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Abstract 

Reduction of volatile organic compounds (VOCs) in coatings is being driven by regulation and 

consumer preference. Development of binders that are capable of delivering expected performance at 

low VOC is a major thrust of coatings research and development. Toward this end, polyurethane 

dispersions (PUDs) from natural oil polyols (NOPs) have been developed. These hydrophobic NOP-

based PUD coatings exhibit exceptional early water resistance and hydrolytic stability, excellent acid 

resistance, and good toughness & abrasion resistance. Most high performance PUDs require large 

amounts of solvent to form crack-free films with good properties. However, with the right choice of 

process and solvent parameters, PUDs have been shown to require reduced amounts of coalescing 

solvents to yield the desirable array of end-user properties with ambient temperature drying. High-

Throughput Research (HTR) was used as a means to accelerate formulation and product development 

of PUDs. Rapid formulation and testing allows for probing of interactions between variables in greater 

depth and breadth than conventional formulation techniques, leading to rapid development of robust 

products and formulations. The HTR methods for coatings applications include the use of specially 

designed experiments, robotic formulation, coating, and characterization tools as well as informatics 

for data visualization, extraction, and modeling. This paper details the use of HTR capability to explore 

the effect of cosolvents on end-use properties of NOP based PUD coatings as well as proposed 

mechanisms of film formation in NOP-PUDs. The results provide a basis for guidelines for selection of 

cosolvents for PUD coatings with high performance and low VOC (<100 g/L VOC). 
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1. Introduction 

Waterborne polyurethane dispersions (PUDs) are a rapidly growing segment of the polyurethane 

coating market. Such rapid growth is primarily driven by environmental regulations to reduce volatile 

organic compounds (VOC) and technological advances resulting in improved properties and 

performance. Due to their attributes, PUDs have become effective substitutes for solvent-based 

counterparts in various coating applications including wood and concrete coatings.
1,2

 PUDs derived 

from natural oil polyester polyols (NOPs) have been developed. Coatings made from the NOP-based 

PUDs have good toughness, abrasion resistance, hydrolytic stability, and acid resistance. They also 

exhibit superior water uptake (less) relative to competitive PUDs, due to the hydrophobic nature of 

NOPs.
3,4,5

 

Water-based solvents are often used in preparation and formulation of PUDs. In the “prepolymer 

mixing process”, isocyanate-inert, water-miscible, high boiling point solvents are used to facilitate 

prepolymer synthesis.
6
 The solvents include N-methylpyrrolidone (NMP) as well as PROGLYDE

TM
 

DMM (DMM) and N-ethylpyrrolidone.
7
 These solvents remain in the PUDs, enhancing film formation 

as coalescing aids, but contribute to VOCs (>15%, corresponding to >200 g/L VOC). Furthermore, the 

presence of NMP or DMM in PUDs limits the formulators’ options in balancing VOC level and 

coating properties. NMP and DMM are excellent solvents for synthesis of PU prepolymer, but there 

are better coalescing solvents.  

VOC regulations calling for <100 g/L limit for industrial coatings, such as the South Coast Air 

Quality Management District (SCAQMD) exert a continuous pressure on coatings manufacturers. To 

meet the requirements, PUD producers are utilizing acetone and methyl ethyl ketone (MEK) for 

prepolymer synthesis, followed by solvent stripping in order to provide solvent-free PUDs (USP 

4,820,762). The recent availability of solvent-free PUDs including solvent-free versions of NOP based 

PUDs presents an opportunity for new options in the selection of cosolvent in order to minimize total 
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VOC while achieving good film formation and coating properties. Better understanding of cosolvents 

versus end-user properties will lead to the selection of the best cosolvents for development and 

commercialization of high performance NOP-PUDs with low VOC.  

Today’s coatings market exerts multiple pressures to successfully develop and introduce new 

coating products. Improving the environmental profile of these new products is a major driver that 

often requires significantly different formulation strategies. These complex coating formulations offer 

an excellent opportunity to use the strengths of High-Throughput Research (HTR) to understand how 

interactions between coating components affect final properties.
8,9,10 

Not only in the area of coatings 

and formulations, but also in a broad variety of areas including catalysis, materials, genomics, protein 

assay, pharmacology, and pathology, HTR approach has been utilized for screening and development 

of new materials.
11 , 12 , 13

 Compared to conventional bench-top research, such broad appeal to the 

establishment of HTR is attributed to the fact that HTR offers multiple and timely solutions by rapid 

screening of broad range of materials and parameters using robot-driven automation and software-

based models. 

This paper describes the effect of cosolvents on end-use properties of NOP-PUD coatings using 

HTR methods. The central idea of the project is to select cosolvents that can reduce VOC level as well 

as improve end-use properties. In order to explore resulting coating properties, zero-VOC NOP-PUDs 

(formed using an MEK process followed by solvent stripping) were formulated with glycol solvents as 

well as NMP as a control. The resulting coatings were tested for minimum film formation temperature 

(MFFT), early water resistance, impact resistance, and pendulum hardness. In addition, the results 

from combined bench-top experiments and analytical methods allowed for better understanding of 

potential mechanisms of film formation and coalescence in terms of the distribution of hard domains in 

soft matrix in NOP-PUDs. 

1.1. HTR capabilities for development of coating formulations.  
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HTR is an integrated set of advanced capabilities in hardware and software that allow many more 

experimental variables to be explored and understood than could be achieved with traditional 

approaches. Hardware includes material handing robots as well as automated stations for measuring 

key properties of intermediates and final products to provide the key information for identifying 

promising products. Software includes HT experimental design, robotic control, data collection, 

processing, storage, visualization, analysis, and modeling.  

In coatings, the basic steps are to formulate the materials, make the coatings, and test the dried films. 

The formulation capabilities cover most coating materials including solids and liquids over a broad 

range of viscosities. Each coating is coated on various substrates including Leneta paper, steel, 

aluminum, and wood that are placed in a substrate holder and tracked based on a unique experimental 

ID attached to the substrate holder via a barcode. The dried films are tested using automated HTR tools, 

including color, gloss, thickness, tack, friction, scrub resistance, stain resistance, block resistance, and 

low temperature coalescence. In addition, wet formulations are tested for pH, colloidal stability, 

freeze-thaw stability, viscosity, and rheology. 

1.2. PUDs derived from bio-renewable NOPs 

NOPs are prepared from chemically modified fatty acid methyl esters (FAMEs) derived from soy 

oil. The FAMEs are hydroformylated to the corresponding aldehyde intermediates and subsequently 

hydrogenated to the primary hydroxyls. The soy monomers are transesterified with a suitable glycol to 

increase molecular weight and generate the NOPs. The NOPs used in this study possess an average 

hydroxy functionality of two. 

PUDs derived from NOPs are prepared by polycondensation reactions of polyisocyanates and 

polyols. Figure 1 illustrates the structure of NOP-PUDs. Polyols include NOPs, acid-containing diols 

such as 2,2-bis(hydroxymethyl)propionic acid (DMPA), and optionally short chain diols (SCDs) to 

enhance the hard segments. To facilitate PU prepolymer synthesis, high boiling point solvents such as 
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DMM and NMP or low boiling point solvents such as ketones are often used. They can reduce the 

viscosity of PU prepolymers and dissolve solid DMPA in reaction mixtures. Sequential steps including 

neutralization, dispersion, and chain extension yield stable NOP-PUDs with a diameter of 50 – 150 nm. 

 
Figure 1. Schematic illustration of structure of NOP-PUDs. 

 

 

2. Experimental Section 

2.1. Solvent-free NOP-PUDs (SF-NOP-PUDs) using MEK process 

SF-NOP-PUDs were prepared by the MEK process. Briefly, NOP-based PU prepolymers were first 

synthesized from polyols including NOPs, DMPA, optionally SCDs, and MEK charged in a round-

bottom flask under nitrogen. The mixture was immersed in an oil-bath preset at 70 C. When the 

reaction temperature reached 55 – 60 C, polyisocyanates were slowly added using a dropping funnel. 

The mixture was then stirred for 4-5 hrs. Samples were taken periodically to measure %NCO and 

COOH level. When the target values were reached, triethylamine (TEA) was added to neutralize 

COOH groups of PU prepolymers. The resulting PU prepolymers were dispersed in water under high 

shear, yielding a stable dispersion of PU prepolymers. Chain extender was added and then MEK was 

stripped off under vacuum at 50 – 55 C. 

2.2. Glycol solvents and NMP 
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Table 1 summarizes glycol solvents whose structures are classified into three groups; ethylene 

glycols (EG), propylene glycols (PG), and EGs and PGs of diether (PEGR). For comparison, NMP is 

included as a control.  

 

Table 1. Characteristics of glycol solvents and NMP 

Structur

e  
Glycol Solvent

 a)
 

bp  

(°C) 

Evaporat

ion rate                  

(n-BuAc 

= 1) 

Solubilit

y in 

water 

(wt%) 

Hansen           

dispersio

n 

paramete

r 

Hansen             

polar 

paramete

r 

Hansen              

Hydroge

n 

bonding 

paramete

r 

EG 

Butyl 

CELLOSOLVE
T

M
 Solvent 

BCs 171 0.079  16 7.6 12.3 

Methyl 

CARBITOL
TM

 

Solvent 

MCb 194 0.019  16.2 7.8 12.6 

CARBITOL
TM 

Solvent 
Cb 202 0.01  16.1 9.2 12.2 

Butyl 

CARBITOL
TM

 
BCb 230 0.004  16 7 10.6 

PG 

DOWANOL
TM

 

DPM Glycol 

Ether 

DPM 190 0.035  15.5 4 10.3 

DOWANOL
TM

 

DPnP Glycol 

Ether 

DPnP 213 0.014 19.6 15 2.9 9.2 

DOWANOL
TM

 

DPnB Glycol 

Ether 

DPnB 230 0.006 4.5 14.8 2.5 8.7 

DOWANOL
TM

 

TPnB Glycol 

Ether 

TPnB 274 0.0004 4.5 14.8 1.7 7.9 

PEGR 

PROGLYDE
TM

 

DMM Glycol 

Ether 

DMM 175 0.13 35 14.9 2.1 3.8 

DOWANOL
TM

 

DPMA Glycol 

Ether  

DPM

A 
209 0.015 16 16.3 4.9 8 

 NMP  202           

a) BCs: butyl cellosolve; MCb, BCb: methyl, butyl carbitol; Cb: carbitol, DPM, DPnP, DPnB: 

dipropylene glycol methyl, n-propyl, n-butyl ether; TPnB: tripropylene glycol n-butyl ether; DMM: 
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dipropylene glycol dimethyl ether; DPMA: dipropylene glycol methyl ether acetate. All are 

trademark of The Dow Chemical Company. NMP: N-methyl pyrrolidone.  

 

 

2.3. HTR workflow including formulation, coating, and testing properties  

Figure 2 illustrates the HTR workflow for PUD wood coatings used in the experiment. This 

workflow leverages HTR capabilities developed for waterborne architectural coatings and is 

augmented with manual-type ASTM test methods. The workflow includes the use of the HT Hamilton 

robot and a conventional shaker for the formulation of PUD coatings. The Hamilton Robot was first 

calibrated for dispensing of all coating components. The different components exhibited a linear 

relationship of actual vs target amount with R
2
 values higher than 0.99. The resulting calibration file 

defines detailed aspiration/dispensing conditions, tip used, and calibration results including 

dispensed/requested weights for each liquid. A weighing robot was also used to determine the actual 

amount of components to be dispensed in the Hamilton.   

Various coatings on steel panels were applied on either the Symyx Automated Coating Station 

using a doctor blade or manually applied using a drawdown bar. The films were tested for thickness 

using the HTR Color-Gloss-Thickness tool, universal hardness using HTR microindenter, pendulum 

hardness using Gardner pendulum hardness tester (ASTM D4366), and impact resistance using 

Gardner impact tester with falling weight (ASTM D1709). Early water resistance using water drop 

method at 60% humidity was tested after 1 day drying. Early water resistance was evaluated on the 

following scale (5: no effect, 4: slight trace of water, 3: blister, wrinkling, and bubble, 2: corrosion, and 

1: coating failure).  

2.4. Characterization of NOP-PUDs 

Minimum film formation temperature (MFFT) of SF-PUD-A with and without post-added 

cosolvents ranging from 32 to 100 ºF was measured according to ASTM D2354 using a house-built 

MFFT instrument. Atomic force microscopy (AFM) was used to characterize morphology of surface 
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for SF-PUD-A. Aliquots of SF-PUD-A was mixed with various solvents and the resulting mixtures 

were cast on mica and dried for 1 day. Images were obtained on a MultiMode AFM (Veeco, Inc., Santa 

Barbara, CA. S/N MMAFM-2)  using a Nanoscope IV controller (S/N NS4-143) equipped with a “J” 

scanner and running software version 6.13. The microscope was operated in the Tapping Mode™ 

(trademark of Veeco Instruments, Inc.) where the lever is oscillated at resonance and the feedback 

control adjusts for constant tapping amplitude. In Tapping Mode AFM (TMAFM), phase imaging is 

sensitive to local elastic, viscoelastic, and adhesive material properties and also enhances 

nanostructural features. Therefore, the contrast observed in phase images can represent compositional 

maps of the scanned surfaces or exhibit enhanced contrast of nanostructures. Scanning was carried out 

in air using commercially available silicon cantilevers and tips with nominal force constants of 5 N/m 

(HiRes-C probes, MikroMasch). The scanning was operated in either light Tapping (Ao ~ 1V, Asp ~ 

0.9V) or moderate tapping (Ao ~3V, Asp ~ 2V). Digital images are 512x512 pixels. Gas 

chromatography (GC) was used to determine residual solvents remaining in dried films. Mixtures 

consisting of SF-PUD-A with 10% cosolvents was cast on glass using a drawdown bar, and dried at 

RT for 7 days. Pieces of dried film were taken as a function of time over 7 days, and dissolved in 

MeOH to extract residual solvents. The MeOH solution was analyzed by GC. The GC was also used to 

determine partitioning coefficient of cosolvents between the aqueous phase and particles. Mixtures 

consisting of SF-PUD-A with 10% cosolvents were centrifuged using a tube with a filter with pore 

diameter of <40 nm. The clear and transparent serum (~ 1 mL) separated from particles was used for 

GC. Solubility parameters of polymers were determined using a solvent swelling method. Aliquots of 

polymer (1 g) dried for 7 days were mixed with a series of 16 solvents with different solubility 

parameters. After 7 days, swelling behavior of the polymer was recorded to calculate the solubility 

parameter of polymer.     
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Figure 2. HTR workflow used in the experiment 

 

 

3. Results and Discussion 

3.1. Effect of post-added cosolvents on properties of PUD coatings  

MFFT - solvent plasticization efficiency constant. MFFT of SF-PUD-A was measured to be 38 C. 

Upon post-addition of cosolvents, its MFFT decreased to below 0 C. The extent of decreasing MFFT 

was not the same for all cosolvents at similar levels. Overall, EG such as BCb and BCs and PG such as 

DPnB were better than PEGR including DMM and NMP to lower MFFT of SF-PUD-A. In addition, 

when <9% DMM was post-added, cracked-films were formed at RT. The plasticization efficiency of 

cosolvents are defined as plasticization efficiency constant (KPL, C/wt% solvent). The KPL value 

means the extent of decrease in MFFT of polymers upon addition of 1wt% cosolvent. The higher the 

KPL value, the more efficient the solvent is at reducing MFFT. In the experiments, MFFT change 

( MFFT) of SF-PUD-A was calculated by subtracting the MFFT without cosolvents (38 C) from that 

with different amounts of cosolvents. From the plot of MFFT changes that occur for SF-PUD-A as a 

function of wt% cosolvents of PU solids, plasticization efficiency constants (KPL) of cosolvents were 

calculated. Linear fitting of the data yielded KPL values of cosolvents on a wt% basis. As seen in Table 
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2, the KPL value ranged from 1.3 – 2.2 for NMP, DMM, MCb, and Cb; 2.9 – 3.0 for DPnP and TPnB; 

and 3.5 – 3.9 for BCs, BCb, and DPnB. The KPL value means how much MFFT decreases upon 

addition of every 1% cosolvent. These results suggest that the order of plasticization efficiency of 

cosolvents based on KPL values is BCb  BCs  DPnB > DPnP  TPnB >> DMM  NMP.  

 

Table 2. Plasticization efficiency constants (KPL) of cosolvents for solvent-free SF-PUD-A. 

Cosolvents 
Plasticization 

constant (KPL) 

EG 

Butyl CELLOSOLVE Solvent BCs 3.8 

Metyl CARBITOL Solvent MCb 1.3 

CARBITOL
TM 

Solvent Cb 2 

Butyl CARBITOL Solvent BCb 3.9 

PG 

DOWANOL DPnP Glycol Ether DPnP 3 

DOWANOL DPnB Glycol Ether DPnB 3.6 

DOWANOL TPnB Glycol Ether TPnB 3 

PEGR 
PROGLYDE* DMM Glycol Ether DMM 2.2 

NMP 
 

2 

* Trademark of The Dow Chemical Company 

 

 

Impact resistance. Figure 3 shows impact resistance of SF-PUD-A mixed with glycols and NMP 

ranging from 8 to 25% of PU solids. Impact resistance varied with glycol structures. It was higher with 

OH-bearing glycols including EGs and PGs than non-OH-bearing glycols such as DMM (diether). In 

addition, EGs were better than PGs except for TPnB. NMP was similar to EGs. Overall, the order of 

cosolvents to enhance impact resistance was EGs  NMP > PGs > PEGRs. Another important 

observation is that impact resistance increased with an increasing amount of cosolvents. For EGs, 

approximately 15% was required to achieve 160 lb-in of impact resistance (maximum level for current 

test method), while >20% was required for other solvents. 
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Figure 3. Direct impact resistance (lb-in) of SF-PUD-A mixed with cosolvents ranging from 8 to 23% 

of PU solids.  

 

Hardness. Konig hardness of SF-PUD-A mixed with different amounts of cosolvents ranged from 

150 to 175, indicating no significant effect of cosolvents on hardness. For TPnB, however, increasing 

amounts (5 to 28%) led to a pendulum hardness decrease from 140 to 100, while direct impact 

resistance increased from 30 to 160. Such decrease in pendulum hardness is presumably due to residual 

TPnB remaining in dried films, acting as a plasticizer. In fact, TPnB has a relatively high boiling point 

(275 C) and low evaporation rate (0.0006, where n-BuAc = 1).  

Development of early pendulum hardness. Figure 4 shows the evolution of hardness of SF-PUD-A 

in the presence of 10% of glycol cosolvents with different boiling point and evaporation rate. It was 
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found that early hardness development correlated strongly to evaporation rate; 

DMM>BCs>DPnB>BCb. After 24 h, pendulum hardness of all films increased to 120 – 140. Upon 

further drying, it increased further to 157 after 8 days. The results are important in the selection of 

cosolvents for solvent-free NOP-PUD-based wood coatings. For applications that require fast 

development of hardness such as factory-applied furniture and floor, BCs with high evaporation rate 

can be recommended. However, BCb with low evaporation rate can be recommended for DIY 

applications that require extended open times to improve workability and reduce lap marking. DIY 

coatings are generally applied by inexperienced applicators who often overwork coatings during 

application. If the coating dries too fast, overworking imprints a pattern in the partially dried under 

layer, from a brush or roller, causing the successive coats to mimic this pattern. The result is lap marks 

or poor flow characteristics that produce an unattractive finish.   

 

Figure 4. Evolution of Konig hardness of SF-PUD-A in the presence of 10% of glycol cosolvents with 

different boiling point and evaporation rate. 

 

Early water resistance. Early water-spot resistance of SF-PUD-A was tested with DMM and BCb. 

Figure 5 shows that good early water-spot resistance was observed when >9% DMM and >4% BCb 

was post-added. With <9% DMM, and >24% BCb, dried films exhibited poor water-resistance. These 
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results indicate the importance of coalescence in dried films during film formation. When the amount 

of post-added cosolvents is not enough for coalescence of NOP-PUDs, cracked films are formed at RT, 

leading to poor water-spot resistance. In addition, poor results are also observed when excess solvent is 

added. This is presumably due to residual solvent remaining in films. 

 

 

Figure 5. Early water-spot resistance of SF-PUD-A mixed with different amounts of DMM and BCb 

after dried for 1 day. Arrows indicate crack-forming films. 

 

 

3.2. Understanding coalescence and morphology change of NOP-PUDs during film formation 

In the previous sections, the post-addition of solvents to NOP-PUDs enabled the enhancement of 

their end-use properties including MFFT, early water resistance, and impact resistance. A lower 

amount of good solvent such BCb and BCs, compared to a higher amount of poor solvents like DMM 

were required to obtain enhanced end-use properties. This section describes the results that can address 

the above learning with respect to coalescence and morphology change during film formation at RT.  
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Figure 6. Determination of residual cosolvents remaining in SF-PUD-A films as a function of drying 

time using GC/MeOH extraction method. After dried for 7 days at RT, the films were treated with 

vacuum for 1 day at RT. Solvent content (wt %) of y-axis is based on PU solids. 

 

a) Plasticization by residual solvents remaining in dried films. GC measurements were explored to 

determine the amount of residual solvents in dried films consisting of SF-PUD-A separately mixed 

with 10% DMM, BCs, DPnB, and BCb. As seen in Figure 6, after 2 h, it was 1.8% for BCs, 2.6% for 

DPnB, and 3.8% for BCb, indicating that significant amounts (>75%) of DMM and BCs with high 

evaporation rates were evaporated out of films. After 1 day, it reduced to 0.16% for DMM, 0.34% for 

BCs, 0.9% for DPnB, and 2.9% for BCb. As films were further dried, the amount of residual solvents 

further decreased to 0.03% for DMM and BCs, 0.12% for DPnB, and 2.2% for BCb after 7 days. Such 

difference in the amount of residual solvents could be related to the evaporation rates of solvent at RT. 

When films dried for 7 days at RT were treated with vacuum for 1 day at RT, the amount of residual 

solvent decreased to none.  

In order to explore whether the enhancement of impact resistance is due to residual solvents 

remaining in films, impact resistance of SF-PUD-A mixed with 25% of cosolvents was tested before 
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and after vacuum treatment. Impact resistance of most dried films at RT for 8 days was 160. After 

vacuum treatment, it did not change from 160. Since values are all at test maximum it is not possible to 

determine if there was a real change. However, any change is of practical insignificance. 

b) Partitioning of cosolvents between water and particles. A centrifugation/GC method was utilized 

to determine partitioning coefficient (CPA) of solvents to particles. The CPA value was calculated from 

the wt ratio of solvent in particles to total solvent (10%). It was determined to be 0.41 for DMM, 0.38 

for BCb, and 0.71 for DPnB. That the CPA of DPnB was higher is due to its hydrophobicity (or low 

water solubility). Interestingly, the values of CPA for DMM and BCb were similar. However, the 

partitioning coefficients of co-solvents did not appear to correlate to end-use properties such as impact 

resistance of SF-PUD-A. Recall that the order of impact resistance was BCb >> DPnB>DMM at 10%, 

while the order of partitioning coefficient to particles was DPnB >> DMM ~ BCb.  

c) Solubility parameter of NOP-PUDs. Solvent swelling method was used to determined Hansen 

solubility parameters of SF-PUD-A to be 18.7 for dispersion, 11.4 for polar, and 9.5 [ (J/cc)] for 

hydrogen-bonding parameter as well as its solubility sphere radius (interaction radius, Ro) = 10.5 

[ (J/cc)]. The Ro value determines the radius of the sphere in Hansen space for the substance being 

dissolved in solvent. The distance (Ra) in Hansen space is calculated by square root of sums of 

difference in Hansen parameters. Since the relative energy distance (RED) is calculated by the ratio of 

Ra/Ro, the RED value indicates solubility of polymer in solvent. For example, polymers will dissolve 

when RED < 1; they will partially dissolve when RED = 1 and will not dissolve with RED > 1. For SF-

PUD-A, the RED value of glycol and other solvents was calculated to be 0.27 for NMP, 0.67 for BCb, 

0.69 for BCs, 0.96 for DPM, and 1.26 for DMM. These results suggest that NMP, BCb, and BCs are 

better solvents than DMM to dissolve hard and soft segments of NOP-PUD polymer.  

d) Morphology change of hard domains during film formation. PUD polymer chains consist of hard 

segments including hydrogen bonds and soft segments (NOPs). It is known that most PU films, 
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particularly PU-based thermoplastic elastomers, are phase-separated with hard domains surrounded 

with soft matrix due to thermodynamic immiscibility of hard and soft segments.
14,15 ,16

 It can be 

assumed that good solvents can soften hard segments to be mobile with soft segments, forming smaller 

hard domains well-distributed in soft phase, enhancing impact resistance. Figure 7 shows the AFM 

images for surfaces of SF-PUD-A mixed with DMM, DPnB, and TPnB. Note that light color indicates 

high density species (hard segments), while dark color indicates low density species (soft segments). 

Coarse structures of hard domains were observed for films with DMM, while fine or intermediate 

structure of hard domains are observed with DPnB and TPnB. Impact resistance was higher for films 

coalesced with DPnB and TPnB as good solvents than for films coalesced with DMM as a poor solvent. 

Similar observation was made for AFM images for internal structures of the samples.   

In dispersion, cosolvents are partitioned in both PUD particles and water phase. The above results 

suggest that DPnB is more partitioned in particles, compared to DMM. During film formation, water 

evaporates and particles come in contact; high boiling point DPnB and TPnB slowly evaporate and 

thus the concentration of these glycols became higher to be enough to soften hard segments to be 

mobile, leading to fine microstructure of hard segments, and thus eventually enhancement of properties 

of dried films. However, DMM which is poor cosolvent evaporates too fast to touch hard segments in 

drying films, leading to coarse microstructure of hard domains.    
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Figure 7. AFM images for surfaces of SF-PUD-A containing post-added DMM, DPnB, and TPnB. 

The size of images is 500 nm x 500 nm. 

 

4. Conclusions 

An HTR workflow developed for PUD wood coatings was leveraged to explore the effect of 

cosolvents on end-use properties of NOP-based PUD coatings. The post-addition of solvents to SF-

PUD-A enabled the enhancement of the properties including MFFT, early water resistance, and impact 

resistance. The selection of solvent enabled reduction of VOC level as well as improvement of end-use 

properties. In order to obtain good properties, lower amounts of good solvents such BCb and BCs are 

required, relative to poorer solvents like DMM. The combined results from bench-top experiments and 

analytical methods suggest that good coalescence as well as a fine morphology of hard domains are 

main factors that enhance properties such as impact resistance and early water resistance. In addition, 

development of the properties in early drying stage (within 2 h) is very solvent dependent. Good 

cosolvents soften (or plasticize) hard segments to be mobile for polymer diffusion, yielding 

mechanically coherent films enhancing impact resistance.  
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