

Congestion-Driven Clock Tree Routing
with Via Minimization

Ali Mohammadi Farhangi

A Thesis
in

The Department
Of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

July 2011

©Ali M Farhangi, 2011

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Ali Mohammadi Farhangi

Entitled: “Congestion Driven Clock Tree Routing with Via Minimization”

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 __ Chair
 Dr. R. Raut

 __ Examiner, External
 Dr. R. Jayakumar, CSE To the Program

 __ Examiner
 Dr. M. R. Soleymani

 __ Supervisor
 Dr. A. J. Al-Khalili

Approved by: ___
 Dr. W. E. Lynch, Chair
 Department of Electrical and Computer Engineering

____________20_____ ___________________________________
 Dr. Robin A. L. Drew
 Dean, Faculty of Engineering and
 Computer Science

iii

ABSTRACT

Congestion Driven Clock Tree Routing with Via Minimization

Ali Mohammadi Farhangi

 Physical routability constraints such as legal location checking and excessive number

of vias are usually ignored in most of the clock tree algorithms. These Constraints could

make an abstract clock tree difficult to route in practice and cause important

manufacturability and reliability challenges. Therefore the final clock tree layout

specifications can be seriously deviated from the expected ones. Vias have major impact

on circuit reliability and manufacturing yield. The variability in via resistance is

becoming an increasing concern in nanotechnologies. In this thesis a practical frame

work is proposed to construct the clock tree network under via constraint. We propose an

algorithm that minimizes the number of bends that is closely related to the number of

vias. The proposed algorithm is able to construct a zero skew clock tree with at most one

bend branch merging. By performing simultaneous wire sizing and clock tree

construction, the algorithm effectively reduces the number of bends at the expense of a

iv

small increase in capacitance. Furthermore, the number of vias is also controlled by

considering a pre-specified pattern to route the internal clock tree edges. The impact of

the pattern routing is taken into account in the early clock distribution design phase. We

introduce a probabilistic routing demand estimation method to integrate the expected

routing demand of the clock net with other clock tree optimization metrics. A new

demand driven cost function is exploited in network topology generation as well as

branch point embedding stages of a zero skew clock tree algorithm to reduce the number

of vias. Our experiments show considerable improvements in the total number of vias.

28% reduction in the number of vias is obtained while the total clock tree wire length is

reduced by an average of 8%. The post-routing induced clock skew is also controlled

efficiently.

v

Acknowledgment

 I offer my sincerest gratitude to my supervisor, Dr Asim- Al-Khalili, who has

supported me throughout my research with his patience and knowledge. Without his

support this thesis, too, would not have been completed or written. To me, he was not

only the supervisor but a caring mentor throughout the long road of my graduate study in

Concordia University. I will always be grateful to him and will remember his words of

wisdom.

vi

Table of Contents
Chapter 1 ... 1

Introduction ... 1

1.1 Clock distribution network ... 1

1.2 Problem statement and motivations ... 4

1.3 Overview of the dissertation .. 5

Chapter 2 ... 7

Clock Distribution Network .. 7

2.1 Tree Topology Clock Network .. 9

2.2 Clock Tree Synthesis .. 12

2.3 Delay model ... 13

2.4 Clock Tree routing and Topology generation .. 14

2.4.1 Method of Means and Medians (MMM) .. 14

2.4.2 Geometric Matching clock tree construction .. 16

2.4.3 Dynamic Programming based clock tree construction algorithms 17

2.5 Buffer insertion clock network ... 24

Chapter 3 ... 26

Via Aware Clock Trees ... 26

3.1 Vias in Clock distribution network .. 26

3.2 Via-Minimization in Zero Skew clock Routing ... 28

3.2.1 Shortest Path Routing Region ... 30

3.2.2 Minimum Bend Zero Skew Tree .. 32

3.2.3 Segment Splitting Subroutine ... 34

3.2.4 Simultaneous Wire Sizing... 38

3.3 Experimental Results.. 42

Chapter 4 ... 44

Pattern-Driven Zero Skew Clock Tree Router .. 44

4.1 Sampled Base Zero skew Merging Segment Construction 45

4.2 Demand graph and probabilistic demand estimation ... 48

4.3 Congestion-driven zero-skew clock tree routing ... 50

4.3.1 Selection strategy .. 51

4.3.2 Merging Selection Cost... 54

4.4 The Algorithm .. 55

4.5 Experimental results ... 58

vii

Chapter 5 ... 64

Reducing Wire length and Elongation using Skew Compensation Technique 64

5.1 Using Flip-Flops with different operating speeds as a skew compensation
Technique to construct zero skew energy recovery clock network 64

5.2 Experimental Results.. 69

Chapter 6 ... 72

Conclusion and Future works ... 72

6.1 Future works ... 73

6.1.1 Probabilistic congestion estimation in clock algorithm 73

6.1.2 Topology Generation with obstacle consideration 74

6.1.3 Via Minimization in 3D ICs ... 76

References ... 77

viii

Table of Figures

FIGURE 2-1 SEQUENTIAL ADJACENT FLIP-FLOPS .. 8
FIGURE 2--2 H-TREE CLOCK DISTRIBUTION NETWORK FOR 16 SINKS 10
FIGURE 2-3 A NON-REGULAR BINARY CLOCK TREE .. 11
FIGURE 2-4 CONNECTION TOPOLOGY, FOR A BINARY CLOCK DISTRIBUTION

NETWORK... 12
FIGURE 2-5 ELMORE DELAY MODEL FOR RC- NETWORK 14
FIGURE 2-6 MMM CLOCK TREE GENERATION ALGORITHM FOR 8 SINKS 15
FIGURE 2-7 GEOMETRIC MATCHING METHOD FOR CLOCK TREE ROUTING 17
FIGURE 2-8 ZERO SKEW MERGING OF TWO POINTS IN MANHATTAN

GEOMETRY .. 19
FIGURE 2-9 ZERO SKEW MERGING OF TWO ARCS IN MANHATTAN

GEOMETRY .. 19
FIGURE 2-10 BALANCE MERGING POINT CALCULATION BASED ON TSAY

METHOD ... 21
FIGURE 2-11 DME BASED CLOCK TREE CONSTRUCTION ON 5 SINKS

CORRESPONDING TO THE CONNECTION TOPOLOGY 22
FIGURE 3-1 (A) A NONE ZERO ARC WHICH REPRESENTS ALL POSSIBLE LOCI

OF NODE V WHEN ITS PARENT HAS ALREADY BEEN DETERMINED, (B)
TWO-BEND EMBEDDING OF NODE V, (C) ONE-BEND EMBEDDING OF
NODE V, (D) THREE-BEND EMBEDDING OF NODE V 29

FIGURE 3-2 FOUR POSSIBLE TYPES OF SHORTEST PATH ROUTING REGION
DUE TO FOUR COMBINATIONS OF THE SLOPES OF THE ARCS, L1 AND
L2 .. 30

FIGURE 3-3 ONE-BEND AND BEND FREE ROUTING SCENARIOS FOR
CONNECTING A POINT P TO A MANHATTAN ARC WITH MINIMUM
MANHATTAN DISTANCE .. 32

FIGURE 3-4 ONE BEND, TWO BEND AND BEND FREE LOCI ON A MERGING
SEGMENT, MS(V). ... 34

FIGURE 3-5 BOTTOM-UP MERGING SEGMENT SPLITTING ACCORDING TO
EXTRABENDREGION (L, L´) ... 36

FIGURE 3-6 PSEUDO-ALGORITHM FOR MODIFIED DME BOTTOM-UP
MERGING SEGMENT CONSTRUCTION .. 36

FIGURE 3-7 PSEUDO-ALGORITHM FOR MERGING SEGMENT SPLITTING
SUBROUTINE ... 37

FIGURE 3-8 ALL POSSIBLE EMBEDDING SCENARIOS FOR A POINT, P, ON A
ARC MS(V). ALL OF THEM NEED AT LEAST ONE BEND TO BE ROUTED
TO BOTH CHILDREN ARCS ... 39

FIGURE 3-9 BRANCH POINT TUNING TO ACHIEVE A BEND FREE MERGING 41
FIGURE 4-1 AN EXAMPLE OF SAMPLED MERGING SEGMENT 46
FIGURE 4-2 TWO POTENTIAL EMBEDDING SCENARIOS IN SAMPLED DME .. 47

ix

FIGURE 4-3 TESSELLATED ROUTING PLANE AND ITS GRAPH
REPRESENTATION .. 48

FIGURE 4-4 ROUTING BOUNDING BOXES IN A TESSELLATED PLANE 49
FIGURE 4-5 DEMAND GRAPH OF THE (S,T) BOUNDING BOX. PROBABILISTIC

DEMANDS FOR L-PATTERN ROUTING ARE DESIGNATED 50
FIGURE 4-6 DEMAND CALCULATION FOR TWO POINTS 52
FIGURE 4-7 PROBABILISTIC DEMANDS FOR A POINT-ARC BOUNDING BOX 53
FIGURE 4-8 NEAREST NEIGHBOUR GRAPH FOR N=3 ... 55
FIGURE 4-9 PROCEDURE OF MERGING SELECTION ... 56
FIGURE 4-10 CHOOSING THE SAMPLE POINT WITH MINIMUM PEAK

DEMAND ... 58
FIGURE 5-1 TUNING A MERGING SEGMENT BY CHANGING THE FLIP-FLOP

TYPE IN LEFT OR RIGHT SUB-TREE ... 66
FIGURE 5-2 MODIFIED DME (WITH MULTIPLE FLIP FLOP SPEEDS) 69

x

List of Tables

TABLE 3-1 SIMULATION RESULTS FOR TRADITIONAL DME 43

TABLE 3-2 SIMULATION RESULTS OF THE PROPOSED ALGORITHM 43

TABLE 3-3 PERCENTAGE OF CHANGES IN BEND NUMBER, TOTAL

CAPACITANCE AND PHASE DELAY BY USING MODIFIED DME 43

TABLE 4-1 WIRE LENGTH AND RUN TIME COMPARISON ON ZERO SKEW

ABSTRACT CLOCK TREES OBTAINED FROM BENCHMARKS R1-R5 60

TABLE 4-2 WIRE LENGTH AND RUN TIME COMPARISON ON ZERO SKEW

ABSTRACT CLOCK TREES OBTAINED FROM BENCHMARKS R1-R5 60

TABLE 4-3 WIRE LENGTH AND RUN TIME COMPARISON ON ZERO SKEW

ABSTRACT CLOCK TREES OBTAINED FROM BENCHMARKS R1-R5 62

TABLE 5-1 COMPARISON OF MMM-DME AND THE NEW MODIFIED DME

USING THE PROPOSED SKEW COMPENSATION TECHNIQUE.................... 71

file:///C:/Users/Ali/Desktop/Proper%20clocking%20scheme%20is%20one%20of%20the%20most%20important%20aspects%20of%20synchronous%20system%20design.docx%23_Toc290939680
file:///C:/Users/Ali/Desktop/Proper%20clocking%20scheme%20is%20one%20of%20the%20most%20important%20aspects%20of%20synchronous%20system%20design.docx%23_Toc290939680

xi

Abbreviation Table

MMM Method of Means and Medians

DME Deferred Merge Embedding
MS Merging Segment

GMA Geometric Matching Algorithm

BST Bounded Skew Tree
ZST Zero Skew Tree

SPP Shortest Path Polygon

ARD Average Routing Demand

NG Nearest Neighbor Graph

MC Merging Cost

pd Probabilistic Demand

Adp Accumulative Demand Peak

SCCER Single ended Conditional Capturing
Energy Recovery

1

Chapter 1

Introduction

1.1 Clock distribution network

 Clock signal is used as a timing reference to control the flow of data within a

synchronous digital system. Almost every signal transition between memory elements is

referenced to specific clock edge. If a memory element receives a clock edge at the

wrong time it would capture the wrong data and would cause a system malfunction.

Therefore the clock waveform must be clean and sharp. As the complexity of system

increases, the number of flip flop which are to be clocked increases and the flip flops

spans in a larger chip area. Hence, the clock signal in modern synchronous circuits has

the largest fan-out and travels over the longest distance, which impose lots of challenges

to deliver the clock to all flip flops at certain time. Furthermore, clock signal is affected

by technology scaling, in that long global interconnect lines become much more resistive

as line dimensions are decreased.

 As VLSI circuit feature size continues to shrink, the quality of clock networks becomes

more influential upon the circuit timing performance. A poor clock distribution can

2

consume an inordinate amount of power, degrade system performance or prevent correct

functionality. A clock distribution network can be characterized by the following

criteria:

1. Clock Skew

Clock skew between two flip flops is defined as the deference between clock edge

arrival times from the clock source to the flip flops. Minimizing skew is necessary to

prevent hold time violation, which can cause flip flops to operate in meta-stable state

and provoke random circuit failure. Because hold time violations are independent of

clock period, they cannot be avoided by increasing the period. Skew minimization is

also important because skew reduces the available positive time slack and could in

some cases decrease operating frequency.

2. Clock phase delay

Clock phase delay is the maximum delay of all paths from the clock source to all flip

flops. Phase delay is becoming a dominant factor in chip performance as feature size

decreases and chip size getting bigger. Phase delay can increase the impact of clock

delay uncertainty due to process variation.

3. Power dissipation

Clock distribution network is the largest capacitive interconnect network which also

has the largest fan-out. The clock signal operates with the highest switching

frequency in a chip which makes the clock network one of the most contributing

factors in total dynamic power dissipation of a chip.

3

4. Jitter

Jitter is the random variation in clock cycle time which is mainly a problem of clock

generation source. Also delay variation of clock buffers induced by power supply

noise can be a contributing factor of clock jitter seen by a flip flop. Jitter is generally

a non-deterministic phenomenon

5. Clock edge slope (slew rate)

Clock edge slope impacts the operating speed of the flip-flop. The clock slope must

be sharp enough to ensure proper data capturing in flip-flops and to prevent meta-

stability problem. The slope also is a contributing factor in short circuit power

dissipation in flip-flops and clock buffers. In clock distribution algorithms, the clock

slope is usually considered as a design constraint in optimization process.

6. Process variation

Global systematic and local random variations in interconnect and transistor

characteristics induce clock skew even if zero skew is achieved by wiring adjustment

and buffer insertion. Since the amount of variation is unpredictable, it is difficult to

minimize the variation induced clock skew. Common strategies to deal with process

variation problem in clock design include sensitivity minimization or non tree clock

routing [1]

 All works related to clock networks can be divided into three categories: tree and none-

tree (i.e. mesh) networks and hybrid networks that combine both the tree and none-tree

approaches [2],[3],[4]. Many high performance designs such as micro processors use grid

4

or hybrid networks or to reduce the impact of manufacturing variations on the clock

network performance [5]. Non tree structure is robust against process variation because

several paths from the clock source to a flip flop compensate for difference of delay time

However, these network configurations consume significantly more power than

traditional trees because of their large wiring overhead. Furthermore clock gating

technique to turn off a part of network would be more difficult to perform in a non-tree

structure since there are multiple redundant routes to a flip flop.

 In an age where clock networks can consume a great portion of total chip power, the use

of trees for clock distribution can save power and routing resources compare to other

clock network topologies [6]. In this dissertation, we concentrate upon skew minimized

clock tree construction at design phase.

1.2 Problem statement and motivations

 Despite their advantages, the available clock tree routing algorithms tend to achieve

limited direct impact in practice, since practical considerations such as varying layer

parasitic and via effects are often ignored. Also, in majority of clock routing algorithms,

the routing paths are frequently abstracted as a single rectilinear plane ignoring the via

cost, layer dependent routing cost and congestion impact in a particular direction.

Contrary to these non realistic assumptions, most VLSI chips use between 4 to 14 layers

of metal, and the global clock distribution typically uses most or all of them [7]. The

upper metal layers are often thicker, so these layers are used for the longest wires. In

almost every industrial chip, each wiring plane is used predominantly in either the X, or

5

Y direction which illustrates how most of the academic works are far from reality. In

reality, routing a prescribed-skew clock distributions that minimize the process variation

and vdd noise induced skew and jitter associated with critical timing paths on the chip,

while using minimum wiring and power resources is an extremely challenging task. The

clock routing difficulty is compounded with the fact that there is often a large amount of

“blockages" on wiring levels and at the silicon levels. The network must of course be

"optimally buffered" and the wires simulated with accurate transmission lines, which

requires careful shielding and return-path design. Majority of clock tree algorithms rout

an abstract clock tree and only consider the delay balancing without taking into account

detail routing constraints. Lots of detours, undesirable vias and changes in routing path

must be carried out by detail routers in order to layout the abstract clock tree in a

practical manner. It is a difficult task to preserve the clock skew in its applicable budget

during these changes. Therefore a more practical clock tree router is needed to take these

practical issues into account in the early clock tree construction phase.

1.3 Overview of the dissertation

 This research provides one of the first studies of the clock tree construction problem

under via constraint. One of the major drawbacks associated with the available clock tree

routers is the fact that they introduce too many vias. In deep sub-micron regime, vias not

only affect the chip area, but also increase the resistance and reduce the circuit reliability

due to electro-migration, signal echoing and process variations [8],[9]. In Chapter 2, we

investigate the most recent trends in clock tree construction algorithms. Also we

6

introduce some definitions and terms and describe well known algorithms and models

which are used as bases for the dissertation contributions. In Chapter 3, a novel

topological via minimization algorithm is illustrated. We propose an algorithm that

minimizes the number of bends that is closely related to the number of vias. By

performing simultaneous wire sizing and clock tree construction, the algorithm

effectively reduces the number of bends. In Chapter 4, the impact of routing congestion

in multi-layer clock routing is investigated. Among all practical routing issues in clock

networks, clock tree congestion also plays a role in the final obtained clock tree

specification. Having the congestion to be addressed later in the detail routing can affect

both the total wire length and the clock tree skew which are the primary objectives for all

clock routers. This is mainly because clock tree congestion and clock delay are often

competing objectives. In order to avoid congestion, some wires must make detours, and

the signal delay may consequently suffer. Besides skew and wire length, congestion has

implicit impact on the number of bends for each wire segment [9]. A wire bend usually

implies a switching of layers, which involves via resistance that adds to the delay and

reduce reliability. In zero skew clock tree routing, congestion, control of the number of

vias, and total wire length are rather inconsistent objectives, therefore a unified algorithm

is needed to consider all of them simultaneously. A new unified algorithm is proposed in

Chapter 4 to carry out clock routing in a non-abstract fashion which includes congestion

information in different routing layer during clock tree construction. Chapter 5, includes

a clock tree construction algorithm using skew compensation technique that reduces the

total clock tree wire length and the total number of bends in the clock tree.

7

2

Chapter 2
Clock Distribution Network

 The clock cycle time is mainly determined by two factors in synchronous circuits:1)

signal delay in critical paths in the circuits. 2) Clock skew. The clock skew is the time

between the maximum and minimum delay of clock signals from the clock source to all

flip-flops (Usually between two adjacent Flip Flops) . In Figure 2.1 tskew, clock skew

between the two adjacent flip-flops, is computed by:

௦௞௘௪ݐ ൌ ௜ݐ െ ௝ݐ

Where ti and tj are the clock delays from the clock source to two adjacent flip-flops i and j

respectively. In a synchronous system two flip-flops are called sequentially adjacent if

data signal travels from flip flop i to j in one clock cycle as depicted in Figure 2.1. When

data is launched by a late clock edge, or captured by an early clock, there is insufficient

time for the data signal to arrive before the clock. In such a condition, skew would limit

the maximum frequency of operation. This type of skew is usually called positive skew

8

and causes long-path errors. Long path errors can be controlled by increasing the clock

period. Also a serious race condition can occur when the launching clock is early relative

to the capturing clock. Such a race condition is due to hold time violation in which the

data arrives before the receiving flip-flop properly captures the data for the previous

clock edge, causes the receiving flip flop to fall into a meta-stable state. This type of

failure (short path failure) cannot be avoided by reducing the clock frequency and

requires delay padding in combinational logic path [7].

Q

Q
SET

CLR

D
Combinational Logic

Q

Q
SET

CLR

D

CLK

i j

Figure 2-1 Sequentially adjacent flip-flops

 Clock skew only affects sequentially adjacent flip-flops and it is likely to occur within a

single macro or unit .Therefore many global clock distribution strategies seek to reduce

local skew within subsets of the design, accepting larger skew between these subsets.

Unfortunately, any sequential path traversing a boundary will be subject to much larger

potential skew. An ideal global clock distribution achieves low local skew everywhere,

not just within certain unit or macro boundaries [7].

9

2.1 Tree Topology Clock Network

 Traditionally clock signal is distributed by a tree network which is characterized by

unique paths that deliver the clock signal to every flip flop. Because a balanced clock

tree is simpler to construct and analyze with mathematical models, tree is the only type of

clock distribution supported by most commercial tools. Also unique source to sink clock

path in tree topology enables skew to be intentionally used to improve performance [10].

With no redundancy in source-sink paths, clock tree introduces less wiring capacitance.

Hence tree topology is a low power solution to distribute clock signal while easing

dynamic clock gating. However, the tree topology sacrifices the clock network

robustness. In general, clock trees are more vulnerable to jitter and process variation

induced skew. It is well illustrated in [11] that even an exact zero skew clock tree

network can have a great deal of skew caused by variability of interconnects and buffers

along paths.

 Simplest style of clock tree distribution is an H-tree. H-tree uses a recursive “H”

routing pattern and inserts buffers at the regular intervals in the hierarchy. As shown in

Figure 2.2, the path from clock source to all leaves in H-trees are perfectly balanced

which provide zero skew clock deliverance. However skew can still be introduced by

intra-die source of variation as studied in [12]. H-tree is a regular pattern tree which is

suitable for uniform sink and capacitive load distributions. In practice, sink loads and

locations are rarely uniform, hence H-trees are only typically useful for the top level of

clock distribution hierarchy [7].

10

Figure 2-2 H-tree clock distribution network for 16 sinks

 To accommodate non-uniformity in sink distribution and their loading capacitance,

balanced merged clock trees offer equal delay to clock sinks as depicted in Figure 2.3. As

such an arbitrary distributed clock sinks are connected by a tree where the clock source

drives the root node and the clock sinks are the leaves of the tree. The clock tree is

conceived by recursively merging a set of sub-trees in a bottom-up fashion. Merging is

carried out in such a way to maintain balanced delay from the root of the newly created

sub-tree to all leaves. The balancing relies on adopted delay models such as Elmore delay

[13]. Although the simplified delay models are known to be only approximations of the

actual delay, they still generate fairly low skew clock trees.

11

Figure 2-3 A non-regular binary clock tree

 Many high performance designs use non-tree topology to improve performance in the

presence of process variation. Non-tree distribution usually is used in a hybrid

hierarchical structure, where the top level clock signal is still distributed with a tree

structure, but the leaves of the tree is connected by low-resistance spines [17],[18] or a

full mesh [14],[15],[16] which covers the chip area. By providing multiple driving paths

to clock sinks, the mesh and spines compensate for the difference of delay between flip

flops, hence skew is effectively reduced. However they consume significantly more

power than traditional trees. Beside power, using a fine mesh to cover the entire chip

area requires significant routing resources and seriously impacts the overall routability of

a design. Also neither meshes nor spines allow skew to be intentionally used to improve

performance (skew scheduling). Another variant of non-tree clock distribution in [18]

12

uses a course global mesh distribution in the most top level and uses local trees to deliver

the clock signal to all flip flops in the lower level. Using tree structure enables easy clock

gating and skew scheduling.

2.2 Clock Tree Synthesis

 The objective of clock tree synthesis is to create a buffered, routed tree such that the

skew and total power is minimized. Let ܵ ൌ ሼݏଵǡ ଶǡݏ ǥǡ ݏଵ௡ሽ ك ܴଶ be the set of n clock

sinks in a Manhattan plane. Each clock sink si is associated with a capacitance ci and

coordinates (xi , yi). The abstract topology of the set S, ௧ܶሺܵሻ, is a rooted Steiner tree with

the leaves corresponding to the clock sinks in S. The Internal nodes, referred as Steiner

nodes, correspond to merging locations. As depicted in Figure 2.4, any node ݇ǡ ݇ א ௧ܶ is

connected to its parent by an edge ݁௞. For any two nodes w and k, where w is the ancestor

of k, there is a unique path from w to k in ௧ܶ; which is denoted as Path(w,k).

w

k

ek

s1s2s3s4

Figure 2.4 Connection topology for a binary clock distribution network

13

 Clock tree synthesis is the process of mapping the internal nodes of the abstract tree into

the coordinates in Manhattan plane to form a mapped topology, ௠ܶሺܵሻ. ௠ܶሺܵሻ is the

abstract embedded tree in which all clock tree edges are abstracted on a single plane.

Diagonal edges must still be decomposed into vertical and horizontal segments and

realized on multiple routing planes. Buffers are inserted before, during, or after routing

to maintain acceptable slope at the sinks. Buffers can be inserted at internal tree nodes or

along the clock tree edges. The buffers and wires can also be sized in a final tuning step.

2.3 Delay model

 Clock tree construction algorithms extensively use approximation models to calculate

signal delay through wires. Because inductive effects are negligible for wires inside a

VLSI chip up to few Giga-hertz clock frequency, many approximation models estimate

the delay of the interconnect wires using first moments of the delay response for an RC

network. The Elmore delay [13] model which only uses the first moment of the delay

response of the RC network could easily estimate latency-growing trends during the

clock tree construction. However, due to the insufficient accuracy of the delay model,

skew is difficult to analyze accurately during the clock tree construction. Therefore,

embedding SPICE simulation in clock tree synthesis flow is becoming more frequent in

recent publications [19],[20],[21]. However, the speed of simulation is the limiting factor

in such methods.

 In this dissertation, the ߨ Elmore delay model is used for delay estimation in clock tree

construction. A wire edge ݁௞ can be modeled by a resistor ݎ௞, and two capacitors ௖ೖଶ ,

where ݎ௞ and ܿ௞ are the resistance and capacitance of the wire edge ݁௞ respectively. A

14

clock tree can be modeled as an RC tree as depicted in Figure 2.4. The delay of the

signal traveling from a node w to a node k is computed by [25]:

ǡݓሺݕ݈ܽ݁ܦ ݇ሻ ൌ ෍ ʹ௜ሺܿ௜ݎ ൅ ௉௔௧௛ሺ௪ǡ௞ሻא௜௜ܥ ሻ

Where Ci is the total lumped capacitance of the sub-tree rooted at node i.

w

k

Figure 2-4 Elmore delay model for RC- network

2.4 Clock Tree routing and Topology generation

2.4.1 Method of Means and Medians (MMM)

 Method of means and median [45] is a top-down method that recursively divide the

region to two sub-regions of fairly equal size based on median sink locations in y and x

dimension alternatively. Mean location of the original region and the two created sub-

region is specified. The mean locations of the sub-regions are connected to the mean

15

location of the original region. The process is repeated until each sub-region has

maximum two sinks. In the method of means and median skew is only minimized

heuristically by attempting to balance the clock tree at every level of hierarchy. This

procedure is illustrated in Figure 2.5. MMM does not necessarily result in zero skew

distribution, but the MMM constructed trees use very low wire length. The run time

complexity of MMM algorithm in worst case is ܱሺ݈݊݊݃݋ሻ, where n is the number of

clock sinks.

(a) (b)

(c) (d)

Figure 2.5 MMM Clock tree generation algorithm for 8 sinks

16

2.4.2 Geometric Matching clock tree construction

 The MMM algorithm uses top-down partitioning and can potentially ignore local

optimal matching in tree construction. Also it does not consider the delay balancing to

determine the tapping points. The Geometric Matching Algorithm (GMA) [24], uses a

recursive bottom-up approach to merge the best geometrically matching candidates in

clock tree construction. Using any bipartite matching algorithm, GMA selects ௡ଶ pairs of

the n endpoints. As shown in Figure 2.6, the algorithm constructs a set of ௡ଶ segments

connecting the n endpoints pair-wise such that no two segments share an endpoint.

Tapping points are determined on every constructed segment. A tapping point is

determined such that the skew between the current pairs is minimized. The set of ௡ଶ tapping points becomes new endpoints set for the next algorithm iteration. If wire

elongation is allowed, the GMA can achieve zero skew. However the total wire length of

the resulting tree is not as low as the MMM result. Also, GMA has a worst case run time

complexity of ܱሺ݊ଶ݈݊݃݋ሻ for n clock sinks.

The MMM algorithm does not know about the sub-trees that have not been created yet

which can result in unwanted skew. On the other hand, the geometric matching

algorithm does not know how sub-trees will be merged further up in the hierarchy, which

can result in extra wire overhead and power. Both of MMM and GMA methods

emphasize on load balancing without evaluating actual delay. Tsay introduced an Elmore

delay based layout embedding technique that can achieve exact zero skew for any given

abstract tree [25].

17

(a) (b)

(c) (d)

Figure 2-6 Geometric matching method for clock tree routing

2.4.3 Dynamic Programming based clock tree construction algorithms

 In order to further reduce the wire length, the DME (Deferred Merge Embedding)

algorithm was developed according to the observation that there are multiple locations for

a merging node to satisfy skew specifications [26]. Instead of committing a merging node

to particular location immediately, DME identifies and maintains the locus of the points

suitable for each merging node in a bottom-up tree traversal. DME is a two phase clock

tree construction algorithm in which a bottom-up pass performs merging of the sinks to

find all potential zero skew merging locations then a top-down tree traversal is conducted

18

to choose one location for every internal node such that the total wire-length is

minimized. The same basic concept was later generalized to bounded skew clock tree

construction [22],[28]. DME is a very mature layout embedding technique to obtain any

skew specifications with minimal wire length and becomes a basis for many subsequent

clock routing works.

 A collection of points at the same Manhattan distance from a given point form a

Manhattan circle. The shape of the Manhattan circle is a 45-degree tilted square. The

locus of the points that define the area of the zero-skew merging of two points is called

merging segment (ms). Given two points, s1 and s2 in the Manhattan plane, zero-skew

merging points, or merging segment, are at the intersection of two Manhattan circles

(Figure 2.7). The size of the Manhattan circles, d1 and d2, is calculated to balance the

delay from the merging segment to the points s1 and s2. Both d1 and d2 are calculated

using Tsay method based on Elmore delay model. In Figure 2.7, D= d1 + d2, where D is

the Manhattan distance between the two points s1 and s2. Note that since routing is done

in rectilinear directions, all distances are measured in Manhattan dimension. With

rectilinear routing and equal resistance and capacitance on the Horizontal and vertical

tracks, the intersection is always a line with slope of +1 or -1 denoted as Manhattan arc or

simply the arc.

19

s1

s2

d1
d2

Figure 2.7 Zero skew merging of two points in Manhattan geometry

 It has been proven in [26] that for two given merging segments (Manhattan arcs), the

zero skew merging points also form a Manhattan arc. An example is given in Figure 2.8

l1

l2

Figure 2.8 Zero skew merging of two arcs in Manhattan Geometry

20

 In Figure 2.9, let msu and msv , be the two merging segments corresponding to the sub-

trees, Tu and Tv , rooted at u and v. A Merging segment can be either a Manhattan arc or

a single point. Zero-skew merging of the two sub-trees is obtained at the intersection of

the two Manhattan circles. The radius of the two Manhattan circles can be find by

dividing the total distance, D, between msu and msv. Each subtree, Tu and Tv ,has load

capacitance, C1 and C2 and the phase delay of D1 and D2 respectively. If d1 = x, then d2

= D – x. Given a unit wire resistance, r, and capacitance, c, the resistance and capacitance

of each wire segment is

ܴଵ ൌ ݎ ൈ ݀ଵ ൌ ݎ ൈ ଵܿ ݔ ൌ ܿ ൈ ݀ଵ ൌ ܿ ൈ ݔ

and ܴଶ ൌ ݎ ൈ ݀ଶ ൌ ݎ ൈ ሺܦ െ ሻ ܿଶݔ ൌ ܿ ൈ ݀ଶ ൌ ܿ ൈ ሺܦ െ ,ሻݔ

respectively. To obtain zero skew based on Tsay method [25], delay of the two subtrees

with wire segments to connect them must be equal.

ଵܦ ൅ ܴଵ ቀܿଵʹ ൅ ଵቁܥ ൌ ଶܦ ൅ ܴଶ ቀܿଶʹ ൅ ଶቁܥ

ଵܦ ൅ ݔݎ ቀܿʹݔ ൅ ଵቁܥ ൌ ଶܦ ൅ ܦሺݎ െ ሻݔ ൬ܿሺܦ െ ʹሻݔ ൅ ଶ൰ܥ

If the equation is solved for ݔ,

ݔ ൌ ଶܦ െ ܦଵ ൅ ଶܥሺܦݎ ൅ ܿʹܦሻݎሺܥଵ ൅ ܥଶ ൅ ሻܦܿ

21

R1 R2

C1 C2

c1 c2

TuTv

msu

msv

d1

d2

Figure 2-9 Balance merging point calculation based on Tsay method

 If ݔ ൏ Ͳ ݔ ൐ the two sub-trees cannot be merged within minimum distance ,ܦ

separation, D. In such case, the parent merging segment is selected on msu or msv, which

ever has a greater phase delay. Wire elongation will be introduced to equalize the delay

between the two sub-trees. The DME algorithm requires an initial topology along with a

set of the input sinks. The algorithm has linear time complexity with the given input

topology. However, often greedy clustering and matching algorithm is used to cogenerate

the topology at the same time [27].

 In Figure 2.10, five clock sinks are to be connected by a clock tree with DME zero skew

algorithm. Figure 2.10(a) shows the connection topology which is given to the DME

algorithm along with the input set. During bottom-up merging, sinks s2 and s4 are merged

into merging segment v2 and sinks s1 and s3 are merged into the merging segment v1. The

merging segment v3 is formed by merging the arc v2 with the sink s5. Finally, v3 and v1 are

merged into the root merging segment r. After the bottom-up merging segment

construction is completed, the root location is chosen on any desired place on the root

22

merging segment. For every internal node, the closest point of the corresponding

merging segment to the parent location is embedded. This procedure is repeated in

breadth-first traversal manner until all sinks are reached (Figure 2.10(b)). The resulting

clock tree has minimum total wire length on a fixed topology and zero skew under

nominal process conditions [26].

s1

v1

s3s2 s4

s5
v2

v3

r

s2

s4

s5
s1

s3
v2

v3

v1

r

(a) (b)

Figure 2-10 DME based clock tree construction on 5 sinks corresponding to the
connection topology

 Despite the theoretical advantages of DME based clock routers, they are not as

influential as the traditional H-tree or mesh structures. In an effort to address some of the

practical issues in DME, Kahng et al extended the traditional formulation so that the

resulting algorithm can address obstacle avoidance and clock routing for varying layer

parasitic with none–zero via resistance[28]. Assuming a particular routing pattern (HV)

or (VH), they modified the original BST/DME[22] to consider the different parasitic

parameters and via impedance in merging region determination phase. They assumed one

23

time switching from horizontal to vertical layer for each edge (one bend). In their work

each wire segment is assumed to be routed in L-shaped pattern, which means that their

formulation fails if some wire segments are routed with Z-shape or with a direct

connection (no-bend). Also their work is not guaranteed to achieve the optimum number

of bends for a clock tree. In [28], a method is proposed to determine the merging region

of a Steiner node in a routing plane under obstacle constraints. The procedure was

incorporated into the first phase of DME to get the merging regions. However, the

limitation of such a procedure is that it considers only parts of the merging regions.

Consequently some possible Steiner points are eliminated, which could limit the

capability of DME to reduce the wire length further. Haksu Kim et al suggested that the

obstacle can be treated by devising a set of rules to go around it [29]. These rules are

applied for a planar clock tree. However, the obstacle is not considered during merging

segment determination. This implies that the impact of the obstacle on the total wire

length has been neglected. More recently Haidar et al introduced the Shortest Path

Polygon (SPP) to describe all shortest paths between two points in the presence of

obstacles [30]. They incorporated SPP model in DME algorithm to handle the obstacles

during the bottom-up merging segment. Some works have been proposed to deal with

incremental engineering change in post clock distribution synthesis. Haidar et al

suggested an incremental wire adjustment algorithm (AWA) to tune any given binary

clock tree under any given skew bound [35]. AWA was developed based on the DME

algorithm and converges quickly to the desired skew bound.

24

2.5 Buffer insertion clock network

 Buffers are inserted in clock network to reduce the clock phase delay, and even more

important, to satisfy the slew rate constraint. Delay of long wires, if un-buffered, can

grow quickly and slew rates degrade rapidly. Nowadays clock distribution networks are

huge capacitive interconnect networks which are almost impossible to operate at desired

frequency without proper buffering. Clock tree buffering has many challenges that are

different from general signal buffering. Instead of delay, clock skew is the primary

objective. However, slew rates and power consumption are also important constraints.

Clock networks are also typically much larger than signal nets, which makes the general

buffering methods impractical to use in clock distribution network.

 The fundamental dynamic programming paradigm used in general signal buffering is

inadequate for clock trees. For clock trees, the optimal sub-structure property does not

hold since an optimal solution does not necessarily have suboptimal solutions. Therefore

many heuristic and greedy methods have been proposed for the clock tree buffer insertion

problem. Zeng et al. proposed an algorithm that inserts a constant number of buffers on

each clock path [31]. The buffers are moved and combined in a greedy fashion to

improve the overall skew of the clock tree. In an approach presented by Xi and Dai, the

iso-radius buffering was performed, where the radius is the wire distance of a buffer and

the root [32]. Additional buffer levels are added until skew constraint is satisfied. Tellez

and Sarrafzadeh proposed a greedy algorithm for zero skew buffer insertion and proved

that the solution results in optimum number of buffer in a zero skew clock tree [33] . To

control slew rate, a maximum capacitance limit is used to guide the insertion process. The

25

algorithm traverse the clock tree in a bottom-up manner and uses two simple rules for

node and edge buffer insertion:

1. Edge Rule: if the capacitance at the source of the edge is greater than the limit,

split the edge and insert a node and buffer at the point on the edge nearest to the

root such that the downstream capacitance does not violate the limit.

2. Node Rule: Add the necessary buffers to each sub-tree to equalize the number of

buffer level in each sub-tree. If the capacitance at the node after these buffers are

inserted is greater than the limit, drive each sub-tree with an additional buffer.

 Tellez and Sarrafzadeh proved that their methodology inserts the minimum number of

buffers such that the capacitance limit is not violated anywhere in the tree [33]. They also

proposed a heuristic that allows an unequal, but limited, buffer skew. However, it was

proven that their greedy bottom-up algorithm is not optimal for non-zero buffer skew

bound [34].

26

3

Chapter 3

Via Aware Clock Trees

3.1 Vias in Clock distribution network

 One of the major drawbacks associated with the available clock tree routers is the fact

that they introduce too many vias. In deep sub-micron regime, vias not only affect the

chip area, but also increase the resistance and reduce the circuit reliability due to electro-

migration, signal echoing and process variations [39],[38],[8],[41]. Vias have a direct

impact on interconnect routing because of their large physical footprint. Also, they

implicitly aggravate blockages since vias may force interconnects to detour, which forces

others to detour even further [40]. Via blockage is considered to be a pivotal factor that

could limit multi-level metallization and chip miniaturization [40]. In multi-level

interconnect technology, via failure due to electro-migration and variations in the

metallization process are ever-increasing concerns, especially for high current density

and wide-spanning nets such as clock networks. It has been shown that a via is generally

27

more vulnerable to electro-migration, because the ampacity of a (tungsten) via is less than

that of metal of the same width [41]. Hence, multiple vias are often used in parallel to

improve reliability, but the more redundant the vias, the worse the area blockage

problem. Excessive resistive vias and via failures can seriously degrade the system

timing performance and they become more prevalent with the chip miniaturization.

These via process variations manifest themselves in clock uncertainty which is totally

undesirable for IC manufacturers.

The problem of via minimization in clock networks has not received considerable

attention in academic research. Traditional via minimization algorithms are not suitable

for reducing the number of vias in a clock network, since they modify the topology or

layers of the nets and unbalance the clock tree [36]. Delay balancing is the main reason

that such methods fail to work for clock networks. According to the author`s best

knowledge, the only work that explicitly addresses the via minimization in clock routing

was proposed by Chun-Hao et al [37]. They proposed Ȝ-Geometry routing to improve

wire length optimization. In their approach, metal layer ordering and layer assignment are

used to minimize via cost in the Ȝ-geometry DME algorithm. The algorithm does not

work for Manhattan geometry preferred direction clock routing and fails to minimize via

cost because it only considers the branches and realizes each clock edge with one bend.

In fact they proposed only a bottom-up post-embedding phase to determine the best

routing pattern for each segment without changing the embedding points.

28

3.2 Via-Minimization in Zero Skew clock Routing

Via minimization is done in the detail routing phase using layer assignment [36].

However, when the complexity of the circuit keeps increasing, it is more flexible and

effective to minimize the number of vias as early as the global routing phase. Although

planarity is desired for a large and critical net such as clock network; [42] due to circuit

complexity and increasing demand for silicon area, no actual industrial product uses the

planar approach for their clock network. Also, preferred direction layer routing is the

most extensively used scheme for interconnect routing to reduce the impact of cross talk

noise for adjacent layers [43]. This actually means even a simple clock distribution

network should eventually be realized using different metal layers. In the preferred

direction routing scheme, which is widely used in the industry, each wiring plane is used

predominantly in either the X, or the Y direction. Corners and bends imply switching of

layers, hence requiring the use of vias[9],[43],[44]. Therefore to reduce the number of

vias, the number of bends for each wire needs to be controlled.

 Note that the DME algorithm only determines the locations of the internal nodes,

however the geometric layout of the edges are not specified. There are still certain

degrees of freedom in top down embedding phase. The algorithm does not provide

precise information of embedding an internal node when the algorithm finds a non-zero

arc to embed the node. This freedom results in different routing quality and geometric

pattern (i.e., number of bends). As shown in Figure 3.1, the point p is the embedding of

the parent of the merging segment of the node corresponding to v, ms(v). Embedding of

point p has already been determined earlier in the top down pass. The DME is free to to

choose embedding point of v to be at any point in ms(v) that is at the distance | ev | or less

29

from the placement of v’s parent P . Note that | ev | is the length of the edge that connects

node v to its parent, P, and is calculated in bottom-up DME phase to preserve the zero

skew merging property at each node. Three different scenarios are possible, such that

each one results in different bends. This is shown in Figure3.1.

ms(a)

ms(b)

ms(v)

ms(b)

ms(a)ms(v)

ms(a)ms(v)

ms(b)

P

P

P

v

v

v

P

ms(b)

ms(a)ms(v)

(a) (b)

(c) (d)

Figure 3-1 (a) A none zero arc which represents all possible loci of node v when its
parent has already been determined, (b) Two-Bend embedding of node v, (c) one-
Bend embedding of node v, (d) Three-Bend embedding of node v

30

3.2.1 Shortest Path Routing Region

 A routing area that defines the potential routing region of two merging segments is

called the Shortest Path Routing Region. The Shortest path routing region of two merging

segments, l1 and l2, accommodates all minimum routing paths that connect the merging

segments l1 to the merging segment l2. Shortest path routing region boundaries consist of

either Manhattan arcs or rectilinear lines. This property is due to the fact that slope of

merging segments can be only (-1) and (+1), therefore there are just four types of shortest

path routing regions as illustrated in Figure 3.2. The zero skew merging segment, ms,

corresponding to the arcs l1 and l2 is entirely located in shortest routing region of l1 and l2.

l1

l1
l1

l1

l2

l2

l2

l2

Slope (-1)

Slope (+1)

Slope (-1)

Slope (-1)

Slope (+1)

Slope (+1)

Slope (-1)

Slope (+1)

Figure 3-2 Four possible types of shortest path routing region due to four
combinations of the slopes of the arcs, l1 and l2

31

Let l be a Manhattan arc with (-1) slope. The arc l can be uniquely identified by its two

end points (head and tail). Assume ݈௛ and ݈௧ are the two points corresponding to head

and tail points of the arc l, respectively. ሺ݈௫௛ǡ ݈௬௛) and ሺ݈௫௧ ǡ ݈௬௧ ሻ are the coordinates of the

head point, ݈௛ǡ and the tail point, ݈௧. A point p defined by its x and y

coordinates ሺ݌௫ǡ ௬ሻ is to be routed to the arc l with minimum wire length in Manhattan݌

plane. In the Manhattan plane any wire can be routed using only rectilinear wire

segments. The arc l divides the Manhattan plane into 10 regions as shown in Figure

3.3(a). Any point in the four shaded regions can only be routed to the arc l with at least

one bend, as shown in Figure 3.3(b). The notation ࢍࢋࡾࢊ࢔ࢋ࡮ࢋ࢔ࡻሺ࢒ሻ refers to the union

of all the four shaded regions corresponding to the arc l. On the other hand, any point

that is not located in ܱܴ݊݁݃݁݀݊݁ܤሺ݈ሻ can simply be routed to the arc l without any bend

as illustrated in Figure 3.3(c). Accordingly, the common area of ܱܴ݊݁݃݁݀݊݁ܤሺ݈ሻ
and ܱܴ݊݁݃݁݀݊݁ܤሺ݈ᇱሻ, which will be called ࢔࢕࢏ࢍࢋࡾࢊ࢔ࢋ࢈ࢇ࢚࢘࢞ࡱሺ࢒ǡ ᇱሻ, is the locus of࢒

the points that merge two arcs, l and ݈ᇱ, with minimum wire length using at least two

bends. ExtraBendRegion for the arc l and ݈ᇱ is depicted by Figure 3.3(d).

32

t
yy

t
xx lplp  ,

arc l

hl

tl

th

hl

tl

h
yy

t
xx lplp  ,

p

p

p

arc l

p

yyxx lplp  ,

1 2 3

4
5

6

7

8 9 10

h
yy

h
xx lplp  ,

OneBendReg(l):
th
yyxx lplp  , h

yy
t
xx lplp  , h

yy
h
xx lplp  , t

yy
t
xx lplp  ,|),{(yx pp }  

(a) (b)

p

arc l

p

p

p

ExtraBendRegion(l,l’)

l

l’

ExtraBendRegion(l,l’)= OneBendReg(l) n OnebendReg (l’)

(c) (d)

Figure 3-3 One-Bend and Bend free routing scenarios for connecting a point p to a
Manhattan arc with minimum Manhattan distance

3.2.2 Minimum Bend Zero Skew Tree

 The proposed method for minimum bend zero skew clock trees is similar to the well-

known DME approach; but during the bottom-up phase, the algorithm prunes away parts

of the merging segments which may cause extra bends. In the top down phase, the

algorithm is able to easily embed all the internal tapping points with minimum bend.

During the bottom-up phase, the clock sinks are merged according to input topology. The

33

merging determines the valid locations where the two sub-trees can join such that the new

sub-tree has zero skew and minimum wire length. Every tapping point embedded on a

merging segment has zero skew property. Therefore DME keeps the whole merging

segment as the possible place for the tapping point. DME defers embedding the exact

location of the tapping point until it completely constructs the tree of merging segments.

In theory, keeping the whole merging segment leads to optimal wire length, but DME

overlooks the difficulty that could arise later in the detail routing phase. Taking the whole

merging segment as a locus of the tapping point is quite optimistic. Different parts in a

merging segment may have different routing patterns and routing qualities (i.e, number of

bends). In Figure 2-4(a), two arcs, l1 and l2, are merged into ms(v), the zero skew merging

segment. For any embedded point on ms(v), three scenarios are possible. In each of them

l1 and l2 are merged into a point on the arc, ms(v), with minimum wire length, but each

one has a different number of bends(Figure 3-4(b)).

 Traditional DME does not distinguish between these embedding scenarios. To

overcome this deficiency, we introduce segment splitting scheme to bind the embedding

loci to be located in the regions which make fewer bends in the detail routing phase.

34

One bend embedding segment
Two bend embedding segment
Bend free embedding segment

p1

p3

p2

(a) (b)

l1

l2

l1

l2
ms(v)

ms(v)

Figure 3-4 One bend, two bend and bend free loci on a merging segment, ms(v).

3.2.3 Segment Splitting Subroutine

 To embed all internal points with at most one-bend, the algorithm needs to construct

the tree of merging segments that guarantee one-bend embedding in the top down phase.

Segment Splitting subroutine serves to spilt a merging segment obtained in the ordinary

DME into multiple segments. These new segments are entirely located in the regions that

can accommodate one bend embedding in future steps. Instead of keeping the whole arc

which results from the intersection of two merging segments, the algorithm splits the arc

to smaller ones. The parts of the merging segment that make more than one bend are

eliminated and the remaining parts are preserved for the next step.

 Assume l and lƍ are two Manhattan arcs corresponding to two sibling nodes, a and b, in

the clock tree topology. The algorithm computes the intersection of the arcs, l and lƍ,

according to input topology similarly to the traditional DME. Assume l and lƍ are merged

into ms(v), where v is the parent of the nodes a and b. The algorithm determines shortest

35

path routing region of the arcs l and lƍ and evaluates the ExtrabendRegion(l,lƍ). Based on

the ݊݋ܴܾ݅݃݁݀݊݁ܽݎݐݔܧ ሺ݈ǡ ݈ᇱሻ, the algorithm splits ms(v) into new merging segments and

eliminates those ones that are located in the extra bend region. The remaining ones are

inserted into a list corresponding to the node v. An example is illustrated in Figure 3.5.

Unlike the traditional DME, in our approach each internal node is associated with a set of

merging segments instead of one.

 Let MS (a) and MS (b) be two sets of merging segments associated with the internal

nodes a and b, respectively. The parent, say v , of a and b in clock tree topology has as

many as ȁܵܯሺܽሻȁ ൈ ȁܵܯሺܾሻȁ possible merging segments due to the merging of each

segment msi(a) א MS(a) with each merging segment msj(b) א MS(b). The number of

merging segments may grow exponentially during bottom-up construction of merging

segments. To achieve an efficient implementation, we limit the number of merging

segments of an internal node by a constant, say k. A simple greedy strategy for choosing

the best k merging segments is to select k merging segments with the smallest total wire

length. Taking advantage of the segment splitting scheme, the algorithm is capable of

embedding all internal nodes with only one bend. Simple pseudo codes for the Segment

Splitting Scheme are given in Figure 3.6 and 3.7.

36

l

l’

ExtraBendRegion(l,l’)
ms2(v)

ms1(v)

Figure 3-5 Bottom-up merging segment splitting according to ExtrabendRegion (l,
l´)

Procedure: Modified_BottomUpTree_Construction (A , B)

Input: Two Sets of Merging Segments A and B to be

merged

Output : A Set of merging segment V

1. for each merging segment ai א A and bj א B

 1.1 vrіDME ǌĞƌŽ ƐŬĞǁ ŵĞƌŐŝŶŐ ĨŽƌ Ăi and bj

 1.2 Vі MĞƌŐŝŶŐSƉůŝƚƚŝŶŐSĞŐŵĞŶƚ ; ǀr , ai , bj)

2. Prune V such that it contains only k merging segments

with smallest total wirelength.

Figure 3-6 Pseudo-algorithm for modified DME bottom-up merging segment
construction

37

Procedure: MergingSegmentSplitting (v , a , b)

Input: A Merging Segment v , its left and right child merging

segment, a and b.

Output: A Set of merging segments, V , that contains all

merging segments that can accommodate only one bend

merging points.

1. EǆƚƌĂBĞŶĚRĞŐŝŶ;Ă͕ďͿі OŶĞBĞŶĚRĞŐ;ĂͿ ŀ OneBendReg(b)

2. if v ŀ EǆƚƌĂBĞŶĚRĞŐŝŽŶ ;Ă ͕ ďͿ т ׎ , then

2.1 Split the merging segment v into new segments vi

2.2 For each vi do

 2.2.1 if vi א ExtrabendRegion (a , b), eliminate vi

 ĞůƐĞ V і ŝŶƐĞƌƚ ǀi

Figure 3-7 Pseudo-algorithm for Merging Segment Splitting subroutine

 Lemma: Suppose that a and b are two sibling nodes in ZST (Zero Skew clock Tree)

with the parent v. Let ms(a) and ms(b) be the merging segments corresponding to a and b.

Also let ms(v) be the set of all placements which allow minimum merging cost within

distance |ea| of ms(a) and |eb| of ms(b). In the worst case, Segment Splitting Scheme is

guaranteed to find a zero skew merging point, v, on ms(v) that can be routed rectilinearly

to its child segments, ms(a) and ms(b), with at most one bend.

 Proof: without elongation d(ms(a), ms(b))= |ea| + |eb|, where d(ms(a), ms(b)) denotes

the Manhattan distance between ms(a) and ms(b), therefore any wire that merge ms(a)

and ms(b) with zero skew can be routed in the shortest path routing region of ms(a) and

ms(b) which is always bound with either Manhattan arcs or rectilinear segments. A

merging segment always crosses the rectilinear boundaries of the shortest path routing

38

region at two points. In the worst case even if the merging segment totally located in two

bend region of its corresponding child segments, embedding the parent merging segment

on its end point results in only one bend merging.

 Theorem 1: Given a set S containing n sinks and a binary tree connection topology G,

if no elongation is needed, segment splitting algorithm produces a ZST T with at most n-1

bends.

 Proof: Let G be a balanced binary tree topology and suppose that a and b are two

sibling nodes in T with parent v. Due to Lemma 1, the segment splitting algorithm

merges a and b into their parent v using at most one bend. The constructed tree of

merging segments is always balanced since ms(v) is within distance |ea| of ms(a) and |eb|

of ms(b) (|ea| and |eb| are calculated as in DME). Since T is a balanced binary tree with n

leaves, therefore it has n-1 internal nodes and each internal node represents the merging

of two siblings, therefore in the worst case clock tree has n-1 bends.

3.2.4 Simultaneous Wire Sizing

The proposed algorithm guarantees to merge two sibling nodes with at most one bend.

In the clock tree generated by our method, every internal node is routed to its children

with at most one L-Shaped pattern (one-bend route). The number of bends would be

minimized further if a Steiner point in the clock tree could be connected to its both

children with either a horizontal or a vertical wire segment. Hence, the embedding points

must be taken from Steiner loci which can accommodate bend free merging points. A

bend free merging point can be routed directly to both of its children with only one

horizontal or one vertical segment. In a typical clock tree construction, frequently no

39

Steiner point is found to accommodate bend free merging. An example is given in Figure

3.8.

l

l’

l l

l

l’ l’

l’

p

p

p

ms(v)

ms(v)

ms(v)

ms(v)

Figure 3-8 All possible embedding scenarios for a point, p, on a arc ms(v). All of
them need at least one bend to be routed to both children arcs

The traditional DME algorithm does not consider the possibility of wire sizing (wire

width) to obtain a better zero-skew clock tree. It has been shown in [23] that wire sizing

can dramatically reduce the clock phase delay. When wire widths are considered as

design variables, merging segments can be shifted by varying wire width. We take

advantage of wire sizing to introduce a merging point tuning scheme to further reduce the

number of bends.

Bend free merging region refers to a set of points in the shortest path routing region

that can merge two arcs l and l’ without any bends

40

Branch Tuning Subroutine: Let ms(a) and ms(b) be two merging segments

corresponding to two internal nodes a and b in a clock tree topology. Assume ms (a) and

ms(b) are merged into ms (v) where v is the parent of the node a and b. Note that ms(v)

has already been determined using the Merging segment splitting scheme as explained in

the previous section. Therefore ms(v) is the locus of the points that can merge two nodes,

a and b, with zero skew using at most one-bend. To achieve bend free merging, the

branch tuning subroutine determines the minimum shift required for ms(v) towards a

bend free merging region. Accordingly |la| and |lb| (edge length from the node v to a and

to b) are updated and the algorithm will use the new edge’s lengths to find the wa and wb

(edge’s wire widths for la and lb) using ʌ-model. Suppose that the branch tuning

subroutine needs to shift the tapping point, v, towards one of the children of the node v,

say “a” (left child). To maintain zero skew property at the branch point v, the right edge’s

width (ݓ௕) need to be increased (Figure 3-9). The algorithm computes the required wire

width for the right edge with the following equation:

௕ݓ ൌ ݈௕ݎ଴ܥሺܾሻ൫ݐሺܽሻ െ ሺܾሻ൯ݐ ൅ ʹ଴ܿ଴ݎ ൫݈௔ଶ െ ݈௕ଶ൯ ൅ ݈௔ݎ଴ܥሺܽሻݓ௔

Where la (lb) and wa (wb) are the length and width of the wire from v to a (b), and r0 and

c0 are the wire resistance and capacitance for an unit length and wire width. ݐሺܽሻ ݐሺܾሻ1 the clock delay from the nodes a and b to all leaves in the sub-tree

rooted at a and b, respectively. Also, ܥሺܽሻ denotes the downstream capacitance of the

 model similar to reference [25]-ߨ ሺܾሻ are calculated usingݐ ሺܽሻݐ 1

41

subtree rooted at a, and ܥሺܾሻ denotes the downstream capacitance of the subtree rooted at

b.

In order to reduce the phase delay, all the root-leaf paths need to be tapered. Hence, in the

bottom up merging segment construction, the algorithm specifies a lower and upper

bound for each edge’s width. The wire width constraints for each clock tree edge at each

level come from the successor levels (for the sake of proper wire tapering). Therefore, the

algorithm attempts to tune the merging segment if the new edge wire widths comply with

their feasible widths. We assume industry imposed restrictions for the minimum and

maximum feasible wire width (௠ܹ௜௡ ܽ݊݀ ୫ܹୟ୶ሻǤ That is:

 ௠ܹ௜௡ ൑ All wire widths in the clock Tree ൑ ௠ܹ௔௫

(a) Initial merging point (b) tuned merging point with wire sizing

v
v

a

b

a

b

Figure 3-9 Branch point tuning to achieve a bend free merging

42

3.3 Experimental Results

We implemented the traditional DME and our modified DME on an initial topology

obtained by the MMM algorithm. We quantified the number of bends in both the original

and the modified DME. The benchmarks, r1 to r5, are taken from [25]. The per unit

square wire resistance and capacitance used are 0.003 Ω and 0.02 fF respectively. The

minimum and maximum feasible wire widths are 1µm and 4µm, respectively. For each

benchmark we first quantified the total number of bends in the clock tree for the DME

and our new approach. Total wire length and total capacitance are also measured for both

algorithms. Tables 3.1, 3.2 and 3.3 show the results of the simulation for both DME and

the modified algorithm. It can be seen that after applying the modifications all Steiner

points merged to their two children with at most one-bend. The Results show almost 29

% reductions in “bend number” with only 3.4% increase in total capacitance which is

practical since the clock tree is no longer routed using only minimum wire width from

root to all leaves. Wire tapering reduces the root-leaf phase delay by almost 17.6% which

can alleviate the impact of process variation on the clock skew. In this algorithm the

tuned spilt merging segments no longer contain all possible loci of Steiner nodes

therefore it does not guarantee to produce the optimal wire length in theory. Nevertheless,

when combined with the greedy heuristic adopted, the modified DME algorithm has an

increase of an average of 0.8 % wire length in all our experiments on the MMM initial

topology while aggressively reducing the bend number.

43

Table 3-1 Simulation results for traditional DME

Benchmarks r1 r2 r3 r4 r5

Number of clock pins 267 598 862 1903 3101

Total Wire Length (×106) 1.73 3.63 4.69 8.86 13.08

Total tree capacitance (pF) 34.41 69.96 89.86 175.16 263.97

Total bend number 309 694 1023 2293 3742

Two-Bend Branches 52 110 180 425 690

Clock Phase Delay (ns) 2.1 5.5 7.95 23.1 35.52

Table 3-2 Simulation results of the proposed algorithm

Benchmarks r1 r2 r3 r4 r5

Number of clock pins 267 598 862 1903 3101

Total Wire Length(×106) 1.744 3.66 4.76 8.91 13.11

Total tree capacitance (pF) 35.48 72.89 94.26 180.24 270.56

Total bend number 212 493 702 1607 2627

Two-BendBranches 0 0 0 0 0

Clock Phase Delay (ns) 1.71 4.66 7.21 18.17 27.06

Table 3-3 Percentage of changes in bend number, total capacitance and phase delay
by using Modified DME

Benchmarks r1 r2 r3 r4 r5

Number of Bend Reduction 27.1% 28.9% 31.3% 29.9% 29.7%

Phase delay Reduction 18.5% 15.2% 9.2% 21.3% 23.8%

Total Capacitance Increase 3.1% 4.2% 4.8% 2.9% 2.4%

44

4

Chapter 4

Pattern-Driven Zero Skew
Clock Tree Router

 The preferred direction routing scheme with two metal layers (horizontal and vertical) is

assumed in the context of this chapter. Therefore reducing the number of bends directly

minimizes the number of vias. To control the number of bends associated with wire

segments, routes are considered to be of L-pattern. Pattern routing would also increase

the predictability of the clock routing such that the final clock tree layout specification

would not be seriously deviated from the expected one. A clock tree with 1000s of sinks

in a local region could be very dense in some sections. Hence, routing of clock tree

wiring with L-pattern significantly increases the routing constraint violation and the

overflowed routing tracks.

 Usually few metal layers are reserved for the clock net and clock routing is done before

routing of data and control signals. Therefore clock routing would not be affected by the

45

routing demands of other nets. In the context of this chapter, routing demand and

congestion are referred to those of the clock tree itself.

 We consider the pattern routing demand of the clock tree edges in three major clock

tree construction steps i.e. topology generation, balanced delay merging (merging

segment construction), and branch point embedding. A demand aware merging selection

technique is proposed to distribute the routing demand to avoid overly congested routing

areas. To do this we introduce a new merging cost function that includes a combination

of the wire length and the expected routing demand.

Our methodology is able to:

1- Efficiently reduce the number of vias in clock trees.

2- Render more uniform distributions of the via throughout the clock trees.

3- Reduce the total clock tree wire length by avoiding unnecessary detours.

4- Minimize the skew variation after CT (clock tree) detailed routing.

 Our algorithm is the first of its kind in closing the gap between clock tree synthesis,
CTS, and actual clock layout which is usually ignored in most of academic clock routing
algorithm.

4.1 Sampled Base Zero skew Merging Segment Construction

In traditional zero-skew merging, the whole merging segment is kept as possible

places for the tapping point. To find the exact placement for tapping points, traditional

zero skew clock tree algorithms defer the decision of choosing where to merge the two

sub-trees until the parent merging point is decided. In theory, keeping the whole merging

segment leads to optimal wire length, but it overlooks the difficulty of detail routing.

46

Different parts in a merging segment may have different routing patterns and routing

qualities.

To capture the difference of parts in merging segment and propagate it to the upper

level we exploit a sampled-base implementation [11] of traditional DME. Instead of

computing the intersection of Manhattan arcs, collections of merging points (MP) are

maintained that represent each merging segment. The set of merging points that

represent a merging segment is referred to as merging point set (MPS). To calculate a

MPS, the traditional merging segment is computed for all the closet pairs of merging

points (MP) and then sampled. When there are more than two closest pairs of MPs, the

union of all the resulting zero-skew MPs is taken and pruned. An example of sampled

DME closest pair merging is shown in the Figure 4-1.

MPS1

MPS2

Figure 4-1 An example of sampled merging segment

47

 The pruning divides the area into proximity grid of the user specified resolution and

each MP is allocated to the appropriate grid location. Any single MP in a grid can replace

all other MPs, therefore pruning only maintains a linear number of samples for each

merging segment. It is important to note that since the MP calculation is pair wise, many

of the resulting merging segments will overlap. As there are multiple closest pairs of

MPs, there are potentially multiple equally viable minimum wire length zero skew

solutions as illustrated in Figure 4-2. In the deterministic case these solutions are

identical. But they might have different result on the other routing criteria (i.e.

congestion).

MPS1

MPS2

Figure 4-2 Two potential embedding scenarios in sampled DME

 We intend to address the congestion driven clock routing with sampled- merging

segment scheme. Unlike the traditional merging segment, in the sampled merging

segment approach we can treat each sample separately and analyze the likelihood of

congestion for each embedding solution.

48

4.2 Demand graph and probabilistic demand estimation

 The entire routing region is tessellated into array of rectangular tiles (bins). The tiles are

represented as a graph (demand graph) referred to as G(Vg,Eg), where Vg= {g1 , g2,...}

corresponds to the set of grid cells, and edge ݁௜௝ א ௚ corresponds to the boundaryܧ

between two adjacent grid cells gi, gjאVg. The graph of Figure 4-3 shows a demand graph

which serves to maintain routing demand information of a 3×4 tessellated routing plane.

Figure 4-3 Tessellated routing plane and its graph representation

 Since routing is performed in the Manhattan geometry, all wire segments must be either

horizontal or vertical. For two points, s and t, in a Manhattan plane, all minimum distance

wires that connect s to t are located in a rectangular bounding box, referred as ݐݏഥ , where s

and t are the two opposite vertices of the bounding box. More generally a routing area

that defines the potential routing region of two Manhattan arcs or a Manhattan arc and a

point is also called the Bounding box. The bounding box of two Manhattan arcs l1 and l2,

49

denoted as ݈ଵ݈ଶതതതതത, accommodates all minimum routing paths that connect the arc l1 to the

arc l2.Examples of the bounding box are illustrated in Figure 4-4(a) and 4-4(b).

s

t l1

l2

Slope (-1)

Slope (+1)
(a) (b)

Figure 4-4 Routing bounding boxes in a tessellated plane

Definition: In the demand graph, the number of wires traveling along a graph edge b is

designated as the demand, d(b).

 The demand definition is based on deterministic routing path, which cannot help routers

when the routing paths are not fixed. During the clock tree construction, the wiring paths

are not determined. Therefore all paths can only be specified roughly with bounding

boxes. We need to use a non-deterministic method to evaluate the demand in routing

bins. For example, in our nondeterministic method, a path from s to t is replaced by its

equivalent bounding box ݐݏ. Unlike the demand definition which is based on the

deterministic wire routes, we will use the probabilistic demand to indicate the possibility

of wires running along a graph edge. To control the number of bends (vias) associated

with any wire segment, routes are considered to be of L-shape. In our probabilistic

50

demand estimation, a uniform probability distribution is assumed for all routes in a

bounding box. In other words, every route has the same likelihood to be chosen in later

stages. Therefore we define the probabilistic demand for a L-edge ݐݏ to a demand graph

edge b to be the probability that the L-edge run along this edge, and is referred

as ݀௣௥௢௕ሺܾǡ ഥݐݏ ሻ. For example in Figure 4-5, ݀௣௥௢௕ሺܾǡ ഥݐݏ ሻfor every edge b in the boundary

of the bounding box will be 0.5 and all internal edges have demand equal to zero.

0.5

0

0.5

s

t

Figure 4-5 Demand graph of the (s,t) bounding box. Probabilistic demands for L-
pattern routing are designated

4.3 Congestion-driven zero-skew clock tree routing

 Given a set of clock sinks S= {s1,s2,…,sn}, the congestion-driven zero skew clock router

constructs a minimal wire length tree to connect the sinks according to a topology. The

delay from the source to any sink in the tree is nominally zero according to the chosen

delay model. The synthesized clock tree can be routed with a pattern router with

minimum number of routing demand violation. The clock tree can be constructed

incrementally in a bottom-up fashion.

51

 Let K be a node set initialized by the leaf set S. At each iteration of the algorithm, two

nodes v1 and v2 are taken from K, the parent node v is calculated using the zero-skew

merge describe in chapter 3, and v is added to K. The algorithm repeatedly selects two

leaves or merging segments and merges them. It is obvious that different zero skew

clock trees are obtained if different strategy is taken for the selection.

4.3.1 Selection strategy

 To our purpose an appropriate selection strategy is devised for minimal total wire length

and expected routing demand of the tree edges. The merging cost of a pair of candidates,

v1 and v2, comprises of the wire length increase cost and routing demand cost. If there is

no detour, the total wire length increase is calculated by d(v1,v2), the Manhattan distance

between v1 and v2. The expected routing demand of prospective merging candidates is

computed with the nondeterministic method.

4.3.1.1 Probabilistic demand calculation for a pair of candidates v1 and v2

 The routing demand of the merging is evaluated by the bounding box ݒଵݒଶതതതതതത, since the

path that merges the two candidates is not determined.

A. Merging two points

 In the tessellated routing plane in Figure 4-6(a), consider the L-pattern route from the

point v1 at to the other point v2. Figure 4-6(b) shows the corresponding demand graph of

the bounding box of the paths from v1 to v2. The routing in the bounding box now turns

into finding shortest path from the node v1 to the node v2 in the equivalent demand graph.

Assuming no obstacles between v1 and v2, there are two shortest routing paths with L

pattern that can connect the point v1 to the point v2. The L-shape paths from v1 to v2 have

52

equal chance to occur. Hence the probabilistic demand,݀௣௥௢௕, for any horizontal and

vertical edge in the demand graph is derived as follow:

݀௣௥௢௕ሺܾǡ ଶሻݒଵݒ ൌ ቄͲǤͷ Ͳ݁݃݀݁ݕݎܽ݀݊ݑ݋ܾ ݏ݅ ܾ݂݅ ݁ݏ݅ݓݎ݄݁ݐ݋

v1 0.5

0 0.5

v2

v1

v2

(a) (b)

Figure 4-6 Demand calculation for two points

B. Merging a point and a Manhattan arc

 Consider a L-pattern route from a point v1 at bin (0,0) to an arc l, which has its head and

tail points at the binsሺ݄௫ǡ ݄௬ሻ and ሺݐ௫ ǡ ௬ሻ respectively. In order to calculate theݐ

probabilistic demand for bin edges in the corresponding bounding box, first we sample

the arc l in such a way that there is at least one sample in every bin that is encountered by

the arc. All the sample points have the same chance to be connected to the point within

the bounding box. The probability of choosing each sample is ଵȁ௧ೣି௛ೣାଵȁ. The probabilistic

demand for every bin edge b is equivalent to the following summation on all of the

sample points on the arc l.

53

෍ ͳȁݐ௫ െ ݄௫ ൅ ͳȁ ൈ ݀௣௥௢௕ሺ ܾǡ׊௣א௟ തതതതത ሻ݌ଵݒ
 Where ݀௣௥௢௕ሺ ܾǡ തതതതത ሻ is the probabilistic demand of the bin boundary b due to the݌ଵݒ

bounding box ݒଵ݌തതതതത (bounding box of the route from v1 to p). Since ݀௣௥௢௕ሺ ܾǡ തതത ሻ is݌ݏ

either 0 or 0.5 and can be computed in ܱሺͳሻ for every bin boundary, the probabilistic

demand for every bin boundary can be computed in ܱሺ݊ሻǡ where n is the number of

samples in the arc l. An example is illustrated in Figure 4-7. An arc l in a tessellated

routing plane is given and h(5,1) and t(2,4) are the coordinates of the bins where the arc

head and tail points are located. The arc is sampled as depicted in Figure 4-7(a). Each

sample corresponds to a bin in the routing plane. The related demand graph is shown in

Figure 4-7(b).The total number of possible L-shape routes from s to the arc l is equal to 8

and the probabilistic demands for the graph edges a and b are ଵ଼ and ଷ଼ respectively.

s(0,0) s(0,0)

h(5,1)

t(2,4)

h(5,1)

t(2,4)

a

bb

a

(a) (b)

Figure 4-7 Probabilistic demands for a point-arc bounding box

C. Merging two Manhattan arcs

 Assume ݈ and ݈ᇱ are two Manhattan arcs in our tessellated routing plane. Let ݊ and ݉ be

the number of samples in the arc ݈ and ݈ᇱ respectively. The probabilistic demand of every

54

bin edge b, in the corresponding bounding box ݈݈ᇱതതത is computed with the following

summation on all ݌ଵ݌ଶതതതതതത ǡ where ݌ଵ ݌ଶ are samples on the arc ݈ and ݈ᇱ.
෍ ͳ݊ ൈ ݉ ൈ ݀௣௥௢௕ሺ ܾǡ௣భ௣మതതതതതതത ଶതതതതതത ሻ݌ଵ݌

4.3.2 Merging Selection Cost

 The merging cost of a pair of candidates, v1 and v2, comprises of the wire length increase

cost and routing demand cost. The average routing demand of v1 and v2, denoted by ܦܴܣሺݒଵǡ ଶሻ, refers to the average of the probabilistic demand of all edges involved inݒ

the bounding box of ݒଵݒଶ .

 We define the merging selection cost of v1 and v2 as ܥܯሺݒଵǡ ߚ+ ଶሻ = Į × d(v1,v2)ݒ ൈ݇ ൈ ଵǡݒሺܦܴܣ ଶሻ, where d(v1,v2) is the Manhattan distance of v1 and v2, Į and ȕ are theݒ

user defined weights of the wire length and demand overhead respectively, and ݇ is the

normalization factor for ܦܴܣ. We assume that during the merging selection process,

each node can be merged to only one of its nearest neighbors. Merging far away nodes

would likely increase the total tree wire length. We assume a constant N to denote the

number of the nearest neighbors we consider for each node.

 The nearest neighbor graph, NG, is constructed to maintain the nearest neighbor

candidates. Each merging segment (or a point) corresponds to a node in the graph. An

edge ݁௜௝ exists between two vertices ݒ௜ and ݒ௝ if ݒ௜ is among the three nearest neighbors

of ݒ௝ or ݒ௜ is one of the three nearest neighbors of ݒ௝ . Every edge in the nearest neighbor

graph implies a possible parent merging segment for two neighbors. Weight of an edge

55

݁௜௝ in the nearest neighbor graph is equal to ܥܯሺݒ௜ǡ ௝ሻ. An example is shown in Figureݒ

4-8.

1 2

3
4

1

2

3

4

Figure 4-8 Nearest neighbour graph for N=3

4.4 The Algorithm

 The pseudo-code for the pattern-driven zero skew clock routing is shown in Figure 4-9.

The algorithm repeatedly selects two leaves or merging segments and merges them. At

each iteration of the algorithm, two nodes vi and vj are taken from K. The selection is

made using the nearest neighbor graph build from K and weighted with the new cost

function. The parent node v is calculated using the zero-skew merge. The merging

segment v is then sampled and added to K. Since v is the parent segment of vi and vj ,

two bounding boxes ݒపݒതതതത and ݒݒఫ തതതതത can be determined. The demand graph edges involved

in ݒపݒതതതത and ݒݒఫ തതതതത will be updated. After n-1 iterations the algorithm reaches the root.

56

Algorithm Pattern Driven Zero Skew Clock Tree Algorithm
Input: A set of sinks S={ s1,s2ǡǥǡsn }

Output: A Zero skew tree that can be L-pattern routed with

 minimum overflowed tracks.

1: Tessellate the routing plane into N×N bins

2: Create the routing demand graph, DG(VDG,EDG), where VDG corresponds to bins in

 the tessellated routing region, ȁ ஽ܸீȁ=N2,

3: Initialize G(VDG,EDG) by assigning the sink positions to nodes and edge weights to

 zero

4: K:=S

5: If ȁ ȁ=1, Stop, else do

6: Create the nearest neighbor graph, NG(VNG, ENG), on K

 where ȁ ேܸீȁ=ȁ ȁ , ENG={ e(vi, vj) | ݒ௜ is among the three
 nearest neighbors of ݒ௝ or ݒ௜ is one of the three
 nearest neighbors of ݒ௝}
7: Apply the weight function W: ENG ՜R such that

 w(e(vi, vj))= Į × d(vi ,vj) +ߚ ൈ ௜ǡݒሺܦܴܣ .௝ሻݒ
8: Select the smallest e(vi, vj) in ENG

9: Calculate the parent segment, vp , from vi and vj using

 the zero skew merge

10: sample the merging segment of vp according to our

 define grid resolution

11: Update the all edges in demand graph which are

 involved in ݒపݒതതതത and ݒݒఫതതതത

12: Remove vi and vj from K and add v to K

13: Go to Step 5

Figure 4-9 Procedure of merging selection

 The algorithm in Figure 4-9, defers embedding the branch points until the clock tree

root is reached. During the bottom-up tree construction, every Steiner branch is

represented by the sampled merging segment. A sampled merging segment maintains a

collection of equally viable minimum wire length zero skew solutions. But these different

solutions may have different impacts in routing demands. For example in Figure 4-10,

embedding the parent branch point on the sample s or v in the merging segment would

achieve minimum wire and zero skew tree. However, in Figure 4-10(a) the probabilistic

demands of all bin edges involved in ܽݒതതതത and ܾݒതതതത are ଵଶ but in Figure 4-10(b) the demands

57

of bin edges involved in ܾݏതതതത are equal to 1. This implies that the embedding solution of

the parent branch point on v would be more flexible and reduces the chance of overflow.

 The maximum probabilistic routing demand of bin edges involved in a bounding box ݐݏഥ

is called peak demand of the bounding box denoted as ݀݌ሺݐݏഥ ሻ. In Figure 4-10(b), ݀݌ሺܽݏതതതሻ and ݀݌൫ܾݏതതത൯ are equal to ଵଶ and 1 respectively. We introduce a parameter called

accumulative peak demand, ݌݀ܣ , for every sample point in the merging segments. ݌݀ܣ

of a sample point in a merging segment is calculated incrementally from its children

during the bottom-up tree construction. In Figure 2-10(b), ݌݀ܣሺݏሻ can be obtained by:

ሻݏሺ݌݀ܣ ൌ തതതሻݏሺܽ݀݌൛ሺ ݔܽܯ ൅ ሺܽሻሻǡ݌݀ܣ ൫݀݌൫ܾݏതതത൯ ൅ ሺܾሻ൯ൟ݌݀ܣ

 The procedure illustrated in Figure 4-9 computes the parent merging segment for all

the closest merging point pairs between two candidates. For each of these pairs, the

traditional merging segment is computed and sampled. When there are more than one

closest pairs, like s1 and s2 in Figures 4-10(c) and 4-10(d), some of the samples in the

parent merging segment may overlap. In Figures 4-10(c) and 4-10(d) the merging point v

is obtained from two pairs of points (s1,b) and (s2,b). The accumulative peak demand of

the sample point v is calculated from s1 or s2 which ever minimizes the Adp(v).

58

a

b

v

a

b

(d)

v

s2

s1

s2

s1

(c)

a

b

v

s

a

b

v

s

(a) (b)

Figure 4-10 Choosing the sample point with minimum peak demand

 In the bottom-up tree construction, accumulative peak demand values are calculated

incrementally for every sample in the tree. Each sample point remembers from which

points it was constructed; therefore it can be embedded in the top-down phase. When

multiple embedding solutions are viable, the algorithm chooses a point that has a smaller

Adp.

4.5 Experimental results

 The pattern driven clock routing algorithm was implemented in GNU C++ and executed

on a 2.00 Ghz Intel machine running Linux. We implemented the Greedy-DME[27]

which does not require any input topology to have a fair comparison, since in our method

59

the connection topology is also determined during the merging segment construction with

regard to demand map.

 In the benchmarks, r1 to r5, the per unit wire resistance and capacitance used are 0.003

Ω and 0.02 fF respectively. Our wire delay computation is based on Elmore model but it

can be easily extended to a more accurate model. The die size is Ͷ ൈ Ͷ ܿ݉ଶ and the grid

resolution was chosen so that there are 500 bins in both horizontal and vertical direction.

 We used two sets of parameter for the selection cost function as described in section

ߙ) ,3.2 ൌ ͳ ǡ ߚ ൌ Ͳ) and (ߙ ൌ ͲǤ͹ ǡ ߚ ൌ ͲǤ͵ሻ. The former set of parameters is chosen to

investigate the sub-optimality caused by sampling. Table 4-1 illustrates the total clock

tree wire length and run time for the synthesized abstract clock trees. Any sample point

may not be in the optimal location. Repeated sub-optimality during the bottom-up phase

can result in accumulated drift of a merging segment from its optimal location. But as the

experimental results show, the total sub-optimality is not significant (around 0.2%).

Changing the weight factors to favor the tree wiring congestion can slightly increase the

average wire length.

 The synthesized clock tree only includes the connection topology and the branches.

We applied a two-pin maze-router to complete the clock tree layout. The maze router

uses bends and detours to realize the clock tree layout. The clock tree specification

changed significantly from its nominal values in Table 4-1.

60

Table 4-1 Wire length and run time comparison on zero skew abstract clock trees
obtained from benchmarks r1-r5

Greedy DME[19]

The new algorithm ߙ ൌ ͳ ǡ ߚ ൌ Ͳ
The new algorithm ߙ ൌ ͲǤ͹ ǡ ൌ ͲǤ͵

Bench
marks # Sinks

Wire
length
(µm)
×ͳͲ଺

Run time
(s)

Wire
length
(µm)
×ͳͲ଺

Run
time
(s)

Wire
length
(µm)
×ͳͲ଺

Run
time
(s)

r1 267 1.43 0.9 1.43 12.1 1.51 61
r2 598 3.03 4.6 3.031 27.3 3.05 120
r3 862 4.052 9.72 4.052 41.5 4.1 223
r4 1903 7.23 48.5 7.24 107.3 7.26 556
r5 3101 12.8 127.6 12.93 289.3 13.21 1065

 The total wire length, the number of vias (bends), the number of overflows are

quantified for the maze-routed clock trees in Table 4-3. Both algorithms (Greedy-DME

and our pattern driven clock router) synthesize nominal zero skew clock trees, but the

skew specification could change dramatically by completing the clock tree layouts with

the maze router. The post routing skew for the benchmarks r1-r5 is illustrated in Table 4-

2. The proposed pattern-driven clock tree construction method is able to increase the

predictability of the routing paths in a clock tree which reduces the unpredicted post

routing skew (Table 4-2).

Table 4-2 Wire length and run time comparison on zero skew abstract clock trees
obtained from benchmarks r1-r5

 r1 r2 r3 r4 r5
Greedy-

DME 18(ps) 38(ps) 124(ps) 130(ps) 380(ps)

The new
algorithm 24(ps) 43(ps) 55(ps) 21(ps) 117(ps)

61

 The total wire length of the clock trees also increases compared to the nominal values

before the maze routing. Table 4-3 compares the total wire length and the numbers of

bends for two the two different algorithms after being routed by the maze router. The

maze routing generally favors the total wire length but it can compromise the quality of

the routing solution by increasing the number of vias (bends). This is clearly shown in

Table 4-3. The proposed pattern driven clock construction technique reduces the number

of bends (vias) by around 26% in the final clock tree layouts. The results indicate about

6% reduction in wire length.

 For the second experiment, the results of our pattern driven clock routing algorithm

were compared with the Greedy-DME generated solutions by feeding the synthesized

abstract trees to a pattern router, Labyrinth [46]. Labyrinth, an academic detail router

which is available at http://www.ece.ucsb.edu/~kastner/labyrinth/, was used because it is

capable of performing the pattern routing on an input net list. Labyrinth splits the clock

tree into two terminal nets, and sorts them from smallest to largest bonding box. We have

the Labyrinth to pattern route(L-shape) 80% of the nets with the smallest bounding boxes

while maze routing the rest. The pattern routed net remain unchanged during the rip up

and re route iterations. As we expected, the Labyrinth (L-pattern routing) favors the

number of bends when it routes the greedy-DME generated trees, but wire length and

overflows are increased. On the other hand, in our proposed method, the routing demand

impact of the L-pattern routing was taken in to account in the clock construction phase.

The results in Table 4-4 show that the pattern driven clock tree layouts have almost 28%

less bends (vias) than the greedy-DME when both are routed using Labyrinth. Our

algorithm reduces the wire length by an average of 8% compare to greedy-DME. One of

http://www.ece.ucsb.edu/~kastner/labyrinth/

62

the major advantages of our algorithm is the fact that it produces a clock tree which is

less complicated to route. The number of overflow is a rather negligible problem when

maze routing the clock tree, as illustrated in Table 4-3. Applying the L-pattern routing

(Labyrinth) increases the number of overflow to a level that cannot be ignored. Clock

routing completion rate would reduce when the number of overflows increases, because it

would exacerbate the burden of layout. Table 4-4 also shows that the number of

overflows is reduced dramatically with labyrinth. The results in Table 4-4 also indicate

that our pattern driven clock tree layouts have almost 74% less overflows than the

greedy-DME when both are routed using the Labyrinth.

Table 4-3 Wire length and run time comparison on zero skew abstract clock trees obtained
from benchmarks r1-r5

Benchmarks #
Sinks

Greedy-DME/ Maze route Our new Algorithm /
Maze route Improvement

Wire
length
(µm)
×ͳͲ଺

Bend
vias

Overflows

Wire
length
(µm)
×ͳͲ଺

Bend
vias

Overflows

Wire
length
Cost
(%)

Bend
(%)

#Overflows
(%)

r1 267 1.51 591 0 1.55 511 0 -2.6 13.5 0
r2 598 3.17 1621 5 3.12 1202 0 1.5 25.8 100
r3 862 4.42 2914 11 4.1 1739 1 7.2 30.8 90.9
r4 1903 8.09 6383 10 7.3 4854 3 9.7 23.9 70
r5 3101 14.53 11925 15 12.6 7232 3 13.4 39.3 80

63

Table 4-4 Comparison of Greedy-DME and the New Algorithm by Labyrinth routing of the
abstract tree (80% smallest nets L-route)

Benchmarks #
Sinks

Greedy-DME/ Labyrinth Our new Algorithm /
Labyrinth Improvement

Wire
length
(µm)
×ͳͲ଺

Bend
vias

Overflows

Wire
length
(µm)
×ͳͲ଺

Bend
vias

Overflows

Wire
length
Cost
(%)

Bend
(%)

#Overflows
(%)

r1 267 1.63 379 8 1.58 301 0 3 20.5 100
r2 598 3.32 1584 7 3.22 1251 5 3.1 21 28.5
r3 862 4.48 3087 17 4.19 1934 2 6.4 37.3 88.3
r4 1903 8.39 4983 26 7.31 3802 8 12.8 23.1 69.2
r5 3101 15.91 9652 102 13.22 6351 11 16.9 34.2 89

64

5

Chapter 5

Reducing Wire length and
Elongation using Skew
Compensation Technique

5.1 Using Flip-Flops with different operating speeds as a skew compensation
Technique to construct zero skew energy recovery clock network

 In reference [47], a new skew compensation technique using flip-flops with different

operating speeds was introduced. The new technique provides timing slacks that could be

used in a clock distribution algorithm in order to reduce the total wire length and routing

complexity. Traditionally, to manage the clock skew in a clock network, clock

distribution algorithms attempt to balance the delay from the source to all sinks. This is

accomplished mainly through wire length adjustment, wire width sizing, and buffer

insertion. The clock distribution algorithm could also take advantage of the new proposed

skew compensation technique along with other traditional balancing approaches to get

65

the desired skew in a clock network with less total wire length. Consequently clock

network power consumption will be decreased. Additional benefits of the proposed

compensation technique are the reduction in the number of wire elongations and the

added flexibility in the distribution network layout. The new compensation technique was

incorporated into a zero skew clock tree router (ZST). A ZST is able to construct a clock

tree that delivers the clock edges to all sinks with equal delay (nominal zero skew). The

Differed Merge

Embedding algorithm (DME) was modified to accommodate the proposed skew

compensation technique. In order to use the new technique in any ZST, two major issues

should be considered:

1- Selecting which type of flip-flops to be used in every single location.

2- Taking advantage of the timing slacks provided by the new technique during the

 bottom up tree construction in order to reduce the total clock tree wire length.

 Usually, a typical clock tree router is not aware of the underlying data-path and data

flow dependency between the clock sinks. This assumption indicates that, at first there is

no preference among the clock sinks to guide the algorithm in order to select between

different types of flip-flops. In the proposed approach, the flip flops have three operating

speeds: standard, slow and fast. Initially all sinks are chosen from the standard type. The

best choice for different types of flip-flops at the sinks will be identified while the clock

tree is being constructed. This new algorithm is developed based on the observation that a

zero skew merging segment obtained by the traditional DME can be shifted towards one

66

of its children by changing the flip-flop types in its left and right sub-trees. The tuning of

a merging segment by changing the flip-flop type is illustrated in Fig. 5-1

v

ums1(w)

V U

W
ms2(w)

ms3(w)

Both v and u are standard type Flip-Flops

Flip-Flop v is faster than u

Flip-Flop u is faster than v

Figure 5.1 Tuning a merging segment by changing the flip-flop type in left or right
sub-tree

 In Fig. 5-1, U and V are two sub-trees which their roots are embedded at locations u and

v, respectively, and U and V are to be merged such that the new sub-tree W has zero skew

and minimum wire length. The rectangle with u and v as opposite vertices encloses all the

minimum distance, Manhattan connections between u and v. ms(w) is the locus of the

points (merging segment) that can merge two points u and v with minimum wire length

and zero skew. In Figure 5-1, ms1(w) is the merging segment that merges v and u, where

sub-trees V and U both contain standard flip-flops.

 As illustrated in the figure, by changing the flip-flops operating speed in either U or V,

the merging segment shifts either towards u or v. For a pair of nodes (u,v), the algorithm

considers up to seven different combinations of flip-flops operating speeds in u and v;

67

(ustandard, vstandard), (ustandard, vfast), (ustandard, vslow), (ufast, vstandard), (ufast,

vslow), (uslow, vstandard), and (uslow, vfast). There are two redundant combinations,

(uslow, vslow) and (ufast, vfast). Since both of these combinations result in the same

merging segment as in (ustandard, vstandard), the algorithm does not consider the two

redundant cases to compute the merging segment. During the bottom-up phase, the

algorithm computes the locus of the merging points (merging segment) where two sub-

trees can join such that the new sub-tree has a zero skew. The new merging segment is

computed for different combination of flip-flops in both sub-trees. Unlike the traditional

DME, in the modified DME algorithm there is a set of merging segments corresponding

to each node. Each merging segment is computed similarly to the DME, but the algorithm

considers the proper matched delay for either left or right sub-tree. The three types of

flip-flops enable the algorithm to use the matched delay values in order to compensate for

the skew.

 A greedy strategy was used to choose the types of flip flops. This means that if the

types of flip-flops in a set of leaves in a sub-tree have already been determined, the

algorithm will not change it in a later stage. For example in Fig. 5-1, if the algorithm

specifies the slow flip-flop for the leaves in the sub-tree rooted at v and the fast flip-flops

for the leaves in the sub-tree rooted at u, this implies that the decision for the types of

flip-flops in the sub-tree w is already made. Indeed to achieve more optimum results, one

can defer the decision making to the upper levels, but this will increase the timing

complexity of the algorithm.

 Let s1, s2, s3 and s4 be four nodes in a clock tree. The nodes are to be merged

corresponding to the topology shown in Fig. 5-2(a), where s1 and s2 are the children of

68

node v and node u is the parent of s3 and s4. In the upper level of the tree, u and v are to

be merged into node w. Assume the flip-flop types in the sub-trees rooted at s1, s2, s3 and

s4 have not been specified by the algorithm.

 The algorithm enumerates all the seven different choices for the flips-flops in (s1, s2)

and (s3, s4). The merging segments for node v and u are calculated for all combinations.

Let MS(U) and MS(V) refer to the set of the merging segments for all different flip-flop

speed combinations for nodes u and v, respectively. Two newly determined sub-trees

rooted at v and u need to be merged into w. To compute the merging point for node w, the

algorithm selects one merging segment from ms(u) and ms(v) which results in minimum

wire length. To reduce the total wire length, a sub-tree needs to be merged to another sub-

tree that is not only nearby but also minimizes wire elongation. Therefore a merging cost

function to include the distance and the wire elongation in a unified form is proposed.

This merging cost is the same as the Manhattan distance between the roots of the two

sub-trees if there was no elongation; otherwise the extra wire due to wire snaking is

included in the merging cost.

 The algorithm uses the unified wire length cost function to determine which merging

segments should be selected from each one of its children. The best possible choice

indicates the types of the flip-flops in s1, s2, s3 and s4 as shown in Fig.5-2(b). It should be

noted that the Elmore delay that is used to model the delay in the square-wave based

clock distribution networks algorithms is also valid for signals other than step signals and

that the actual delay approaches the Elmore Delay as the input signal rise time increases

[48]. This illustrates that the algorithms used to construct square-wave based clock

69

distribution networks can be extended and applied to construct energy-recovery clock

distribution networks with a sinusoidal clock signal.

S1

leaves

Leaves in S2 are slow
Leaves in S1 are fast
Both sub- trees have standard speed
leaves
Leaves in S1 are slow
Leaves in S2 are fast

Leaves in S3 are slow
Leaves in S4 are fast
Both sub- trees have standard speed leaves

 Leaves in S4 are slow
Leaves in S3 are fast

Merging in upper level with
the best possible combination

S4

leaves

S2 S3

(b)

w

v u
w

v u

s1 s2 s3 s4

(a) Clock tree topology Determining flip-flop type based on minimum wire length merging

Figure 5-2 Modified DME (with multiple flip flop speeds)

5.2 Experimental Results

 The traditional DME and the new modified DME algorithms were implemented in C++

to construct the clock tree. The initial clock tree topology in both cases was obtained by

the method of means and medians (MMM). Both algorithms were run on a set of

benchmarks (r1-r5) that contain from 267 up to 3101 clock sinks. The clock sink

distribution in the benchmarks is the same as the one in [12]. The sinks are SCCER flip-

flops with a loading capacitance of 74.98fF. The wire resistance and capacitance are

0.022ȍ/ȝm and 0.083fF/ȝm. The unit resistance and capacitance are calculated for a 1um

width metal seven in 90 nm process technology.

 The simulation results obtained are shown in Table 5.1. By applying the proposed skew

compensation technique, the total clock tree wire length has been reduced by an average

70

of 11.5%. Reducing the total wire length leads to a reduction in the routing complexity as

well as a reduction in the clock tree power consumption which is one of the most

important issues in clock distribution networks design.

 One of the major drawbacks associated with the DME based clock routers is the fact

that they introduce many wire elongations to achieve a zero skew clock network. The

elongation problem is exacerbated usually when the clock routers only consider the

spatial proximity to find the best matching pairs. The results in Table 5.1 show a

reduction of an average of 53.2% in the number of wire elongation. Wire elongation is a

real burden in detail phase routing, because they introduce unnecessary bends and vias.

The new algorithm is only a simple greedy heuristic that was developed to verify the

advantages of using the new skew compensation technique. Indeed the algorithm is not

guaranteed to get the best and optimal results. Nevertheless the results are encouraging.

As was shown in Fig. 5-2, for an internal node w, the algorithm only computes the

merging segment for the closet pair of the merging points of its children. Therefore, some

potential Steiner points that might give a better result are pruned away. One could further

explore other pruning schemes to get better results.

71

Table 5-1 Comparison of MMM-DME and the New Modified DME using the
proposed skew compensation technique

Benchmarks

Sinks

MMM-DME New Modified DME Improvement

Cost
(µm)

wire
elongation

Cost
(µm)

wire
elongation

Cost
(%)

wire
elongation

(%)

r1 267 2416227 10 2180193 7 9.7 30

r2 598 6435416 38 5610157 18 12.8 52

r3 862 8064415 71 7002777 24 13.1 66

r4 1903 2458224 136 22066543 59 10.2 56

r5 3101 3936935 324 34745355 123 11.7 62

72

6

Chapter 6

Conclusion and Future
works

In this thesis we first proposed a via-aware clock tree construction scheme, which

considers at most one-bend merging in all branches of clock trees. In preferred direction

routing, bends imply switching between metal layers, therefore requiring use of vias. The

proposed algorithm reduces via usage in clock trees by decreasing the number of bends.

This reduction is accomplished by binding the merging segments to the areas that make

fewer bends. The Algorithm uses wire sizing to tune the branch points in order to reduce

the number of bends further. Simulation results show that the proposed scheme reduces

the number of bends by an average of 29.6% with only 3.4% increase in total capacitance

compared to the traditional DME algorithm.

 We developed a method to calculate the probabilistic routing demand for clock tree

edges during the bottom-up merging segment construction phase using their bounding

boxes. We introduced a new demand driven cost function and used the cost function to

73

construct a clock tree topology with regard to demand map of the clock net. A sampled

base technique was adopted to store the incremental demand impact for each sample

during the merging segment construction phase. We used the accumulated peak demand

values to embed the branch points when multiple embedded solutions were available. The

results confirm that routing a DME generated clock tree in practice will introduce extra

wiring and bends that are hidden in all published DME based clock tree routers. Our

algorithm is targeted towards practical clock tree generation with less number of vias.

The total wire length was reduced by an average of 8%. Post-routing induced skew was

decreased by an average of 31.8%. Also the total number of vias is reduced by 28%.

Furthermore routing overflows are reduced considerably at the expense of more

computation time.

 We also developed a novel flip-flop placement algorithm for a set of fast, slow and

normal speed flip-flops. This enabled us to use difference in flip-flop operating speed as

a tool to compensate for skew. We used this in our algorithm and managed to reduce the

total wire length and elongation.

6.1 Future works

6.1.1 Probabilistic congestion estimation in clock algorithm

As described in Chapter 4, a probabilistic method to estimate the likelihood of

congestion during a clock tree embedding phase is developed based on the sampling

method. As a result of this implementation, a clock tree router is able to lay out a more

74

realistic clock tree and ease the burden of layout embedding in the detail routing phase.

To have a clock tree with less hidden overhead and predictable wire length and wiring

topology, several challenges must be addressed:

 Investigating a clustering based implementation for the congestion driven

clock router to speed up the algorithm run time

 The grid-less model, SPP, introduced by Haydar et al. describes all the shortest

paths between two points in the presence of obstacles. We believe that SPP can

be incorporated in our methodology to reduce the complexity of algorithm as

well as handling the congestion driven clock routing in the presence of routing

blockages. We will investigate this further.

 Sample based merging segments are useful to consolidate most of the

routability objectives in a unified optimization problem. To do that an

investigation is needed for a unified weighted cost function to embrace the

problems of via minimization, congestion awareness and reducing the total

wire length.

6.1.2 Topology Generation with obstacle consideration

 Obstacle consideration is one of the missing puzzles of a practical clock tree routing.

As explained in the literature review, a widely accepted conclusion is that a sub-tree

should be merged with its nearest neighbor. This assumption makes sense as long as there

is no blockage in the routing region, since only spatial proximity is considered to identify

the nearest neighbor. Indeed in the presence of obstacles, a formerly identified nearest

75

pair could be a non-optimum pair to merge. The obstacle introduces detours and bends in

the wiring paths that could degrade the resulting merging solution. To address this

deficiency we propose the following

 To investigate the topology impact on the wire length and the number of vias. As

a result we are expected to come up with a total wire length and number of bend

estimation model to predict the lower bound for wire length and bend number

prior to the clock routing. We notice that this model has not been developed and,

we are expected to propose a more general prediction model for global routing

problem besides the clock distribution. The model then can be used to guide a

clock tree router in topology generation phase.

 The best reported clock tree router in terms of wire length is known to be the

Greedy-DME introduced by Edahiro. In reality, Greedy DME suffers from

serious deficiency such that it produces too many wire elongations mainly

because it does not consider the sub-tree loading capacitance to find the best pair

to merge. Therefore it is very likely for the algorithm to merge a heavily

unbalanced pair of sub-trees just by taking the spatial proximity into account.

With obstacles, this deficiency is compounded by the fact that the detours from

the obstacles are completely overlooked.

76

6.1.3 Via Minimization in 3D ICs

 The fabrication technology is rapidly moving toward stacking multiple die in vertical

dimension referred as 3D integrated circuit. The vertical interconnections in 3D ICs are

through TSVs (through silicon via). TSVs greatly reduce the circuit reliability and

degrade the signal quality. 3D fabrication, usually consider an upper bound for number

of TSVs in a 3D design. In 3D integration, the clock network connects a set of flip-

flops that are located in different die in the vertical dimension. Via minimization in 3D

clock routing algorithm is a new emerging concern that needs to be addressed in future.

77

References

[1] Xin-Wei Shih, Hsu-Chieh Lee, Kuan-Hsien Ho, Yao-Wen Chang, “High
variation-tolerant obstacle-avoiding clock mesh synthesis should be givenwith
symmetrical driving trees,” proceedings of International Conference in Computer
Aided Design (ICCAD), Nov 2010, pp. 452-457

[2] C. Yeh, G. Wilke, H.Chen, S. Reddy, H. Nguyen, T. Miyoshi, W. Walker, R.
Murgai, “Clock Distribution Architectures: A Comprehensive Study,”
Proceedings of 7th International Symposium on Quality Electronic Design, 2006,
pp. 85-91

[3] Haihua Su, Sachin S. Sapatnekar, “Hybrid structured clock network
construction,” Proceedings of ACM/IEEE Computer Aided Design Conference(
ICCAD), 2001, pp. 333-336

[4] G. Venkataraman, Zhou Feng, Jiang Hu, Peng Li ,“Combinatorial algorithms for
fast clock mesh optimization,” Proceedings of ACM/IEEE Computer Aided
Design Conference, ICCAD 2006, pp 563 – 567

[5] Anand Rajaram, David Z. Pan, Jiang Hu, “Improved Algorithms for Link-Based
Non Tree Clock Networks for Skew Variability Reduction,” Proceedings of
International Symposium on Physical Design (ISPD’05), 2005, pp. 55-62

[6] C.J Andeson, J. Petrovick, M. Keaty, J. Warnock, G. Nussbaum, J.M. Tendier, C.
Carter, S. Chu, J. Clabes, J.Dilullo, P .Dudelly, P. Harvey, P.J. Restle, “Physical
Design of a Fourth-Generation POWER GHz Microprocessor,” Proceedings of
International Solid State circuit conference, 2001, pp. 232-233.

[7] Philiph J. Restle, Timothy G. McNamara, David A.Webber, Peter J.Camporese,
K. F. Eng, K. A.Jenkins, D. H. Allen, M. P. Quaranta, D. W. Boerstler, C.
J.Alpert, C. A. Carter, R. N. Bailey, J. G. Petrovick, B. L. Krauter, and B. D.
McCredie, “A Clock Distribution for Microprocessors,” IEEE Journal of Solid-
State Circuits, Vol. 36, No. 5, May 2001, pp. 792-799.

[8] Brad Smith, S. Blackley, et al, “A Comparison of Via Over-etch Variation
between Conventional Al-W and Dual-Inlaid Copper Integrations,” IEEE
international Conference on Interconnect Technology, 1999, pp. 106-108

[9] J. D. Cho, M. Sarrafzadeh, “Four-Bend Top-Down Global Routing,” IEEE
Transactions on Computer-Aided Design, Vol. 17, No. 9, September 1998, pp.
793-802.

[10] Chuan Lin, Hai Zhou, “Clock Skew Scheduling with Delay Padding for
Prescribed Skew Domains,” Proceedings of Asia-Pacific Design Automation
Conference (ASP-DAC), 2007, pp. 541-546.

[11] Guthaus, M.R. Sylvester, D. Brown, R.B, “Process-induced skew reduction in
nominal zero-skew clock trees,” Proceedings of Design Automation Asia and
South Pacific Conference, ASP-DAC 2006, pp. 84-89

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Xin-Wei%20Shih.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Hsu-Chieh%20Lee.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Kuan-Hsien%20Ho.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Yao-Wen%20Chang.QT.&newsearch=partialPref
http://portal.acm.org/author_page.cfm?id=81310500862&coll=GUIDE&dl=GUIDE&trk=0&CFID=4981262&CFTOKEN=13112120
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10626
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10626

78

[12] M. Hashimoto, T. Yamamoto, and H. Onodera, “Statistical analysis of clock
skew variation in H-tree structure,” proceedings of international symposium on
Quality electronic Design ISQAD, 2005, pp. 402-407.

[13] W.C. Elmore, “The transient response of damped linear networks,” Journal of
applied physics, Vol. 19, Jan 1948, pp. 55-63.

[14] Golden, M.; Arekapudi, S.; Dabney, G.; Haertel, M.; Hale, S.; Herlinger, L.; Kim,
Y.; McGrath, K.; Palisetti, V.; Singh, M, “A 2.6GHz Dual-Core 64bx86
Microprocessor with DDR2 Memory Support,” Proc Solid-State Circuits
Conference ISSCC, 2006, pp. 325-336.

[15] Rupesh S. Shelar, “An algorithm for routing with capacitance/distance
constraints for clock distribution in microprocessors,” IEEE Transactions on
Computer-Aided Design, Vol. 29, No. 2, 2010, pp. 245-249.

[16] Rupesh S. Shelar,“ Routing With Constraints for Post-Grid Clock Distribution in
Microprocessors,” ,” Proceedings of International Symposium on Physical Design
ISPD, 2009 pp. 141-148.

[17] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, “A Dual-Core Multi-Threaded
Xeon Processor with 16MB L3 Cache,” Proceedings Solid-State Circuits
Conference ISSCC, 2006, pp. 315-324.

[18] Rupesh S. Shelar, “An efficient clustering algorithm for low power clock tree
synthesis,” Proceedings of International Symposium on Physical Design ISPD,
2007 pp. 181-188

[19] Wen-Hao Liu, Yih-Lang Li, Hui-Chi Chen, “Minimizing clock latency range in
robust clock tree synthesis,” Proceeding of Design Automation Conference (ASP-
DAC), 2010, pp. 389-394.

[20] Xin. W. Shih, Yao-Wen Chang, “Fast timing-model independent buffered clock-
tree synthesis,” proceedings of Design Automation Conference, 2010, pp. 80-85.

[21] Xin-Wei Shih, Chung-Chun Cheng, Yuan-Kai Ho, Yao-Wen Chang, “Blockage-
avoiding buffered clock-tree synthesis for clock latency-range and skew
minimization,” Proceedings Design Automation Conference ASP-DAC 2010, pp.
395-400

[22] Jason Cong, Andrew B.Kahng, Cheng-kok Koh, and Albert Tsao, “ Bounded
Skew Clock and Steiner Routing,” ACM Transaction on Design Automation of
Electronic System, Vol 3, No 3, July 1998, pp. 341-388.

[23] Jeng-Liang Tsai, Tsung-Hao Chen, and Charlie Chung-Ping Chen, “Zero Skew
Clock-Tree Optimization With Buffer Insertion/Sizing and Wire Sizing,” IEEE
Transaction on Integrated Circuit and Systems, Vol. 23, No. 4, 2004, pp 565-572.

[24] Cong, J.; Kahng, A.B.; Robins, G, “Matching-based methods for high-
performance clock routing,” IEEE Transactions on Computer-Aided Design,
Volume 12, Issue 8, Aug 1993 pp. 1157 – 1169

[25] R. S. Tsay, “An Exact Zero Skew Clock Routing,” IEEE Transaction on
Computer-Aided Design, Vol . 12, No. 2, 1991, pp. 242-249.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1696063
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1696063
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1696063&queryText%3Da+2.6ghz+dual+core%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1696063&queryText%3Da+2.6ghz+dual+core%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1696063&queryText%3Da+2.6ghz+dual+core%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1696063&queryText%3Da+2.6ghz+dual+core%26openedRefinements%3D*%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1696063&queryText%3Da+2.6ghz+dual+core%26openedRefinements%3D*%26searchField%3DSearch+All
http://www.informatik.uni-trier.de/~ley/db/conf/ispd/ispd2007.html#Shelar07
http://www.informatik.uni-trier.de/~ley/db/conf/ispd/ispd2007.html#Shelar07
http://www.informatik.uni-trier.de/~ley/db/conf/ispd/ispd2007.html#Shelar07
http://www.informatik.uni-trier.de/~ley/db/conf/ispd/ispd2007.html#Shelar07
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Shih:Xin=Wei.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cheng:Chung=Chun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Ho:Yuan=Kai.html
http://www.informatik.uni-trier.de/~ley/db/conf/aspdac/aspdac2010.html#ShihCHC10

79

[26] Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, Kenneth D. Boese , “Zero Skew
Clock Routing with Minimum Wirelength,” IEEE Transaction on Circuits and
Systems, Vol 93, No 11, November 1992, pp.799-814

[27] Masato Edahiro, “An efficient zero-skew routing algorithm,” Proceedings of
ACM/IEEE Design Automation Conference, 1994, pp. 375-380.

[28] A.Kahng and C.Tsao, “More Practical Bounded-Skew Clock routing,”
Proceedings of 34th ACM/IEEE Design Automation Conference, June 1997, pp.
594-599.

[29] Haksu Kim Dian Zhou, “Efficient implementation of a planar clock routing with
the treatment of obstacles,” IEEE Transactions on Computer-Aided Design, Vol.
9, Issue. 10, October 2000, pp. 1220-1225

[30] H.Saaied, D.Al-Khalili, A.J Al-Khalili, “Clock Tree Tuning using Shortest Path
Polygon,” Proceedings of IEEE International Conference of SOC, 2004, pp. 59-
62.

[31] X. Zeng, D. Zhou, and W. Li, “Buffer insertion for clock delay and skew
minimization,” proceedings of International Symposium on Physical Design
ISPD, 1999, pp.36-41

[32] J.G. Xi, and W.W. Dai, “Buffer insertion and sizing under process variation for
low power clock distribution,” Proceedings of Design Automation Conference,
1995, pp. 383-388.

[33] G. E. Tellez, and M. Sarrafzadeh,“ Minimal buffer insertion in clock trees with
skew and slew rate constraints,” IEEE Transactions on Computer Aided Design of
Integrated Circuits, Vol 16, No 4, pp. 1545-1552

[34] Alpert C, Devgan A , “Wire Segmenting For Improved Buffer Insertion,” In
Design Automation Conference proceedings, 1997, pp.588-593

[35] H. Saaied, D.Al-Khalili, A.J.Al-Khalili and M.Nekili "Simultaneous Adaptive
Wire Adjustment and Local Topology Modification for Tuning a Bounded Skew
Clock Tree,” IEEE Trans on Computer Aided Design of Integrated Systems, Vol
24, No. 10, Oct. 2005, pp. 1637-1643

[36] Chin-Chih Chang, Jason Cong, “An Efficient Approach to Multilayer Layer
Assignment with an Application to Via Minimization,” IEEE Trans. On
Computer-Aided Design, Vol. 18 No. 5, May 1999, pp. 608-620

[37] Chun-Hao Wang, and Wai-kei Mak, “Ȝ-Geometry Clock Tree Construction with
Wire length and Via Minimization,” Proceedings of International Symposium on
VLSI Desing and Test, 2007, pp.1-4

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(haksu%20kim%3cIN%3eau)&valnm=Haksu+Kim&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20dian%20zhou%3cIN%3eau)&valnm=+Dian+Zhou&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Alpert,%20C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Devgan,%20A..QT.&newsearch=partialPref

80

[38] Duane Boning, Sani Nassif, “Models of Process Variations in Device and
Interconnect,” Design of High performance µp Circuits, Chapter 06, pp. 98-11.

[39] Qinglun Chen, Jin Zhao, “Via and Return Path Discontinuity Impact on High
Speed Digital Signal Quality,” IEEE Conference on Electrical Performance of
Electronic Packaging, 2005, pp. 215-217.

[40] Qiang Chen, Jeffry A. Davis, Payman Zarkeshha and James D. Meindl, “A
Compact Physical via Blockage Model,” IEEE Transaction on VLSI, Vol. 8, NO.
6, December 2000, pp. 689-692

[41] Lieniq J, Jerke G, “Electro-migration Aware Physical Design of Integrated
Circuits,” Proceedings of IEEE International Conference on VLSI Design, 2005,
pp77-82.

[42] Andrew B.Kahng, Albert Tsao, “Planar-DME: A Single-Layer Zero Clock Tree
Router,” IEEE Trans on Computer-Aided- Design, Vol. 15, No 1, January 1996,
pp.8-1996.

[43] Mehmat.C. Yildiz, Patrick H. Madden, “Preferred Direction Steiner Tree,” IEEE
Trans on Computer-Aided-Design, Vol. 21, No 11. November 2002, pp.1968-
1372

[44] Yang Yang, Tong Jing, Xianlong Hong, Yu Hu, Qi Zhu, Xiaodong Hu, Guiying
Yan, “ Via-Aware Global Routing for Good VLSI Manufacturability and High
Yield,” proceedings of 16th ASAP IEEE conference, July 2005, pp. 198-203

[45] M. A. Jackson, A. Srinivasan and E. S. Kuh, “Clock routing for high performance
IC’s,” Proceedings of ACM/IEEE Design Automation Conference, pp. 573-
579..June 1990

[46] R. Kastner, E. Bozorgzadeh, M.Sarrafzadeh, “Pattern Routing: Use and theory for
Increasing Predictability and Avoiding Coupling,” IEEE Transactions on
Computer-Aided Design of Integrated Circuit and Systems, Vol. 21, No. 7, July
2007, pp. 777-790

[47] S. E. Esmaei, A. M. Farhangi, A. J. Al-Khalili, G. E. R. Cowan, “A Novel
Approach for Skew Compensation in Energy Recovery Clock Distribution
Networks,” Submitted to IEEE Transaction on Computer Aided Design.

[48] R. Gupta; B. Tutuianu; L. T. Pileggi, “The Elmore delay as a bound for RC trees
with generalized input signals”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 16, issue. 1, Jan. 1997, pp. 95-104

http://0-ieeexplore.ieee.org.mercury.concordia.ca/xpl/tocresult.jsp?isnumber=12199

