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Abstract

High Performance Virtual Architecture Parallel Libraries With Data Redistribution
For Multicomputers

Hassan Hosseini, Ph.D.
Concordia University, 1998

Sequential programs which use library calls to perform their intensive numerical computations may
not deliver satisfactory performance for large problem instances in uniprocessor systems. Replacing
the library system with one that performs the computations on a multicomputer can provide signif-
icant improvement in the execution time of these programs. These parallel libraries also encourage
programmers who have no knowledge of multicomputer programming to use multicomputers to run
their newly developed compute-intensive applications.

Multicomputer programs perform computations on distributed data. Transfer of data between
processors is carried out using communication operations which are normally costly. Introduction
of parallel library systems gives rise to four important issues. The first one is the design of the
library routine without knowing the problem instance size and the physical system size, as this is the
case with many partitionable and reconfigurable systems. Performance of the library routine which
is sensitive to the granularity of the computation and the mapping of the computation onto the
physical system is the second issue. Maintaining a call interface which resembles those of sequential
libraries is the third one. Finally, once ported to a new platform, parallel system speedup becomes
a major concern.

Data distribution at each parallel library call is performed sequentially which, consequently,
degrades the performance of the library routine. Since distributed data used or produced by one
library call is often used in the subsequent calls to the same routine or other library routines, it
is beneficial to redistribute the data from the former library call to prepare for the latter. The
redistribution operation is a parallel operation and reduces the overall execution time of a parallel
library call.

This thesis presents the design of a parallel library system which possesses several unique proper-
ties. The design supports dynamic grain adjustment and delayed mapping of the virtual to physical
processors in order to reduce the communication overhead of the library calls. It also supports trans-
parent distributed data management that results in a call interface similar to those of sequential
libraries. Furthermore, the design supports transparent data redistribution across parallel library
calls. Once ported to a new system, the library can be easily adjusted with the target system
parameters to deliver the best performance based on the new parameters.

Feasibility, performance, and overhead of our design have been experimented using a source to
source transformer, a compiler, library design of several virtual architecture parallel algorithms, a
mapping module, a virtual communication library, a redistribution library, and a multicomputer sim-
ulator. The implementation of the library system on an actual multicomputer has been thoroughly
discussed in the thesis.
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Chapter 1

Introduction

Reusability, modularity, and portability are aspects of software engineering that allow fast devel-
opment of reliable, easily maintainable, and portable programs [63]. Libraries are a mechanism to
support these aspects. Moreover, ease of use, efficiency, and correctness of a library system encour-
age the programmers to take advantage of the existing routines as opposed to developing new ones
from scratch. There are many existing sequential programs that rely on numerical library routines,
such as LINPACK [21], to perform their intensive numerical computations such as matrix and vec-
tor operations, Gaussian elimination, Fast Fourier Transform, and so on. These libraries have been
designed to facilitate programming and provide good performance. Some hardware characteristics
such as the hierarchy of memory, the number of registers and the memory latency have been con-
sidered in the design of these libraries to improve the performance. However, when large problem
instance sizes need to be solved using these library routines, regardless of the various optimizations,
the performance may still be unsatisfactory due to the sequential nature of the library routines.
Even if the libraries are based on the multitasking or multithreading technique, the performance
will be limited by the speed of the uniprocessor system.

With the advent of parallel computing, programmers have considered running their existing or
newly developed programs on distributed-memory systems to reduce the execution time of their
programs beyond the limits of the uniprocessor systems. Since, for large problem instance sizes,
the majority of the execution time of the program is spent in the sequential library routines, these
library routines have been the first target for improving the overall performance of the programs.
Programming on multicomputers is in general difficult because many fine details must be managed
by the programmer. Performance gain is also challenging on these systems since communication op-
erations are expensive. The execution time is usually sensitive to the granularity of the computation
and the mapping of the computation to the physical processors. Partitionable and reconfigurable
systems make programming on these systems even more difficult because the programmer is not
aware of the system size and topology at programming time. Parallel libraries can greatly reduce
the programmer’s task in using multicomputers. A desirable parallel library design preserves the
sequential call interface, offers good performance, and can be easily ported. Parallel libraries which



possess these characteristics allow the existing sequential programs with library calls to be easily as-
similated into a multicomputer environment. The library system can provide the programmer with
the tool to convert the sequential program, that interfaces with the parallel library, to an SPMD?
form. The library system can then provide the necessary components to be linked with the SPMD
form to obtain an executable image for the specific multicomputer. These components are either
the library routine and its constituents or other runtime libraries used in the parallel library routine
implementation, such as a threading library, mapping library, communication library, or redistribu-
tion library provided by a one-time compilation using the resident compiler of the target system. In
any case, no parallel programming knowledge will be required from the programmer. Knowledge of
how to load and run an executable image on the target system can be easily encapsulated. Porta-
bility can be easily accommodated in such design by using standard calls, such as calls to standard
communication and threading libraries. This will require absolutely no changes to the user program
to run on the new system. However, a scheme is required to ensure the best speedup on the target
system after porting. With advances in the hardware technology, the latency and the startup cost of
communication will be reduced in the future systems. Even in the currently existing multicomput-
ers, the communication latency varies noticeably between different multicomputers. Consequently,
library routines must adjust the degree of concurrency and the granularity based on the physical
system attributes, such as the communication latency and the processor speed.

Once a design with the above characteristics is implemented, the best algorithms for the scien-
tific and numerical applications can be selected and placed in a parallel library to be used by the
programmers. These library routines can also be tuned for better performance prior to compilation.
Providing such a system for the programmer requires a rather elaborate design of the library sys-
tem. There are several design issues which affect either the performance, the user interface, or the
portability.

In the following sections, we unravel the problems in the design of parallel libraries, provide a
critical view of the current approaches to solve some of these problems, and present a comparative

view of the current approaches with the ones proposed in this thesis.

1.1 Parallel Library Issues

The difficulty of parallel library design stems from the lack of a clear model similar to the sequential
stack model. In sequential library calls, input and its size are passed as parameters on the stack to
the library routine. The library routine also returns the results to the caller through the parameters
on the stack. This provides a natural and easy interface for the callers. The performance of the
library routine, for a given problem instance, is then solely determined by the underlying algorithm
and the optimizations performed by the compiler. Sequential library routines are easy to write and
optimize. The associated cost of calling these routines is also well defined. These libraries are also
easy to port bearing in mind the interoperability issues. In a parallel library routine, on the other
hand, the library writer must deal with the distributed data and its impact on the user interface,

1Single Program Muitiple Data model is referred to the programming model where computation is described by
the same code operating on different data items.



the communication overhead of the library routine, and the complexity in the design of the library
routine itself. Unknown physical system size, topology, and physical system characteristics at the
library routine design time make this problem even harder to deal with. Mapping of processes to the
processors, grain size of computation and communication, and scalability of the parallel algorithm
have serious impact on the communication overhead of the program. In addition, the communication
overhead of the library routine upon invocation, due to data distribution, may be avoided by data
redistribution. Here we elaborate on the factors which concern the design of parallel libraries and

their impact on the library writer, the user of the library, and the compiler.

Performance - Degree of parallelism and the granularity of the computation used by a library
routine must be selected to minimize the execution time of the routine. Different systems
require different values for the degree of parallelism and the granularity to deliver their best
performance. A parallel library must harness the underlying system based on its hardware
characteristics such as the communication latency and the processor speed. When the library
is ported to another system, a centralized modification to the library may be used to ensure
that the library routine selects the granularity and the mapping based on the characteristics
of the new system. An example would be to relay to the library system the startup cost of
communication and the link bandwidth.

Problem instance size - The problem instance size is usually input at runtime. The parallel
library routine based on the logical architecture must be described without this knowledge.
This also delays the grain adjustment and mapping of the library routine to runtime when the

problem instance size is known.

System size and topology - We use the term partitionable for systems which are based on a fixed
topology from which a partition is granted to the user upon request. Size of this partition
depends on the system availability at the time of the request. The term reconfigurable is
used for systems in which the topology may also change statically or dynamically. In these
systems a user’s request for a partition is submitted after an executable image of the parallel
program is built. The granted partition may differ between different runs of the same program
depending on the requested size, system load, the maximum system size, and the scheduling
policy. Partitionable and reconfigurable systems give rise to unknown attributes at the time
of library routine design. The library routine writer is unaware of the physical system size
at implementation time. Hence, the library routine must minimize the execution time of the

library routine given the size and topology of the granted processors.

Mapping - Communication among the processors is much more expensive than an instruction
execution. Assignment of the logical processors to the physical processors impacts the com-
munication requirements of the parallel program which, in turn, affects the execution time of
the program. Since the physical system size and topology are not known until runtime in both
partitionable and reconfigurable systems, mapping of the computation to the physical proces-
sors must be delayed to runtime. The design of the library system for partitionable systems
is simpler since only a limited number of mappings from the logical processors to the physical



processors needs to be considered. The mapping library can be simplified on these systems
since the target topology is known. For reconfigurable systems, the physical topology may also
change, so the library designer must consider all possible physical topologies. The mapping
library must be extended to accommodate any target topology. These systems, however, may
provide better performance as there is a higher possibility of matching the logical topology
with the physical one. Mismatch between the logical topology and the physical topology may
introduce additional communication overhead. Since the topology of a logical architecture
algorithm is generally representative of the communication pattern of that algorithm, it is de-
sirable to map the neighboring nodes of the logical topology as close as possible in the target
architecture. Mapping functions that minimize this distance tend to reduce the communication
overhead through avoidance of hot spots in the network and reduction of the communication
latency between the nodes. If the communication pattern of the parallel algorithm is based on
a unique pattern or topology not supported by the mapping library, or it requires a mapping
function not commonly used or supported, the mapping function can be built into the library
routine. The most commonly used mapping functions can, however, be placed in a common
library to be used by all the library routines.

If the size of the logical architecture and the physical system are the same, one-to-one mapping
can be used to execute the parallel library routine. Even with the flexibility of dynamic grain
adjustment the logical architecture size may not be reducible to the physical system size. In
such case, many-to-one mapping will be required to execute the parallel library routine. In
other words, more than one logical processor will be emulated at least by one physical pro-
cessor. Logical processors must be emulated using a model that allows execution of multiple
logical processors in a physical processor without intolerable overhead. In addition, communi-
cation between logical processors will require resolution of message destination at each physical

processor.

Call parameters and Distributed data - Prior to calling a parallel library routine, the actual
parameters must be decomposed and distributed among the logical processors. A library writer
must determine the level of the caller intervention on the initial data distribution, the final
data accumulation, and the corresponding impact on the user interface to the library routines.
Each parallel algorithm requires its data in a specific distribution upon starting the parallel
computation and leaves the distributed data in a specific distribution in the memory of the
physical processors. Although the data distribution can be hard-coded in the library routine,
the information can be used for data redistribution in the later phases.

Granularity - The amount of computation by a process between two communication phases is
known as the Granularity. The granularity of a library routine must not be fixed at library
routine implementation time since, depending on the problem instance size and the physical
system size, the fixed grain size may have adverse effect on the performance of the program.
Therefore, the granularity must also be determined by the library routine once the problem
instance size and the physical system size are known. Runtime grain size adjustment has been



shown to provide larger range of scalability for many algorithms. Higher scalability is desirable
for parallel libraries since the routines are more likely to deliver desirable performance when
the problem instance size and system size are determined at runtime. The majority of parallel
algorithms behave poorly for small problem instance sizes. It is, therefore, necessary for the
parallel library routine to identify such cases and possibly execute these using fewer processors
or even sequentially. Considering the cost of communication, this seems to be a reasonable
solution for small problem instance sizes. Our interest is in extending the range of scalability

on large problem instance sizes.

Data redistribution - In a program with two or more parallel library calls, it is beneficial to
keep the distributed data of one phase in the processors’ local memories to be reshuffled for a
subsequent phase. Data redistribution across the parallel phases of a program may enhance the
performance of the program by avoiding unnecessary accumulation and distribution of data.
Each library routine considered in isolation must distribute the initial data and accumulate
the final results. With data redistribution in mind, the library routine implementor must set
up such distribution and accumulation routines as part of the library routine. The distribution
and accumulation routines are inserted by the compiler based on the requirement of the caller
program. If the runtime system recognizes potential redistribution, it executes necessary code
to perform reshuffling of the data between two parallel library calls. The library routine writer
must design the routines bearing in mind the potential redistribution between parallel phases.

Portability - Effortless porting of the parallel library and the user programs from one system to
another is a desirable property. If the library system relies on commonly used runtime libraries
and storage schemes, this process is straightforward. However, using special programming
constructs, runtime libraries, or communication libraries not commonly available will make

the porting problematic.

Coherency - The parallel library calls may be nested within various programming constructs or
may be called in other functions. The conditions and loop bounds of these programming
constructs may not be known statically. Some of the values may be input by the user. The
SPMD code images loaded onto the nodes of the physical system must stay coherent so that
all the physical processors can potentially participate in every parallel library call even though
some nodes may not be mapped any logical processors to emulate. Input and output statements
must be executed by the processor which has I/O capability. Some of these values are required
by the other nodes so that the nodes follow the same execution path as the host.

The design of parallel libraries becomes even more complex since the factors mentioned above are
intertwined. These factors create several new dimensions which are not pertinent to the sequential
libraries. Therefore, parallel libraries require a more elaborate design. Providing a level of encapsu-
lation equivalent to the sequential libraries leaves many of the design issues to be considered by the
library routine designer.



1.2 Current Status

Two commoniy known parallel libraries are ScaLAPACK [12] and CMSSL [42]. The routines in both
these libraries have been designed to be called either from message passing programs or data parallel
programs such as the ones written in HPF (High Performance Fortran) [27]. Existing compilers for
HPF convert the user’s HPF program to the message passing form [6]. In this section we will
highlight the distinct features of these libraries. We consider these libraries in their handling of the
parallel library design issues discussed in the previous section. Since the aforementioned parallel
libraries rely on the user’s HPF program to specify the logical system size and the data distribution
prior to the call, we evaluate these libraries in the context of HPF.

Performance is largely determined by the granularity of the computation, the mapping of the
data to the logical processors, and the mapping of the computation onto the physical processors.
ScaLAPACK and CMSSL libraries perform the parallel computation using the granularity and the
data mapping specified by the user’s HPF program. Data distribution is explicit in the program and
obtaining good performance would require several trial and error runs which vary the granularity
and the mapping of the data onto the logical processors.

The mapping of the logical processors to the physical processors is considered a compiler depen-
dent issue in HPF and the current parallel libraries. The programmer does not have the freedom to
specify a mapping which suits the parallel program. The HPF language does not support directives
which relay the communication pattern of the program to the compiler so that proper mapping of
the computation to the physical processors can be performed. User defined mapping of the compu-
tation to the physical processors is recommended as an extension in the HPF language specification.
Current implementations of the HPF language such as [2] do not support this feature.

Unknown problem size, physical system size, and physical system topology have high impacts on
the programmer in HPF. The programmer must declare a logical mesh that matches the physical
system in size. If an algorithm is based on a logical architecture that is not a mesh, the programmer’s
task in describing the algorithm in HPF is very difficult. Although the programmer is not aware of
the physical system size and topology at programming time, the intrinsic functions can be used to
describe the logical architecture size equal to the physical architecture size. Using this feature of
HPF and the data distribution directives, the grain size of the computation can be set so that the
ScaLAPACK or CMSSL routines use only part of the physical system for the computation. There
are two shortcomings in this scheme. The first shortcoming is that determining what fraction of the
granted system delivers the best performance is not a trivial task for the programmer. To only use
a fraction of the physical system, the granularity of the computation must be statically defined in
the specification part of the program. As it was previously described, when the grain size is selected
statically, the program may not deliver its best performance when ported to a different platform. The
second shortcoming has to do with dynamically allocated data used in the distribution directives.
In such case, the actual distribution does not take place until the data is allocated. However, the
user is required to specify its distribution and granularity at programming time. If the problem
size is not known statically, the programmer has no way of deciding on a suitable granularity and
distribution at programming time. Even when the problem instance size is known, partitionable and



reconfigurable systems pose a similar problem since the best grain size of the computation depends
on the size of the system at load time.

Although ScaLAPACK and CMSSL have interfaces that resemble the sequential library routines,
the user’s HPF program must manage the distributed data. Therefore, the sequential call interface
with transparent data distribution is not supported in ScaLAPACK and CMSSL. The HPF com-
piler translates the distribution directives into message passing code that sets up and maintains
the information about the distributed data in designated structures. Internally, ScaLAPACK and
CMSSL are designed to accept these structures as parameters. Obviously, ScaLAPACK and CMSSL
routines cannot be called from sequential programs.

Redistribution of data is supported in HPF. The redistribution is completely transparent to
ScaLAPACK and CMSSL routines. The programmer specifies the redistribution of data across the
logical architectures using compiler directives. The fact that the HPF compiler must allow any logical
architecture declaration that matches in size with the physical architecture, limits the redistribution
support in HPF. HPF requires the two parallel phases to have equal virtual architecture sizes. This
greatly simplifies the redistribution task. In extended compilers that allow the two phases to have
different size logical architectures, the redistribution becomes more complex.

The issue of coherency in implementations of HPF and parallel libraries is handled using proper
translation of data-parallel global name space programs to message passing programs. Access to the
distributed data is translated into communication operations. If conditional and iterative program-
ming constructs use the distributed data for decision making, the compiler must produce appropriate
code so that all logical processors use the most current value of the variable. The owner-compute
rule, used in HPF, causes the owner of an element to perform the write to that element of the
distributed data. A read operation of the distributed data must be broadcast, by the owner of the
data, to all the logical or physical processors (Note that these are the same size in an HPF program).

In the current implementations of the HPF compiler, portability is not a major concern. The
compiler translates the data parallel programs to message passing programs based on well known
communication libraries. User programs compile and run successfully on different platforms. How-
ever, the delivered performance may not be the best on the target system. This is because HPF, and
obviously ScaLAPACK and CMSSL, do not perform any adjustment of granularity and mapping
across different systems to account for the hardware characteristics of the target system.

1.3 Our Approach

We have based our library routines on the virtual architecture programming model [53, 69, 38, 78].
In this model the program is described on a virtual architecture of desired size and topology, to
which is then associated an SPMD code. We have based our parallel libraries on virtual architecture
algorithms the following reasons. 1) The virtual topology of these algorithms is generally represen-
tative of the communication pattern of these algorithms. This information can assist the compiler
or the run time system to perform mapping of the computations to the physical processors. Suitable
mapping of the regular communication can reduce the communication overhead of the program.



2) Virtual architecture parallel algorithms are easy to implement since the programmer can describe
the algorithms on the virtual architecture matching that of the algorithm and let the compile time or
the runtime system perform the necessary translation to account for the mapping of the computation
and handle the communication among the virtual processors. 3) The size of the virtual topology of
an algorithm is related to the problem instance size. This property can be used to deduce the size
of the virtual architecture at run time once the problem instance size is known. 4) These algorithms
can be easily described in block form by reducing the size of the virtual architecture and recoding
the computation performed by each virtual processor. This property can be used to implement the
algorithms in coarse grains and reduce the communication overhead.

We have extended our application domain by several design decisions. A large number of virtual
topologies have been accounted for in our library design, and extensions to handle new topologies
can be added with very minimal effort through changes in the mapping library. The communica-
tion library provides collective communication operations. Consideration of both partitionable and
reconfigurable systems in our design has further extended our application domain.

Like other programming models, there are compile time and runtime concerns to deal with in the
virtual architecture programming model. The mismatch between the virtual architecture size and the
physical system size (which is usually not known at compile time) dictates the use of delayed many-to-
one mapping. The quality of the mapping, on the other hand, affects the communication cost of the
program. A collection of rich mapping functions [58, 57, 5] across regular topologies ensures that the
communicating nodes are placed as close as possible in the physical system. This strategic mapping
reduces communication cost of the program in many currently used packet switching systems [79, 15,
16, 26, 50] by reducing the distance between the communicating nodes, hence lower latency and link
contention. On other systems that use wormhole routing, poor mapping degrades the performance
due to contention [71, 17, 59, 18, 3, 76, 61].

Following the design and the implementation of the virtual architecture programming paradigm,
we decided to implement these parallel routines in a precompiled form, parameterized by the virtual
architecture size. Although this task may not seem difficult at first, assuring efficiency of these
routines and low overhead are rather challenging problems. A large problem instance size described
at fine grain may run poorly on a small physical system due to the abundance of small messages. This
granularity problem is then overcome by our contraction technique which ensures efficient execution
of these routines by runtime granularity adjustment.

Our goal in this research is to offer a new design of precompiled virtual architecture routines and
parallel libraries of scientific numerical applications for multicomputers. The novel features of this
design are performance improvement through dynamic grain adjustment and delayed ma.pping of the
virtual processors, automatic data distribution, and the initial and final data layout maintenance for
redistribution. The representation of the parallel library routines, in this thesis, is appropriate for
parallel numerical and scientific applications that can be described in block matrix form. Sequential
programs may call these parallel library routines in different language constructs and benefit from
efficient execution and automatic data redistribution between phases. Contrary to the currently
used techniques, our parallel library routines, which are in parameterized contracted form, support



coarse grain communication as well as coarse grain data redistribution between two consecutive
phases. The coarse grains reduce not only the initial data distribution communication cost but also
- the communication overhead of the parallel library routine in the course of its execution.

Our design meets the ease of use criteria by providing a sequential call interface to the virtual
architecture parallel library routines. This is achieved by encapsulating the virtual architecture
library components in the library and completely transparent to the caller. From the viewpoint
of the library routine implementor, our library design offers a set of guidelines to follow in setting
up a new virtual architecture parallel library routine. Virtual architecture parallel routines are
independent of physical architecture and are easy to implement. Our centralized mapping library
and our virtual communication library further facilitate implementation of these library routines
in the message passing model. Our design meets the performance criteria through several design
choices. The first one of these is the selection of virtual architecture parallel algorithms as the basis
for these libraries. The communication pattern of these algorithms is often regular and matches
their virtual topologies. This information can be used by the runtime system to perform systematic
mapping of the computation to the physical processors. The centralized mapping library of optimal
mapping functions is used to map the virtual processors to the physical processors. The mapping is
delayed to runtime since the virtual architecture size and the topology of a parallel library routine are
not known at library routine design time. Runtime grain adjustment is another scheme offered in our
design which reduces the communication overhead of the library routines. Our design allows runtime
grain adjustment based on the problem instance size, physical system size, and physical system
attributes. This is suitable for partitionable and reconfigurable systems where the allocated partition
is-not known before hand. Once a partition is allocated, for each parallel library call, the objective
is to minimize its execution time even by limiting parallelism and using only a subset of the physical
processors. We have met the portability criteria in our design by not requiring any special language
features. The user program and the SPMD form are both based on the conventional programming
language constructs. Qur library routines require the use of a threading library and a communication
library. The implementation can be easily altered to use any threading or communication library.
Our virtual collective communication library is based on our virtual point-to-point communication
routines which, in turn, use a low level communication library such as PICL. Finally, our library
design utilizes a physical system based on its physical characteristics. Once the library system is
ported to a new architecture readjustment of the library parameters with those of the new system
allows all routines in the library to perform grain adjustment based on the new system parameters.

Chapter 2 of this thesis gives a motivation of parallel libraries and a detailed presentation of the
related work. Chapter 3 describes our parallel library routine design and representation. Chapter 4
discusses data redistribution in multiphase programs. In Chapter 5, we discuss our integrated
programming environment implementation details. Finally, we conclude this research in Chapter 6.



Chapter 2

Background and Related Work

Matrix and vector algorithmsform the core part of many numerical computations. Broad use of these
algorithms motivated programmers to develop these routines in the form of precompiled routines
or libraries. These library routines increased the programmers’ efficiency as well as their confidence
in the correctness of the programs. With the introduction of parallel systems and implementation
of many programming languages on these systems, the need for new libraries recurred. These new
libraries facilitate the programming of parallel systems by encapsulating many of the details in the
‘ library routines. Henceforth, numerous researchers have been studying the design of parallel libraries
for multicomputers. These libraries have also been customized for integration into programming
environments [6, 22] based on languages such as HPF [52, 67], Fortran 90 {1, 20, 68, 63, 81], Fortran
D [38], and Vienna Fortran [8, 7].

ScaLAPACK [12, 23, 35, 13, 24, 12, 9, 32] is one of the most commonly known parallel libraries
on multicomputers. This library is a distributed-memory version of the LAPACK [23] software for
dense, banded, and sparse matrix computations. The design goals of ScaLAPACK are scalability,
portability, flexibility, and ease-of-use. In sequential and shared memory versions of this library,
performance is enhanced by efficient use of the hierarchical memory through data reuse by avoid-
ing frequent cache reloads. This is achieved by describing the computations using block oriented
matrix-matrix operations known as the Level 3 BLAS [11]. In the distributed-memory version of
ScaLAPACK, block forms of the algorithms are used to reduce the frequency of cornmunication.

* Another distinguished parallel library is the CMSSL [40, 41, 44, 43, 42] of Thinking Machines
. Corporation. The design goals of CMSSL are performance, scalability, robustness, and portability.
Routines to handle data distribution provide data distribution independent functionality in CMSSL.
Careful scheduling, data motion, and automatic algorithm selection at runtime are the techniques
employed to achieve performance. CMSSL routines can be invoked from languages that support
array syntax.

In this chapter we unravel the parallel library specific design issues and the measures taken in
the current systems to resolve them. Exa.mﬁle programs and performance data are presented, where
necessary, to form a basis for comparison with our design in this thesis. The examples are based on
the integrated environment of HPF and ScaLAPACK or CMSSL.
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2.1 Parallel Libraries

In design of parallel library routines, the transparency on the side of the programmer and a suitable
call interface does not come for free. The library designer must encapsulate many details of the
parallel computation to achieve this task. The interoperability of the compiled code and the library
routine is a critical area in the design of the system. The analogy with sequential programming is
the stack model used in the sequential library calls. The caller and the callee must abide by certain
conventions to ensure a proper library call and return. In high level programming languages, the
compiler must ensure the correct call sequence in the code generation phase.

Performance of a parallel library routine depends on factors such as the problem size, system
size and characteristics, and mapping. In order for the library routine to maintain the desirable
performance for larger problem sizes, its algorithm and the supporting design must be scalable.

The library routine must be easily portable across different platforms. Porting requires recom-
pilation of the library routine using the native compiler and fine tuning certain parameters in the
library routine to take advantage of the system characteristics of the target architecture.

2.1.1 ScaLAPACK and CMSSL Parallel Libraries

ScaLAPACK and CMSSL are the most commonly known parallel libraries in the parallel computing
community. In this section we will highlight the main features of these two libraries.

The performance goal has been achieved in ScaLAPACK through elimination of overhead due to
load imbalance, data movement, and algorithm restructuring for Cholesky, LU, and QR factorization.
The authors propose block matrix versions of these algorithms based on meshes of processors. In
the analysis of their algorithms they assume a mesh of physical processors (matching that of the
logical architecture) is available. The mapping of the logical processors to the physical processors is
not addressed in ScaLAPACK and is considered a machine-dependent optimization issue.

The authors claim that range of use of a library package may be identified by how stable the
algorithms are over a wide range of input problems and the range of data structures the library
supports. For example, dense, packed, and banded matrices each require a different internal data
structure. Ease of use is one of the goals of the ScaLAPACK parallel library. The authors state
that ease of use is concerned with factors such as portability and the user interface to the library. In
ScaLAPACK portability is claimed using the fact that the library is implemented using a standard
language such as Fortran. It is assumed that the system to which the ScaLAPACK library is being
ported to has the Level 3 BLAS and the BLACS library. The Level 3 BLAS is the sequential version
of the matrix numerical routines and BLACS is the communication library. The BLACS library
provides point-to-point communication routines as well as communication routines over rows and
columns of the logical meshes. The authors further claim that the user interface of ScaLAPACK
can be enhanced if many of the implementation details are hidden from the programmer. The
interface to ScaLAPACK has been developed for HPF. When calling ScaLAPACK routines from
HPF programs, the programmer must specify the data distribution and redistribution.

CMSSL is another parallel library which consists of a collection of numerical routines. The
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objectives of CMSSL are scalability across systems and problem sizes, consistency with languages
with an array syntax, high performance, robustness, and portability.

CMSSL supports global shared address space as well as node level programming. In the global
mode, CMSSL accepts distributed data structures. Internally, the library consists of a set of routines
executing on each node and a set of communication functions. CMSSL extracts the data distribution
information, selects the best algorithm for both the global and the local computation, and carries
out the computation using the local routines and the communication routines. The information
about the shape of the arrays and their distribution is passed to the CMSSL routines in array
descriptors. Similar to the ScaLAPACK library routines, CMSSL routines perform the computation
using the distribution and the granularity defined by the programmer. Mapping of the processes to
the processors is not addressed in CMSSL.

Both ScalLAPACK and CMSSL support limited form of virtual architecture programming. These
libraries assume the logical processors are arranged in form of meshes. They further assume that
these meshes of logical processors are selected to match the physical system. HPF allows definition
of logical meshes which match-the physical system size using intrinsic functions. However, it does not
allow definition of other topologies. The virtual architecture parallel library design allows description
of parallel algorithms based on various virtual topologies. Gaining efficiency through granularity
adjustment is the job of the programmer. Improving efficiency through mapping cannot be supported
by libraries such as ScaLAPACK and CMSSL, since the communication pattern of the algorithm is
not relayed to the compiler, where the authors claim mapping should be done.

Both ScaLAPACK and CMSSL are suitable for languages such as HPF where data distribution
is defined by the programmer. Our libraries encapsulate data distribution in the library routine and
require absolutely no intervention from the programmer. The programmer may use the sequential
programming model with calls to parallel numerical library routines based on the design in this
thesis.

As it will be described in the thesis, in many cases a parallel library call may deliver better
performance if it is run on a part of the available partition. In these cases, the virtual architecture
size is smaller than the physical system size. As the future technology reduces communication
latency, these calls can take advantage of more physical processors to reduce the execution time of
the library routine. Even if the logical architecture definition of HPF is extended to allow definition
of any logical mesh of processors, it will still not provide the runtime grain adjustment. Providing

such functionality requires the programmer’s intervention and it is not a trivial task.

2.1.2 Performance Metrics

In view of the fact that the main purpose in parallel computing is performance, an acceptable design
of libraries must adhere to this criteria. Performance is usually measured using speedup.

The sequential ezecution time of a routine is the time elapsed between the beginning and the end
of the execution of the routine on a single processor system. On the other hand, parallel ezecution
time is the time elapsed from the start of the execution of the routine on a multiple processor system
until the last processor is done. Speedup of a parallel algorithm is defined as the ratio of the parallel
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execution time of a program to the execution time of the best existing sequential program. There
may be several algorithms to solve the same problem sequentially. It is, however, reasonable to
consider only the fastest sequential algorithm in the computation of speedup. Assuming Ts.4(n) is
the runtime for the best existing sequential algorithm for a problem of size n, and Tpqr(n, p} is the
parallel execution time of the problem of size n on p processors, speedup, S, can be defined as:

_ _Tseq(n)
S0P = Tper (1)

Speedup S gives us an insight as to how well we have utilized the p processors in the computation.
Theoretically, speedup greater than the number of processors is unattainable. Gaining such speedup
is a contradiction, since it implies that one could emulate the parallel processors to obtain a better
sequential execution than the one used for the computation of speedup. In practice, however,
speedup greater than the number of processors is sometimes observed. This may occur due to the
nature of the sequential algorithm or hardware characteristics. For example, searching a tree for
an element may result in superlinear speedup depending on the location of the element in the tree,
or the memory limitations of the program, such as the cache size, may significantly degrade the
sequential execution time of the program. In the latter example, the parallel version may meet the
memory requirements better since each processor holds a smaller data partition. In general, one
desires linear speedup regardless of the number of processors used.

The ratio of speedup and the number of processors can be used to determine the fraction of
time that the processors are effectively employed to solve the problem. This ratio is known as the

efficiency, E. Therefore, efficiency is defined as:

where n and p are as previously defined. The value of efficiency varies between 0 and 1. Speedup of
p results in an efficiency of 1.

In scientific computations the sequential execution time is usually proportional to the floating
point operation count. Therefore, the performance, G in operations per second, can be defined as:

G(n,p) = 72~E(n,p) @
cale

where ¢4/ is the time for a floating point operation. Scalability is measured using the rate at which
the problem size must grow in order to maintain a constant efficiency when the system size grows.
An algorithm is highly scalable if the efficiency depends on the problem size and number of processors
only through their ratio. In other words, in such algorithms if the problem size and the system size
are increased at the same rate, efficiency remains constant. Other definitions of scalability will be
shortly discussed.

Speedup and efficiency are two measures that give us an insight on how well we have utilized the
parallel system. Based on this definition, on a single processor both speedup and efficiency are one,
however as the number of processors increases, a diminishing return is observed. In other words,
the speedup will be lower than the number of processors, and therefore the efficiency drops below

one. To increase the speedup and efﬁcienéy, the problem size must be increased.
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The term scalability has been widely used to express the system behavior when changes to the
problem size or system size occur. Scalability has significant importance in parallel computing,
because it provides information as to what algorithm is the most suitable for a specific architecture
and allows one to predict the behavior of algorithms on specific machines when very large problems
are used. This information is of high importance in design of parallel libraries where the problem
instance size and the physical system size are only known at runtime. The information can be used
by the library routine to make decisions on what algorithm would provide the fastest execution
time!.

In [31] scalability is defined using isoefficiency metric. Using this metric, an algorithm is an-
alyzed for the relationship between the system size and the problem size. Many algorithmic and
architectural factors that affect the execution time of the algorithm can be captured in a single
expression. As it was previously described, in most parallel programs, as the number of processors
increases, efficiency drops and as the problem size is increased, efficiency increzses. Using isoeffi-
ciency function, one can formulate the rate at which the problem size must increase with respect to
the system size in order to maintain a constant efficiency. Algorithms that require the problem size®
to increase at the same rate as the system size to maintain constant efficiency, are said to be highly
scalable. On the other hand, algorithms that require the problem size to grow at a faster rate than
the system size are said to poorly scale. These algorithms will require memory beyond the capacity
of the underlying architecture to deliver constant efficiency.

A parallel algorithm incurs overhead due to communication, blocking receives, link contention,
and load balancing. The accumulation of these times in the execution of a parallel program is called
the overhead. The overhead, Tog, is a function of the problem size, system size and topology, given
a specific mapping of the virtual processors to the physical processors. Considering the overhead,
the speedup and efficiency can be restated as:

TSeq(n)

S(n, P) = Toeq(n)+Tor(n,p)
p

1
E(n,p) = 13 Tontial 3)
Tseq(n

Assuming the number of sequential operations and the time for a single operations are W(n) and

tcomp respectively, equation 3 can be restated as:

1 E(n, p)
tcamp 1-F (n, P)

For a given algorithm and architecture, one can obtain To g (n, p) which, in turn, shows how W must

Wi(n) = ) Tos(n, p) @)

grow with respect to p to maintain a constant efficiency. For scalable algorithms, the lower the rate
of increase of W, the more scalable the algorithm is. The ideal case is when W must grow linearly
with p. Let’s consider the example of matrix multiplication on a torus. For simplicity, assume a
physical torus of p processors is used to perform an n X n matrix multiplication. The algorithm

! Routines based on selection of algorithms are known as polyalgorithms.
2problem size here refers to the number of operations in the sequential program. The author defines the problem
size in this form to have a uniform meaning of problem size,
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is described in chapter 3. The number of operations reqmred by the best sequential algorithm 3
is n. In the parallel algorithm, during each iteration (7-) operations are performed by each
processor to compute the new values for the resulting submatrix, followed by two communication

operations to send the operand submatrices to the neighbors. Therefore, during each iteration, the
3
total number of operations performed by all the p processors is ((%) + 2) p- Over ,/p iterations,

a total of n3 + 2p3/? operations are performed, out of which n® operations are useful work. The
overhead is, therefore, 8(p®/2). The number of operations by the sequential algorithm can then be
stated as W = 2Kp3/2, where K is t.-.o..., (l—f%‘(‘f);;) in equation 4. If the number of processors
is increased from p to p/, where both /p and +/p’ divide n, then W must increase by a factor of
6:4 /p)sl 2 to maintain the same efficiency. Another way to view this is that increasing the number
of processors by a factor of p//p requires the number of operations, W, to be increased by a factor
of (p/ /p)al ? to increase the speedup by a factor of p’/p. An increase of ('/ p)3/ ? in W implies an
increase of (¢//p)"/* i
doubling n to maintain a constant efficiency. This results in an increase of a factor of 8 in the
number of operations, W. Algorithms that require an increase of W less than the rate of change in p

to maintain a constant efficiency, will not sustain the efficiency as p increases beyond certain limits,

in n. For instance, increasing the number of processors from 16 to 64 mandates

because eventually the number of processors supersedes the number of operations. Therefore, some
processors will be idle, and drop in efficiency is not escapable. Therefore, 8(p) is the lower bound on
the isoefficiency function. This lower bound is immposed by the degree of parallelism of the underlying
algorithm. For example, in the matrix multiplication algorithm, the total amount of computation
is O(n3), however, each iteration uses values from the previous iteration of the same processor. In
other words, the n intermediate values of each processor have to be computed one after another.
Thus, at most 8(n2) processors can be busy at a time. For this problem the degree of parallelism is
8(W?/3). So, given p processors, W must be at least #(p>/2) in order to use all the processors. This
is the lower bound on the isoefficiency function. The optimal value for isoefficiency function due to
degree of parallelism is 8(p), and it occurs when the algorithm’s degree of parallelism is 6(W). If the
algorithm’s degree of parallelism is less than 8(W), then the isoefficiency function due to parallelism
is greater than 6(p). In this case, the accumulative isoefficiency function will be the maximum
of isoefficiency due to parallelism or communication. For our matrix multiplication example, the
isoefficiency function due to degree of parallelism and communication is 8(p%/?). Algorithms that
have an isoefficiency of (p) are ideally scalable.

In [75] and [73], Sun and Rover propose the isospeed metric of scalability. Their scalability
analysis has been applied to several problems, and further supported by experimental results on the
nCube 2 and the MasPar MP-1. They claim that isospeed scalability metric provides a quantitative
measure of performance that other metrics fail to provide. The authors further claim that the fized-
size speedup, fired-time speedup, and memory-bound speedup [74] are all based on the conventional
definition of speedup which is deficient. The isoefficiency metric [31] is more advanced than these
models, however, it is still implicitly tied to speedup.

3 Although there are other algorithms for matrix multiplication with lower time complexities, these algorithms tend
to have very large constants. Therefore, we use the conventional sequential matrix multiplication for the computation
of speedup.
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Sun and Rover address the issue of how the system size affects performance and what the costs
are to maintain the performance. They believe that the metric should be quantitative and reflect
the actual goals of parallel computing. Scalability must be a function of the algorithm and the
machine. Both algorithm and the machine introduce parallel overhead. Fast execution time or
speed is the major objective in parallel computing. Speed is defined as the amount of work divided
by time. The work is usually quantified by the number of floating point operations. Average speed
is the achieved speed of a system divided by the number of processors. Scalability is defined for
an algorithm-machine combination as its ability to maintain a constant average speed when system
size increases. The cost of maintaining this average speed is an increase in the problem size. This
increase is a quantitative measure of scalability. f W is the amount of work for an algorithm when
p processors are used, and W’ is the amount of work for p’ > p processors to maintain a constant
average speed. The scalability from p to p’ is defined as:

wlo,) = 20 5)
In the ideal case, W’ = JPLW, when ¥(p,p’) = 1. This occurs when the algorithm does not require
any communication and the work is evenly divided among the processor. Generally, W’ > EZ—V'
and ¥(p,p’) < 1. In order to define a unique scalability for an algorithm and machine pair, the
authors define the initial speed as the maximum speed reached by the single processor execution of
the algorithm on the machine as the problem size increases toward infinity. The scalability is then

defined as:
¥(1,p) = I — Sequential execution time with problem size W (6)
’ T,  Parallel execution time with problem size W’ and p’ processors
This formula is based on constant speed metric of scalability. The primary difference with the

conventional scalability based on speedup is that this metric is not based on the fixed problem size

model.

Based on the commonly known definition of scalability, an algorithm is considered highly scalable
if it can maintain constant efficiency as the system size and problem size linearly increase. This
definition of scalability, however, does not capture the execution time of the parallel algorithm.
Based on this definition, if an algorithm maintains a low efficiency when the system size and the
problem size vary as stated above, the algorithm is counsidered highly scalable. Obviously, such
algorithms are not desirable for library implementation. If a single algorithm is to be used for
library implementation, it is important that the algorithm maintains a constant high efficiency over
a wide range of problem sizes. Once the algorithm is selected, the major objective in its design
will be to minimize its parallel execution time even for range of problem sizes that do not deliver
desirable efficiency. On the other hand, if multiple algorithms (also known as polyalgorithms) are
to be used for a library routine implementation, range of scalability (at high efficiency) of the
algorithms can be examined. Suitable algorithms can then be selected to cover a wider range of
system and problem sizes. Our parallel library design provides support for the use of algorithms
based on runtime grain adjustment. ScaLAPACK and CMSSL have shown that algorithms based
on block partitioned matrices have a wider range of scalability and can maintain a higher efficiency
than the ones based on fine grain.
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. Mtlop/s .
Operation per n o/ de Efficiency
Local

l3-norm 126 98

Matrix-vector 115 90

Matrix-matrix 115 90
Global

{2-norm 126 98

Matrix-vector 80 63

Matrix-matrix 83 65

LU-factorization 61 48

Unstructured grid 37 29

Table 1: Local and global performance per node for some library routines in CMSSL

Although we agree with the claims and proven results in ScaLAPACK and CMSSL, we claim
that the range of scalability of the algorithms based on dynamic grain adjustment is wider and they
can often maintain better efficiency. A detailed description of the effects of granularity and the
techniques to reduce the communication overhead of a parallel program will be covered in this and
the upcoming sections.

Maintaining desirable efficiency has been the primary goal in parallel libraries such as ScaLA-
PACK. Authors in [12] have discussed the design of ScaLAPACK. They have designed the numerical
library routines using the block formm which results in scalable execution on multicomputers. The
authors define a more general form of the distribution function using a block factor. Their major
objective is to develop a scalable solution to the linear algebra problems on multicomputers. They
redefine some of the linear algebra functions using block matrix distribution and ensure locality of
reference at a node after each communication step. The authors fail to address the issue of redis-
tribution across parallel library routines. ScaLAPACK was designed to interoperate with languages
such as HPF. In HPF, grain size, distribution of data, and redistribution is defined by the program-
mer, leaving very little flexibility for the library routine to optimize for performance. The mapping
of virtual to physical processors, which is transparent to the HPF programmer and library routine
user, is not addressed in ScaLAPACK.

Johnsson [41] describes the design of the CMSSL library which consists of 250 overloaded nu-
merical routines, nearly equivalent to 1000 routines in the conventional libraries. Robustness with
respect to performance and numerical stability is the objective in the design of CMSSL. In CMSSL,
the author claims that a change in the problem size or the system size still delivers desirable effi-
ciency. This is achieved through the use of block matrix algorithms as well as poly-algorithms for
the implementation of a library routine. A change in the system size does not require recompilation
of the program since many systems are changing such that the requests for partitions may change
from time to time and also during the course of execution of a program.

Table 1 shows the performance of some global and local CMSSL routines on the Thinking Ma-
chines CM-5. The parallel version of the routines are referred to as global, whereas the sequential
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node version of the routine is called local. One important note here is the use of the unstructured grid
application where the efficiency has significantly dropped. The drop in speed, in this application, is
due to the sequential portions of the program.

In ScaLAPACK, scalability has been studied under constant granularity, varying problem size,
and varying system size. The primary reason for this definition of scalability in ScaLAPACK is the
fact that the library routine does not have control over varying the grain size. However, this is not the
case with the library design presented in this thesis. In our library routines, grain size is determined
at routine invocation based on the system size and the problem instance size. Therefore, it is easier to
maintain desirable efficiency and speed. Furthermore, our libraries increase performance by selecting
optimal runtime mapping of the virtual processors to the physical processors.

The performance results from ScaLAPACK have been presented in [12] for the distributed-
memory LU factorization on the Intel Touchstone Delta system. The Delta system is a distributed-
memory i860-based MIMD computer, in which the nodes are connected using a two dimensional
mesh, The authors have conducted some experiments over a wide range of problem sizes and system
sizes and concluded that, on average, a block size of 5 is close to optimal. Therefore, in all their
analysis, they have been using this value for the block size. Their initial investigation was on how
performance depends on the relative dimension sizes of the logical architecture (always a mesh) for
the same number of processors. Figure 1 shows three graphs that exhibit the performance metrics of
the ScaLAPACK LU decomposition library routine. Figure 1(a) shows that for different processor
templates there is very little difference in performance for different problem sizes. Figure 1(b) shows
the performance for different system sizes. It is clearly shown in the graph that for a fixed block
size the system behaves poorly when the problem size is large and the system size is small. This
graph shows precisely where the ScaLAPACK routines fail to deliver desirable performance, that is,
on small systems with small grain size and large problem size. Finally, 1(c) shows the performance
of the library routine for different grain sizes. It is again shown that for small grain sizes scalable
performance is not maintained as the number or processors increases. This degradation in scalability
is because of increasing overhead of communication. On the other hand, for large grain sizes the
performance linearly increases with the changes in the system size.

In the remainder of this chapter we discuss predominant concepts relating to parallel library
design. In addition, we identify intricacies in the parallel library design and the current research

activities to overcome them.

2.1.3 Conformance Model

When a program invokes a procedure, both the caller and the callee must agree on how to pass
the parameters into and out of the procedure. This agreement between the caller and the callee
is known as the procedure call model. This agreement is realized in implementation with an entry
sequence, which runs before the procedure body is executed, and a return sequence, which runs
after the procedure body is executed. When a data parallel program calls a procedure, there is an
additional complication. This complication originates from the fact that upon a call, the procedure
parameters may be distributed across the nodes of the system. In data parallel programming, the
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Figure 1: Performance metrics of ScaLAPACK LU decomposition library routine. a) Performance for
different processor templates. b) Performance for different number of processors. c) Isogranularity
curves where labels are reduced by a factor of a million.

procedure call model must be enhanced to specify the agreement on the distributed parameters. The
agreement may be that a library routine requires a specific distribution upon entry or may accept
any distribution. On the other hand, the routine may restore the distributed parameters back to
their initial distribution upon return, or it may not guarantee any particular distribution.
Yang and O’Hallaron [82] discuss different parallel call models in their paper. These models
- relate to the distribution of initial data on entry to and exit from parallel procedures. Depending on
whether the data conforms to some distribution or inherits a distribution, different call models are
described and their impact on the quality of the code produced by the compiler is discussed. The
authors go on discussing the impact of compile time distribution information on the redistribution
cost. Table 2 represents the space of the procedure call models for data parallel programs. Each
model has two components in the procedure call overhead, namely quality of the compiled code and
unnecessary redistributions.
In conform-on-entry the callee requires that the distribution of data conforms to a specific dis-
tribution or a set of distributions upon entering the procedure. This model can either be enforced
by the programmer or tke compiler. This process will typically require redistribution of data from
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| | Conform models | Inherit models |

Entry models Conform-on-entry | Inherit-on-entry
Return models || Conform-on-return | Inherit-on-return

Table 2: Space of the call models

some source distribution (prior to the entry sequence) to a target distribution (specified by the
conformation rule). The conformation rule information can be utilized by the caller’s compiler to
optimize the overall communication cost as well as producing better redistribution code. On the
callee’s side, the distribution information may affect the quality of the generated code.

In inherit-on-entry model, there is no conformation rule between the caller and the callee. The
callee can handle any distribution upon entry. Hence, the produced code will not be efficient on
the callee’s side. An advantage of this model on the caller’s side is that the caller does not have to
worry about the distribution of parameter prior to the call. This will simplify the compiler or the
programmer’s task. On the callee’s side, the compiler or the programmer’s task will, however, be
more difficult since the distribution of data is unknown and any operation that requires distribution
knowledge will be inefficient.

Conform-on-return ensures that the distribution of data abides by certain rules prior to return to
the caller. Like conform-on-entry, this model allows useful information to be relayed to the compiler
which assists in efficient code generation.

In the last model, inheritton—retum, the caller inherits the distribution of data from the callee.
The advantage of this model is that unnecessary redistributions may be avoided, since the data may
no longer be needed after the caller’s resumption. On the other hand, if the data is used after the
call, the distribution information is not available at compile time and the generated code may be
inefficient.

We have used the parallel procedure call models conform-on-entry and conform-on-return de-
scribed in [82). Although the library routine writer may hard-code the data distribution and ac-
cumnulation in the library, the information on initial and final data layout is stored in the global
memory of the physical processors for later data redistribution. We will explain this in Chapters 3
and 4.

2.1.4 Delayed Granularity Adjustment and Delayed Mapping

When a regular parallel computation is to be described on a virtual architecture, it is easier to
describe the algorithm at the finest level of granularity and leave the degree of parallelism as high
as possible. Once the paraliel program is mapped onto a multicomputer, low grain sizes result in
emulation of many virtual processors in a physical processor. Although many virtual processors
are collapsed onto the same physical processor, local communication still goes through the router
and back to the same node*. Hence, the abundance of small messages results in poor performance.
Another issue is the overhead of emulating the virtual processors. One approach often used to deal

4 A local mailbox is a more efficient solution for intraprocessor communication.
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with this overhead is threading [72, 49]. In this approach, variables of the virtual processors are
expanded and placed in the common memory shared by all the threads. The use of threads gives
the compiler more flexibility in producing code that results in efficient scheduling of the virtual
processors. Threading can be used for both SIMD and SPMD parallel computation models. In
SIMD model the threads must be synchronized at specific points to maintain the semantics of the
computation and take advantage of the MIMD execution. Communication in the virtual topology
and deadlock free scheduling are issues that must be carefully considered in implementing this
technique. Moreover, threading is an attractive technique only when the number of virtual processors
per physical processor is small. When the number of virtual processors increases, communication
among local virtual processors induces significant overhead in the program execution time due to
the fine granularity of the parallel program.

Scaling down virtual architecture programs may be done either at algorithm design time, at
compile time, or at execution time. At algorithm design time, it is more effective in performance
gain but would require programmer’s intervention. If the programmer does not have knowledge of
the target system size and the problem size, this technique may not work, considering performance is
the primary goal. Scaling down at compile time, on the other hand, is not as effective in performance,
however the programmer’s task is greatly reduced. The scaled down form still suffers from the same
problems as the previous technique. Scaling down the virtual architecture size at execution time
is the most flexible among the three techniques. The algorithm is described in a parameterized
form, which is then scaled down at runtime taking into consideration the physical system and the
problem instance attributes. The parameterized scaled down virtual architecture will then allow
for determining a balance between the granularity and the parallelism of the program. The same
argument holds for mapping of the virtual processors to the physical processors. Mapping must
be performed once the virtual architecture program is scaled down. Lack of knowledge from the
physical system attributes prior to the program load time necessitates delaying this mapping to the
load or execution time.

ScaLAPACK routines perform the computation at the level of granularity described by the
caller. As a matter of fact, the granularity of computation is a parameter to the library routines.
This parameter is passed implicitly using the components of the matrix that describe the attributes
of the distribution. Therefore determining the granularity of computation is not an integrated part
of ScaLAPACK. |

2.1.5 Data Distribution

The layout of data in the hierarchical memories of a multicomputer is critical to the performance
of the program. In many numerical libraries, algorithms are described in a form to minimize data
movement between layers of the memory. The algorithms are described in block form to maximize
the ratio of floating point operations to memory references.

ScaLAPACK [12, 6] has used block algorithms to improve the performance of the parallel library
routines. Although there is a resemblance between the technique used in ScaLAPACK and the
one presented in this thesis, our technique is more flexible in obtaining desirable performance. In
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Figure 2: Block and cyclic decomposition example for 8 elements over 3 processors

ScaLAPACK the application programmer is responsible for distributing data over the processors.
A vector of length M is, for instance, distributed over a set of p processors by assigning the vector
entry at index m to the kth processor, where it is stored as the ith entry in a local array. Therefore,
the distribution can be regarded as mapping of the global index, m, to an index pair, (k,i). Note
that the value of m lies in the range 0 to M — 1, and k lies in the range 0 to p— 1.

Similarly for matrices, the p processors are considered to form a grid of P rows and Q columns.
The distribution of the M x N elements can be described as the tensor product of two decompositions,
u# and v. Therefore, if u(m) = (k,i) and v(n) = ({,j), then the entry (m,n) is assigned to the
processor (k,!) at index (7, 7) in the local array.

The authors in [12, 6] describe two common decompositions called block and cyclic decompo-
sitions. The block decomposition, A, assigns contiguous entries in the global vector to the same
processor, whereas scattered decomposition, J, assigns consecutive entries in the global array to
different processors. Where L = [M/P], distribution functions A, and d can be defined as:

A(m) = (lm/L],m mod L) M
§(m) = (m mod P,|m/L]) (8)

Figure 2 shows two examples of block and cyclic mapping in one dimension.

The decomposition strategy described in ScaLAPACK scatters blocks instead of single elements.
This is a more general form of distribution, since if block size of one is used, all other block and
scattered decompositions can be reproduced. In block distribution, the global index, m, maps to an
element using a triplet u(m) = (k, ¢, i), where k is the processor position, ¢ is the block number, and
i is the local index within the block. This can be written as,

¢r(m) = (lwd—T—J , l_%J »(m mod T') mod r)

r

where T = rP. With r = 1, this reverts backs to the original scattered decomposition. A block
decomposition is obtained if » = L. The block scattered decomposition of a matrix is the tensor
product of two block scattered decompositions, g, and v, which results in scattered blocks of r x s.
Figure 3 shows an example block cyclic mapping in one dimension.

In ScaLAPACK a matrix is an object composed of three components, data part, decomposition
part, and storage part. The library routine receives these structures as parameters and performs the
computation. These components describe the processor grid, matrix size, parameters of the block
scattered decomposition, and the actual user data buffer. The application program, or the compiler
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Figure 3: Block cyclic decomposition example for 23 elements over 3 processors for a block size of 2
(top) and the corresponding inverse mapping from the triplets to the global indices (bottom).

is responsible for identifying the contents of these structures based on the data distribution at the
time of the call to the ScaLAPACK routine. Figure 4 illustrates the structure of a matrix object in
ScaLAPACK.

There has also been some work in the area of an interface to ScaLAPACK. In [6], the authors de-
scribe a compilation and runtime system for HPF to provide an interface from HPF to ScaLAPACK.
In this system, called the ADAPTOR, the application programmer describes the data distribution
using HPF compiler directives. These directives are compiled into some runtime routines that dis-
tribute the data onto the processor template. A call to a ScaLAPACK routine is transformed such
that the parameters to the library routine are the matrix structures rather than the matrices them-
selves. The information within these structures is obtained using HPF runtime library routines.
ADAPTOR has two major components, the first of which compiles an HPF program into a mes-
sage passing program and the second one is a runtime library, called DALIB, that is linked in with
the message passing program. An important distinction between our design of virtual architecture
parallel libraries and those of ScaLAPACK and CMSSL is that our library routines deduce the size
of the virtual architecture from the problem instance size. In other libraries the size of the logical
architecture is defined by the programmer and the library routine does not deduce the size. Our
parallel libraries perform reduction in the size of the virtual architecture transparently. In other
library systems this reduction in size is done by the programmer prior to calling the library rou-
tine. Finally, our library system is designed to support virtual architecture algorithms based on any
topology and benefit from the topology information, whereas other libraries rely on the programmer
to consider a logical mesh for the implementation of the virtual architecture parallel algorithm. The
library routine does not consider the communication pattern of the algorithm and the effect of its
mapping onto the physical architecture.

Various researchers have worked in the area of automatic distribution in HPF. Even though
this may appear related to the automatic distribution described in this thesis, this work is centered
around identifying the optimal cyclic factors in an HPF program. Originally in HPF, the application
programmer must have defined the value of z in cyclic(z) distribution. Recent work such as [10]
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Matrix{

DATA_PART_PTR({
pointer to matrix element values
total number of rows in matrix
total number of columns in the matrix
total number of rows of r by r blocks in the matrix
total number of columns of r by r blocks in the matrix
number of rows of r by r blocks in each processor
the template row containing the first matrix block
the template column containing the first matrix block
pointer to the user supplied buffer

}

DECOMPOSITION_PART_PTR{
block size
the number of rows of processors in the template
the number of columns of processors in the template
the ID number of the processor to the left in the template
the ID number of the processor to the right in the template
the ID number of the processor below in the template
the ID number of the processor above in the template

}

STORAGE_PART_PTR({
column or row major storage of blocks
column or row major storage of elements within the block
offset between successive elements in the same row
offset between successive elements in the same column
offset between starts of successive blocks in the same row
offset between starts of successive blocks in the same column

Figure 4: A matrix object in ScaLAPACK




formalizes the automatic data distribution using graph theory. Given an HPF program with distri-
bution and redistribution primitives, the authors construct a directed edge-weighted graph called the
alignment-distribution graph(ADG). Nodes of the ADG describe program operations, whereas the
edges connect the definition of array objects to their use. Alignment and distribution are attributes
of array objects. A solution to the automatic distribution problem is the labeling of the edges of the
ADG with distribution parameters.

2.2 Application Domain

The hierarchical memory of computer systems advocates algorithms that have locality of reference.
In the implementation of these algorithms, once the data is close to a processor it is used as much as
possible before it is sent out to another processor. In distributed-memory multicomputers non-local
memory is added on top of the conventional memory hierarchy. Accessing non local memory is
several hundred times more expensive than a local memory access [25]. This renders use of many
algorithms based on block partitions more appealing [29, 30]. In these algorithms a processor requests
a block of data from another processor, performs its local computation using the block, and sends
the block to other processors for further computation. The block algorithms also have the flexibility
that the block size may be fixed dynamically based on the system size and the communication
parameters prior to commencement of the parallel phase. Larger block sizes not only reduce the
communication overhead of the parallel program, but also allow a higher degree of overlapping
between the computation and the communication [25].

Many scientific computations can be described using the block matrix form. Among these are
vector-matrix operations, matrix-matrix operations, Jacobi Relaxation, and LU Decomposition. The
level 3 BLAS [24] routines are based on such algorithms. These routines form the core part of the
ScaLAPACK [12] parallel library.

Consider multiplication of two n x n matrices A and B on a torus of size n x n. Initially each
processor is assigned an element of A and an element of B, and a local variable is set to 0 in all the
processors. Then the algorithm goes through n iterations. In each iteration, the local values of A
and B are multiplied and added to the local variable c¢. The local value of A is passed to the left
neighbor and the local value of B is passed to the neighbor above. In return, new value of A and
B are received from the right neighbor and the neighbor below, respectively. At the end of the nth
iteration every processor holds a value of the result matrix C.

Each processor in the torus performs 6(2n) floating point operations, 6(n) sends, and 6(n)
receives. Finally every processor returns its value of ¢ to the host or I/O processor.

In block matrix multiply, each processor holds a partition of A and B, and has a local partition
for C. The algorithm behaves similar to the fine grain one with exception that the computation
at each node consists of a matrix multiplication and addition followed by a matrix assignment.
Assuming the size of the partition is s, the number of floating point operations by each processor is
6(s® + s%). The number of sends and receives are both 6(n/s).

Figure 5 demonstrates two types of matrix multiplication. Figure 5a demonstrates the multipli-
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Figure 5: Fine grain and block matrix multiply

cation of two n x n matrices on a torus of n X n virtual processors. The overall computation consists
of n iterations. During each iteration, one scalar value is communicated to the left neighbor and one
to the upper neighbor. After performing the scalar multiplication and addition, scalars for a and b
are received from the right and the lower neighbor, respectively. Figure 5b demonstrates the same
computation using 55 x -\-}—'; processors. In this case each processors will hold three partitions of sizes
% X ‘/i—;. The overall computation consists of ,/p iterations. During each iteration the partitions
of a and b are communicated to the upper and left neighbors, respectively. Local computation
which is the matrix multiplication of the partitions is performed following by receipt of the a and b
partitions from the lower and right neighbors, respectively. If Figure 5b, statements in bold indicate
that the operation involves blocks of data as opposed to scalars. Consider these two algorithms as
far as the amount of overlap between computation and communication is concerned. In the fine
grain program, by the time the control comes back from the sends to the program, the messages
are already at the destinations, so overlapping of computation and communication is meaningless.
However, in the block matrix algorithm, when the sends return to the program and continue with
the computa.ﬁion, the messages will still be in transit (if the messages are large enough). Therefore,
the program benefits from overlapping of computation and communication.

2.3 Programming Paradigms

Different programming paradigms trade off between ease of programming and efficiency of programs
depending on the target architecture. Parallel programming languages are designed to support the

26



programming paradigms. An algorithm may be easy to describe in one language but more difficult
in another. On the other hand, the efficiency of the algorithm depends on how well the programming
paradigm matches that of the underlying architecture. A closer match results in more efficiency, at
the expense of more programming effort. A mismatch of the programming paradigm, and therefore
the supporting language, and the architecture allows the programmer to describe the algorithm at
a more abstract level but may result in a more inefficient execution.

A characterization of parallel programming is based on whether the parallelism is ezplicit or
implicit in the program. In explicit parallel programming, the programmer describes exactly how the
processes communicate to solve a given problem. Therefore, the compilation process is very simple,
but the programmer’s task is more complex. Implicit parallel programming, on the other hand,
allows the programmer to describe the computation using the conventional sequential programming
paradigm and performs compile-time analysis on the code to detect potential parallelism. The
compiler’s task is very complex and in some cases may fail to provide desirable performance. We
have used the former approach of explicit programming to describe our parallel libraries for the
purpose of efficiency and the latter approach for the user interface to facilitate use of these libraries.

Virtual Shared Memory programming paradigm is one in which the programmer views the com-
putation as a set of processes accessing a pool of shared variables. Although this programming
paradigm is more suitable for multiprocessors, it can be implemented on multicomputers. Imple-
mentation of this programming paradigm on multicomputers requires analysis by the compiler as
to the location of data so that appropriate send and receive can be inserted in the program for
communication. In Message Passing paradigm, the programmer views the program as a collection
of processes with private local variables. The communication among these processes is done using
primitives such as send and receive. Message passing programs are more difficult to write, however
they can be optimized and can run more efficiently on multicomputer. This programming paradigm
is the most suitable for implementation of parallel libraries for multicomputers.

Data parallelism is the type of parallelism where many data items are subject to the same
processing. Many data parallel languages have been developed to support this kind of parallelism.
'SIMD architectures are very suitable for data parallel programs since the synchronous execution of
the instructions is supported by the hardware. MIMD architectures can also be used for data parallel
programming but the global synchronization cost may be intolerable. A more relaxed form of data
pa;allél programming is one that does not require synchronization at each instruction. This form
is called Single Program Multiple Data (SPMD) programming paradigm. In SPMD programming
paradigm, synchronization is done only at communication points which are implicit in the algorithm.
SPMD programs are suitable for multicomputers since the programming paradigm closely matches
the underlying architecture. In contrast to data parallelism, control parallelism refers to simultaneous
execution of different operations. Pipelining is an example of control parallelism.

Our system is based on implicit parallelism from the user’s view as the library call interface
resembles that of sequential programming. The library routines are based on explicit message
passing SPMD programs. Below, we look at some of the existing languages and systems based on a

similar programming paradigm.
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Quinn and Hatcher [60, 64, 37, 65] have studied the compilation of C* virtual architecture pro-
grams onto the distributed-memory architectures. In compilation of a SIMD C* program to C, they
identify the necessary synchronization requirements of the original program. The communication
primitives inside loops and the conditionals are pulled out by performing transformations on the
program. These transformations are done because of the limitation of the nCube 3200 architecture.
In this architecture communication requires participation of all the processors. After these trans-
formations, emulation loops are placed around the sections of code delimited by communication. In
addition, Quinn and Hatcher emulate sections of code delimited by communication statements and
perform full synchronization at communication points. Quinn and Hatcher describe data level and
processor level parallelism in [36]. A parallel SIMD algorithm may be described in finest granularity
and then transformed automatically to the contracted form. The contracted form described in [36]
is quite different than the one described in this thesis. In [36] the authors transform statements
so that all local communication is converted to assignment. At the boundaries, the communication
statements remain as they are and some optimization may be applied to combine small messages
into large messages. The authors rely on the SIMD programming model of C* on CMS5 to define
these transformations. A more efficient method is for the programmer to describe the algorithm
using larger grain sizes. In most of the virtual architecture algorithms, for a given problem instance
size, the size of the virtual architecture can be chosen from a range of possible values. After fixing
the size of the virtual architecture, the computation and the communication operations, by each
virtual processor, must be adjusted to reflect this size. Our library routines select the size of the
virtual architecture at runtime. To support this, the algorithms are described using parameterized
grain size and the best grain size is selected at runtime. In such case, the programmer can use the
best existing sequential algorithm to perform the computation at each node. Describing a parallel
program in a form such that the grain size is not fixed at program design time is useful in design
of parallel libraries. A parallel library routine can determine the grain size upon invocation using
the problem size and the physical system size. Although Quinn and Hatcher discuss processor level
parallelism in [36], the use of this technique in the design of libraries is overlooked in their paper.

Rosing [69, 70] has also considered virtual architecture programming in his thesis. DINO was
primarily developed to support virtual architecture programming for data parallel applications. The
primary objective in DINO is to create a collection of data mapping libraries that are subsequently
used by programmers to distribute the initial data across the virtual architecture. DINO is mainly
recognized for its rich mapping library. The contraction of SIMD procedures is done using a similar
technique as that of Quinn and Hatcher with some minor added optimizations.

Kali [53] is another language, compiler, and runtime' environment that supports shared name
space programming. The compiler translates shared name space programs to message passing
progi’ams that produce assignment for local communication and message passing instructions for
nonlocal data transfer.
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2.4 Communication Model

In a distributed-memory multicomputer, processors must exchange data using communication. This
is in general available using communication libraries on the processors. The most common form of
communication is point-to-point communication where two processors exchange data by executing
send and receive operations. The sending processor makes a system call to the kernel of the
node operating system. The kernel prepares the message and delivers it to the network layer. The
network layer then transfers the data using the physical layer. The message, then, travels through
the network from one node to the next. Once at the destination, the message ripples up from the
physical level to the user level into the user buffer.

One common form of message passing primitive used is blocking or synchronous. When a process
calls send, it specifies a destination and a buffer to send to that processor. While the message is
being sent, the sending processor is blocked. The instruction after the send is not executed until
the message is completely transferred. Similarly, receive must wait until the message is completely
received and placed in the message buffer. If the processor is waiting for a message from a specific
processor, it must wait until a message from that processor arrives.

A different form of communication is called nonblocking or asynchronous primitive. A nonblock-
ing send implies that the sending processor returns control to the caller immediately before the
message is sent. The sending process can then continue computing in parallel with the message
transmission. The kernel must ensure that the user buffer is released before returning to the caller,
otherwise the user data may be clobbered prior to transmission. Releasing the user buffer may
be done by copying it immediately after the call to send. The message can then be prepared for
transmission while control goes back to the caller and computation continues. Major problem with
this scheme is the additional copying of the user buffer to the kernel buffer which may reduce the
overall system performance. Usually an additional copying from the user buffer into the hardware
transmission buffer is required as well. One other solution is to interrupt the sender when the mes-
sage has been sent to acknowledge that the buffer can be reused. The cost here is more program
complexity but no additional copying is required.

Among the different techniques described above, applications that have potential of overlapping
computation and communication can take advantage of nonblocking send with copying. Figure 6(a)
demonstrates how a process is blocked during a blocking send, whereas Figure 6(b) demonstrates
how the processor is released after the message is ready for transmission. The area of computation
and communication overlap is shown in the figure. Since the startup cost is significant, this model
favors programs based on large message.

The startup cost or startup latency is the amount of time from initiating a send by the user
program until the message buffer is free for use by the caller. The startup cost is usually in the

“order of thousand of instructions, which introduces significant overhead in the execution of parallel
programs. Table 3 shows the metrics from some of the existing parallel machines. Although the
value of startup latency has improved over the past decade, this value is still intolerable. The high
value of startup makes large number of small messages unattractive. When a small message is sent
from one processor to another, by the time control comes back to the caller, the message has most
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Figure 6: Blocking and non-blocking send

probably reached the destination. Therefore, no overlap of computation and communication can be
done. On the other hand, if large messages are used, when control comes back to the caller, the
message is most probably still in transit and the computation following the send can be overlapped
with the ongoing communication. This is under the assumption that a send operation issued by
the user program does not return until the user buffer has been copied to the router buffer. If the
user buffer is copied immediately after calling send, the user program can resume right away. The
later approach requires extra buffering, however it significantly reduces the startup cost.

We will examine the effect of granularity in Chapter 3. Large messages support overlapping as
described above, but limit the parallelism. Limitation in parallelism may increase the total execution
time in two aspects. One is obviously the usage of less processors to solve the problem. The other
is the load imbalance that may be introduced at execution time.

2.5 Automatic Data Redistribution

Data redistribution [12, 14] consists of rearrangement of data between two parallel phases of a
program. The primary reason to support data redistribution is the fact that different parallel phases
of a program possibly require different distribution for good performance. A data distribution
suited for one parallel phase may behave poorly for another phase. The two parallel phases may
have different topologies and sizes. Initial data distribution comprises a significant portion of a
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Intel Intel ASCI
MPP Models | IBM SP2 Cray T3D Cray T3E Paragon TeraFLOPS
Large 400-node 512-node 512-node 400-node 4536-node
Configuration | 100 Gflop/s | 153 Gflop/s 1.2 Tflop/s 40 Gflop/s 1.8 Tflop/s
67 MHz 150 MHz 300 MHz 50 MHz 200 MHz
CPU Type | 267 Mflop/s| 150 Mflop/s 600 Mflop/s 100 Mflop/s 200 Mflop/s
POWER?2 Alpha 21064 Alpha 21164 Intel 860 Pentium Pro
1 processor 1-2 processors
2 processors 4-8 processors 2 processors
Node g:el‘mmory'z GB | 64MB Memory | 256MB-16GB cl’f;mMB Mem~ 35 556MB
Architecture 1-4.5GB 5DOi§l}(B Shared ghSaB;Ied Disk 48GB shared| g;::;;rydisk
Local Disk disk
Interconnect | Omesa Nety 3-D Torus 3-D Torus Split
Memory work, DSM DSM 2-D Mesh 9-D Mesh
NORMA
Complete Light-
OS Nodes AIX Microkernel Microkernel Microkernel Weighted
(IBM Unix) Kernel(LWK)
Native Message Shared Variable| Shared Variable M . Message
. . essage passing .
Programming | Passing and and (Nx) Passing
Model (MPL) Message Passing] Message Passing (MPI)
Other MPI, PVM, SUMMOS,
Models Linda MPI, HPF MPI, HPF MPIL, PVM Nx, PVM
%‘E;izu:n d 40 pus 2 us 2 ps 30 us 10 us
Bandwidth 35 MB/s 150 MB/s 480 MB/s 175 MB/s 380 MB/s

Table 3: Characteristics of the most commonly known parallel systems

parallel program’s execution time. Since initial data distribution is done sequentially, it degrades
the performance of the program drastically. If data is reused between the phases, it is beneficial
to reshuffie the data among the processors to prepare for a subsequent phase. The reshuffling is a
parallel operation and eliminates a large fraction of sequential communication operations.

Most of the research work in the area of redistribution is based on HPF. In HPF, data re-
distribution is explicit. HPF supports block and cyclic mapping previously described. The data
redistribution for these primitives is simple and has been looked at in [19], [46], [66], and [77]. An-
other form of distribution previously described, which is also supported in HPF, is the cyclic(z)
mapping. In support of ScaLAPACK library calls from an HPF program, the block-cyclic with an
arbitrary block size renders the redistribution more difficult. An HPF program may distribute the
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data using a block factor prior to a call to a ScaLAPACK routine. The user program may redis-
tribute data to a different block factor prior to calling a second ScaLAPACK routine. The authors
in [80], [48], and [77] have looked at this type of redistribution.

The author in [19] discusses the merits of data redistribution on load balancing and phase par-
allelism. He formalizes data redistribution and examines a special case where this is achieved by
local permutation. The author goes on considering orthogonal redistribution which is a special case
when every node exchanges a constant number of data items with every other node. This special
case produces the largest number of communications in a redistribution phase. Our formalization
is a variation of [19], with the difference that the author in this paper does not address the issue of
redistribution in the context of parallel libraries.

The work by Kalns and Ni described in [45, 46] is also in the area of data redistribution in HPF
programs. In these papers, the authors use virtual processor mapping technique to minimize the
number of data exchanges for block to cyclic redistribution. The high level language used is HPF
which has directives to perform explicit data redistribution between parallel phases. Their technique
is strictly applicable to explicit data redistribution directives, and requires that the source and
target virtual processors have the same size and dimensionality. The processor mapping technique
used in their papers also has the drawback that it does not preserve local communication. This
may result in degradation in performance due to contention in systems based on packet switching.
On these systems, the communication cost is proportional to the distance that the message must
travel. The difference between our work and {45, 46] is that our data distribution and redistribution
is implicit. The distribution information of a parallel routine is maintained as part of the library
routine. For virtual algorithms that have a regular communication pattern and the virtual processors
communicate with their nearest neighbors, the contracted form tends to be very efficient because of
the locality of reference after each communication. A large number of parallel programs fall in this
class. Such programs, once contracted, run using coarse grains and data redistribution is also done
in coarse grain form. The grain size, which is determined at runtime, is a function of the problem
size and the physical system size. Consequently, the size of the virtual architecture can be reduced
to be smaller or equal to the physical architecture size. Each physical processor will then be assigned
at most one virtual processor. Another difference between our work and Ni’s is that since our target
domain is the class of regular applications that possess neighboring communication, our contracted
form preserves the locality of communication whereas in Ni’s work the number of redistribution
messages is reduced at the cost of increasing the distance between communicating nodes.

The authors in [77] present algorithms to perform redistribution between different cyclic(z)
distributions, as defined in High Performance Fortran. They initially propose optimized algorithms
for cyclic(z) to cyclic(y) redistribution where z is a multiple of y or y is a multiple of z. They
then propose two algorithms, called the GCD and LCM method, for general cyclic(z) to cyclic(y)
redistribution when there is no enforced relation between z and y.

In [47] and [48] the authors also present a scheme to determine the processor sets and the
elements involved in the redistribution in special cases where the source and destination block sizes

are factors of one another. The general case of redistribution can be expressed in terms of these two
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special cases. The authors develop a closed form for determining the processors and the elements of
redistribution from which they evolve a cost model for array redistribution. It is then shown that a
multiphase array redistribution has a lower cost in communication overhead than the single phase
approach. This work of the authors is based on the original work in [34] where they utilize tensor
product theory on matrices [39] to describe algebraic semantics of regular distributions.

The distribution across library calls in our design requires a scheme that works similar to the
cyclic redistribution, however the data redistribution is not explicit in our programs. The potential
redistribution is recognized by the compiler and appropriate code is inserted to efficiently redistribute
data for the second parallel phase. Redistribution in our library routines is done across parallel
phases using information embedded in the library routine. A library routine is passed information
about the current distribution of all global data. Using this information and the requirements of the
parallel phase, appropriate redistribution is performed prior to launching the parallel phase.

2.6 Examples of Library Systems

In HPF, the programmer can declare several logical architectures of the same size in a single program.
For each parallel phase, the programmer can then distribute the data onto a logical architecture
using the DISTRIBUTE compiler directive. After completing a phase of the parallel program,
the REDISTRIBUTE compiler directive may be used to reshuffle the data to the appropriate
locations to be used in the next parallel phase of the program.

In HPF, logical processor templates are declared using the PROCESSOR directive. This direc-
tive may only appear in the specification part of the program. The NUMBER_OF_PROCESSORS
and PROCESSORS _SHAPE may be used to inquire about the total number and the shape of
the actual physical processors used to execute the program. Following are some legal processor
declarations in HPF:

'HPF$ PROCESSOR P(10)

IHPF$ PROCESSOR Q(NUMBER_OF_PROCESSORS())

'HPF$ PROCESSOR R(8,NUMBER_OF_PROCESSORS()/8)
{HPF$ PROCESSOR S(1972:1997,-20:17)

'HPF$ PROCESSOR SCALAPROC.

Distribution of data in HPF is described using the cyclic(k) which specifies the assignment using
blocks of size k in cyclic form. The cyclic(k) form of distribution covers a large class of distributions,
two special cases of which are block and cyclic. The former is actually cyclic( [%]), where NV is the
data size and P is the number of processors, whereas the latter is cyclic(1). For example,

REAL XVECT(10000)
'HPF$ DISTRIBUTE XVECT(BLOCK)

specifies that the array XVECT should be distributed across the set of currently defined logical
processors by slicing it uniformly into blocks of contiguous elements. If there are 50 processors, the
directive implies that the array should be divided into groups of [10000/50] = 200 elements, with
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XVECT(1:200) mapped to the first processor, XVECT(201:400) mapped to the second processor,
and so on. If there is only one processor, the entire array is mapped to that processor as a single
block of 10000 elements. The block size may be specified explicitly in a DISTRIBUTE directive:

REAL YVECT(10000)
tHPF$ DISTRIBUTE YVECT(BLOCK(256))

This specifies that groups of exactly 256 elements should be mapped to successive logical processors.
The number of logical processors must be at least 40 for this directive to be satisfied.
The following example uses a cyclic distribution format:

REAL ZVECT(52)
tHPF$ DISTRIBUTE ZVECT(CYCLIC)

If there are 4 logical processors, the first processor will contain ZVECT(1:49:4), the second processor
will contain ZVECT(2:50:4), the third processor will contain ZVECT(3:51:4), and the fourth pro-
cessor will contain ZVECT(4:52:4). Therefore, successive array elements are aésigned to successive
processors in a round robin form.

For a multi-dimensional array, the distribution is specified independently for each dimension of

the array:

REAL XXVECT(8,8), YYVECT(19,19)
'HPF$ DISTRIBUTE XXVECT(BLOCK,BLOCK)
'HPF$ DISTRIBUTE YYVECT(CYCLIC, *)

The XXVECT array will be partitioned into contiguous rectangular patches, which will be dis-
tributed onto a two-dimensional arrangement of the logical processors. The YYVECT array will
have its row distributed cyclically over one-dimensional arrangement of the processors. The “*”
specifies that YYVECT is not to be distributed along its second axis. Therefore, an entire row is to
be distributed as one object.

The REDISTRIBUTE directive is used to change the arrangement of the distributed data on

the same or another logical processor template. For example:

{HPF$ DIMENSION(8,8) ,DYNAMIC :: XXVECT

{HPF$ PROCESSOR P(NUMBER_OF_PROCESSORS())
tHPF$ PROCESSOR Q(8,NUMBER_OF_PROCESSORS()/8)
tHPF$ DISTRIBUTE XXVECT(BLOCK,BLOCK) ONTO P

VHPF$ REDISTRIBUTE YYVECT(CYCLIC,*) ONTO Q

The array XXVECT is declared DYNAMIC so that redistribution can be applied to it. This is
a requirement in the HPF language. In this example the redistribution takes place across two
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different logical architectures of the same size. Note that the REDISTRIBUTE directive is con-
sidered an executable statement and may appear among the executable statements. However, the
DISTRIBUTE directive can be only used in the specification part of the program.

Following is a complete example of an HPF program calling a ScaLAPACK routine. Statements
S1 through S6 declare the arrays and constants in the program. S7 declares the processor template
as a 1x3 array. S8 and S9 will then distribute A, B, and X onto the processor template in the form of
(cyclic(64), cyclic(64)). Statement S21 is the call to the ScaLAPACK routine. To run this program,
the programmer must first convert the program to a message passing form using an HPF compiler.
In the message passing program, the matrix objects are represented using structures which contain
information about the distribution as specified in declaration part of the program (see Figure 4
on Page 24). Once translated to the message passing form, the local versions of the ScaLAPACK

routine and the communication library are linked in to generate an executable.

Si: program simplegesv

S2: use HPF_LAPACK

S3: integer, parameter :: N=500, NRHS=20, NB=64, NBRHS=64, P=1, Q=3
S4: integer, parameter :: DP=kind(0.0DO)

S6: integer :: IPIV(N)

S6: real(DP) :: A(N, N), X(N, NRHS), B(N, NRHS)

S7: ‘HPF$ PROCESSORS PROC(P,Q)

S8: (HPF$ DISTRIBUTE A(cyclic(NB), cyclic(NB)) ONTO PROC

S9: HPF$ DISTRIBUTE (cyclic(NB), cyclic(NBRHS)) ONTO PROC :: B, X
S10:

S11: !

S12: ! Randomly generate the coefficient matrix A and the solution

S13: ! matrix X. Set the right hand side matrix B such that B = A * X.
S14: !

S15: call random_number(A)

S16: call random_number(X)

S17: B = matmul(A, X)

S18: !

S19: ! Solve the linear system; the computed solution overwrites B

S20: !

s21: call la_gesv(A, B, IPIV)

S522: !

$23: ! As a simple test, print the largest difference (in absolute value)
S24: ! between the computed solution (B) and the generated solution (X).
S26: ¢

S26: print#*,’MAX( ABS(X~ - X) ) = ’,maxval( abs(B - X) )

S27: ! .

S28: ! Shutdown the ScaLAPACK system, I’m done
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S29: !

S30: call SLhpf_exit()
S3t:

S32: stop

S33: end

The following is an example of a call to a ScaLAPACK routine from a message passing program.
The full program is much lengthier and many sections are omitted for brevity. Statements on lines
S7 and S8 call the routines to initialize the ScaLAPACK system and the processor grid. The matrix
descriptors are setup on lines S13 to S16 using calls to DESCINIT. This routine assembles all the
distribution information about an array or matrix in a descriptor to be passed to the ScaLAPACK
routine on line S26. Statement on line S20 calls MATINIT to distribute the matrices onto the
processor grid. A call to the ScaLAPACK routine is then issued on line S26 followed by calls to
BLACS routines to free structures and exit the program one lines S34 and S39.

Si: PROGRAM EXAMPLE1

S2: =

53: =* Example Program solving Ax=b via ScaLAPACK routine PDGESV
S4: =*

S6: = INITIALIZE THE PROCESS GRID

S6: =*

S7T: = CALL SL_INIT( ICTXT, NPROW, NPCOL )

s8: CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )

S9: =*

S510: = DISTRIBUTE THE MATRIX ON THE PROCESS GRID

Si1: = Initialize the array descriptors for the matrices A and B
S12: *

S13: CALL DESCINIT( DESCA, M, N, MB, NB, RSRC, CSRC, ICTXT, MXLLDA,
S14: $ INFO )

S15: CALL DESCINIT( DESCB, N, NRHS, NB, NBRHS, RSRC, CSRC, ICTXT,
S16: $ MXLLDB, INFO )

S17: * ]

S15: =* Generate matrices A and B and distribute to the process grid
S19: =*

S20: CALL MATINIT( A, DESCA, B, DESCB )

S21:

S522: *

523: * CALL THE SCALAPACK ROUTINE

S24: = Solve the linear system A * X = B

S25: * .

s26: CALL PDGESV( N, NRHS, A, IA, JA, DESCA, IPIV, B, IB, JB, DESCB,
S27: $ INFO )
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S28: *

S29:

S30: *

S31: =* RELEASE THE PROCESS GRID
S32: =* Free the BLACS context
S33: =

S34: CALL BLACS_GRIDEXIT( ICTXT )
S36: *

S37: * Exit the BLACS

§38: =* ’

S39: CALL BLACS_EXIT( O )
S40: STOP

S41: END

Now we will look at an example library call in CMSSL to multiply a matrix by a vector:

CMF$LAYOUT A(:SERIAL,:SERIAL),x(:SERIAL),y(:SERIAL)
DIMENSION A(81,81), x(81), y(81)

CALL GEN_MATRIX_VECT_MULT(y,A,x,IER)

The first line is analogous to the DISTRIBUTE directive of HPF. The :SERIAL distribution
in the Connection Machine Fortran has the same semantics as the BLOCK distribution in HPF.
CMSSL uses a scheme similar to ScaLAPACK to pass the information about the distribution of
the arrays to the library routines. The translation of the array reference to actual structures that
contain various information about the array (including its distribution) is completely transparent to
the programmer.

Since the data is assumed not to move in HPF, the compiler can, through analysis, determine the
data redistribution required to map the data from the source logical architecture to the destination
logical architecture. This is basically because in HPF data is static with respect to the logical
processors. In programming languages such as our virtual architecture language this is not the case.
Following the data distribution, the data is allowed to move around. By the time the program
reaches the end of a parallel phase, the distribution of the data is not that of the beginning. Since
the final distribution of data is determined by the algorithm, this information cannot be obtained by
the compiler and a technique similar to that of Kalns and Ni [46] fails and a different library set up
must be considered. Another shortcoming of the current work in the design of data redistribution
libraries is that the dimensionality and the sizes of the source and target logical processors are
assumed to be the same.

Most compilers for data parallel languages perform many-to-one mapping to support portability
of parallel programs to different size systems. The code produced by these compilers runs at a
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granularity equal to that defined in the original program [46]. Therefore, if the virtual architecture
is very large and the distributed data is fine grain, the communication overhead of the program
may become intolerable in small size systems. Likewise, this argument holds for data redistribution

between the phases when many small messages must be exchanged between the processors.
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Chapter 3

Parallel Library Design

A sequential program may consist of several calls to computation intensive numerical routines, pos-
sibly nested within various programming constructs such as conditionals or iterative constructs. The
problem instance size of these calls is seldom known statically. Often data used or computed by one
library call is also used as parameter in a subsequent call. Many sequential libraries exist which are
utilized to perform these intensive numerical computations. These libraries have a well defined caller
interface and have been optimized for good performance. The objective of these library routines
is to encourage reusability of software and robustness of user programs. As application programs
require larger problem instances to be solved by these library routines, the delivered performance
becomes unsatisfactory. Using a standard language and obeying the interoperability issues, a se-
quential library can be easily ported to another system by a one-time optimized compilation. To
better utilize the target system, the library routines may have to be tuned to take advantage of the
new system (i.e. architecture, number of registers, cache size, etc.).

With the advent of multicomputers, the need to perform these intensive numerical computations
in parallel was deemed necessary. Multicomputers operate on distributed data using multiple pro-
cessors which is unlike the clear uniprocessor stack model of sequential libraries. If the sequential
call interface is to be maintained for parallel libraries, there is a gap between the call parameters and
the distributed data which must be filled appropriately by the compile time and the run time sys-
tems. Data from one processor is only available to other processors through communication which is
normally a costly operation. Expensive communication operations make performance of the library
routines sensitive to the location of the computation and the data on the multicomputer.

Portability of parallel libraries is also quite different from sequential libraries. A parallel library
is considered portable if it can run on the same system using different partitions and configurations,
or on another physical system. In other words, it must be able to run on a system with different sizes
and topologies without the need for recompilation. Porting to another system must only require a
one-time parameter tuning and compilation of the library. Another requirement is that the library
must deliver its best performance on different size systems. If ported to another system, it must
utilize the physical system based on its hardware characteristics, such as the communication latency

and the processor speed.
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Existing parallel libraries require the programmer to specify the computation on the distributed
data. Management of the distributed data and redistribution between two parallel library calls are
the jobs of the programmer. Therefore, the call interface of these libraries is not similar to the
sequential libraries. The performance of the library routines is also dependent on the data distri-
bution done by the programmer. Achieving good performance requires several trial and error runs.
Furthermore, If sequential programs are to be assimilated into these programming environments,
they must be completely rewritten. However, this is not the case with parallel libraries with sequen-
tial call interface. With parallel libraries which possess call interface similar to sequential libraries,
programmers who have only knowledge of sequential programming and would like to run their in-
tensive computation on a parallel system may develop their application with solely knowledge of the
call interface of the parallel library routine as if they are calling a sequential library routine. The
complexity of management of the distributed data, efficient execution on the parallel system, and
the data redistribution between calls are handled by the compile time and the run time systems.

Virtual architecture algorithms have several unique properties which offer solutions to currently
existing problems in parallel library design. The size of the virtual architecture is generally a func-
tion of the problem instance size. This property can help the parallel library routine to derive the
size of the virtual architecture at runtime when the problem instance size is known. Virtual archi-
tecture algorithms can be described in parameterized block form which supports runtime grain size
adjustment. The virtual topology of the algorithm is generally representative of the communication
pattern of the algorithm. This information can assist the runtime system to perform mapping of
" the virtual processors to the physical processors and reduce the communication overhead of the
program.

The objective of this chapter is to offer a design of the parallel libraries based on the virtual
architecture programming model which adheres to several unique properties. The call interface of
these library routines resembles those of sequential libraries. These library routines deliver higher
performance than the existing parallel libraries, manage distributed data transparently, and provide
automatic data redistribution across parallel phases. Furthermore, the objective of these parallel
libraries is to run efficiently on partitionable and reconfigurable systems without recompilation. If
ported to another system, upon providing the physical system attributes to the library system and a
one-time compilation, the library routines must fully harness the target system to provide the lowest
possible execution time to the user programs.

The features of the parallel library design proposed in this thesis consist of the following:

e Sequential call interface.
o Support for virtual architecture parallel algorithms.
¢ Delayed runtime grain size adjustment to improve performance.

e Delayed runtime mapping to improve performance.

Centralized mapping library.

Virtual point-to-point and collective communication library.
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e Data distribution encapsulation.
e Transparent data redistribution.

Easily portable to systems with a low level communication library and a threading library.

e Easily tunable to harness a parallel system based on its communication network characteristics.

These features not only make use of the parallel libraries very simple, they also facilitate creation
of new library routines based on virtual architecture algorithms. The library system can be easily
extended to handle new topologies and mapping functions.

A library routine writer must take the following steps in the design of a parallel library routine:

e Select highly scalable virtual architecture parallel algorithms for library implementation.
e Identify the distributed data requirements of these algorithms.
e Develop the execution time functions for the runtime grain size adjustment.

o Examine the behavior of these algorithms under different processor mapping functions and
select the most viable one for each algorithm.

e Implement the required components of the library routine to perform the grain size adjustment,
delayed mapping, automatic data distribution, automatic data accumulation, and the core

computation.

To support the above, we have proposed an internal representation of the virtual architecture parallel
algorithms. Furthermore, through proper design of the library routines we support ease of use,
reusability, and portability of parallel programs which generally classify as important objectives of
software engineering. The outcomes of this approach are parallel library routines which can be
used by sequential programmers to run their intensive numerical computations in parallel. The
components of the design are a transformer which cenverts sequential programs to an SPMD form,
an internal representation of virtual architecture parallel libraries, a mapping library, a virtual
communication library, and a redistribution module. Several library routines have been implemented
and performance results from selected routines have been presented.

In the rest of this chapter, we describe the infrastructure and the framework for parallel library
design of virtual architecture programs. The description of the design is followed by the experimental
results from our integrated programming environment. These experimental results confirm our
analysis and illustrate that our design outperforms currently existing parallel libraries. It is further
shown that the design does not only adhere to our major goal of performance, but also to the
reusability, portability, and ease of use criteria.

The library design in this thesis bears several unique properties not observed in other parallel
libraries. These are:

e Runtime granularity adjustment to minimize the execution time of the virtual architecture
routine. In other libraries, the algorithms perform the computation at the granularity specified
by the programmer.
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e Delayed mapping to reduce communication overhead of the program. Other libraries do not

address the issue of mapping. Mapping is claimed to be a compiler dependent issue.

e Encapsulated data distribution information. In other libraries data distribution must be de-
fined by the programmer.

e Support for automatic data redistribution. In other systems, data redistribution must be
explicitly specified by the programmer.

e Easy to use. Our proposed library design is very easy to use since many of the cumbersome
details are hidden from the programmer.

o Portable across different platforms. Although other libraries aiso claim portability by using
standard language constructs and communication libraries, our provisioning for performance

tuning in portability is unique and has not been used in other parallel libraries.

Figure 7 depicts the series of steps in setting up a parallel library routine. The first step is to
identify a suitable virtual architecture algorithm which can be described in block form. The scala-
bility of the algorithm must be examined based on the parameterized grain size of the computation
and the mapping of the virtual processors onto the physical system. One can develop an overhead
function for the parallel algorithm and investigate its ability to maintain constant high efficiency
using a metric of scalability such as the isoefficiency metric. The next step is to analyze the effects of
different mapping functions and their impacts on the execution time of the routine. Once a suitable
algorithm and mapping function are determined, an execution time function is developed for the
algorithm. The execution time is a function of the problem size, grain size, and the physical sys-
tem size and attributes such as the communication latency components. We first assign parameters
to the granularity of the computation and the problem size. Then, we approximate the execution
time by considering the bulk part of the computation at each virtual processor (normally a function
of the problem size and the grain size) and the communication operations. For the computation
part, the number of operations multiplied by the time to perform one floating point operation (a
parameter of the underlying machine) results in the total time spent by the virtual processor on the
computation. The communication time can be approximated by a startup cost (another parameter
of the underlying system) for each send operation. The receive operations are difficult to model
in the execution time as their blocking will affect the total execution time. We assume that the
messages are available when a receive is executed. The execution time function contains parameters
for the time to perform a floating point operation and the startup cost of communication. These
parameters are globally defined in our library. The use of these parameters in symbolic form by all
library routines for gfain size adjustment reduces the portability effort. These parameters can be
changed before compilation of the parallel library on the new system. This is clearly shown at the
bottom of Figure 7 right before the compilation phase.

The execution time function mainly captures the effects of granularity on the execution time of
the library routine. Mapping has not been considered in this model. This factor has been considered
separately and its inclusion in the grain size adjustment phase will most likely not affect the decision
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making. The impact of granularity on the execution time is much more severe than the impact of
mapping. The message passing implementation of the library routine consists of the development of a
set of defined routines to initialize the virtual architecture algorithm information in a structure called
the library handle, perform data distribution, data accumulation, grain size adjustment, mapping,
and parameterized computation.

Figure 8 shows the steps in using a library routine. Users’ sequential programs are translated to
an SPMD form by a source to source transformer. The SPMD form contains calls to the components
of the library as well as calls to the threading library routines. The components of the library
routine use the virtual and physical communication routines and the mapping library routines.
These references are resolved in the link step and an executable is produced. When the absolute
SPMD object code is loaded onto the nodes of a multicomputer, the library calls will execute in
parallel on the target system. The other portions of the user program will be either executed only on
the host physical processor (such as I/O statements) or by all the processors (such as iterative and
conditional constructs). In addition to the communication requirements of the virtual architecture
parallel library routines, the main processes of the physical processors may need to obtain updated
values from the host processor. These requirements will be discussed in Section 3.2.

In the following subsections the internal representation of the distributed data and the virtual
architecture programs are presented in detail.
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Figure 9: Prologue and epilogue in a parallel call

3.1 Integrated Components of the Library

A virtual architecture algorithm consists of a data distribution function, core computation and
data accumulation. For a parameterized parallel library implementation of the virtual architecture
algorithms, these components must be defined in the library. The mapping of the data as well as
the processors must be encapsulated in the library.

In this section, we consider a call from a sequential program to a parallel routine in isolation.
On a parallel system, the sequential phases can only take advantage of a single processor, but the
parallel phases may harness the whole system. Consider a program that consists of sequential phases
seql and seq2 and a parallel phase parl, executed in the order specified by the program in Figure
9(a) and the parallel execution demonstrated in Figure 9(b). The parallel phase is shown in more
detail in Figure 9(c).

In most systems the sequential portion of the program is executed by a single processor which
is connected to the I/O subsystem and the file system. Consider the program at the end of the
sequential phase seql. Upon termination of this sequential phase, the caller must prepare to make
transition to the parallel computation. This part of the program is known as the call sequence or
prologue. When the parallel corhputa.tion finishes, the processors must prepare to make transition
to the sequential computation. This part of the code is known as the return sequence or epilogue.
Prologue and epilogue each has an associated component in the sequential phase and the parallel

phase. We now examine each of these components.

Sequential component This part of the call/return sequence from the sequential code to the
parallel code, and vice versa, deals mainly with the global data distribution and accumulation.

e Prologue - Prior to transition to a parallel phase, the sequential code must determine
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the contraction factor, identify the mapping of logical to physical processors, decompose
the data, and send the data to the virtual processors. Once the contraction factor is
determined, the storage of data must be changed to match the block row major form
for the decided granularity. This phase is denoted by Data Decomposition in Figure
10(a). The data distribution phase, denoted by Data Distribution in the figure, sends
the partitions to the virtual processors. Data distribution is done by a number of send
operations from the host virtual processor to the nodes. This may be optimized by
sending larger partitions to two nodes which in turn break up the partitions and send
to other nodes (in form of a tree). This will introduce additional complexity in the data
distribution section and will require more space at the nodes, but the time to distribute
the data will be logarithmic instead of the naive linear approach. The implementation
of the Initial Data Receipt in Figure 10(b) will be impacted by this decision as this is
the module that must receive the intermediate partitions.

e Epilogue - Upon transition from a parallel phase to the sequential phase, the sequential
code must receive the resulting partitions of data and assemble them in the global data.
A send operation by the virtual processor holding the data partition and a matching
receive executed by the host is the approach used in our libraries. This may create
contention at the host virtual processor (and therefore the host physical processor). Other
possibilities are to gather the data in form of a tree similar to the data distribution but in
reverse. The trade-off is between the required space at each virtual processor, the number
of startup costs incurred, and the delay due to contention a the host processor. The Final
Data Transmit modules of Figure 10(b) will be affected by this design decision as these
modules must receive intermediate partitions and pass them to other virtual processors.
Once the data is received, it is stored in block row major form. This storage must be

changed to single element row major form to adhere to the semantics of the user program.

Parallel component This part of transition from the sequential code to the parallel code and vice
versa deals mainly with virtual processor spawning, initial local receipt and final local data

send.

e Prologue - Upon transition from the sequential code, all physical processors must compute
the mapping table which identifies the virtual processors of the current phase assigned
to them. All physical processors must spawn one thread for each one of these virtual
processors. The threads will then receive their initial data.

e Epilogue - Prior to transition to the sequential code, all virtual processors must send the

final data to the processor designated as the host!. All threads will then terminate.

Our libraries consist of the four high level components described above and the parallel computation.
These are shown in Figure 10. Two important steps in the call/return sequence that are not pertinent

1 We refer to host as the processor which has I/O capability. The term node is used for all other processors. We
use these terms similarly for the virtual architecture. This will not cause any confusion since host virtual processoris
always mapped to the host physical process of the partition.
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(a) Sequential prologue (b) Parallel prologue and epilogue {c) Sequen-
tial epilogue

Figure 10: The components of a parallel library call

to sequential libraries and play a big role in the performance of the library routine are the contraction
and the mapping. The contraction step determines the granularity at which the parallel library
routine runs, whereas the mapping step determines the communication pattern of the reduced virtual
architecture in the physical system. The parallel computation along with the data distribution and
accumulation are done once the contraction factor and the mapping are fixed.

Using our design, a user program is converted to an SPMD form. The SPMD form is then
compiled and linked with the necessary components to obtain an executable image. The executable
image is then downloaded onto each physical processor of the allocated partition. Each physical
processor will run one process which is basically the same executable image. This can be thought of as
SPMD execution at the physical processor level. Initially, the main starts execution on each physical
processor. When a parallel library call is entered, the host processor, which holds the global data
and the size of the problem instance, broadcasts the size to all the physical processors. The physical
processors will then simultaneously derive the contraction factor, the virtual processor architecture
size, and the mapping of the virtual processors onto the physical processors. Until this stage, all
physical processors run a single flow of execution and prepare for the parallel execution. When the
mapping table is determined, every physical processor creates one thread for each virtual processor
assigned to it for the upcoming phase. The threads, collectively over all the physical processors,
constitute the parallel library call. All threads execute the code for the virtual architecture parallel
algorithm. This is, in a sense, another level of SPMD execution used in our system. The host virtual

processor sends the initial data to all other virtual processors. The virtual processors cooperatively
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Figure 11: Flow of control in a parallel library call

complete the parallel computation. Within each physical processor, the threads join and execute the
main thread in the SPMD program. Each physical processor performs local synchronization of its
threads. There is no global synchronization among the threads at the end of the parallel phase. Any
physical processor which completes its execution of the assigned parallel computation may resume
the main flow of execution. Figure 11 shows four processors in form of a line in three stages of the
execution. The top one shows the state of each processor upon entering a parallel library call. The
host physical processor broadcasts the problem instance size to all other physical processors. All
physical processors will then compute the contraction factor and the mapping table simultaneously.
The middle stage shows the state of the processors when one thread for each virtual processor is
created. Each physical processor creates the threads assigned to it by the mapping. The physical
processors each hold a complete copy of the mapping table. The threads communicate with one
another using virtual communication. When the threads of a physical processor are done, they are
merged into a single flow of execution shown in the bottom of Figure 11. The figure is showing
a single parallel library call. However, the main process running on each physical processor may
survive several parallel phases.
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3.1.1 Virtual Processor Implementation

If the size of the virtual architecture is larger than the physical system size, at least one physical
processor will be assigned two or more virtual processors. This normally happens when the grain
size of the computation cannot be adjusted to exactly match the physical system in size. In such a
case, there are two choices of grain sizes. One of these values will cause some processors to have no
work assigned to them and the other assigns two or more virtual processors to at least one physical
processor. This problem is known as load imbalance. The library routines can be enhanced to
compare the impacts of the load imbalance for the two possible grain sizes. If the smaller grain
size results in lower execution time, more than one virtual processor will be mapped to a physical
processor. To keep the overhead of context switching low in each physical processor we decided to
use multi-threading within the physical processors. In other words, virtual processors are emulated
using threads. Threads can be scheduled at the user level with much lower cost than processes. The
scheduling of threads can also be implemented in a manner suitable to the application. For our
parallel libraries, context switching takes place only when a virtual processor blocks on a receive.
If more than one thread can run within a physical processor, any one of the two are equally a good
candidate for running.

The library designer may rely on calls to a threading library to create, join, and destroy threads,
or obtain the thread identifier. The thread identifier can be stored in the mapping table upon
creation which subsequently provides the one-to-one correspondence between the threads and the
virtual processors. It is likely that two calls to the thr_create routine, on two processors, return
the same thread identifier. Since in our design of the library each physical processor needs to know
the correspondence of its own threads and the virtual processors, no conflict will arise. Our use
of threads has been motivated by the low overhead in creation and scheduling offered by threads
as opposed to processes. Thread creation is far less expensive than process creation. User level
threads can be created by basically a function call which sets up the structures and the stack for the
thread. These threads are managed at the user level and are completely transparent to the kernel.
The lower overhead in user level threads is at the cost of thread scheduling which must be done by
the programmer. User level threads can easily deadlock if the scheduling mechanism used by the
programmer has potential for deadlock or is not implemented correctly. Each thread is allocated a
stack space from the heap. The code is shared by all threads created within a processor. Therefore,
the thread structure must contain fields for its identifier, the program counter, and the stack pointer.
Furthermore, threads have access to their creator’s address space. This feature suits our need of
shared access to the handles within a physical processor by all threads. The type of threads we
use for our design are unbound threads? which basically do not do scheduling. The scheduling is
done by the programmer. The consequence of this is that unbound threads cannot keep runtime
statistics. In this case, runtime statistics are maintained in the kernel at the process level. We are
considering only one process on each physical processor, but in cases where a physical processor of
the parallel system may be used by several progranis simultaneously, several independent processes
may be created on one physical processor. Each process may, in turn, create threads for a library

2This terminology is used in some literature, but it does not have a standard definition.
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Blocked

Figure 12: Thread state transition diagram

call by the user program®. If a thread is given control, it will continue virtually forever until it
relinquishes the processor. In a threading library, the programmer has the flexibility of using thread
suspension, preemption, or yielding. Suspension refers to the case where the thread stops itself,
preemption refers to when a thread takes an action that makes a higher priority thread run, and
yielding basically means a thread voluntarily gives up the processor to another thread. In these
cases, the former thread will be put in a blocked state waiting for another thread to give it a chance
by executing another yield or other possible calls that allow it to continue. A simplified view of
the thread state transition used in our design is shown in Figure 12. A thread is active when it is
initially created.

Message passing programs can cause deadlock if not programmed properly. Although this is
a general problem in message passing programs, the underlying design may introduce deadlock.
Assuming the message passing program is deadlock-free, we examine our design and its potential
for deadlock. When one-to-one mapping is used, the blocking receives yield if the message is not
in the queue. In this case control comes back to the same thread until the message arrives. When
many-to-one mapping is used, the thread yields control to another thread if its message is not in
the queue. Therefore, all threads within a physical processor get a chance to execute.

When multiple threads call a function that manipulates a common object (this may well happen
in our design when we have many-to-one mapping), problems could arise. It is important to make
sure that the threads do not have adverse effect on each other. This can be done through use of
locks or use of reentrant code. Locks are inefficient and have been outruled due to the fact that we
do not expect the threads to write to common area in the global memory. Each thread has its own
data partitions. When the handles are being initialized, there is only the main thread (or process)
running and others have not been created. If the function is reentrant, it means that it can be called
by several threads and deterministic behavior will be observed. Functions can be made reentrant

3This is a special form of timesharing on parallel systems, where a physical processor can be simultaneously used
by different user programs. We are not aware of such commercial systems, but they may exist or future systems may
well be timesharing in this form.
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int thr_create(void *stack_base, size_t stack_size, void *(*start_routine) (void *),
void *arg, long flags, thread_t *new_thread);

Add a new thread of execution to the current process

void thr_exit(void *status);

Terminate a thread

void thr_join(thread_t wait_for, thread_t *departed, void * * status);

Wait for a thread to terminate

thread_t thr_self(void);
Return the thread ID for the calling thread

void thr_yield(void);
Yield the current thread

Figure 13: Thread library calls

by ensuring that, once called by multiple threads, they do not produce inconsistent results because
of race conditions. We have made our functions reentrant by allowing each thread to have its own
data partition in the handle to work with. A thread must not, and neither does it need to, access
the data partitions of other threads. Violation of this rule simply introduces a bug in the parallel
library routine. Qur other option would have been to make the functions reentrant by passing these
partitions as parameter to the threads, but this scheme would not support our redistribution module
which will be presented in the next chapter.

There are a number of thread libraries available [55]. We are only concerned with the interface
of the thread libraries. The set of important thread library calls in our design are listed in Figure
13. The syntax is borrowed from Solaris threads library [55], however our design does not rely on
specific implementation of a threads library. The first call interface is that of thr_create which
creates a thread using a function and its arguments and returns the thread identifier to the user
program. The stack space of a thread is allocated from the dynamic memory. A stack with default
size is allocated by the thr_create routine if stack base and stack_size parameters are NULL
and 0, respectively. If the default stack size does not suit the user program, the user must allocate a
stack of desired size and pass its pointer and size using these parameters. The thread’s stack space
is allocated from the heap. The function that is the starting point of the thread is specified in the
argument. The parameters of the function must be placed in a composite structure and passed to
the starting routine. These pa.rafneters are not in the scope of the thread and may not be global
(in the user program). Therefore, they must be passed to the thread function. The flag argument
determines whether the thread is joinable by other threads or processes. This is to ensure that
upon exit, the thread’s status, resources, and exit status are only discarded if they are not needed
by another thread. Two allowable flags in Sun Solaris are PTHREAD_CREATE_JOINABLE and
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PTHREAD_CREATE_DETACHED. We use the former since the created threads must be collected
by the main process. The last argument in thr_create is the actual thread identifier. Thr_exit
terminates a thread and if the thread is joinable the status is kept until it is joined by another
thread. Thr_join waits for a thread to terminate and returns its identifier and status. Thr_self
returns the identifier of the calling thread, and thr_yield yields control to another thread in the
current process.

The source to source transformer translates library calls of the sequential code to SPMD form
which performs contraction, determines the mapping, scans the mapping table, and creates threads
on each physical processor. The thread identifiers along with the local identifier (the order of
creation) are stored in the mapping table for local data reference. Each physical processor uses an
incrementing counter (starting from zero) to assign a unique local identifier to each thread. The local
identifier and the contraction factor are used by each thread to access its own data in the contiguous
memory which is allocated for all the threads in a physical processor. Each physical processor has
information about the mapping of all the virtual processors to the physical processors. However,
the thread identifiers of each physical processor are not available to any other physical processors.
This restriction does not impose any limjtations in our design since a physical processor does not
need to have access to the thread identifiers of threads on other physical processors.

3.1.2 Virtual Communication Library

In our library design, virtual processors are mapped to the physical processors. Virtual processors
communicate with one another using their virtual processor identifiers. For a message to be sent to
the right destination and be received from the right source, the mapping table must be consulted.
This table provides the physical location of each virtual processor. This translation is handled by
our virtual communication library.

In the description of the design of library components, we assume that the system provides a
communication library such as PICL [28]. We have used PICL in experimenting the design of our
libraries. Although MPI is becoming the standard for message passing multicomputers, we believe
that its abstraction of the communication library prevents many compiler and runtime systems to
perform optimizations such as mapping of the computation onto the processors. Our design can be
easily described in the context of MPI with some penalty in the execution time due to abstraction
of virtual topologies. Without loss of generality, we have decided to use necessary routines from
the PICL communication library in describing our design. Library designers may use conditional
compilation directives to describe the library routines using all well known communication libraries.
This will diversify the use of the libraries since for a target system the library can be easily compiled
for the resident communication library using macro definitions. Figure 14 shows the routines from
PICL which are used in our design. Who is frequently used by the SPMD program to obtain its
processor number. In our design, this is often used to distinguish the host processor from the node
processors. The calls to send and recv are used- for interprocessor communication. The send
is nonblocking but the recv is a blocking primitive. These routines have been encapsulated in the
virtual communication library. The library routine makes calls to the virtual communication routines
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void who (int *numProc, int *me, int *host);
Return the number of processors, the node ID number and the physical host ID number

void send (char * msg, int size, int tag, int dest);
Send a message to a physical processor (non-blocking)

void receive ( char * msg, int size, int tag);

Receive a message from a processor (blocking)

void recvinfo (int *size, int *tag, int *source);
Return information about the most recently received message

int probe (int tag );
Check whether a message with tag has arrived (non-blocking)

void beast ( char * msg, int size, int tag, int root);
Broadcast a message from a root physical processor to all other physical processors

Figure 14: Communication library calls

which, in turn, call the low level communication routines. Probe is used by the virtual receive
to check whether a message with a given tag is in the queue. If not, the virtual communication
routine yields the physical processor to another virtual processor. Recvinfo is used to obtain the
information on the recently received message. The virtual receive routine obtains information on
the received message using this call. Bcast is used by the library system to broadcast the problem
instance size to all the physical processors. This is the first piece of information that is communicated
between the host and the node programs upon calling a parallel library routine. Using the problem
instance size, all physical processors can compute fields of the handle simultaneously.

Tags are used in the communication routines to distinguish a message type from another at the
destination. In our design of the libraries, a unique tag is assigned to each parameter of the library
call. These tags are defined using macro definitions in the library modules. Use of different tags
causes the resulting program to be more robust and easier to trace since chances of mixing messages
will be lowered. We use the tag field to attach additional information to the message, such as the
source of the message (virtual source). PICL library also supports receive with a special message
tag called ANY. A recv with ANY message tag will pick up the first message in the queue. This
call will only block if the message queue is empty. This is usually used in conjunction with recvinfo
to drop the synchronization restriction of receiving a number of messages in a specific order. The
call to recvinfo provides the information to take further action on the message. We do not allow
the use of ANY message tag in the virtual communication routines. The ANY message tag is a
PICL specific implementation and is normally not supported in other communication libraries. Use
of this tag type results in programs that are hard to debug.
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In some virtual architecture algorithms some decision making may be based on the virtual pro-
cessor identifiers. The virtual version of PICL’s who can be used in the implementation of these
algorithms in the library. The vwho routine returns the identifier of the currently executing virtual
processor, the total number of virtual processors, and the host virtual processor identifier. Vwho
obtains the identifier of the currently executing thread, searches the mapping table for that thread,
and returns the virtual processor identifier (which is the index of the mapping table). The total
number of virtual processors can be obtained from the current handle, provided as parameter to the
virtual communication routines. An additional value returned by vwho is the rank of the virtual
processor. When more than one virtual processor are mapped to a physical processor, each virtual
processor is assigned a unique integer starting from zero called the rank of the virtual processor. This
information is maintained in the mapping table and is required by the components of the library
when the distributed data of a virtual processor is accessed in a contiguous space allocated for all
the local virtual processors. Algorithm 1 describes the step by step actions of vwho.

Algorithm 1 Virtual who

Require: Addresses of: numvp, myvp, myrank, hostvp

: Get my thread identifier (thr_self)

: Search and find my entry in the mapping table

: Retrieve the virtual processor rank and identifier

: Assign values to myrank and myvp, respectively

: Get number of virtual processors from the handle and assign to numvp
: Assign value 0 to hostvp

Ensure' Parameter information is obtained

- R AR

The virtual send operation must use the mapping table to find the physical location of the
destination virtual processor. It must then attach the source and destination virtual processor
identifiers to the message before launching the message. Once a message arrives at a processor,
the virtual source and destination are stripped from the message and it is delivered to the right
virtual processor. In reality, we attach the source and destination virtual processor identifiers to
the virtual tag! to build a physical tag. The virtual receive also uses the same convention in
acquiring a message. Algorithms 2 and 3 show the processing performed by each of the virtual

Algorithm 2 Virtual send

Require: User data buffer, size, destination virtual processor, and virtual tag
1: Lookup the entry for destination virtual processor id in the mapping table
2: Build a physical tag using the virtual destination, virtual source, and virtual tag
3: Send the message to the destination physical processor using physical tag
Ensure: Message is sent to the destination

communication library routines used in our design. Virtual send looks up the physical location
of the virtual processor and sends the data. In order to resolve the destination of the message
and provide the virtual source of the message on the receiving end, the virtual send must attach
to the tag the virtual processor identifier of the destination and the source. In other words, the

4By virtual tag we mean the tag used by the virtual communication call. When the message is launched the tag
is a composite or physical tag.
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Algorithm 3 Virtual receive

Require: Arguments: virtual tag, user data buffer, message size
1: Query my virtual processor identifier
2: Construct the physical tag using virtual tag, virtual destination, and virtual source
3: arrived - FALSE
4: repeat
5:  Probe for message with physical tag
6: if message not arrived then
7: Yield to other threads (thr_yield)
8: else
9: arrived < TRUE
10: endif
11: until arrived == TRUE
12: Receive the message with virtual tag (Low level receive)
13: Assign user data buffer
Ensure: Proper message is received

void vwho(int *numvp, int *me, int *host, LibHandlePtr handle);

Return the number of virtual processors, the virtual node ID number
and the virtual host ID number

void vsend(char * msg, int size, int tag, int destvp, LibHandlePtr handle);
Send a message to a virtual processor (non-blocking)
void vreceive( char * msg, int srcvp, int size, int tag, LibHandlePtr handle);

Receive a message from a virtual processor (blocking)

Figure 15: Virtual who and the virtual point-to-point communication prototypes

tag for the transmitted data will actually be (vsrc, vdest,vtag), where vsrc, vdest, and vtag are
the virtual source, destination, and tag, respectively. If the number of virtual processors in the
current phase is C, and the maximum number of tags (parameters of the library call) is M, one
can build a unique value from this combination using the (C,C, M) varying base number. The
decimal base number will be vsrc * C * M + vdest * M + tag. The virtual receive extracts the
message using a physical tag computed in a similar manner. Since threads control scheduling at the
user level, it is important for all physical receive operations to be preceded with a call to probe
which basically checks whether the message has arrived or not. If not, the thread must yield the
processor to another thread by executing a yield_thr. If all the threads in a physical processor
are waiting for a message and the message queue is empty, the first message that arrives allows
a thread to take control and execute. The busy-waiting only occurs if all the threads within a
physical processor block on receiving messages. The yield_thr operation is encapsulated in the
virtual receive routine. Therefore, all virtual architecture algorithms that require communication
must use the virtual communication routines, otherwise deadlock is likely. The prototypes for the

virtual point-to-point communication routines and the vwho are shown in Figure 15.
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Many virtual architecture parallel algorithms contain aggregate or collective communication op-
erations which require participation of all the virtual processors. A library designed based on our
scheme allows a number of threads or virtual processors to be mapped to a set of physical processors.
This mapping is many-to-one and may map zero or more virtual processors to a physical processor.
To support virtual collective communication operations, we use our virtual point-to-point commu-
nication routines and assume all the virtual processors participate in the collective communication
operations. However, in the collective communication calls which require a root processor, any one
of the participants could be the root of the call.

We would like to support virtual collective communication routines which may be used by the
library designer to implement algorithms that require such operations. There are a number of existing
libraries which support collective operations. However, these collective communication libraries are
designed to function at the physical processor level and do not support dynamic process (or thread)
creation. For instance, a broadcast operation may only require the broadcast message to be sent to
a subset of the physical processors since this is where the virtual processors may reside. Similarly a
multicast may send a message from one virtual processor to a subset of the virtual processors that
happen to reside over all the physical processors of the system.

In our design of the collective communication library, the virtual point-to-point communication
routines are used to build the virtual collective communication routines. The algorithms used to
implement the virtual collective communication library routines are based on the logarithmic algo-
rithms found in communication libraries such as [4]. The collective routines in these communication
libraries do not allow for dynamic creation of processes, and function at the physical level. Our
enhancements to these routines allow communication in the virtual architecture as opposed to the
physical architecture. All collective communication library routines require participation of all the
virtual processors of the currently active library call.

Figure 16 shows the list of virtual collective communication routines supported in our library
system. Vbroadcast broadcasts data from the virtual processor, root, to all the virtual processors
described by handle. Vbroadcast does not impose a barrier synchronization among the virtual
processors in the handle. Vreduce performs a reduction over all the virtual processors in handle
using the reduction function rfunc (a user defined associative function) and the data. The result is
stored in the root virtual processor in the parameter result. Vreduce imposes barrier synchronization
among the virtual processors of the currently invoked library call. Vcombine performs a reduction
over all the virtual processors in handle using the reduction function rfunc and the data. The
result is stored in all the virtual processors in the parameter result. Vcombine enforces barrier
synchronization among the virtual processors of the currently invoked library call. Consider a line
of 4 virtual processors and assume the processor i holds value i, where 7 ranges from 0 to 3. Further
assume that a collective communication operation is executed by all the virtual processors and
the virtual processor 0 is the root of the call. If the collective call is a vbroadcast, all 4 virtual
processors will hold the value 0 after the call. If the collective call is a vreduce and the reduction
function returns the maximum of two integers, virtual processor 0 will hold the value 3 after the call

to vreduce. However, if the collective call is a vcombine, all virtual processors will hold the value

56



void vbroadcast(char *msg, int size, int tag, int root, LibHandlePtr handle)

broadcast the data in msg to all the virtual processors in handle. The root of
the broadcast, message tag, and message size are root, tag, and size, respectively.

void vreduce(char *data, int Tag, int *result, int root, void (* rfunc), LibHandlePtr handle);
Perform a reduction over all the virtual processors in handle using the reduction function
rfunc() and data. Stores the result at the root processor in location pointed to by result.

void vcombine(char *data, int tag, int *result, void (* rfunc), LibHandlePtr handle);
Perform a reduction over all the virtual processors in handle using the reduction function
rfunc() and data. The result is stored in the result parameter of all the virtual processors.

void vprefix(char *data, int tag, int *result, int root, void (* pfunc), LibHandlePtr handle);
Perform a prefix reduction over all the virtual processors in handle using the prefix function
pfunc(), data, and root. The result is stored in the result parameter of all the virtual processors.

void vsync(LibHandlePtr handle);
Implement a barrier synchronization among the virtual processors associated with handle.

Figure 16: Virtual collective communication library prototypes

3 after the call. Vprefix performs a prefix reduction over all the virtual processors in the handle
using the data, the prefix function pfunc, and the root of the prefix operation. The prefix results are
stored in the result parameter of all the virtual processors. Vprefix enforces barrier synchronization
among the virtual processors of the currently invoked library call. In the previous example, if the
collective call was vprefix and the prefix function basically returned the sum of its two parameters,
virtual processors 0, 1, 2, and 3 would hold values 6, 6, 5, and 3, respectively. Vsync enforces a
barrier synchronization among all the virtual processors of the handle.

Algorithms 4 and 5 are used to perform the virtual broadcast. The algorithms view the virtual

Algorithm 4 Supporting recursive routine for virtual broadcast

Require: Number of virtual processors, buffer, size, tag, and handle
If number of virtual processors, c, is 1, return
Divide number of virtual processors, c, into two halves ( for odd size, one half will be one larger)
The root sends the buffer to the virtual processor | £%C|, where C is the total number of virtual
processors in this phase (it also attaches the number of virtual processors it should broadcast to)
Call recursively with the root and the first half of virtual processors
Call recursively with the middle virtual processor as the root and the second half of virtual
processors

processors in form of a ring. This is because we would like to allow any virtual processor to be the
root of the broadcast. The second part of the algorithm is the one that interfaces with the library
routine (vbroadcast). If the virtual processor is the root processor, it calls the first algorithm
which sends the message to the virtual processor half way around the ring. It will then repeat the
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Algorithm 5 Virtual broadcast algorithm

Require: Number of virtual processors, buffer, size, tag, and handle

if I am the root of the broadcast then
Call the above algorithm

else
Receive message
Extract the number of virtual processors to broadcast this message to
Call the above algorithm with the number

end if

a) Number of virtual processors = 8 a) Number of virtual processors = 11

Figure 17: Virtual broadcast communication operation

process for the first half of the ring. The else section of the second part of the algorithm is meant
for the virtual processors that are recipients of the message. These virtual processors will then call
the first algorithm to recursively repeat the broadcast on the portion of the ring that is assigned to
' them. The point-to-point communication operations to perform the broadcast on 8 and 11 virtual
processors are shown in Figure 17. In both examples, the root of the virtual broadcast is the host
virtual processor.

The vsync routine, which implements a barrier synchronization among all the virtual processors,
uses a reduction followed by a broadcast operation. The argument to vsync is just the handle of the
parallel phase. The reduction operation is performed using zero size messages. The implementation
of the collective virtual communication routines can be found in Appendix C.

3.1.3 Library Routine Handle: A Dynamic Entity

A Handle is a dynamic entity that represents a virtual architecture library routine. Each invocation
of a library routine requires creation of a new handle which will then contain information about the
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struct LibHandle /* Handle */

{
ArchitecturePtr architecture; /* Pointer to architecture type */
int NumParams; /* Number of parameters */
enum ParamType * ClassParams; /* in/out/inout parameter */
BlockingPtr contraction; /* Blocking of data */
MappingPtr mapping; /* Mapping of the reduced architecture */
DistributionPtr init_layout; /* Initial data layout */
DistributionPtr fin_layout; /* Final data layout */
UserDataPtr local_data; /* User data buffers */
struct LibHandle * next; /* Pointer to the nezt handle */

} LibHandle;

Figure 18: Definition of a library routine handle

call. This information consists of the topology, dimensionality, size, mapping, and the contraction
factor. There is also information about the initial and final data layout and the actual user data for
the computation. A new handle is allocated upon entering a parallel library call.

Each physical processor holds a distinct copy of the handle for the current phase and the history.
The history is a list of all the handles that have been generated since the start of the execution of
the program. Newly created handles are appended to the beginning of the list. If a handle may
pot participate in data redistribution, it is disposed. This happens when all distributed data of a
handle are used for redistribution and marked as stale. All physical processors hold similar copies
of the current handle and the history of handles with the exception of the content of the distributed
data. Since our library system supports many-to-one mapping, necessary space is allocated for all
the virtual processors that are mapped to a physical processor. We will discuss the overhead of
maintaining handles and the history list in the later part of this chapter.

The declaration for a handle is shown in Figure 18. Figure 19 shows this structure in a pictorial
form. The components of the handle are used in supporting contraction, automatic data distri-
bution, and redistribution. Architecture contains information about the virtual topology and its
size. NumParamsAand ClassParams hold information about the number and the type of each
parameter of the library routine, respectively. The parameters are of type IN, OUT, or INOUT.
IN type parameters do not need to be accumulated back at the virtual host processor since their
contents do not change. OUT and INOUT parameters must be accumulated at the virtual host
processor. There is no initial data distribution associated with the OUT parameters and they can-

-not be subject of redistribution on entering a parallel library call. The redistribution module checks
for these types of parameters and bypasses them. The type of a parameter specifies whether it is
call by value or call by reference. Contraction specifies the contraction of the data along each
dimension of the data. Mapping describes the assignmeni: of the virtual processors to the physical
processors, the rank of each virtual processor on the physical processor it is mapped to, and the
actual thread identifier of the represented thread. Imit_Layout and Fin_Layout hold the initial
and final data layout of each parameter, respectively. The data blocks are numbered in a row or
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Figure 19: Pictorial view of a library handle

column major form. As long as the library designer keeps the numbering of the blocks consistent,
it does not pose any problem. local _data contains the actual distributed data along with all the
corresponding attributes such as size, dimensionality, and the message tag used for communicating
the contents of the data buffers. The data for the threads that are handled by a processor is allo-
cated in the handle local_data field. Therefore, the allocation of the data for the threads must be
done after the mapping stage. The next field points to another handle. This field is used to keep
a list of handles for previously executed parallel library calls. We will elaborate on this in the data
redistribution section.

The Architecture component defines the reduced and the fine grain virtual architectures and
the mapping table. For each one, the total size, dimensionality, and the size along each dimension
is kept in the structure (Figure 20). This structure contains the topology identifier (one of the
enumerated values MESH, TORUS, LINE, RING, HYPERCUBE, etc.), number of dimensions and
the size along each dimension in the fine grain and the reduced form. Once a parallel library receives
the size of the problem instance, it can determine the values for the fine grain architecture. When
the library routine performs grain adjustment, the coarse grain architecture attributes will be set.

The Distribution component defines the mapping of blocks onto the reduced virtual architec-
ture. The mapping table assumes a linear numbering of the reduced virtual processors as well as
the contracted data blocks (Figure 21). For each distributed parameter of a library call an instance
of this structure is allocated. The mapping structure describes the mapping of the reduced virtual
architecture to the physical architecture. This mapping depends on the physical system topology
and size, and is determined at the time of the library routine invocation (Figure 22). Each entry of
the mapping table consists of the physical processor identifier, the rank of the virtual processor, and
the actual thread identifier of the represented virtual processor. The user data is also maintained
in the handles (Figure 23). The handle resides in the global memory of each processor, therefore it
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typedef struct Architecture /* Virtual Architecture Declaration */

{

enum Types topology; /* Topology */

int dimensionality; /* Dimensionality of virtual architecture */

int * fine_dims; /* Size of each dimension before contraction */

int fine_nproc; /* Total number of virtual processors - fine grain */
int * period; [/* Describes the reduction factor */

int * coarse.dims; /* Size of each dimension after contraction */

int coarse_nproc; /* Number of virtual processors - coarse grain */

} Architecture;

typedef Architecture * ArchitecturePtr;

Figure 20: Structure for virtual architecture declaration

typedef struct Distribution [/* Data distribution declaration */

int *data_map; /* Array of data block to processor mapping */
} Distribution;

typedef Distribution * DistributionPtr;

Figure 21: Structure for data mapping

typedef struct Mapping /* Processor mapping declaration */

{
int *map_table; /* Array of virtual to physical processor mapping */
int *rank; /* Local indez of the virtual processor *[
int *thr_id; /* Actual thread identifier of the thread */

} Mapping;

typedef Mapping * MappingPtr;

Figure 22: Structure for processor mapping

typedef struct UserData /* Local Data */
{
char * data; /* Pointer to local data partitions */
int dimensionality; /* Dimensionality of the local data data */
int *dims; /* Size of each dimension */
int size; /* Total size of data partition */
int tag; /* For communication purpose */
} UserData;

typedef UserData * UserDataPtr;

Figure 23: Structure for distributed data
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typedef struct BlockingPtr /* Contraction parameters */

{

int dimensionality; /* Dimensionality of the data */
int fine_nblock; /* Number of blocks in fine grain */
int *fine_dims; /* Dimensions in fine grain */
int *period; /* Blocking period in each dimension */
int coarse_nblock; /* Number of blocks in coarse grain */
int *coarse_dims; /* Dimensions in the coarse grain */

} Blocking;

typedef Blocking * BlockingPtr;

Figure 24: Structure describing data contraction

is accessible between two phases for data redistribution. There is one instance of this structure for
each distributed parameter of the library call. The data field contains data for all the threads that
run on the processor on which the handle resides. Each thread uses its rank (available through the
mapping table or the parameter) to access its own data in the data field. Care must be taken to
access the data properly since user level threads do not check for illegal memory access.

The blocking structure describes the contraction factor for the data along each dimension (Fig-
ure 24). There is also one instance of this block for each distributed parameter of the library call.
The fields specify the period along each dimension of the data. The number of blocks in the coarse
and fine grain data. This declaration for contraction allows square or rectangular blocking of data,
as long as the period along each dimension is constant. Most block matrix algorithms use regular
blocking of data (square or rectangular blocking).

3.1.4 Representation of Data and Processor Mapping

The virtual architecture algorithms are based on distributed vectors, matrices, or multidimensional
objects. The size of these data items is passed as parameter in every call to a library routine. In order
to perform automatic data distribution and data redistribution we encapsulate data distribution of
the matrices in the library. The objective is to internally represent the location of data blocks
in the virtual architecture and the location of the virtual processors in the physical system. This
representation must facilitate the thread representation of virtual processors in our design and
provide necessary information for data redistribution.

Parallel library routines operate on distributed data. Global data is mapped to the physical
architecture through three levels of mapping. The first level of mapping assigns elements of the
global index to the local indices of the blocks. The second level of mapping assigns the blocks to
the virtual processors. The third level of mapping is from the virtual processors to the physical
processors. The data blocks mapped to the virtual architecture follow the third level of mapping to
the physical architecture.

Mapping from the global indices to the local indices of blocks is basically a special case of block-
cyclic mapping supported in HPF [52]. Our virtual architecture algorithms acquire blocks of data in
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Figure 25: Examples of block(r) data mapping for M = 10

a specific distribution dictated by the algorithm. Although the distribution function is hard-coded
in the implementation, the data distribution function is kept in the handle for possible redistribution
in the parallel phases that follow a phase at runtime. The mapping of the virtual processors to the
physical processors also plays a role in the performance of the library routines.

The fundamental data objects in our library routines are partitioned matrices. For simplicity we
will first consider a vector and then expand our analysis to two dimensional objects. The analysis
can be easily extended to higher dimensional objects. We use [a] to denote the set {0,1,...,a — 1}
for an integer a, [a] x [b] to denote the Cartesian product of [a] and [b] for integers a and b, and
f: X —Y to denote a function, f, from domain X to range Y, where X and Y are two sets.

Block(r) mapping of one dimensional data of m scalars can be described using a mapping function
from the global index [m] to an index pair in [8] x [r — 1], or

[m] — [8] x [r—1],

where 8 is [m/r]. A value of r = 1 assigns a single element to each block giving rise to m blocks.
On the other hand, a value of r = m assigns all elements to a single block. The inverse mapping of
elements within a block to the global index can then be described in the form:

[8] x [r—1] — [m].

Figure 25 illustrates examples of block(r) mapping for r = 3, r = 1, and r = 10, where m = 10.

Block(r, s) mapping of two dimensional data of m by n scalars can be described by applying
two independent functions in row and column directions. Therefore, if the rows are grouped using
block(r) and the columns are grouped using block(s), then [] x [r—1] — [m] and [v] x [s — 1] — [n]
can be used to derive the Block(r, s) mapping, where 8 is [m/r| and v is [n/s]. The tensor product
of the row and column block mappings can be written as: '

[m] x [n] = ([8] x [7]) x ([r] x [s})-

Values of » = 1 and s = 1 assign a single element to each block giving rise to m x n blocks. On the
other hand, values of r = m and s = n assign all elements to a single block. The inverse mapping
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Figure 26: Examples of block(r, s) mapping for m =6 and n =4

of elements within a block to the global index can then be described in the form:

(8] x [¥]) x ([r — 1] x [s = 1]) = [m] x [n].

Figure 26 illustrates an example of block(r, s) mapping for three different pairs of values for r and
s, where m = 6 and n = 4. The first case is shown in Figure 27 in block form.

Data distribution can be described using a function that specifies the location of each block of
data in the logical architecture. We identify these functions at runtime since the specific function
depends on the virtual architecture scaling factor and the logical architecture size. Assuming the
data consists of B blocks in one dimension and a logical line or ring of P processors is used, we
represent the initial data distribution with D;,;: and the final data distribution with Dy;, that
map block indices to the logical processors. These can be expressed as Dini: : [B] — [P] and
Dyin : [B] = [P]. Mapping of the distributed data onto the global data can be described as an
inverse mapping function D};}, : [P] — [B] for initial data distribution and ’Df‘,}, : [P] — [B] for
final data distribution. »

Now, for two dimensional blocks of data, assuming the data consists of R by S blocks and a
logical mesh or torus of P by Q processors is used, the distribution functions can be stated as
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Figure 27: Representation of block(3, 3) mapping for m =6 and n =4
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Table 4: Initial and final distribution of data in the torus based matrix multiply

Dinie = [R] x [S] = [P] x [Q] and Dyin : [R] x [S] — [P] x [Q]. Mapping of the distributed data
onto the global data can be described as inverse mapping functions D};}, : [P] x [Q] — [R] x [S] and
’D;}, : [P] x [Q] — [R] x [S]. The functions described can be easily modified to accommodate data
distribution of blocked data with higher dimensions and logical architectures with other topologies.

The level of mapping just described defines the location of data blocks in the virtual architec-
ture. A second level mapping defines the location of the virtual processors in the physical system.
Processor mapping is a function, M, from virtual processors to the physical processors. The data
blocks follow the virtual processor on which they are mapped through this mapping function. The
mapping of virtual to physical architecture is used by the virtual communication layer to find the
physical location of the data blocks. The effect of the virtual to physical mapping function on the
performance of the routine has been discussed on Page 85.

Let’s consider the vector dot product algorithm. Elements at position i of the vectors are mapped
to the i*? virtual processor. The distribution of both A and B can be represented by the function
Dinit(i) = i and the inverse mapping function is D;},(?) = i. Assume the mapping of n virtual
processors onto the p physical processors, where p divides n, is in block form. Therefore, the i*#
physical processor is mapped virtual processors “T" to -(“—;)—'-1 — 1, inclusive.

Another interesting example is the matrix multiplication based on a torus topology described on
Page 81. The initial data distribution of A and B can be described using the functions shown in
Table 4. C does not have an initial distribution, but its final distribution is the identity function.
Symbols 7 and j are function variables and NV is the size of one dimension of the matrix. Figure 28
shows the initial and final data distribution functions for matrix multiply in a pictorial form. The

virtual to physical processor mapping function used in the diagram maps the ith virtual processor
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to the physical processor number (i + 1)%9, where i takes on values from 0 to 8. This mapping
function is only used for illustration here and does not bear any significance in the torus based
matrix multiplication.

The data mapping and the processor mapping functions, together, determine the location of the
data blocks in the target system. This information is used by the data distribution and redistribution
components of our library routines. If the processor mapping function for a parallel phase is M,
and the data mapping function for a parameter in that phase is D, the physical location of the data
blocks can be obtained using M oD. If a parameter has a final distribution of Dy;, in a phase which
has processor mapping M}, and an initial data distribution of D;n;: with processor mapping M2 in
a subsequent phase, the data can be redistributed using Dini: 0 My 0o M 1"1 o ’D;f‘

The internal representation of the data objects in the handle consists of the size and dimension-
ality of each block and the location of each block in the virtual architecture. Even though the data
distribution function is hard coded in a component of the library routine, the information on the
initial and final data layout of each parameter is used between two parallel phases to determine the
source and the destination sets for data blocks in a processor. The distribution of data is represented
in two structures called init_layout and fin_layout (see Figure 19).

The mapping table, on the other hand, must facilitate communication among threads (virtual
processors), mapping of several virtual processors to a physical processor, and data references by
threads within one physical processor. Since we represent a virtual process by a thread, and a
thread may only obtain its actual thread identifier, the mapping table must provide correspondence
between virtual processors, their actual thread identifiers, and the physical processor which houses
that virtual processor. A thread references its data items (in a contiguous location allocated for all
the local threads) using its rank or local thread identifier. Furthermore, the virtual communication
layer consults the mapping table to find the physical location of a destination virtual processor. It
also consults the mapping table, on the receiving end, to deliver a message to the proper thread.

3.1.5 Handle Allocation and Initialization Modules

This module is the first one called by the main process in each physical processor. The information
about the library call parameters such as their number, the type of each parameter (pass by value
or reference) is assigned in this module. This module also allocates all necessary structures for
which we need only one instance in the handle. When this module is called, the mapping is not yet
determined, therefore the allocation of data for the threads must be delayed until the mapping is
done. Algorithm 6 shows the two steps in initializing a handle of library call.

Algorithm 6 The handle allocation and initialization
Require: An empty handle
1: Allocate all structures

2: Initialize number of parameters and type of each
Ensure: An initialized handle
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3.1.6 Virtual Architecture Initialization and Contraction Module

This module is the first one that obtains information on the problem instance size. The information
is only available at the host and must be broadcast to all other processors. Once the processors
obtain the size information, all other fields of the handle are setup simultaneously by all the physical
processors. The syntax of the physical broadcast has been previously explained on Page 52. The
broadcast is executed by all the nodes and the contents of the buffer is sent from the root physical

processor (zero in this case) to all other processors. Algorithm 7 summarizes these steps.

Algorithm 7 The architecture initialization module high level algorithm

Require: a handle with all allocated components
1: Broadcast(size,message,tag,0)
2: Initialize topology, dimensionality, and size of each dimension
3: Initialize the fine grain architecture size

Ensure: An initialized architecture structure

The task of the contraction module is to close the size gap between the virtual and the physical
system. This module determines the granularity at which the parallel library routine communicates.
Since the input size is known in this module and the physical system is fixed, this module can deter-
mine the best contraction factor (discussed in section 3.3). Once the contraction factor is computed,
the reduced virtual architecture size will be fixed and a mapping from the virtual architecture to the
physical architecture is performed prior to the execution. Algorithm 8 shows the steps in performing

Algorithm 8 The contraction module high level algorithm

Require: a handle with all known attributes of the call
1: Get handle for the current call
2: Scale the algorithm down to the physical system size
: for all distributed parameters of the call do
Allocate arrays for period, fine and coarse grain dimensions
Initialize attributes of fine and coarse grain data and the period
end for
Ensure: A contraction factor that minimizes execution time of the library routine

w

A

contraction. Step 2 in the algorithm is crucial to our library design. This is where the runtime grain
adjustment is done. A series of guidelines to approximate the execution time function can be found
on Page 42. The execution time function can be evaluated for all the grain sizes that divide the
problem size. The grain size that minimizes the execution time will be used to execute the call.

3.1.7 Mapping Module

The task of this module is to close the gap between the virtual topology and the physical topology
through systematic mapping. Once this module is done, the physical nodes are each assigned zero or
more virtual processors to emulate. The mapping of the virtual processors to the physical processors
is supported by a set of routines in a mapping library. Algorithm 9 shows the steps in performing
the mapping. The contents of the mapping table are fixed after the grain size of the computation is
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Algorithm 9 The mapping module high level algorithm

Require: a handle with all known attributes of the call and the contraction factor
1: Get handle for the current call
2: Get reduced virtual topology size and dimensionality from the handle
3: Get physical system size and topology
4: Perform assignment of virtual processors to the physical processors
5: Place information in the handle
Ensure: A proper mapping of the virtual architecture to the physical one

selected. Mapping of the scaled down virtual architecture to the physical system is done at runtime.
The mapping table information is then used to create the necessary number of threads on each
processor. For each thread, the necessary space is allocated in the handle. The total space in a
physical processor for each parameter is proportional to the number of threads on that processor
and the contraction factor.

The mapping module calls a routine in the mapping library to determine the contents of the
mapping table. If the system is partitionable, this is simply a call to a specific routine in the
mapping library since both the virtual and physical topologies are known. However, if the sys-
tem is reconfigurable, this module must check the topology of the target system before calling the
appropriate mapping function. Although reconfigurable systems require setting up more mapping
functions, the application program may benefit form virtual and physical topology match which
reduces the communication overhead. Since reconfigurable systems can be configured for different
topologies, the mapping library must take into consideration all the possible physical topologies. For
instance, if the virtual architecture algorithm is based on a torus and the system is partitionable
based on a mesh, only one mapping function from torus to mesh suffices for the implementation of
this algorithm in the library. However, if the system is reconfigurable, one must consider mapping
of torus to all possible physical topologies. The library routine implementor must consider number
of mapping functions equal to the number of possible physical topologies. If the physical system is
configured as a torus, the library routine will benefit from the match between the virtual and the
physical topology.

The mapping module consists of a set of routines which initialize the mapping table of a handle.
Each routine is designed to define the mapping from one topology to another. A library routine
is aware of its topology and can query the physical system topology. Hence, it can call the spe-
cific mapping routine in the mapping library. Each routine in the mapping library is designed to
initialize the mapping table with the physical processor on which each virtual processor runs. The
indices of the mapping table are the virtual processor identifiers and the contents are the physical
processor identifiers. Other information are added to the entries when the threads are created (see
algorithm 14 on Page 76). The mapping library (which has a header file containing the definition
of a handle) is compiled once and exists in object form. The object code is then linked in with the
compiled SPMD code, the virtual communication library, the low level communication library, and
the threading library. There are no references from the mapping library to any of the routines in
the other modules. The only reference to the routines in the mapping module is from the individual
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library implementation of the virtual architecture algorithms. The call is made after determining
the contraction factor. This call is made by the main flow of execution and before any threads are
created. In fact, the mapping table is used for the creation of the threads on each physical processor
(see Figure 30 on Page 77).

If the parallel library routine requires a very unique mapping function, this may be implemented
in the library routine itself. Only commonly known mapping functions must be added to the mapping
library as they may be used by several library routines. If a new virtual topology or physical topology
is to be added to the mapping library, the procedure is very simple since the mapping library is
basically a set of functions that map various virtual topologies to physical topologies. It is finally
important to note that our proposed design supports many-to-one mapping. Some processors may
even have no mapped virtual processor. The runtime granularity adjustment has high potential of

using a fraction of existing processors when the problem size is small and the system size is large.

3.1.8 Data Distribution Module

This module utilizes the information from the previous modules, namely the contraction factor and
the mapping table to decompose, assemble, and send the data to the appropriate virtual processors.
The location of the initial data is strictly determined by the parallel algorithm used for the imple-
mentation of the library routine. Each node is then blocked waiting for the initial data from the
host processor. Algorithm 10 shows the steps in performing the initial data distribution by the host

Algorithm 10 The initial data distribution module

Require: A handle with all known attributes of the call, contraction factor, global data, and the
mapping table
1: Get handle for the current call
2: if I am the host virtual processor then
3:  Perform blocking of global data
4:  Distribute partitions to the processors using virtual send
5
6
T

: end if

: Get initial data using virtual receive

: Place data in the proper location in the handle (use rank via vwho)
Ensure: Data will be distributed based on the initial data distribution function

and the nodes. In our implementation of the library routines, the steps 6 and 7 are executed in the
local computation routine. In effect, the host virtual processor executes steps 3 and 4 and the rest
of the virtual processors execute steps 6 and 7.

In block matrix algorithms, blocks of data must be assembled into contiguous space and broad-
cast to the virtual processors. In most systems, the host has a larger memory than the nodes to
hold the original data in full. These partitions are not statically defined. The size of the parti-
tions is dynamically determined and the assembling of data incurs runtime overhead prior to the
commencement of a parallel phase. A similar problem exists when data is to be received by the
host. The partitions are received by the host p_roc&sor into contiguous space and must be broken
up to be placed in the appropriate locations of the global matrix. An example of 2 6 x 6 matrix in
single element row major order form and its counterpart with a contraction factor of 2 is shown in
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Figure 29. Note that the change of storage is only required for multi-dimensional data. Once the
computed data is sent to the host, the storage must be changed back to comply with the default
storage mechanism. It is noteworthy to mention that the storage cannot be changed in place, as
the data may be needed in a subsequent sequential phase. An additional copying is necessary here,
however this copy can be disposed of as soon as partitions are launched to be sent to the processors.

The data distribution module creates a bottleneck that is inevitable. Our design of the libraries
has a tendency of using large message sizes which allows some toleration of the data distribution
latency. Once a partition is launched and is in transit the main virtual processor can assemble the
next partition and create a pipelining effect. The data distribution overhead is examined at the end
of this chapter. Chapter 4 describes our data redistribution support to reduce this overhead.

3.1.9 Data Accumulation Module

This module, which requires cooperation between the host and the node programs, collects back the
results of the parallel computation and assembles the results in the global data. Algorithm 11 shows

Algorithm 11 The final data accumulation module

Require: Data sent to host by the processors, contraction factor, global data, and mapping table
: Get handle for the current call
: if I am the host then
Get data from the processors
Perform expansion of data to change storage method
else
Send result to the host (use rank via vwho)
end if
Ensure: Computed result will be in the global data in proper storage form.

Neahrwwry

the steps in performing the final data accumulation by the host.

3.2 Conversion of the User Program to Single Program Mul-
tiple Data Form

Assume the users’ sequential programs consist of parallel library calls that are based on our design
of the library system. The parallel library calls may be nested within any language constructs or
functions. For simplicity, we use a pseudo-C like language, however we are not bound to a specific
language.

Our objective is to define a translation process from the user programs to the SPMD form which
interfaces with our parallel library routines. The generated SPMD form must be based on standard
language constructs, a threading library, and a communication library previously described. A se-
quential program with parallel library calls can then be transformed to an SPMD form, compiled
using the resident compiler, linked with the thread library, communication libraries, and redistribu-
tion module to obtain a parallel executable image.
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Our approach is to allow all the physical processors to execute the sequential portions of the
program just like the host does. This is with the exception of some statements, such as I/0O, that
can be only executed by the host and special cases to be discussed shortly. We must ensure that
any condition used in the user’s program evaluates to the same value on all the physical processors.
This will ensure that all the physical processors do or do not participate in a parallel library call (of
course some may not be assigned any virtual processors). For instance, if the user program calls a
parallel library routine in a loop a number of times, the node programs must iterate over the loop the
same number of times and participate in the parallel computation (coherency). If the loop bound
is a value input at runtime, the nodes will not see this value and therefore may not follow the same
execution path. The translation proposed below ensures coherency among the physical processors.
We refer to all non-scalar variables which are parameters of the parallel library calls as poly variables
and all other variables of the program as mono variables. We refer to writing a variable to mean
that its contents are altered. For instance when the variable occurs on the left side of an assignment,
it is being written to. Reading a variable means that its contents are used in a computation or
decision making. For instance, when the variable occurs on the right side of an assignment, it is
being read from. We distinguish between read/write operations of a variable and performing I/0 on
the variable even if they are very similar as far as altering the values of the variables are concerned.
Furthermore, we use the term guard to refer to restricting the context of an SPMD statement to
be executed only by the physical host processor. The guards are implemented using a call to who
and an if statement which checks the value of the virtual processor identifier. If the value is 0, the
guarded statements are executed. As mentioned before, the physical host processor is the only one
with the I/O capability and possibly has larger memory capacity. Mono and poly variables must
not be mistaken with scalar and vector data, as a mono variable could be a scalar or a vector. The
physical processors must have the same image of the mono variables as the host. All sequential
computation done by the host can also be done by the nodes to have a consistent image over all the
physical processors. Our translation of the user program to SPMD form consists of the following set

of rules:

e All I/O statements must be guarded. These statements can only be executed by the physical
host.

e All inputs of mono variables must be broadcast after the inputs. The call to the physical
broadcast must be inserted after the guarded input statements because all physical processors

must participate in the collective communication operation.

e All write operations to poly variables must be guarded. Poly variables could be static or
dynamic. When dynamic allocation is used to create them, the allocation will only take place
on the host (due to memory limitations of the nodes). Therefore, access to these variables in
the nodes will cause memory access violation. This is because, in our design, dynamic poly
variables are guarded to be allocated only at the host. This is, however, not the case when the
data is static. These data will be allocated by all the nodes on the stack or in the data section

of the virtual memory.
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e All read operations on poly variables must broadcast the same value to all the physical pro-
cessors. The elements of poly variables are distributed across the handles that reside on the
physical processors. The host processor is the only one that has a full image of the poly data
between parallel phases. Reading elements of poly variables will only result in a correct value
on the host. Therefore this value must be broadcast to all the physical processors.

e Parallel library calls are translated to a sequence of calls to the library components and the
threading library to create one thread for each virtual processor.

There is a performance penalty at the statements that input mono variables. These statements must
be guarded and the value must be broadcast to all the nodes. Considering I/O operations are slow
and these cases are scarce in the numerical applications, the broadcast overhead would be tolerable.

Another problem has to do with the poly data. If the poly data is static, it will occupy unnec-
essary space on the nodes. Since in most programs the problem instance size is input at runtime,
this is quite rare (and not recommended in our design). If the poly data is dynamic, its allocation is
detected and guarded to be executed only by the host physical processor. The same holds for input
of poly data. No broadcast is, however, required. The poly data is distributed across the processors
when the library routine is called.

The source to source transformation consists of the steps in Algorithm 12. Determining the read

Algorithm 12 Source to source transformation - sequential program with library calls to SPMD
program

1: Construct an abstract syntax tree

: Identify parallel library calls and the type of their parameters

: Identify all mono and poly variables

: Identify the variables in the read and write sets of each statement

Identify Input/output statements

for all input/output statements do {Insertion of guards for I/O statements}
Insert guard

: end for

: for all writes to poly variables do {Insertion of guards for writes to poly data}

Insert guard

: end for

12: for all input statements of mono data do {Insertion of broadcast for input statements of mono

data}

13: Insert a call to broadcast after its guard

14: end for

15: for all reads of poly variables do {Insertion of broadcast for reads from poly data}

16: Transform statement to copy to temp, broadcast temp, and use temp for read.

17: end for

18: for all library call statements do {Translate library calls}

19: Generate statement to assemble parameters of the call in a list

20: Generate sequential prologue and thread creation (Algorithm 13)

21: end for

22: Scan the tree and dump the SPMD code

© 0 2N D NN
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and write sets of statements requires interprocedural analysis if the user program has sequential
calls. The sequential call may read or write the parameters or the global data.
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The SPMD code generation is described in two steps. The first is the manipulation of the
abstract syntax tree (AST), and the second is the dumping of the SPMD code. These two steps may
be combined to perform fewer tree traversals. For clarity we have described these in phases. Once
an AST is built, the library calls, I/O statements, and dynamic allocations are identified. The data
is also categorized in two groups, mono and poly data. In our design, the parameters of the call are
packed in a single list and passed to the thread. A naming convention is used to obtain the name of
the thread for each library routine. This method is used throughout the transformation. The parallel
library calls have a specific prefix (cpce). The library component names are constructed from the
concatenation of the suffix and the action of the component. For instance, a call to cpcc_matmpy
has the initial data distribution component matmpy_distribute_initial. The suffix is matmpy
and the action of the component is distribute_initial.

As it was previously mentioned, in our parallel library, virtual processors are emulated using
threads. The user program is converted to an SPMD form which creates necessary threads at
each parallel phase and joins them at the end of the phase. Prior to creation of the threads, the
main process allocates the necessary space in the handle for all the threads. Although the data of
one thread is discriminantly available to other local threads®, the library designer must ensure the
boundaries of data for each thread are protected. Since data from multiple threads reside in the
handle, a local thread identifier is assigned to each created thread and is stored in the mapping
table. The local index of each thread may be used by the thread to access its own private data
buffers. Algorithm 13 shows the translated form of a single library call libcall(params). The

Algorithm 13 Translation of a single library call

: argList <~ parameters

: allocate_handle(&curHandle);

: libcall_init_handle(curHandle);

libcall_init_arch(curHandle,argList);

libcall_contraction(curHandle);

: libcall mapping(curHandle);

libcall_allocate_local(curHandle,argList);

libcall_data layout(curHandle);

redistribute(curHandle,&history);

: rank < 0

: for all virtual processors vp mapped to current physical processor do
12: thr_param ¢« append to argList the vpid and rank

13:  thr.create(0, 0, thread_lib_call, thr_param, THR_DETACHED, &new_thr)
14: rank¢rank+1

15: end for

16: for all virtual processors vp mapped to current physical processor do
17:  thr_join(0,0,0);

18: end for

LREPNDNBOYE
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thread_ lib_call is described in Algorithm 14. Note the term rank is the same as local index of a
thread. This value is used by a thread to access its own data partitions. Furthermore, the virtual

5Threads reduce the overhead of scheduling at the cost of loss of memory violation checking by the operating
system. It is the job of the programmer to ensure that a thread does not refer to another thread's data.
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Algorithm 14 The thread of a library call

Require: Arguments: argList(parameters, vpid, rank)

: self — actual thread id (call to thr_self)

: Store rank and self thread ID at index vpid in the mapping table

: if I am the host virtual processor then
libcall_distribute_initial(argList, carHandle)

end if

: libcall local(curHandle);

if I am the host virtual processor then
libcall_.accumulate final(argList, curHandle)

end if

: thread_exit(&self);

5999:'@2-&@.'0'-

-
[=]

processor identifier of a thread can be obtained using the actual thread identifier query (by a call to
thr_self) followed by searching the mapping table which houses the physical processor identifier, the
rank (or local thread identifier), and the actual thread identifier of the resident virtual processors.
The index of the mapping table corresponds to the virtual processor identifier. The index of the
mapping table is the virtual processor identifier (see description of vwho). The arguments of the
library call are either scalar values or pointer to data objects. These arguments are placed in an
array and padded with the virtual processor ID and the rank. The array is then provided as the
only argument of the thread. This array can be passed to other library routines without being
decomposed. The library routine is implemented based on a special ordering of the parameters.
Therefore, the locations of all the parameters within the array are known. The current handle does
not need to be added to this list since it is available globally to all the threads and the called library
components (as an external variable).

The transformation for a parallel library call is shown in figure 30. The parameters of the
library call are assembled in an array of pointers starting from the third entry. The first and second
entries are used for the virtual processor identifier and the rank of the thread. When the main
process initializes the handle for the library call, it creates the threads by scanning the mapping
table and creating one thread for each virtual processor mapped to the physical processor. This is
done simultaneously by all the physical processors. After creation of the threads, the main process
waits for the threads to come back by executing thr_join. The parameters of thr_join are 0 since
the identifiers and the statuses of the threads that join are not important to capture. In the next
example, we look at a slightly more complex sequential program (Figure 31). In this example a
value which is the upper limit of a for loop is entered. The body of the for loop consists of two
parallel library calls. You could think of the first one being a matrix multiply and the second one
being matrix copy. The first input statement reads the value of num_iter which is used as the upper
limit of the for loop. This value must be broadcast to all the nodes so they all iterate the same
number of times. The input values for the parameters of the parallel library call do not need to be
broadcast since they will be distributed as part of the parallel library call. The two parallel library
calls are translated in the form previously described in Algorithms 13 and 14. It is important to
note that even though we have shown the threads of the library calls as part of the code generation,
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sinclude "picLh”
finclude "thread.h”
#include "lib.b"
void lib_call_thread (void * arglist)
#include "parlib.h™ ) L vp_thr:
:nla(r)ax(xons vp-thr = thr_selfQ
get vp id and rank from the arglist
Input data — stcre vp_thr and rank in the map table
lib_call(parameters) if (my vp id ==0)
Output data lib_call_distribute_jnitial(argliss)
} 1ib_call_jocal(arglist)
- if (my vp id ==0)
lib_call_accumaulate_final(arglist)
thr_cxit (&vp_thr)
}
a) User program b) Thread component of the virtual architecture

panalle! library routine

who(&oumproc, &me, &host)

if (me ==0) input

7* reserve first two entries for vp and rannk *f
thr_param = list of call paramters
lib_call_alloc(&curhandle)
lib_call_init_handle(& curhandle)
lib_call_init_arch(curhandle, parameters)
lib_call_contration(curhandle)
lib_call_mapping(curhandle);
lib_call_allocate_Jocal(curhandle)
lib_call_data_fayout(curhandle)

rank =Q;

for( all vps mapped to me)

add rank and vpid to thr_param

thr_create(0,0,lib_call_thread, thr_paxam,
THR_DETACHED, &new_thr)
rank =nnk + |
}
for( all vps mapped to me)
thr_join (0,0,0)
if (me == 0) output

¢) Transformed user program (SPMD form)

Figure 30: An example of source to source transformation
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(

}

-

main() {
declarations

input num_iter
Input data for parameters
for(i=0;i<num_iter; i++)
{

lib_calll(..., a, ...)

if (a[i] > 5)

lib_call2(parameters)

}
Output data

a) User program

include files
void * thread_lib_calll ( void *arglist)
{

}

void * thread_[ib_call2 ( void * arglist)
{

}

main(}

{

declarations

int numproc, me, host;

who( &numproc, &me, &host);
if (me == 0) input num_iter;
broadcast (num_iter, sizeof(num_iter), 0)
if (me == 0) input data for parameters
for(i=0;i<num_iter; i++)
{ translation of lib_calll

if (me ==0) temp = a[i};

broadcast (temp, sizeof(temp), 0)

if (temp > 5)

} translation of lib_call2

if (me == 0) output data

b) Translated SPMD form

Figure 31: An example of translation of a write to a poly variable
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these threads have fixed code for each call and are integrated into the library system (See Algorithm
14). This will simplify the source to source transformation and the compilation process.

Algorithms 13 and 14 are used for translation of the library calls regardless of the context of
the call. If the call occurs inside a loop or a conditional, our translation scheme ensures that all
physical processors maintain a consistent view of the mono data upon decision making. Therefore,
a conditional will evaluate similarly or a loop iterates the same number of times on all the physical
processors. Revisiting Figure 31, the variable num_iter is a mono variable. Our translated form
of inputing this variable guards the input statement and inserts a call to the PICL broadcast to
ensure that all physical processors have the same view of this variable for the rest of the SPMD
- code. The portion of interest is the for loop which uses num_iter as the loop bound. All physical
processors will iterate the same number of times and will participate in the two parallel library calls
(but not necessarily assigned a virtual processor). This discussion applies to all other conditional
and iterative programming constructs. In the same figure, reference to the ith element of the
poly variable a, in the condition of the if statement, must be translated to assignment of this
variable to a temporary location enclosed in-a guard. The guard is to ensure this is done by the
host only. After the guarded statement, all the physical processors execute the broadcast on the
temporary variable. The if statement, executed by all the physical processors, is transformed to use
the temporary variable in the condition as opposed to the poly variable. The poly variable may not
have a corresponding location in the node processors (poly variables may be dynamically allocated).
The temporary scalar variables can be easily inserted in the declaration section of the SPMD code.
This declaration allocates a copy of the variable, for each physical processor, on the runtime stacks of
the main processes. The copying operation can be viewed as creating a new mono variable, reading
its contents from a poly data, and broadcasting it to all the physical processors.

User programs may contain calls to functions (not parallel library calls). These calls may pass
mono variables as parameters to the library routine. Passing the mono variables as parameters is
done by all the physical processors and does not need any transformation in the SPMD form. If the
parameter of a non-library function call is a poly variable, the value must be copied to a temporary
variable and broadcast to all the physical processor prior to the call. This is the normal processing
for any read operation of poly variables. If the poly variable is passed by reference, any write
operation to the formal parameter must be broadcast to all the physical processors. A compiler can
determine, through interprocedural analysis, whether a formal parameter of a function corresponds
to a poly variable. It can then translate the function body similar to the translation of the main
program bearing in mind that specific formal parameters are poly variables. If the function body
contains a parallel library call, all physical processors will still participate in the call.

3.3 Performance Analysis

In this section we show, through a motivating example, the necessary steps that must be followed
to examine the performance characteristics of a virtual architecture algorithm. The performance
characteristics are examined with respect to the grain size of the computation and the mapping of
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the virtual processors. For our library design, performance of virtual architecture parallel routines
must be studied on a case by case basis. Without loss of generality, the framework used in this
section can be applied to other algorithms of interest.

At the time of the implementation of a scientific parallel library routine the problem instance
size is not known. This also holds for the system size and topology in many reconfigurable and par-
titionable systems. Algorithms which possess high range of scalability are more desirable for library
implementation on these systems. These algorithms are more likely to deliver better performance
when the physical system size and topology are known at load time and when the problem size is
known at runtime. Through selection of highly scalable parallel algorithms, constructing library
routines that adjust the parameters of the computation at runtime to reduce the execution time,
and performing systematic runtime mapping of the logical processors, one can build parallel library
routines which reduce the execution time of the caller sequential programs.

We consider two common communication models for message passing parallel computers. The
first model captures the communication cost in multicomputers that use packet switching. The
second model captures the communication cost in multicomputers based on wormhole routing (also
known as cut_through routing). Communication between two virtual processors in the same physical
processor incurs a cost proportional to the size of the message, which is basically the cost of a
memory-to-memory copy. This is commonly not considered as part of a communication model,
however in our analysis of the communication cost we require the model to be extended to define

communication within a physical processor. The communication cost t.omm in packet switching is:

t;+ (th +tuS)d ifd>0

9
St ifd=0, )

teomm (S, d) = {
where ¢, is the startup cost, £,, is the time to transfer one word across physical channel, ¢; is the time
delay at each router, d is the distance the message must travel, t,, is the time it takes to perform
a.memory to memory copy, and S is the size of the message in words. In wormhole routing, the
communication cost is composed of the time for the head of the message to arrive at the destination
and the time for the rest of the message to arrive in a pipeline fashion. Therefore, the communication

cost can be expressed as,

ty +tu(d+S) Hd>0

. (10)
Stm ifd=0,

teomm(S,d) = {
assuming a flit is one byte.

The primary difference between the two communication models is that in packet switching the
packets are buffered at the intermediate nodes in the path. In wormhole routing, however, when the
head of the packet arrives at an intermediate node, it is allowed to proceed without full buffering of
the packet. The rest of the packet then follows the head. The value of ¢5d is usually much smaller
than ¢, and ¢, S. .

In the library implementation of an algorithm, the first step is examination of its scalability
on the target system. If the algorithm is scalable, it is implemented in a parallel library in a
parameterized form. Upon invocation, the library routine adjusts its granularity and mapping to
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minimize the execution time. If better execution time can be obtained by using a fraction of the
available processors, this would be a logical decision to be made by the library routine. The following
examples show the shortcomings in the current parallel libraries which are being overcome in the
design proposed in this chapter. The first example shows the poor scalability of algorithms that are
based on fixed granularity. The second one shows how execution time may be reduced by using only
part of the, as opposed to the whole, available partition for the library routine execution. The third
one exhibits drop in the performance of a routine as a result of naive mapping of the processors.
The analysis is amenable to any of the algorithms in our domain. We have chosen the torus based
matrix multiplication [54] virtual architecture parallel algorithm.

The pseudo code for C = A x B, where A, B, and C are the global n x n matrices, is presented in
the following algorithm. This algorithm represents the code executed by all the virtual processors.
The symbols a, b, and ¢ refer to the distributed data blocks of A, B, and C, respectively. The
initial distribution of data is immaterial in this discussion, however it may be obtained from section
3.1.4. Assume the logical architecture is an % x % torus, ¢ and n are powers of 2, and g divides
n.

a + Initial g x g partition of A
b « Initial g x g partition of B
c+0
fori=1to % do
Send partition a to the processor to my west
Send partition b to the processor to my north
ce—ct+axb
Receive partition a from the east
Receive partition b from the south
end for
Send computed ¢ back to host
The execution consists of % steps each consisting of a computation step, comprising of a matrix
multiplication and a matrix addition, and two communication steps. In the following analysis, the
algorithm is considered in isolation, that is, without inclusion of data distribution and accumulation
times. We are interested in the performance of the parallel portion of the program. Although, we
will observe that any data distribution strategy will perform better using the design described in
this thesis than for the existing libraries.

Now, we develop an expression for the communication overhead of the algorithm on a VP X /P
processor torus. The expression will be a function of n, g, and p, and will involve the physical
system parameters, previously defined in equations 9 and 10. We will then show that, the algorithm
based on coarse grains is more scalable than the fine grain algorithms based on the isoefficiency
metric of scalability defined by equation 4. When the number of processors p increases, fine grain
algorithms require larger increases in the problem size, than coarse grain algorithms, to maintain a
fixed efficiency.

Since the communication is between neighboring nodes, packet switching and wormhole routing
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are equivalent and either one of equations 9 or 10 may be used in the analysis. We assume a block
mapping of the virtual processors to the physical torus in both dimensions. Assuming % > /B, each
physical processor emulates a’}—_ \/- virtual processors. The physical proc&sor a.t index (i, 7),
where 0 < 7, j < /p, emulates all virtual processors (u, v) such that i * ‘/_ Su<(i+1);5% v and
Jrm <v<(+1)5%

The overhead function is composed of two terms. The first term accounts for the communication
of all the boundary elements a and b to the neighbors. There are a total of 7 messages in each
iteration. The second term account for the local communication among the virtual processors.
There are a total of -2 7- 7 1) local communication operations, each of size g2. The cumulative

overhead over -g- iterations and p processors can be stated as,

T, = ""2‘/_t, +2n2/p (7_ ) tm,

where %,, is the time it takes to perform a memory to memory copy. Note the special case of
g = %, when each physical processor will emulate only one virtual processor and the overhead
above simplifies to 2p,/pts, and when g = 1 the overhead becomes 2n?,/pt, + 213, — 2n2,/ptm.
Using the isoefficiency equation, W = KT, we have:

2Kn?./p n
W="Y"t +2Kn? (——-l)t , 11

where K = %, and £, is the time to perform one iteration of the operation in the innermost loop

of the sequential matrix multiplication algorithm. Since W is t.n3 for matrix multiplication, solving

for n yields,

2Kn? VP

tend = ————t + 2K n? (—— - 1) t

c g s \/_ \/5 m
2K./p ( )

Py, +2K —_ 1)t

gz vP 9/ "
_ g 2t,K./p

TR 2K ( t.g? 2K‘/ﬁtm/t°)
2Kt, — 2K g%t

g(g — 2K)t.

Plugging this value of n back in equation 11 results in the isoefficiency function,

w— | 2Kt (ZKt, — 2K g%t )2 2Ktm (2Kt, - 2Kg2tm)3 ok (2Kt, — 2K g%tm )2 3/2
Tl ¢\ gle—2K)t g a(g — 2K)t. "\ glg —2K)t. ’

The first term in the brackets is due to the nonlocal communication and the second and third terms

are due to the local overhead. For the special case when g = 7";, each physical processor will emulate
1/3

= ten =

>n=

VA

only one virtual processor and the isoefficiency function becomes W = 2Kt,p

For a given problem and system size, the coefficient is a function of g. We plot this coefficient
for different values of g using different initial values for efficiency. Figure 32(a) demonstrates that
the matrix multiplication based on the fixed grain size is poorly scalable for an efficiency value of
0.8. The values of ¢, and ¢,, were used from the specification of Intel Paragon. These values are
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Figure 32: Comparison of the isoefficiency functions for g = 5, 8,16 and g = 7

t, = 30 usec, t. = 0.02 usec, and t,;, = 0.08 psec. The value of ¢,,, which is the time to perform
a memory to memory copy, is assumed to take four clock cycles of the 50 MHz processor of the
Paragon. Value of t., which is the time to perform the statement in the innermost loop of the
sequential matrix multiplication, was obtained using the simulator by dividing the total sequential
execution time by n® and averaging the values over several runs(t. = 3.7 usec).

The negative values for workload in figure 32(a) are indicative of the fact that, for an initial
efficiency of 0.8, the fixed grain size algorithms cannot deliver the necessary performance to keep
the efficiency constant when the system size increases, no matter what the rate of increase of the
problem size is. Figure 32(b) has been plotted for an efficiency of 0.7. The workload axis has been
scaled down logarithmically. Both types of algorithm can sustain a fixed performance for this value
of efficiency®. However, this figure demonstrates that the algorithm based on the largest grain size
of % X 7"; is far more scalable than the fixed grain size algorithms with g = 5,8,and 16. The
grain size of 5 has been selected for comparison since in ScaLAPACK it is claimed to deliver the
best performance on average. The scalability analysis presented here pertains to all block matrix
algorithms in our domain.

The ultimate goal in parallel libraries is to minimize the execution time of the routines. Once a
scalable algorithm is implemented in a parallel library, the only degrees of freedom are the granularity
of the computation and the mapping of the virtual processors to the physical processors. There are
many system attributes that are important factors in the execution time of the library routine.
These include the speed of the processors, the topology and the size of the physical system, the
routing technology, and the routing algorithm. The system attributes affect the decision making on

the granularity and mapping across different systems. For instance, lower communication latency

6The logarithmic scale may create an illusion that the rates are the same and only an offset exists, however this
is really not the case. Had a linear scale been used, the fixed grain size algorithms would exhibit a drastically larger
slope than the varying grain size algorithm.
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Figure 33: Optimal grain size selection

of one system may allow one library routine to execute with a higher degree of parallelism than a
system that has a high communication latency. In porting a parallel library from one system to
another, these attributes are changed in the library prior to the one-time compilation of the library
for that system.

Now, we develop an expression (in terms of the grain size and the system size) for the execution
time of the torus based matrix multiplication. We will evaluate this expression for different problem
sizes and system sizes under varying grain size. The processor scheduling cost has been neglected in
favor of the algorithms based on smaller granularity,

n [gn? 2 2n? _ 2ng ifn
Tyar = 3[ P t°+97nv't’+(; ﬁ)t”‘] i3> VP (12)
L (teg® + 2t,) Otherwise.

_ The first function is always decreasing with increasing grain size and is only defined up to %. The
second function , however, has a global minimum. Differentiating the second segment of Ty, with

respect to g yields,

a7, 2nt
T e
Solving -8—70'%5 = 0 results in gin = :—;) 1 3, where gmin is the grain size which minimizes the second

segment of the Tp,,. Since these functions are only valid over specific values of g, one can find
the minimum execution time by examining all permissible values near gmin. The best grain size
obtained from the second segment can then be compared with —"ﬁ. If gmin is larger than %, Imin
is the grain size which minimizes the objective function, otherwise —‘7—5 is the optimal grain size.
Figure 33 shows the execution time of the torus based matrix multiplication for a matrix size of
512 x 512, i.e n = 512. When p = 16, the minimum execution time occurs at ¢ = 128 which implies
a virtual architecture of 4 x 4. Each physical processor will then emulate one virtual processor.
Increasing or decreasing the grain size will deteriorate performance. When p = 256, a value of
g = 32 results in the lowest execution time. The virtual architecture is of size 16 x 16 for this
value of g. For this case, each physical processor also emulates a single virtual processor. Using
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64k (k = 1024) processors to perform the 512 x 512 multiplication, a value of g = 2 yields the
lowest execution time. This value can also be obtained through differentiation, i.e. (3%) 3 0.
This implies a virtual architecture of size 64k processors. Finally when 256k processors are used,
decreasing the granularity to take advantage of the additional parallelism increases the execution
time of the program. Unlike the first three cases, only a fraction of the processors (25%) are used to
perform the computation, which implies a large drop in speedup and efficiency. If all the processors
are used to perform the computation, the execution time will nearly double. As new techniques
are developed which reduce the communication delay between processors, using this scheme, larger
number of processors will be used to perform the same computation. Porting a parallel library, based
on this scheme, to another system will have a different g,,;,. Updating the values of ¢,, ., and
for the new system and minimization of Tp,- Will result in the best granularity for that system. This
value of granularity determines the degree of parallelism for the execution of the library routine.

This analysis implies that for a parallel library routine, the execution time function must be
developed and integrated in the library. The execution time is a function of the problem size,
granularity, mapping, and the physical system attributes. At runtime, the grain size is then selected
so that the execution time of the routine is minimized. This value is not necessarily the grain size that
scales down the virtual architecture size to that of the physical system size. A fraction of processors
may have to sit idle and their participation in the computation would increase the execution time
of the library routine due to an increase in the communication overhead. In multicomputers with
fixed system topology, such as meshes, the mapping of the virtual processors can be considered in
the execution time function. On reconfigurable systems, the execution time function can be derived
based on the virtual topology. Overlooking the effects of mapping introduces slight inaccuracy
in the execution time function. This inaccuracy is due to the missing factors that account for
communication distance and the link contention. The mapping function can then be considered in
the delayed mapping phase, to be shortly discussed.

Once the size of the scaled virtual architecture is determined, its mapping to the physical proces-
sor determines the communication pattern of the program on the underlying physical architecture.
This mapping affects the communication overhead of the program by determining the distance
between the communicating nodes. For large messages, the distance increases the latency of com-
munication by amounts that are significant with respect to the startup cost of communication. In
this section we examine the impact of the distance between communicating nodes and the message
size on the communication overhead of the program for both packet switching and wormhole routing
schemes. This study is strongly relevant to our library design where scaling block matrix algorithms
increases message sizes. Even though the messages are broken up into packets in both schemes,
without loss of generality we consider the messages as a single entity as this is the case when very
large packet sizes are used.

Let’s consider the time delay introduced, as a result of a conflict on a physical channel in terms
of the message size in packet switching and wormhole routing. Figure 34 shows that additional
latency introduced as a result of a channel conflict between messages of a given size. The value of
ts = 30 psec and tw = 0.023 psec were used in the diagram. The dotted line denotes the latency of
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Figure 34: Link latency as a function of the message size

the link and the solid line denotes the startup cost. At near 1024 word message size, the latency due
to contention on a physical link is approximately equal to a startup cost. This implies that as a result
of a conflict, on average, each message will suffer an additional latency of % due to this conflict.
This applies both to packet switching and wormhole routing. The accumulation of this additional
latency over all communication paths and over the course of execution of the program will introduce
serious impact on the communication overhead of the program’. The overhead of a program due
to contention can be captured if the communication behavior of the program is studied using the
mapping function in mind. Once a suitable mapping function is determined, it can be built into
the library routine. The contention must be considered under the worst case conditions. Time of
communication being a factor in the contention makes development of an exact model very difficult.
Therefore if two communication paths intersect, it must be assumed that contention is inevitable
unless there is a synchronization point between the two communication operations. Most systems
have bidirectional channels which must be considered while examining the severity of contention.
An example mapping of an /p x /p torus to a \/p X /p mesh that requires some messages to go
through the same physical link in our matrix multiplication example is:

;;, %) if even ¢ and even j
i P i i 1 j
Myl j) = (5,4 +|_2J) . if even 7 and odd j (13)
(L + £, 2 +£]) ifoddiand odd j
(%Z-H_%J,lz'-) if odd i and even j,

for even /p. This mapping creates contention along every row and column of the matrix in both
directions. Contention is higher in the middle of the rows and columns than around the edges and
the level of contention increases with the system size. We will later show, through our simulation
results, that this mapping results in significantly higher execution time than dilation cost 2 mapping
in equation 15 or identity mapping.

Another interesting example is mapping of a hypercube to a line. Consider a d dimensional
hypercube, i.e. p = 29. Assuming in each phase i, processors with a 0 in the ith position communicate

7In iterative algorithms the execution consists of repetitive computation and communication steps. Cumulative
overhead is calculated over all the iterations and all the processors.
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with their neighbor along the ith dimension. For simplicity, let’s consider d = 3. When identity
mapping function is used, the following list shows the contention during each phase:

e Phase 1 - No contention.
e Phase 2 - Contention on links (1,2) and (5,6) with one conflict in each direction.

e Phase 3 - Contention on links (1,2), (2,3), (3,4), (4,5), (5,6) with 2, 3, 4, 3, 2 conflicts,
respectively, in each direction.

On the other hand, if the following mapping function is used:

M) = T if even z (14)
p— 3] Otherwise,

The contention during each phase will occur on the following links:

e Phase 1 - Contention on links (1,2), (2,3), (3,4), (4,5), and (5,6) with 2, 3, 4, 3, 2 conflicts,
respectively, in each direction.

e Phase 2 - No contention.
e Phase 3 - Contention on links (1,2) and (5,6) with one conflict in each direction.

Clearly, one mapping is not preferred over another. If a hypercube physical system is used, the
execution would be contention free.

One other effect of mapping on the performance of a program is through creation of bottleneck
in the communication of the program during each phase. When the program has inherent synchro-
nization using communication, the bottleneck in communication slows down each iteration as all the
processors require data from one another during each iteration. Applications such as torus based
matrix multiplication, Jacobi relaxation, and FFT have this characteristic. We show the impact of
mapping in the communication overhead of a program using our torus based matrix multiply ex-
ample. The scaled down architecture is first considered under the systematic mapping with dilation
cost of 2 borrowed from [58). If p is a perfect square, for even d = /p, the mapping function, M3,

can be stated as:

(21, 27) ifi<$andj<$g
i 9d— 27 — fi<fandj> ¢

Ma(i) = (2i,2d — 25 — 1) ffz.<§zmd_7'23 (15)
(2d — 2i — 1, 2j) ifi>%andj<$

(2d—2i—1,2d—2j—1) ifi>gandj> %

where the row and column numbers start from 0. The restriction of even /p can be easily lifted by
changes to the above function. The cumulative overhead function is developed in terms of the system
size and is compared with the same program under a naive mapping such as identity. Using the
overhead function, we study the degradation in performance due to identity mapping when system

size varies.
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Consider the torus based matrix multiplication of virtual architecture size ,/p x \/p running on a
‘mesh of the same size®. Using the identity mapping, the neighboring relationship among all the vir-
tual processors is preserved except for the processors at the boundary. Since the torus based matrix
multiply has inherent synchronization through communication after each iteration, the cumulative
overhead of the mapped program consists of /p iterations each consisting of communication of two

% X % partitions to a node /p—1 hops away. Using packet switching, the communication overhead
of the program, T "/5_1, can be expressed as:

S/l _ s
T3 —2\/5(,+pw5 1)tw),

where T7'¢ denotes the communication overhead of the program using the routing scheme r under
a mapping with dilation cost of d. It is important to note that contention has not been considered
in the calculation of the overhead function. The effect of contention has been separately discussed.
The overlapping of the two communication operations is not considered in the preceding equation
either. For the two send operations to be overlapped, the messages must be large enough so that
the transmit time of the message exceeds the startup cost. Using the mapping function in equation

15 would yield the following overhead function,
2
TS =2/p (t, + ?:—tw) .

Considering the overhead functions when the system uses wormhole routing, the following ex-

pressions are obtained,
2
TP — 9 /5 (t, +(V/P—1+ —’; )t.,,)

T¥2 =2./p (t, +(2+ %z)tw) .

The value t, = 30 usec was used to derive the data presented. A word is assumed 4 bytes which
yields a value of £,, = 0.023 usec. Value of ¢ is very small and has been omitted in the computation.
Figure 35(a) demonstrates that for a system as small as 32 x 32 processors using packet switching,
the communication overhead of the matrix multiplication differs by nearly 50% between the identity
mapping and the systematic mapping with dilation cost of 2 for message size S = 1. For message
size of § = 64 significant difference in the total overhead is observed on systems as small as 16
processors. Figure 35(b) demonstrates the same results for a system based on wormhole routing.
At near 1024 x 1024 processors a 50% difference in the total overhead is observed for S = 1. This
difference widens as the number of processors increases. Unlike packet switching networks, for larger
messages this gap narrows and is observed at a much larger system size. Larger messages are more
attractive in wormhole routing because the communication latency becomes independent of the
distance.

The effects of mapping on the communication overhead are tightly coupled with the communi-
cation pattern of the virtual architecture and the underlying physical system. Therefore, this effect

8 Considering the same size virtual and physical architecture is pertinent to our parallel libraries, since we initially
close the size gap through runtime grain size adjustment.
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Figure 35: Comparison of the cumulative overhead between two different mapping functions for
n=1024

must be studied on a case by case basis. On the other hand, the communication pattern of most
virtual architecture programs matches their virtual topology. Therefore, the analysis just performed
on the mapping of a virtual torus to a physical mesh pertains to algorithms and systems that are
based on these virtual and physical topologies, respectively. Since different mapping functions re-
sult in different contention levels, for each virtual architecture routine, its contention level must be
examined on the target system after the mapping. The mapping function that results in the least
contention in the worst case, must be selected and embedded in the library. For example, the dila-
tion 2 mapping presented, results in no contention and does not create communication bottleneck
which increases the overhead as a function of the system size. This mapping function has a dilation
cost of 2 for any system size.

Several conclusions can be made from the analytical results presented. To begin with, highly
scalable algorithms are more desirable for parallel library design since they can maintain a desirable
efficiency as the system size increases. Through the examples presented in this section, it has been
shown that scalability of algorithms is highly sensitive to the granularity of the computation. Map-
ping of the virtual processors affects the execution time of a program by increasing its total overhead
through contention and communication bottleneck. Therefore, delayed grain size adjustment and

- mapping are critical to the performance of a library routine.

3.4 Experimental Results and Performance Evaluation

We have supported our library design by implementing a source to source transformer which trans-
lates sequential programs with library calls to their equivalent SPMD programs, a compiler which
generates intermediate code from the SPMD programs, and a multicomputer simulator to simulate
the execution of the translated SPMD programs and provide performance results. The data that
will be presented in this subsection is meant to show that our library design delivers much higher
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p—> 1x1 2x2 4x4 8x8

gi

7"; x % 94950 ms | 240.60 ms | 61.30 ms | 16.8 ms
1.00 3.95 15.49 56.52
1.00 0.99 0.97 0.88

4x4 1243.30 ms | 347.20 ms | 117.60 ms | 68.10
0.76 2.73 8.07 13.94
0.76 0.68 0.50 0.22

Table 5: Simulation data: Execution, speedup, and efficiency for different problem and system sizes
for torus based matrix multiplication.

speedup and efficiency than ScaLAPACK. It is also meant to show that execution time of a program
is a function of the system attributes and must be evaluated at runtime. Depending on the values of
the attributes, the system size which delivers the least execution time can be calculated and used by
the library routine. The used partition of physical processors may be part of the allocated physical
system and may differ from one parallel library phase to another. Porting a library from one system
to another requires updating of these parameters so that the library routine can harness the full
power of the new system. We would also like to show that mapping functions that reduce contention
level in the physical architecture significantly reduce the execution time of the program.

The following data is collected from our library implementation of the matrix multiply routine
and the Cooley-Tukey Fast Fourier Transform algorithm [33]. The parameters of the simulation were
set to startup cost of t, = 30 usec, link delay of t,, = 0.023 usec, and node delay of ¢, = 0.01 usec.
Physical meshes were used to conduct the simulations. We examined the speedup and efficiency
of these applications by first scaling down the virtual architecture to the physical system size. We
then collected data for a fixed grain size of 4. Table 5 shows the values of execution time, speedup,
and efficiency of matrix multiplication for two 64 x 64 matrices. The numbers in each entry in
the table correspond to the values of execution time, speedup, and efficiency in that order from
top to bottom. Figure 36 illustrates the same data in a pictorial form. The data shows that the
speedup and efficiency from our library routine exceeds those of ScaLAPACK. In ScaLAPACK the
granularity of computation is fixed prior to the call. The user program defines the granularity and
the size of the virtual architecture. In contrast, in our library routines the granularity is decided by
the routine itself and the granularity of computation is transparent to the programmer. The grain
size of 4 has been selected for comparison since it is claimed by ScaLAPACK to provide the best
average performance. ’

The Cooley-Tukey algorithm for an n-point single dimensional FFT was implemented using our
library design scheme. Assume n = 27 and number of physical processors p = 29, for some integers
r and d. A d dimensional hypercube is used to solve the problem (d < r) and each processor is
allocated n/p elements of the array. To reduce the communication overhead of the routine, the
ith element of the input and the output vector are mapped onto processor number (b4—i ...bo),
where (br—j ...b0) is the binary representation of . With this mapping, processors do not need to
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p—>1|l 4 16 64

gl

1;— 23.20 ms | 5.50 ms | 1.50 ms
3.68 15.53 56.93
0.92 0.97 0.89

4 26.00 ms | 8.50 ms | 3.80 ms
3.28 10.05 22.47
0.82 0.63 0.35

Table 6: Simulation data: Execution, speedup, and efficiency for different problem and system sizes
for Cooley-Tukey algorithm.

g— I1x1 2x2 4x4 8x8 16x16 32x32 64x64
nl

n=64x64 || 720.50 ms | 301.50 ms | 117.60 ms | 98.40 ms | 61.30 ms | 240.70 ms | 949.50 ms

n=16x16 || 18.80 ms 6.40 ms 1.50 ms 4.31 ms 16.10 ms | - -

n=4x4 0.40 ms 0.30 ms - - - - -

Table 7: Simulation data: Execution time as function of grain size.

communicate in the first r — d iterations of the algorithm because all the elements needed by each
processor are locally available to it. In the remaining d iterations processors communicate with one
another and in the Ith (0 < I < d), all the n/p values required by a processor are available to it
from a single processor (one which is its neighbor along the /th dimension). The following data was
obtained from the library implementation of the stated FFT algorithm. Table 6 shows the values of
execution time, speedup, and efficiency for a 512 point FFT. The sequential execution of the routine
was Teoq = 85.4 msecs. The numbers in each entry in the table correspond to the values of execution
time, speedup, and efficiency in that order from top to bottom. Figure 37 illustrates the same data
in a pictorial form.

In our second set of experiments, execution times from different problem and system sizes were
collected from our library implementation of the parallel matrix multiplication using various gran-
ularity values and a 16 processor square mesh. The values of grain size which minimize execution

time for each instance have been obtained from the execution time function:

n [3.7gn? | 60n 2 _2n e
3[—g—+m+0.04(2—;—-7—§)] if 3> P
2 (3.79° + 60) Otherwise,

Tyar =

which is derived in Equation 12 on Page 84 by replacing the i, t., and t,, for the values used in
the simulation. The value of t. = 3.7 usec was obtained by conducting several sequential matrix
multiplications with different problem sizes and calculating the average time for the statement in
the innermost loop of the sequential matrix multiplication. Table 7 shows the values of execution
time as a function of the grain size for three different problem instances. Figure 38 demonstrates
the same results pictorially. Following the procedure on Page 84, one can find the best grain size
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Figure 38: Runtime Granularity Adjustment

for each problem instance and confirm the values in the table. The first two problem instances
demonstrate the case where the whole system is utilized for the execution and a larger grain size
is used while taking advantage of the full parallelism of the physical system. The third problem
instance demonstrates the case where only part of the system is used to perform the computation(4
out of 16 processors). Using all 16 processors and running the program at g = 1 will increase the
execution time. V

We have also developed approximate execution time functions for the matrix addition, Jacobi
relaxation, and Fast Fourier Transform. These numerical applications have been developed using
our library design. The pseudo code for C = A + B, where A, B, and C are global n x n matrices,
is presented in the following algorithm. This algorithm represents the code executed by all the
virtual processors. The symbols a, b, and ¢ refer to the distributed data blocks of A, B, and C,
respectively. Assume the logical architecture is an 2 x -3 mesh, g and n are powers of 2, and ¢

g
divides n.

a « Initial g x g partition of A

b « Imnitial g x g partition of B

c—a+bd

Send computed ¢ back to host
Matrix addition does not require any communication. Once the matrices are distributed across the
virtual processors, each virtual processor performs a local matrix addition of its partitions and sends
the results back to the host. The approximate execution time function can be described as follows:

n? ren

L n

1})ar = P it g ” ‘./5 (16)
%rtc Otherwise.
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Values of n, p, g, and t. are the problem size, the physical system size, the grain size, and the average
time to perform addition of a single element, respectively. It is evident that matrix addition uses all
the available physical processors regardless of the problem and system size. This is because matrix
addition does not have any cornmunication overhead.

The pseudo code for Jacobi relaxation of a global n x n matrix, A, with tolerance value tol is shown
below. The symbol a refers to the distributed data blocks of A. Assume the logical architecture is
an 2 x 2 mesh, g and n are powers of 2, and g divides n.

a + Initial g x g partition of A
Host broadcasts tolerance value, tol, to all the virtual processors
repeat
Send local partition a to the neighbors (Care must be taken at the mesh boundaries)
Receive partitions from the neighbors (Care must be taken at the mesh boundaries)
Perform relaxation on the local partition (Care must be taken at the partition boundaries)
mazdiff &« Maximum difference of the local relaxation
globMazdiff «— Global combine of mazdiff over all virtual processors
until globMazdiff < tol
Send computed a back to host
The variable mazdiff is used to hold the maximum difference of the last local Jacobi relaxation
in each virtual processor. This value is globally combined over all the virtual processors. Each
virtual processor will then have the global maximum in the variable globMazdiff. The approximate
execution time function for Jacobi relaxation was developed for a single iteration since the total
number of iterations is not known and it depends on the tolerance value. Since the communication
requirements of the application during all iterations are similar and there is global synchronization
after each iteration, minimization of a single iteration ensures minimization of the whole execution

time. The function can be described as follows:

n3 4n en

—i. + 7— if2

1par = pe pt’ g > ‘_/5 (17)
gztc + 4t, Othermse.

The value of ¢. is the average time to perform a single point relaxation.

The pseudo code for Fast Fourier Transform on a hypercube of a global vector A of size n is shown
below. The symbol a refers to the distributed data blocks of A. Assume the logical architecture is
a 2 processor hypercube, g and n are powers of 2, and g divides n.

a « Initial partition (of size g) of vector A

Perform local FFT of the partition of size g

for i =log 3 — 1 downto 0 do
Send local partition to the neighbor along the ith dimension
Receive partition from the neighbor along the ith dimension
Update values of the local partition using the neighbor’s partition

end for

Send computed a back to host
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The approximate execution time function for Fast Fourier Transform is:

fI;m={ §t°+%l°g% £y > ‘,/5 (18)
gle+ t;log % Otherwise.

The value of ¢. is the time to perform a single point Fast Fourier Transform. Each virtual processor
requires number of communications equal to the logarithm of the total number of virtual processors.
The third set of experiments exhibits the effects of mapping on the execution time. There are
three sets of data presented to exhibit the effects of mapping. The first one is targeted to show the
impact of poor mapping on the execution time of a parallel library routine in packet switching. The
second and third experiments show the impacts of poor mapping on the execution time in wormhole
networks. Mapping functions have been selected to show two effects of mapping on the performance
of the parallel program. The first effect is contention and the second one is the communication
bottleneck. In algorithms which consist of several iterations of computation and communication and
during each iteration the data moves in form of shift operations, a single link with longer delay than
others can create a bottleneck in the shift operation. This additional delay due to the bottleneck can
accumulate over all iterations of the algorithm and degrade the performance of the library routine.
This bottleneck depends on the dilation cost of the mapping. For example an identity mapping
of a torus to a mesh of the same size has a larger dilation cost than the dilation 2 mapping in
Equation 15 on Page 87. Therefore, the identity mapping creates a bottleneck that becomes visible
on larger systems. The torus based matrix multiplication routine will be run using the three different
mapping functions and routing technologies. Parameters of the simulations were as follows, unless

stated otherwise:

Packet size = 64 Bytes

Flit size = 1 Byte

Number of lanes = 2

Clock cycle = 20 ns

Link bandwidth = 0.005 usec per byte
One word = 4 Bytes

For each experiment fixed messages of 32 x 32 bytes were used. Therefore, each virtual processor
was assigned such partition. The functions used for conducting the mapping experiments are all
one-to-one. For example, an 8 x 8 virtual torus was set up to run on an 8 x 8 physical mesh with
each virtual processor holding a 32 x 32 partition. The problem instance size in this case would
be 256 x 256. All the experiments were conducted on physical meshes of processors. In order to
reduce the simulation time, the simulator was changed so that artificial messages of desired size
(32 x 32) were deposited in the network, but the amount of computation performed by each virtual
processor was a single scalar operation (rather than a full 32 x 32 matrix multiplication during
each iteration). This may affect the overlapping computation and communication, but reduced the
simulation time drastically. Therefore the execution times collected are not actual execution time of
the stated problem size. The collected times are in effect the communication overhead, neglecting

the very small computation performed.
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p— 4x4 | 8x8 | 16x16
mapping | ,

My 1093 | 4618 | 20564
Mg 945 | 5679 | 35603
M3 1228 | 7561 | 44418

Table 8: Simulation data: Contention free vs. contended mapping in packet switching.
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Figure 39: Effects of contention in packet switching

The one-to-one mapping functions Mj, M2, and M3 are defined by Equations 15 on Page 87,
identity, and Equation 13 on Page 86, respectively. Mj is the dilation 2 contention free optimal
mapping. M3 is the identity mapping which will exhibit the effect of the communication bottleneck
in the performance of the routine. M3 is the contended mapping function which is meant to show
degradation in performance due to link contention. Table 8 demonstrates the difference in execution
time between M, M3, and M3 in packet switching networks. The values have been plotted in
figure 39. The dilation 2 mapping has the lowest rate of increase in the communication overhead
with respect to the sysfem size among the three. The identity mapping has a slightly higher rate
due to the communication operations between the boundary processors which must travel across the
whole dimension. The contended mapping function has the largest increase in the communication
cost. The difference in the communication overhead of the three mapping functions is noticeable o
a system as small as 36 processors.

Table 9 demonstrates the difference in the execution time between the contention free mapping,
M, and the contended mapping, M2 in wormhole routing. The values have been plotted in figure
40. A message size of 1024 was used to conduct the experiments. Although the difference is not as
large as that of wormhole routing, this experiment also exhibits degradation in performance due to
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p— 4x4 | 8x8 | 16x16
mapping

My 404 | 913 | 4128
Mo 405 1056 | 4821
%diff 0.2% | 16% | 16.8%

Table 9: Simulation data: Contention free vs. contended mapping in wormhole routing.
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Figure 40: Effects of contention in wormhole routing

contention when poor mapping functions are used. This difference is much smaller and occurs at
larger system sizes.

Table 10 demonstrates the difference in execution time, in wormbhole networks, between the
mapping functions, M, which has a fixed size bottleneck regardless of the system size and Mp,
which introduces communication bottleneck that elongates with the system size. The overhead
function of M; grows slower than that of the M». For the data above a flit size of 1, packet size
of 16, and actual message size of 1 was used. The results have also been presented in figure 41.
Large messages are very attractive in wormhole networks because distance becomes insensible in the
communication latency. The effect of communication bottleneck is insensible when large messages
are used. Small messages, on the other hand, cause the routine execution to be more sensitive
to the communication bottleneck. The communication bottleneck effects can also be observed for
large messages with very large systems, for which our simulator would run into memory limitation
problem, or the simulation time would be intolerably large.

We will now examine the overhead associated with the parallel library design proposed in this
chapter. A parallel phase starts by broadcasting the size of the problem instance to all the physical
_processors. Upon receiving this value, all physical processors, simultaneously, determine the contents
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p— 4x4 | 8x8 | 16x16 | 32x32
mapping |

M. ' 404 | 610 | 1620 6023
M 404 | 610 | 1619 5810
%dift % | 0% |0.1% 3.7%

Table 10: Simulation data: Effects of communication bottleneck in wormhole routing.
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Figure 41: Effects of communication bottleneck in wormhole routing

of the handles. For each parallel phase, there is one handle per physical processor. The overhead
of determining the contents of the handle is very minimal since it is done in parallel. When the
contraction and mapping are performed, each physical processor scans its local mapping table (same
copy on all physical processors) and creates its local threads. A list of previous parallel phases is
maintained in the global memory on all the physical processors. This list is visited for possible data
redistribution. If distributed data is alive on the system, it is redistributed using the source and
the destination handles. Thereafter, the processor with I/O capability distributes the data that was
not redistributed. The distribution of data requires change of storage through an additional copy
of the data so that the blocks to be distributed would reside in contiguous memory locations. The
virtual processors perform the computation once they receive their initial data. Upon completion of
the computation, the result is sent back to the processor that originated the parallel phase.

Table 11 show the results of the simulations performed to examine the overhead of our design.
The parameters of the simulations were the same as those of the experiments conducted on Page 90.
Matrix sizes of 64 x 64 were used. The execution time of the library call was measured as a stand-alone
routine, with inclusion of the initial data distribution, and with the handle initialization overhead.

The data clearly states that the use of handles and their initialization introduce very little overhead in
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p— 2x2 4x4 8x8
Overhead included |}
None (Library call alone) 240.6 ms | 61.3 ms | 16.8 ms
Handle setup 241.1 ms | 62.5 ms | 20.7 ms
Handle setup + Initial data distribution |{ 302.1 ms | 124.5-ms { 85.20 ms

Table 11: Simulation data: Execution time of the library routine alone, with handle initialization,
and with initial data distribution for torus based matrix multiplication.

our design. However, initial data distribution overhead is intolerable. For instance, in the presented
data for an 8 x 8 mesh of physical processors, the execution time of the matrix multiplication has
increased by a factor of nearly 400% because of the initial data distribution of the two matrices of
size 64 x 64. This overhead consists of the blocking of the data and sending them to the virtual
processors. Figure 42 illustrates the same data in a pictorial form. In our design, handles are kept in
the global memory to support data redistribution. This very little overhead of handle maintenance
is well justified considering the objective of reducing the initial data distribution overhead. Our data

redistribution support is described in Chapter 4.

3.5 Impacts on the Library User, Designer, and the Compiler

In this section we unfold the design impingementson the library routine user, library routine designer,
and the compiler. The programmers’ task in using a library routine is quite simple. The system
is designed to accept a conventional sequential program that contains parallel library calls. The
programmer must first use the source to source transformer to convert the program to an SPMD
form. Then, the threading library, virtual and low level communication libraries, the mapping
library, and the redistribution module are linked in to create an executable image. Although these
libraries are linked in by the user, their internals are completely transparent.

From the view point of the library designer there are various details that must be dealt with
when designing the message passing library routines. Each component of the library routine must
be carefully coded and tested prior to its usage. The implementation of the library routine must
maintain the semantics of the library call and its parameter passing. Various optimizations can be
done in the library routines, some of which are mentioned in this thesis. The design of the parallel
library routines is monolithic and a major part of the effort is in designing and understanding the
first virtual architecture parallel library routine.

Examination of different parallel algorithms is the first step in setting up a parallel library rou-
tine. Obviously, the parallel algorithm with lowest time complexity is the most desirable. Among
the selected algorithms, the most suitable ones for library implementation are the ones that can be
described in block matrix form. This, of course, holds for the majority of algorithms that operate on
vectors and matrices. The next step is to develop a model for the cumulative communication over-
head. The cumulative overhead is a function of the communication pattern of the algorithm, system

size, possibly problem size, and the system attributes such as components of the communication
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latency. Once closed form expressions are developed, a scalability metric, such as the isoefficiency
metric of scalability used in this thesis, can be used to examine the scalability of each algorithm.
If all the algorithms have overhead functions with different time complexities, the comparison is
simple. However, if more than one algorithm have the lowest time complexity, the one with a lower
constant is preferable. Development of the overhead functions based on the virtual architecture is
less troublesome than if the physical architecture is considered. The overhead function is dependent
on the mapping of the processors to the physical system. If the scalability analysis does not reveal
a difference in the overhead function of the two algorithms, the user may consider the algorithms
under specific mappings to the physical system in order to decide which algorithm is better suited
for parallel library implementation.

Following selection of a scalable algorithm, an execution time model, which captures the compu-
tation and communication behavior of the program, must be developed. Factors such as computation
and communication overlap and mapping of the processors are difficult to capture in the model. The
former depends on the grain size of the computation which is not known statically, and the latter
depends on the target system size and topblogy. The developed model is used for determining an
optimal grain size for the execution. Even though the mapping function is not captured in the exe-
cution time model, it is considered in the delayed mapping stage. The fact that we use one-to-one
mapping in our library routines allows negligence of this factor in the execution time model. If
many-to-one mapping were used, the execution time would become more sensitive to the mapping
since the issue of local versus nonlocal communication would come into the picture. Significantly
higher startup cost of communication compared to the message transmit time, allows negligence
of this factor in the model in this stage. Had it been the other way around, the execution time
model must have captured the mapping function. Even though we have shown that for very large
message sizes, the execution time may be affected by the link latency, lack of knowledge about the
problem size and the systems size at library design time will make this difficult, if not impossible,
to capture. Finally if the mapping function and the overlapping computation and communication
are to be captured in the model, they must be rigorously defined as functions of the message size
and the communicating distance between the physical processors.

The third step in the design of the library routine is determining a mapping function that does
not degrade the performance of the library routine due to contention and communication bottleneck.
This task is simplified on systems based on a fixed topology. Different mapping functions can be
examined and the one with the minimum communication and contention may be selected for the de-
layed mapping phase. If the target architecture topology is not known, specific supported topologies
must be considered and examined. If the algorithm is iterative and has inherent synchronization
after each iteration, the contention can be examined for each phase. However, during each phase,
the worst possible condition must be considered. This technique is used in OREGAMI [56].

The mandatory components of a library routine have been previously discussed in this chapter.
The execution time function is embedded in the component which determines the scaling factor of the
virtual architecture program. Some components, such as the ones that change the blocking factor,
can be reused across different library routines. The physical system attributes can be configured prior
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to porting the parallel library to a new system. This is the only change required prior to porting, if
the new system supports the communication and threading library used in the implementation of the
library routine. The mapping library can be easily extended to support other virtual architecture
algorithms. For partitionable systems the mapping library is quite smaller than reconfigurable
systems since the physical topology is fixed.

As it-was mentioned, the user program basically runs on all the physical nodes. The parallel
library calls divide the work by creating threads that run the library routine code. Since the user
program could get rather complicated, we must ensure that all physical processors see the same image
of variable, with the exception of distributed data. Data that is input must be broadcast to all the
nodes, introducing additional overhead in the execution time of the program. There are additional
intricacies that must be handled by the transformer, including declaration of additional variables
and guarding parts of the code. The additional variables and the guards form the conditional part
of the produced code that mask certain processors from executing specific parts of the code, such as
the I/O statements. If a parallel library call is the only statement of the body of a conditional or
iterative construct, it must be converted to a compound statement prior to the translation.

In order to maintain the semantics of the sequential program, the compiler must detect any
changes in the distributed data. Distributed data must be invalidated if the corresponding global
data is written to. One method is to insert calls to invalidate the distributed data when the global
data is in the write set of a statement in the sequential program. An alternative, which would require
more analysis, is to remove guards on such statements and translate them to an equivalent form
which performs the same operation on the distributed data. It is important, however, to ensure that
the same operation is performed on the global data as well as the distributed data, if the global data
is referred to by the sequential code that follows the statement.

Routines that copy matrices or arrays can be easily parallelized. These routines can be im-
plemented in the library to be further used in the programs. In such case, the program will take
advantage of redistribution and performs the copying very fast. Copying element by element or
manipulation of matrix objects outside of thé library routines masks the potential redistribution
operations because the generated SPMD code invalidates the distributed data. More details will be
provided on invalidation of the distributed data in the next chapter.
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Chapter 4

Automatic Data Redistribution

As it was discussed in the previous chapter, our major goal is to provide efficient parallel execution
of library calls in a sequential program. The library calls are converted to an SPMD form which
must distribute the initial data onto the virtual architecture. In our design of the parallel libraries,
we observed that the data distribution component of the library routine must be run sequentially
by a single processor designated as the host. The data distribution component of the library routine
greatly affects the performance of the program since all other processors sit idle during this phase
waiting for their initial data (see Figure 42 on Page 101). In many sequential programs, parameters
of one library call are also used in a subsequent call. Therefore, after the first call, the data may stay
in memory to be used during the second call. The runtime system can recognize such data items and
rearrange them among the physical processors so that the second phase would not have to distribute
the data from the host (see Figure 43). If the parallel computation does not require communication
among the virtual processors, the virtual processors can proceed as soon as they receive their initial
data (see Figure 43(a)). Mesh based matrix addition is an example of this kind. Since the virtual
processors do not need data from one another, the computation on a virtual processor can complete
independently of the other virtual processors. On the contrary, if the parallel computation requires
communication among the virtual processors, the ones that receive their initial data sooner may
have to wait until the last virtual processor receives its initial data (see Figure 43(b)). Torus
based matrix multiplication is an example of this kind. In torus based matrix multiplication, there
is implicit synchromnization after each iteration. Data partitions of one virtual processor must be
communicated with the two neighboring virtual processors (see the matrix multiplication algorithm
on Page 81). When a virtual processor receives its initial data, it must eventually synchronize with
the neighboring processors. It is important to note that the redistribution of data is a parallel
operation by all the physical processors and is more likely to provide the data to all the virtual
processors at about the same time (see Figure 43(c)). Therefore, the virtual processors are less likely
to wait for one another after receiving their initial data. With data redistribution, the program can
also benefit from simultaneous send operations issued by all the physical processors. Hence, the
communication latency due to the data distribution will be mostly hidden.

The data item that is the subject of redistribution may be used in two phases of library calls based
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on two different virtual architectures, granularities, and mappings. All these. attributes of parallel
library calls are not known until runtime. Therefore, the computation of the source and destination
of the data partitions cannot be done at compile time. Our model is based on the granularity of
the two parallel phases. Our analysis shows that redistribution reduces the execution time of the
library routine regardless of the grain sizes, data distribution, and the mapping of the two phases.
The model captures the communication cost of each processor (virtual for distribution and physical
for redistribution) by only considering the startup cost of the communication. We do not capture
the effects of contention in the redistribution phase. The processor and data mapping functions of
the two phases are not captured in the model. However, they are used by the redistribution module
to determine the sources and destinations of the data blocks. We make no assumptions regarding
the virtual processor topologies of the source and the destination.

The objective of this chapter is to offer a design of a redistribution module which conforms
to our design of the library system presented in the previous chapter. Upon a call to a parallel
library routine, the redistribution module must identify parameters which may be redistributed
from a previous phase (not necessarily consecutive). If any parameter can be redistributed from
a previous phase, the redistribution module must execute the right sends and receives on each
physical processor to rearrange the data for the upcoming phase.

The approach used to achieve the above objectives is through maintaining the contraction factor,
initial and final data layout requirements of the virtual architecture algorithms, and the processor
mapping of the library calls. Handles are created and initialized upon entering a library routine, and
are appended to the history list upon exiting the library routine. The history contains the dynamic
chain of the live handles. A live handle is one that contains at least one valid distributed data
item and may become subject of redistribution in a subsequent phase. Before starting a parallel
phase, the redistribution component searches the list of handles, which are kept in the order of their
creation, and finds the latest occurrence of a data item which still resides in memory. It then uses
the information in the corresponding handle to redistribute the data. The old data buffer is released
and its attribute is marked as stale, and the new data is marked as redistributed. Distributed data
marked as stale means that the distribution of the data in the handle is not the latest. In other
words, the data has been redistributed and used by a later parallel phase or does not contain the
latest contents of the global data. Data is marked as redistributed in the current handle so that
the upcoming phase does not perform initial data distribution. The initial data distribution module
on page 70 has been modified in Algorithm 15 to support data redistribution. If all the data items
of a handle become stale, the handle is considered stale and is released. It is important to note
that only one distributed instance of each data item exists in the systemn at one time. Although it
may look as if handles occupy large pieces of memory, this is really not the case. This information
is kept in the global memory of each physical processor for each phase in the dynamic flow of the
program. As library calls return to the sequential program and vanish, their handles are appended
to a history list in the global memory. Upon entering a phase, the history of handles is searched for
the distributed parameter in a previous phase. If it is found, the data is redistributed.

In languages such as HPF [52] the forementioned issues do not arise, since the programmer must
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Algorithm 15 The initial data distribution module with provisioning for redistribution

Require: A handle with all known attributes of the call, contraction factor, global data, and the
mapping table

1: Get handle for the current call

2: if I am the host virtual processor and the data is not redistributed then

3:  Perform blocking of global data

4: Distribute partitions to the processors using virtual send

5: end if

6

7

8

9

: if the data is not redistributed then
Get initial data using virtual receive
: Place data in the proper location in the handle (use rank via vwho)
: end if
Ensure: Data will be distributed based on the initial data distribution function

define the data distribution and redistribution. DISTRIBUTE and REDISTRIBUTE compiler
directives are used to describe the location of the data blocks on the virtual architecture. A limitation
in the currently supported redistribution mechanisms is that the number of the source and the target
virtual processors must be equal. The block size of the computation is defined by the programmer,
and user specified distribution and redistribution operations take place based on the user directives.
The parameters of the redistribution are the source and destination logical architectures and the
source and destination data distribution functions. The DISTRIBUTE directive can only occur
in the specification part of the program, whereas REDISTRIBUTE directive can be used in the
executable portion of the program. Dynamic data distribution is the term normally used for the
REDISTRIBUTE directive. This directive allows the parameters such as the target block size to
be specified dynamically. For instance, REDISTRIBUTE(r), where r is a program variable, is an
acceptable statement in HPF.

In library systems such as ours, where parallelism is transparent to the programmer, redistri-
bution phase must be strongly coupled with the library system. Since the problem instance size,
physical and virtual architecture sizes and topologies, and the mappings are not known until the
parallel phases begin, the computation of send and receive sets cannot be done statically. Further-
more, when data redistribution occurs, the preceding parallel phases do not exist. The information
about the parallel phases such as the granularity of the computation, the mapping of the virtual
processors, and the data layout is maintained in the list of handles in the global memory (see
Section 3.1.3 on Page 58).

4.1 Data Redistribution Design

Our assumption in the design of a redistribution library is that the parallel library routines are
based on our design described in the previous chapter. Each library call has embedded information
in the corresponding handle. This information includes the granularity, the data mapping, and the
processor mapping of each phase. This information is determined for each library call independently.
Therefore, the granularity, the data mapping, and the processor mapping of the two phases may have
no correlation. The parallel library calls may be used at the first level or nested within conditional
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or iterative constructs.

Our main objective is to offer a design of a redistribution module which supports the parallel
library design discussed in Chapter 3. This includes supporting both the design of the virtual
architecture parallel library routines as well as the source to source transformation of the user
program. The redistribution module must identify the parallel phase which has a distributed instance
of the data of interest. Once the distributed data is identified, appropriate low level sends and
receives are executed by each processor to reshuffle the data. Our design must handle different
combinations of the grain size, data mapping, and processor mapping. Furthermore, this must be
done in an efficient manner which does not defeat the purpose of redistribution. The redistribution
module must allow invalidation of the distributed data upon request from the SPMD program.
These requests are inserted in the SPMD program when the user program alters the host copy of
the distributed data.

The approach used to perform data redistribution is through usage of the distribution and map-
ping information in the handles of the source and target library calls. We categorize the redistribution
into three cases where two cases are when the source and the target grain sizes are multiples of one
another and the third one is when the granularity values do not divide one another. Data redistri-
bution is basically a number of send and receive operations performed by each physical processor.
It is important to note that no threads or virtual processors are active at the time of redistribution.
Redistribution is done by all the main processes running on the physical processors.

As it was described in the previous chapter, each library call is represented by a handle. Handles
are created upon entering a parallel phase, and are appended to a history list upon exit from the
phase. A handle holds complete information about a library call. An important piece of information
added to the handle is the virtual address of the actual parameter of the library call in the host
processor. This address is the virtual address of the pointer object in the executable image of the
program. This virtual address is unique across all the physical processors even if the host processor
points to the actual data. This may not be the case with the absolute address since it depends on
the virtual memory to physical memory address mapping on each physical processor. This is mainly
because there is one executable image which is loaded onto all the physical processors and the user
variables occupy the same virtual addresses in all the processors. This address uniquely identifies a
user variable. In our design of the libraries we extend the handle with additional fields to facilitate
redistribution (see Figure 44). The added field global _data is used to uniquely identify the variable
in the user program. Since the addresses of the matrix variables are the same in all the images
running on the physical processors, each node can find the source of the redistribution by comparing
the address of the target with this address. For instance, if A is a matrix in the user program,
whether it is global, local, dynamic, or static, it has a fixed virtual address in the executable image
(note that we mean the address of A and not A itself). This address is seen by all the physical
nodes. We basically avoid a broadcast of this information using the scheme just described. The
redistributed field is set to TRUE if the data is redistributed so the parallel threads do not do
initial data distribution. This field is set to TRUE by the redistribution module that runs before the
parallel phase by each physical processor. All handles of the currently upcoming parallel phase will
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typedef struct UserData /* Local Data */
{

char * data; /* Pointer to local data partitions */
int dimensionality; /* Dimensionality of the local data */
int *dims; /* Size of each dimension */

int size; /* Total size of data partition */

int tag; /* For communication purpose */
int **global data; /* Virtual address of global data */
int redistributed; /* Data redistributed */

int stale; /* Data is stale */

} UserData;

typedef UserData * UserDataPtr;

Figure 44: Enhanced user structure for data redistribution

have this field set by the redistribution function running on the physical processor which corresponds
to the handle. Likewise, the stale field is set to TRUE in the source when a data is redistributed.
The new distribution of the data becomes active in this case. The structure of the enhanced handle
is shown in Figure 45.

It is important to note that the redistribution takes place when no threads are active. This is
done by the main process running on each processor. Therefore, the redistribution module uses
low level communication routines and not the virtual communication routines. Even though a
parallel phase vanishes by transition to outside of the library routine, its handle survives for possible
redistributions. During redistribution, when the source handle is found, it and the current handle
provide all the necessary information on the attributes of the library calls as well as the data buffers.
The granularity, data layout, and mapping of the two handles are used to find the destinations of the
blocks of the previous handle and the sources of the blocks of the current handle. Figure 46 shows
the three cases of redistribution. In the first case in Figure 46(a), the granularity of the destination
. virtual architecture is an integer multiple of the granularity of the source virtual architecture. The
blocks of data are sent to the destination physical processor and are placed in the designated area
for the threads of the upcoming phase. Even though the threads are still not created, their required
space and the mapping table is already setup before the redistribution routine is called. When all
smaller blocks are placed in the larger partitions of the destination, the storage of these partitions is
changed so that the blocks are in single element row major form to be used by the threads. This is
called increasing the block size in our context. In the second case (see Figure 46(b)), the granularity
of the source virtual architecture is an integer multiple of the granularity of the destination virtual
architecture. The data partitions must be rearranged to match the block sizes of the second phase.
This is known as decreasing the block size in our context. Once the storage is changed, smaller
blocks of data are sent to the appropriate physical processors. In the third case (see Figure 46(c)),
the granularities of the source virtual architecture the destination virtual architecture do not divide
one another. The greatest common divisor of the two granularities is used for the grain size of
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Figure 45: Enhanced Structure of a Library Handle

redistribution!. The data partitions are rearranged to match the redistribution granularity through
a decrease in the block size. Smaller blocks of data are sent to the appropriate physical processors
and placed in the right thread’s partition. Once all the subblocks of a partition are received, its
blocks size is increased from the redistribution granularity to the destination granularity.

Once the data is redistributed, an indication in the current handle prevents later data distribu-
tion. The data buffers of the source handle are released, and if the handle does not contain any
more useful data, it is released as well. All operations take place simultaneously by all the physical
processors.

Upon creation of a handle, the data in the handle is marked as live. A live data means it is
currently distributed across the processors and the contents have not been altered since the last
write. Live data must stay in the global memory for potential redistribution. Before creation of
threads for a new parallel phase, a redistribution routine is called. In this call, all the current
parameters of the library routine are considered one at a time for redistribution. The list of handles
is traversed in reverse time for the first occurrence of a live data which globally corresponds to
the parameter. For this global correspondence, the address of the global data is maintained in the
handles. If the global data is live in the local memory of the processors, it is redistributed using
the strategy defined in the rest of this chapter. When a data item is redistributed, the old copy is
marked as stale. Stale data can be released as it should not be used for redistribution. The global
address information is recorded in the new handle. In the event that no live occurrence of the global
data is obtained, the data cannot be redistributed. _

Following are the algorithms to perform redistribution between two parallel library phases. Two

possible cases are when the block sizes are multiples of one another and one covers the case where

1 Hereafter, we refer to this as the redistribution granularity.
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there is no specific relationship between the block sizes. In these algorithms, the term global data
refers to the data in the host processor. The terms block and subblock are used interchangeably
depending on the point of reference. Algorithms 16, 17, and 18 show, for case 1, the high level

Algorithm 16 High level algorithm for data redistribution, case 1: g’ = kg

Require: Source and target handles with source and target parameters, ¢’ = kg
1: for all Blocks of the parameter in the source handle do
Determine the destination
Send the block using Algorithm 17
end for

for all Blocks of the parameter in the target handle do
for all Subblocks within the block do
Receive the subblock using Algorithm 18
end for
10: Increase subblock size of the block from g to g’

11: end for
Ensure: Source parameter is sent to the right processors, and target parameter is received from

the right processors

P2 a LN

Algorithm 17 Computation of the destination set for case 1, ¢’ = kg

Require: Mapping table and final data layout of the source parameter, and the mapping table and
the initial data layout of the target parameter.
1: Retrieve the block
2: Use final data layout and map table of the source handle to compute the global block number
of this block
3: Use initial data layout and map table of the target handle to compute the destination of this
block
4: Attach global block number to the message and send to destination
Ensure: A block is sent to the appropriate processor.

Algorithm 18 Computation of the source set for case 1, g’ = kg
Require: Mapping table and initial data layout of the target parameter
1: Compute global block number of the subblock using the target block number and the subblock
number within the block. Use the mapping table and initial data layout of the target parameter
2: Receive the subblock
Ensure: A subblock is received

redistribution algorithm, computation of the source set, and computation of the destination set,
respectively. In these algorithms, the source messages are tagged with their global block number
to be uniquely identified upon receipt. The computation of the source and the destination sets are
shown in Figure 47 for g’ = kg. The left diagram shows the translation scheme used to identify the
destination of a block. This translation requires use of the map table to identify the block number
of the partitions in the global data. The block number is then attached to the message and sent
out to the physical processor requiring the partition. The right diagram, in the same figure, shows
the translation scheme used to identify the source of a block. This is done by computing the global
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Figure 47: Computation of the source (left) and the destination (right) sets for the case g’ = kg

block number of the subblock and receiving a message with such block number. Suppose block a
is to be redistributed by physical processor s. If the block corresponds to block number a’ in the
global matrix and the destination physical processor is d, the message (a,a’) is send to d. Physical
processor d also performs a receive for 2 message that has a’ attached to it. We have used the tags of
the PICL like communication library to send the block number. The redistribution module uses the
low level communication library as opposed to the virtual communication library. Algorithms 19,

Algorithm 19 High level algorithm for data redistribution, case 2: g = kg’

Require: Source and target handles with source and target parameters, g = kg’
1: for all Blocks of the parameter in the source handle do
2 Decrease block size of the partition from g to ¢’
3: for all Sublocks within the block do
4: Determine the destination
5: Send the subblock using Algorithm 20
6
7

end for
: end for
8:
9: for all Blocks of the parameter in the target handle do
10:  Receive the block using Algorithm 21
11: end for
Ensure: source parameter is sent to the right processors, and target parameter is received from the
right processors

20, and 21 are the analogous algorithms for case 2. The computation of the source and destination
sets are shown in Figure 48 for the case g = kg’. Algorithms 22, 23, and 24 correspond to the general
case where g and g’ are not multiples of one another. The computation of source and destination
sets are shown in Figure 49 for the general case (if g and g’ are not multiple of one another). The
routines for the second and the third case are very similar to the first case. In the first case, the
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Algorithm 20 Computation of the destination set for case 2, g = kg’
Require: Mapping table and final data layout of the source parameter, and the mapping table and

the initial data layout of the target parameter

1: retrieve the block
2: Use final data layout and map table of the source handle to compute the global block number

of this subblock.
3: Use initial data layout and map table of the target handle to compute the destination of this

subblock
4: Attach global block number to the message and send to destination
Ensure: A subblock is sent to the appropriate processor

Algorithm 21 Computation of the source set for case 2, g = kg’
Require: Mapping table and initial data layout of the target parameter
1: Compute global block number in the source using the target block number. Use the mapping
table and initial data layout of the target parameter
2: Receive the block
Ensure: A block is received

Send
Physical destination
‘) Target mapping table
Target thread
‘w Target Initial data layout
Target global subblock Receive
Source global block Target global block
‘) Source Final data layout W Target Initial daza layout
Source thread Target thread
W Source mapping table \ Target mapping table

Figure 48: Computation of the source (left) and the destination (right) sets for the case g = kg’
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Algorithm 22 High level algorithm for data redistribution, case 3: general

Require: Source and target handles with source and target parameters, no specific relationship
between g and g’. Select g” that divides both g and g’
1: for all Blocks of the parameter in the source handle do

2:  Decrease block size of the partition from g to g”
3: for all Subblocks within the block do

4: Determine the destination

5: Send the subblock using algorithm 23

6: end for

7: end for

8.

9: for all Blocks of the parameter in the target handle do
10: for all Subblocks within the partition do

11: Receive the subblock using algorithm 24

12: end for

13:  increase block size for the partition from g” to ¢’

14: end for
Ensure: source parameter is sent to the right processors, and target parameter is received from the

right processors

Algorithm 23 Computation of the destination set for case 3, general

Require: Mapping table and final data layout of the source parameter, and the mapping table and
the initial data layout of the target parameter
1: retrieve the subblock
2: Use final data layout and map table of the source handle to compute the global block number
of this subblock.
3: Use initial data layout and map table of the target handle to compute the destination of this
subblock .
4: Attach the global block number to the message and send to destination
Ensure: A subblock is sent to the appropriate processor

Algorithm 24 Computation of the source set for case 3, general

Require: Mapping table and initial data layout of the target parameter
1: Compute global block number using the target subblock number. Use the mapping table and
initial data layout of the target parameter
2: Receive the subblock
Ensure: A subblock is received
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Send

5

Physical destination
Target map table
Target thread

“\)ﬂnxethddhldwnbmmut Receive

Target global block ‘w

W Target global subblock
Source global subblock
‘) Target global block
Source global block ‘) Target Initial data layous
‘) Source Final data layous Target thread
Source thread ‘W Target map table

W Source map table

Figure 49: Computation of the source (left) and the destination (right) sets for the case with no
multiplicative relationship between g and g’
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blocks do not need to be broken at the source and they must be assembled at the destination to form
larger blocks. In the second case, larger blocks must be broken up into smaller subblocks and sent to
the destination processors. The third case is a hybrid of the above two cases. The blocks are broken
up at the source, sent out to the processors, and assembled into larger blocks at the destination.

4.2 Data Redistribution and the Source to Source Transfor-

mation

We assume the user program consists of several parallel library calls. These calls may be nested
within various programming constructs or in user defined functions. The libraries are designed based
on the proposed scheme in Chapter 3. Further assume a redistribution module designed based on
the proposed scheme in the previous section.

The objective is to offer a source to source transformation which performs data redistribution
before a parallel phase. An additional objective is to insert the appropriate code in the SPMD
program to invalidate distributed data when they do not match the global copy.

The approach used is to insert a call to the redistribute function after the mapping and con-
traction and before the thread creation. Data redistribution is basically a call to this routine in the
redistribution module. Figure 50 shows an example program with its translated form. The redistri-
bution module takes the current handle and the history list as parameter. The parallel library calls
invoked at the beginning of the program are less likely to benefit from redistribution, because the
data is most likely at the host. As a parallel library routine call completes, its handle is appended
to the history list in the global memory. Therefore, more poly data (see description on Page 73)
will exist in distributed form. Once we have one instance of each poly variable in the program
in distributed form, no more data distribution will occur. All data will be provided through data
redistribution.

The approach to invalidation of distributed data is by identifying the writes and I/O on poly
data. The algorithm for source to source transformation on Page 74 must be enhanced to insert
a call to the invalidate routine in the redistribution module. The call to this routine must be
inserted in step 9 to 11 of this algorithm. This is where writes to poly data is being guarded. This
invalidate routine accepts the address of the poly data (virtual address) and the history list. The
routine basically searches the history list for a handle which holds the corresponding distributed
data. It will then mark the data as stale and releases the associated storage. Figure 51 shows an
example translation of a program which writes to a poly variable in between two parallel library
calls. The code for invalidate can be found in Appendix D. It is important to note that the call
to redistribute is generated before every parallel library call thread creation regardless of whether
redistribution takes place or not. The invalidate routine basically marks the data as stale so that
the redistribute routine does not select it for redistribution.
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mainQ {
declarations

input num_iter
Input data for parameters
for(i=0;i<num_iter; i++)
£
lib_calll(parameters)
lib_call2(parameters)
}
Output data
}

include files (add redistribution library prototypes)
main()
{
declarations
int numproc, me, host;
who( &numproc, &me, &host)
if (me == 0) input num_iter;
broadcast (num_iter, sizeof(num_iter), 0)
if (me == 0) input data for parameters
for(i=0;i<num_iter; i++) {
alloc/init handle for lib_calll
redistribute(curHandle, history)
create threads for lib_calll
join threads for lib_calll
add_to_history(curHandle)
alloc/init handle for lib_call2
redistribute(curHandle, history)
create threads for lib_call2
join threads for lib_call2
add_to_history(curHandle)
}
if (me == 0) output data
}

-

Figure 50: Source to source transformation with support of redistribution
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main() {
declarations

input num_iter
Input data for parameters

for(i=0;i<num_iter; i++)
{
lib_calll(..., a, ...)

af0} =0;
lib_call2(parameters)
}
Output data

o

include files
void * thread_lib_calll ( void *argiist)
{

}

void * thread_lib_call2 ( void * arglist)
{

}
mainQ)
{

declarations
int numproc, me, host;

who( &numproc, &me, &host);
if (me == 0) input num_iter;

broadcast (num_iter, sizeof(num_iter), 0)

if (me == 0) input data for parameters
for(i=0;i<num_iter; i++)
{ translation of lib_calll
if (me ==0) a[0] =0;
invalidate (&a, history)
translation of lib_call2
}
if (me == 0) output data

Figure 51: An example invalidation of distributed data
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4.3 Performance Analysis

In this section we analyze the cost of data distribution versus data redistribution of a matrix object
that recurs in the parameter list of two library calls. Although in our redistribution module design
we have not made any assumptions about the mapping functions, our parallel libraries have a
tendency of reducing the virtual architecture size to the physical system size or smaller than it.
Therefore, each physical processor will be assigned at most one virtual processor. We consider the
worst condition for mapping of the data and processors in the following analysis and still show
that redistribution will result in performance gain. By worst case condition we mean that when
a data block is to be redistributed, its destination will be another physical processor. Therefore,
it incurs a startup communication cost using our approximate model. If the mapping of the data
and virtual processors is such that the destination of the data is the same physical processor, the
redistribution cost of the block is basically a memory to memory copy. In the following analysis,
we approximate the communication models in equations 9 and 10 on Page 80 by considering only
a startup cost for sending a message. In the context of data distribution, this is a safe assumption
as repeated send operations hide the communication latency for large messages. The effects of
contention in the redistribution cost are not captured in our redistribution module. The mapping
function is used to determine the source and the destination of each data block. Data distribution
and redistribution normally require change of storage of matrix data to conform with the block
storage. We approximate both data distribution and redistribution by neglecting this cost.

The objective of this section is to show, through performance analysis, that the redistribution
of a matrix object results in performance gain regardless of the granularity of the two phases under
worse condition scenario previously described.

The approach used in this chapter is through the comparison of the cost of initial data distribution
with data redistribution. We model the cost of initial data distribution with the number of nonlocal
point-to-point communication operations issued by the host virtual processor. Furthermore, we
model the cost of redistribution with the maximum number of nonlocal point-to-point operations
over all the physical processors. It is assumed that the data layout and the processor mapping of
the source and the target handles are such that communication operations are always nonlocal (this
is the worst condition).

We calculate the data redistribution time for three different cases of grain size for a matrix object
of size n x n. Furthermore, we calculate the time for data distribution and compare it with all the
three cases. Assume the granularities of the distributed data in the first and the second phase are
g and g’, respectively. We will consider four cases below. The first case analyzes communication
time under no data redistribution support. Cases two and three consider data redistribution when
the grain sizes are integer multiples of one another. The fourth case considers data redistribution
for grain sizes that are not multiple of one another. We consider the cases below with respect to
the cost of communication. Assume the startup cost of communication is Z,, the data distribution
time is Ty;s¢, and the data redistribution time is Ti.qise. The values of k and &/, used below, are

constants.
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No redistribution - The time to distribute the data consists mainly of the the cost of send op-

erations to distribute the blocks of data,
2
n
Tise = 'g,—z'ta-

Redistribution with g = kg’ for k¥ > 1 - Larger grains must be broken up and sent out to the

destination processors. The redistribution time can be stated as,
T;'cdx‘:t = kzts-
For redistribution to benefit the execution time, the following inequality should hold,
2
n
K, < i

Comparing the two sides of the inequality, ¥? < 5;— holds. Therefore, this relation is always

true.

Redistribution with ¢’ = kg for k > 1 - Smaller partitions must be merged into a larger parti-

tion,

Tredist =t

2
t, <2

_ng

P
Since > 1, the inequality is always true.

If g and ¢’ are not multiples of one another - Data is broken up at the source, sent out to
the destination processors, and merged into the target partitions. If g = k'g”, and ¢’ = k"g",
where g”’ is the greatest common divisor of g and g’, and &’ and k" are constants, we have,

Trzdist = klzto

2
12 n
k'“t, < ?ft”

Comparison of the terms on the two sides of the inequality ylelds g—cifgi,_g'_) < n or LCM(g,¢’) < n,
which is always true since g and g’ both divide n. The analysis shows that data redistribution reduces
the execution time for all three cases. In this analysis, it is assumed that all data partitions are sent
to nonlocal physical processors in both data distribution and redistribution. This assumption favors
the data distribution case. In data distribution, nearly all data partitions will be sent to nonlocal
processors. In data redistribution, however, it is likely that no nonlocal communication operations
will be required. This occurs when the final data layout of the previous phase and the initial data
layout of the upcoming phase match as well as the processor mapping of the two phases.

4.4 Performance Results

The assumption in this section is the usage of parallel library implementation and redistribution
based on our design described in Chapter 3 and this chapter. The sequential program is run through
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g — 2 4 5 2

g - 4 2 2 5
Without redistribution || 30.4 msec | 25.0 msec | 25.4 msec | 31.9 msec
With redistribution 24.5 msec | 19.8 msec | 21.0 msec | 26.9 msec
Percent difference 19.4% 20.8% 17.3% 15.7%

Table 12: Simulation data: Performance gain in data redistribution.

our source to source transformer and is converted to an SPMD form. The virtual communication
library, mapping library, thread library, and redistribution module are then linked in with the SPMD
program.

The objective of this section is to provide performance results of a program with two parallel
library calls with and without redistribution. The first parallel phase is a call to matrix multiplication
and the second one is to matrix addition.

Our approach in providing the following is through the use of our programming environment and
the libraries previously described. The parameters of simulation were a startup cost of ¢, = 30 usec
and a link bandwidth of ¢, = 0.024 usec. Packet switching was used for the simulations. The
performance gain can be easily shown with wormhole routing, as well. The example is based on
the expression D = A * B + C, where the data size of n = 20 and a physical square mesh of size
p = 25 were used. Values of g and g’ were manually selected. Table 12 presents the results for some
combinations of g and g’ covering all three cases of redistribution previously mentioned.

The dynamically managed list of handles introduces space overhead that is inevitable. Certain
data items that are kept in the list may never become a source of redistribution. Other distributed
data, which are used for redistribution, have only one copy in the list of handles. In the worst case,
there will be at most one distributed instance of every global data. As data items become stale, the
associated data buffers are released. If all the data items in a handle become stale, the handle is
released as well.

Two sources of overhead exist during redistribution. The first is finding the handle which is the
source of redistribution. This is largely dependent on the sequence of library calls and the usage of
the global data as parameters. In the worst case the history list is scanned and no match is found.
The time to collect this information is proportional to the ratio of the problem size and the grain
size of redistribution. The second overhead is that of computing the source and the destination sets
which is proportional to the ratio of the source grain size and the redistribution grain size.
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Chapter 5

An Integrated Parallel Library

Programming Environment

The implementation of the numerical library routines, the mapping library, virtual communication
library, and the redistribution library were discussed in Chapters 3 and 4. In this chapter we
discuss the underlying compile time, run time, and the physical system simulator which were used

to experiment with the parallel libraries.
The programming environment used to conduct the experiments in this thesis consists of the

following components:
e Source to source transformer and the compiler
e Multicomputer simulator
e Low level communication subsystem
e Process and thread simulation

These components will be discussed in the following sections.

5.1 Source to Source Transformation and the Compiler

The source to source transformer basically inputs a C program and, using conventional compiler
technology, constructs its corresponding abstract syntax tree. The tree is then traversed identifying
basic blocks! and parallel library function calls. Sequential parts of the code are then placed in
guards. At basic block boundaries, a guard is terminated and another one is started inside the
block. The parallel library function calls are expanded to a sequence of calls to determine the
contraction factor, distribute the data, or possibly redistribute data from a previous phase, perform
the local computation, and accumulate the result at the virtual host. Additional code is also inserted
to update the information regarding the distribution of the library routine parameters. Figure 52

1Qur definition of basic blocks is the same as the definition in conventional compiler books.
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Figure 52: Source to source transformation and compilation process

shows the two step compilation process of the library calls. For a complete example the reader is
encouraged to see Appendix E.

In the source to source transformation, a call to lib_init is generated at the beginning of the
main program and a call to lib_exit generated at the end. These two function calls are components
that are meant for runtime actions which take place only at the beginning and the end of the user
program execution. The transformation for a call is shown in Figure 53. Some of the components
of the library routine require specific actual parameters of the library call to perform their task.
The transformer identifies the parameters of the library call and provides them, discriminantly, to
these components. Even though some of these components may not require all the parameters, for
simplicity of the source to source transformation all parameters are provided to the components. This
reduction in the compile time overhead is at the cost of a very small overhead of passing unnecessary
pointers to the library routine components. For instance, lib_init_architecture requires only its
last parameter, which is the size of the data, to perform its task, whereas lib_distribute_initial
would require parameters that contain data for the numerical computation.

Guards are placed around pieces of code that are to be executed only by the host processor.
Basic blocks are identified and guards are started at the beginning of these blocks and terminated
at the end. A new guard is then started for the next basic block. Parallel library calls terminate
guards and once the translation of the library call is complete, a new guard starts (Figure 54). The
additional Forallthread construct, which takes the mapping table and the total number of threads
as arguments, generates all threads mapped to the current processor. Upon entering this construct,
the simulator scans the mapping table and creates all the threads that are mapped to the current
physical processor. The creation of the threads is discussed in detail in section 5.2 on Page 129. The
threads commence execution at the first statement of the body of the Forallthread. Execution of

124



main()
{

declarations
Input data
lib_call(parameters)

Output data
}

.

#include "parlib.h"”

main(

{

declarations
int myid;

lib_setup(;

myid = Phys_abs_idQ;
init_handle(& curhandle);
if(myid =10)

Input data
lib_call_alloc(&curhandle);
lib_call_init_arch(curhandle, parameters);
lib_call_contraction(curhandle);
lib_call_mapping(curhandle);
lib_call_allocate_local(curhandle);
lib_call_data_layout(curhandle);
redistribute(curhandle, history);

forallthreads(curhandle->mapping->map_table;
curhandle->architecture->coarse_nprocs) {

if(myglobalthreadidQ == 0)
lib_call_distribute_initial(parameters, curhandle);
lib_call_local(parameters, curhandle);
if(myglobalidQ == 0)
1ib_call_accumulate_final(curhandle, parameters);
}

add_handle_to_history(curhandle);
if(myid ==0)

Output data
1lib_exitQ;

Figure 53: Example of a source to source transformation (Redistribution ON)
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—

main()
{

declarations

Input data

repeat
sequential action 1
lib_call(parameters)
sequential action 2

end repeat

Output data

\.

(" #include "parlib.h"

main()
{

declarations

int myid;
lib_setup();
myid = Phys_abs_id();
init_handle(& curhandle);

N A Start guard
if(myid=0) -=
Input data End guard
repeat
pe Start guard
if(myid =0)
sequential action 1 End guard

Iib_call_alloc(&curhandla;
lib_call_init_arch(curhandle, parameters);
lib_call_contraction(curhandle);
lib_call_mapping(curhandle);
lib_call_allocate_local(curhandle);
lib_call_data_layout(curhandle);

forallthreads(curhandle->mapping->map_table;
curhandle->architecture->coarse_nprocs) {

if(myglobalthreadidQ == 0)
lib_call_distribute_initial(parameters, curhandle);

lib_call_local(parameters, curhandle);

if(myglobalid) == 0)
lib_call_accumulate_final(curhandle, parameters);

}
release(curhandle);
. Start guard
if(myid=0) —=
sequential action 2 End guard
end repeat -
ifmyid=0) ¢ Start guard
OQutput data‘ End guard
lib_exit(Q;

}

Figure 54: An example generation of guards (Redistribution OFF)

126




the parent is temporarily blocked until all created threads execute the body. At that point, the main
process starts execution at the statement immediately after the end of the compound statement.
It is likely that some physical processors are not assigned any threads. In this case, the execution
of the main process is not halted. In other words, global synchronization is not enforced at the
end of a parallel library call. However, at the beginning of a parallel library call, before creation of
threads, the size of the problem instance is broadcast to the physical processors. This call to the
lower level broadcast enforces an implicit synchronization at the beginning of each call. With this
synchronization at the beginning of each library call, two parallel library calls will not be mixed and
their execution follows the program order. Data accumulation is another implicit synchronization
at the end of a parallel library call. Most virtual architecture algorithms compute values that must
be sent back to the host. If the user program refers to the global data after the call, the data
accumulation ensures that the data is received prior to executing the guarded portion which uses
the returned value. If the parallel library call does not return any value to the host processor (this
is very rare), access to variables after the call will not rely on the result of the call anyway. Local
synchronization among threads is enforced by the Forallthread.

There are additional guards in the body of the Forallthread for data distribution and accumu-
lation. The first thread is always mapped to the first physical processor and has access to the main
variables. These variables are user defined and contain the data used in the computation. The call
to lib_release returns the handle and all its constituents to the free memory.

The Forallthread construct is translated by the compiler to two intermediate codes Start-
Threads and EndThreads. These two codes enclose a group of statements which are executed by
the created threads. The StartThreads intermediate code indivisibly creates all the threads that
are mapped to a physical processor. The created threads start execution at the first statement fol-
lowing the StartThreads. Eventually, all the threads will execute the EndThreads intermediate
code. All the threads will then merge into a single flow of control (that of main). The StartThreads
is executed by the main process but the EndThreads is called by the local threads. Internal to the
simulator, a semaphore is used to keep a count of the number of terminated threads. The semaphore
is initialized in StartThreads. When the number reaches zero, the main process resumes execution.

Aside from the Forallthread construct, which can also be implemented using a threading library,
our language is based on the full set of C constructs. The C standard library has been implemented
as part of the builtin functions. For a full set of language description, the reader may refer to the C
language book [51]. ‘

In addition to the Forallthread construct, our system supports two builtin functions to return
the global and the local thread identifiers of a thread. MyGlobalThreadld returns the virtual
. processor identifier of the calling thread. This call is normally used by a thread to check its own
identifier and take actions accordingly. The corresponding virtual function, which is described by
algorithm 1 on page 54 in Chapter 3, is the vwho routine. The local thread identifier (rank) is
returned by the MyLocalThreadId builtin function. The returned value of this call is normally
used by a thread to index into a contiguous memory and find its partition. The contiguous memory
is allocated for all the threads running on a physical processor. The vwho routine has an extra
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argument to return the rank of a virtual processor. In other words, in the real system implementation
of the libraries the above two builtin functions are merged into the vwho routine.

In order to mimic the behavior of an actual multicomputer, each physical processor was given a
separate stack space. The stack spaces were used both for the execution of the SPMD images as well
as the dynamic memory allocation. Our virtual architecture parallel library routines heavily rely
on dynamic data allocation. This is because handles and all their constituents are dynamic entities.
The size of the mapping table and the required data buffer size are not known until the problem
instance size is broadcast to all the physical processors. Upon receiving the size of the problem,
all the SPMD images allocate the required handle from their stack. They will then compute the
granularity and the mapping table. At this point, the amount of space per physical processor is
known to all the physical processors. This space is required by the virtual processors or threads in
a library call.

Since most of the data is dynamic in the proposed library implementation, expression of the local
computation may be cumbersome, however it should not be a major issue as for a library routine it
is a one-time implementation and exhaustive testing must be performed before usage. Reference to
these distributed data cannot use indexing if the dimension is higher than one. All the computation
in the library must be described using pointer arithmetic using the grain size of the computation.
This will cause the code to be unreadable. Use of macros can greatly facilitate manipulation of the
distributed data.

As it was described in the previous chapters, data must be broken up and distributed among
the virtual processors prior to the actual computation. The data is generally input by a processor
provided with the I/O subsystem. This data is stored in either row major or column major form
which does not accommodate the need of block matrix algorithms. In block matrix algorithms, data
is needed in form of blocks, the size of which is not known until runtime. Therefore, the data storage
pattern must be changed in order to distribute the data onto the processors.

With the support of many-to-one mapping, many partitions of the distributed data may be sent
to the same processor. These partitions must be managed locally to be provided to the thread that
owns them. Distributed data at each processor is expanded by a factor of the number of threads.
Each thread is then given a local index in addition to the global virtual identifier assigned by the
mapping function. A local mapping from the global thread identifier to the local thread identifier is
used to access the data that corresponds to a thread. The mapping may change from one phase to
another, therefore the local mapping must be redefined at the beginning of each parallel phase.

The library routines are based on virtual topologies such as lines, rings, meshes, tori, and hyper-
cubes. It is highly probable that the physical system attributes do not match those of the library
routine. A mapping of the virtual processors to the physical processors is decided at the beginning of
each parallel phase. This mapping table is simultaneously calculated by all the physical processors
and is kept in the handle for the library call. Access to the local data by the threads, intraprocessor
communication, and interprocessor communication must be performed using the defined mapping.
This mapping is dynamic, however it will not change in the course of a library routine execution.
Upon exiting one call and entering another, a new mapping is decided. Figure 55 shows an example
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Figure 55: Example mapping of a mesh to a line

mapping of a mesh to a line. The threads are numbered from 0 to 24. This number correspond to
the index of the mapping table. Since we have a global view in the simuiator, the index is used as
the global virtual processor identifier. We do not have an actual thread identifier in the prototype
implementation. However, on an actual system, using a threading library, the need for such an
identifier in the mapping table has been discussed (see Section 3.1 on Page 45).

Our multicomputer simulator is based on packet switching as well as wormhole routing. Liter-
ature such as [58] propose optimal mapping functions among various topologies. These mapping
functions ensure the neighboring virtual processors are mapped as close as possible in the target
topology. The time to communicate between two nodes is proportional to the distance between the
nodes in packet switching networks. In wormhole routed networks [15], the communication time
is independent of the distance between the nodes, however reduction of this distance alleviates the

contention in the network [62].

5.2 The Multicomputer Simulator

The original multicomputer simulator, developed in our group, was modified to better suit the
needs of experimentation on the parallel libraries. One of the major changes was addition of actual
imitation of a multicomputer by removing the logical layer and allocating a stack to each physical
processor. The multicomputer simulator mimics the multicomputer model by allocating a stack and
a program counter to each processor. Further modification was done so that upon startup of an
SPMD program all processors get initialized to run the same code (SPMD model). Figure 56 shows
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an entry of a physical processor table. The vertical table on the left of the figure is the physical
processor table. There is one entry for each physical processor. The SaveProc field is a pointer to
a process descriptor structure. When the physical processor is running threads, the main process
descriptor which is pointed to by the RunProc field is stored in the SaveProc field. The RunProc
field will then point to the first thread in the thread table (the horizontal table in the figure). The
thread table, Threads, is an entry of the physical processor table. The structure used for threads
is similar to the process descriptor. Since these structures are aliases, the RunProc pointer can
point to the process descriptor or a thread descriptor transparent to the simulator. The thread table
index is the local thread identifier and the first field holds the global thread identifier. The physical
processor may be running a main process (main) or a set of parallel threads that are created as a
result of a library call. At the beginning of a library call the main process is blocked. This process
will be scheduled when all the threads are done with their execution. The thread table contains
an identifier which corresponds to the virtual processor represented by the thread. Each physical
processor table entry has a field for the total number of threads and the number of threads that
are running. When the last thread finishes execution, the scheduler releases the thread table, and
points RunProc to the Process descriptor.

Figure 57 shows how the runtime stack is divided among the threads and the main process. The
global region holds the handles which contain the data partitions used by each thread. All threads
have access to the current handle and the history list in the physical processor through global data
access. ’

The major difference between processes and threads is their scheduling. The simulator charges a
small time for thread switching. Also, a process does not relinquish the processor once it has control
unless a Forallthread call is entered. However, threads only relinquish the processor if they execute

a receive which blocks.

5.2.1 Scheduling and Communication Cost Model

Our simulator has two levels of scheduling, a micro-scheduler and a macro-scheduler. The macro
scheduler functions at the physical processor level. Each physical processor is given a time slice and
once it has completely used the slice, it will have to wait for the next slice allotted to it in a round
robin fashion. When a physical processor is granted a time slice, the micro-scheduler searches the
list of threads, if any, for one that can use the slice. When the thread is found, it will be scheduled
to run and will not relinquish the processor until it either runs out of the time slice or it blocks on a
receive. This scheduling policy is justified by the fact that threads are meant to keep a low context
switching overhead in the local processors. Once a physical processor has an unused time slice,
any thread within that processor is equally a good candidate to use the remainder. The simulator
charges a processor a small number of cycles for context switching between threads (10 cycles). Once
all the processors have used their scheduled time slice, the global clock is increased by the time slice.

When a message is sent by a thread, the destination thread may reside local to that physical
processor, or it may be at a distant physical processor. The former is referred to as intrapro-

cessor communication, and the latter is referred to as interprocessor communication. The cost of
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Thread Mapping Table Communication Table

Virtual Physical int head
Processor | Processor int sem
Identifier | Identifier int readtime

Figure 58: Physical communication structures

intraprocessor communication is basically the time to perform a local memory copy. The penalty
for such communication is much lower than the interprocessor communication which is equal to the
startup cost plus the time in the network. In our simulator, we have selected an intraprocessor
communication cost which is proportional to the message size (2 cycles per word).

In our integrated environment, the mapping table of the currently executing parallel phase is
passed to the simulator through the ForallThread construct. The mapping table is used by the
simulator to distinguish local from nonlocal communication. Nonlocal communication operations
are charged based on the routing method used. The simulator supports both packet switching and
wormhole routing. The packet switching can be run in the CONGESTION ON mode where the
packets occupy time slots on their path to the destination. The wormhole routing simulator is,

however, based on step by step simulation of the interconnection network.

5.2.2 Communication Library

The original multicomputer simulator used an abstraction called channels to communicate across
processes. The current multicomputers are usually provided with some communication library such
as PICL. A communication library that provides the basic communication primitives was devel-
oped and integrated into the system to support the library design. The library routines are set up
to communicate using the primitives provided by our communication library. We used the PICL
implementation to assess the feasibility of our library design. Figure 58 shows the virtual commu-
nication structures interrelation. We use the communication table both for communication among
the physical processors and among the virtual processors. When the main process is executing, each
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physical processor uses the entry of the communication table corresponding to its physical processor
identifier. For instance, entry 3 is used by the physical processor 3. When a parallel phase is active,
the entries of the virtual communication table correspond to the virtual processors. For instance,
the 10th entry is used by the virtual processor with global identifier 10.

The virtual point-to-point and the physical communication routines are implemented as builtin
functions. The virtual point-to-point communication routines use the mapping table to find the
destination physical processor for the purpose of charging the correct communication cost. The
message is, however, deposited at the appropriate entry of the virtual communication table.

The builtin functions PHYS_SEND, PHYS RECYV, and PHYS_ABSID were implemented
in the simulator to mimic the behavior of the PICL communication library. The PHYS_SEND
builtin function posts a message to a channel. The size and the tag of the message along with the
message buffer are placed in a queue. The PHYS_RECYV scans the queue of a physical processor
for a message with a specified tag. If the message is in the queue, it extracts the contents of the
buffer and continues by giving control back to the simulator. If the message has not arrived yet,
it gives control to the scheduler which schedules the next processor (or thread) for execution. The
PHYS_ABSID returns the absolute identifier of the currently simulated physical processor.

The cost associated with each communication primitive has been parameterized in the network
layer. These parameters are currently adjusted to those of Intel Paragon, but may be easily changed
to the set of values for systems listed on Page 31 in Chapter 2. Communication across threads is
issued in the logical layer using the virtual communication library routines. These calls are then
converted to the physical layer calls which transfer the message using our physical layer simulation
of the communication library, PICL. Figure 59 shows the route for a thread to communicate with
a nonlocal thread as well as how the threads use the commor memory of the processor that houses

them to communicate with one another.
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Chapter 6

Conclusion

In this thesis we proposed a novel design of parallel virtual architecture library routines that will
not only ease programming on multicomputers, but also offers superior performance to the currently
known libraries. The novelty of the design lies in the self grain adjusting routines, systematic
delayed mapping to improve performance, and the potential of the library routines to still deliver
good performance, once ported.

The design goals have been performance, portability, and ease of use. The library routines have
a sequential interface and perform data distribution management, granularity adjustment, map-
ping, and redistribution transparently. The library routines are self adjusting to different size and
topologies of the target architecture with runtime grain adjustment. Portability across different
parallel systems can be easily done by the recompilation of the mapping library, virtual communica-
tion library, the redistribution module, and the numerical library routines. Provided the necessary
low level communication library and the threading library are available on the target system, the
programmer can easily port all the existing applications to run on the new platform efficiently. Con-
sidering that new systems with higher performance will be built in the future, such a library system
can easily benefit from the advancement in the hardware technology such as faster communication
networks.

To utilize the target system properly, the attributes of the physical system must be projected in
the library. The minimization functions select the degfee of parallelism based on the problem size,
physical system size, the communication latency, and the processor speed of the physical system.

Initial data distribution which is normally done explicitly by the programmer is encapsulated in
our library routines. Maintenance of data distribution is not only useful for initial data layout, but
also is used for data redistribution. Data redistribution functionality is an important optimization
supported in our parallel library routines. The compiler produces the necessary code to detect the
data that is subject to redistribution. It will then execute the appropriate communication operations
to prepare the data for the upcoming phase.

There are several topics which are interesting research subjects for future research. One is
consideration of data distribution time as part of the library routine execution time. This may
affect the selection of the best grain size. Another interesting area is the use of parallel I/O in the
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initial distribution phase of the library call. Initial data distribution is a major bottleneck in the
parallel execution time of a library call. Parallel I/O can significantly reduce this overhead. We have,
in this thesis, considered the parallel library calls in isolation. A global analysis of the program and
possibility of fixing the grain size of the data for the course of execution of the program may reduce
the overhead of data redistribution. This can also be addressed under constrained minimization,
where a parallel call fixes the granularity which will subsequently affect the grain size adjustment for
a subsequent phase. The library design in this thesis has the potential for this enhancement since
the information about all the previous parallel phases is maintained in the physical processors.

The collective virtual communication routines, described in this thesis, do not take into account
the mapping of the virtual processors to the physical processors. These routines may be enhanced
so that instead of sending the message to the virtual processor half way around the ring, the virtual
processor with the least physical distance is used. This enhancement can improve the performance
of these collective communication routines.

In our selection of the best grain size, we assume that the problem instance size is such that
the virtual architecture can be reduced in size to equal the physical architecture size. If this is not
the case, the grain size adjustment phase must decide between two granularity values. One of these
leaves some physical processors idle during execution of the library routine. The other will keep all
physical processors busy with some of these processors being assigned two virtual processors. The
cost model for a parallel library routine can be enhanced to take into consideration this type of
scenarios and select the better one of the two grain sizes.

The library design in this thesis has a sequential call interface. The library routines are called
from sequential programs. This selection of the language eases use of multicomputers at the cost of
a high overhead at runtime, specially in the data redistribution phases. Runtime code generation is
a technique normally used to generate symbolic expressions at compile time which will then be fully
evaluated at runtime. This technique greatly reduces the runtime overhead by performing much of
the computation at compile time. Although the mapping functions of the phases are not known
at compile time, the data layout of the library routines may be made available to the compiler in
symbolic forms.

The compilation process described in this thesis has covered all aspects of the translation, however
existing user programs may contain awkward code that manipulates distributed data and cannot be
easily translated to an efficient SPMD form. For instance, loops that manipulate the contents of the
poly variables and may cause a large number of broadcasts to be generated by the source to source
transformer. These instances of reads of poly variables do not need to be broadcast to all other
processors. These pieces of code can be identified and transformed so that they can be translated
to an efficient SPMD form.
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Appendix A

A Programming Example: Matrix

Multiplication

Following is the outline of the complete library routine for the torus based matrix multiplication

used throughout the thesis. The definition of a handle is given in chapter 3.

void
matmpy_init_handle(LibHandlePtr handle)

{
int i;
handle—>NumParams = MATMPY_NPARAM-1;
handle->ClassParams = NULL;
handle~>ClassParams = (enum ParamType *)
malloc((MATMPY_NPARAM-1)#*sizeof(int));
handle->ClassParams[0] = INPARANM;
handle->ClassParams[1] = INPARAN;
handle->ClassParams[2] = OUTPARAN;
handle->architecture = NULL;
handle->architecture = (Architecture *)
malloc(sizeof (Architecture));
handle->mapping = NULL;
handle->mapping = (Mapping *) malloc(sizeof (Mapping));
/*

* The following are related to the data items in the parameters.

* The number of allocated structures is the same as the number of
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* parameters that are non-scalar.

*/

NULL;.

handle—->contraction = (Blocking *)
malloc((MATMPY_NPARAM-1) * sizeof(Blocking));

handle—>init_layout = NULL;

handle—>init_layout = (Distribution *)
malloc((MATMPY_NPARAM-1) * sizeof(Distribution));

NULL;

handle->fin_layout = (Distribution *)
malloc((MATMPY_NPARAM-1) * sizeof(Distribution));

handle—>local_data = NULL;

handle—>local_data = (UserData *)
malloc((MATMPY_NPARAM-1) * sizeof(UserData));

handle~>contraction

handle—~>fin_layout

/*
* Compute execution time.

*/

int

compute_time(int n,int p,int g)
{

int etime;

float sqrtp;

sqrtp = pow((double)p,0.5);
if(n/g > sqrtp)

{
etime = n/g*(g*n*n*TC/p+2+n+TS/(g*sqrtp) +
(2*n*n/p-2+n*g/sqrtp) *TH) ;
}
else
{
etime = n/g*(pow((double)g,3.0)*TC + 2%TS);
}

return etime;
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/*
* Minimize the grain adjustment function.
*/

int

minimize(int n,int p)

{

int i,g, exectime, minexec, gmin;

minexec = INFINITY;
gmin = -1;
for(i=0;i<=(int) (logi0((double)n)/log10(2.0));i++)
{
g = (int)pow(2.0, (double)i);
exectime = compute_time(n,p,g);

if (exectime < minexec)

{
gunin = g;
minexec = exectime;
¥
}
return(gmin) ;
}
/*

* Initialize components of the library. Only one processor
* knows the size of the data instance. This processor must
* broadcast the info to all other processors.

*/

void

matmpy_init_arch(LibHandlePtr handle,int *A,int *B, int *C,int size)
{

int i, src, nproc, d[2];

int xsize;

/*
* Physical processor 0 sends the size to all the
* other processors so that they can all set up the

* handles simultanecusly.
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*/

nproc = phys_nproc();
if(phys_abs_id() == 0)
{
for (i=0; i<nproc; i++)
send(&size,sizeof (int) ,MATMPY_SIZE_TAG,i);

recv(&size,sizeof (int) ,MATMPY_SIZE_TAG,&src);

/*
* Al1]1 processors f£ill in the info in the handle.
*/

handle->architecture->topology = TORUS2;
handle—>architecture->dimensionality = 2;

NULL;

(int *)malloc(2);
handle->architecture->period = NULL;
handle->architecture->period = (int *) malloc(2);
NULL;

handle->architecture->coarse_dims = (int *) malloc(2);

handle—>architecture->fine_dims

handle-}architecture->fine_dims

handle~>architecture->coarse_dims

/*

*

The library routine is for Square matrix

*

multiplication. Keep information on the

* fine grain architecture.

*/
handle->architecture->fine_dims[0] = size;
handle->architecture->fine_dims[1] = size;

handle->architecture->fine_nproc = size#*size;

d[0] = d[1] = handle->architecture->fine_dims[0]/
minimize(handle->architecture->fine_dims[0], nproc);

d[o];
handle—>architecture->coarse_dims[1] = d[1];

handle—~>architecture->coarse_dims [0]

handle->architecture->period[0] = size/d[0];

140



handle->architecture->period[1] = size/d[1];
handle->architecture->coarse_nproc =
handle->architecture->coarse_dims[0] *
handle->architecture->coarse_dims[1];
}
/*
* Allocates necessary storage for local data.
*/

void
matmpy_allocate_local(int * A, int * B, int =C,
int size, LibHandlePtr handle)
{
int i;
int nbrofmythreads;
int myid;

/*

* Allocate local data partitions. Each processor must allocate
* partitions based on the mapping and the needs of the algorithm.
* Also note that processors that are not mapped any virtual

* processors do not need any local data.

*/

myid = phys_abs_id();
nbrofmythreads = 0;
for(i=0;i< handle->architecture->coarse_nproc; i++)
if (handle->mapping->map_table[i] == myid) nbrofmythreads++;

for(i=0; i<MATMPY_NPARAM~1; i++)

{
handle->local_datal[i] .redistributed = FALSE;
handle~>local_datali] .stale = FALSE;
handle->local_data[il.dims = NULL;
handle->local_datal[il.dims = (char *) malloc (2);
handle->local_datali].dim = 2;
handle->local_data[i] .dims[0]
handle->local_datali] .dims[1]
handle~>local_datal[il.size = handle->contractionl[i].period[0] #*

handle->contraction[i] .period(1];

handle~->contraction[i]. period[0];

handle->contraction[i]. period[i];
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/*
* We must allocate space for all the threads that are local to
* this processor. The number of threads per processor depends
* on the contraction factor, the granularity of the computation,
* and the mapping function.

*/

handle->local_datali] .data= NULL;
handle->local_datali] .data=(char *)
malloc (nbrofmythreads*handle->local_datalil.size);
}
handle->local_datal[0].global_data = &A;
handle->local_data[1i] .global_data = &B;
handle->local_data[2].global_data = &C;

/*®
* Determines the data contraction factor for the instance.

=/

void
matmpy_contraction(LibHandlePtr handle)
{

int i;

/*

For all data determine handle->contraction[i].period[*]
the array period determines the blocking of data. All
regular blockings can be described using the period.
Period[i] is the period for the ith dimension, that is

* % % # B

after how many elements a new block begins.

*/

for(i=0; i<MATMPY_NPARAM-1; i++)

{
handle->contraction[i] .period = NULL;
handle->contraction[i] .period = (int *) malloc(2);
handle—->contraction[i].fine_dims = NULL;
handle->contraction(i].fine_dims = (int *) malloc(2);
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handle->contraction[i].coarse_dims = NULL;

handle->contractionf[i].coarse_dims = (int *) malloc(2);

handle->contraction[i].dim = 2;
handle—>contraction[i] .fine_nblock =
handle->architecture->fine_nproc;
handle->contraction[i].fine_dims[0] =
handle->architecture->fine_dims[0] ;
handle->contraction[i] .fine_dims[1] =
handle->architecture->fine_dims[1];
handle—>contraction[i].period[0] =
handle->architecture->period[0];
handle->contraction[il].period[1] =
handle->architecture->period[1];
handle->contraction[i].coarse_nblock =
handle->architecture->coarse_nproc;
handle->contraction[i].coarse_dims[0] =
handle->architecture->coarse_dims[0];
handle->contraction[i].coarse_dims[1] =

handle—->architecture->coarse_dims[1];

/*
* Determine the mapping.

*/

void

matmpy_mapping(LibHandlePtr handle)

{
handle->mapping->map_table = NULL;
handle->mapping—->map_table = (int *)
malloc(handle->architecture->coarse_nproc);
TorusToMesh(handle);
}
/*

* Fills in the information on data layout. This
* information describes, for each parameter, the
* initial and final data distribution. These are
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* functions from data block numbers to the virtual

* processors.

*/

void
matmpy_data_layout(LibHandlePtr handle)
{

int 1,j, r;
r = handle—->architecture—>coarse_dims[0];

/*
* Determine the initial data layout for all in parameters. For
* each data block determine its location in the virtual
* architecture when the computation commences.

*/

handle->init_layout[0] .data_map = NULL;
handle->init_layout[0] .data_map = (int *)
malloc(handle->architecture->coarse_nproc);
handle->init_layout[1] .data_map = NULL;
handle->init_layout[1] .data_map = (int #)
malloc(handle->architecture->coarse_nproc);
handle->init_layout[2] .data_map = NULL;

/*
* Initial data layout. Some parameters do not have initial data
* layout(such as the third parameter of matmpy).

*/

for(i=0; i<handle->architecture->coarse_dims[0]; i++)
for(j=0; j<handle->architecture->coarse_dims[0]; j++)
handle->init_layout[0].data_map[i*r+j] =
i*r+(j-i<0?j-i+r:j-i);

for(i=0; i<handle->architecture->coarse_dims[0]; i++)
for(j=0; j<handle->architecture->coarse_dims[0]; j++)
handle->init_layout[1].data_map[i*r+j] =
(i-j<0?i-j+r:i-jl*r+j;
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/*
*+ Determine the final data layout for all the parameters.
* For each block, determine its location in the virtual

* architecture after the computation is done.

*/

handle->fin_layout [0] .data_map = NULL;
handle->fin_layout[0].data_map = (int #*)
malloc(handle->architecture->coarse_nproc);
handle->fin_layout[1].data_map = NULL;
handle->fin_layout[1].data_map = (int #*)
malloc(handle->architecture—->coarse_nproc);
handle->fin_layout[2] .data_map = NULL;
handle->fin_layout[2].data_map = (int *)
malloc(handle->architecture~>coarse_nproc);

for(i=0; i<handle->architecture->coarse_dims[0]; i++)
for(j=0; j<handle->architecture->coarse_dims[0]; j++)
handle->fin_layout[0] .data_mapl[i*r+j] =
i*r+(j-i<0?j-itr:j-i);

for(i=0; i<handle->architecture->coarse_dims[0]; i++)
for(j=0; j<handle->architecture->coarse_dims[0]; j++)
handle->fin_layout[1] .data_map[i*r+j] =
(i~j<07i-j+r:i-jl*r+j;

for(i=0; i<handle->architecture->coarse_dims[0]; i++)
for(j=0; j<handle->architecture->coarse_dims{0]; j++)
handle—>fin_layout[2] .data_mapli*r+j] = isr+j;

/*
* Called by each processor to send the final results
* to the processor with I/0 capability.
*/

void
matmpy_send_final(LibHandlePtr handle)
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{.
int mylocaltid, j;

/*
* Processors send Final data to O.

*/

mylocaltid = mylocalthreadid();

vgend(mylocaltid*handle~>local_datal2].size +
handle->local_data[2] .data,
handle->local_datal[0] .size, MATMPY_C_TAG, O, handle);

/*
* Called by each processor to get the initial data.
*/

void

matmpy_get_initial (LibHandlePtr handle)
{

int src, j;

int mylocaltid;

int myglobaltid;

/*

* Get Initial data for the computation

* into the user data field of parameters O and 1.
* In many to one mapping the local thread id must
* be used to offset into the data.

*/

mylocaltid = mylocalthreadid();

if('handle->local_data[0] .redistributed)
vrecv(mylocaltid*handle->local_data[0]:size +
handle->local_data[0] .data,
handle->local_datal[0] .size,
MATMPY_AINIT_TAG, &src, handle);
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/*
* If data is already redistributed, do not attempt to receive it.

*/

if('handle—->local_datal[1].redistributed)
vrecv(mylocaltid*handle->local_datal1].size +
handle->local_datal[1] .data,
handle->local_data[1].size,
MATMPY_BINIT_TAG, &src, handle);

/*
* The actual parallel computation.
*/

void
multiply_partitions(int *a, int *b, int *c, int size)
{

int i, j, k;

for(i=0; i<size; i++)

for(j=0; j<size; j++)

{
for(k=0; k<size; k++)
*(ct+i*size+j) += *(ati*size+k) * *(btk*size+j);

}
}
void
matmpy_local(LibHandlePtr handle)
{
int 1,j;

int myglobaltid, mylocaltid,myrow, mycol, left, above, src;

/*

* Get my physical id and find my virtual id from the map table.

* My left and above neighbors are then found and used to communicate
* through vsend

*/

mylocaltid = mylocalthreadid();
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myglobaltid = myglobalthreadid();

myrow = myglobaltid/handle->architecture->coarse_dims[0];

mycol = myglobaltid’handle~>architecture->coarse_dims[0];

left = myrow * handle->architecture->coarse_dims[0] +
(mycol==07handle->architecture->coarse_dims[0]-1:mycol-1);

above = (myrow==07handle->architecture->coarse_dims[0]-1:myrow-1) *

handle~>architecture—>coarse_dims[0] + mycol;
matmpy_get_initial (handle);

for(i=0;i<handle->local_datal[2].size; i++)
*(itmylocaltid*handle->local_datal[2] .size+
handle->local_data[2] .data) = 0;

for(i=0; i<handle->architecture~>coarse_dims[0] ; i++)
{
vsend(mylocaltid+handle->local_data[0] .size+handle->local_data[0] .data,
handle->local_data[0] .size, MATMPY_A_TAG, left, handle);
vsend (mylocaltid+#handle->local_data[1].size+handle->local_data[1].data,
handle->local_data[1] .size, MATMPY_B_TAG, above, handle);
multiply_partitions(
(int *) (mylocaltid*handle->local_data[0].size+handle->local_data[0].data),
(int *) (mylocaltid*handle->local_dataf[1].size+handle->local_datafli].data),
(int *) (mylocaltid*handle->local_data[2].size+handle->local_data[2].data),
handle->contraction[2].period[0]);

vrecv(mylocaltid#handle—->local_data[0] .size+handle->local_data[0].data,
handle->local_datal[0] .size, MATMPY_A_TAG, &src, handle);

vrecv(mylocaltid#handle->local_data[1] .size+handle->local_datal[1].data,
handle->local_data[i] .size, MATMPY_B_TAG, &src, handle);

matmpy_send_final(handle);
}
/*
*# Following two routines are called by the processor
* executing the main thread. Sends the initial data
* to the processors after performing blocking (contraction)
* of data. '

*/
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void
contract_data(int *arr,LibHandlePtr h)

{
int *tmp, *curl, *cur2, i, j, k, pO, pi, xblk, yblk;

tmp = NULL;
tmp = (int *) malloc (h->architecture->fine_nproc);

for(i=0,curi=tmp, cur2=arr; i<h->architecture->fine_nproc;i++)

*curl++ = scur2++;

h->contraction[0] .period[0];

po
P1

h->contraction{0] .period[1];

for(i=0, cur2=arr;i<h->contraction[0].coarse_nblock;i++)
{
xblk = (int) (i/h->contraction[0].coarse_dims[0]);
yblk = i%h->contraction{0].coarse_dims[0];
for(j=xblk*p0; j<(xblk+1)*pO;j++)
for(k=yblk*pi; k<(yblk+1)*pl;k++)
*cur2++ = *(tmp+j*h->contraction[0] .fine_dims[0]+k);

}

free(tmp) ;
}
void
matmpy_distribute_initial(int * A, int * B, int #C,

int size, LibHandlePtr handle)

{
int myid, mytid, i, j, k, r;
int *tempA, *tempB;

/*
* Block the data based on the values in period[#]
* Send the data to the procs based on the map table
* and their init_data_layout.
*/

if(thandle->local_datal[0] .redistributed)
c .
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tempA = NULL;
tempA = (int *) malloc (size * size);
for(i=0;i<size*size;i++)

*(tempA+i) = *(A+i);
contract_data(tempA,handle);

if(thandle~>local_data[t] .redistributed)

{
tempB = NULL;
tempB = (int *) malloc (size * size);
for(i=0;i<size*size;i++)
*(tempB+i) = *(B+i);
contract_data(tempB,handle);
}

myid = phys_abs_id();
mytid = myglobalthreadid();
if (mytid==0)
{

r = handle->architecture->coarse_dims[0];

if ('handle->local_data[0].redistributed)

for(i=0; i<handle->architecture->coarse_dims[0]; i++)
for(j=0; j<handle->architecture->coarse_dims{1]; j++)

{
vsend((char *) (tempA+(i*r+j)*handle->local_datal0].size),
handle->local_datal0] .size, MATMPY_AINIT_TAG,
isr+(j-i<0?j-itr:j—-i) ,handle);
}

if(thandle->local_datal[l].redistributed)
for(i=0; i<handle->architecture->coarse_dims[0]; i++)
for(j=0; j<handle->architecture->coarse_dims[0]; j++)

{
vsend((char #*) (tempB+(isr+j)*handle->local_datal1].size),
handle->local_datall].size,MATMPY_BINIT_TAG,
(i-j<0?i-j+r:i-j)*r+j,handle);
}

150



if(thandle->local_datal[0] .redistributed) free(tempA);
if(thandle~>local_datal[1] .redistributed) free(tempB);
}
/*
* These two routines are called by the processor
* executing the main thread. Receive the final
* data from the processors and expands the data
* (opposite of contraction).

*/

expand_data(int *arr, LibHandlePtr h)
{
int *tmp, *curl, *cur2, i, j, k, p0, pi, xblk, yblk;

tmp = NULL;
(int *) malloc (h—>architecture->fine_nproc);

tmp

for(i=0, curi=tmp,cur2=arr; i<h->architecture->fine_nproc;i++)

*curl++ = *cur2++;

pO0 = h->contraction[0].period[0];

pl

"

h->contraction[0] .period[1];

for(i=0, curi=tmp;i<h->contraction[0].coarse_nblock;i++)
{
xblk
yblk
for(j=xblk#p0; j<(xblk+1)#*p0;j++)
for(k=yblk+*pi; k<(yblk+1)#*pl;k++)
*(arr+j*h->contraction[0].fine_dims [0]+k) = #curi++ ;

i/h->contraction[0] .coarse_dims[0];

i%h->contraction[0] .coarse_dims [0];

}
free(tmp);

/*
*# Called by the host processor to accumulate the results.
*/

void

matmpy_accumulate_final(int *A, int *B, int * C,
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int size, LibHandlePtr handle)
{

int src, i, j, *tmp, *curl, *cur2;

tmp = NULL;
tmp = (int *) malloc (handle->local_datal[2].size);
for(i=0; i<handle->architecture->coarse_nproc; i++)
{

vrecv(tmp,handle->local_data[0].size,

MATMPY_C_TAG, &src,handle);

curl = C+src*handle->local_datal[2].size;

cur2 = tmp;

for(j=0; j<handle->local_data[2].size;j++) #curi++ = *cur++;
}
/*
* Data must be transformed from block form to contiguous form.
*/

expand_data(C, handle);
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Appendix B
Mapping Library

This appendix outlines some of the mapping function called from the SPMD program.

JERERERREREREEERRERRRERRRRKERERERER KK
* Mapping Library. *
ERERRKRRERERERRRRRAERERERERERERER KRR/

int TorusToMesh(LibHandlePtr h)
{

int i, j, phyproc;

int phydims[2];

int perproc{2];

int d,mi,mj;

/*
* Number of coarse grain virtual procs is a multiple

* of number of number of physical procs.

*/

phyproc=phys_nproc();
phys_dims(phydims);

#ifdef IDENTITY
if(phyproc >= h->architecture->coarse_nproc)

{

for(i=0; i<h—>architecture->coarse_dims[0] ;i++)
for(j=0; j<h->architecture->coarse_dims[1];j++)

{

h->mapping->map_table[i*h->architecture->coarse_dims[0]+jl =
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i*phydims [0]+j;

}
}
else
{
perproc[0]= h~>architecture->coarse_dims[0]/phydims[0];
perproc[1]= h->architecture->coarse_dims[1]/phydims([i];
for(i=0; i<h—->architecture->coarse_dims[0] ;i++)
for(j=0; j<h~>architecture->coarse_dims([1]; j++)
{
h->mapping->map_table[i*h->architecture—>coarse_dims[0]+j] =
floor((double)i/perprocl0])#*phydims[1] +
f£loor((double) j/perproclil);
}
}
#endif

#ifdef OPTIMAL

d=h->architecture->coarse_dims[0];
for(i=0; i<h—->architecture->coarse_dims[0] ;i++)
for(j=0; j<h~>architecture->coarse_dims[1];j++)

{
if((i<d/2) & (j<d/2))
{
mi = 2%i;
mj = 2#%j;
}
else if{(i<d/2) &&x (j>=d/2))
{
mi = 2%i;
mj = 2%d-2%j-1;
}
else if((i>=d/2) && (j<d/2))
{
mi = 2#%d-2%i-1;
mj = 2%j;
}
else if((i>=d/2) && (j>=d/2))
{

mi = 2#d-2*i-1;
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nj = 2%d-2+¢j-1;

}

h->mapping->map_table [i*h->architecture->coarse_dims[0]+j] =
mi*phydims [0]+mj;

#endif
#ifdef CONTENTION

d=h->architecture->coarse_dims[0];
for(i=0;i<h->architecture->coarse_dims[0];i++)
for(j=0; j<h—>architecture->coarse_dims[1];j++)

{
if((i/2¢2==i) && (j/2%2==j))
{
mi = i/2;
mj = j/2;
}
else if((i/2#2==i) &k (j/2#2!=j))
{
mi = i/2;
nj = d/2+j/2;
}
else if((i/2#2t=i) && (j/2%2!=j))
{
mi = d/2+i/2;
nj = d/2+j/2;
}
else if((i/2#21=i) && (j/2%2==j))
{
mi = d/2+i/2;
mj = j/2;
}

h->mapping->map_table [i*h->architecture~>coarse_dims[0]+j] =

mi*phydims[0]+mj;

#endif

155



Appendix C

Virtual Communication Library

This appendix outlines the virtual communication routines.

[EEkRkEkEREERRREERRREREREEERREEREREEE

* Virtual Communication Library. *
RERERRREERREERRARRKERERRRRERRRRRRER S/

#define BARRIER 10000
#define ENDBARRIER 20000

#define NOP
#define SUM
#define PROD
#define MAX
#define MIN
#define OR

#define AND
#define XOR

~N A N o W NN - O

char
rfunc(char resi, char res2, int op)
{
switch(op)
{
case NOP: return resi;
case SUM: return resi + res2;
case PROD: return resi * res2;
case MAX: return (resl < res2 7 res2 : resl) ;

case MIN: return (:esi < res2 ? resil : res2)

case OR: return resl | res2;
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case AND: return resi & res2;
case XOR: return resi ~ res2;
}
}

/*
* Virtual Broadcast. Executed by all the virtual processors.
* one to all broadcast

*/

bcast(int num, char sbuf, int size, int tag, LibHandlePtr handle)
{

int i, n, halfi, half2, dest;

char #*bufi;

int myindex;

if (num==1) return;

myindex = myglobalthreadid();

n = handle—>architecture->fine_nproc;
halfi = num/2;

half2 = num - half1l;

dest = (myindex + half1) % n;

bufl = (char *) malloc (size + 1);
for (i=1;i<=size;i++) *(bufi+i) = *(buf+i-1);
*bufl = half2;

vsend(bufli, size+i,tag, dest, handle);
bcast(halfl,buf,size,tag,handle);

void

vbroadcast(char *buf,int size,int tag,int root, LibHandlePtr handle)
{

char * bufi;

int i, j, src, n, num;

if (myglobalthreadid() == root)
{

n = handle—>architecture~>fine_nproc;
bcast(n, buf, size, tag, handle);
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else

{
bufi = (char *) malloc (size+1);
vrecv(bufl, size+i, tag, &src, handle);
num = *bufi;
for (i=1,j=0;i<=size;i++,j++) *(buf+j) = *(bufi+i);
bcast(num, buf, size, tag, handle);
}
}
/*
* Combine ~ All to all reduction
*/

collect(int firstmember, int num,int op, char buf,

int tag, char *result, LibHandlePtr handle)
{
int m, n, meml, mem2, mypid, src;

char resi, res2;

if(num==1) {
*result = buf;

return;

n = handle->architecture->fine_nproc;
m = num/2;

memil = firstmember;

mem2 = (firstmember+m) % n;

mypid = myglobalthreadid();

if ((mypid >= memi) && (mypid < mem2))

{
collect(memi, m, op, buf, tag, &resi, handle);
if(mypid == mem1) {
vrecv(&res2, 1, tag, &src, handle);
*result = rfunc(resi,res2,op);
}
}
else /* mypid in mem2 */
{
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collect(mem2, num-m, op, buf, tag, &res2, handle);
if (mypid == mem2)
vsend(&res2, 1,tag, memi, handle);

void
vcombine(int op, char buf, char *result,int tag, LibHandlePtr handle)
{

int firstmember, num;

firstmember = 0;

num = handle->architecture->fine_nproc;
collect(firstmember, num, op, buf , tag, result, handle);
vbroadcast(result,1,tag,firstmember, handle);

Vi,
* All to one reduction

*/

void
vreduce(int op, char buf, char *result,int tag, int root, LibHandlePtr handle)
{

int firstmember, num;

firstmember = root;
num = handle->architecture->fine_nproc;
collect(firstmember, num, op, buf ,tag , result, handle);

/*
* Prefix over the processors.

*/

prefix(int firstmember, int num,int op, char buf, int tag,
char *result, LibHandlePtr handle)

{

int i, m, n, memi, mem2, mypid, src;

char resi, res2;
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if(num==1) {
*result = buf;

return;

n = handle->architecture->fine_nproc;
m = num/2;

meml = firstmember;

mem2 = (firstmember+m) % n;

mypid = myglobalthreadid();

if((mypid >= memi) && (mypid < mem2))

{
prefix(memi, m, op, buf, tag, result, handle);
vrecv(&res2, 1, tag, &src, handle);
*result = rfunc(*result,res2,o0p);
}
else /+ mypid in mem2 */
{
prefix(mem2, num-m, op, buf, tag, &res2, handle);
*result = res2;
if (mypid = mem2)
{
for(i=0;i<m;i++)
vsend(&res2, 1,tag, memi+i, handle);
}
}
}
void

vprefix(int op, char buf, char *result, int tag, LibHandlePtr handle)
{

int firstmember, num;
firstmember = 0;

num = handle->architecture->fine_nproc;
prefix(firstmember, num, op, buf , tag, result, handle);

/*
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* Virtual sync. Virtual barrier synchronization.
*/

void

vsync(LibHandlePtr handle)
{

int src;

char dummy, dummyres;

vreduce (NOP,dummy , &dummyres ,BARRIER,O,handle) ;
vbroadcast(&dummy, 1 ,ENDBARRIER, O, handle);
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Appendix D

Redistribution Library

The following pages outline the complete redistribution library described in chapter 4. The library
mainly consists of a redistribution routine called from the SPMD program and the implementation
of the three possible cases of redistribution.
/*

* Lowers block sizes from dims[0lxdims[1]

* (whole block of sizexsize) down to gxg

* Assumption is that g divides dims[0]

*+ and arr is square. target must be

* allocated before calling this routine.

*/

void

lower_blocksize(int #*arr, int dim, int *dims, int size, int g)
{

int *curi, *cur2, *temp, i, j, k, c, xblk, yblk;

if(dim == 1) return;

temp = (int *) malloc(size*sizeof(int));
for(i=0, curi=temp,cur2=arr; i<size;i++)
*curl++ = *kcur2++;

c = (int) (dims[0]1/g);
for(i=0, cur2=arr;i<c*c;it+)
{
xblk = (int) (i/c);
yblk = i%c;
for(j=xblk*g; j<(xblk+1l)*g;j++)
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for(k=yblk#*g; k<(yblk+1)#*g;k++)
*cur2++ = *(temp+j*dims[0]+k);

/*

Lift block sizes from gxg to size(whole blocks of sizexsize)
Assumption is that g divides size.

Lift block sizes from gxg to dims[0]lxdims([1]

Assumption is that g divides dims[0]

[ B R

and arr is square.

*/

void

1ift_blocksize(int *arr, int dim, int *dims, int size, int g)
{

int *curi, *cur2, i, j, k, xblk, yblk;

int *temp, c;
if(dim == 1) return;
temp = (int #) malloc(size*sizeof(int));
for(i=0,curi=temp,cur2=arr; i<size;i++)
*curl+t = wcur++;

¢ = (int) (dims[0]1/g);

for(i=0, curi=temp;i<c*c;i++)

{
xblk = i/c;
yblk = iYc;
for(j=xblk#*g; j<(xblk+1)*g;j++)
for(k=yblk*g; k<(yblk+1)*g;k++)
*(arr+j*dims[0]+k) = *curi++ ;
}

void redistribute_caseil(LibHandlePtr src, int srcParam, int g,
LibHandlePtr target, int targetParam, int gp)
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int i, j, m, nthr_src, nthr_target, nblk_target, nsubblk_target;
int blockgtid, src_glob_blkid, mypid, gsize, gpsize, k;

int dest_glob_blkid, blk, subblk;

int target_glob_blkid, first_subblkid;

int dest_vp, dest_pp, msgsrc;

int target_glob_subblkid;

mypid = phys_abs_id();

/%

* Find the number of blocks in src and target

*/

for(nthr_src=0, i=0;i<src—>architecture—>coarse_nproc;i++)

if (src~>mapping->map_table[i] == mypid) nthr_src++;

for(nthr_target=0, i=0;i<target—>architecture—>coarse_nproc;i++)
if (target—>mapping->map_table[i] == mypid) nthr_target++;

gsize = (src->local_datalsrcParam].dim==1 7 g : g*g);

gpsize = (target->local_data[targetParam].dim==1 ? gp : gp*gp):
k = (int) (gp/g);

nsubblk_target = (int)(gpsize/gsize);

j=-4

for(blk=0;blk<nthr_src;blk++)
{

/* 1. Find this partitions global thread id */

do {

i+
} while(src->mapping->map_table[j]!=mypid);
blockgtid = j;

/* 2. Scan the fin_layout for myglobal thread, index is
* my glob block id
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m = 0;
while(src~>fin_layout [srcParam] .data_map[m] != blockgtid) m++;
src_glob_blkid = m;

/* 3. Find the target block number (The one that embodies
* this partition)
*/

if(target—>local_datal[targetParam] .dim=—1)
dest_glob_blkid = (int)(src_glob_blkid / k);
else
dest_glob_blkid=target—>contractionltargetParam].coarse_dims[0] *
((src_glob_blkid/src->contraction[srcParam].coarse_dims[0])/k) +
(src_glob_blkid%src->contraction[srcParam].coarse_dims[0])/k;

/* 4. Now use the target init_layout to find out
* which vp gets this block
*/
dest_vp = target—->init_layout[targetParam] .data_map[dest_glob_blkid];
/* 6. Now find out which physical gets this */
dest_pp = target—->mapping->map_table[dest_vp];
/* 6. Construct a tag using the global block id (of g) and send */
send(src—>local_data[srcParam] .data+blk*gsize,gsize,

srcParam*src->architecture->coarse_nproc+src_glob_blkid,dest_pp);

/*
* Finished computing the destination set, and sent data.

* Now compute the source set and receive the data into the target.

*/

j=-1
for(blk=0;blk<nthr_target;blk++)
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/*

/*

/*

/*

1. Get from mapping table the globtid */

do {

j+;
} while(target->mapping->map_tablel[j] !=mypid);
blockgtid = j;

2. Get from data_map the glbblkid */

m=0;
while(target—>init_layout[targetParam] .data_mapim] != blockgtid) m++;
target_glob_blkid = m;

3. Get the starting subblock id from the larger */

if (target—->local_data[targetParam].dim==1)
first_subblkid = target_glob_blkid * k;
else
first_subblkid=src->contraction[srcParaml.coarse_dims[0] *
(target_glob_blkid/target->contraction[targetParam].coarse_dims[0])*k +
(target_glob_blkidYtarget—>contraction[targetParam] .coarse_dims[0])#*k;

for(subblk=0;subblk<nsubblk_target;subblk++)
{
4. Add subblk to it to find the tag to receive */

target_glob_subblkid = first_subblkid + (subblk/k) *
src->contraction[srcParam] .coarse_dims[0] + subblkk;

5. Receive data */
recv(target->local_dataltargetParam] .data+blk#gpsize+subblk*gsize,

gsize, srcParam*src->architecture->coarse_nproc+
target_glob_subblkid, &msgsrc);
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1lift_blocksize(target->local_data[targetParam] .datat+blk*gpsize,
target—->local_data[targetParam] .dim,
target->local_data[targetParam] .dims,
target->local_data[targetParam] .size,

g);

void redistribute_case2(LibHandlePtr src, int srcParam, int g,

int

int
int

int

int

/*

LibHandlePtr target, int targetParam, int gp)

i, j, m, nthr_src, nthr_target, nblk_target, nsubblk_src;
blockgtid, src_glob_blkid, mypid, gsize, gpsize, k;

blk, subblk;

target_glob_blkid, first_subblkid;

dest_vp, dest_pp, msgsrc;

src_glob_subblkid;

mypid = phys_abs_id();

* Find the number of blocks in src and target

*/

for(nthr_src=0, i=0;i<src->architecture->coarse_nproc;i++)

if (sre->mapping~>map_table[i] == mypid) nthr_src++;

for(nthr_target=0, i=0;i<target->architecture->coarse_nproc;i++)

if (target->mapping->map_table[i] == mypid) nthr_target++;

gsize = (src->local_data[srcParam].dim==1 7 g : g*g);

gpsize = (target—>local_datal[targetParam].dim==1 ? gp : gp*gp);
k = (int) (g/gp);

nsubblk_src = (int)(gsize/gpsize);

3=-1
for(blk=0;blk<nthr_src;blk++)

{
lower_blocksize(src->loca1_data[scharamJ.data+b1k#gsize,
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src—>local_data[srcParam] .dim,
src->local_datalsrcParam] .dims,
src—>local_datal[srcParam] .size,

gP);
/% 1. Find this partitions global thread id */

do {

J++;
} while(src~>mapping—->map_table[j]!=mypid);
blockgtid = j;

/% 2. Scan the fin_layout for myglobal thread, index is my glob block id */

m= 0;
while(src->fin_layout[srcParam] .data_map[m] != blockgtid) m++;
src_glob_blkid = m;

/* 3. Get the starting subblock id from the larger */

if(src->local_data[srcParam] .dim==1)
first_subblkid = src_glob_blkid * k;

else
first_subblkid=target—>contraction[targetParam].coarse_dims[0] *

(src_glob_blkid/src->contraction[srcParam] .coarse_dims[0])*k +
(src_glob_blkid¥%src~>contraction[srcParam] .coarse_dims[0])*k;

for(subblk=0;subblk<nsubblk_src;subblk++)
{
/* 4. Add subblk to it to find the tag to receive %/
src_glob_subblkid = first_subblkid +
(subblk/k) * target->contraction[targetParam].
coarse_dims[0] + (subblk%k);

/* 5. Now use the target init_layout to find out which vp gets this block */

dest_vp = target->init_layout[targetParam].
data_map[src_glob_subblkid];

/* 6. Now find out which physical gets this */
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dest_pp = target—>mapping->map_table[dest_vp]l;

/* T. Send data */

send(src->local_data[srcParam] .data+blk*gsize+subblk*gpsize,
gpsize, targetParam*target—>architecture->
coarse_nproc+src_glob_subblkid, dest_pp);

j=-1
for(blk=0;blk<nthr_target;blk++)
{
/* 1. Get from mapping table the globtid */

do {

s
} while(target—->mapping->map_table[j] !=mypid);
blockgtid = j;

/* 2. Get from data_map the glbblkid */

m = 0;
while(target->init_layout[targetParam] .data_map[m] != blockgtid) m++;
target_glob_blkid = m;

/* 3. Receive data */

recv(target->local_data[targetParam] .datat+blk*gpsize, gpsize,
targetParam*target—->architecture—>
coarse_nproc+target_glob_blkid, &msgsrc);

int
ged(int a,int b)
{

int m;
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if((a/b)*b == a) return b;

else if((b/a)*a == b) return a;

m=(a<b?a:b);

while(m!=1)

{
if(((a/m)*m = a) &% ((b/m)*m == b)) return m;
else m——;

}

return 1;

void redistribute_case3(LibHandlePtr src, int srcParam, int g,
LibHandlePtr target, int targetParam, int gp)

int dest_glob_blkid;

int i, j, m, nthr_src, nthr_target, nblk_target;
int nsubblk_src, nsubblk_target;

int blockgtid, src_glob_blkid, mypid, gsize, gpsize;
int blk, subblk;

int target_glob_blkid, first_subblkid;

int dest_vp, dest_pp, msgsrc;

int src_glob_subblkid;

int target_glob_subblkid;

int gdp, gdpsize;

int kdp, kp;

mypid = phys_abs_id();
/*
* Find the number of blocks in src and target

*/

for(athr_src=0, i=0;i<src->architecture->coarse_nproc;i++)

if(src->mapping->map_table[i] == mypid) nthr_src++;

for(nthr_target=0, i=0;i<target->architecture->coarse_nproc;i++)
if(target->mapping->map_table[i] == mypid) nthr_target++;

gdp = gecd(g.gp);
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gsize = (src->local_datalsrcParam].dim==1 7 g : g*g);

gpsize = (target—>local_data[targetParam].dim==1 ? gp : gp*gp);
gdpsize = (src->local_datal[srcParam] .dim==1 ? gdp : gdp*gdp);
kdp=g/gdp;

kp=gp/gdp;

nsubblk_src = (int)(gsize/gdpsize);

nsubblk_target = (int)(gpsize/gdpsize);

i=-4
for(blk=0;blk<nthr_src;blk+t)
{

lower_blocksize(src—>local_datalsrcParam].data+blk#*gsize,
src~->local_datalsrcParam] .dim,
src->local_datalsrcParam] .dims,
src~>local_data[srcParam] .size,

gdp);-

do {
Jj++;

} while(src->mapping->map_table[j]!=mypid);
blockgtid = j;

/* 2. Scan the fin_layout for myglobal thread, index is my glob block id */
m = 0;
while(src->fin_layout [srcParam].data_map[m] != blockgtid) m++;
src_glob_blkid = m;

/* 3. Get the starting subblock id from the larger */

if(src->local_data[srcParam] .dim==1)
first_subblkid = src_glob_blkid * kdp;
else
first_subblkid=src—>contraction[srcParam].coarse_dims[0] #
kdp * (src_glob_blkid/src->contraction[srcParam].
coarse_dims[0]) * kdp + (src_glob_blkid%src—>

contractionf{srcParam].coarse_dims[0])+kdp;
for(subblk=0;subblk<nsubblk_src;subblk++)

{
src_glob_subblkid = first_subblkid +
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(subblk/kdp) * src->contraction[srcParam].
coarse_dims [0] *kdp + (subblk’kdp);

/* 4. Use grain info to find the target block number */
dest_glob_blkid=target->contraction[targetParam] .coarse_dims[0]
* (src_glob_subblkid/(kp*target->contraction[targetParam].
coarse_dims[0])/kp) + ((src_glob_subblkid/(kp*target—>
contraction[targetParam] .coarse_dims[0]))/kp);

/* 5. Now use the target init_layout to find out which vp gets this block */
dest_vp = target->init_layout [targetParam].

data_map[dest_glob_blkidl;

/* 6. Now find out which physical gets this */

dest_pp = target->mapping->map_table[dest_vp];

/* 7. Send data */

send(src->local_data[srcParam] .data+blk*gsize+subblk*gdpsize,
gdpsize, targetParam*target->architecture->
coarse_nproc*kp*kp+src_glob_subblkid, dest_pp);

}
}
j=-1
for(blk=0;blk<nthr_target;blk++)
{
/* 1. Get from mapping table the globtid */
do {
i+
} while(target->mapping->map_table[j] !=mypid);
blockgtid = j;
/* 2. Get from data_map the glbblkid */
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m = 0;
while(target->init_layout [targetParam].data_mapim] != blockgtid) m++;
target_glob_blkid = m;

/* 3. Get the starting subblock id from the larger */

if(target—->local_data[targetParam].dim==1)
first_subblkid = target_glob_blkid * kp;
else
first_subblkid=target->contraction[targetParam] .coarse_dims[0] *
kp * (target_glob_blkid/target—->contraction[targetParam].
coarse_dims[0]) * kp + (target_glob_blkid/target->

contraction[targetParam].coarse_dims[0] )+*kp;

for(subb1k=0;subblk(nsubblk_target;subb1k++)
{

/* 4. Add subblk to it to find the tag to receive */
target_glob_subblkid = first_subblkid + (subblk/kp) *
target—>contraction[targetParam] .coarse_dims [0]#kp + subblk¥kp;

/* 6. Receive data */
recv(target->local_data[targetParam] .data+blk*gpsize+
subblk*gdpsize, gdpsize, targetParam*target->
architecture->coarse_nproc*kp*kpt+target_glob_subblkid,
&msgsrc);

}

lift_blocksize(target->local_datal[targetParam] .datat+blk#*gpsize,
target—->local_data[targetParam] .dim,
target—->local_datal[targetParam] .dims,
target->local_dataltargetParam] .size,
gdp);

/*
* Redistribute ith data from src to jth data in target.
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*/

void redistribute_data(LibHandlePtr src,int srcParam,
LibHandlePtr target, int targetParam)

{

int gsrc, gtarget;

gsrc = src—->local_datalsrcParam] .dims[0];
gtarget = target—>local_data[targetParamJ.dims[O];

if((int) (gtarget/gsrc)*gsrc = gtarget)
redistribute_casel(src,srcParam,gsrc,target,targetParam, gtarget);
else if((int)(gsrc/gtarget)*gtarget = gsrc)
redistribute_casez(src.srcParam,gsrc,target.targetParam,gtarget);
else

redistribute_case3(src,srcParam,gsrc,target,targetParam,gtarget);

/*
* Identify which one of the three cases this is and
* call the appropriate routine.

*/

void redistribute_data(LibHandlePtr src,int srcParam,
LibHandlePtr target, int targetParam)

{

int gsrc, gtarget;

gsrc = src—>local_data[srcParam] .dims[0];
gtarget = target->local_data[targetParam].dims[0];

if((int) (gtarget/gsrc)*gsrc == gtarget)
redistribute_casel(src,srcParam,gsrc,target,targetParam, gtarget);
else if((int)(gsrc/gtarget)*gtarget == gsrc)
redistribute_case2(src,srcParam,gsrc,target,targetParam,gtarget);
else

redistribute_casea(src,srcParam.gsrc,target,targetParam,gtarget);
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/*
* Called from the SPMD program
*/

void

redistribute(LibHandlePtr handle,LibHandlePtr * history)
{

int i,j, found, * * global_data;

LibHandlePtr cur, prev;

int all_stale;

for(i=0;i<handle—->NumParams ;i++)
{

/* If Out parameters, no distribution */
if (handle->ClassParams[i] == OUTPARAM) continue;

global_data = handle~>local_datal[il.global_data;
prev = NULL;

cur = * history;

found = FALSE;

while((! found) &% (cur != NULL))

{
for(j=0; j<cur->NumParams; j++)
if(cur->local_datal[j].global_data == global_data)
{
found = TRUE; /* found the block to redistribute */
break;
}
if(1found)
{
prev = cur;
cur = cur->next;
}
}
if (found)
{

redistribute_data(cur, j,handle,i);
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/* mark new as redistributed as valid */
handle->local_datal[i] .redistributed = TRUE;
/* mark old as invalid */
cur—->local_data[j].stale = TRUE;

/* Must really return the local_data[j].data back to free pool */
free(cur->local_datalj] .data);

/* If all parameters of a handle are stale, the handle can be
removed from the history list. */

all_stale=TRUE;
for(j=0; j<cur—->NumParams; j++)
if(lcur->local_datal[j].stale)
all_stale = FALSE; /* Still has valid distributed data */

if(all_stale)

{
if(prev==NULL)
{
shistory = cur->next;
free(cur);
}
else
{
prev->next = cur->next;
free(cur);
}
}
}
else

handle->local_datal[i] .redistributed = FALSE;
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Appendix E

Ekample User Program and

Compilation

The example presented in this appendix is a user program which consists of several library calls
embedded in various programming constructs. The automatically generated SPMD code of the

program follows the user program.
#include "cpc.h"

#include "parlib.h"

void
print_matrix(int *A, int size)

{
int i, j;
for(i=0;i<size;i++)
{
for(j=0; j<size; j++)
printf("%d ",*(A+i*size+j));
printf£("\n");
}
}
void
read_matrix(int £d, int *A, int size)
{
int i,j;

for(i=0;i<size;i++)
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for(j=0; j<size;j++)

{
*(A+i*size+j) = 0; /* A Kludge to init type info in simulator */
fscanf(fd,"Yd",A+i*size+j);
}
}
}
main()
{

int *A, *B, *C, *D, *E;

int £4d, size, i;

/* Read A and B */
fd = fopen("infile","r");
fscanf (£d,"%d" ,&size);

A = (int *) malloc (size*size);
B = (int *) malloc (size*size);
C = (int *) malloc (size*size);
D = (int #*) malloc (size*size);

(int *) malloc (size*size);

read_matrix(fd,A,size);
read_matrix(fd,B,size);

read_matrix(fd,C,size);

cpcc_matmpy(A,B,C,size);
cpcc_matadd(C,D,E,size);

for(i=0;i<=3;i++)

cpcc_matmpy(D,B,A,size);
for(i=0;i<=2;i++)

{
cpcc_matmpy(D,B,A,size);

if(i<=5)
cpcc_matmpy(D,B,A,size);

if(i<=8)
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cpcc_matmpy(D,B,A,size);

print_matrix(A,size);

/*
* Start of the SPMD code
*/

int main()

{
int * A;
int * B;
int * C;
int * D;
int = E;
int f£d;

int size;

int i;
int myid; /* Declarations */
int t1,t2; /* Declarations */

1lib_setup();
myid = phys_abs_id(); /* One time initial executabless*/
if(myid==0) { /* Begin Guard */

fd = fopen("infile”, "r");

fscanf(fd, "%d", &size);

A = (int * ) malloc((size * size));
B = (int * ) malloc((size * size));
C = (int * ) malloc((size * size));
D = (int * ) malloc((size * size));
E = (int * ) malloc((size * size)); .

read_matrix(fd, A, size);

read_matrix(fd, B, size);

read_matrix(fd, C, size);
} /* End Guard */
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/* Expanded Parallel Library Call */
allocate_handle(&curhandle);
matmpy_init_handle(curhandle);
matmpy_init_arch(curhandle,A, B, C, size);
matmpy_contraction(curhandle);
matmpy_mapping(curhandle);
matmpy_allocate_local(A, B, C, size,curhandle);
matmpy.data_layout{curhandle);
redistribute(curhandle,&history);
forallthreads(curhandle->mapping->map_table;
curhandle—->architecture~>coarse_nproc){

if (myglobalthreadid ()==0)

matmpy_distribute_initial(A, B, C, size,curhandle);
matmpy_local(curhandle);
if(myglobalthreadid()==0)

matmpy_accumulate_final(A, B, C, size,curhandle);
}
add_handle_to_history(curhandle); /* After each call#/
/* Expanded Parallel Library Call #*/
allocate_handle(&curhandle);
matadd_init_handle(curhandle);
matadd_init_arch(curhandle,C, D, E, size);
matadd_contraction(curhandle);
matadd_mapping(curhandle);
matadd_allocate_local(C, D, E, size,curhandle);
matadd_data_layout(curhandle);
redistribute(curhandle,&history);
forallthreads(curhandle->mapping->map_table;

curhandle->architecture—~>coarse_nproc){

if(myglobalthreadid ()==0)

matadd_distribute_initial(C, D, E, size,curhandle);
matadd_local(curhandle);
if (myglobalthreadid ()==0)

matadd_accumulate_final(C, D, E, size,curhandle);
}
add_handle_to_history(curhandle); /* After each call#/
for (i = 0; i <= 3; i++)
{

/* Expanded Parallel Library Call */

allocate_handle(&curhandle);
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matmpy_init_handle(curhandle);
matmpy_init_arch(curhandle,D, B, A, size);
matmpy_contraction(curhandle);
matmpy_mapping(curhandle);
matmpy_allocate_local(D, B, A, size,curhandle);
matmpy_data_layout(curhandle);
redistribute(curhandle,&history);
forallthreads(curhandle->mapping—->map_table;
curhandle->architecture->coarse_nproc){
if (myglobalthreadid()==0)
matmpy_distribute_initial(D, B, A, size,curhandle);
matmpy_local(curhandle);
if (myglobalthreadid()==0)
matmpy_accumulate_final(D, B, A, size,curhandle);
}
add_handle_to_history(curhandle); /* After each call*/
}/+ Additional */
for (1 = 0; i <= 2; i++)
{
/* Expanded Parallel Library Call #*/
allocate_handle(&curhandle);
matmpy_init_handle(curhandle);
matmpy_init_arch(curhandle,D, B, A, size);
matmpy_contraction(curhandle);
matmpy_mapping(curhandle);
matmpy_allocate_local(D, B, A, size,curhandle);
matmpy_data_layout(curhandle);
redistribute(curhandle,&history);
forallthreads(curhandle->mapping~>map_table;
curhandle->architecture->coarse_nproc){
if (myglobalthreadid()==0)
matmpy_distribute_initial(D, B, A, size,curhandle);
matmpy_local(curhandle);
if (myglobalthreadid ()==0)
matmpy_accumulate_final(D, B, A, size,curhandle);

}
add_handle_to_history(curhandle); /+# After each callx/
}
if (i <= B)
{
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/* Expanded Parallel Library Call */
allocate_handle(&curhandle);
matmpy_init_handle(curhandle);
matmpy_init_arch(curhandle,D, B, A, size);
matmpy_contraction(curhandle);
matmpy_mapping(curhandle);
matmpy_allocate_local(D, B, A, size,curhandle);
matmpy_data_layout(curhandle);
redistribute(curhandle,&history);
forallthreads(curhandle->mapping->map_table;
curhandle~>architecture->coarse_nproc){
if (myglobalthreadid ()==0)
matmpy_distribute_initial(D, B, A, size,curhandle);
matmpy_local(curhandle);
if (myglobalthreadid ()==0)
matmpy._accumulate_final(D, B, A, size,curhandle);
}
add_handle_to_history(curhandle); /* After each call*/
}
if (i <= B)
{

/* Expanded Parallel Library Call #*/
allocate_handle(&curhandle);
matmpy_init_handle(curhandle);
matmpy_init_arch(curhandle,D, B, A, size);
matmpy_contraction(curhandle);
matmpy_mapping(curhandle) ;
matmpy_allocate_local(D, B, A, size,curhandle);
matmpy_data_layout(curhandle);
redistribute(curhandle,&history);
forallthreads(curhandle->mapping->map_table;
curhandle->architecture->coarse_nproc){
if(myglobalthreadid()==0)
matmpy_distribute_initial(D, B, A, size,curhandle);
matmpy_local(curhandle);
if (myglobalthreadid ()==0)
matmpy._accumulate_final(D, B, A, size,curhandle);
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add_handle_to_history(curhandle); /# After each call#*/
}

if(myid=—0) { /* Begin Guard */

print_matrix(A, size);

} /+ End Guard */

lib_exit();
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