B.12
Amiﬂ. ( )

I M~ I<

where A,,;, is the minimum of A. Now let’s examine the structure of mass matrix

M with entries (cf. Appendix C for more details)
mu = Io+ Jo+ J, + pA6TE + LMy + ML (DT (L)8)?

mi; = a;; + Mpb;; for the remaining entries (B.13)

where § = M|, is payload mass and all other parameters are known. It can be shown
that since M is a positive definite matrix that is a function of space vectors X (k),

Xz(k) and payload Mf, Anin may be calculated when X;(k), X2(k) and My, are set

to zero, namely,
Amin = Alx,=x,=0, M, =0

To prove this, note that M is a positive definite matrix if and only if its successive

principal minors are all positive. This in turn shows that all the diagonal entries
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must be positive. Consequently, for example consider the 1 x1 and the 2 x 2 matrices

in the upper left-hand corner of matrix M as follow

JaN

m m
AR B=[ u 12}

Mz TMM22
Since || A ||> 0 and || B ||> 0, all the eigenvalues of A and B are positive and in

addition we have
Mi(B) < MA) < Xo(B) (B.14)

Therefore, one can conclude that (Ay(B))min < (A(A))min < (A2(B))min- Now since
the minimum of A(A) = mi; occurs when X; = X; = 0 and My = 0, we can
conclude that this is case for A;(B) and A2(B) as well. As a result, the determinant
of B = A\ (B).A2(B) is also minimum when X; = X; = 0 and My, = 0. If we keep
increasing the dimension of matrices A and B, it is clear that at the end matrix B
becomes mass matrix M and as a result A reaches to its minimum with the same

condition.

To find the upper bound of || Adj(M) || in terms of || z || and |ML|, note that we

have
My, My -+ Mimn
M M. - Mo,
Adj(M) = .12 .22 ’ 2,- +1 (B.15)
| Mimynn Momir 0 Mmgimer |
where My; , j=1,2,---,m + 1 are polynomials of order m in M and the other

entities have the structure m11v% + v where my, is given in (B.13) and 7% and
are polynomials of order m — 1 in My. Now using (B.12), (B.13) and (B.15), and
after some algebraic manipulations it can be shown that

1 . 1
<
| Adi(a) |1 <

min min

I M7 < < (" +° 1 X 117) (B.16)

162



where v° and 4! are polynomials of order m in |ML|. To summarize, using (B.11)

and (B.16) one can conclude that

I M7 — M| S1(16x]) + S2(16k]) I} Xk |12 (B.17)
where $; £ ("' +4') and S; 2 =—(7° +4°) and 4° and 4' are 4° and 4/,

respectively where M is replaced with My. Note that since it is assumed that the
upper bound of My is known, |M| is a known quantity and as a result S; and
S, are polynomials of order m in [My| = |fx|. Now to guarantee the stability of
the closed-loop system a bounded region for |5k| should be determined such that
AUy < 0. Towards this end, by substituting (B.17) and |r«| into (B.10) and after

some algebraic manipulations we get

A 1 fAmin(Q) || e |I2 2 3kals
N0 < — + k - B.18
where
N(6l) £ di(Si(10el) + 252(16k1))2(Le + 16k])?
di 2 u| A (T B )2
do(|l ex Ll e 1) = 1 ew |l + 1l me || +b1 (B.19)

Therefore, inequality (B.18) characterizes a bounded region Q; for 0y such that the
closed-loop system (4.45) is stable (since AUy < 0). Consequently, we may con-
clude that e; and z; remain locally bounded and system (4.45) is a locally stable
system. In addition, if the parameter estimation error tends to zero, then 7 — (
and the tracking error for the re-defined output in (4.45) converges to zero given the

fact that H i1s a Hurwitz matrix.

In summary, provided that the estimate of the payload is ensured to satisfy (B.18)
one gets AUy < 0. Given the fact that the Lyapunov candidate U(ex,n, k)
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is a function of ék we need to express it as a function of ék in order to charac-
terize the region of stability. Observe that U(eg, nx, 5/:) = WV + W + V., where
Vo =|| P71 || 182 <|l BTY || (J0k[® + 2616k| + &%) with & representing the upper
bound of the parameter 0, i.e., |f] < §. Therefore, defining U, as a new function
of é, instead of 6 we get Un(ex,k,0k) 2 Vi + W+ || PZY || (166 + 2616x] + 62)
so that U < U, < ¢, ¢ > 0 and U, = c is the largest level set contained in
AUi41 < 0. Consequently, for all (ex, 7k, 0x) € Q. the closed-loop system is stable,
where (. 2 {(ek; ks ék)IUn(ek,nk,ék) < ¢}, ¢>0 and Un(ek,nk,ék) = c Is the

largest level set contained in AUy, < 0.

Note that throughout Chapter 4, y,,(k) is taken as the reference trajectory of the
normalized re-defined output tip and the re-defined error is defined as e;(k) =
y(k) — ym(k). However, we are more concerned with the tracking characteristics of
the normalized tip position. Thus, to find the bound for the tracking error of the

normalized tip position e;(k) £ yi(k) — ym(k), we rewrite e;(k) as
e1(k) = y(k) — ym (k) = e:(k) + (y(k) — ve(k)) (B.20)

Now using the definition of the normalized tip position output y:(k) and the re-
defined output y(k) given in (4.4), one may conclude that

¢maz’
ly(k) = g (k)| < m== || Xa(k) || (1 + @mac) (B.21)
where @pmqz 2 max{|¢:|} and omar 2 max{|e;|} for ¢ = 1,2,---,m. Therefore, by

taking the l, norm of (B.20) and using (B.21) and in view of the fact that e;(k) € l
and X;(k) € [

¢ma:z

lee(k)l < lex(k)| +m—F

I X1(k) Il (1 + otmaz) € loo

which proves the boundedness of the normalized tip position tracking error.
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Appendix C

Modeling of a Single-Link
Flexible Manipulator

Consider a uniform slender beam which is connected to a rigid hub and has a payload
mass shown in Figure (C.1). The beam is assumed to be initially straight and to
satisfy the assumption of Euler-Bernolli beam theory. It is assumed that the height
of the beam is much greater than its width, all deflections of beam are assumed
to be small and the shear deformation and rotary inertia effects are ignored. The

parameters of the link are as follows:

L beam length [m]
p mass density (%]

Mg, payload mass [kg]

I hub inertia [kgm?]

Jo beam inertia with respect to hub [kgm?]

Jp payload inertia [kgm?]

A beam cross-sectional area [m?]

E Young’s modulus [Nm?]

I beam area moment of inertia about the neutral axis [kgm?]
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Figure C.1: Modeling of a single-link flexible manipulator

Each point on the beam has its position determined by the variable z which mea-
sures the distance of the point from the motor hub driving the beam. The elastic
deformation at z is denoted by w(zx,t) while y(z,?) is the net circumference move-

ment of that point. In other words,
y(z,t) = w(z,t) + q(t)z

Therefore, the net deflection at z is the sum of a rigid body deflection and an elastic
deformation. A frame z’ — y’ is attached rigidly to the point where the beam is
attached to the motor hub with z'—axis tangent to the beam. In other words,
z’ — y' frame rotates such that the slope of the beam at z = 0 is zero. This implies
that the boundary condition for w(z,t) are clamped-free and that w(z,t) can be
expanded using the assumed modes approach as

w(z,t) = 3 (2)ilt) = 87(2)8(1) (c.1)

=1

where m is the number of modes considered, ®(z) £ [$1(z) -+ Jm(2)]T is the
eigenfunctions (mode shapes) vector and §(t) 2 [61(2) --- dm(2)]T is the vector of
generalized coordinates. A state space model for the system can be derived using

Euler-Lagrange method. The input is considered to be motor torque 7(¢) while the
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output is considered to be the net tip position deflection, namely,

y(L,t) = w(L,t) +q(t)L

Kinetic Energy

The position P(z) of a point on the beam at a distance z from the hub in the inertial
frame zg — yo is given by
z cos q — wsin
Pz) = q q
zsing +wcosgq

Therefore, the total velocity V(z) of z will be

V(z) a PT(a:) _ [ —zgsing — wsin ¢ — wgcos q }

Tgcosq + wcosq — wgsin g

and
| V(z) |I*= PT(z) P(z) = (z? + w?)¢® + W + 2z (C.2)

The kinetic energy K E of the system can be written as

1

KE:2

a1 Lo 1, o 1. s
log* + 5/0 PT(z)P(z)dm + EMLPT(L)P(L) + §Jp[q(t) + ®T(L)4(t)]?
(C.3)
where - denotes the derivative with respect to time and * denotes the derivative with
respect to z. The first term in (C.3) arises from the rotation of the hub. Since the
hub is pinned there is no translational kinetic energy term due to this element. The

second term is the kinetic energy due to the motion of the flexible link. The last

two terms are the translational and rotational kinetic energy of the payload mass.

Now using (C.1), (C.2) and dm = pAdz, (C.3) can be written as
L . .
KE = %quz + -;- /0 [(=® + (®7(L)6)*)¢* + (®T(L)6)? + 224(®T(L)6)]pAdz
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+ ML+ (8T(L)8Y)G + (87(L)S) + 224(87(L)3)]

1

SJpld+ S T(L)S? (C.4)

_l..
Thus, the three integrals involved in (C.4) can be simplified to

. 1k, T 2) -2 Ll 1 oot

() 5 [ &+ @ (L6)PpAds = SIod® + 5pAFSTS

.o ]. L T 2 2 1 o T -

(i) 5 /o (87(L)3)pAdz = 5pA8"S

(i) L I ¥ 924(8T(L)d)pAdz = GUTE

2 Jo q P =q

where Jp £ pA [f z%dz and UT (z) S pA [£ z®T(z)dz. Note that the orthonormality
property of the mode shapes ¢;(¢), ¢ = 1,---,m is used in the above equations,

namely,

/oL¢i(m)¢f(z) = { bor=g

0, otherwise

Consequently, the kinetic energy of the system becomes

KE = %(10 +Jo)d + %pAcf&TJ + %pAésTis +qUTS
1 . .
+ EML[(Lz +(®T(L)8)*)¢* + (®T(L)d)? + 224(27(L)d)]

+ ghli+ O T(L) (C5)

Potential Energy

Assuming that the length of the link is an order of magnitude larger than its cross-
sectional dimensions, shear effects and rotary inertia of the cross section can be
neglected. In this case the only source of potential energy is the elastic stain energy

of bending given by

— ]. L " 2 _ L ” 2
PE = 21«31/0 y'(z,)%dz _/0 w'(z, )%z (C.6)
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Substituting for w(z,t) into (C.6) from (C.1) gives
PE = %JTkzd (C.7)
where k, £ ET J& ®"®"Tdz. Now the Lagrangian L, = KE — PE can be found as
L, = KE - PE

= %(10 + Jo)d* + -;—pAq%sT& + %pA&TJ +qUTé

+ U7+ (@T(L)SYIE + (BT (L)BY + 20487 (L)5)]

+ ghla+ @T(L)T

- %JTkZJ (C.8)

Therefore, the Euler-Lagrange equations can now be applied to L, to find the equa-

tions of motion given by

d 0L oL . .

a(a—;) - 3; = 7(t) — D1g — Fri(q)

d 0L, 0L, .

i\ 55) 55 - P (C.9)

where vector § can be considered as the generalized coordinates of the system,
D, and D, are the viscous and structural damping coefficients and Fri(q) is the
Coulomb friction torque. Now substituting (C.8) into (C.9) gives
[Io + Jo + Jp + pASTSE + L2 ML, + M (®T(L)6)%]G +
20AG6T8 + UTd + LML (®T(L)6) +
2Mrq(®T(L)8)(®T(L)d) + S,8T(L)§ = 7(t) — Dig— Fri(g)
pAS + GU + M [®(L)®T(L)6 + LE®(L)] +
Jp®'[G+ ®T(L)8] + ka8 —
Mp@P®(L)®T(L)6 — pAg?6 = —Dyb (C.10)

Hence, the equations of motion of the link can be written in a matrix form as

M(J)[ij} +[h1(q,6,6)+Fri(¢j) ] . [o 0 } l:q}
6 hz(q,5) 0 k2 6
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el
0 D é 0

and the normalized tip position is given by

y(t) =1 9@1[9’}.

é

my; m
The entities for the mass matrix M(J) 2 T are
ms M3

my = Io + Jo + J, + pASTS + L2 My, + My (9T(L)6)?

m, =U + LM.®(L) + J,®'(L)
M; = pA + M®(L)®T(L) + Jpd' (L)®'T(L)

and the nonlinear terms A, and h, are given by

hi(4,8,8) £ 2M (9T (L)) (DT (L)) + 204876

ha(4, 8) £ —Mg*®(L)27(L)8 — pAS

where ¢ € R is the joint angle, § = [§; &, ... §,]T € R™ is the vector of flexible

modes, M represents the inertia matrix, A = [~1 h3]T represents the Coriolis and

Dy 0
0 D, |
0 0|
0 ks |

centrifugal forces, Fri(g) is the Coulomb friction, D £

represents the viscous and structural damping matrix, k 2 [

€ R(m+1)x(m+1)

€ §R(m+1) x(m+1)

represents the stiffness matrix and u(¢) 2 7(t) is the input torque. Note that integer

m represents the number of flexible modes (or equivalently the number of mode

shape functions) considered in the model.
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When for modeling of the link a single mode shape is considered (that is, m = 1),
then the state vector becomes [z; 73 z; z4]T =[¢ & ¢ 51]7' and mass matrix

M(é,) and nonlinear terms k; and h, become

Io+ Jo + Jp + L2 My + pAz3 + Mp¢*(L)z2 U + LMy (L) + J,éy(L)

M) = ) ,

U+ LMpg(L) + Jp¢y (L) pA+ MLo}(L) + Jpé (L)?
h]_(.’Bg, 3, 2:4) = 2ML¢2$2$32}4 + 2pA.’lI2.’I}3$4
hy(z2, z3) = ~M¢*(L)23z3 — pAzizs (C.11)

The above model is employed for the all numerical simulations in Chapter 4.

To find the mode shape functions ¢;(z), ¢ =1,---,m the Euler-Bernoulli equation

for constant EI is employed

4 2
E[a w(z, t) +m6 w(z,t) _

dz* at? 0 (C.12)

Equation (C.12) can be solved by the separation of variables technique. Individual

solution is expressed in the form
w(z,t) = ¢(z)é(t)

that after some algebraic manipulation yields

Eldig(z) 1 _ _4t) _ .

=w
pA dz* ¢(z) q(?)
where w? is a positive constant. It is easily shown that the solution of ¢(z) has the

form
¢(z) = Asinz + Bcosz + Csinhz + Dcoshz

To determine the unknown coefficient A to D, the following boundary condition
should be used

w(0,1) =0
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dw(0,t) 0
Oz

ow*(L,t) 0
0z?

ow*(L,t) My ow*(L,t)
0z ~ EI 0t

Substituting these boundary conditions into w(z,t) = ¢(z)d(t) yields the following

expression for the mode shape functions

(sinkL + sinh kL)

_— k .
(cos FL + cosh L) (b ke —coska)) - (C.13)

¢(z) = D(sinh kz — sinkz —

Each individual mode shape function ¢#(z) now may be found by substituting the

value k determined from the following transcendental equation into (C.13)
coshkLcoskL+1=0

Finally D is selected such that each ¢(z) is normalized, that is, fy $*(z)dz = 1.

. TSRS 2 _ KEI
Note that the natural frequency of vibration is given by w? = =
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