

ANALYSIS ON A RELEASE HISTORY DATABASE TO
ASSIST MANAGEMENT OF THE SOFTWARE

MAINTENANCE

Mohammad Saeed Bohlooli

A Thesis
in

The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirement
For the Degree of Applied Science in Software Engineering

 Concordia University
Montreal, Quebec, Canada

April 2013

© Mohammad Saeed Bohlooli, 2013

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mohammad Saeed Bohlooli

Entitled: Analysis on a Release History Database to Assist Management of the

Software Maintenance

and submitted in partial fulfillment of the requirements for the degree of

 Master of Applied Science in Software Engineering

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

 ______________________________________ Chair
 Dr. R. Jayakumar

 ______________________________________ Examiner
 Dr. Yuhong Yan

 ______________________________________ Examiner
 Dr. Nikolaos Tsantails

 ______________________________________ Supervisor
 Dr. Constantinos Constantinides

Approved by __
 Chair of Department or Graduate Program Director

__
 Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Date __

Abstract

Analysis on a Release History Database to Assist Management of the

Software Maintenance

Mohammad Saeed Bohlooli

Software maintenance is the most time consuming activity in the life cycle of soft-

ware. Software maintenance suffers from missed deadlines and from being over bud-

get. Managers usually pay more attention to development than to maintenance: for

example, they prefer to assign senior developers to the development phase tasks and

neglect maintenance ones. Managers have difficulty identifying problems, and their

causes, in maintenance.

This thesis presents techniques for analysis on the proposed release history database

to provide metrics for improvement of the maintenance phase. The proposed release

history database is enriched by valuable data that comes from an issue tracking sys-

tem, code repository, and time entry system. The proposed release history database

and the analysis of the data contained there provides metrics which allow maintainers

to find risky and time-consuming codes, recommending maintenance team and main-

tenance location and a suggestions for the future of the maintenance. Automation is

also provided as a proof of concept through a prototypical tool.

iii

Acknowledgments

This thesis would not have been possible without the help, support and patience of

my supervisor, Dr. Constantinos Constantinides whose advice, encouragement and

unsurpassed knowledge contributes to my graduate work and experience. I would

have been lost without him.

I also would like to thank the members of Software Maintenance and Evolution

Research Group, Parisa Mirshams, Michel Parisien and my speical thanks for Zohreh

Sharafi providing valuable comments and their friendly help for my research work.

I owe my loving thanks to the most influential people in my life: my wife, Sahar

Tamadon, and my parents for unconditional support and encouragement to pursue

my interest.

iv

Contents

List of Figures ix

1 Introduction 1

1.1 Objective and goals of this dissertation 2

1.2 Organization of the dissertation . 2

2 Background 3

2.1 Software maintenance . 3

2.2 Software maintenance: time and cost 4

2.3 Management in software maintenance 5

2.4 Software configuration management 5

2.4.1 The issue tracking system . 6

2.4.2 Code repository . 9

2.4.3 The time entry system . 12

2.4.4 Release History Database(RHDB) 13

3 Problem and motivation 14

v

4 Proposal 18

5 Building a release history database 22

5.1 Building an integrated release history database 23

5.2 Retrieving Required data from Three Resources 28

5.2.1 Retrieving information from the issue tracking system 29

5.2.2 Retrieving data from the code repository 31

5.2.3 Retrieving information from the time entry system 33

6 Analyzing release history database 35

6.1 Introduction . 35

6.2 Metrics . 37

6.2.1 Metric Definition . 37

6.2.2 Planning . 38

6.2.3 Operation . 39

6.2.4 Analysis and Interpretation 40

6.3 Risky objects . 40

6.3.1 Threshold for risky objects . 42

6.4 Analysis for time consuming codes 44

6.5 Recommending maintenance team . 47

6.5.1 Average of new introduced bugs in 100 lines of code per release 50

6.5.2 Average of reopened bugs in 100 lines of code per release . . . 52

6.5.3 Developer’s Profile . 54

vi

6.5.4 Building team . 55

6.6 Recommending software maintenance location 57

6.7 Bug fixing vs refactoring vs developing from scratch? 61

6.8 Accurate estimation . 64

7 Case Study 68

7.1 Choosing the case study . 68

7.2 Building the release history database 71

7.2.1 Importing data from the issue tracking system 71

7.2.2 Importing data from the code repository 72

7.2.3 Importing data from the time entry system 72

7.3 Analysis of release history database 73

7.3.1 Retrieving risky objects . 73

7.3.2 Finding time consuming codes 77

7.3.3 Recommending maintenance team 79

7.3.4 Recommending maintenance location 84

7.3.5 Fixing bugs, or refactoring, or developing from scratch? 89

7.3.6 Accurate estimation . 89

8 Related Work 92

9 Automation and tool support 97

10 Conclusion and recommendations for future work 103

vii

10.1 Summary and conclusion . 103

10.2 Recommendations . 105

A Questionnaire for threshold 106

A.1 Audience . 106

A.2 Survey Question . 106

A.3 Questionnaire result . 107

Bibliography 108

viii

List of Figures

1 A typical workflow of an issue tracking system. 7

2 Trunk and branches in version control 10

3 Release history database boundary 13

4 Releases in development and maintenance phase. 20

5 An example to show how different data from Code repository, Issue

tracking, and Time entry systems are integrated and associated . . . 24

6 Release history database schema . 27

7 Activity diagram for building release history database 31

8 Developers’ profile. 54

9 Architecture of a J2EE application that we used as a case study . . . 70

10 Choose import issue tracking system to import. 98

11 Choose the right fields to import into the issues table. 99

12 Choose code repository specifications to import. 100

13 Choose time entry specifications to import. 101

14 Executing queries . 102

ix

Chapter 1

Introduction

As software systems evolve over time and keep changing, the quality of the software

system declines. Therefore, software maintenance activities are required to preserve

the quality of the software. Software maintenance is the modification of the software

product after delivery to correct faults, improve performance, and to adapt the prod-

uct to a new environment [ANSI/IEEE standard 1219-1998]. It is reported that 50%

to 70% of the overall cost of a software is dedicated to maintenance [36]. Initiating,

evaluating, and controlling changes to the software system are the main activities of

software maintenance. We need to manage the evolution of the software and track

any change in it [33]. Software configuration management(SCM) started in the late

1960s and is a process for controlling changes in the life cycle of software development

as well as the maintenance life cycle [55].

1

1.1 Objective and goals of this dissertation

We know that software maintenance suffers from missed deadlines and exceeded bud-

gets. Our objective is to improve management in software maintenance by analyzing

a custom release history database in order to help managers to meet deadlines and

stay on budget. To meet this objective, first we import data from different resources

into our proposed release history database, including release histories, the develop-

ment environment, and the maintenance environment. In the next step, we show how

analysis and queries on our proposed release history database will help maintainers

and managers to improve software maintenance.

1.2 Organization of the dissertation

The remainder of this dissertation is organized as follows: In chapter 2, we provide

the necessary background for the thesis. In Chapter 3, we discuss the problem and

motivation behind our research. In Chapter 4, we discuss our proposal and in Chapter

5 we describe how we can build our proposed release history database and then in

Chapter 6, we discuss our methodology for achieving our goals. In Chapter 7, we

describe a case study to demonstrate how our proposed approach can be applied to a

software which is in maintenance. In Chapter 8, we discuss related works to our work.

In Chapter 9, we describe the automation and tool support. We list our conclusion

and provide recommendations for future research work in Chapter 10. Finally, in

Appendix A, we present the survey details we have performed for the thesis.

2

Chapter 2

Background

In this chapter, we provide some necessary theoretical background on software main-

tenance, management in software maintenance, issue tracking systems, and release

history databases.

2.1 Software maintenance

Software maintenance is defined as the modification of a software product performed

after delivery in order to [37]:

Adaptive maintenance: Adapt to a changing/new environment.

Perfective maintenance: Prevent latent faults from becoming failures or to im-

prove software attributes.

Corrective maintenance: Repair known problems.

3

Preventive maintenance: Prevent latent faults from becoming operational faults.

Every day the number of software systems moving into their maintenance phase

grows. This is a costly phase of the software life-cycle [35]. Studies in historic data

in legacy software systems show that the reasons for changes are divided into three

categories: adding new features, fixing bugs, and refactoring codes to accommodate

future changes [42].

2.2 Software maintenance: time and cost

Two of the major concerns in the software maintenance phase are how to estimate

the cost of maintenance releases in software systems [4] and how to stay within the

estimated cost. Many software companies see the software maintenance phase as the

most resource and time consuming [1]. Studies show most of the time and cost in

software development is spent on the maintenance of application. The maintenance

phase involves fixing bugs which are signaled by customers or the Quality Assur-

ance (QA) team, and new change requests which come from stackholders. Software

maintenance is the most difficult phase because of its cost and its error-prone nature.

Records show that 50-80 percent of the total budget of a software department

or software company is spent on maintenance; as a matter of fact, maintenance ac-

tivities are their most time and cost consuming activity[35]. Software organizations

are always interested in improving the maintenance phase in order to reducing costs.

This is one of the reasons why several organizations are interested in outsourcing

4

their maintenance activities. In most cases, software maintenance is executed across

the world as Global Software Development and Maintenance (GSDM) to benefit form

time and cost reductions [38].

2.3 Management in software maintenance

There are a couple of challenges in the maintenance phase. Software tool support for

maintenance achieves more productivity and improves the quality of software main-

tenance, but most tools are specialized for code analysis rather than for improving

management and process of maintenance [35]. Analyses of software maintenance

states show that insufficient management is the major problem in the maintenance

process. This causes low productivity; thus, the maintenance phase will not be on

schedule or on cost.

We know that existing information in large software systems is valuable data for

adjusting the future software process [19].

2.4 Software configuration management

Software configuration management is a type of discipline that shapes control, status

accounting and control audits to a given software product [8]. In the following sections

we describe different components/activities of software configuration management in

software maintenance.

5

2.4.1 The issue tracking system

The issue tracking system in the software development process is a system which

tracks issues, bugs and change requests from the starting point until the process ends

with a release. Most software development companies have issue tracking systems

in place. Today, software developments are distributed all over the world and most

software companies use web based issue tracking systems which are accessible around

the world.

The data in this system is the most important available management information

source for the improvement of software process decisions. The information in the

issue tracking system shows the full history of bugs, issues, and change requests.

Moreover, open source and even commercial software companies use open bug

repositories which let both end users and developers to follow how the software is

moving forward [26].

Some papers call the issue tracking system the defect tracking system, and it is

also sometimes referred to as the bug tracking system, but we prefer to call it the

issue tracking system as it is more general and covers bugs, issues, as well as change

requests.

Software development teams usually have their own workflow in an issue tracking

system based on their relation with customer, the team size, and the team’s distri-

bution around the world. Figure 1 presents a minimized workflow for bugs, issues,

and change requests during the maintenance. This workflow’s states are the most

common states in different workflows that we have studies in non-commercial and

6

Figure 1: A typical workflow of an issue tracking system.

7

commercial tools.

As illustrated in Figure 1, when bugs are discovered by testers or customers,

the status of the bug is indicated as NEW state. Then, the team leader or project

manager will make a decision about what the next state of bug or issue should be. If

the team leader decides to resolve this issue in the next release, then he/she will move

it to the next release and will assign it to a developer; the status will be changed to

ASSIGNED. In case it was not a bug, it will be changed to the WONT FIX state,

or in case they couldn’t reproduce it, it will be moved to the CANT REPRODUCE

state. If it is already on the bug list, the team leader will move it to the DUPLICATE

state.

Developers query the issue tracking system on a daily basis to find the tasks that

are assigned to them [62]. A developer will start working on a bug, a task, or an

issue and will change its status to IN PROGRESS. A developer will change its status

to RESOLVED when it is done. In the next step, testers will try to verify the bug

fix, and the state will be switch to IN REVIEW. In case the issue is verified by the

tester, it will be moved to the CLOSED status. If it is not resolved, the tester will

put the bug into the RE OPEN status , and it will be seen by the team leader or the

project manager. That is a typical workfow; teams develop workflow schemas based

on the nature of the project, the team size and the Service Level Agreement (SLA).

8

2.4.2 Code repository

While developing software and during the maintenance phase, the code always changes.

Therefore, we need to control these changes effectively. We control changes in code

through Revision Control, Version Control and Source Control management of changes

in the source code. Managing Version Control is a part of Software Configuration

Management. In software development, the term code repository refers to codes which

are stored in the version control system. The Code repository has all of the software’s

code.

Version control systems distinguish files by numbers which are called revision

numbers. These indicate the version of the file. Each new version of a file is stored in

the code repository gets a unique revision number. We have release numbers which

indicates the release of the software. Every release represents a snapshot of the latest

version of the codes in the code repository. We are using the Subversion (SVN) [59]

in our case study. After releasing a new version of a software, a symbolic number

as representive of the software release will be assigned to the revision number of the

current files [20].

Any software in the repository is managed in its trunk and branches. Figure

2 illustrates the trunk, branches, and release numbers. Different companies choose

different strategies for the management of trunks and branches. The most popular

one is shown in Figure 2. Most of the times, the trunk points to the ongoing stream

of codes, and for every release, the release management team usually makes a branch

or patch. As shown in 2, there is one branch for 1.0 which would be merged with

9

Figure 2: Trunk and branches in version control

the trunk in the future. Every release has its own branch. Every release has its

own information which is hidden in the version control. Code repositories allows us

have differences between two different branches and then we will be able to store their

differences. We can compare the newly released software against the last release. The

output of differences between the two releases is in text plain format. The output file

shows any code added or removed code from a file. In addition, a reference to the

issue number exists in every difference between a file in two different releases.

Generally speaking, a code repository keeps a record of every change of codes

which were ever checked in to the repository. We can therefore explore the history of

any of the resources which exist in the repository.

There are two types of version control systems. The first type is the centralized

version control system (CVCS) and the second type is distributed version control

system or decentralized version control system (DCVS).

In the centralized version control system, all the version control functions are

centralized on a server and there is one instance repository that is placed in the

central server. The most commonly used centralized version control systems are CVS

10

and Subversion (SVN) [13].

In terms of comparing centralized and decentralized version control systems, in a

centralized version control system, backupping data and maintaining servers is easier

because everything is in one place and because the system contains multiple reposi-

tories for multiple projects. Centralized version control systems allow developers to

have available and consistent systems. However, when we consider scalability and

distribution, the centralized version control systems are not good options.

Distributed version control systems work almost like centralized version control

systems, except that instead of one central repository, there are servers of repositories.

In distributed version control systems, we have multiple instances of the repository. A

new repository instance will be created using the clone operation and most operations

interact with the local repository, not with a network repository. Then, developers

could synchronize two repository instances using push command. This operation

sends a copy of some of the change sets into a remote instance. Two instances

probably will not be identical after running the push command. In order to fully

synchronize, developers should pull everything from the remote instance, and then

push everything to the remote instance. Distributed version control systems are more

popular in the open-source community.

In 2000, CollabNet Inc. decided to start developing the Subversion (SVN) project.

Subversion was released as open-source software. SVN is a good option for companies

with few locations. In SVN, like other centralized version control systems, every

project is stored in a central repository. The repository has all files of the project

11

with all changes and history information. When using SVN, the first step is to use the

import command in order to add an existing project to an existing repository which

will add existing files to the repository. The result will be a directory which is under

version control, called working copy. In the working copy, files can be modified locally.

Other developers can create working copy using the checkout command. Then, after

making changes, the checkin command sends the changes to the repository. Using

the update command, developers can bring recent changes from the repository into a

working copy. There are few other useful commands that developers need to know

about. A diff command creates a difference between a file in the repository and the

working copy. A conflict happens when two developers are trying to change a file and

the system is unable to resolve the change. Usually, conflicts are resolved by choosing

one of the versions by the developers or by integrating changes from both into the

repository.

2.4.3 The time entry system

The time entry system is used to log the amount of time which every team member

has spent on a specific task during the day. A task during the maintenance could

definitely be a bug, issue, or change request. Everyone in the team needs to log the

time they have spent on tasks. Some software organizations pay teams based on the

reports of the time entry system; this is done in order to incite them to be more

careful about recording their work. Today, software development is becoming more

globalized, and organizations will use more web-based time entry systems.

12

Figure 3: Release history database boundary

2.4.4 Release History Database(RHDB)

A software release includes a set of software changs that includes new functionali-

ties, changed functionalities or fixes on bugs that will be available in the production

environment. We can monitor and control software changes in the release history

database, which points to the information available in the software development en-

vironment from one release until the next. In general, the release history database

(RHDB) points to any raw data which can be retrieved and aggregated from any

source during the software development or maintenance phases.

In this thesis we will define a release history database for information which is

in the issue tracking system, code repository, and time entry system. Figure 3 il-

lustrates the boundary and information sources of the release history database. The

release history database contains a wealth of hidden information which could create

improvements and innovations in the field of the software maintenance.

13

Chapter 3

Problem and motivation

In this section, we discuss the problem and the motivation behind this research which

constitutes the scope of this dissertation. The primary motivation behind this thesis

is to show that analysis on a well bundled software history improves in software

maintenance.

We mentioned in Section 2 that the maintenance phase is the most time consuming

and expensive phase in the software industry. Inefficient management in software

maintenance is one of the reasons for low productivity in the maintenance phase

[35]. Inefficient management in software maintenance is also the root cause of missed

deadlines and surpassed budgets [35]. Senior managers usually give more priority to

software development as compared to the software maintenance; for example, junior

software developers are usually assigned to fix bugs and apply new changes in software

maintenance. However, assigning junior software developers may increase costs in the

long term and cause the organization to have less quality software in place. Moreover,

14

the maintenance phase is the first candidate for outsourcing to reduce costs. However,

outsourcing software could also bring more errors and bugs into the system.

We believe that a lack of efficient management in maintenance is one of the rea-

sons for the software crisis. On the other hand, the majority of studies in software

maintenance have been done around code analysis and feature [50] location, not on

improving software maintenance management. There have not been enough studies

about improving and innovating new approaches for management in software main-

tenance and most of the tools and studies for the maintenance have focus on the

code analysis. [35]. Management in software maintenance does not utilize thoroughly

enough advantage of information which is placed in software histories.

There are some commercial and non-commercial tools which contain a subset of

information we need in the release history database before analysis. DrProject [14] is

a project management tool that has revision control, issue tracking and mailing lists

integrated. Any project in DrProject supports wiki, subversion, ticket, mailinglist,

roadmap and tags. DrProject has two sets of the sources of information we need

for analysis, but the time parameter is not available for analysis. The other issue

is that the data from different sources in the DrProject are not related together.

This does not allow to perform analysis on the information which is stored. Jira

[28] is also another issue tracking system tool developed by Atlassian [2]. Jira allows

developers and maintainers to log their daily activities for tasks and bugs. In our

case study, we have used Jira as an issue tracking system and we have integrated

Jira with a version control system and time entry system. Hackystat [23] is another

15

open source framework for analysis, visualization and interpretation of data collected

during the software development process. It uses small software plugins as sensors

which collect data from the software development tools and subsequently sensors

send raw data to a repository in order for analysis. Sonar is another open source

framework which helps in highlighting complex areas of code that are insufficiently

covered by test cases that can be sources of future bugs. This automatic detection

of bugs allows teams to fix them before deploying the software in the production

environment. Sonar also increases the maintainability of the software by detecting

and reducing duplication, complexity, and potential bugs. Sonar helps managers

with bug prediction and software quality improvement in alternative way we use the

release history database. IBM Rational Team Concert [10] is a collaboration tool

that has task tracking, source control and build management, thus allowing teams

to track all aspects of their work. The IBM Rational Team Concert has two of the

three resources we need to integrate before analysis. Therefore, if we decide to use

the IBM Rational Team Concert, then we need to set up a time entry system in the

software maintenance environment; and in the next step we need to integrate these

three sources of information together. Our approach is to analysis the data that exists

in the release history database. The source of the data for release history databases

could be any issue tracking system, version control system or time entry system.

Our objective is to use existing software data which can be found in the release

history (See Section 2 for definition) in order to improve management in maintenance.

These improvements include reducing number of bugs from one release to the next

16

release, finding risky objects (See Section 6 for definition) and assisting managers in

choosing maintenance team and location.

One of the main issues for the utilization of release histories is that information

is scattered thorough different places in the software development/maintenance envi-

ronment. Therefore, the data in these resources are not valuable unless links are made

between the data. We analyze more amounts of the data which would lead to more

detailed, helpful results which managers can use to enhance software maintenance.

Several works have proposed using release history data to improve software mainte-

nance and these works used release history data to improve maintenance by predicting

bugs [34] or to determine the person who is the best choice for fixing bugs. Further-

more, there are some studies about helping maintainers with code comprehension and

code analysis [16] [17], but they do not directly help managers to improve manage-

ment in software maintenance. Managers are always worried about cost and time in

maintenance, and senior managers in the maintenance phase are always concerned

with choosing the maintenance geographical location and maintenance team.

17

Chapter 4

Proposal

As a solution to the short comings in management during maintenance, we build

a release history database (RHDB) and propose analysis on this database to help

maintainers and senior managers to help them improve this process. Our proposed

analysis on our suggested release history database helps managers not only assess the

current situation, but also provide a set of goals to shape the future behavior of the

software maintenance process. In this thesis, we will also provide a set of new metrics

for software maintenance that will help managers to control what is happening in the

maintenance process.

Our proposed approach is focused on analysis of an integrated release history

database from the three different resources presented as follows:

1. An issue tracking system which has historical information about bugs, issues,

and changes.

18

2. A code repository which has all source codes of the software and all code histo-

ries.

3. A time entry system which has all the time spent on tasks, bugs, issues and any

other task in the maintenance phase.

Previous works have mostly focused on the analysis of a limited set of sources. Most

of them used issue tracking systems and code repositories as major sources of informa-

tion. They have considered the time parameter in their studies implicitly. Therefore,

the metrics which are defined in previous works do not have time related parameters.

Moreover, in the literature, several works related to the mining of software repos-

itories fall into code analysis and bug prediction. Furthermore, information in the

release histories is not widely used to improve management in software maintenance.

Therefore, in this thesis, we present how to analyze and run queries against our

proposed release history database and complement the previous works by adding the

notion of time explicitly. By adding a time entry system, we have a more explicit

time parameter in our study which allows us to have a better understanding of what

happened in previous releases from the performance point of view.

To retrieve information from release history database, we need to select a time

period. In this work, we consider either the time period from one major Release to

the next major Release or the time period from one minor Release to the next minor

Release. For example, we can assume that a development team has released Release

1.1 to customers. The next minor release would be 1.2 which may include bugs’

19

Figure 4: Releases in development and maintenance phase.

fixations and change requests. Any activity after Release 1.1 to Release 1.2 would be

considered as a maintenance activity. The work-flow for issues is presented in Figure

1.

After Release 1.1, customers would raise bugs, issues, or asking for change requests

using issue tracking system. Maintainer would fix bugs and develop changes requests

definitely after the change impact analysis. Finally, as shown in Figure 4, the team

will deliver Release 1.2 which includes all fixed bugs and changes.

In this thesis, we integrate an issue tracking system, a code repository and a time

entry system as the main three resources to build a release history database to provide

more practical information about the software system. Each of these resources has

valuable information that is not valuable individually.

The expected contribution of our thesis is to improve software maintenance phase

by analyzing the integrated release history database that consists of three different

systems. Potential beneficiaries of this approach include maintainers and project

managers who can be more productive and on time. Our goal is to help managers to

20

prepare achievable plans in order to meet cost estimates and scheduling commitment.

In the following chapters, we discuss our methodology for proposing release history

database can be used to retrieve useful information from Release histories. In addition,

we explain how we extract a set of metrics from the proposed release history database

to evaluate the source code.

21

Chapter 5

Building a release history database

In this thesis, we propose an approach to build a release history database and analyze

its information in order to improve efficiency of software maintenance. To analyze the

software repositories, we need to prepare a suitable environment for retrieving release

history information which comes from different resources. This chapter presents our

approach to build a release history database.

The reminder of this chapter is organized as follows: In Section 5.1, we present our

three major sources of information namely an issue tracking system, a code repository,

and a time entry system while explaining how to integrate them so as to build an

integrated release history database. We also present the schema of our proposed

release history database. Section 5.2 presents how we set up a query system to retrieve

information from three sources of information.

22

5.1 Building an integrated release history database

In our proposed solution, we aggregate distinct data to build our integrated release

history database. As we addressed in Section 4, these valuable data are scattered in

different resources. We choose three major sources of information during software

maintenance to retrieve necessary information including an issue tracking system, a

code repository, and a time entry system.

Figure 5 shows an example of how in our proposed release history database the

data from the issue tracking system, the code repository, and the time entry system

are integrated and associated.

In our code repository every issue, bug, or change request is associated with a

revision number. As we have described in Section 2, the code repository assigns a

number to every check-in as a revision number.

Figure 5 also shows how an issue, bug, or change request is associated with at least

one piece of source code. Any entry in the issue tracking system is associated with one

or multiple records in the time entry system. For example, as seen in Figure 5, BUG-

4591, which is “New User Doesn’t Get Confirmation Email After Registration”, has

been raised by a customer and a developer has fixed it. By having association between

issue tracking system and code repository, we realize two classes (Register.Java and

RegisterAction.java) and one JSP page (register.jsp) have been modified during the

bug fix. Furthermore, we establish an association between the issue tracking system

and the time entry system which allows us to know that Jason has spent 2:00 hours

23

������� ���

Figure 5: An example to show how different data from Code repository, Issue tracking,
and Time entry systems are integrated and associated

24

fixing them.

First, we need to set up an environment to aggregate and integrate the issue

tracking system, the time entry system, and the release history database. The issue

tracking system and the time entry system have their own database while the version

controls keep all information in the plain text files. Therefore, we need to pull required

data from those two databases and the text files from our own release history database.

These resources have large amounts of data that would need a lot of disk space. We

do not need to acquire all of their data, so we pull out only the data which we need

in the analysis. The data we need for analysis includes: 1) The information that is

related to the issues 2) the information that is related the code 3) the information

that is related the time entry system. Figure 6 shows all the fields which we require

in order to analysis.

In order to store information coming from three different resources, we need to have

a Relational Database Management System (RDBMS): so the Relational Database

Management System will contain all data from the three mentioned resources. We

import the required information from these three applications and keep it in one

integrated release history database. Figure 7 describes the methodology we use to

build a release history database. Our methodology contains the following steps:

1. We build the release history database.

2. We retrieve and import data from the issue tracking system.

3. We retrieve and import data from the version controls.

25

4. We retrieve and import data from the time entry system.

We propose a schema for our release history database which is shown in Figure 6.

This schema contains 5 tables named revision history, time entry, issue, project and

user. As shown in Figure 6, on one hand, every issue corresponds with one or more

revision history entities. On the other hand, every issue record is associated with one

or more records in the timeentry table. Furthermore, the user table has a one-to-

many relationship with issue and timeentry tables. One of the significant differences

between our release history database and the other approaches is that our data are

strongly associated together. As discussed before, we need to the maintenance team

follow some rules for code check-in and booking thier time that are determined before

the maintenance phase. These powerful associations let us dig into the data and

analyze of it so that we can assist managers in the maintenance phase.

In order to establish associations between the three different resources, we need

maintainers to follow some rules. These rules need to be determined in the beginning

of the maintenance phase by team leaders; these rules will help to build association

between the different sources. Maintainers should be informed about the rules at

the beginning of the maintenance. In every issue tracking system, every issue or bug

has a unique identifier. Tools usually use a combination of an abbreviation of the

project name concatenated with a sequence number. For example, if the project is

online banking, the unique identifiers of issues are ONLINBNK-1, ONLINBNK-2,

... ONLINBNK-823. The primary rule that we need to team follow is mentioning

the issue’s unique identifier in every code check-in. The second rule that the team

26

Figure 6: Release history database schema

27

needs to follow is that every developer needs to mention the issue’s unique identifier

in the time entry system. The processor which will be described in this section tries

to find the issue unique identifier in any check-in message or any time entry record.

If the processor does not find the unique identifier, then a report will be generated

to inform the orphan records. The recommended solution is having some validation

scripts in order to verify that every code check-in and every time entry record has

a valid reference to an issue identifier. In case the maintainer forgets to put the

reference in the check-in message or time entry record, validation scripts will alert

the maintainer with a proper message. Having validation processes before any check-

in or booking any time entry record, will guarantee that all required information has

been provided for association building. Following the given rules will guarantee that

all required associations between issue, code revision and time entry records will be

in place.

5.2 Retrieving Required data from Three Resources

We finish building our proposed release history database by retrieving data from three

resources: our issue tracking system, our code repository, and our time entry system.

28

5.2.1 Retrieving information from the issue tracking system

The first step is retrieving data from the issue tracking system into a relational

database. As we mentioned before, issue tracking systems are being used by cus-

tomers, developers, testers and managers in different geographical locations and dif-

ferent time zones, so most issue tracking system applications are web-based appli-

cations. These applications store information in Relational Database Management

Systems (RDBMS). Moreover, issue tracking systems usually provide API s or web

services for developing plug-ins or doing queries. Thus, we would have two options

to retrieve the corresponding part of data into our release history database: 1) us-

ing API s or Web Services to get the required data or 2) directly accessing to issue

tracking RDBMS. We preferred to choose direct access to a Relational Database Man-

agement System because it was faster than using APIs to retrieve required data and

the process for retrieving data was running on the same host.

After any release and before starting any activity for the next release, we need

to import data from the issue tracking system to our release history database. We

import data from the issue tracking system to the issue table in our schema as shown

in Figure 6. The most important data (fields) coming from the issue tracking system

are as follows:

issueId: This field is a unique number in the issue tracking system and usually

is a combination of a project abbreviation and a sequence number.

projectId: This field is a foreign key to the project table which holds information

29

about all projects.

reporter: This field points to the person who has reported the bug, issue, or change

request.

assignee: This field shows the person to whom the issue is assigned.

summary: A summary of a task, bug, issue, or change requests.

description: This field has full descriptions and full details about issue, task, bug,

and change request.

issueType: This field indicates whether the issue is a task, bug, change request, or

issue.

issueStatus: This field indicated the status of the issue in the workflow which is

described in Figure 1.

original estmaition: Points to the original time estimation of the issue as specified

by managers, customers, or the team leader.

time spent: This field points to the actual time spent by a developer on an issue,

bug or change request.

environment: This field points to the environment where the bug or change request

has happened. For example, environment could be web, desktop, or iPhone.

priority: This field refers to the priority of the bug or task which is being specified

in work flow described in Figure 1.

lastUpdateDate: This refers to the date of the latest change on record.

created: This field refers to creation date of the issue, task, or change request.

30

Figure 7: Activity diagram for building release history database

These are the general fields in the issues table that are common in all issue tracking

systems.

5.2.2 Retrieving data from the code repository

The second step in building the release history database is retrieving data from the

code repository. As we mentioned, teams make branches after releasing software.

For example once the team has released version 1.3, the team would make a branch

and snapshot for the Release 1.3 codes. Therefore, after Release 1.3, the team has

a snapshot code from Release 1.3, as well as snapshots for Release 1.1 and Release

1.2. Moreover, having snapshots of all major and minor releases lets us have details

of changes between releases. We have the names of files which are changed, actions,

31

action dates, and the person in charge of the change. In this step, we import all

required information and raw data for each release from the code repository to our

Relational Database Management System. We import only the data which relates to

maintenance. Our approach needs to have all data which indicates the association

between any code check in and issues, so we need to import all required information

from the code repository and any other associated data in other parts of the soft-

ware maintenance environment. In order to achieve the association between the code

repository and other resources in our proposed schema, we keep the relationship of

code check in and issue as a one-to-one or one-to-many relationship.

We developed a component to have an automated import process. First of all, it

makes an automatic comparison of two code branches between the two latest releases

and then sends the outputs to text files. In the next step, the difference text proces-

sor processes output files and populates data to a table in our Relational Database

Management System. The data outputs to the revisionhistory table which you can

see in Figure 6. The revisonhistory table has the following fields:

revisonHistoryId: This field is the primary key to the table.

issueId: This field is a foreign key (FK) to the issues table.

userId:: We use this foreign key (FK) field to indicate the user who checked in codes.

User information is stored in the user table.

revision id: As we mentioned before, the revision number is a unique sequential

number pointing to the code changes that are checked into the code repository.

32

release number: This field points to the release number of software.

filename: This field indicates the name of the class, page, or any resource.

filePath: This is the file’s path in the current release

orig file: It points to the full path of the original file in the previous release.

dest file: File’s path in the current release

diff text: This field indicates the differences between the two files in the two releases.

action: It points to the type of the code versioning activities.

5.2.3 Retrieving information from the time entry system

Our third step in building our release history database is retrieving information from

the time entry system and populating data to our release history database. Software

companies usually use a time entry system to log a team’s spending time, and teams

are paid based on the records in the time entry system. Moreover, a time entry sys-

tem helps managers have the cost for each project. In the third step, we import data

from the time entry system to our RDBMS. Any record in the time entry system has

a one-to-many relationship with a bug, issue, or change request. We import informa-

tion to the timeentry table which is shown in Figure 6. This table keeps the following

information:

timeEntryId: This field is the primary key (PK) of the table

userId: A foreign key (FK) to the user table is stored here.

time worked: This field shows the time spent spent on bug, task, or change request.

33

startdate: The task’s start date is being stored in this field.

created: A field which shows when the record is created.

updated: This points when the record was last updated.

worklogbody: The developer or maintainer gives some details about the task in this

field.

There are two other tables in our schema shown in Figure 6: user and project.

The followings are fields that are in the user table.

userId: This field is the primary key(PK) of the table.

firstName: This field shows the developer or maintainer’s first name.

lastName: This field shows developer or maintainer’s last name.

email: This is the user’s email address. It is also plays the role of username in order

to login into to system.

location: This field specifies the user’s location.

We now have our release history database, and in the next section we are going to

analyze information which exists in the release history database in order to help the

software maintenance team have more efficient software maintenance. In the following

chapters, we present a set of queries to extract data from our proposed release history

database for specific management tasks which help manager in software maintenance

activities.

34

Chapter 6

Analyzing release history database

6.1 Introduction

The number of software systems rolling into the maintenance phase is rapidly growing

[35]. Support and maintenance is the most time consuming phase of the software

life cycle. Releases usually suffer from delays in delivery time and from being over

budget [35]. There is a difference between the planned and actual progress of a

software project [61], while managers usually do not have enough information to find

the reason for delays.

Our proposed approach is to analyze data in software release history database in

order to prepare reports for senior managers. Then, there will be a chance for man-

agers to improve things from one release to the next one. Several studies investigated

the roots of delays in software deliveries and reported different results. Herbsleb et

al. showed that distance and global software development is one of the reasons for

35

delays. In contrast, Nguyen et al. [47] reported that distance does not have a strong

effect on task completion times.

The aim of our study is to add the existing knowledge of the reasons of delays

and overruns in software development, specially in the software maintenance. In

our study, we analyze software repositories to find the subsystems, features, classes,

methods, or even code snippets which are root of delays in the software progress.

Our approach allows managers to have a report on pieces of codes, classes and even

methods for which the time spent for fixing bugs or changing code was higher than

the average time the team usually spends [40]. In general, there are two policies in

software maintenance: work-based time policy, and time-based policy [51]. In the

work-based policy, the team needs to do a fixed amount of work in an open time

frame. In the time-based policy, a fixed amount of time will be spent to maintenance.

The total cost of these two polices is almost equivalent [51], but both experience

delays in delivering software on time.

The remainder of this chapter is organized as follows: in Section 6.3, we introduce

risky objects which are obtained form analysis of the release history database. In Sec-

tion 6.4, we present our methodology by introducing a metric called Average Time

to Change a Line of Code in Release (ATCLiR) to measure the updating time for

each line of code. This metric helps managers to identify classes, methods, or subsys-

tems for which maintenance is more time-consuming than for previous releases. In

Section 6.5, we introduce two new metrics and a profile for each developer which will

help managers to choose the maintenance team. In Section 6.6, we explain how we

36

combine our proposed metrics into a new set of metrics by assigning different weights

to them in order to help managers identify the location for software maintenance. In

Section 6.7 we will help managers to make right decision by analyzing on the release

history database for future of the software.

6.2 Metrics

We are following certain activities for every metric. For metric definition, we use

the GQM (Goal-Question-Metric) method [6]. This method defines the metric based

on the goal we want to achieve from the measurement [11]. Empirical validation is

required to demonstrate the usefulness of a metric in a commercial application [7],

[18].

6.2.1 Metric Definition

Analyse issue tracking system, code version control and time entry system

For the purpose of helping management in the software maintenance

With respect to finding risky objects, finding time consuming code, recommending

maintenance team and recommending maintenance location

From the point of view of Software maintainers and managers in maintenance

In the context of Master thesis in Software Engineering at Concordia University

37

6.2.2 Planning

After the definition, we do planning for experiment. The planning is some prepara-

tion activities for how the experiment is conducted and has following activities:

Context selection. The context of the experiment was maintainers and managers

working in the maintenance phase of a commercial application.

Selection of subjects. The subjects were chosen for convenience. For example we

choose maintainers and managers working on a single project.

Variable selection. The independent variables are the metrics we are calculating.

The dependent variables are lines of code that are changed during bug fixing, number

of different type of bugs and time spent on bug fixing.

Instrumentation. The objects used in the experiment were different releases of a

commercial software.

Hypothesis formulation. We planned to test the following hypotheses:

First Hypothesis:

Null hypothesis : A code with more changes compared with previous releases is not

expected to have more bug reports in the next releases.

Alternative hypothesis : A code with more changes compared with previous releases

is expected to have more bug reports in the next releases.

Second Hypothesis:

Null hypothesis : Maintainers and locations with lower average of new introduced bugs

in 100 lines of code per release are not suitable for maintenance.

38

Alternative hypothesis : Maintainers and locations with lower average of new intro-

duced bugs in 100 lines of code per release are more suitable for maintenance.

Third Hypothesis:

Null hypothesis : Maintainers and locations with lower average of reopened bugs in

100 lines of code per release are not suitable for maintenance.

Alternative hypothesis : Maintainers and locations with lower average of reopened bugs

in 100 lines of code per release are more suitable for maintenance.

Instrumentation. The objects used in the experiment were java classes of a com-

mercial project are described in Section 7.

6.2.3 Operation

Preparation: We chose releases from software that were already released and there

were no activities on those releases. We only needed the software owner to give read

access to the software maintenance environment.

Execution: We had read access to the maintenance environment and we were able to

integrate required information from different resources. For threshold, described in

Section 6.4, a questionnaire is used. The questionnaire is described in the Appendix A

39

Data validation: We verify the information integrated from the three resources in

the release history database. It is important we do not have any code revision and

time entry record which is unrelated to at least one issue or bug. In our experiment,

we set up a pre-commit script for any code check-in which does not allow to code

check-in to the repository without having a valid issue id in the comment of code

check in.

6.2.4 Analysis and Interpretation

We analyzed the result in the detail in the Section 6.3, 6.4, 6.5.1 and 6.5.2.

6.3 Risky objects

We introduce risky objects as the objects in the software which may introduce new

bugs and defects to the software. Risky objects are the pieces of code bundled as

subsyetem, feature, class, or method which we suspect that may introduce new bugs

to the software.

There are a lot of studies about bug predictions in code and it was one of favorite

domains in mining software repositories [12]. They have used different techniques for

bug prediction in terms of complexity and type of techniques. Some bug prediction

techniques rely on various types of information like code metrics [5, 46] include static

40

code analysis, mining code repositories in order to predict bugs; some researchers

have worked on software process metrics like number of change requests and recent

activities [45, 9], while other researchers have worked on defect prediction based on

previous bugs [31, 24]. In general, previous researchers have covered two aspects

of defect predictions: the first one is relationship between software defects and the

second one is code metrics. Other studies have used other techniques. For example,

in [52], they have tried to predict number of defects based on the import relations.

There are studies which use software repositories to specify the objects which may

introduce new bugs to the software. We have extended their techniques to use more

resources from software repositories to get more accurate and specific result.

Jacek Silwerski et. al [54] showed that a significant percentage of bugs appear

after fixing bugs and applying changes. Their study [54] tries to locate bug fixes or

code changes that are inducing bug fixes. In another study, Backer et. al [3] have

called this concept fix-on-fix changes.

As our study shows, a code which is subject to huge changes due to multiple

bugs is also likely to indicate new bugs into the new release of the software during

maintenance. The time developers have spent on the changing code highlights that

there were challenging issues in those codes. The more time spent on a piece of code,

the greater the chance of introducing new bugs.

The maintenance team fixes raised bugs in each release, and then the QA team

verifies bug fixes. While the software passes QA controls and is close to release,

our software repository analysis reveals risky objects (features, subsystems, classes,

41

methods, or code snippets). Our analysis determines risky objects from the previous

release to current release.

We have focused on software maintenance. The quality assurance (QA) teams

test software before releasing it, but software always has some bugs. Our knowledge

and studies show that bug fixing usually does not need huge changes in the original

code unless we have a change request or refactoring in the code. From a quality point

of view, making huge change in the code for a bug fix is a flag that the bug was not

a normal bug and points us to a critical problem in that piece of code or subsystem.

In other words, we say that if we have changes in the code higher than the threshold

% change in a class, or in a method from one release to the next release, that is a flag

for having a error prone code, which we call a risky object in our thesis. We call this

threshold percentage as τ %. We take advantage of the study conducted in [52] and

we learn from their techniques.

6.3.1 Threshold for risky objects

We need to specify τ as a threshold for having risky objects. Code with changes more

than τ % change would be candidate to be flagged as risky object. We have decided

to choose the threshold based on a questionnaire from experienced developers and

maintainers. We did a survey asking five development team leaders, five QA team

leaders, and five delivery managers to determine threshold range for code changes

to identify risky codes. In Appendix A, the survey questions, survey audience and

their answers are described. Our survey showed that the average threshold, τ , is 24%.

42

When we address the threshold is 24, means that for τ more than 24% changes in the

code (because of fixing a bug in a class or pages), the class is a candidate for being one

of the classes or pages which could introduce new bugs to the software. Having a list

of classes and pages with more than 24% changes during a release (because of a bug)

is a flag for managers that those pieces of code and corresponding subsystems may

introduce new bugs to the next release. We call risky classes, pages, or subsystems

the ones that have code changes more than our threshold.

The τ in the query for analyzing software repositories can be modified based

on managers’ experience, project timing schedule, costs or other parameters during

software maintenance. However, a higher percentage threshold leads to increasing

risks of having more bugs in the next release.

Our objective was to help team leaders and managers in the maintenance phase.

The integrated release history database allows us to highlight risky objects before

releasing software. Therefore, project managers, delivery managers and risk officers

will have a chance to investigate and take appropriate actions once they are informed

about risky objects in the software release. For example, managers could ask senior

software developers to review code changes in risky objects. This notice will let the

team prevent the introduction of new bugs into the software.

To retrieve risky objects, we analyze all code changes which are from the latest

release upto now by mining in software repositories. In our analysis we will find out

the bugs and issues which code changes are related to. Furthermore, we will find out

the time spent on the code by querying in our proposed release history database. Any

43

Table 1: A high level quert for risky objects

SELECT
required fields

FROM
timeentry, issue, revisionhistory

WHERE
conditions for joining tables

AND
filter data for release = ?

AND
percentage of changes on objects is > threshold

class or page may have been changed multiple times in each release for different bugs

or change requests. For example: Register.java may have been modified and then

checked in to the repository for two different bugs in a release. In same example, our

query shows that Register.java has been changed for two bugs and three new features

which are raised in Release 1.2. Table 1 displays a high level query for retrieving

objects, including classes, and pages, which are candidates to introduce new bug into

the software.

6.4 Analysis for time consuming codes

In our approach, we introduce a metric called average time to change a line of code

in release (ATCLiR) which is measured during the progress of software maintenance

44

starting from the first major release, Release 1.0.0 or 1.0. We measure the average

time for updating each line of code performing maintenance tasks, including fixing a

bug, or adding a new feature.

Table 2: Average time to change a line of code in release(ATCLiR).
Release ATCLiR (min)

Release r1 t1

Release r2 t2

Candidate for Release r3 t3

Tang et. al [35] have introduced a metric called average time turnover of a

MRF(Maintenance Request Form) as a metric to help senior managers to control

situation.

They have calculated average time turnover of a MRF as follows:

Average time turnover of a MRF =

n∑

i=1
Ti

n
(1)

where we have T as the time for development on MRF, and n is the number of MRFs

in the release.

Then we calculate ATCLiR as follows:

ATCLiRr =

n∑

i=1
Ti

n∑

i=1
LCi

(2)

where T is the time spent for fixing any bug issues in each release, and LC

indicates the number of the Line of Code which is modified for the bug i or change

request i in the Release r.

Our proposed metric, ATCLiR, calculates the average time based on the lines of

code that have been changed. Therefore, the ACTLiR metric helps managers:

45

1. Compare and find the time consuming parts of code (the ATCLiR for the pre-

vious releases are smaller than the ATCLiR for the current one).

2. Decide and determine the next actions in order to deal with the time-consuming

codes. This method help managers to decide whether it is worth (time and

budget) continuing maintenance, or wether they should apply refactoring.

For example, if we assume that a team has started fixing bugs for Release r3, we

know that the ATCLiR (for an insert, update, or delete) for bug fixing in Release r1

was t1 minutes per line and that the ATCLiR for Release r2 was t2 minutes per line

which is shown in Table 2. While the team is maintaining and fixing bugs for Release

r3 and the QA team is testing software, there is a chance for managers to identify

classes, methods, or subsystems where their ATCLiR in Release r3 is more than the

ATCLiR of Release r1 and the ATCLiR of release r2.

We will illustrate a case in Chapter 7 to show how finding time consuming code

helps determining the snippet code, method, class or subsystem that may introduce

new bugs into the software.

The reason why we could retrieve this information from the release history database

is that we elaborate a powerful relation between the code repository, issue tracking

and time entry systems. The time factor for each bug or change request is available

for us because we have integrated the time entry system and issue tracking system

together. Furthermore, we have the number of the modified lines of code for each

bug or change request as we have integrated the code repository to the issue tracking

46

system. In Table 3, we present a high-level query to extract all the information from

the code repository, issue tracking and time entry in order to calculate the ATCLiR

metric.

Table 3: A high level query for time consuming code

SELECT
required fields

FROM
timeentry, issue, revisionhistory

WHERE
condition for joining tables

AND
filter data for release = ?

AND
filter in revisionhistory for release = ?

AND
spent time on unit of code > than average = ?

6.5 Recommending maintenance team

Software development is a construction process; in contrast, debugging and bug fixing

is a search process on codes, runs, and even on project history [62]. Maintainers can-

not trust the first developers’ assumption. Maintenance is therefore more challenging

than software development.

47

In our approach, we analyze the integrated release history database in order to help

managers choose developers with the best possible performance for the maintenance

phase. Based on the history of the maintainer’s activity in the past releases, the type

of activities in which they have participated, and their performance, we recommend

maintenance team for the next release. Some programmers are good in developing

new features while others are good in code comprehension, refactoring, and bug fixing.

A release history database has valuable information to let us know which developer

is the best choice for maintenance team. In this Section, we propose four different

metrics to help managers choose the maintainers for maintenance team.

ATCLiR calculates the average time to change a line of code in specific release.

It is clear that a higher amount of code change does not necessarily point to better

performance. Sometimes a developer writes a lot of code but introduces more new

bugs into the software. Therefore, we need to extend the ATCLiR metric by adding

information about the maintainers’ performance during maintenance. In other words,

ACTLiR is not enough for making decisions and we need to provide support using

new metrics. In this section, we also also introduce two new metrics in Section 6.5.1

and Section 6.5.2 which will help managers to arrange their team and choose the

maintenance location.

So far, we have average time to change a line of code in release(ATCLiR) for a

team during the different releases and we calculate their average.

There are some works which recommend organizing teams by applying heuristics

against data collected from the software development area in order to determine who

48

is an expert in what area of the system [39]. For example Expertise Browser [41] is

mining version controls to determine expertises in different areas. Then, researchers

come up to add more parameters to data driven from software repositories in order

to determine development teams; for example, Griba et al. [22] used the number of

line of code that each developer has modified. They have used number of line of code

as one of metrics to choose thier team. We have used existing techniques that mine

software repositories in order to determine the software development team. We will

discuss our approach in details.

In our approach, we combined average time to change a line of code in release

(ATCLiR) and two new metrics in order to help senior managers to select maintainers

for maintenance.

As we discussed in Section 6.4 Tang Li et. al [35] introduce the Average Time

Turnover of a MRF(Maintenance Request Form) to help senior managers to control

situations. They claimed that because the MRF is a core of maintenance activity,

monitoring the state of the MRF is a very critical task that needs to be performed.

Having the average time turnover of a MRF [35] does not lead us to any action on

the team to improve efficiency in the maintenance. We use these metrics in conjunc-

tion with more resources from software repositories. We analyze our proposed release

history database to calculate the average time turnover of a MRF for maintainers in

different releases.

In addition, we have valuable data from our release history database which shows

49

from which developer’s code reopen and new bugs come. Using these data, we in-

troduce two new metrics here which will help managers to choose maintenance team

based on the average number of introduced bugs and average number of reopened

bugs. These two metrics, namely average number of new introduced bug per 100 lines

of code in each release and average number of reopen bugs per 100 lines of code in

each release, are explained in the following section.

6.5.1 Average of new introduced bugs in 100 lines of code

per release

Maintainers may introduce new bugs to software while they are fixing bugs or applying

new changes. We call these bugs as new introduced bugs in fixes (NIBiF). Every

maintenance team uses its workfolw for the issue tracking system. A typical workflow

is shown in Figure 1. We need team leaders or maintainers to specify that the bug

is a bug from origin software or new introduced bugs in fixes or according to their

knowledge of the application. The root of new introduced bug in fixes could be one

of the following items:

1) Maintainers do not have enough knowledge about the business domain of appli-

cation, so fixing a bug or applying a change breaks a feature somewhere else. Studies

show that software knowledge usually is not documented very well, so maintainers

does not have enough knowledge about software. The NIBiF bugs are new bugs, but

their root cause is fixing of reported bugs in maintenance.

2) As shown in [54], a significant percentage of bugs are appears in after bug fixing

50

(fix-on-fix changes).

We need to consider new introduced bugs in fixes in releases by maintainers while

choosing a team for maintenance. Maintainers introduce these type of bugs while

fixing bugs or applying new changes. We calculate the average of new introduced

bugs in 100 lines of code per release, which in turn indicates the average number

of NIBiF which have happened in the total lines of code that were changed in the

release. We calculate average of new introduced bugs in 100 lines of code per release

as follows:

Average of new introduced bugs in 100 lines of code =

n∑

i=1
New Introduced Bugsi

n∑

j=1

LCj

100
(3)

where n is the number of bugs in the release and LC points to the number of Lines

of Code for any change or bug fix.

We need to specify new introduced bugs in fixes among the other type of bugs.

In our approach, team leaders and maintainers specify the type of the bug before or

while fixing the bugs or issues. They are allowed to change the type of the bug while

the maintenance team is working on the next release.

51

6.5.2 Average of reopened bugs in 100 lines of code per re-

lease

Fixing bugs is the most important responsibility of maintainers. We call a bug a

reopened bug if the bug appears again in the software after fixing the bug and releasing

software as a patch, minor, or major release. In the other words, if the bug is reopened,

this means that the bug is not fixed completely. The maintainer probably did not

spend enough time fixing the bug, or did not spend enough time reproducing all failure

cases in order to fix them, or the maintainer did not have enough knowledge in the

software’s business domain. All these cases usually happens when the maintainers

are different from the developers. Any reopened bug will give a bad reputation to

the software organization and will increase the cost. Therefore, it is important for

managers to choose a team in order to reduce the number of reopened bugs.

We analyze software repositories in order to retrieve the number of reopened bugs

introduced by a maintainer in any given release. For example, John has fixed 4 bugs

for Release 1.1.3. However, after the release, customers are starting to raise bugs and

they reopen 3 of 4 fixed bugs. This means that 75% of bugs are reopened.

By mining our proposed release history database software repositories, we intro-

duce a new metric as average of reopened bugs in 100 lines of code in release. We have

the number of reopened bugs in each release. Furthermore, we have the code change

which is associated for each bug. Therefore, we calculate the average of reopened

bugs in 100 lines of code per release from the associated software repositories which

52

are bundled in our proposed release history database. Meanwhile we can calculate

reopened bug percentage for any release. We calculate average of reopened bugs in 100

lines of code per release as follows:

Average of reopened bugs in 100 lines of code =

n∑

i=1
Reopened Bugsi

n∑

j=1

LCj

100

(4)

where n is the number of reopened bugs in the release and LC points to the number

of Lines of Code for any change or bug fix.

After introducing these metrics, we can use these metrics to build our maintenance

team. We determine values of metrics for maintainers during past releases, and then

we build the team based on the every maintainer’s performance.

In most cases of the software maintenance, the knowledge of the domain is an

important key for building the team; then our proposed metrics can be used as support

for techniques based on using knowledge and expertise as a key factor for building

teams. For example, Mocks et. al [41] are adding filters to the result of expertise

browser [41], which mines version controls to determine level of expertise in different

areas. In other words, we are using existing techniques in conjunction with our

proposed metrics (obtained from mining software repositories) in order to build our

software maintenance team.

53

Figure 8: Developers’ profile.

6.5.3 Developer’s Profile

Moreover, we can profile each of our maintainers by mining software repositories,

specially in our proposed related history database. After starting maintenance for

Release 1.0, we start profiling (See Figure 8) the average time turnover of a MRF

and average time to change a line of code in release (ATCLiR), the average of new

introduced bugs in 100 lines of code per release, and the average of reopened bugs in

100 lines of code per release. We keep and save this information as a part of the

developer’s profile, and managers can make the best decision for the maintenance

team. For example, we can monitor these metrics for each maintainer in Release 1.1,

1.2 and 1.3; if we have a significant increase or decrease for a developer, it would

be significant flag for senior managers to pay attention to that maintainer. We also

profile each developer as junior or senior developers.

54

6.5.4 Building team

As explained in the previous sections, we propose three metrics that can be calculated

from our proposed release history database. There metrics are the average time to

change a line of code in release (ATCLiR), the average of new introduced bugs in 100

lines of code per release, and the average of reopened bugs in 100 lines of code per

release. We elaborate on these metrics in order to choose maintainers for maintenance

team. In order to compare these metrics with each other, we need to normalize the

data for past consecutive releases. We use the Formula 5 in order to normalize a

number, x in the Formula, into a scale between a and b, such that the minimum and

maximum of existing numbers are A and B respectively.

y = a + ((x − A) ∗ (b − a))/(B − A) (5)

We propose maintenance team based on our proposed analysis in the software

repositories bundled in the release history database for the next release. Then, com-

paring the team’s activity and our predicted model, we show that our proposed team

would be more efficient.

Therfore, managers should normalize the three metrics of maintainers using For-

mula 5. Managers can keep results in a table like Table 4 which has normalized

numbers of metrics for maintainers. In the next step, team leaders and managers

need to specify how important are metrics for choosing maintainers in order to build

a team. Table 5 shows typical ranks for choosing maintainers. Thus, maintainer

should determine a rate for every metric. The rate can be a number between 0 to 10

55

Table 4: Normalized metrics for maintainers
Maintainers M1 M2 M3

Maintainer1 m1maintainer1 m2maintainer1 m3maintainer1

Maintainer2 m1maintainer2 m2maintainer2 m3maintainer2

Maintainer3 m1maintainer3 m2maintainer3 m3maintainer3

Maintainer4 m1maintainer4 m2maintainer4 m3maintainer4

Maintainer5 m1maintainer5 m2maintainer5 m3maintainer5

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)

Table 5: Importance rank of metrics to recommend maintenance team
Importance rate M1 M2 M3

Rank rankm1 rankm2 rankm3

M1: Average time to change a line of code in release
M2: Average of new introduced bugs in 100 lines of code per release

M3: Average of reopened bugs in 100 lines of code per release

or 0 to 100. The important thing for rate is that managers can give weight to met-

rics in order to compare maintainers using the metrics. The next step is calculating

maintainer’s rank based on the Formula 6.

Rankmaintainer =

n∑

i=1
rankmi ∗ mimaintainer

n∑

i=1
rankmi

(6)

Therefore, managers will have a ranking for maintainers. Managers will have a

number for the team like Table 6. The numbers in the table helps managers to choose

the maintenance team. The higher number(rank) for the maintainer means that the

maintainer is a better candidate for the maintenance team.

Our analysis for recommending maintenance team is based on one site (location)

and we did not consider the maintainer’s wage in our proposal for recommending

56

maintenance team. We would consider these two parameters in the next two sections

in order to recommend a location for maintenance.

Having more efficient teams will help us meet deadlines and stay on budget. In

this section, we showed how using our analysis techniques allows able to provide

this information to senior managers as our release history database powerfully be-

cause of combining three resources from software repositories during the maintenance

phase. Choosing maintainers for a team is not possible with only one or even two

resources. We can only retrieve this information if we integrate and highlight these

three resources. Table 7 presents a high-level query which we use for recommending

maintenance team.

Table 6: Comparing maintainers for recommending maintenance team
Maintainers Maintainer’s rank

maintainer1 rankmaintainer1

maintainer2 rankmaintainer2

maintainer3 rankmaintainer3

maintainer4 rankmaintainer4

maintainer5 rankmaintainer5

6.6 Recommending software maintenance location

Software organizations are interested in distributing their software development and

maintenance activity around the world in order to reduce the cost and also to have

software support in different time zones. The maintenance phase is always the first

candidate for outsourcing. There are several reasons that software organizations

57

Table 7: Query for recommending maintenance team

SELECT
required fields

FROM
timeentry, issues, revisionhistory, users

WHERE
condition for joining tables

AND
filter data for release = ?

AND
filter in revisionhistory for release = ?

AND
group for different developers

prefer to have development as an in-house activity and maintenance as an off-shore

activity. Here, we present two reasons for keeping software development in house and

outsourcing maintenance:

1) The first reason is that during the software development phase, developers

need to meet in person with customers, especially in the Agile software process where

there is a role player called the product owner who plays the customer role for the

development team. This is one of the reasons that software departments prefer to

keep development activities as in house activity.

2) If the developer is familiar with the business in his/her life, it would speed up

58

the development of software. For example, in a software for home mortgage admin-

istration, a software developer who lives in North America or developed countries

would be faster and more efficient in developing an amortization feature in a piece of

banking software compared to someone who lives a country where people buy their

home in cash.

Software companies have different choices for outsourcing maintenance. Table 8

shows the average cost per hour for software development in five typical cities around

the world.

Table 8: Average maintenance rate in five different cities
Maintenance Site Location Maintenance Rate(Hourly basis)

city1 costcity1USD

city2 costcity2USD

city3 costcity3USD

city4 costcity4USD

city5 costcity5USD

At first glance, a city with lowest rate is the best candidate to host maintenance,

but it maybe is not right place for the maintenance. Analysis in software repositories

in the release history database will help managers to choose the right place for the

maintenance, which may be not the less expensive one. Furthermore, in-house main-

tenance sometimes is more cost effective compared to outsourcing software mainte-

nance activities. Table 12 displays a high-level query for recommending maintenance

location.

How we can choose maintenance location? So far, we have metrics obtained from

59

mining software repositories. The value of metrics are in different ranges and are not

comparable. Therefore, we need to normalize the numbers to have them in one range

based on Formula 5. Table 9 shows the normalized average of the metrics that are

obtained from our analysis for latest releases for different locations. We want to use

these metrics to recommend maintainers, considering wage as a factor as well.

Table 9: Normalized metrics for different locations
Site Location M1 M2 M3 M4

city1 m1city1 m2city1 m3city1 m4city1

city2 m1city2 m2city2 m3city2 m4city2

city3 m1city3 m2city3 m3city3 m4city3

city4 m1city4 m2city4 m3city4 m4city4

city5 m1city5 m2city5 m3city5 m4city5

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance rate (Normalized)

We now have all metrics comparable together. In the next step, we need to rate the

importance of the metrics. Table 10 shows the typical ranking of importance of the

metrics. In other words, managers are trying to give them weight. Therefore, senior

managers can give more significant rates to the metrics which are more important for

them. In the next step we use Formula 7 in order to calculate location’s rank. The

result thus will be a list of locations which are ordered based on the metrics we have

retrieved from our proposed software repositories like Table 11.

Rankcity =

n∑

i=1
rankmi ∗ mirank

n∑

i=1
ratemi

(7)

60

We only recommend maintainers to the senior managers. They may consider other

factors, i.e.: soft skills, to choose the maintenance location for a release. We involve

the metrics which are retrieved from the software repository analysis.

Table 10: Importance rate of metrics to choose the location
Importance rate M1 M2 M3 M4

Rank rankm1 rankm2 rankm3 rankm4

M1: Average time to change a line of code in release
M2: Average of new introduced bugs in 100 lines of code per release

M3: Average of reopened bugs in 100 lines of code per release
M4: Maintenance rate per hour in USD

We analyze information in the release history database to recommend a location

for software maintenance. We would not be able have this unless we had all three

resources integrated in our release history database.

Table 11: Comparing locations for recommending maintenance location
Site Location Location’s Rank

city1 rankcity1

city2 rankcity2

city3 rankcity3

city4 rankcity4

city5 rankcity5

61

Table 12: Query for recommending maintenance location

SELECT
required fields

FROM
timeentry, issue, revisionhistory, user

WHERE
condition for joining tables

AND
filter data for release in (? , ? , ? ...?)

AND
filter in revisionhistory for release = ?

AND
group data for locations

6.7 Bug fixing vs refactoring vs developing from

scratch?

Software has its own age [48] and software dies gradually, moreover bug fixing by

junior developers during the maintenance phase sometimes makes code messy. Soft-

ware sometimes suffers from a weak design or a poor architecture. In both cases,

teams know that bugs will always present and customers will send bug reports after

each release. Senior managers expect that software will move to a stable state, and

they want to see that the rate of reported bugs eventually converges to zero. There is

always an open question for managers when bugs are exponentially increasing: should

62

we stop bug fixing and start refactoring or should we start rewriting the software (de-

veloping new software from scratch)? Technologies and frameworks are being changed

all the time. Sometimes developing software with new technologies and frameworks

is more reasonable (considering price and quality) compared to fixing bugs, adding

new features to old software, or even refactoring. That is a hard decision for senior

managers to make as they have to use time and cost as major parameters for their

decision. Refactoring or starting the development of new software has its own difficul-

ties. Customers and end users often resist changes and they are usually conservative.

The new software may not have the same functionalities as before.

The data that we have in a release history database and its analysis could help

senior managers to make the right decisions. Our analysis report could be one of

the parameters which could help senior managers to take a better approach. In any

release, we categorize all bug fixes activities into three different categories:

1. Bugs from origin software: These bugs are reported by customers or end

users and their root is not the bug fixes or change requests which were in

the latest major release. The cause of this type of bug traces back to the

development phase of the software. They are not related to the maintenance.

Senior managers are expecting that the number of this type of bug converges

toward zero after two or three patches or minor releases.

2. Reopened bugs from previous releases: These bugs which have been fixed

once, but they have been reappeared in the software.

63

3. New introduced bugs on fixes: This type of bug arises from fixes on bugs

or from adding new features. We have described this type of bug in Section

6.5.1.

We propose the following strategy after analyzing software repositories to help

senior managers to decide whether continuing maintenance, apply refactoring, or

design from scratch.

If 1) the number of bugs from origin software starts moving toward zero after

major releases, and 2) The number of reopened bugs from previous releases is not

increasing after minor releases or patches after major releases, we suggest letting

software remain in the maintenance phase. Decreasing bugs from origin software and

reopened bugs from previous releases means that the software is in a stable state and

is not suffering from bad design. New bugs are not introduced after each release and

we suggest keeping software in the maintenance state.

If 1) the number of bugs from origin software is not moving toward zero after

major releases, and 2) The number of reopened bugs from previous releases starts

growing fast; then we suggest refactoring or developing software from scratch. We

expect that the rate of bugs from latest development decrease over time if we have a

well developed software and well designed architecture.

Our approach in analyzing software repositories allows managers to make decisions

about their strategy for software maintenance. Table 13 displays high level query to

run against release history database to help managers to identify future path of the

software maintenance.

64

Table 13: Query for bug fixing vs developing from scratch

SELECT
required fields

FROM
worklogs, issues, revisionhistory, users

WHERE
condition for joining tables

AND
filter data for release in (? , ? , ? ...?)

AND
filter in revisionhistory for relase=?

AND
group on number of bugs and spent time for

different categories of bugs

6.8 Accurate estimation

Accurate estimation of software development effort is one of the most critical tasks

in software engineering [57]. We know that estimation from experts is the most com-

monly used approach for the estimation of software development effort [43] since at

least the 1960s. Expert estimation is more frequently used in estimation because

no evidence exists suggesting that formal estimation models lead to more accurate

estimations. Phan et. al [49] showed that the cause of 44% of overruns is opti-

mistic planning from managers. They showed that over-optimistic estimates and user

changes were the most important reasons of overruns.

65

The difference between estimated work time for a release and the actual spent

time is a challenge through the software life cycle. That difference is a big concern

in software maintenance and can lead to the project going over budget. Sometimes,

releases are more than 50% over budget. The difference between estimation and

actual work in a release may happen when we have delays for each task in the release.

In other words, the difference between estimation and actual time in tasks leads to

delays in delivery and being over budget.

Table 14: Accurate estimation query

SELECT
required fields

FROM
worklogs, issues, revisionhistory, users

WHERE
condition for joining tables

AND
filter data for release in (? , ? , ? ...?)

AND
filter in revisionhistory for release=?

AND
group data in order to compare estimation time vs

actual time

Our approach towards analysis of software repositories provides us reports which

help managers in the software maintenance phase to detect the reasons for missed

66

deadlines and exceeded budgets by using data which we have in the release history

database. We analyze integrated software repositories to retrieve the error rate for

each maintainer.

On the other hand, making accurate estimations on the tasks and bugs is a key

skill for managers and team leaders. We analyze software repositories bounded in the

release history database. We present reports to senior managers so that they know

how much team leaders’ estimations are real and close to actual spent time.

67

Chapter 7

Case Study

In this chapter, we illustrate our approach by using one case study. We have applied

our approach to an industrial project which was in the maintenance phase. This

experience illustrates how our analysis of the proposed release history database can

help managers in software maintenance to apply more efficient management practices.

Verification of our results in the case study can be confirmed by the incoming bug

reports, change requests, direct inspection of code, or change requests.

7.1 Choosing the case study

We have chosen a commercial application as our case study. This application is a

platform and core for mobile banking from a company based in Toronto, Canada. It

was first developed in Canada since 2007; then, the maintenance phase activities were

distributed around the world. It was developed in a web and mobile environment,

68

and recently extended to iOS and Android. It has around 141,000 lines of code. The

author was involved in the development and some releases in the maintenance of the

application. The company gave read access of the issue tracking system, code revision

system and time entry system to the author.

We had constraints when it comes to the selection of a suitable case study because

we had to choose a software which met the following criteria:

1) The software had to be in the maintenance phase. Our focus is on improving

management and efficiency in the maintenance; so we had to choose a software which

had been developed completely and was in the maintenance phase.

2) Our potential case study needed to have all our required information in the software

repositories. The information which we are looking to analyze exists in the different

softoware repositories. Therefore, it was important that the maintained application

had all required information in software repositories, even scattered in different places.

3) The maintenance team for our potential case study had to be well disciplined and

organized in order to follow rules about producing enough logs and information as

input for our analysis process. For instance, maintainers had to log all daily activities

based on the issues existing in the issue tracking systems.

Figure 9 shows our case study’s architecture. It is a J2EE application developed

using the most popular open source framework and technologies. It is developed in

Java [27] using Spring [56], Hibernate [25], Sitemesh [53], JSP [29], and MySql [44]

as a Relational Database Management System.

Our case study software has been released in version 3.9.0 recently, but we chose

69

Figure 9: Architecture of a J2EE application that we used as a case study

70

the ten minor releases: 2.9.x, 2.10.x, 2.11.x, 2.12.x, 2.13.x, 3.4.x, 3.5.x, 3.6.x, 3.7.x and

3.8.x and their patch releases to examine our approach to it. In order to have analysis

on software repositories, we need to build release history database with importing data

from different sources. The .x in 2.9.x and other releases means that it incudes all

patches/revisions (for example: 2.9.1, 2.9.2, 2.9.2 ...).

7.2 Building the release history database

In the first step, we built a proper release history database from the data which

accumulated during these ten releases (2.9.x, 2.10.x, 2.11.x, 2.12.x, 2.13.x, 3.4.x,

3.5.x, 3.6.x, 3.7.x and 3.8.x) and their patch releases (i.e: 3.6.1,3.6.2, 3.6.3,). We

ran the following three steps to build our release history database. We have used

the tool described in Chapter 9 to build the release history database. In the following

sections, we will show how we will build our release history database from the software

repositories.

7.2.1 Importing data from the issue tracking system

The first step for building the release history database is to import data from the issue

tracking system. Jira [28] is a commercial tool for task, bug, and issue management.

Jira is a web based application which can run with different Relational Database

Management Systems(RDBMS). MySql [44] is the RDBMS in our case study.

Jira keeps all information from the first day of the project, and we need to take the

71

information for the releases we need. We developed a component to read all existing

data from Jira and import only the data for the releases we need to our release history

database. We have described the table’s schema in Figure 6.

7.2.2 Importing data from the code repository

In this step, we imported data from the code repository to our release history database.

The Subversion [58] is being used as the code repository in our case study. As we

mentioned before, the Subversion keeps the change history of codes and documents

for all releases from the starting day of software. However, we only needed to have

information and change logs for the releases we need, so we have imported only

required data to our release history database.

7.2.3 Importing data from the time entry system

In our case study, software maintainers were using their own time entry system which

they have called TIES. It is a web based application in which developers logged

their daily activities. TIES keeps all information on its RDBMS. We developed a

component to get only the required data associated with the releases. The developed

component gets all the required information from TIES and populates it to our release

history database’s database. We need all time entry records for ten releases we chose.

We now have all required information placed in our release history database in our

database.

72

7.3 Analysis of release history database

By this time, we have built our release history database and it is ready to use for

analyzing data to improve software maintenance management. In our case study, we

were also aware that the maintenance team is located in different cities.

7.3.1 Retrieving risky objects

We have all the required data for Releases 2.9.x, 2.10.x, 2.11.x, 2.12.x, 2.13.x, 3.4.x,

3.5.x, 3.6.x, 3.7.x and 3.8.x. As we discussed before, code changes over a certain

threshold could be an alert that new bugs could have been introduced into the soft-

ware.

We ran queries against the release history database for code changes in Release

2.9.x, 2.10.x, 2.11.x, 2.12.x, 2.13.x, 3.4.x, 3.5.x, 3.6.x, 3.7.x and 3.8.x and the result

is displayed in Table 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24.

Based on our approach, we expected that these classes (classes with changes above

the threshold) should have introduced new bugs for the next Releases. We are trying

to verify it as follows: We have bug reports after each ten release; therefore, we will

verify our approach with the analysis of the release history database by considering

classes which are modified for bug fixes in each of ten releases and bug reports after

each release. Our analysis, as shown in Table 25 shows how many percentages of bugs

after each release are in the classes which were highlighted because those classes have

changes above the threshold. As shown in Table 25 at least 51.29% of bugs in ten

73

Table 15: Some of classes or pages in Release 2.9.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

SpecialPhoneCFilter.java Security 46.24%

PendingReferals.java Schedules 38.32%

PendingOutboundMessages.java Schedules 35.29%

ExhcnageRateService Services 29.43%

LicenseeCommissionRateService.java Services 25.32%

viewMyEarnings.jsp Dashboard 24.55%

Table 16: Some of classes or pages in Release 2.10.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

RewardPointService.java Reward Subsystem 51.20%

LifeCeycleListiner.java Base Framework 50.10%

TransactionLimitService.java Transaction Service 41.55%

TransactionActivityType.java Transaction Service 38.97%

CashoutBeanService.java Transaction Service 29.43%

InstalmentService.java Services 26.83%

Table 17: Some of classes or pages in Release 2.11.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

InstallmentTransactions.java Transaction Service 32.54%

LifeCeycleListiner.java Base Framework 22.42%

PostRedirectGetListener.java Base Framework 23.31%

referNewClient.jsp Client Area 35.32%

PendingTransactions.java Transaction
Management

32.91%

agentPanel.java Agent Area 29.32%

74

Table 18: Some of classes or pages in Release 2.12.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

AccessDecissionManager.java Payment Subsystem 33.29%

SpeicalCashFilter.java Base Framework 29.43%

SystemLedgerService.java Base Framework 53.11%

VoucherService.java Services 39.32%

refundPayment.jsp Cleint Area 24.19%

PostRedirectListner.java Base Framework 42.32%

Table 19: Some of classes or pages in Release 2.13.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

ServicePrevilageVoter.java Payment Subsystem 45.32%

TransactionComisionTimer.java Scheduler 29.56%

PayeeHandler.java Payment Framework 33.17%

PayLimitHandler.jsp Client Area 28.54%

RejectInvitionService.java Referral Service 33.19%

TransactionHandler.java Transaction
Management

43.22%

Table 20: Some of classes or pages in Release 3.4.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

LostReportService.java Reporting Subsystem 23.54%

PayeeManager.java Payee Subsystem 37.41%

CommisionRateLogService.java Base Framework 33.19%

SpeicalUserPermission.jsp Security 45.32%

QuickPayService.java Payee Subsystem 33.28%

BatchReferalService.java Batch Management 25.31%

75

Table 21: Some of classes or pages in Release 3.5.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

BatchInstalmentsBean.java Batch Management 38.29%

RefundPaymentService.java Payment Subsystem 39.21%

ChangeCorrectionReportService.java Base Framework 34.29%

referNewClient.jsp Client Area 35.29%

PendingToTransactionTimer.java Transaction
Management

29.19%

SpecialPrivilageVoter.java Security 43.22%

Table 22: Some of classes or pages in Release 3.6.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

InstallmentTransactions.java Payment Subsystem 28.32%

LifeCeycleListiner.java Base Framework 27.14%

PostRedirectGetListener.java Base Framework 29.19%

referNewClient.jsp Client Area 31.54%

PendingTransactions.java Transaction
Management

34.19%

agentPanel.java Agent Area 34.75%

Table 23: Some of classes or pages in Release 3.7.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

HttpSender.java Utils 33.29%

AgentCommissionRateDAO.java Payee Subsystem 37.31%

OutboundMessageService.java Base Framework 51.33%

referNewClient.jsp Client Area 37.32%

PrivacyHandler.java Security 29.32%

POSHandler.java Agent Area 41.23%

76

experimented releases are from the code which is highlighted as risky objects. There-

fore, querying for classes and pages for changes above the threshold will introduce

risky objects into the next release.

7.3.2 Finding time consuming codes

We mentioned in Chapter 6 that our approach helps to identify time consuming codes,

subsystems, or features in maintenance. Finding the most time consuming code in

each release gives a chance for managers to revisit those codes or make more aggressive

tests on those parts of the software, features or subsystems. Having more tests on

time consuming codes will prevent the introduction of new bugs into the software in

the next release.

In our case study, we analyzed the release history database for our case study.

In the first step, we calculated the average time to change a line of code in release

(ATCLiR) for releases from beginning of the project until the release candidate. In

the next step, we analyzed the release history database for release 2.9.0, 2.10.0, 2.11.0,

2.12.0, 2.13.0, 3.4.0, 3.5.0, 3.6.0, 3.7.0 and 3.8.0 in order to identify classes, features

and subsystems for which the times spent by the team was more than the average of

ATCLiRs.

We are verifying our approach to show that the time consuming code may intro-

duce bugs into the next release. For verification, we analyzed bugs that are raised in

2.9.0, 2.10.0, 2.11.0, 2.12.0, 2.13.0, 3.4.0, 3.5.0, 3.6.0, 3.7.0 and 3.8.0.

Table 26 shows how many percentages of bugs in each release comes from the

77

Table 24: Some of classes or pages in Release 3.8.0 with changes above a certain
threshold.

Class or Page Subsytem or feature Change

SystemCommissionRatesHandle.java Fees Subsystem 43.21%

GatewayLogServer.java Base Framework 56.21%

CashoutService.java Base Framework 25.32%

ProfitHandler.java Client Area 29.32%

VouchersPrepaidsBean.java Transaction
Management

41.33%

SearchResultWrapper.java Agent Area 29.92%

Table 25: Percentage of bugs coming from risky objects of releases
Release Percentage of bugs from

risky objects

Release 2.9.0 58.42 %

Release 2.10.0 63.60 %

Release 2.11.0 56.84 %

Release 2.12.0 73.12 %

Release 2.13.0 51.29 %

Release 3.4.0 63.29 %

Release 3.5.0 54.31 %

Release 3.6.0 63.81 %

Release 3.7.0 56.32 %

Release 3.8.0 63.26 %

78

classes which maintainer spent time more than the ATCLiR for previous releases. It

shows at least 43.21% of the bugs came from the code for which the team has spent

more than an average amount of time.

7.3.3 Recommending maintenance team

Our approach helps senior managers to choose, and coach, the maintenance team for

each release. As we have mentioned in Chapter 6, developing software and maintain-

ing software requires two different skill sets. Our approach makes suggestions to help

senior managers and human resource (HR) managers choose the best developers for

maintenance.

We analyzed the release history database to calculate introduced metrics: average

number of introduced bugs and average number of reopen bugs. Table 27, 28, 29, 30,

31, 32, 33, 34, 35 and 36 shows our analysis result for fixes on releases 2.9.0, 2.10.0,

2.11.0, 2.12.0, 2.13.0, 3.4.0, 3.5.0, 3.6.0, 3.7.0 and 3.8.0.

Each of those metrics has its own weight; in our case we specified their rank based

on the senior managers’ point of view. They gave to the three metrics equal rank to

the average time to change a line of code in release, average number of introduced bugs

and average number of reopen bugs. The rank column is calcualted based on Formula

5. The maintainers with higher ranks are better choice for the mainteance team.

Table 37 shows the bugs from the maintainers whose their rank are greater than five

in each release. It shows maximum 45.31% of bugs are coming from maintainers that

their rank’s are at least five from ten.

79

Table 26: Bugs from time consuming code in different releases
Release Percentage of bugs from

time consuming

Release 2.9.0 53.72 %

Release 2.10.0 58.96 %

Release 2.11.0 56.60 %

Release 2.12.0 43.27 %

Release 2.13.0 74.51 %

Release 3.4.0 64.32 %

Release 3.5.0 53.34 %

Release 3.6.0 48.92 %

Release 3.7.0 54.32 %

Release 3.8.0 64.31 %

Table 27: Normalized metrics for maintainers for Release 2.9.0
Maintainers M1 M2 M3 Rank

Maintainer 1 5.77 5.23 8.15 6.39

Maintainer 2 4.76 6.01 5.84 5.54

Maintainer 3 7.59 4.42 7.01 6.34

Maintainer 4 6.64 5.30 7.15 6.43

Maintainer 5 4.02 5.26 5.84 5.04

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

80

Table 28: Normalized metrics for maintainers in Release 2.10.0
Maintainers M1 M2 M3 Rank

Maintainer 1 4.54 7.26 5.87 5.89

Maintainer 2 4.87 6.43 6.98 6.09

Maintainer 3 5.23 6.34 4.76 5.44

Maintainer 4 6.22 8.64 8.08 7.64

Maintainer 5 7.75 8.97 8.66 8.46

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

Table 29: Normalized metrics for maintainers in Release 2.11.0
Maintainers M1 M2 M3 Rank

Maintainer 1 8.06 6.14 4.53 6.24

Maintainer 2 6.39 5.22 8.42 6.68

Maintainer 3 8.03 3.21 4.81 5.35

Maintainer 4 6.00 4.68 3.22 4.63

Maintainer 5 7.54 7.91 4.33 6.59

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

Table 30: Normalized metrics for maintainers in Release 2.12.0
Maintainers M1 M2 M3 Rank

Maintainer 1 6.99 4.50 7.59 6.36

Maintainer 2 2.21 4.06 6.46 4.24

Maintainer 3 5.75 5.49 3.42 4.89

Maintainer 4 5.49 5.10 6.49 5.69

Maintainer 5 6.79 4.00 4.62 5.14

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

81

Table 31: Normalized metrics for maintainers in Release 2.13.0
Maintainers M1 M2 M3 Rank

Maintainer 1 3.82 8.27 6.88 6.32

Maintainer 2 6.05 4.10 4.76 4.97

Maintainer 3 4.62 8.27 5.77 6.22

Maintainer 4 5.20 3.54 6.10 4.99

Maintainer 5 4.65 8.33 7.46 6.81

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

Table 32: Normalized metrics for maintainers in Release 3.4.0
Maintainers M1 M2 M3 Rank

Maintainer 1 5.41 7.31 7.44 6.72

Maintainer 2 5.67 6.26 5.69 5.96

Maintainer 3 4.17 6.39 5.24 5.27

Maintainer 4 5.68 5.36 4.53 5.19

Maintainer 5 5.36 8.38 7.93 7.22

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

Table 33: Normalized metrics for maintainers in Release 3.5.0
Maintainers M1 M2 M3 Rank

Maintainer 1 5.18 8.22 8.03 7.14

Maintainer 2 6.55 4.67 7.86 6.36

Maintainer 3 4.32 8.11 4.28 5.57

Maintainer 4 6.17 7.38 4.49 6.01

Maintainer 5 5.39 6.63 3.69 5.24

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

82

Table 34: Normalized metrics for maintainers in Release 3.6.0
Maintainers M1 M2 M3 Rank

Maintainer 1 2.58 4.43 3.78 3.59

Maintainer 2 2.79 6.87 5.10 4.92

Maintainer 3 6.78 6.09 4.62 5.83

Maintainer 4 3.48 4.09 3.90 3.82

Maintainer 5 5.48 5.43 3.78 4.90

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

Table 35: Normalized metrics for maintainers in Release 3.7.0
Maintainers M1 M2 M3 Rank

Maintainer 1 5.60 5.29 5.08 5.32

Maintainer 2 5.69 7.21 6.80 6.57

Maintainer 3 2.87 3.20 7.09 4.39

Maintainer 4 3.81 4.41 5.20 4.48

Maintainer 5 2.84 3.76 6.36 4.32

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

M3:Average of reopened bugs in 100 lines of code per release (Normalized)

Table 36: Normalized metrics for maintainers in Release 3.8.0
Maintainers M1 M2 M3 Rank

Maintainer 1 2.29 7.29 4.51 4.70

Maintainer 2 4.90 5.36 7.25 5.84

Maintainer 3 6.08 6.25 5.76 6.00

Maintainer 4 3.28 7.75 5.18 5.41

Maintainer 5 3.45 7.23 7.86 6.18

M1:Average time to change a line of code in release (Normalized)
M2:Average of new introduced bugs in 100 lines of code per release (Normalized)

83

7.3.4 Recommending maintenance location

As we discussed in Chapter 6, our approach helps senior managers to choose a location

for maintenance. We have verified our approach for releases 2.9.0, 2.10.0, 2.11.0,

2.12.0, 2.13.0, 3.4.0, 3.5.0, 3.6.0, 3.7.0 and 3.8.0 of our case study. Maintenance

activities for these releases were distributed in different cities around the world.

Our approach suggests locations to the managers to host the maintenance phase.

We will try to recommend the location by considering the average time to change a

line of code in release, average of new introduced bugs in 100 lines of code per release

and average of reopen bugs in 100 lines of code per release. Table 38, 39, 40, 41, 42, 43,

44, 45, 46 and 47 shows normalized metrics for different locations based on the data

in the release history database captures for releases 2.9.0, 2.10.0, 2.11.0, 2.12.0, 2.13.0,

3.4.0, 3.5.0, 3.6.0, 3.7.0 and 3.8.0. We gave equal rank to the calculated metrics and

rate per hour. The rank column in these tables for each release is calculated based

on Formula 7. The locations with higher ranks are better choice for the mainteance

location.

In the next step, we verify our approach for recommending the location. We

have analyzed release history database for reported bugs after the releases grouped

by different locations and Table 48 shows bug reports after each release. It shows

maximum 45.31% of bugs are comming from the locations which are recommended

by our approach.

84

Table 37: Bugs from recommmended maintainers in different releases
Release Percentage of bugs

Release 2.9.0 29.32 %

Release 2.10.0 45.31 %

Release 2.11.0 29.31 %

Release 2.12.0 31.66 %

Release 2.13.0 25.91 %

Release 3.4.0 39.62 %

Release 3.5.0 35.31 %

Release 3.6.0 18.85 %

Release 3.7.0 14.17 %

Release 3.8.0 34.31%

Table 38: Recommending location for Release 2.9.0
Location M1 M2 M3 M4 Rank

New York 3.52 7.38 8.33 1.00 5.06

Paris 3.31 7.34 5.82 4.60 5.27

Toronto 3.38 4.03 7.54 6.40 6.38

Montreal 3.13 7.84 3.68 6.76 5.35

Hidarabad 5.05 7.18 7.74 10 6.15

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

85

Table 39: Recommending location for Release 2.10.0
Location M1 M2 M3 M4 Rank

New York 6.01 4.25 7.86 1.00 4.78

Paris 6.55 7.07 7.53 4.60 6.44

Toronto 6.35 5.12 3.62 6.40 5.37

Montreal 3.81 3.91 6.21 6.76 5.17

Hidarabad 6.34 6.11 8.44 10 7.72

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

Table 40: Recommending location for Release 2.11.0
Location M1 M2 M3 M4 Rank

New York 5.34 7.30 8.32 1.00 5.49

Paris 2.26 6.13 5.67 4.60 4.67

Toronto 6.86 8.00 5.56 6.40 6.71

Montreal 5.46 7.31 6.32 6.76 6.46

Hidarabad 3.07 4.53 6.30 10 5.97

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

Table 41: Recommending location for Release 2.12.0
Location M1 M2 M3 M4 Rank

New York 5.25 6.35 8.32 1.00 5.49

Paris 4.67 4.21 6.04 4.60 4.67

Toronto 6.46 5.02 5.32 6.40 6.71

Montreal 4.64 5.73 8.30 6.76 6.46

Hidarabad 2.34 5.51 5.43 10 5.82

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

86

Table 42: Recommending location for Release 2.13.0
Location M1 M2 M3 M4 Rank

New York 6.30 7.30 7.52 1.00 5.53

Paris 2.97 6.25 5.34 4.60 4.79

Toronto 3.38 4.69 7.01 6.40 5.37

Montreal 6.89 6.66 4.44 6.76 6.22

Hidarabad 2.31 5.32 4.56 10 5.55

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

Table 43: Recommending location for Release 3.4.0
Location M1 M2 M3 M4 Rank

New York 4.06 4.91 3.75 1.00 3.43

Paris 4.72 6.93 6.38 4.60 5.66

Toronto 2.74 3.72 5.62 6.40 4.62

Montreal 4.88 7.31 6.31 6.76 6.31

Hidarabad 3.00 3.55 6.99 10 5.89

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

Table 44: Recommending location for Release 3.5.0
Location M1 M2 M3 M4 Rank

New York 7.98 6.43 8.01 1.00 5.86

Paris 8.02 8.09 4.91 4.60 6.41

Toronto 8.08 5.08 4.45 6.40 6.00

Montreal 2.04 7.95 7.05 6.76 5.95

Hidarabad 4.56 5.17 3.45 10 5.80

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

87

Table 45: Recommending location for Release 3.6.0
Location M1 M2 M3 M4 Rank

New York 5.40 6.77 8.90 1.00 5.52

Paris 4.63 8.43 5.73 4.60 5.85

Toronto 6.13 3.58 7.16 6.40 5.82

Montreal 4.67 5.26 7.79 6.76 6.10

Hidarabad 2.17 4.96 3.53 10 5.17

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

Table 46: Recommending location for Release 3.7.0
Location M1 M2 M3 M4 Rank

New York 6.32 5.97 7.46 1.00 5.19

Paris 4.54 6.11 4.16 4.60 4.85

Toronto 6.16 4.01 3.54 6.40 5.03

Montreal 6.39 4.32 4.27 6.76 5.43

Hidarabad 4.97 5.27 5.55 10 6.45

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

Table 47: Recommending location for Release 3.8.0
Location M1 M2 M3 M4 Rank

New York 7.43 8.21 8.32 1.00 6.24

Paris 5.87 6.52 4.04 4.60 5.26

Toronto 3.43 7.04 6.45 6.40 5.83

Montreal 3.16 8.43 7.48 6.76 6.46

Hidarabad 3.42 5.32 4.53 10 5.82

M1: Average time to change a line of code in release (Normalized)
M2: Average of new introduced bugs in 100 lines of code per release (Normalized)

M3: Average of reopened bugs in 100 lines of code per release (Normalized)
M4: Maintenance Rate (Normalized)

88

7.3.5 Fixing bugs, or refactoring, or developing from scratch?

As we discussed on Chapter 6, making the right decision for the future of the software

in maintenance is one of the hardest decisions in the maintenance phase.

In our case study, we chose release 2.9.0, 2.10.0, 2.11.0, 2.12.0, 2.13.0, 3.4.0, 3.5.0,

3.6.0, 3.7.0 and 3.8.0. We analyzed the release history database to give a suggestion

for future strategy of the software. We analyzed release history database to calculate

number of different type of bugs which we have introduced in Chapter 6 including

bugs from origin software, reopened bugs from previous releases, and new introduced

bugs on fixes. Table 49 shows our proposed recommendation considering the three

different type of bugs bugs from origin software, reopened bugs from previous releases

and new introduced bugs on fixes.

7.3.6 Accurate estimation

We try to use our analysis in order to veify how good are managers in estimating of

maintenance tasks and how good are maintainers in fixing bugs on time. Table 50

and 51 shows the estimated time, actual time and error percentage for maintainers

and team leaders.

89

Table 48: Bugs from recommmended locations in different releases
Release Percentage of bugs

Release 2.9.0 29.32 %

Release 2.10.0 45.31 %

Release 2.11.0 29.31 %

Release 2.12.0 31.66 %

Release 2.13.0 25.91 %

Release 3.4.0 39.62 %

Release 3.5.0 35.31 %

Release 3.6.0 18.85 %

Release 3.7.0 14.17 %

Release 3.8.0 34.31%

Table 49: Maintenance strategy proposed for 10 releases
Release B1 B2 B3 Recommended strategy

Release 2.9 22 56 18 Remaining in maintenance

Release 2.10 22 51 2 Remaining in maintenance

Release 2.11 16 56 16 Remaining in maintenance

Release 2.12 13 21 10 Remaining in maintenance

Release 2.13 11 21 4 Remaining in maintenance

Release 3.4 19 37 21 Remaining in maintenance

Release 3.5 15 21 14 Remaining in maintenance

Release 3.6 9 43 11 Remaining in maintenance

Release 3.7 9 36 8 Remaining in maintenance

Release 3.8 6 39 3 Remaining in maintenance

B1: Number of bugs from the orogin software
B2: Number of reopened bugs from previous releases

B3: Number of new introduced bugs on fixes

90

Table 50: Estimation accuracy for maintainers in ten releases
Maintainers Total Estimation Time Total Spent Time Error

Maintainer 1 1254:00 1489:00 18.74 %

Maintainer 2 1764:00 1983:00 12.38 %

Maintainer 3 1811:00 2182:00 20.47 %

Maintainer 4 1698:00 2300:00 35.40 %

Maintainer 5 1470:00 1932:00 31.42 %

Table 51: Estimation accuracy for team leaders in ten releases
Team Leaders Total Estimation Time Total Spent Time Error

Team Leader 1 6789:00 7932:00 16.84 %

Team Leader 2 5981:00 8932:00 49.34 %

91

Chapter 8

Related Work

Our work is based on retrieving and analyzing information from a release history

database in order to help maintainers and managers for their next releases. Our

proposed release history database can help them to be more productive and to keep

within their time schedule and budget.

Some of the latest studies are based on the manipulation of historical data in

order to build prediction models. They use historical data to predict bugs and the

location of defects, and managers now have more chances to allocate resources for

testing towards these identical areas [15]. Those studies used source codes more than

any other sources in release histories. Some of them are focused on the data coming

from information about bugs, issues, and change requests, which are located in the

release history database. Other groups have focused on visualizing release history

database to provide more understanding about making decisions that improve the

software maintenance phase.

92

Patrick et al. [32] presented an approach to detect visual patterns in the data that

are stored in the issue tracking system. They have presented different views such as

Polymetric View, and the Phase View. The Polymetric View consists of a box whose

width is the value of the estimated effort and whose height represents the actual effort.

In this way, managers and developers can have a quick and effective overview of the

quality of the estimation. Square boxes show balanced estimates. Thin tall boxes

show underestimated tasks that need more resolution efforts. On the other hand,

overestimated predictions feature more effort than is actually needed. The second

view is the Phase View, which is a visualization of the time which is being spent on

process steps. They consider submitted, in analysis, in resolution and in evolution

as the process steps. The Phase View Visualization is a third view which displays

a visualized statistics for the Process Life-cycle Sequence, which includes submitted,

analysis, resolution, and evaluation. This view displays the time which is spent for

each Process Life-cycle and helps to improve the process and speed up the project.

The difference between this thesis and their work is that they do not bring up any

information from the code repository.

Harald et al. [21] worked on having 2D and 3D visualizations of the Software

Release History in order to make is easier to understand large softwares systems,

which contains Time, Structure, and Attribute. Time is representing Release Sequence

Number (i.e: 1.0, 1.1 ...), and the structure shows the decomposition of systems which

are modules and their relationships. Finally, the attributes are the version number,

size, complexity, and defect density which are associated with system modules. This

93

data was extracted from the source code stored in the database, and then, based on

the stored data, they were presented in 2-D and 3-D graphs . In the 3-D graphs,

z represents the Time, which is the Release Sequence Number. For each Release

Sequence Number, we have a 2-D or 3-D graph which is associated with the structure.

In each structure, the detailed diagram shows attributes. A hierarchal visualization

of software based on the Software Release History allows developers, maintainers,

and managers to visualize and to compare multiple releases. The authors preformed

a pioneering study on the visualization Software Release History, but they didn’t

consider more detailed metrics for retrieving data from the database.

Tang et al. [35] proposed a practical software maintenance model which takes

into account that 50-80 percent of budget is spent on the maintenance phase. They

have tried to improve the maintenance process. They have defined four roles in

the maintenance organization: user, coordinator, decision-maker, and maintenance

operator. Every Maintenance Request Form(MRF) experiences six states: accepted,

analyzing, waiting, maintenance, reviewing, and finished. They have found that it is

not enough to manage the flow and track a MRF because it will not help to improve

the maintenance process. What they need is to have some measurements to help

them resolve more questions.They have defined three measures which come from the

release history information: 1) average time of a MRF 2) average cost of a MRF

3) number of MRFs in a week. These three metrics help managers to build more

productive and efficient teams. For example, an increased ’average time of MRF’ as

compared to previous releases, could signal the lack of efficiency in the maintenance

94

team. The percentage of tasks which are finished on time or the percentage of tasks

which exceed budget are two other measures which are provided in their paper on the

maintenance phase. Their focus was practically on management issues and proposing

a practical maintenance model. We have the same concern which they had about

management of the maintenance phase, but we have involved more sources on the

metrics which we have provided. For example, they didn’t use the code repository in

their status while we have it in our study.

Michael et al. [20] introduced an approach for populating a Release History

Database that comes from Version Control and Bug Tracking applications. They

have used a SQL database and scripts for retrieving information from those two

sources. They have implemented their approach on CVS as their Version Control and

Bugzilla as their Bug Tracking System. They have imported information from these

two sources into a single schema in a RDBMS. Then, as a case study, they evaluated

their approach for the timescale, historical, and coupling aspects of the software. The

flaw in their work is that they have not provided any predefined queries or metrics for

use in software maintenance or software evolution. They have just provided a plat-

form which contains data and software developers should retrieve information based

on their software knowledge.

Michael et al. [19] pointed out that the data derived from the software’s evolution

enables engineers to know more from the past and anticipate future changes. They

have tried to bundle together pieces of problem report information which correspond

to a certain feature and to determine out the dependencies between files. Their

95

contribution was towards tracking features by analyzing and reporting bug report

data which comes from a release history database. Moreover, they have visualized

the tracked features by emphasizing their non apparent dependencies. They have

used their release history database to help maintainers to locate features.

96

Chapter 9

Automation and tool support

For a proof of concept, we have implemented a prototypical web based application tool

to support the proposed methodology. This tool allows maintainers and managers

to build their own release history database and then, in the second step, it lets

maintainers and managers run queries against the release history database.

This implementation could be done in different ways; for example, as a stand

alone application, IDE plug-in, or web application. We chose the third approach for

two reasons: 1) A web based application can be used by different people around the

world in teams without installing any tool into their local computers 2) Our required

data is on the servers and usually takes an enormous amount of space; we would not

be able to replicate data to local personal computers.

The tool is architecturally developed based on the J2EE architecture. We have

used three layer architecture, and we have used Model-View-Controller (MVC) archi-

tecture. MVC is particularly well-suited for interactive web applications. We have

97

Figure 10: Choose import issue tracking system to import.

used Tomcat [60] as our application server, and MySql [44] as our Relational Database

Managment System.

The tool is composed of the following components:

Import component of issue tracking system: This component allows main-

tainers to import the issue tracking system to our release history database. Figure

10 displays the page which allows the maintainer to choose the source and target

database to import. In the next step, the maintainer chooses the right mapping be-

tween the source and target fields. In Figure 11, we need to choose the right fields

for mapping fields to the issues table in our proposed schema.

Import component of code repository: This component is responsible for

importing data from the code repository to our release history database. Figure 12

98

Figure 11: Choose the right fields to import into the issues table.

99

Figure 12: Choose code repository specifications to import.

shows the page where maintainers may enter the code repository information in order

to import it to our release history database. The tool allows maintainers to import

only data which is for the specific version in the code repository. The reason is that

we do not want to import huge amounts of data pertaining to all of the development

and maintenance history. This tool supports the SVN [59] code repository and the

tool could be extended in order to support more code repositories in the software

industry.

Import time entry system:. This component is used to import data from the

time entry system to the release history database. In Figure 13, maintainers can

100

Figure 13: Choose time entry specifications to import.

choose source fields in order to import data to the worklog table.

Executing queries: There is a page for executing queries. In Figure 14, main-

tainers can specifiy the release and type of the query to execute.

Our developed tool supports a typical maintenance environment and should be

customized for any other maintenance environment.

101

Figure 14: Executing queries

102

Chapter 10

Conclusion and recommendations

for future work

10.1 Summary and conclusion

In this dissertation, we have proposed an approach towards analyzing a release history

database in order to improve performance and management in software maintenance.

The first step in our approach was building a release history database from the data

that is hidden in different resources during the development and maintenance phase

of the software. Secondly, we have defined new metrics derived from the analysis on

the release history database in order to improve efficiency of software maintenance.

We chose three important resources in the software environment and configuration

management which we used to build our release history database. Those were issue

tracking system, code repository, and time entry system. We then built a powerful

103

association between the various data retrieved from release histories. Integrating data

driven from these three different resources allowed us to make some innovations for

managers in software maintenance. By integrating our findings managers would be

able to have a better general understanding, based on what heppened in the last

releases of the software. Then, the maintenance team will have a clear and real

picture of the maintenance phase. We believe that this approach can aid managers

and team leaders in software maintenance to improve the quality and performance.

Our approach will not add any load or complexity to the maintenance or to the

software process and will not add any overhead to the software maintenance.

Analysis against the proposed release history database provided us with metrics

including average time to change a line of code in release, average of new introduced

bugs in 100 lines of code per release, and average of reopened bugs in 100 lines of code

per release. We try to improve management in software maintenance using those

metrics. Improvements in maintenance include: finding and highlighting risky objects

which may introduce new bugs to the software; reporting time consuming code in the

software which may also introduce new bugs, recommending team and location in

order to host maintenance activities, proposing best solution for future maintenance,

helping to have more accurate estimation and visualizing the product line.

104

10.2 Recommendations

For future work, we intend to conduct investigations the inclusion of code merges from

branches to the trunk. This will help us to have an accurate and precise snapshot of

what happens during branches. Another interesting subject for future work would be

to have more focus on the information visualization of our proposed release history

database. In our study, we used centralized version control system, however distributed

version control system can be investigated for future work. Moreover, excluding

non-significant changes like comment updates, indentations and whitespaces can be

considered as future works [30].

Another possible direction for future work would involve using more resources to

build the release history database in order to have more accurate and more meaning-

ful data; and so that managers will have more comprehensive reports and analyses

available to them.

Another interesting subject for future work would be to focus on bug prediction

and the locations of future bugs using our release history database; this could be a

chance for managers to put more testing efforts into those locations. Involving more

resources in building the release history database will result in more accurate and

specific bug predictions.

These are a set of directions related to this research that one can follow as the

future work on this research.

105

Appendix A

Questionnaire for threshold

In this Appendix, we describe the questionnaire questions, audience and results of

questionnaire we executed for specifying the threshold described in Section 6.3.1.

A.1 Audience

We executed the survey from fifteen managers as follow: five development team lead-

ers, five QA team leaders, and five delivery managers. We chose these leaders among

the people who have been in maintenance teams for at least three years and were in-

volved in maintenance continuously for at least the last eighteen months. Audiences

were chosen from three different companies in North America, Europe and Asia.

A.2 Survey Question

The questionnaire had following questions:

106

1- How many years you have been in the software industry?

2- How many years you have been involved in the software maintenance?

3- Do you agree that maintainers do not need to make huge change in code for

fixing a bug? and making huge change will introduce new bugs to the software?

4- If your answer to the question three is “yes”, then do you think how many

percentages of code change is acceptable to not consider code change as root of new

introduced bugs in the software?

We collected the answers via email and in the next Section, we will present the

questionnaire result.

A.3 Questionnaire result

After sending questionnaire, we received answers and Table 52 shows the result

Table 52: Questionnaire result for determining threshold.
Questions Question result

Question One minimum: 7 years, maximum: 15 years, average: 8 years

Question Two minimum: 3 years, maximum: 7 years, average: 4.2 years

Question Three Yes: 14, No:1

Question four minimum: 5%, maximum: 45%, average: 24%

The questionnaire result showed us that the threshold for determining risky objects

is 24%.

107

Bibliography

[1] Alail Abran and Hong Nguyenkim. Analysis of maintenance work categories

through measurement. International Conference on Software Maintenance,

0:104–113, 1991.

[2] Atlassian. Website: http://www.atlassian.com.

[3] Marla J. Baker and Stephen G. Eick. Visualizing software systems. In Proceedings

of 16th International Conference on Software Engineering, ICSE-16.,, pages 59

–68, may 1994.

[4] Victor Basili, Lionel Briand, Steven Condon, Yong-Mi Kim, and Walclio L. Melo.

Understanding and predicting the process of software maintenance releases. In-

ternational Conference on Software Engineering, 0:464, 1996.

[5] Victor R. Basili, Lionel C. Briand, and Walcelio L. Melo. A validation of object-

oriented design metrics as quality indicators. IEEE Transactions on Software

Engineering International Conference on Software Maintenance, 22(10):751 –

761, oct 1996.

108

[6] Victor R. Basili and Dieter Rombach. The tame project: towards improvement-

oriented software environments. IEEE Transactions on Software Engineering

International Conference, 14(6):758–773, 1998.

[7] V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-oriented de-

sign metrics as quality indicators. IEEE Transactions on Software Engineering,

22(10):751–761, 1996.

[8] Ronald Berlack. Software Maintenance Management. John Wiley Sons, Inc.,

Boston, MA, USA, 2002.

[9] Abraham Bernstein, Jayalath Ekanayake, and Martin Pinzger. Improving defect

prediction using temporal features and non linear models. In Proceedings of Ninth

international workshop on Principles of software evolution: in conjunction with

the 6th ESEC/FSE joint meeting, IWPSE ’07, pages 11–18, New York, NY, USA,

2007. ACM.

[10] Rational Team Concert. Website url: https://jazz.net/products/rational-team-

concert.

[11] Marcela Genero Coral Calero, Mario Piattini. Method for obtaining correct

metrics. In Proceedings of 3rd International Conference on Enterprise and In-

formation Systems (ICEIS 2001), 29(6):779 – 784, 2001.

109

[12] Marco D’Ambros, Michele Lanza, and Romain Robbes. An extensive comparison

of bug prediction approaches. In Proceedings of 7th IEEE Working Conference

on Mining Software Repositories (MSR), pages 31 –41, may 2010.

[13] Brian De Alwis and Jonathan Sillito. Why are software projects moving from

centralized to decentralized version control systems? In Cooperative and Human

Aspects on Software Engineering, 2009. CHASE ’09. ICSE Workshop on, pages

36 –39, may 2009.

[14] DrProject. Website url: https://stanley.cdf.toronto.edu/drproject/drproject.

[15] Jayalath Ekanayake, Jonas Tappolet, Harald C. Gall, and Abraham Bernstein.

Tracking concept drift of software projects using defect prediction quality. In

Proceedings of the 6th IEEE Working Conference on Mining Software Reposito-

ries. IEEE Computer Society, 2009.

[16] Mahmoud O. Elish and Mojeeb Al-Rahman Al-Khiaty. A suite of metrics for

quantifying historical changes to predict future change-prone classes in object-

oriented software. Empirical Software Engineering (EMSE), 2011.

[17] Sinan Eski and Feza Buzluca. An empirical study on object-oriented metrics and

software evolution in order to reduce testing costs by predicting change-prone

classes. In Proceedings of Fourth IEEE International Conference on Software

Testing, Verification and Validation Workshops (ICSTW), pages 566–571, 2011.

110

[18] Letha H Etzkorn, Sampson E Gholston, Julie L Fortune, Cara E Stein, Dawn

Utley, Phillip A Farrington, and Glenn W Cox. A comparison of cohesion metrics

for object-oriented systems. Information and Software Technology, 46(10):677 –

687, 2004.

[19] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating bug

report data for feature tracking. Working Conference on Reverse Engineering,

0:90, 2003.

[20] Michael Fischer, Martin Pinzger, and Harald Gall. Populating a release history

database from version control and bug tracking systems. IEEE International

Conference on Software Maintenance, 0:23, 2003.

[21] Harald Gall, Mehdi Jazayeri, and Claudio Riva. Visualizing software release

histories: the use of color and third dimension. pages 99 –108, 1999.

[22] Tudor Girba, Adrian Kuhn, Mauricio Seeberger, and Stéphane Ducasse. How

developers drive software evolution. In Proceedings of the Eighth International

Workshop on Principles of Software Evolution, IWPSE ’05, pages 113–122,

Washington, DC, USA, 2005. IEEE Computer Society.

[23] Hackystat. Website url: http://code.google.com/p/hackystat/.

[24] Ahmed E. Hassan and Richard C. Holt. The top ten list: dynamic fault pre-

diction. In Proceedings of the 21st IEEE International Conference on Software

Maintenance, pages 263 – 272, sept. 2005.

111

[25] Hibernate. Website: http://www.hibernate.org.

[26] Lyndon Hiew, Gail C. Murphy, and John Anvik. Who should fix this bug?

Software Engineering, International Conference on, 0:361–370, 2006.

[27] Java. Website: http://www.oracle.com/technetwork/java/index.html.

[28] Jira. Website: http://www.atlassian.com/software/jira/.

[29] JSP. Website:

http://www.oracle.com/technetwork/java/javaee/jsp/index.html.

[30] David Kawrykow and Martin P. Robillard. Non-essential changes in version

histories. In Proceedings of the 33rd International Conference on Software Engi-

neering, ICSE ’11, pages 351–360, New York, NY, USA, 2011. ACM.

[31] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas

Zeller. Predicting faults from cached history. In Proceedings of the 29th interna-

tional conference on Software Engineering, ICSE ’07, pages 489–498, Washing-

ton, DC, USA, 2007. IEEE Computer Society.

[32] Patrick Knab, Martin Pinzger, and Harald Gall. Visual patterns in issue tracking

data. In Jrgen Mnch, Ye Yang, and Wilhelm Schfer, editors, New Modeling Con-

cepts for Todays Software Processes, volume 6195 of Lecture Notes in Computer

Science, pages 222–233. Springer Berlin / Heidelberg, 2010.

112

[33] Maximilian Kögel. Towards software configuration management for unified mod-

els. In Proceedings of the 2008 international workshop on Comparison and ver-

sioning of software models, CVSM ’08, pages 19–24, New York, NY, USA, 2008.

ACM.

[34] Segla Kpodjedo, Filippo Ricca, Philippe Galinier, Yann-Gal Guhneuc, and Giu-

liano Antoniol. A suite of metrics for quantifying historical changes to predict

future change-prone classes in object-oriented software. Journal of Software:

Evolution and Process, pages 45–59, 2012.

[35] Tang Li, Mei YongGang, and Ding JianJie. Metric-based tracking management

in software maintenance. International Workshop on Education Technology and

Computer Science, 1:675–678, 2010.

[36] Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1980.

[37] Bennett P. Lientz and E. Burton Swanson. Software Maintenance Management:A

study of the management of computer application software in 487 data processing

organizations. Addison-Wesley Longman Publishing Co., Inc., 1980.

[38] Alok Mishra Liguo Yu. Risk analysis of global software development and pro-

posed solutions. IEEE Transactions on Software Engineering, 51:89–98, 2010.

113

[39] Shawn Minto and Gail C. Murphy. Recommending emergent teams. In Pro-

ceedings of the Fourth International Workshop on Mining Software Repositories,

MSR ’07, pages 5–9, Washington, DC, USA, 2007. IEEE Computer Society.

[40] Osamu Mizuno, Shiro Ikami, Shuya Nakaichi, and Tohru Kikuno. Spam filter

based approach for finding fault-prone software modules. In Proceedings of the

Fourth International Workshop on Mining Software Repositories, MSR ’07, pages

4–, Washington, DC, USA, 2007. IEEE Computer Society.

[41] Audris Mockus and James D. Herbsleb. Expertise browser: a quantitative ap-

proach to identifying expertise. In Proceedings of the 24th International Confer-

ence on Software Engineering, ICSE ’02, pages 503–512, New York, NY, USA,

2002. ACM.

[42] Audris Mockus and Lawrence G. Votta. Identifying reasons for software changes

using historic databases. In International Conference on Software Maintenance,

pages 120–130, 2000.

[43] Kjetil Molokken and Magne Jorgensen. A review of software surveys on soft-

ware effort estimation. In Proceedings of International Symposium on Empirical

Software Engineering, ISESE 2003, pages 223 – 230, sept.-1 oct. 2003.

[44] MySql. Website url: http://www.mysql.com/.

114

[45] Nachiappan Nagappan and Thomas Ball. Use of relative code churn measures to

predict system defect density. In Proceedings of 27th International Conference

on Software Engineering, 2005. ICSE 2005., pages 284 – 292, may 2005.

[46] Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to

predict component failures. In Proceedings of the 28th international conference

on Software engineering, ICSE ’06, pages 452–461, New York, NY, USA, 2006.

ACM.

[47] Thanh . Nguyen, Timo Wolf, and Daniela Damian. Global software development

and delay: Does distance still matter? In IEEE International Conference on

Global Software Engineering, ICGSE 2008., pages 45 –54, aug. 2008.

[48] David Lorge Parnas. Software aging. In Proceedings of the 16th international

conference on Software engineering, ICSE ’94, pages 279–287, Los Alamitos, CA,

USA, 1994. IEEE Computer Society Press.

[49] Dien Dean. Phan. Information systems project management: An integrated

resource planning perspective model. The University of Arizona.

[50] Elke Pulvermueller, Andreas Speck, James Coplien, Maja DHondt, and Wolfgang

De Meuter. Feature interaction in composed systems. In kos Frohner, editor,

Object-Oriented Technology, volume 2323 of Lecture Notes in Computer Science,

pages 1–16. Springer Berlin / Heidelberg, 2002.

115

[51] Mookerjee Suresh P. Sethi Qi Feng, Vijsay S. Optimal policies for the sizing

and timing of software maintenance projects. European Journal of Operational

Research, 172(3):1047–1066, 2006.

[52] Adrian Schroter. Predicting defects and changes with import relations. In Pro-

ceedings of the Fourth International Workshop on Mining Software Repositories,

MSR ’07, pages 31–8, Washington, DC, USA, 2007. IEEE Computer Society.

[53] Sitemesh. Website: http://www.opensymphony.com/.

[54] Jacek Śliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes

induce fixes? In Proceedings of the 2005 international workshop on Mining

software repositories, MSR ’05, pages 1–5, New York, NY, USA, 2005. ACM.

[55] Ian Sommenville. Software engineering. In Software Engineering- Ninth Edition,

CVSM ’08, New York, NY, USA, 2009. Addison-Welsley.

[56] Spring. Website: http://www.springsource.org/.

[57] Krishnamoorthy Srinivasan and Douglas Fisher. Machine learning approaches

to estimating software development effort. Software Engineering, IEEE Trans-

actions on, 21(2):126 –137, feb 1995.

[58] Subversion. Website http://subversion.apache.org.

[59] SVN. Website url: http://tortoisesvn.tigris.org.

[60] Tomcat. Website: http://tomcat.apache.org/.

116

[61] Michiel van Genuchten. Why is software late? an empirical study of reasons

for delay in software development. IEEE Transactions on Software Engineering,

17(6):582 –590, jun 1991.

[62] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How

long will it take to fix this bug? In Proceedings of the Fourth International

Workshop on Mining Software Repositories, MSR ’07, pages 1–4, Washington,

DC, USA, 2007. IEEE Computer Society.

117

