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Abstract

Linking Changes in Performance for Brain Stimulation Reward to Stages of Neural
Processing

Ada Mullett

The electrically evoked activity responsible for brain stimulation reward (BSR) is
believed to mimic aspects of the neural activation caused by natural rewards, such as
food or copulation. There is considerable evidence to suggest that this activation plays an
important role in goal selection. Consequently, tracing the circuit responsible for the
rewarding effect and working out its operating principles is an important step toward
understanding goal-directed behaviour. This thesis tested a model of how brain reward
circuifry operates. The proportion of a subject’s time that it is willing to dedicate to
performance of an operant task (time allocation) depends on the strength and cost of the
reward. In the experiment described in this thesis, reward strength was determined by the
pulse frequency of the electrical stimulation. The price of the rewards was manipulated
by varying the average time that the subject had to hold down a lever in order to earn a
train of rewarding stimulation. Plotting time allocation as a function of pulse frequency
and price yields a three-dimensional structure called the “mountain.” According to the
model tested by the experiment, the mountain reflects processing of information about
reward strength and price in a multi-stage network. An initial stage translates impulse
flow in the directly activated neurons into a neural signal representing reward intensity.
A later stage combines this intensity signal with the subjective mapping of reward price
to yield a net payoff, and the final stage translates payoffs into behaviour. To understand
how manipulations that alter operant performance produce their effects, it is necessary to
determine at which stage(s) of processing they act. The primary goal of this experiment
was to test the multistage model by establishing whether a manipulation that acts on the
itial stage shifts the mountain along only one of its axes, as predicted. Reducing the
duration of a stimulation train reduces the time during which stimulation-induced post-
synaptic excitation can build up in the reward substrate. Increasing the pulse frequency
can compensate for the reduction in train duration and thus, the mountain is predicted to

shift along the frequency axis but not along the price axis. In all five subjects, reducing
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the train duration from 1 second to 0.25 seconds resulted in a marked rightward shift
along the frequency axis but little shift along the price axis. The results support the
principal prediction of the mountain model. The demonstration that the mountain can
shift along one axis without shifting along the other supports the notion that the
integrative model on which the mountain is based can distinguish manipulations that
affect the reward system at different stages. It should be possible to determine, in future
experiments, at what stages of the circuit drugs, lesions, and physiological variables alter

the rewarding effect of electrical brain stimulation.
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Glossary

Behavioral allocation exponent
= it is the slope of the price function
= it determines how spread out the contour lines are on the
price side of the mountain
= determines the price-sensitivity of the behavioural-
allocation function

behavioural-allocation
function

results from the translation of the reward growth function into
observable behaviour

BSR

Brain stimulation reward
= refers to the phenomenon that animals will work to
receive electrical stimulation through electrodes
implanted in specific brain regions

fhm

frequency producing half-maximal reward

FVI

Free-Running Variable-Interval schedule (FVI). The lever is
armed after a time interval (the price), sampled from an
exponential distribution, has elapsed. In order to harvest the
reward the rat has to be holding the lever down when the interval
times out

Growth Exponent
= it contributes to the determination of the slope of the
frequency side of the mountain
= determines the rate of reward growth for BSR

Half-maximal reward

the point on the reward growth function that corresponds to the
position half way up the function (TAp.y / 2)

Integrator Spatio-temporal integrator
. includes all activities the rat might engage in while in the operant
Leisure . . . < .
chamber such as grooming, investigating, or sleeping
Logio P Log of the Price
Herrnstein’s single operant matching law (1970) which describes
Matching Law the way in which animals apportion their time to different
choices
Medial forebrain bundle
e A bundle of axons that connect the forebrain to the
MFB . .
hindbrain
= heavily implicated in reward perception
3D psychometric function
Mountain e guantifies reward value based on how a subject spends its

time in an operant chamber

Multi-stage model

A model that describes the multiple stages that occur between the
time reward neurons are directly stimulated by the BSR electrode
and the final behavioral output of the rat

viii




Objective price

The price set by the experimenter

the price at which time allocation is 0.5

Py the subjective price at which the payoff from a maximal BSR
equals the payoff from everything else

Pin the minimum subjective price

price Price is defined as the average time the rat has to hold down the

lever in order to earn a reward (set by the experimenter)

Reward-growth

represents the assessment of rewards through a variety of
strengths in such a way that the rat can have a mental

function .

representation of reward
Subjective price subject’s interpretation of the objective price
Substitutability describes the similarity of competing goods
TA Time allocation
TApax maximum time allocation
TDI1A 1* baseline condition (train duration of 1 sec)
TDIB 2" baseline condition (train duration of 1 sec)
TDP25 Experimental condition (train duration of 0.25 sec)

Time allocation

Determined based on how a rat chooses to allocate its time
between work and leisure activities

TAmin

mimimum time allocation

Transition parameter

TP = it determines how sharp the curve between the price and
the frequency axis is

VI Variable interval schedule of reinforcement

Work refers specifically to pressing the lever for stimulation




Linking Changes in Performance for Brain Stimulation Reward to Stages of Neural
Processing

The phenomenon of brain stimulation reward

A male rat is calm, sitting in an operant chamber, grooming. It has become
familiar with the operant box and has been trained to press a bar to obtain areward. The
rat knows that a reward will be available soon. Suddenly a lever appears in the operant
chamber. The rat leaps on the lever and presses frantically. It is working for neither
food, nor water, nor access to an estrus female. Yet the rat is willing to work very hard,
and when the reward is strong the rat will spend almost all of its time pressing the lever.
Its payoff is a train of electrical current pulses delivered through the tip of an electrode
implanted in its brain.

The effect of the electrical stimulation that the rat seeks to reinstate is called
“brain stimulation reward” (BSR). This rewarding effect is so compelling that rats will
cross electrified grids, climb obstacles, and tolerate discomfort in order to access the
stimulation (Frank, Preshaw & Stutz 1982; Olds, 1958). The electrically evoked activity
responsible for BSR is believed to mimic the neural activation caused by natural rewards,
such as food or copulation (Hoebel, 1969; Shizgal, 1999). Consequently, tracing the
circuit responsible for the rewarding effect and working out its operating principles is an

important step toward understanding goal-directed behaviour.

Why is the problem important?

In a series of experiments conducted by Conover, Woodside and Shizgal (1994),

rats evaluated brain stimulation reward and a sucrose solution. These are both very



compelling rewards. Conover et al. found that these drastically different rewards could
be combined to result in a reward greater than either alone; that is, these rewards could be
summated. Furthermore, when the two rewards were compared, the rat chose the larger
of the two. The results of these experiments suggest that BSR and natural rewards are
evaluated along a common dimension. If so, the neurons underlying BSR appear to
participate in computing a common currency for evaluating natural goal objects.

This thesis will test a model of how brain reward circuitry operates. If validated,
this model could play an important role in finding the reward-related neurons, a key step
toward understanding how natural goal objects are evaluated and selected (Shizgal,
1997).

Malfunction of the circuitry underlying the evaluation and selection of goal
objects would likely have disastrous consequences. For instance, drugs that hijack this
circuit could overshadow the influence of goal objects crucial for survival. Malfunction
of this circuitry might also contribute to other impulse-control disorders, such as
gambling disorders and obesity (Shizgal, 1999). Thus, identifying and understanding the
circuitry underlying BSR might contribute to the development of improved treatments for

disorders that undermine the well-being of individuals, families, and societies.

An integrative model of BSR

To build an adequate model of the BSR phenomenon, we have to fill in the blanks
between the stimulation electrode and the behaviour observed. This phenomenon
involves multiple stages of processing. The goal is to describe, control, and find the

behavioural neural signatures of each stage. In the following sections, the multi-stage



model is developed and a strategy for distinguishing the behavioural signatures of its

different components is described.

Stages of processing underlying intracranial self-stimulation

As Figure 1 shows, the first stage of the circuit underlying BSR consists of the
directly activated neurons whose outputs are ultimately translated into the rewarding
effect. Each stimulation pulse triggers an action potential in the axons that are close to
the electrode tip. The next stage of the model integrates the post-synaptic impact of the
firings elicited in the first-stage neurons. This integrator assesses the impact of action
potentials over a specific region of space (the area occupied by the directly stimulated
neurons) and over a certain amount of time (the duration of the train of pulses). This
spatio-temporal integration reflects the sum of the neural firings over space and time
(Gallistel, 1978; Gallistel, Shizgal & Yeomans, 1981). This sum is translated into a
reward-intensity value (Gallistel & Leon, 1991). That is, the output of the integrator is
translated into an enduring record of reward (Figure 2). The function that maps the input
to the integrator into its output is called the “reward-growth function™. The reward
intensity (the cutput) first increases with the firing rate (the input) but eventually levels
off (Simmons & Gallistel, 1994). This stage of the model is called the “inner” function,
since its output is “hidden” inside the brain and is not manifested directly in behaviour.

Translation of the stored reward-intensity value into behaviour requires a second
function: a “behaviour-allocation function.” To define this function, it is necessary to
categorize behaviour as either “work” or “leisure.” Work consists of activities {e.g.,
pressing 2 lever) that earn BSR (the rat’s “wage”); leisure refers to everything else the rat

does in the box, such as grooming, resting, or exploring. The behaviour-allocation
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Figure1b

Figure la. Artificially stimulating a set of neurons, with a2 BSR electrode, will result in a
corresponding increase in neural firing. The corresponding increase in neural firing is
interpreted by the Spatio-temporal integrator. The integrator takes into account the total
number of firings over space and time.

Figure 1b. The output of the integrator results in a reward-growth function.
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function translates a given reward intensity into a given partition of the rat’s time
between work and leisure (Figure 2). When the reward is weak, the rat spends little time
working and most of its time in alternate activities. When the reward is strong, the rat
will dedicate all or most of its time to earning stimulation trains. The behaviour-
allocation function is called the “outer function” since its ouiput is directly observable
(Figure 3) (Gaﬂisiel, 1978, Gallistel et al., 1981).

A psychometric function relates an independent stimulus variable controlled by
the experimenter to an observable dependent variable, a behavioural output. Linking the
reward-growth and behaviour-allocation functions produces a psychometric function
(Figufé 4) (Gallistel, 1978; Gallistel et al., 1981). This function relates the strength of the
electrical stimulation (the physical variables that determine the number of elicited neural
firings) to the rat’s allocation of time between work and leisure (Shizgal, 2004). The
model developed here provides a means of decomposing psychometric functions for BSR
into their component parts, thus rendering a hidden signal, reward intensity, amenable to
measurement. Moreover, as the next section shows, the model also provides a way to
link manipulations that alter BSR to specific stages of processing (the inner or outer
function).

Figures 5a and 5b present two commonly used psychometric functions. The first
function, Figure 5a, illustrates how time allocation increases with the stimulation
frequency. (Recall that reward strength increases with frequency.) This function is the
familiar “reward-summation function” that has been used extensively to measure BSR
(Edmonds & Gallistel, 1974; Gallistel et al., 1981; Miliaressis, Rompre, Laviolette,

Philippe, & Coulombe, 1986; Shizgal & Murray, 1989). In Figure 5b, time allocation
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decreases as the time required to earn each reward (“price”) increases. This function is
analogous fo the one derived from progressive ratio measurements of BSR. Note that the
two reward-summation functions in Figure Sa ‘differ because they were obtained at
different prices, and the two functions in Figure 5b differ because they were obtained
using different frequencies. Thus, frequency and price interact in determining time
allocation. The naturé of this interaction is revealed by plotting both sets of two-
dimensional (2D) psychometric functions in the same three-dimensional (3D) space
(Figure 5¢). Obtaining a high time allocation requires both a low price and high reward
strength are required. If the frequency is very low or the price is very high, then the time
allocation will Be low.

Figure 6 shows how the 3D representation can reveal the “hidden” inner (reward-
growth) function. Time allocation has been color-coded with each decile represented by
a unique color. The boundaries between the colors (white lines) are contour lines; they
consist of pairs of frequencies and prices that generate the same time allocation.
Projecting the white contour lines of the mountain upward onto a surface generates a
contour map that provides a 2D representation of the 3D structure. This contour map is a
concise summary both of the shape of the mountain and of its location along the
frequency and price axes. In this thesis, this representation will be used to describe the
effects of a variable that moves the mountain.

Figures 5 and 6 develop the mountain graphically. The following sections
describe the equations that correspond to the figures and define key terms. The balance
of the introduction further discusses the advantages of 3D representation relative to 2D

representation.
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Derivation of the model

One can model the reward-growth function presented in Figure 1 as a logistic:

(D

where fis the frequency of the electrical stimulation,

Jum 18 the frequency that produces a reward of half-maximal intensity,
g is the parameter that determines the steepness of reward-growth,
1 is the reward intensity,

and  Jnax 1S the maximal reward intensity.

(Shizgal, 2004, is the source for all of the equations presented in this thesis).

The crucial features of this function are that reward intensity initially grows
steeply (at a rate determined by g) as frequency is increased but then levels off (at 7,4, as
frequency increases further. The location of the reward-growth function is determined by
Jim (frequency that produces a reward of half-maximal intensity).

Figure 2 portrays the behaviour-allocation function with respect to reward
strength alone, but in Figure § presents it as comprising both the reward strength and the
price the rat faces in order to obtain the reward. Essentially, the payoff from BSR is

compared with all the payoffs available in the environment.

One can model the behaviour-allocation function in Figure 2 as a second logistic:

@




where ¢ determines the rate at which time allocation increases as a function of
the payoff from BSR,
T4 is the time allocation,
Us is the payoff from BSR,

and  Ugis the payoff from everything else (the alternative activities available to

the rat such as grooming, resting, or exploring).

This function is the same as Herrnstein’s single operant matching law (1970,
1974) with one exception: the addition of the exponent, a. Including this exponent allows
us to forgo the controversial assumption that the experimenter-controlled reward is a
perfect economic substitute for “everything else” (Rachlin, 1980).

Equations 1 and 2 correspond to the reward-growth and behaviour-allocation
functions depicted in Figure 4. In order to connect these two functions, the payoffs in
equation 2 must be redefined in terms of the independent variables and the parameters of
the reward-growth function.

The model treats payoffs as ratios of a benefit and a set of costs. The benefit is

the intensity of the BSR. Costs include both the time required to earn the reward (price)

and the perceived effort involved. Thus,

3

where 7 is the reward intensity,
P is the price the rat has to pay (amount of time spent working at the lever)
to obtain a train of BSR,
Uy is the payoff from BSR,

and ¢ is the perceived effort per unit time expended in holding down the lever.
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Can one find a corresponding definition for the value of “everything else? It
follows from Equation 2 that when the time allocation is 50 percent that the value of the
BSR is equal to that of “everything else.” This equivalence allows one to define the
payoff of “everything else” in terms of the payoff from BSR. To do this, one introduces
a parameter, Pz, that determines the position of the mountain along the price axis, just as
Jfum determines the position of the mountain along the frequency axis. Formally, Py is the

price at which the rat allocates 50 percent of its time to working for a maximally intense

BSR (/). Thus,

7 |
Ug = max , (4)

S X Pg

where I is the maximal reward intensity,
Py is the price at which the rat spends 50 percent of its time working for a
maximally intense BSR,
Uy is the payoff from “everything else,”

and ¢ is the perceived effort per unit time required to obtain the train of BSR.

One can now rewrite Equation 2, substituting from equations 1, 3, and 4 and simplifying:

; &)
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where g determines the rate at which time allocation increases as a function of the payoff
from BSR,

J'is the frequency of the electrical stimulation,

Jfum 18 the frequency that produces a reward of half-maximal intensity,

g is the parameter that determines the steepness of reward-growth,

P is the price of the BSR {average time required to earn a train} ,

Py is the price at which the rat spends 50 percent of its time working for a

maximally intense BSR,
and 74 is the time allocation.

Figure 6 illustrates how time allocation is a function of two independent variables:
price and frequency. Equation 5 specifies this function in terms of four parameters. Two
of these parameters, a and g, affect the rate at which time allocation increases as a
function of the independent variables; the slope along the price axis is determined by a
alone, whereas the slope along the frequency axis is determined by both @ and g. The

two remaining parameters, /i, and Pg, specify the position of the mountain along each

axis; measurement of these location parameters is at the core of this experiment.

The mountain models reward processing at its different stages

The primary goal of this experiment is to establish whether the behaviour-
allocation function is indeed dissociable from the reward-growth function. If so, then it
should prove possible to determine which of these two functions (and their corresponding
neural underpinnings) are affected by manipulations that alter performance for BSR. The
following section explains the effects on performance for BSR of decreasing the current
or increasing the effort required to hold down the lever. These examples illustrate how
variables such as different drug treatments, different physiological changes (such as food
or water deprivation), or different lesions can produce similar changes in time allocation
when acting at different stages of processing. In order to work out the neural circuitry

that links the electrical stimulation to behaviour it is necessary to determine the stage of
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processing at which each of these manipulations acts. The model allows one to do just
that. As the following examples show, the location parameters (1, and Pg) provide the
information required to associate the effect of a manipulation that changes performance
for BSR with a given stage of processing.

Lowering the current decreases the number of neurons fired by the stimulation
electrode. This action, at the very first stage of processing, resulis in a decreaséd rate of
firing, and thus in a lower reward intensity (Figure 3b). This decrease in reward intensity
constitutes a smaller input to the behaviour-allocation function (Figure 3c¢), and thus time
allocation falls.

Assume that the original current is sufficient to drive the output of the reward-
growth function to half its maximal value; following the decrease in current, reward
intensity will be less than the half maximal value. Given that the firing rate is the product
of the number of neurons stimulated and the rate at which they fire, one could restore the
reward intensity to the half-maximal level by increasing the frequency, thus
compensating for the decrease in current. This example shows that decreasing the current
increases fim, the frequency that corresponds to the half-maximal reward value. The
decrease in current is an example of manipulations that affect the early stages of
processing, before the output of the integrator. These manipulations alter the value of fz,,..

In contrast to decreasing the current, increasing the effort required to hold the
lever down (&) affects the later stages of the circuitry. One can see the consequences of

this change in required effort by rearranging Equation 4 as follows:



~ rax (6)

E ~ |
EX Uy

Increasing the effort required to hold the lever down (£) makes the denominator larger,
thus decreasing the value of Pr. Equation 5 shows that a decrease in Py decreases time
allocation. The change in time allocation results from a change in a parameter of the
behaviour-allocation function at a late stage of processing. It is possible to generalize the
relation between the perceived effort and time allocation to all manipulations that result
in a change in the parameters of the behavioural-allocation function.

The model allows one to determine at what stage various manipulations act by
decomposing changes in time allocation into alterations of the location parameters of the
mountain: f,, and Pz. This thesis tests the model by assessing the independence of the
reward-growth and behaviour-allocation functions and by determining whether it is
possible to change f},,, without changing Pz. The next section shows why it is not
possible to infer changes in f,,, and Pz unambiguously from traditional 2D

representations.

Why the 2D representations are ambiguous.

In Figure 7a, the silhouette of the mountain along the darker grey wall (time
allocation versus frequency) is drawn in yellow. This wall is positioned at a very low
price (1 second). Thus, the yellow curve corresponds roughly to a conventional 2D
psychometric function obtained under conditions of continuous reinforcement. A

manipulation, such as decreasing the current that affects the circuitry before the output of
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the integrator, will shift the mountain along the frequency axis, dragging the silhouette to
the new position shown in magenta in Figure 7b. Now consider a manipulation that acts
at a later stage, such as increasing the effort required to hold down the lever. The later
manipulation will result in an orthogonal shift of the mountain: 2 shift along the price
axis (see black arrow in Figure 7¢). Owing to the diagonal orientation of the contour
lines, pushing the mountain along the price axis changes the position of its silhouette
along the frequency axis (black line in figure 7c). Figure 7d shows that the effects of
these orthogonal manipulations are indistinguishable when examined in 2D! The black
dashed line (from Figure 7c) overlaps the magenta line (from 7b). This example shows
that conventional 2D representations of performance for BSR fail to distinguish the
effects of manipulations that act at different stages of the underlying circuitry.

Figures 8 and 9 show that the shifts that are confounded in the 2D representation
in Figure 7d are readily distinguished in the 3D representations. Figures 8b and 8c and
Figures 9b and 9¢ correspond to the yellow sithouette in Figure 7, Figure 8d corresponds
to the magenta silhouette in Figure 7, and Figure 9d corresponds to the dashed black
silhouette. Comparison of the lines denoting /3, and Pr shows unambiguously that the
mountain has shifted along the frequency axis in Figure 8 and along the price axism
Figure 9. The shifts that were indistinguishable in the 2D representation in Figure 7d are

now clear.

Testing the model by varying the train duration

If the reward-growth and behaviour-allocation functions differ from one another,
then it should be possible to alter one without affecting the other. Figure 8 shows the

effect of an early-stage manipulation that alters the location parameter of the reward-



Figure 8. shows the effect of an early-stage manipulation that alters the location parameter
of the reward-growth function, f,,,, leaving unchanged the location parameter of the
behavioural-allocation function, P. The shifts that are confounded in the 2D
representation in Figure 7d are readily distinguished in the 3D representations. To
facilitate comparison with the maps of the shifted mountain, the contour graph
corresponding to the yellow silhouette in Figure 7 is shown twice, in the upper right and
lower left panels of Figures 8. The contour graph in the lower right panel of Figure 8
corresponds to the magenta silhouette in Figure 7. Comparison of the lines denoting fhm
and P, show unambiguously that the mountain has been shifted along the frequency axis
in Figure 8. The shifts that were indistinguishable in the 2D representation in figure 7d are
now abundantly clear.
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Figure 9. The shifis that are confounded in the 2D representation in Figure 7d are readily
distinguished in the 3D representations. To facilitate comparison with the maps of the
shifted mountain, the contour graph corresponding to the vellow silthouette in Figure 7 is
shown twice, in the upper right and lower left panels of Figures 9. The contour graph in
the lower right panel of Figure 9 corresponds to the dashed black silhouette. Comparison
of the lines denoting fam and P, show unambiguously that the mountain has been shifted
along the price axis in figure 9. This corresponds to a later stage manipulation that alters
the location parameter of the behavioural-allocation function, P, , leaving unchanged fhm,
the location parameter of the reward-growth function. The shifts that were
indistinguishable in the 2D representation in figure 7d are now abundantly clear.

22



Freguency (PPS)
o

-0

100

e,

1.0
i@ggu (Price}

Price (seconds per train)
10
0.5

- o
0 = 0 2
o o~ had -
L
(Aouenbe.iq) * Boj
L1+]
<
[
g
8
f
L @
& g
8
—_ ;! —
2N o >
Q.o ! e 8
=k S
Dabl Q@
N 3
o T A
o . I
(O] \
g £ L Y-
b L5, Ry
L, Q-% 2 Q
£ :
by i
- E
g 9
A P
8
o @ © % o °
L o < o o <

LORBOO|IY S|

[
L3

Frequency {FPS)

]
&
priet

=
© 0
R -
5 0
< 2
Z e
?i = = "ELL
L TR
[ | o))
{}3 #
2 =
@
oy
0.

- =

<

=100

100

10

Price (seconds per train)
05

S ; 5 °
o o - ~
{Aausnbei-i) ~ Boj



24

growth function, f.,, but leaves unchanged the location parameter of the behaviour-
allocation function, Pr. Figure 9 shows the effect of a later-stage manipulation that alters
the location parameter of the behaviour-allocation function, Pg, but leaves unchanged fi,,
the location parameter of the reward-growth function. If it is possible fo dissociate the
reward-growth and behaviour-allocation functions, then it should be possible to produce
changes such as those shown in both Figures 8 and 9. The experiment described below
uses a manipulation that was expected to produce effects such as those seen in Figure 8-
that is, a change in f},,, and not Pg.

A decrease in the duration of the train of stimulation pulses decreases the time
during which excitation in the reward substrate can build up. To achieve the same reward
mtensity as a decrease in the train duration, it is necessary to increase stimulation
frequency; the result is a shift of the position of the mountain along the frequency axis.
Since the increase in frequency has compensated for the decrease in train duration, there
is no change in the behaviour-allocation function. Arvanitogiannis (1997) carried out a
similar experiment in which a traditional VI schedule was emploved, and as such, the
price of the BSR could not be strictly controlled.

Equation 6 defines Py, the location parameter of the behaviour-allocation
function, in terms of three variables: /max (maximal reward intensity), & (perceived
effort), and Uy (payoff from alternate activities such as grooming or resting). A decrease
in the train duration should not change Jmax, since the increase in frequency compensates
for the reduced integration time. The duration of the train should not affect either the
effort required to hold down the lever or the payoff from alternative activities. Therefore,

decreasing the train duration should not change Pr and, as Figures 8b and 8d show, the



b
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mountain should not shift along the price axis. The experiment described below tesis this

hypothesis.

A practical issue: How do we control price?

Recall that price is defined as the time that the rat has fo spend in holding down
the lever in order to earn a reward. Conover and Shizgal (2004) describe a schedule of
reinforcement that provides precise control of the average price. They call this the “free-
running variable interval schedule” (FVI). In order to reap a reward, the rat has to be
holding the lever down at the moment in which an unsignaled interval sampled from an
exponential distribution ends. The FVI schedule forces the rat to decide at any point in
time whether to work at the lever or not. Under a FVI schedule, unlike a traditional
variable interval (VI) schedule, the reward does not wait for the rat: the lever does not
remain armed when the interval has elapsed. On a VI schedule, the cumulative
probability that the lever is armed increases over time. The longer the rat waits, the
higher is the likelihood that it can earn a reward without having to sacrifice leisure time.
By contrast, the rat’s average “earnings” on the FVI schedule are proportional to its time

allocation.

Notion of subjective and objective price

The reward-growth function translates an objective variable, stimulation
frequency, into a subjective variable, reward intensity. Could an analogous function
operate in the time domain? Whereas the distinction between a price of 10 seconds and a
price of 20 seconds is likely quite significant to the rat, a distinction between a price of

0.0010 seconds and a price of 0.0020 seconds is likely to be irrelevant. However, as the
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contour representation shows (Figure 6), changing the price from 0.0010 to 0.0020
seconds would shift a 2D psychometric function (orange curve in Figure 4) by about the
same amount as a change in price from 10 to 20 seconds. Clearly this is unreasonable:
the rat’s ability to discriminate changes in price must break down at some point. Thus a
function is needed to translate objective prices into their subjective equivalents. Shizgal,

(personal commmunication) has suggested such a function:

Po—-a
Pi=a+bxln [1+e D ™

where a equals minimum subjective price,
b determines the sharpness of the transition between the horizontal and
diagonal components (Figure 10),
Py is the objective price,
and  Psis the subjective price.
According to this equation, represented in Figure 10, the subjective and objective
prices correspond when the objective price exceeds a critical value, but the subjective
price approaches an asymptote (@) as the objective price gets smaller and smaller.

Equation 8 incorporates into Equation 5 the concept of a subjective price. In Equation 8,

time allocation is now a function of the subjective price, Ps:
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The experiment

The primary goal of this experiment is to establish whether it is possible to
distinguish changes in the behaviour-allocation function from changes in the reward-
growth function -- that is, whether it is possible to shift the mountain along only one of its
axes. Ifitis possible, then it should also be possible to determine, in future experiments,
at what stages of the circuit drugs, lesions, and physiological variables will alter the
rewarding effect of electrical brain stimulation. The experiment determines whether a
decrease in the train duration will, as predicted, shift the mountain along the frequency

axis but not along the price axis.



Method
Subjects
The subjects were five male Long-Evans rats from Charles River Breeding Farms
(St-Constant, Quebec). They were housed individually on a 121/12h reverse-light cycle.
The rats had ad libifum access to food and water while in their home cages. At the time
of surgery, the subjects weighed between 350 and 500g. Testing and surgery were

conducted during the dark phase of the light cycle.

Materials

Electrodes were made from 000 insect pins, coated with Formvar to within 0.5
mm of the tip. A male Amphenol pin was soldered to the blunt end of the insect pin and

inserted into a 9-pin cylindrical connector (Ginder Scientific, Ottawa, Ontario) before

surgery.

Surgery

The bilateral monopolar electrodes were implanted into the medial forebrain
bundle (MFB) with the following stereotaxic coordinates: 2.8 mum caudal to Bregma, 1.7
mm lateral to the midline, and 8.3 mm ventral to the dura mater for the left electrode and
8.4 mm for the right electrode. Surgery was performed under sodium pentobarbital
anesthesia (Somnotol, 60 mg/kg, IP). In order to reduce bronchial secretions, atropine
sulfate (1 mg, SC) was administered 15 minutes before the Somnotol. Anesthesia was
maintained with 2 percent Isofluorane. Dental acrylic was applied to anchor the
connector assembly to the skull and 1o five jeweler’s screws threaded into the frontal and

parietal bones. The return wire was wound around the three most rostral screws. A



subcutaneous injection of buprenorphine (0.05 ml) was administered post-operatively to

minimize discomfort.

Behavioural testing

Training.

A minimum of five days after surgery, the rats were taught to lever press for
electrical brain stimulation, using standard shaping techniques. The duration of the
stimulation train was 1 second, and the train consisted of 0.1 millisecond cathodal,
rectangular pulses. The frequencies and current were adjusted to determine the working
range for each rat. Initially, all stimulation sites were screened with a 300 pA current and
a frequency of 19 Hz. If the subject showed no signs of forced movement or aversion,

both the current and the frequency were increased until the rat responded vigorously.

Apparatus

The operant chambers (23 cm deep, 34 cm wide, and 60 cm high) were made of
grey polyvinyl chloride (PVC) and had a wire-mesh floor. Each chamber had a clear
Plexiglas front panel with a hinged door. Two retractable rodent levers (Med Associates
Inc., GA) were installed approximately 5 cm above the floor, one on the right wall and
the other on the left wail. For the purpose of this experiment only one of the two levers
was employed. Above each lever was a yellow “jewel” light approximately 1.5 cm in
diameter. This light was lit during the experiment whenever the retractable lever was
extended. If the rat harvested the reward, the lever was retracted and the computer timed

an 8-second “black-out delay” before the lever was extended again. An orange house
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light, located on the back wall, 25 cm from the top of the box, flashed for 10 seconds to

signal the beginning of the session and the inter-trial interval.

Procedure

The experiment used an A-B-A design (Figure 11). Each phase of the experiment
consisted of repeated sweeps through values of one stimulation parameter (either the
stimulation frequency or price) while the remaining parameters were held constant. The
dataset for each phase included a set of frequency sweeps at a low-price (4 seconds), a set
of price sweeps (at the highest stimulation frequency), and a second set of frequency
sweeps, at a high price (ranging between 12.6 and 18 seconds, depending on the rat)
(Figure 11). Sets of such frequency and price sweeps were collected first at a train
duration of 1 second (A: first baseline), then at a train duration of 0.25 seconds (B:
experimental phase), and finally at a train duration of 1 second (A’: second baseline).
Bracketing the experimental phase of the experiment permitted an assessment of baseline
reliability.

In the case of the frequency sweeps, the rat was given the opportunity to obtain an
average of 20 rewards at each frequency, whereupon the frequency was lowered. The
initial spacing between frequencies was 0.05 log)o units (~12.2 percent); this value was
adjusted throughout the experiment in order to sample the rate-frequency curves
optimally for each rat and condition. A 2D plot of the data from a frequency sweep
yields a sigmoidal curve. To sample a sigmoidal curve adequately, data are required
from the rising portion, the upper asymptote, and the lower asymptote. Thus, the

sequence of frequencies must be spaced to provide information about the position of all
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three parts of the sigmoidal curve: the steeper is the rising segment, the closer is the
spacing of the frequencies (Figure 12).

Sessions devoted to low-price frequency sweeps consisted of seven sweeps, each
comprising ten trials. The first and second trial of each sweep were identical; the first
trial was treated as a warm-up, and the data from this trial were discarded. Each of the
last eight triéis tested a successively lower frequency. Figure 13b shows the average of
the time-allocation values obtained at each frequency in the last six sweeps per session.

In the case of the price sweep, two or three sweeps were acquired per session and
the data from the necessary number of sessions were then combined to yield six sets of
sweeps. Figure 14¢ shows the average result from six price sweeps.

The high-price frequency sweeps were run in sets of four, and the final six curves
to be kept were drawn from sweeps two through four from two different sessions (Figure
15c). As in the case of the low-price frequency sweeps, the first high-price frequency
sweep of the session was discarded as a warm-up.

There were a few exceptions to the procedures detailed above. Some of the initial
data were collected in sets not easily combined into six. Rats M11 and M16 experienced
five sets of sweeps per trial for the low-price frequency sweep for the A phase of the
experiment. In order to come up with the final set of six sweeps, the first two sweeps in
each session were discarded.

Two sessions were run per day, and the rats were given a one-hour break between
sessions. During the break, each rat was placed alone in a shoebox cage with free access
to food and water. The room lights were extinguished during the test sessions and the

break.



Time Allocation

Time Allocation

1.0 =

0.9

j , . SPACING
y ~-0.05 log,,

S O e T e e T

10 15 20 25 30 35 40 45
Log, Frequency

1.0~
09+
0.8+

0.7

1
50

SPACING
-3 0.05 log,
el ) OT 5 Ing

I L A | ¥
10 15 20 25 30 35 40 45

Log, Frequency

50

Time Allocation

SPACING

iy 0.075 log,,

¥ ¥ H v ¥

25 30 35
Log, Frequency

40

Figure 12. Training data is presented for subject M14. By increasing the spacing between
stimulation frequencies from 0.05 log to 0.075 log, the sigmoidal curve is more thoroughly
represented. The upper left panel was obtained with a spacing of 0.05 log units between
frequencies whereas the upper right panel the spacing was 0.073 log apart. The lower panel

presents both sets together in one figure.

T
45

50



W

316 TD1B PULSE4 Determination Graph #M16 TD1B PULSE4 Mean TA Graph

4 v ¥ N T ¥ T T
1.0+ 1.0 -
0.8~ 0.8 =
=
g g
= 08~ = 06
g ©
8 &
< 04 < 04+
@ = 1st Sweep @
.E.. 2nd Sweep §
b= 0o e 310 Sweep = g2
4th Sweep
awifone Sth Sweep
wmfpem Corrected TA
004 i G5t Sweep 004 e
7th Sweep e ncorrected TA
T v U y T s v ¥ T M T —
10 20 30 40 50 60 70 10 20 30 40 50 60 70
Puise Frequency Pulse Freguency

Figure 13a. One set of frequency sweeps from subject M16. From the second
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Figure 13b. The mean time-allocation graphs that correspond to the sweeps for
subject M 16 in figure M3a. The corrected data are presented in black and the

uncorrected in grey.
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Figure 14c. This is the mean time-allocation graph. It is the mean of the raw data from the two
sessions above.
The data was corrected for a bias, releases of the lever that were less than 1 sec in duration were re-

classified as work time. The black line on the graph represents the time allocated to working at the
lever for BSR after the correction whereas the grey line is uncorrected.
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6 final curves). The grey lines in each sweep graph were dropped as the first curve of every set of

frequency sweeps was considered to be a warm-up.

Figure 15¢. This 1s the mean time-allocation graph. It is the mean of the raw data from the two
sessions above with the warm-up determination removed.

The data was corrected for a bias, releases of the lever that were less than 1 sec in duration were re-
classified as work time. The black line on the graph represents the time allocated to working at the
lever for BSR after the correction whereas the grey line is uncorrected.

Figure 15d M20 1s an example of a subject who's interaction with the lever involved many more
short breaks (more so than subject M 16) that are corrected for. The effect of the correction in such a
case is greater than the effect of the correction in Figure R2c.
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Data acquisition and analysis

Every change in the state of the lever was recorded. Each depression of the lever
was considered “work,” and conversely each release was categorized as “leisure.” The
tendency of the rats fo press the lever stochastically in bouts introduced a bias in the
measurement of work and leisure time, causing work time to be underestimated and
leisure time to be overestimated. It is unreasonable to consider the shorter time intervals
(< 1 sec) separating work bouts as leisure time. There is not enough time available to
engage in other activities when the lever is released so briefly, and the rat remains at the
lever. To correct for this bias, releases that were less than 1 second in duration were re-
classified aé “work” (Conover & Shizgal, 2002).

Time allocation was computed by dividing the corrected work time by the trial
time (the sum of work and leisure time).

Exploratory analyses were conducted daily in order to assess the stability of
performance. Two-dimensional plots of the data (from a set of either frequency sweeps
or price sweeps) were prepared with RS/1 software (Brooks Automation, Chelmsford,
MA) and examined visually. If the curves were well clustered, then the data were
considered to be stable, even if there were one or two outlying data points. Once the data
appeared to be stable the rat was moved on to the next phase of the experiment.

Each phase of the experiment consisted, successively, of a low-price frequency
sweep, a price sweep at a high frequency, and a high-price frequency sweep. The
frequency chosen for the price sweep was the highest one the rat could tolerate in the

low-price frequency-sweep tests. Once the price sweeps were completed, the high-price
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frequency sweeps were conducted on the basis of a price that corresponded to the falling

portion of the price-sweep function (Figure 16).

Fitting the mountain surface.

The goal of this experiment was to determine if it was possible to shift the
mountain along one of its axes but not the other. The position of the mountain in each
condition was determined by fitting the 3D psychometric function to the data through the
application of a weighted, non-linear, least-square minimization routine (Statistica,

StatSoft, Inc.). The following sections describe the stages of this procedure.

Weighting procedure

The conventional least-squares method for fitting a model to data is based on the
assumptions that the data are normally distributed and that their variance is
homogeneous. These assumptions are not tenable in the case of the current data set. Two
factors, skew and the presence of outliers, cause the distribution of time-allocation values
to deviate from normality. The skew arises from the fact that time-allocation values
cannot exceed one and cannot be less than zero; the source of the outliers is not known,
but it is likely that conditions during the long test sessions are not completely stationary.
The S-shape of the 2D psychomeitric curves and their tendency to shift slightly along the
price or frequency axes cause the variance of points that fall along the steep portion to be
greater than the variance of points that fall near the upper or lower asymptotes. To
address the issues of skew, the outliers, and heteroskedasticity, a weighting procedure
based on Tukey’s bisquare estimator was implemented. This procedure is described in

the appendix.
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Figure 16. A graphical representation of how the price was chosen for the high-price
frequency sweeps.

asymptote of the Price function.
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The bi-square weights, raw means, and standard errors of the mean were
computed using the RS/1 software package (Brooks Automation, Chelmsford, MA).
These values were then supplied to the Statistica package (StatSoft, Inc.), which carried

out the non-linear surface fitting.
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Results

An A-B-A experimental design was implemented 1o assess the effect of
decreasing the duration of BSR trains. The baseline conditions were executed with a
{rain duration of 1 second. The first baseline 1s the TD1 A condition, and the second is
TD1B, where TD is train duration, 1 is 1 second, A is the first determination of the
baseline, and B the second determination. The experimenfai condition is TDP25, where
P25 stands for a train duration of 0.25 seconds. Each condition comprises three
successive sets of sweeps: a set of frequency sweeps conducted at a fixed low price, a set
of price sweeps at a fixed high frequency, and a set of frequency sweeps conducted at a
fixed high price. The presentation of the baseline dafa proceeds, step by step, from the
raw data for a single subject and condition to a 3D representation that combines the data
from the set of price sweeps with the data from both sets of frequency sweeps. The
analysis assesses test-retest reliability first through qualitative comparison of 2D graphs
and then by quantitative comparison of fitted 3D surfaces. Finally, the analysis examines
the effects of decreasing the train duration to 0.25 seconds -- initially for one subject and

then for the remaining four subjects.

A two-dimensional representation of a single baseline data set

Figure 17 presents all of the baseline data for one rat, subject M16. Examination
of these results reveals the forms of the psychometric functions, the consistency of the
time-allocation values obtained when the same price and frequency values were tested in
the context of price or frequency sweeps, and the effect on the position of the frequency-

sweep curve of changing the price.
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The top two panels in Figure 17 show the complete data set for the TD1A
condition, and the bottom two show the data for the TD1B condition. Data from the
TDIB condition were collected after the shorter train duration had been tested. All of the
figures from this point on show corrected time-allocation values (see “Methods”, above).
Both of the lefi-hand panels in Figure 17 display price-sweep data. The dashed red and
green lines on these graphs represent the prices at which the two frequency sweeps were
run. The low-price frequency sweep was conducted with a 4-second price (red line), and
the price of the stimulation during the high-price frequency sweep (green line) was 18
seconds. The two right-hand panels present the two frequency sweeps for the baseline
conditions, TD1A and TD1B. The dashed blue line on both right-hémd panels represents
the frequency employed to obtain the price-sweep data shown in the lefi-hand panel (62.1
pulses per second).

As the two lower panels of Figure 17 show, the price-sweep and frequency-sweep
data from the TD1B condition are consistent: similar time-allocation values were
obtained when the same pair of prices and frequencies were tested during both the price
sweep and the frequency sweep. Note that the intersection of the green dashed line and
the blue solid line in the lower-left panel occurs at a time-allocation value similar to that
of the intersection of the blue dashed line and the green solid line in the lower-right
panel; at both intersections, the price is 18 seconds, and the frequency is 62.1 pulses per
second. A small discrepancy emerges, however, in the high-price frequency-sweep data
for the TD1A condition (the upper panels in Figure 17). The intersection of the blue
dashed line with the green curve in the upper-right panel occurs at a higher value of time

allocation than does the intersection of the green dashed line with the blue curve in the
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upper-left panel. However, the standard errors of the points on the price-sweep curve
(blue) are large in the vicinity of the intersection with the dashed green line.

The two right-hand panels in Figure 17 show the effect of manipulating the price
of BSR. An increase in the price of a stimulation train from 4 seconds (red data points)
to 18 seconds (green data points) shifted the psychometric functions to the right and
debreased their slopes. The maximum time allocation was lower in the high-price

condition {green) than it was in the low-price condition (red).

Building the mouniain

In order to integrate the data from all three sets of sweeps into a single structure,
the data were replotted in three-dimensional space. The upper panels of Figure 18 show
the data from the first (TD1A) and second (TD1B) determinations of the baseline for rat
M16. Each of these graphs positions the three sets of data points along the three axes of
the mountain: time allocation, price, and frequency. The bottom two panels of Figure 18
present the same data along with a wire mesh surface that represents the best-fitting
parameters of the mountain equation (Equation 8). A later section will describe the

surface-fitting results in detail.

Reliability

The analysis compared the results from the two baseline conditions for each rat in
order to assess the reliability of the measurements and to determine whether it was
possible in terms of statistical significance to pool these results before comparing them
with the results from the short train-duration condition. For four of the five subjects, the

results of the return to the baseline condition were not large; they met the criterion for
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statistical significance, however, and the data from the baseline conditions were not
combined for these subjects.

Figure 16 presents the data for the two baseline conditions for subject M14. The
top two panels in the figure represent the frequency comparisons, and the bottom panel
shows the price-sweep data. In the case of the low-price frequency-sweep comparison
(upper-left panel),‘ apart from a small turn-down at the highest frequency, the two
baseline data sets line up very well. There are very few differences between the data sets.
(All three panels present the TD1A condition as the darker color and the TD1B condition
as the lighter color.)

Figures 20 to 23 represent the baseline comparisons for the remaining four
subjects. The test-retest reliability for subject M11 is very good for two of the three
panels in Figure 20. The only substantial discrepancy between baselines occurs in the
upper-left panel. A visual comparison suggests that the shift is approximately 0.05 log
units.

The red points on the price function graphs for subjects M11 and M16 (the lower
panels in both Figures 20 and 21, respectively) appeared to reflect a response bias and
were, accordingly, omitted from the surface-fitting analyses. This “turn-down” is
suspected to be an artifact of the very high level of behavioural activation that is seen
when the price is very low and the frequency is quite high. When the price was 1 second
the subject was only given 20 seconds in which to reap all 20 of the available rewards. It
is possible that the powerful inexpensive reward produced a strong tendency to abandon
the lever in order to explore, thereby reducing even further the relatively short time

available in which to harvest rewards. At higher prices, brief exploratory excursions
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Figure 19. Here the two baseline conditions are compared for subject M 14.

The two baseline conditions for M 14 were completely unchanged. The graph on the left shows the
low price frequency sweep results for the TD1B condition (light red) graphed together with the
TD1A condition (dark red). The graph on the right is the high price frequency sweep condition where
the data from TD1A is presented as dark green and TD1B is light green.

The lower left panel presents the price sweep data for both baselines. Again, the first baseline, TD1A,

is the darker color,
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Figure 20. Baseline comparisons for subject M11.

The graph on the upper left shows the low price frequency sweep results for the TD1B condition
(light red) graphed together with the TD1A condition (dark red). The graph on the upper right is the
high price frequency sweep condition where the data from TD1A is presented as dark green and
TD1B is light green. The graph to the lefi is the Price sweep for both baselines. Again, the first

haseline, TD1A, is the darker color,
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would have less imipact on the time-allocation ratio, Further analyses of the distribution
of leisure times might shed additional light on the “turn-down” phenomenon. Including
points subject to the putative response bias would have inflated the error variance by
adding a source of systematic variance.

The baseline data for subject M16 is presented in Figure 21. The low-price
frequency-sweep results are statistically, very reliable (upper-left panel). There is some
variation, however, in the curves yielded by the high-price frequency sweeps (upper-right
panel) and in the slopes of the price-sweep curves (lower-left panel). Figures 22 and 23,
respectively, present the most variable baseline data, those from subjects M20 and M22.
In the case of subject M20, the high-price frequency-sweep shifted to the right for the
second baseline condition (upper-right panel of Figure 22), whereas the low-price
frequency-sweep (upper-left panel) was stable. The largest discrepancy between
baselines for rat M22 occurs in the price-sweep data (lower panel of Figure 23). Overall,
the discrepancies tend to be rather small.

The analysis to this point has described qualitative differences between the data
sets. The following section describes the surface-fitting approach to a quantitative

comparison of the two sets of baseline data.

Quantitative results of the baseline comparisons.

The analysis used a non-linear surface-fitting procedure to determine whether
there was a statistically reliable difference between the two baseline datasets for each
subject. This procedure would determine whether it was possible to pool the baseline
data in order to establish a combined baseline that could then be compared with the short-

train duration data. It would be possible to pool the data if there were no statistically
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The graph on the upper left shows the low price frequency sweep results for the TD1B condition
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(light red) graphed together with the TD1A condition (dark red). The upper-tight panel is the high-
price frequency-sweep condition, where the data from TD1A is presented as dark green and TD1B

is light green. The graph to the left is the Price sweep for both baselines. Again, the first baseline,

TD1A, is the darker color.
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The graph on the upper left shows the low price frequency sweep results for the TD 1B condition
{light red) graphed together with the TDI1A condition (dark red). The graph on the upper right is

the high price frequency sweep condition where the data from TD1A is presented as dark green and
TDI1B is light green. The graph to the left is the Price sweep for both baselines. Again, the first
baseline, TD1A, is the darker color.
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Figure 23. Baseline comparisons for subject M22

The graph on the upper left shows the low price frequency sweep results for the TD 1B condition
(light red) graphed together with the TD1A condition {dark red). The graph on the upper right is

the high price frequency sweep condition where the data from TD1A is presented as dark green and
TD1B is light green. The graph to the left is the Price sweep for both baselines. Again, the first
baseline, TD1A, is the darker color.
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significant difference between the values for each of the location parameters, /;,, and Pg,
for the baseline mountain TD1A and the values of the parameters for the baseline
mountain TD1B. To fit separate surfaces to each baseline data set would have entailed
the simultaneous estimation of a large number of parameters (as many as 16 or § for each
baseline mountain}. Moreover, only the values of the location parameters were germane
to testing the hypothesized effect of Varying the train duration. Thus, common values
were estimated for all parameters except the two that determine the position of mountain,
fum and Pg. The shift in the position of the mountain from the TD1A condition to the
TD1B condition was represented by Af,, which gave the displacement along the
frequency axis, and AP,, which gave the displacement along the price axis. When the 95
percent confidence interval around either of these shift parameters did not include zero,
the mountain was deemed to have shifted.

The baseline comparisons will be presented initially for one case, that of subject
M14. Figure 24 presents a bar graph that represents the size of the shift along each axis
and the corresponding 95 percent confidence intervals for the shift parameters. Note that
the confidence intervals for each parameter includes zero; consequently, neither shift is
considered to be statistically reliable.

The amount of variance accounted for by the fitted surface was calculated for all
subjects by dividing the sum of squared deviations that were atiributable to regression by
the total sum of squares as presented in the corresponding analysis of variance (ANOVA)
in Table 1. The #* for subject M14 is 0.989. Table 2, which presents the parameter
estimates for subject M 14, shows that the confidence interval in each of the parameters

AP, and Ay, includes zero. This outcome is consistent with the position of the
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Figure 24. Baseline comparisons for subject M14. A bar graph that represents the size of
the shift along each axis and the corresponding 95% confidence mtervals for the shift
parameters is presented. Note that the confidence intervals include zero and as such neither
shift is considered to be statistically reliable. AF, , presents the displacement along the
frequency axis, and AP, presents the displacement along the price axis.



Sum of Squares DF Mean Squares | F-value | p-value
Regression 97.531 10 9.753, 2378.886, 0.000
Residual 1.066 260 0.004
Total 98.597 270
r 0.989

Table 1. ANOVA table for subject M14
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confidence intervals in the bar graph in Figure 24. M14 was the only subject whose
baseline conditions did not shift along either the price axis or the frequency axis.

The scatterplot in Figure 25 is a graphical comparison of the observed time
allocation with the time allocation predicted by the fitted surface. The diagonal red line
represents a perfect fit between the observed values and the predicted values. The actual
data points line up nicely around the line of best fit. If the function did not fit the data
well, the data points would follow a curved path rather than a straight one.

One subject whose baseline mountain did shift is M16. Thus the graph for subject
M16 in Figure 26 differs from the graph for subject M14 in Figure 24 because in subject
M16’s case the confidence intervals surrounding the shifis along each axis do not include
zero. Table 3 presents the parameter values for this subject, and Figure 27 presents the
corresponding scatterplot. The 7 for subject M16 is 0.997.

Table 4 presents the results of the baseline mountain comparison for subject M11.
As in the case of subject M16, neither the set of confidence intervals for Af}, nor the set
for AP, includes zero. Consequently, the shifts along both axes are statistically significant
and the baseline mountains for this subject cannot be combined. Figure 28 plots the
observed and predicted time-allocation values for subject M11, illustrating the excellent
fit of the surfaces. The corresponding r* value for this subject is 0.990.

Table 5 shows the results of the comparison for subject M20. The shift along the
frequency axis (Afy) is significant, but the shift along the price axis (AP,) is not. Figure
29 shows the scatterplot for M20’s observed and predicted time-allocation values. The
scatterplot’s apparent sparseness is a result of the fact that many of the 250 data points

fell on top of others. The #* for M20 is 0,994,
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Figure 25. A graphical comparison of the observed time allocation and the time allocation
predicted by the fitted surface for subject M14. The line for a perfect fit between the
observed and predicted values is drawn in red diagonally through the graph. The actual
data points line up nicely around the line of best fit. If the function did not fit the data
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Figure 26. A bar graph that represents the size of the shift along each axis and the
corresponding 95% confidence intervals for the shift parameters for subject M16. Note that
the confidence intervals do not include zero for subject M16 and as such both shifts are
considered to be statistically reliable. Af, , presents the displacement along the frequency
axis, and AP, presents the displacement along the price axis.
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Figure 27. A graphical comparison of the observed time allocation and the time allocation
predicted by the fitted surface for subject M16.
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Figure 28. Scatterplot comparing the predicted time-allocation values for subject M11 to the
observed time-allocation values.
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Figure 29. Scatterplot comparing the predicted time-allocation values for subject M20 to the
observed time-allocation values.
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The difference between the two baseline conditions for subject M22 is small but
statistically significant. As Table 6 shows, neither the confidence interval for Ay, nor
the interval for AP, includes zero. The amount of variance accounted for, 77, is 0.985.
The Figure 30 presents the corresponding scatterplot.

As these results show, the only baseline datasets that could be combined for
purposes of examining the effect of changing the train duration were those for subject
M14. For subjects M1, M16, M20, and M22, separate baseline mountains were fitted to
each baseline condition and compared individually with the experimental condition: the

mountain obtained at the shorter train duration.

Quantifying the effect of manipulating train duration

Two-dimensional depiction.

The next step was to use the mountain model to address the fundamental question
posed in this thesis: What is the effect of manipulating the train duration on the position
of the mountain?

In the case of the four subjects whose data sets involved significant shifts in the
location of the second baseline mountain, the “dual-mountain” model developed for
assessing the baseline shifts was extended to apply to each of the two baseline conditions
and the short train duration condition. To be more specific, the surface that fitted to the
data from the experimental condition, TDP2S, was compared separately with each of the
surfaces that fitted to the data from the TD1A and TD1B baseline conditions. Two
additional sets of shift parameters were added to the dual-mountain equation. The

parameters Afy,/ and AP,/ describe the shift from the experimental condition to the first

baseline condition, and the parameters Af},,3 and AP.3 describe the shift from the
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Figure 30. Scatterplot comparing the predicted time-allocation values for subject M22 to the
observed time-allocation values.
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experimental condition to the second baseline condition. In the case of the one rat whose
baseline data were combined, subject M 14, a dual mountain was fitted in order to allow a
comparison of the combined baseline data with the data from the experimental condition.
In the case of the dual-mountain fit, the assessment considered only one set of shift
parameters, Afy, and AP,.

In all subjects, reducing the train duration from 1 second to 0.25 seconds resulted
in a marked rightward shift along the frequency axis but little shift along the price axis.
This outcome will be illustrated below by 2D graphs for all subjects and by 3D graphs for
one subject. Figure 31 presents the 2D graphs for subject M11. As each of the two upper
panels of the figure shows, reducing the train duration from 1 second to 0.25 seconds
produced a large shift in the data points and the fitted function along the frequency axis.
On the other hand, as the lower panel shows, the reduction in the train duration failed to
produce a reliable displacement of the data and the fitted functions along the price axis.
Note that although there is some systematic deviation of data points from the fitted
functions (upper-right panel) in general the model describes the data well.

Figures 32, 33 and 34 show that the shifts in the data sets for subjects M16, M20,
and M22 are very similar to the shifis in the set for subject M11. As was mentioned
previously, M14 was the only subject whose baseline conditions could be combined.
Figure 35 shows the results for subject M14 in 2D space. As in the case of the other four
subjects, there is a large shift in the position of the mountain along the frequency axis and
very little shift if any along the price axis. The only difference between subject M14’s

graphs and the graphs for the other subjects is that the former require only one line to
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Figure 3]1. Reducing the train duration from 1 sec to 0.25 seconds resulted in a rightward shift
along the frequency axis, seen in the frequency graphs above for M11. The price function graph

(lower panel) shows no such shift in response to the decrease in train duration.
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Figure 32. Decreasing the train duration from 1 sec to 0.25 seconds resulted in a rightward shift
along the frequency axis, seen in the frequency graphs above for M16. The price function graph
{(bottom panel) shows no such shift in response to the decrease in train duration.
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Figure 33. Decreasing the train duration from 1 sec to 0.25 seconds resulted in a rightward shift
along the frequency axis, seen in the frequency graphs above for M20. The price function graph
(lower panel) shows no such shift in response to the decrease in train duration.
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Figure 34. Decreasing the train duration from | sec to 0.25 seconds resulted in a rightward shift
along the frequency axis, seen in the frequency graphs above for M22. The price function graph
(lower panel) shows no such shift in response to the decrease in train duration.
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represent the combined baseline condition. The solid lines in Figure 35 represent the

combined baseline, and the dashed lines represent data for the shorter train duration.

Three-dimensional depiction.

The four mountains portrayed in Figure 36 represent M16’s data in 3D space --
that is, they integrate the data from all three sweeps within each condition. The position
of each mountain is best assessed by examining the two back walls behind the mountain.
The amount of grey wall visible in the TDP25 condition (the upper right panel in Figure
36) is much greater than the amount visible in either of the baseline conditions; in the
TDP25 condition, in other words, the mountain has receded along the frequency axis. On
the other hand, a comparison of the purple walls in the baseline condition with the purple
wall in the TDP25 condition reveals very little movement along the price axis.

Figure 37 presents contour graphs for subject M16 that correspond to the
mountains in the previous figure. The position of the mountain is indicated here by the
shifts in the position of the white dashed lines superimposed on the contour graphs. In
order to facilitate comparison, the figure introduces black dashed lines that connect the
white dashed lines in each graph. Thus the shift in the line for the half-maximal
frequency value (i) between the baseline condition TD1A and the TDP2S5 condition is
substantial, whereas the shift in the Pg line is very small. In addition, the gap between
the price lines for TD1A and TD1B and the gap between the frequency lines for the two
baseline conditions are both very small relative to the shift that corresponds to the TDP25

condition.
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Figure 36. The four mountains above (for M16) enable a comparison befween the baseline
conditions (TD1A vs. TD1B) and the experimental condition, TDP25. The position of the
mountain is best assessed by examining the size of the back wall on either side of the
structure. The amount of grey wall visible in the TDP25 condition (top right graph) 1s much

greater than either of the baseline conditions, the mountain has shifted back (along the
frequency axis).
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Figure 37. The contour graphs for subject M 16 that correspond to the mountains in the
previous figure. The position of the mountain is assessed here by the shifts of the white
dashed lines. The position of the Frequency half-max line is greatly shifted in the top right
figure compared to the baseline figure (top left) for TD1A. The white dashed lines have
been extended with black dashed lines to facilitate the comparison between contour graphs.
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Surface-fitting statistics.

Table 7 presents the statistical assessment for all five subjects of the effect on the
position of the mountain of reducing the train duration. Table 7 is an analysis of variance
(ANOVA) table; that is, it shows the partition of variance between the portion accounted
for by the fitted surface and the portion accounted for by residual error. The
corrésponding F-ratio values are all very large, and the p values in the table for all five
subjects exceed the statistical threshold of p = 0.05. These results are consistent with the
scatterplot generated for each subject for the purpose of comparing the observed and
predicted time-allocation values from the triple-mountain surface fit. Figure 38 shows
the scatterplot for subject M16, which is representative of the scatterplots for the group of
subjects as a whole. Table 8 displays the complete parameter set for the comparison
between the two baseline conditions on the one hand and the experimental condition on
the other for subject M16. The significant shift parameters and the corresponding
confidence intervals are highlighted in yellow. Table 9 shows the fitting results for the
four remaining subjects. The bar graphs in Figure 39 summarize for all five subjects the
shifts in the position of the mountains that the reduction in the train duration produced.
The bar graph for subject M16 shows clearly that reducing the train duration produced a
much larger shift along the frequency axis than it did along the price axis. The final bar
graph is the shift graph for subject M14, whose bascline data sets were combined to yield
a dual-mountain rather than the triple-mountain fits obtained for the other subjects. In the
case of this subject, the analysis compared only two shift parameters. The results for the
dual-mountain fit are consistent with the results for the triple mountain fits: The shifi

along the frequency axis is very large, and the shift along the price axis is negligible.



Sum of Mean
mit Sguares DF | Sguares | F-vaiue | p-valus
Regression 183.03, 12.00 156.25) 2172.31 0.00
Residual 2.97] 423.00 6.01
Total 186.00; 435.00
Regression ve.Correcied Total 183.03, 12.00 15.25 97.14 0.00
R? 0.9840
Sum of Mean
mid Squares DF Squares | F-value | p-value
Regression 146.06f 10.00 14.61¢ 3332.94 0.00
Residual 1.71] 390.00 0.00
Total 147.77] 400.00
Regression vs.Correcied Total 146.06¢ 10.00 14.61 94.40 0.00
R? 0.9884
Sum of Mean
mi6 Squares DF |Squares| F-value | p-value
Regression 160.67] 12.00 13.39] 6896.63 0.00
Residual 0.66; 341.00 0.00
Total 161.33| 353.00
Regression vs.Corrected Total 160.67] 12.00 13.39 66.93 0.00
R? 0.9959
Sum of Mean
m20 Squares DF {Squares| F-value | p-value
Regression 147.82) 12.00 12.32] 4194.71 0.00
Residual 1.04] 353.00 0.00
Total 148.86{ 365.00
Regression vs.Corrected Total 147.82; 12.00 12.32 59.68 0.00
R? 0.9930
Sum of Mean
m22 Sguares DF | Squares | F-value | p-value
Regression 157.34] 10.00 15,737 2641.18 0.00
Residual 227 381.00 0.01
Total 159.61 391.00
Regression vs.Corrected Total 157.34;, 10.00 15.73 9419 0.00
R? 0.9858

Table 7. The ANOVA results for all subjects comparing the non-linear curve-fitter results to the

observed data.

80



1.2 N
10} o
-
=0 e
e r.‘ 536
08 oy © ]
. DA o
- ~ o0
3 7 00
o 08} o/ =
s
2 % 0 ©
2 W
O 04; o g
Q o
0.2 5 -
© 8%
00+ L
-0.2 . . . . .
02 0.0 0.2 04 0.8 0.8 10
Predicted

Figure 38.0bserved time allocation versus Predicted time allocation from the
curve-fitter for subject M16. Like all of the other subjects this is a good fit.

1.2

gl



“MO1q SMOI POIYSIIYSTY 21} 995 ‘010z

SPIJOUL JOU PIP SJRAISIUT SOUDPIJUO00 J1) JT JSIXd pinom sixe Aouoenboi) o1 Suofe urepumow Y} Jo J1ys JUeoYIudis A[[eonsne)s y possasse
o1om siotoureied JIUS SUl pUR 1 GIRIUNOW [eAp Y} J0] JUBISU0D PIoY 21om siojowrered [y “synsax Sumij-00elans S9N '§ 2190

G707 5007 00070 v16968 150070 S10°Z [gzdal Jai] sixe Aouenbayl aul Buoe uoneoso) Buluiuueep Jelsuweled [TWH
284 22L9 000°0 v6L ¥¢  120€°0 LEL [opede} 8olid U0 ufelunoL Jo adojs 8y} seuluLplep] Jusuodxe ymaib b
0/S'1 0151 000°0 699901 %100 5L [6zda to1] siee soud sy Buose uoneoo; Buliueiep Jeeweed 234
9’0 G910 50 ev80 €CL0 G80°0 ispwRied uonisuel] 4L
¢80 |pig0 00000 |9e9'6  |92000  |€22°0 80kd anoslgns winuiuius N
CGE 2077 0000 08l°/Z 19800 9/87¢ [opede; bai4 uo ueunow Jo adojs ey} seulelep] Jsuodxe UOIIBIO|E [RIORELB] B
L20°L LOO'L 0000 906°96L 19000 7i0°l UOIBDO]|Y St} Wwnwixepy XYWy
810°0_ 12000 [LLO'0  14SZ 1000 10100 UoneD0]y Sl Uiy N
‘SYALINVIV L VIS ANV TdVHS ‘NOLLYIOT
£8er v0g0- 10000 66625 1900°0 £6¢°0- [ZdCL wok g1ql 1o} sixe Aouanbay sy Buofe yiys] Aousnbai. Bijeq ¢ WYY
£60°0 9100 900°0 L11T 0200 §60°0 [Szdal woy gial Joj sixe soud ayy Buoje Wys] 9oud ey £adV
vae'or 618°0 000°0 919°96- 19000 99¢°0- [Szdal woy vial Jof sixe Aousnbay sy Buoge yys] Aouenbasd eyjeq @ LWy4V
S00°0r LI0Or ce00 £GL ¢ 2100 LEO'O [G2dQL wok 1AL o) sixe aoud sy} Buoje Jiys] edud eyeq :1adV
-SHILINVEY Y LAIHS

Jon dpy Lies "o saspd | enjead [paepuelS) slewinsy NIVINNOW FTidML 9L




#4111 TRIPLE MOUNTAIN: Estimate | Standard | bvalue | pdevel | Lo, Conf | Up. Conf
SHIFT PARAMETERS:
APE1: Delta Price [shift along the price axis for TDIA from TDRP25] 0.048 0.028 1.878 0.084 -5.0081 0.103
Afhm1 @ Delta Frequency [shift along the Frequency axis for TDTA from TDP25] 0,265 0.024; -11.2086 0.000 -0.313 -0.219
APE3: Delta Price [shift along the price axis for TD1B from TDP25] 0.019 0.028 0.579 0.498 -0.037 0.075
afam3: Delta Frequency [shift along the frequency axis for TD1B from TDP25] -0.343 0.025] -13.829 0.000 -0.394 -0.285
LOCATION, SHAPE, AND SCALE PARAMETERS.
Tvin: MR Time Allocation 0.040 0.008 4222 0.000 0.027 G.058
Tuax Maximum time Allocation 1.035 0.018] 5B.052 $.000 0.899 1.071
a: behavioral aliocation exponent [determines the slope of mountain on Freq fagade] 3.823 0.257¢ 15.278 0,000 3.418 4428
Pan: minimum subjective price 1.0 0.015] 688427 0.000 0.982 1.040
TP: Transition Parameter 0.031 .052 0.598 0.551 -0.072 0.134
Py parameter determining location along the price axis [for TDp25] 1.459 0.043] 34299 £.000 1.375 1.543
g growth exponent [determines the siope of mountain on Price fagads] 2.317 014871 11775 0.000 1.931 2.704
Fume: parameter determining location along the frequency axis [for TDP25] 1.809 0.038] 47.785 0.000 1.735 1.884
14 DOUBLE MOUNTAIN: Estimate | Standard | t-value | p-level | Lo. Conf | Up. Conf
SHIFT PARAMETERS:
APE1: Delta Price [shift along the price axis for TD1A from TDP25] -0.052 0.050 -1.05% 0.280 -0.150 0.045
Athm1 : Delta Frequency [shiff along the frequency axis for TD1A from TDP25] -0.380 0.028] -13.797 0.000 -0.445 -0.334
LOCATION, SHAPE, AND SCALE PARAMETERS:
Tup: Min Time Allocation 0.038 0.006 6.004 0.000 0.025 0.048
Tuax Maximum time Aliocation 0.869 0.007y 1186.830 0.000 0.854 (.884
a: behavioral allocation exponent {determines the slope of mountain on Freq facade] 5.176 0.327; 15819 0.000 4.533 5.819
P minimum subjective price 0.870 0.017] 50.087 0.000 0.838 0.904
TP: Transition Parameter 0.008 88.435 0.000 1.000 -173.860 173.878
Pey: parameter determining iocation along the price axis [for TDp25] 1.615 0.087] 18.545 0.000 1.443 1.786
g: growth exponent [determines the slope of mountain on Price fagade] 2.528 0248  10.202 0.000 2.041 3.0185
Fuwz: parameter determining location along the frequency axis [for TDP25] 1.952 0.063] 31.224 0.000 1.828 2.075
W20 TRIPLE MOUNTAIN: Estimate | Standard | t-value | p-ievel | Lo. Conf | Up. Conf
SHIFT PARAMETERS:
APE1: Delta Price [shift along the price axis for TD1A from TDP25] -0.017 0.013 -1.386 0.167 -0.040 0.007
afhm1 : Delta Frequency [shift along the frequency axis for TD1A from TDP25] -0.477 0.010{ -50.029 0.000 -0.500 -0.458
APE3: Delta Price [shift along the price axis for TD1B from TDP25] -0.068 0.007 -9.098 0.000 -0.080 -0.052
Afhm3: Delta Frequency [shift along the frequency axis for TD1B from TDP25] -0.417 0.008; -52.027 0.000 -0.430 0.401
LOCATION, SHAPE, AND SCALE PARAMETERS:
Tan: Min Time Allocation 0.012 0.004 2.747 0.006 0.000 0.020
Tuax Maximum time Allocation 0.957 0.006; 171.767 0.000 0.950 0.968
a: behavioral allocation exponent [determines the slope of mountain on Freq fagade] 9.723 1.067 9.114 0.000 7.630 11.822
P minimum subjecﬂve price 0.521 3510.728 0.000 1.000] -6904.050 68905.094
TP Transition Parameter 0.007 534,991 0.000 1.000] -1248.830 1248.849
P, parameter determining location along the price axis [for TDp25] 1.291 0.012{ 108.158 0.000 1.270 1.314
g: growth exponent [determines the slope of mountain on Price facade] 8.212 1.113 7.382 0.000 6.020 10.401
Fuvz parameter determining losation afong the frequency axis [for TDP25] 2.040 0.016; 194.553 0.000 2.020 2.080
M22 TRIPLE MOUNTAIN: Estimate | Standard | tvalue | pdeval | Lo. Conf | Up. Conf
SHIFT PARAMETERS:
APE1: Delta Price [shift along the price axis for TD1A from TDP25] -0.026 0.013 -2.056 0.040 -0.051 -0.001
Afhimt : Delta Frequency [shift along the frequency axis for TD1A from TDPZ5] -0.327] 0.008] -406.565 0.000 -0.343 -0.312
APE3: Delta Price [shift along the price axis for TD1B from TOP25] 0.036 0.015 2.388 3.018 0.006 0,086
Afm3: Delta Frequency [shift along the frequency axis for TD1B from TDP25] ~0.310 0.008] -37.733 0.000 -0.326 -0.254
LOCATION, SHAPE, AND SCALE PARAMETERS:
Tare: Min Time Allocation 0.027
Tuax Maxtimum time Allocation 1.012
a: behaviorai allocation exponent [determines the slope of mountain on Freq fagade] 4.215 0.872 4.835 0.000 2.501 5.929
P minimum Subjeci;ive price 1.025 0.087 11.738 0.000 0.853 1.197
TP: Transition Parameter 0.134 0.055 2.428 0.018 G.026 0.243
P parameter determining location along the price axis [for TDp25} 1,295 0.043] 30376 0.00C 1.211 1.379
o growth exponent [determines the siope of mountain on Price fagade] 5.152 0.586) 10.875 0.000 5.040 7.255
Fuwz: parameter determining location along the fraquency axis [for TDP25] 1.761 0.021] 84.354 0.000 1720 1.802

Table 9. The curve-fitting results for the remaining subjects: comparing the non-linear curve-

fitter results to the observed data.
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Figure 39. The four top-most bar graphs above portray the shifts of the triple
mountain whereas the bottom left graph is the shift graph for M14 whose baseline
conditions were combined, resulting in a dual mountain fit.
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Discussion

The model tested in this experiment specifies how the relationship between
stimulation strength and price determines reward strength (where time allocation is the
corresponding behaviour). This thesis asks: Does this model work? To be more specific,
does the three-dimensional psychometric function, the mountain, adequately describe the
relationship between performance for brain stimulation reward (BSR), subjective reward
intensity, and price? The experiment that this thesis describes tests the model by reducing
the train duration. Does reducing the train duration result in a shift along the mountain’s
frequency axis alone, as the model predicts, or does it result in shifts along both the
frequency axis and the price axis?

The results of the experiment support the original hypothesis — namely, that
decreasing the duration of the pulse train will result in a shift along the mountain’s
frequency axis alone. The demonstration that the mountain can shift along one axis
without shifting along the other supports the notion that the integrative model on which
the mountain is based can distinguish manipulations that affect the reward system at
different stages. As predicted, changing the train duration appears to affect the circuitry
before the output of the reward-growth function and does not influence the behaviour-
allocation function.

The first section below examines two technical issues, the leisure-time correction
and test-retest reliability. The second examines two areas in which the model proved
problematic. First, the model failed to reflect accurately the effect on the time-aliocation
versus frequency functions of varying the price of BSR. Second, it failed to provide a

satisfactory mechanism for transforming objective prices into subjective prices. These
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problems did not seriously degrade the fit of the model to the data, but they are important
to understand so that they can be overcome in future work. The third section below
discusses the principal findings and their implications. The fourth section discusses

opportunities for future research. The final section offers some general conclusions.

Technical issues

Leisure-time correction.

The raw data — namely, the length of time that the lever was depressed during a
trial -- was corrected for a bias toward under sampling work time. All releases of the
lever that were less than 1 second long, were re-classified as work time. The rationale for
this correction is as follows: informal observation revealed that during releases shorter
than a second the rat remained near the lever, often with its paws extended, and was
effectively still engaging in work, not in leisure. The time-allocation correction takes
into account these bouts of bar-tapping and thus brings the performance measure mto
closer accord with the animal’s observed behaviour.

The left-hand panel of Figure 40 shows the effect of the tapping correction on the
low-price frequency sweep condition for subject M14. The difference between the
corrected time allocation and the uncorrected time allocation is considerable. The right-
hand panel of Figure 40 shows the effect of the correction on the high-price frequency-
sweep condition for the same subject. The difference between the uncorrected time-
allocation value and the corrected value is much less here than it is in the left-hand panel.
The effect of this correction on the parameters of the fitted surface is not large for any of
the subjects, but it does increase the dynamic range of the data by raising the position of

the upper asymptote. It follows that had the correction not been made the fit of the data
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to the mountain would have been somewhat degraded. A shorter mountain would have
resulted in a poorer fit, since it would have decreased the systematic variance attributable
to the independent variable. Had the correction not been made, the ratio of variance

accounted for by the fit to the total variance would likely have decreased.

Test-retest refiability.

Collecting the data for one complete mountain is time-consuming. As described
earlier, it involves conducting two sets of frequency sweeps and one set of price sweeps,
a process that can take up to 14 days. In order to rule out the possibility that the results
could be explained by the passage of time rather than the decrease in train duration, the
results were tested for internal consistency. If the mountain returned to its original
position during the post-treatment baseline condition, then any shifts that accompanied
the reduction in train duration would not be attributable to the passage of time. A
comparison was made between the first baseline condition, TD1A, and the second
baseline condition, TD1B. As was noted earlier, the data were stable overall. A
comparison of the curves collected during the TD1A phase with those collected during
the TD1B phase provides a rough qualitative impression of the remarkable test-retest
reliability of the results (see Figures 19 to 23). The shift from one baseline condition to
the other produced small changes for most subjects, but these changes were very small
relative to the effects of manipulating train duration. Thus, it is reasonable to ascribe the
effect of varying the train duration to the temporal integration of the reward signal and

not to a drift of the baseline over time.
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Less successful predictions of the mountain model
Price effect.

According to the model, time allocation depends upon both subjective reward
intensity and reward price. In turn, reward intensity is determined by the frequency of
reward. To hold time allocation constant, one can vary price and reward such that one
variable compensates for the other. When the price is high, motivating the animal to
work for stimulation requires higher frequencies. Consequently, the model predicts that
an increase in price should shift the position of frequency-sweep curves to the right: the
higher frequencies yield higher reward intensities, thus offsetting the effect of the higher
price. Reward intensity cannot grow to infinity, however, and it must saturaté as
frequency increases to higher and higher values. Thus, the logistic function used to
model the growth of reward intensity levels off at very high frequencies. This outcome
ultimately produces a failure in the ability of the stimulation frequency to compensate for
price increases. At sufficiently high prices, the reward intensity required to sustain time
allocation at a high level may exceed the maximum that can be produced. In other words,
reward growth will have saturated. As a result, the model predicts that the upper
asymptote of responding for these high-priced frequency sweeps will fall below the
animal’s maximum time allocation and that the slope of the function will become
increasingly gradual.

The price effect observed was generally, but not always, as predicted. This
outcome can be seen in Figure 41, which replots the data in Figures 31 through 35. At
the longer train duration, the high-price frequency-sweep function was shifted to the right

for all of the subjects and in all three phases of the experiment, with the exception of the
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TD1B condition for rat M22 (Figure 41¢). However, at the point on the psychometric
functions where time allocation begins to rise (the toe), the low- and high-price curves
overlapped for three of the five subjects (M11, M16, and M22). At the shorter train
duration, there were clear shifts in only three of the five sets of curves (Figure 42).
Moreover, the fact that the toe or the position of the function appears to be unaltered by
the ihcrease in price, for some subjects at some conditions, is a deviation from the model.
The model predicts that to obtain the same time allocation value with an increase in price
requires a corresponding increase in frequency. Subsequent work (Breton, 2004) has
suggested that the values of the parameters of the behaviour-allocation function may drift
during prolonged testing at high prices. In other words, the act of measuring the |
mountain may sometimes deform it! Remedies currently being tested include the
randomized selection of prices and frequencies and the bracketing of experimental trials
by fixed trials in which the payoff from BSR is either maximal or minimal. In the case of
the present study, the deviation of the price effect from predictions did degrade the fit of
the model. Nonetheless, the fit was generally very good which suggests that the impact

of the problem was minor.

Subjective price effect.

As the introduction noted, the version of the mountain model used here includes a
function that translates objective prices into their subjective equivalents (Equation 8).
The reason for including this function is the expectation that once the price is sufficiently
low, beyond a certain point further decreases in price no longer matter to the rat. The
subjective-price function has two parameters, a minimum subjective price (Pyn) and a

transition parameter (7P). The function looks like a hockey stick: P, sets both the



Mean Time Allocation

Mean Time Allocation

Mean Time Allocation

811 Train Duration 0.25 sec

; TDP25 {4 sec)
s TDP25 (14 s€C)

1.2

0.8 ~

0.6

0.4~

0.2 4

0.0 -

-0.2

20

g T T T v ™
30 40 50 80 70 80 80 100

Pulse frequency (log)

M16 Train Duration 0.25 sec

’ Doe”

TDP25 (4 sec)
TDP25 (14 sec)

20

0.8

30

— —y - .
40 50 60 70 8090100 200 300
Pulse frequency (log)

M22 Train Duration 0.25 sec

s TOP25 {4 s20)
oo TDP25 (12.6 s80)

: —— T )
40 50 80 70 80 50100 200
Puise fraguency {log)

NG
£

Mii4 Train Duration §.25 sec

04 -

0.2

Mean Time Allocation

0.0

TDP25 (4 sec)
wefpoen THP25 (10 sec)

g 7 e T v
10 20 30 40 50 B0 708080100 200

Puise frequency {log)

M20 Train Duration 0.25 sec

1.0

0.8+

0.6~

04~

0.2+

Mean Time Allocation

0.0 TDP25 (4 sec)

TDP25 (18 sec)

v T v
30 40 50 60 70 80 90100 200 300

Pulse frequency (log}

Figure 42. Replotted data from Figures 31-
35. A summary of the effect of increasing the
price for all 5 subjects at the shorter train
duration. The red data represent the low-
price frequency sweeps whereas the green
data represent the high-price frequency
SWEEDS.



93

height of the blade and the location of the transition between the blade and the handle; 7P
sets the abruptness of the transition.

The fitted values of P,;, and TP were listed in Tables 8 and 9, above. For ready
comparison, they have been listed together in Table 10. It is hardly surprising that the 7P
parameter often fails to deviate significantly from zero or that in two cases the model
could not be ﬁﬂeﬂ if this parameter was left free to vary. In order to accurately describe
the hockey stick and the abruptness of the transition between the blade and the handle,
many prices would have to be tested; this study has used only two different prices.

The fitted values of P,;, range from 3.32 to 10.59 seconds; all but the smallest
values deviate significantly from zero. These values would seem to imply that for
subjects M11 and M22, there is no difference between prices of 1 second and 10 seconds.
This interpretation contradicts everyday experience in the laboratory. Moreover, research
carried out after the collection of the data reported here shows clearly that rats are able to
distinguish between prices as low as 0.5 seconds and 1 second (Solomon, 2004). Indeed,
inspection of the price-sweep data in Figure 23 (lower panel) shows that the allocation of
time by subject M22 fell over a range of prices lower than 10 seconds. (That the
allocation shown by the other subjects was maximal over this range does not imply that
the prices were all equivalent. Keep in mind that the price sweeps were carried out at
very high pulse frequencies.) Thus, time allocation was driven to its asymptotic value at
low prices. Had price sweeps been carried out at lower frequencies, time allocation
would likely have fallen over the 1 to 10 second range (Breton, 2004).

How can one explain the discrepancy between the fitted values of P, and the

empirical results (both those reported here and those collected subsequently)? Note that
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Subject| 109(Pmin) |
M11 1.011
M14 | 0.870
M16 | 0.723
M20 | 0.521
M22 1.025

Table 10. Fitted values obtained for all subjects for minimum price,

parameter, TP.

Pmin

p(Pmin)

Low price | High price|

0.000

0.000

0.000

1.000

0.000

RN RN PN BN

log(TP) T TP fit? p(TP)
0.031 1.07 TRUE 0.551
1.000 10.00 FALSE 1.000
0.085 1.22 TRUE 0.522
0.007 1.02 FALSE 1.000
0.134 1.36 TRUE 0.016

P_.  and the transition

min?
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in the case of subject M20 the P,,;, parameter did not deviate significantly from zero.
Moreover, the surface fitting failed when the 7P parameter was included and it became
necessary to substitute a value selected by the experimenter. Thus, there was no need to
have included the subjective-price function in the model for this subject; the objective
price would have sufficed. It is interesting that in the case of this subject the price effect
is as predicted by the model: the data from the frequency sweeps obtained at the high
price are shifted substantially to the right of the data from the low-price sweeps (see
panel d in both Figure 41 and Figure 42). Thus, in the case of the one subject for which
the price effect was as predicted, there was no need for a subjective-price function. This
outcome suggests that the significance of one parameter or both parameters of the
subjective function in the case of the other subjects may be related to the deviation of the
high-price frequency sweep from its predicted position.

Consider the case of subject M22, for which the low price was 4 seconds and the
high price was12.6 seconds. Given the P,;, value of 10.59 seconds, the model predicts
very little rightward displacement of the curve from the high-price frequency sweep
relative to the curve from the low-price sweep. Indeed, there is essentially no
displacement of the empirical curves (see the lower-left panel of Figure 41), only a
decrease in slope for the TD1A condition. The inclusion of the subjective-price function
has allowed the model to compensate largely for its failure to predict correctly the effect
of raising the price on the position of the frequency-sweep curve. The subjective-price
function allowed the model to “pretend” that the subjective value of the high price was
not meaningfully greater than the subjective value of the low price and thus to position

the fitted curves for the two prices very close together.
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Data collected in an ongoing experiment argue against the need for the subjective~
price function in future work (Solomon, 2004). Remedies for the failure of the model to
predict accurately the position of the high-price frequency sweep have been discussed
above (bracketing and random selection of stimulation parameters). Data from another
ongoing experiment (Breton, 2004) suggest that these remedies would be highly
effective.

Now that the problematic aspects of the model have been discussed, it is possible
to consider its successful aspects and the main objective of the thesis: to describe the
effect of varying the train duration on the position of the mountain. As the goodness-of-
fit statistics (Table 7) attest, the problems associated with the price and subjective-price
effects (or the lack thereof) were not sufficiently serious to degrade the fit of the model to

the data significantly.

More successful predictions of the model

The problems associated with the subjective-price component of the model
notwithstanding, the proportion of variance accounted for by the fitted surface was above
0.975 for all subjects. Thus, the model does provide a good account of how time
allocation depends on the strength (frequency) and price of BSR. Moreover, the fits were
sufficiently accurate to describe the position of the mountain along the price and
frequency axes, so that it was feasible to test the principal hypotheses: that it was possible
for the mountain to move along only one of the two axes, and that in the case of

manipulations of train duration this movement would be confined to the frequency axis.
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Dissociating pre- and post-summation effects.

The three-dimensional analysis permits a more thorough assessment of the effect
of varying the train duration than is possible with traditional rate-frequency measures.
Unlike a two-dimensional representation, a mountain analysis can distinguish the effect
of manipulations that alter the underlying circuitry before the output of the integrator
(which shift the mountain along the frequency axis) from those that act after the output of
the integrator (which shift the mountain along the price axis). If this portrayal is correct,
it should be possible to shift the location of the mountain along only one of the two axes
(frequency or price). The study tested this prediction by varying the train duration, a

manipulation that should shift the mountain along the frequency axis alone.

Train duration effect.

Reducing the duration of a stimulation train reduces the time during which
stimulation-induced post-synaptic excitation can build up in the reward substrate. The
experimenter can compensate for the resulting decrease in reward intensity by increasing
the strength of the stimulation. A higher-frequency train with a short duration can
achieve the same level of reward intensity as a weaker long-duration train. Thus,
decreasing the train duration should shift the reward-growth function to the right, and this
movement, in turn, will shift the mountain along the frequency axis. Figures 36, 37, and
39 illustrate that shifts of this nature were indeed obtained.

The position of the mountain along the price axis was expected to remain
stationary, since the impact of varying the train duration manifests itself at a stage of

processing before the behaviour-allocation function.
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A three-dimensional psychometric function can identify and discriminate the
manipulations that correspond to either stage of the reward pathway. Figure 37 presented
the contour graphs for subject M16 that correspond to the position of the 3D structure for
the shorter train-duration condition (TDP25) and the baseline conditions (TD1A and
TD1B). Decreasing the train duration caused a very large shift in f,, the frequency
corresponding to a half-maximal reward; as the red arrow indicates, this shift along the
frequency axis is 0.366 logo units with respect to the TD1A condition. In conirast, there
is a shift of only 0.037 log;o units between the position of the mountain in the short train-
duration condition and the first baseline condition (upper-right and lower-right panels)
and a shift of only ~0.1 log;o units along both axes. The effect of decreasing the train
duration results in a very large shift (red double-headed arrow in Figure 37) in the
position of the 3D structure, whereas returning to the baseline does not (see the closely
spaced dot-dashed lines denoting the values of f;,, in the two baseline conditions).

Figure 39 showed that the shifis of the mountain in response to the decrease in
train duration are consistently large for all subjects and are observed only along the
frequency axis of the mountain. Much smaller and often inconsistent shifts were
observed along the price axis. The average shift along the frequency axis is 8.8 times
greater than the average shift along the price axis (Table 11). Thus, the results are highly
supportive of the predictions of the mountain model and support previous findings by

Arvanitogiannis (1997).



Subject Average Frequency Shift Average Price Shift Difference
M1l 0.305 0.034 9x
Mi14 0.390 0.050 8x
M16 0.330 0.046 7x
M20 0.447 0.042 10x
M22 0.319 0.031 10x

Table 11. Average shift sizes along both the frequency and price axes that correspond to
the decrease in train duration.
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Future research

The ability to determine at what stage different manipulations of the reward
substrate exert their effects paves the way for future experiments that link different
populations of neurons to particular stages in the processing of the reward signal. Such
studies will facilitate the identification of the first-stage neurons responsible for BSR. In
order to identify the primary neurons responsible for reward, several approaches need to
be combined. A valid tool with which to measure alterations in reward-processing is
required. The mountain analysis is a very good candidate for this role. Lesion methods
are also required. The third approach required is to record from the candidate neurons.
Accomplishing all three of these goals (stimulate/measure, lesion, and record) should
lead to the identification of the first-stage neurons associated with reward.

Parallel experiments will be conducted in Dr. Shizgal’s laboratory to assess
whether the mountain can be shifted orthogonally, along the price axis alone. A shift of
this nature would correspond to a manipulation that took place after the output of the
integrator. For example, decreasing the value of leisure time would result in a shift along
the price axis of the mountain. A proposed study involves setting up a bright light in the
operant chamber that is on only during the subject’s leisure time. Rats do not like bright
lights, and the presence of a light is expected to alter the way in which the subjects
choose to spend their time in the operant chamber. It is predicted that a manipulation of
this kind would affect the output of the integrator and correspond to a shift of the

mountain solely along the price axis.
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Why is the mountain important?

The mountain may be a crucial tool for determining the structure of brain-reward
circuitry, which is believed to play a key role in foraging behaviour and decision making,.
Decision processes are governed by reward assessment. Thus an animal will base its
decision to remain in a patch for the purposes of foraging or to leave for another on
relative reward values and costs (Gallistel, 1994). One can also apply mountain analysis
to determine how the reward system is affected by different physiological manipulations,
such as food restriction, and at what stage of processing these manipulations act to alter
reward processing.

The role dopamine plays in BSR remains to be understood fully. Changes in
dopaminergic neurotransmission profoundly alter performance for BSR. It is not known,
however, at which stage(s) of processing dopamine acts to bring about these changes in
performance. Application of the mountain model can identify these stages, thus helping
to resolve a problem that has been prominent in the literature on brain-reward circuitry
since the 1970s.

Over the past decade, a new subdicipline, neuroeconomics, has begun to emerge.
The quantitative model at the core of this thesis fuses some functional ideas from
behavioural economics (e.g., price sensitivity, payoff) with mechanistic concepts from
behavioural neuroscience (e.g., temporal summation, rate codes). It is encouraging that
the mountain model was largely successful in describing the relationship between
behaviour allocation and the cost and strength of reward and in predicting the effect of
varying train duration. For more than 50 years, students of brain-reward circuiiry have

wrestled with problems such as identifying the primary neurons that subserve BSR,
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determining the role of dopaminergic neurons, and understanding how changes in
physiological state modulate BSR. If application of the mountain model were to help
solve problems of this kind, it would promote quantitative modelling in general and
neuroeconomic modelling in particular as key tools for the study of the psychological and

neural processes responsible for reward and decision making.
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The following procedures were implemented in order to calculate the bi-square
weights. The distance between the median time allocation value in each condition ()

and each data point, d; (at condition ;) was determined with Equation 1.

d = abs(mj - xz.,].),‘v’xi:j. e condition{ )

8y
The median absolute deviation (MAD) was then determined for all conditions within

each set of sweeps, as described in Equation 2.

MAD = median(d,-,j),va’i,j 2

The scaling factor for the deviations, , is then calculated by multiplying MAD by the
tuning constant, k (in our experiment a tuning constant of 6 was used, a commonly
employed value for this constant (Hoaglin, 1983).

u=kMAD 3)

The bi-square equation (Equation 4) determines the weight of each data point. In the case
where the data value is less than or equal to the scaling factor a weight is determined. In

the case where d is greater than the scaling factor, a weight of zero is given.

Vd,  >u:0 4

The weighting function assigns weights close to 1 for points lying near the
median; as the distance from the median grows, the weights fall off smoothly and
eventually reach zero. Thus, the influence of outliers is eliminated or reduced without
having to identify the outliers @ priori. The tuning constant determines how far an outlier
must deviate from the median in order to be assigned a weight of zero. Given that MAD
is based on all the data for a given set of sweeps, points from conditions yielding low-

variance data (e.g., points near the upper or lower asymptotes of the 2D psychometric

functions) receive higher average weight than points from conditions yielding high-
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variance data (e.g., points on the steep portion of the 2D psychometric functions). This
differential weighting tends to compensate for the heteroskedasticity in the data. The
effect of skew is reduced by the fact that the weighting procedure draws the fitted surface
toward the median of the dataset for each condition.

Figure Al illustrates the need for bi-square weighting. Results from a single price
sweep (top panel) and a single frequency sweep (IoWer panel) are shown. Outliers (red)
were observed at two of the prices tested in the session depicted in the upper panel (data
points circled in yellow). If conventional means had been calculated, they would have
been strongly biased by the outliers. However, the bi-square weighting procedure assigns
these points weights of zero, thus removing thé contaminating influence.

Heteroskedasticity is illustrated in the lower panel of Figure Al. The largest
errors bars are associated with the rising or falling portions of the sigmoidal curve, and
the smallest error bars are consistently seen at the upper asymptote of the data set. The
bi-square weighting procedure compensates for the heteroskedasticity of the data by
down-weighting the extreme values. This is illustrated in the lower panel of Figure Al by
colour-coding the data points on the basis of their associated bi-square weights. As
shown in the weighting scale provided to the right of the figure, blue points were given a

full weight of I whereas the red points were assigned weights of 0.1 or less.
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Figure A1. Mustration of the need for bi-square weighting. The cloud of points in the upper
panel illustrates the reason for weighting the data set. If each of these points were given
equal weight then we would know very little about the position of the mean of this group
on the slope of the frequency function. The lower panel illustrates the extent of the
heteroskedasticity of the data.



