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Abstract

New Tree-based Algorithms for Network Spare Capacity Design

Yunzan Zhang

Survivable network design has become increasingly important due to the need for
reliable communication service. One of its important components is the spare ca-
pacity design. Its main purpose is to provide cost-efficient spare capacity reservation
at certain survivability level in case of predicted failures. In this thesis, we study
various kinds of network survivability techniques and the corresponding algorithms.
Subsequently, we introduce our two pre-planned path restoration algorithms for spare
capacity design in mesh-like networks. They can get higher utilization of spare ca-
pacity and reasonable reaction time. First one is a spanning tree based algorithm
with backup parents, which needs much less spare capacity than the well known hier-
archical tree algorithm while the restorability is slightly higher or lower. The second
algorithm is a cycle tree based algorithm with backup parents and some extra cycle
edges. Simulation results show that this algorithm works much better on restorability
than the other two algorithms. The time complexities of the two new algorithms are:
O(n*), where n is the total number of nodes in the network. The space complexities

arc the same too: O(n3>.
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Chapter 1

Introduction

In the modern society, we are increasingly becoming dependent on the exchange
of information. Telecommunication, Internet, on-line banking, on-line government
services and E-mail system are just some examples how we use network daily. Hence,
we are ever more dependent on the availability of reliable communication services and
networks. To assure such reliable services, we need to design a survivable network
with suitable spare capacity to enable fault recovery via rerouting of traffic in the

event of a failure.

A communication network is often represented by a graph. We define as network
failure, either a node failure or a link failure where the connectivity of the network
is decreased and some original service connections are broken. The objective of the
network survivability design is to make the probability of data loss as low as possible

upon the link or node failures. In a survivable network, the original service path is



referred to as the primary path. Any node failure or link failure within the primary
path will break down the service connections carried on this path. The main purpose
of survivability design is to find available backup path(s) for the replacement of the
broken primary path upon failure(s), so that the affected service connections can
be recovered. In order to make the data loss as low as possible in the restoration
process, any survivability scheme must satisfy two requirements. First, it must be
able to provide enough spare capacity at a certain survivability level and secondly,

the restoration process must be as short as possible.

In order to improve the utilization of expensive communication facilities, commu-
nication networks are always built to share resources for serving the large numbers of
communications’ service requirements. Due to ever increasing social dependence on
network facilities, network survivability has become a very important focus of many

researchers in this domain.

In the following sections, we compare and analyze several design strategies that

different schemes may employ.

1.1 Network survivability techniques

Network survivability techniques have been used to guarantee available communica-
tion services in the face of network failures, i.e., link failure and node failure. The
major part of constructing a survivable network is a design of the spare topology
and the corresponding capacity, which ensures enough spare capacity for the physical

2



network restoration from a failure via traffic rerouting when the network topology
is given. For example, given a mesh-like network topology and the normal traffic
demands with their flow allocations, we need to resolve the following problems: how
much spare capacity should be provisioned and where it should be located in order
for the network to recover a specified set of failure scenarios (e.g., loss of any single
link). The term mesh-like does not imply that the network topology is a full mesh,

but rather that the network nodes are at least two-connected [7].

Therefore, the major interest in survivable network design has been concentrated
on providing cost-efficient spare capacity reservation at a certain survivability level.
The survivability level assesses the percentage of restorable network traffic upon fail-

ures [8] .

1.1.1 Restoration Process

Upon a failure, a general restoration process will invoke the following four steps [9]:
fault detection, fault localization, fault notification, and fault restoration. Restora-
tion strategies decide the responding action when a failure happens in a network.
First, fault detection is responsible for deciding whether a failure exists or not and
it is performed individually at all layers through the retrieving of information from
monitoring or testing. Upon the detection of a fault, every layer will try to localize
the fault, after the fault is detected or localized, the next step is to notify the ap-

propriate network element to find, configure, and provision the spare capacity of the



backup path. Next, the restoration process splits into two parallel processes; the re-
pair process where the failure is isolated and repaired, and the reconfiguration process
where the affected traffic flows are identified in the network nodes. The backup paths
for these affected traffic Hows are selected and rerouted. When the repair process
is finished, the restoration process will go back to its normal state. The restoration
process is also responsible for rerouting of the affected traffic from backup paths back

to primary working paths.

Excluding the failure detection, which is decided by the physical layer techniques,
the other steps are decided by the survivability schemes, for example, how the backup
paths are selected and how the spare capacity is provisioned. In network restoration,
when a failure is detected, the affected traffic flows are rerouted to backup paths
that have enough spare capacity provisioned in the survivable network design phase.
How to provide spare resources is a very important issue for the network survivability

techniques.

1.1.2 Restoration Categories
The network restoration strategies can be classified by different criteria. We introduce
some strategies related to our study as follows:

e Pre-planned vs. Dynamic

The criteria is according to the time when spare resources for backup paths are

reserved; the pre-planned method reserves spare capacities before failure happens,



while the dynamic method reserves additional spare capacity after failure happens.
Pre-planned methods will have advantages on guaranteed survivability upon predicted
failures. However, pre-planned resources will be wasted if none of the predicted
failures happens. Meanwhile, the backup pre-planned paths are optimized for all
failure scenarios, however, they might not be the optimal backup routes for the specific
failure. The restoration time is gained, but the preparation for all possible failures
is slow and takes up memory. Dynamic methods try to allocate the spare resources
when the failure happens. In this way, better resource utilization can be achieved
but the survivability assurance is risked because the requested resource might not be

available when it is requested upon failures.
e Path restoration vs. Link restoration

According to the initial locations of the rerouting process, the protec-
tion/restoration schemes can also be categorized as path restoration and link restora-
tion. Path restoration reroutes at the end nodes. It spreads failure influence to a
larger area but it has less spare capacity requirement. At the same time, it has a
slower restoration speed because of the longer reaction time. Link restoration reroutes
at the nodes adjacent to the failure, has fast failure response time and significant im-
pact in the area close to the failure. It only patches the “hole” produced by the failure

and requires more spare capacity.

As showed in Figure 1, the source and destination nodes are v; and vy, the orig-

inal working path is p = (v1,vq,v3,v4), the assumed failed link is v, — v3. For
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Figure 1: Link restoration and path restoration

link restoration, the nodes vy and w3 are responsible for rerouting the affected traf-
fic lows in order to keep the path away from the failed link. The spare path is
po = (v1,v2, s, v6,07,03,04). In contrast, for path restoration, nodes v; and v, are
responsible for restoration and rerouting of the entire path set. The spare path is
po = (v1,vUs,v6,v7,v4). In general, path restoration is known to require less spare
capacity than link restoration. However, it is more complex to implement since many

more nodes are involved in the restoration process [7].

e Failure dependent vs. Failure independent



We can further classify path restoration into failure dependent and failure inde-
pendent. Failure dependent refers to the fact that path restoration depends on the
failure scenario. It requires network nodes to save additional network state informa-
tion achieving better utilization. Failure independent means that path restoration
does not depend on failure scenarios. Hence, having less storage space and less sig-

naling information it is easier to implement.

The selection of backup paths can be failure dependent where different failures are
protected by different backup paths. A failure independent path restoration scheme
requires less signaling support and is easier to employ while it might require more

spare capacity than failure dependent path restoration.
e Single layer vs. Multiple layers

Depending on which network layer the services are restored, we have single layer
restoration and multiple layer restoration. If the given restoration scheme happens on
one layer, such as WDM, SONET, ATM, IP/MPLS, it is called single layer restoration.
Otherwise, multiple layer restoration implies more than one layer participating in
restoration design. In our work, we assume a single layer, such as the WDM or

SONET layer.
o Link failures vs. Node failures

Which kind of failure(s) are the services designed for? One restoration scheme
can be designed to resolve mainly link failures or node failures. When there is a node

failure, we can consider every link connected to this failed node as invalid. So, a node



failure can be equal to several link failures. Moreover, almost all the node equipment,
including the switching and transport equipment, is redundant at the hardware level,
which keeps the node failure probability very low. Therefore, in our study, node

failures will not be considered.

1.2 Spare Capacity Design Algorithms

1.2.1 Network Design Problem

Topelogy
Design

Network

topology

Trathic
requirement

Capacity
Design

Flow
Assignment

Figure 2: General network design problems

We use the Figure 2 from [8] to denote the general network design problems.
Given the traffic demand locations and their Quality of Service (QoS) requirements
in the network, traditional network design is responsible to allocate nodes and links
with enough resources (including bandwidth, buffers, etc.) to transport all the traffic
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demand with guaranteed QoS requirements from the origin to the destination, as well
as to minimize the total network cost. The first task is topology design, which provides
the node location and link connectivity in the network topology. The next task is
called network synthesis, which decides the traffic routing and resource distributing
in the given network topology. The two problems faced in network synthesis are
capacity design and flow assignment. Multi-commodity flow (MCF') models are used
to solve these problems. Additional constraints, i.e., traffic QoS guarantees, node
buffer restrictions and link capacity limits should be considered. In many cases,
the MCF model is NP-hard [16]. Approximation methods are widely used to solve
network design problems and the above mentioned models. Survivability requirements
for the traffic introduces additional constraints into above traditional network design

problems.

Inherited from the traditional network design phase, survivable topology design
has specific requirements. A common requirement is try to achieve 100% restorability
in case of a single failure, it demands that at least the rest of the network is connected
after any single link(or node) failure. This requirement is defined as two-link(node)
connectivity. A two-link(node) connected topology has at least two link(node)-disjoint
paths between any source-destination pairs [8]. In addition to the survivable topology
design, the survivable requirements of the traffic need extra resources to reroute the
affected traffic upon failure scenarios. In this thesis, we focus on spare capacity design

algorithms.



The fastest possible scheme for restoration is to reroute the signals over two phys-
ically disjoint paths (1+1 DP) and do the selection of the surviving signal at the
receiver. This can be cost-effective for some very large point-to-point demands in
some metropolitan area networks, but in general requires an investment of over 100%
redundancy in terms of bandwidth-distance product consumed. Therefore, schemes
that provide some form of protection source sharing are of interest. The SONET
bi-directional line-switched ring (BLSR) is today perhaps the most widely used pro-
tection sharing structure, which is a kind of the ring-based scheme. In a BLSR the
ring protection bandwidth is shared over all spans of the same ring that is often more

efficient than 1+1 DP [11].

“Mesh-restorable” networks, on the other hand, can be much more capacity-
efficient than ring-based networks in terms of the total spare capacity in a spare
capacity design. Here, “mesh-restorable” refers to the ability of the rerouting mech-
anism to exploit an arbitrary topology in a mesh-like (as opposed to ring-like) way
through diverse rerouting [11]. In a ring, the spare capacity protects only spans on
the same ring. But in mesh-like network restoration flows may follow many diverse
paths, network-wide, using smaller amounts of spare capacity on each route. The
mesh-like restoration path set is generally different for each failure and adaptive to
the actual spare capacity available on each span. Each unit of spare capacity in a
mesh-like network is shared and re-usable in many more ways than in ring-based net-
works. Thus, rings use very simple mechanisms and therefore are simple, fast, but

relatively capacity-inefficient. Mesh-like networks can be far more capacity-efficient,
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but have considerably longer restoration times.

1.2.2 Pre-planned Network Capacity Design Algorithms

Pre-planned methods for network capacity design have been well discussed in the lit-
erature. In centralized pre-planning, a path set for restoration is centrally calculated,
then either downloaded in advance or on-demand to each node when needed. In dis-
tributed pre-planning each node develops either a network database image or local
action results from the information the node knows. In either case, it is only that
the computation of what to do that is “pre-planned”; each node must still execute
a list of required connection actions in real time for its role in the overall restora-
tion of a specific failure. In contrast, the idea in pre-configuration of mesh-like spare
capacity, is to have the required cross-connections between spare channels already
made in advance of failure. Ideally, for the fastest possible restoration the mesh-like
network would be both pre-planned and pre-connected. But the premise is that the
spare paths are fixed, what we called failure independent (described in Section 1.1.2).
For the failure dependent method we do not know which spare connections will be
needed before failures as in our new tree based algorithms. Furthermore, for different
layers the emphasis is different. Higher layer does not need to care for the physical
connection in a path, knowing there exists a path is enough, but lower layer should
know every physical connection. In our work, we emphasize the pre-planned capac-

ity design, regardless of whether the spare connections are pre cross-connected or on

11



demand. The following are some typical kinds of pre-planned spare capacity design

algorithms.
e Tree-based algorithms

A tree is a set of connected nodes having only one path between any pair of nodes.
A spanning tree is a tree which covers all network nodes. When a weight is associated
with each link, a maximum weight spanning tree is a tree for which the sum of the
weights is a maximum. The spare topology with a spanning tree modal can provide
one backup path between any pair of nodes, which means that there is a spare path
for any possible working path. It can cover any link failure which is not the case on

the tree edges.

One approach to generate pre-planned trees is based on maximum weight spanning
trees in the network spare capacity, where the weight can be based on the number
of times a spare link can contribute to the restoration of other links or some other

meanings.

The hierarchical tree algorithm is described well in [1, 2] and we will introduce
it briefly in chapter 2. Another approach to the tree-based restoration algorithms
is the multi-tree algorithm. We introduce briefly an algorithm called “redundant
trees” which creates redundant trees on arbitrary node-redundant or link-redundant
networks. On the contrary, the hierarchical tree algorithm and our new tree based
algorithms try to crate one tree for the whole graph. However, the purpose of the

“redundant trees” algorithm is to establish two link or node disjoint trees for every
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source node. As a result, each node is connected to the common root of the two
trees (that is the source node) by at least one of the trees in case of a node or link
failure. Of course, not for every network graph we can create such redundant trees,

this algorithm is applicable to the node-redundant or link-redundant graphs [10].

Actually, the construction of the two link or node disjoint trees for every source
node needs cycle-oriented and tree-based concepts, so we prefer to put it in the

combination of tree-based and cycle-oriented algorithm.
e Cycle-oriented algorithms

This method is based on the formation of the pre-planned cycles. The final spare
allocation will include many closed cycles to form the required spare paths. Cycle-
oriented pre-configuration remains fundamentally a mesh-like restorable network tech-
nology in terms of its capacity efficiency and its functional differences from self-healing

rings.

One noted strategy is called p-cycle, with the motivation to achieve ring-like
restoration time while remaining the desirable capacity efficiency of the mesh-
restorable alternative. The method of p-cycle is based on the formation of closed
paths (elementary cycles in graph theoretic terms), called p-cycles, in the spare topol-
ogy of a mesh-restorable network. They are formed in advance of any failure, out of
the previously unconnected spare capacity units of a restorable network. Despite sim-
ilarity to the rings, both use a cycle on the network graph for their topology, p-cycle

are unlike BLSR/OSPR, UPSR/OPPR (or FDDI) logical rings because they protect

13



both on-cycle and straddling failures. P-cycle spare capacity design takes little or no

more capacity than a corresponding link-restorable mesh-like network [5].

A linear integer program (IP) was formulated for the design of p-cycle based
restorable networks. First, the set of all simple distinct cycles up to some limiting
size is generated from the network topology. The IP then generates an optimal p-cycle
plan by choosing the number of copies of each elemental cycle on the network graph,

to be configured as a p-cycle. For detailed description, please refer to [4, 5].

For the time complexity, because of IP or genetic algorithm, we cannot give an
upper bound. However, its time complexity is much higher than that of our new
tree based algorithms and the hierarchical tree algorithm. At the same time, from
the theory, its average restorability should be higher than that of the basic plain
tree-based algorithms, which is the most important reason for introducing the cycle-
oriented concept to our cycle tree-based algorithm (we will explain it in Chapter

4).
e Other algorithms

Generally, using some models (like MCF mentioned above) to formulate spare ca-
pacity design problems, the objective is to minimize the total spare capacity required
for the restoration from failure scenarios, and to get the highest restorability (100%
maximum ). But the resulting Integer Programming(IP) formulation is NP-hard [8].
Many heuristic methods are used to approach the optimum. In [8], there are some

introductions relating this kind of algorithms, such as LP relaxation method, branch

14



and bound based heuristics and genetic algorithms.

1.2.3 Our Goal

The two new tree-based algorithms proposed in this thesis use pre-planned and path
restoration methods. The spanning tree based algorithm generates a maximum span-
ning tree with backup parents table, which needs much less spare capacity than the
hierarchical tree algorithm while the restorability slightly bigger or smaller. The cy-
cle tree based algorithm with backup parents and some extra cycle edges is going to
produce a basic spanning tree topology with backup parents and some extra cycle
edges, which form some cycles with the original spanning tree edges. It can get much
higher restorability than the other two algorithms presented in this thesis, with very
reasonable increased spare capacity. The most important objective is to achieve as

large as possible restorability with the least spare capacity used.

We introduce two concepts here: link-disjoint and node-disjoint. Link-disjoint
represents two paths with no shared link, that is, every link presented on one path
never appears on the other one. Otherwise, node-disjoint implies to two paths with
no shared node. Based on the theory, for every working path if there is a spare path
which is link-disjoint with the working path, then we can say that the spare topology
can protect any single link failure. Similarly, if there exists another node-disjoint
path for every working path, then the one node failure should be restored. Actually,

for an arbitrary network graph, it is not only hard to know whether there exists all
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link(node)-disjoint paths for all working paths, but is also very difficult to get such
paths. The two new tree based algorithms we introduce later do not attempt to
find the link-disjoint paths, instead, they construct the spare trees regardless of the
original working paths. In addition, ﬁhey use backup parents and cycle edges to gain
another spare path(s) in case of the failed link being nested in the original spare path.
From time complexity analysis and simulation results, these algorithms need much

less running time and get very good restorability at the same time.

In our work, one traffic demand between each pair of nodes in the network was
assumed as general. The allocated working capacity for each network was determined
using the shortest path routing. The required spare capacity is calculated to provide

the fault tolerance for any single link failure.

1.2.4 Organization

In the following chapters, we will introduce our two new algorithms and the hierar-
chical tree algorithm. The main idea of the well-known hierarchical tree algorithm
will be presented in Chapter 2. In Chapter 3 we will give a detailed description of the
new spanning tree algorithm with backup parents, especially on how to use backup
parents to find backup spare paths. We will calculate the time complexity at the same
time. The most important contribution of this thesis will be revealed in Chapter 4,

introducing the cycle tree based algorithm. It will be shown how to obtain the cycle

16



edges and how they can help the algorithm to reach higher restorability. In Chap-
ter 5, the simulation results and comparisons with 5 typical topology models will be

presented. Finally, we will state our conclusion in Chapter 6.
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Chapter 2

Hierarchical Tree Algorithm

2.1 Definitions of the Terms

Formally, any network can be expressed as a graph G = (V, E), where V is the set of
nodes and E is the set of edges. Two nodes u € V and v € V' are adjacent if there is
an edge e € F, such that e = (u,v). We use u — v to denote the edge. We also say
node u or v is a neighbor of another node. A node in the graph represents a station
in a network, and an edge a connection between two stations, which creates a link
between that two nodes. A path p in a graph G = (V| F) is a sequence of nodes of
the form p = (v, va...0,,), (n > 2), in which each node v; is adjacent to the next node.
Obviously, the path p is also a sequence of edges or links. (v;,v;) is used to denote a
source-destination pair of nodes. The length of a path is the number of edges in the

path. A graph G = (V| F) is said to be connected if there is a path between any two

18



nodes of G.

We call a path on the tree between any two nodes spare path, the edges which
form the original tree tree edges, the edges which connect the backup parents to the
tree backup edges, the edges which form some cycles with the original tree edges cycle
edges. The spare paths get from the backup parents or cycle edges are called backup
spare paths. Work capacity denotes the assigned capacity for working path, while
spare capacity means the unused capacity by any working path. The restorability

is the percentage of restorable network traffic upon failures. In our work, we use

restorable traf fic capacity
af fected traf fic capacity

the average fraction to denote the term restorability, over all
possible single link failures. For a pre-planned restoration algorithm, this measures

effectiveness of a pre-planned method in providing immediate restoration without

requiring any on-demand computation for dynamic restoration.

2.2 Algorithm Description

In this section, we introduce a well-known pre-planned tree-based algorithm, called
“hierarchical tree algorithm” [1, 2]. The algorithm is based on the distribution of
node identification message, called tree ID labels, which include the ID labels itself

and the capacity to the backbone.

The tree ID labels indicate the position of the node in the hierarchical tree. The
capacity field indicates the available protection capacity for this node by the path

towards the root node. The node with the largest average link capacity is selected

19



as the root node. The procedure starts from a pre-selected root node that passes
the IDs to its children, and the same process is repeated at each node. Allegedly,
each root node starts with tree ID label of 1, then it would distribute labels 1.1, 1.2
and the rest, to its neighbors with the link capacity between the root node and each
child node. The node with ID 1.2, for example, will in turn distribute 1.2.1, 1.2.2
and the rest, to its neighbors with the corresponding updated capacity, excluding the
new parent node 1.2. Through the tree-growing procedure, each node keeps record
of the ID label message. When a node receives a new tree ID label, the algorithm
compares the capacity field in the new label to its current capacity. It replaces the
current ID with the newly arrived one if the new one provides larger link capacity to
the backbone, that is, to the root node. The old ID is kept as backup parent(s) in
a record look-up table. Subsequent to using the backup parents to form other valid
backup paths, the final valid spare network includes not only the tree link themselves,

but also the needed links used for the backup connection.

As the tree ID labels are exchanged among the nodes, each node recognizes its
position on the tree and its respective parent node. At the same time, each backup
parent’s list is established. It is important to note that each node would generate
new ID labels only if its current ID labels had changed because of a newly received
ID or a change in topology. Therefore, once the hierarchical tree is formed, no new

ID labels are generated anymore, and the algorithm is completed.

From the definition of the spanning tree, the hierarchical tree is also a spanning
tree. The time complexity to construct the hierarchical tree is O(n?), where n denotes
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the number of nodes in the graph. Detailed analysis of its time complexity is in [2].
The methods of spare capacity assignment and restorability calculation are the same
as in the following spanning tree-based algorithm. The time complexity of which

equals to O(n*). In total, the running time for the whole algorithm is O(n?).

It is a distributed algorithm, although the hierarchical tree can be generated
centrally. We can use it as link restoration or path restoration, according to which
source-destination pair of nodes have to be rerouted on the tree. In our work, it is
used as a path restoration algorithm. For the path restoration method, we can use

different backup path for different pair of nodes in case of the same link failure.

Concerning the way of using the backup parents to get valid backup spare paths,
we will describe it amply in Section 3.1, since all of the three tree-based algorithms

use backup parents to gain backup spare paths.
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Chapter 3

New Spanning Tree Based

Algorithm

In this chapter we give a typical maximum spanning tree-based algorithm, which can
achieve very close restorable percentage level compared to the above hierarchical tree
algorithm, but saves much more spare capacity. Making of the algorithm involves two
parts: the spanning tree construction and spare capacity assignment & restorability

calculation, which are introduced in the following two sections.

3.1 Spanning Tree Construction

As introduced in Section 1.2.2, a maximum weight spanning tree is a tree for which

the sum of the weights is a maximum. One way to generate pre-planned trees is
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based on maximum weight spanning trees, where the weight is based on the number
of times the spare links can contribute to the restoration of other links, although the
weights can be the spare capacities on the edges, or the work capacities, or some
other numbers with special meanings. A heuristic method can be used to get the
tree. For details, please refer to [11]. However, because of the time complexity we
use another method instead. First, we get each shortest path as the spare path upon
every one link failure, then calculate the total needed spare capacity according to
the spare paths and apply this figure as the associated weight for every link, and
lastly, build the maximum spanning tree. Another approach is to simply put the
work capacity on the link as its weight, then construct the maximum spanning tree
according to the weight. Using these two methods with some examples, we realize very
close restorability. We select the second one, in our following simulation algorithms,

because the first one needs much more time and space.

Once the link/edge weights are assigned, Prim-Jarnik’s algorithm is used to find
a maximum weight spanning tree. A single copy of this tree is then configured as a
pattern (unit link capacity topology) in the network spare capacity design process.
For any single link failure, we use this pattern to find any existing spare path, and give
the needed spare capacity as the spare capacity on the link. Finally, after considering
every possible single link failure, the maximum needed spare capacity on link will be

the final designed spare capacity.

If the network spare topology is already given, it can be used as the basic spare

graph. We can select our maximum spanning tree from the all possible spare links with
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the spare capacity limit as their assigned link weight. Then, we use this tree as the
spare topology pattern to allocate spare capacity on every tree edge. In this way we
put the tree link with necessary and enough spare capacity to get higher restorability.
If only the network topology itself is available, then this topology will be used as
the pattern to finish the tree creation and capacity assignment. In this thesis, we
state the problem where no spare resource has been allocated in the given network
topology. However, in order to compare the results between having or not the spare
topology, we have several simulation results presented in Table 15 and Table 16 using
existing spare topology!. Comparing the results when using the network topology in
Table 17 and Table 18, we know that the restorability using designed spare topology
is higher than that of using the network topology itself, because of the well designed

spare topology structure by some other algorithm using IP and Genetic methods.

As we do in hierarchical tree algorithm, we also use backup parents as the backup
selection for other available spare paths. Unlike the hierarchical tree algorithm, the
table “backup parents” is established after the construction of the spanning tree.
The table keeps the adjacent nodes for every node, including their parent node and
children nodes used in the tree. Only the nodes that lose their connection to the
tree need to switch to backup parents for other possible valid backup paths. The
same method for using backup parents, with hierarchical tree algorithm, maximum
three nodes in the affected original spare path are used to check their backup parents.

These are: the source node, the second node and the node just being prior to the

!These three examples of the networks are from [7] with well designed spare topology.
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failed link. After considering all the possibilities, some additional edges, used for
backup connections, will be added to the basic tree structure. The final structure for
the spare capacity allocation is an extended tree with more than n — 1 edges. The
algorithm used to create backup edges using backup parents is included in the next
part: spare capacity assignment and restorability calculation, we will introduce the

method in the next section.

To create a “backup parents” table, for each node, we scan the whole network
graph according to the node number sequence, and select maximum backup_num
(defined by the software) adjacent nodes to the table “backup parents” as backup
nodes. The main difference, compared to the hierarchical tree algorithm in using the
backup parents’ table, is the sequence of every backup parents’ set. In the spanning
tree algorithm, the sequence is in terms of the natural node sequence; whereas in

hierarchical tree algorithm is according to the ascending of capacity to the root.

3.2 Spare Capacity Assignment & Restorability

Calculation

At this point, the spanning tree and the table of “backup parents” have already been
created; we should consider the spare capacity assignment and the percentage of the
restorable traffic according to this assignment. How do we assure that enough spare

capacity is assigned to every spare link? First, upon each possible failed link, we
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calculate the just enough spare capacity on every tree edge and the backup edge.
Second, the maximum needed spare capacity on the tree edges and backup edges
will be selected as the final assigned spare capacity. This can assure sufficient spare
capacity if there exists a spare path on the tree based spare topology. This spare
capacity assignment process is dealing together with the restorability calculation as

shown in Figure 3.

Let us see how the potential backup spare path can be derived from the table
“backup parents”. Suppose a link failure happened, for a source-destination pair of
nodes the working path and the original spare path are both affected so we need to
search the table “backup parents” to find another spare path. In our algorithm, as
mentioned above, we check maximum three nodes’ backup parents on the spare path,
and try to find another valid backup spare path. If for any of the three nodes, one of
its backup parents has a valid spare path to reach the destination node; then the path
from the source node to this node, plus the edge between this node and its backup
parent, plus the spare path from its backup parent to the destination node, is the

valid backup spare path for this given failure.

We use Figure 4 as an example. To simplify, we just show only one backup parent
for each usable nodes. From the spare path p, = (v, va, v3, vy, s, v6) With the broken
link vy — w5, we cannot use ps to reach the destination node vs. We should check
backup parents of node vy, vy and v4. Using v;’s backup parent vy, the backup
spare path p, = (v1, v10, Us, V4, Us, Ug) includes the broken link v, — vs, so it is useless.
Using vq’s backup parent vy1, the backup spare path p, = (v1,ve, v11, V12, s, vg) can
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Figure 4: Spare path with backup parents

reach the destination node vg, so we do not need to check v,’s backup parents. At
last, we have found another valid backup spare path p, = (v1,vq, v11, V12, vs, vg) for

source-destination pair (v, vg), on condition that vy — v is the failed link.

As we mentioned before, the backup spare path is failure dependent, that is, for
different failure, the backup spare path maybe different. Compared to the plain span-
ning tree algorithm (before using backup parents), the use of backup parents improves
the restorability very much. This conclusion can be confirmed by the simulation re-
sults in Section 5.2.1. Although the increased restorability is different on different
network models, for every model, after using the backup parents, the restorability
is always much higher than before. For example, in one model the difference even

reaches the average of 40%.
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To calculate the restorability, as defined in Section 2.1, through the whole spare
capacity assignment procedure, for each possible link failure, we should check every
affected working path to get the number of the affected paths and of the restorable
paths. After considering every single link failure, we have the average percentage
of restorable traffic as the restorability for the whole network. In our algorithm, we
always keep the maximum needed spare capacity for every possible single link failure,
so at last the values stored in the spare capacity matrix are the final spare capacities.
They include spare capacity for the original spanning tree edges and the backup edges

used for backup parent’s connection.

3.3 Time Complexity & Space Complexity

The spanning tree algorithm is similar to the new cycle tree algorithm that will be
described in Chapter 4, except for the application of cycle edges. Similarly, based on
the time complexity analysis in Section 4.4, the time complexities for the tree con-
struction and table “backup parents” making process are the same: O(n?), although,
the new cycle tree based algorithm adds a little more time complexity to obtain the
cycle edges. Besides this part, spare capacity assignment is another very important
portion in the whole algorithm. As shown in Figure 3, only the marked parts act on

the total time complexity as follows.
Part 1 : the running time is O(m) = O(n?).

Part 2 : the upper bound is O(n?).
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Part 3 : because the maximum number of the backup parents is defined by the
software, and the actual number is restrained by the node degree, we consider its

contribution a constant.

Because of the part 2 being nested in part 1, together they need O(n?) running
time. So, the time complexity of spare capacity assignment process is O(n*). Adding

the tree construction part, the time complexity of the whole algorithm is O(n?) +

As to the space complexity, we need the network connection matrix of O(n?),
the tree connection matrix of O(n?) and the backup parents table of O(n) for the
tree construction process. In total, for this part, the space complexity is O(n?). In
addition, for the second part, the spare capacity assignment and restorability calcu-
lation, assuming the maximum length of any path between any source-destination
pair is n — 1, the memory needed to record working paths for every pair of nodes is
O(n?), and for the spare paths is O(n?). So we have O(n®) space complexity for this
process. IFinally, we deduce that the upper bound of space complexity for spanning

tree algorithm is O(n®).
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Chapter 4

The Cycle Tree Based Algorithm

In this section, we present the new algorithm that we named cycle tree based al-
gorithm for spare capacity design. It can guarantee higher restorability than the
spanning tree algorithm described above. The new cycle tree algorithm is made of
a spanning tree with backup parents and some extra cycle edges that form some
cycles with the original spanning tree edges. We call the path that forms a cycle
cycle path. The table “backup parents” keeps the unused adjacent edges for every
node. When the nodes lose their connection to the tree, they can be switched to
backup parents for other possible valid backup spare paths. More significantly, we
add some redundant edges, which are called cycle edges, to the basic spanning tree to
achieve higher restorability with very little additional time complexity and reasonable
increased spare capacity. Here, as mentioned before, we assume one traffic demand

between each pair of nodes in the network.
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In the following two sections we will introduce the two main parts of the algorithm:
tree construction procedure and spare capacity assignment & restorability calculation

procedure.

4.1 Tree Construction

—— : Tree edge .
X : Eliminated cycle edge

— = : Cycle edge

Figure 5: Tree edges and cycle edges on the spanning tree

Our cycle tree algorithm is like the spanning tree algorithm described in Chapter 3,

excluding the application of the cycle edges. The construction of the new tree can be

described as follows:
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1. Find the shortest working path for every pair of nodes, using Dijkstra’s al-
gorithm, then get the connection cost table by calculating every link cost on every

working path. We assume that the cost of every link on the traffic path is equal to 1.
2. Get the tree with backup parents and some extra cycle edges.

2.1 Sort the edges in a descending order to the edge array, according to the cost

on every link.

2.2 If one of the following ending conditions happen: there are no more edges in
the sorted edge array, or the number of edges in the tree edges set is n — 1 and every
tree edge is included in at least one cycle path (being composed of the tree edges
and cycle edges together), go to 2.4. For the second ending condition, it means that
every edge on the tree can be protected by at least one cycle path for reaching some
destination nodes. As an example, the tree edges and the cycle edges in Figure 5
satisfy the second ending condition mentioned previously. In this example graph, all

tree edges are protected by at least one cycle path as follows:

o ey, e5, ¢g and e3 are protected by the cycle path (v, vq, vg, v7,v4,v1) because of
adding the cycle edge vg — v7.

o ey, €9, €7 and e3 are protected by (vy, vs, vig, Us, v4,v1) because of the cycle edge
U3 — V10

o e7, eg and ejg are protected by (vg, vs, v11, Ve, v4) because of the cycle edge v1; —vy.

o €1, €4, g, 7 and ez are protected by (vy, va, Us, v1g, Us, U4, ¥1) because of the cycle
edge vs — vig.
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2.3 Take out the edge with the largest weight from the sorted edge array, check
whether there will be a cycle with the selected edge and the other edges already on
the tree. If there is no cycle, then add this edge to the tree edges set; otherwise, check
whether this edge is already included in a bigger cycle, if the answer is “no”, then we

can add this edge as a cycle edge. Go to 2.2.

2.4 Eliminate redundant cycle edges.
When a cycle edge is included in a bigger cycle, then it is redundant and can be
eliminated. As the example showed in Figure 5, edge vs — vy is included in large cycle
formed by another cycle edge vs — vy and the tree spare path (vs, v1, vy, vg, v19), SO it
is eliminated. In the same way, cycle edge vg — vg is taken out. The remained cycle
edges maybe not the optimal choice to generate as many as possible cycle paths from

the cycle edges and tree edges, which will be researched further in the future.

3. Get spare paths for every pair of nodes just from the tree edges, which represent

the original spare paths.

4. Get the table of backup parents for every node.
Check all adjacent nodes and edges, record maximum number of nodes (defined by

the software) as backup parents.

At this time, it is important to mention that the cycle paths used in step 2 are
formed by the tree edges and only one cycle edge, for its simpleness. However, we
may use more than one cycle edge in a cycle path in creating the backup spare paths

in the next part described in the following section. When the process is completed,

34



we cannot assure that every tree edge is included in at least one cycle path (i.e., due
to the lack of enough cycle edges), this shows that there is no guarantee that all pair
of nodes are protected by these cycle paths. We will do more research in the future

on cycle edge selection and ending conditions to get more powerful cycle edges.

From all the tree edges and the cycle edges, we can get some cycles using BFS
(Breadth First Search)-like algorithm. In our algorithm, this part is included in
the process “spare capacity assignment and restorability calculation”. Its detailed

description will be given in the next section.

4.2 Spare Capacity Assignment & Restorability

Calculation

Following the obtaining of the spare tree topology, the table “backup parents” and
the cycle edges, the next step is the spare capacity assignment and restorability

calculation. These two functions are dealt within one procedure.

When we calculate the restorability, upon any possible single link failure, we
should check whether there exists another available spare path for any affected work-
ing path. If the answer is “yes”, then the traffic on this working path is protected
by the spare topology. The spare path can be derived from the tree edges, or the
tree edges and the cycle edges, and even from the backup parents. Finally, using the

definition described in Chapter 2, we have the restorability for our new cycle tree
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based algorithm. Initially, we should assign enough spare capacity on every edge that
appeared in the spare topology. Similarly, as the new spanning tree based algorithm
described in Chapter 3, in addition to the process showed in Figure 3, this new al-
gorithm adds cycle edge processing. The procedure of obtaining the cycle edges has
already been described in the above section, and assigning enough capacity on these
tree edges and backup edges is similar to the spanning tree algorithm described also
in Section 3.2. Here, we put emphasis on how to get good and enough cycles from

the tree edges and the cycle edges, and assign spare capacity on these edges.

From the cycle edges and the tree edges we should get as many cycles as possible.
Within one cycle, every pair of nodes can have two link-disjoint paths, which means
that we can protect any single link failure between these pairs of nodes. If every pair
of nodes appears at least in one cycle provided by the cycle edges and the tree edges,
then every pair of nodes can be protected from any single link failure, then 100%
restorability has been achieved. So more cycle paths imply higher restorability. But
for an arbitrary network, we cannot guarantee that it has enough cycle edges, and
every pair of nodes on the graph can have these backup spare paths. However, if the
pair of nodes has the backup spare paths, it means that it can cover any single failure.
That is the most important reason why we add these cycle edges to the spanning tree

topology.

In our cycle tree based algorithm we use these cycle edges as backup spare edges to
generate backup spare paths. We do not use these cycles directly as spare paths but as
backup spare paths due to the fact that the length of paths gained from these cycles is
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usually longer than of the ones from the plain spanning tree. Hence, they will spend
more spare capacity. Additionally, the cycle-oriented algorithms usually consume
much more running time and are more complex than the tree based algorithms.
Therefore, we try to combine them to gain both merits. However, we cannot guarantee

100% restorability.

How to use the cycle edges and the tree edges to form as many cycles as possible?
First, we generate the simple cycles just between any cycle edge and the spare path
between these two nodes, then get the two backup spare paths for every pair of nodes
on these cycles. Second, we use BFS (Breadth First Search) based algorithm to find
more cycle paths. We will not record whether one node has been searched already,
so one node may be searched many times. The intent is to reach the source node
to get a cycle, of course other cycles within one cycle path are avoided. When one
branch reaches the root, it will stop searching, but the others will continue. Every
node will be the root to begin one search process. After all the search process are
finished, we have already recorded all possible cycles they have created. Later, we
can obtain the all possible backup spare paths from these cycles. Some pairs of nodes
may exist on more than one cycle, we just select one pair of backup spare paths.
To assure to get more possible cycles, we use the above BFS based algorithm two
times according to the serial number of nodes ascending and descending. Here we
can show some example cycle paths from Figure 5, p = (v1, v3, v10, vs, V4, v1) s a cycle,
from it, we have two link-disjoint backup spare paths for the pair of nodes (v, vig):

1 = (v1,v3,v10) and pye = (v1, vy, Vs, V19). Similarly, we can get other link-disjoint
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backup spare paths for any pair of nodes on this cycle.

Before the process of spare capacity assignment and restorability calculation, we
have already got the all possible backup spare paths gained from the cycles. Subse-
quently, similarly as described in the spanning tree algorithm in Figure 3, for every
affected working path, the algorithm first checks the original spare path we got from
the tree edges, if it works, then this pair of nodes is protected. Otherwise, the related
backup parents should be checked in order to find a valid backup spare path. At last,
if the above two steps do not work, we will check whether it has backup spare paths
gained from the cycles, in case that the answer is positive, the one which does not
include the failed link is selected; or if the two backup spare paths are all valid, the
shorter one is chosen to consume less spare capacity. This pair of nodes is protected
too. Of course, as we do in spanning tree algorithm, when a valid spare path or
backup spare path is used, the algorithm should check whether the every link spare
capacity is enough for the path, if not, we will add capacity for the path to be use-
ful. As a result, we have the number of protected/restorable path (restorable traffic
capacity) and the number of affected path (affected traffic capacity), and finally the
restorability has been achieved. At this point, we select to check backup spare paths
using backup parents first, then the paths from cycle edges. The reason for doing this
is that the backup spare paths using backup parents are usually shorter than paths

using cycle edges and therefore consume less spare capacity.
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4.3 An Example

—— : edge in network topology

= : edge in spare and network topology

Figure 6: Network topology and spare topology connections

We use the first network with 13 nodes in Table 16 as an example to show the
difference of spare capacity assignment among the three algorithms. The results are
in Figure 6 and Figure 7. To simplify, we just show the results using an existing spare

topology.

In our algorithm, for the basic spare tree topology (without using backup parents
or cycle edges), the paths between every pair of nodes are bi-directional, so the spare

capacities for the two directions on these tree edges are the same. Nevertheless, for
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Spare capacity

—— :Tree edge . Spare capacity used
—  Cycle edge and/or by backup edges
backup edge

Figure 7: Spare capacity assignment

backup edges, the backup spare paths are unidirectional due to the employment of
different backup parent for the two reverse paths. Therefore, the spare capacities for
the two reverse directions on these backup edges may not be the same. We use arrows

to denote spare capacities of the corresponding direction.

Figure 6 presents the original network topology and spare topology. At the same
time, the numbers on every spare link denote the spare capacity before using backup
parents and cycle edges. The number 0 means that this edge is not used as a spare
tree edge. For the basic tree topology and corresponding spare capacities of this

example, the results of all of the three algorithm are the same. The spare capacities

40



are for both directions. Adding them up for both directions, we get the total spare

capacity of 192, as shown in Table 16.

Figure 7 presents the spare capacity assignments of the basic tree edges, the
backup edges and the cycle edges for the spanning tree algorithm and the cycle tree
algorithm, after applying backup parents or backup parents and cycle edges. The
results for the hierarchical tree algorithm and the spanning tree algorithm are the
same, because of the same tree structure and backup edges. The numbers on every
tree edge denote the basic spare capacity for this tree edge. Also, the numbers on cycle
edges or backup edges imply the total spare capacity needed for this edge. Therein,
the spare capacity on each needed edge used only by the backup parents is also shown
in the figure. By adding them respectively we can compute the total spare capacity
used by the spanning tree algorithm and the hierarchical tree algorithm, which totals
199, and of the cycle tree algorithm totals 213. The difference is used by the cycle

edges, which is 14.

4.4 Time and Space Complexity

Let n denotes the number of nodes, and m denotes the number of edges of graph
G. As we know, m = O(n?) in the worst case. The following numbers of steps are

consistent with the steps in Section 4.1.

Step 1, the running time is O(n?).
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Step 2.1, the upper bound is O(m - logm) = O(n%logn).

Step 2.2 to 2.4, the running time is O(m - (n +n)) = O(n?).
Step 3, the bound is O(n?).

Step 4, the time is O(n?).

All added up, the time complexity for tree construction is O(n?).

We turn to the procedure “spare capacity assignment and restorability calcula-
tion” at this point. Compared to the similar procedure in spanning tree algorithm,
based on the algorithm described in Section 4.2, except the time complexity in span-
ning tree algorithm, only the cycle generation process dominates the increased time
complexity. Let us see how much it can contribute. To check all possible cycles from
one root, we need O(n?) running time, every node should be as root once, totally, the
time complexity for the cycle generation process is O(n?). As for the running time
of the process of getting backup spare paths from the cycles, compared to the run-
ning time of cycle generation procedure, it can be ignored. In total, adding the tree
construction part, and the similar part for “spare capacity assignment and restora-

bility calculation” in spanning tree algorithm, the whole algorithm time complexity

is O(n®) + O(n*) + O(n*) = O(n%).

Here, we stress on the algorithm itself, and just give the very loose upper bound
for the time complexity. There are many methods to give more precise analysis to get

more exact running time, i.e. “amortized analysis”, “accounting method”, “potential

method” [22].
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Based on the above time complexity analysis, the new cycle tree based algorithm
has the same upper bound running time as the spanning tree algorithm : O(n%),
although the cycle tree algorithm had just added some more time complexity to
obtain the cycle edges and get backup spare paths from the cycle edges and the
tree edges. However, from the simulation results, the restorability of the cycle tree
algorithm is much higher than of the spanning tree algorithm and the hierarchical

tree algorithm.

Concerning the space complexity, for the tree construction process, excluding
the edge connection matrix of O(n?), the tree edge connection matrix of O(n?), the
backup parents table of O(n) as used in spanning tree algorithm, additionally we need
another matrix to record the cycle edges of O(n?). Entirely, for this part, the space
complexity is O(n?). For the spare capacity assignment and restorability calculation
part, we also assume that the maximum length of these paths is n — 1, the same as
in spanning tree algorithm, and the memory for recording working paths and spare
paths is O(n3). We need to add memory to record the all possible cycle paths among
the tree edges and cycle edges, and the possible two backup spare paths for every
pair of nodes. Tt needs O(n®) space for each. Adding them up, we have O(n?) space
complexity for the spare capacity assignment and restorability calculation process.

Finally, the upper bound of space complexity for the cycle tree based algorithm is

O(n?).
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Chapter 5

Simulation and Comparison

5.1 Topology Models

For a new algorithm related to networks, one of its most important question is whether
it works well on real networks. In some cases, a model could impact the performance
of an algorithm greatly. In our simulation, we consider two classes of network genera-
tors. The first category is random graph generators. One of the most commonly used
models for generating random networks is represented by Waxman generator [19].
The model “pure random graph” used in our simulation is generated randomly by
the generator “GT-ITM” (we will explain this and other generators later). Another
random network model we used is AS-level (Autonomous System, compared to Inter-
net Router-Level (RL) topology) model, where ASs are nodes and edges that represent

peering relationships between ASs. It is also generated randomly, by the generator
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“Inet”. For illustrating the use of existing spare topology, we take advantage of three
examples from Adel Al-Rumaih [7], also these example networks are generated ran-
domly. When using the pure random model, the most important parameter is the

probability of an edge between any pair of nodes.

The second category is the structural generators such as Transit-stub and Tiers
generators [18, 19] which reflect the structure of the Internet. We use the figure
from [18] to give an example of an Internet structure. Transit-stub creates a number
of top-level transit domains within which nodes are connected randomly. Attached
to each transit domain are several similarly generated stub domains. Additional
stub-to-transit and stub-to-stub links are added randomly based upon a specified
parameter. WAN, MAN and LAN, stand for Wide Arca Network, Metropolitan
Area Network and Local Area Network respectively, make up the graphs created
by the Tiers model. Tiers uses a somewhat different procedure to crcate network
topology. First, it creates a number of top level networks (WAN), to each of which
are attached several intermediate tier networks (MAN). Similarly, several LANs are
randomly attached to each intermediate tier network. Within each tier (except the
LAN), Tiers uses a minimum spanning tree to connect all the nodes, then adds
additional links in order of increasing inter-node Euclidean distance. LAN nodes are
connected using a star topology, additional inter-tier links are added randomly based
upon a specified parameter. From their generating methods, these models cannot be
guaranteed to be at least two-connected for every node (mesh-like). We used both

Transit-stub and Tiers models for our simulation, and the results are described in the
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following tables.

Multi—homed Stub

Transit Domains

Sth Sl Edoe J

Stuh Domains

Figure 8: Example of Internet domain structures

The network simulator “NS-2” has a set of topology generators for network sim-
ulations. In NS-2 one may create a topology using one of the four methods: Inet,
GT-ITM, Tiers and other topology generators. To compare our two new algorithms
with others, four different network topology models from NS-2 are considered: Inet,
GT-ITM pure random, GT-ITM Transit-stub and Tiers. The generator is available

on the Web [21].

At this point, we introduce the generators from NS-2 we used in our simulations.
First, we use the “Inet” from University of Michigan to generate an AS-level repre-

sentation of the Internet that just provides the connectivity information. It generates
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random networks with characteristics similar to the Internet. We should mention
here that the original generator can just generate large scale Internet topology which
is larger than 3037 nodes. Because of the memory and the speed of our computer,
we expect to do the simulations with several hundreds of nodes. Therefore, from
the networks generated by Inet, we selected the subset and add some connections to

maintain a connected graph. The main parameters are as follows:

e N, the total number of nodes in the topology

e £, the fraction of degree-one nodes.

e sd, the seed to initialize the random number generator

The generator “GT-ITM” developed by Georgia Institute of Technology can create
flat random graphs and two types of hierarchical graphs: N-level and Transit-stub.
We use two of them: flat random and the Transit-stub. In our simulations the pure
random model from the flat random model selections is used to generate pure random
graphs. Using this model generator, the other main parameters are the total number
of nodes and the probability of an edge between any two nodes. When using the

Transit-stub model, the user could employ the following parameters:

e The number of transit domains and the number of stub domains connected to

each transit node.

e The number of transit-stub and stub-stub edges.

e The number of nodes in the transit domains and the stub domains.
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e The probability of an edge between each pair of nodes in the transit domains

and stub domains.

The generator Tiers created by Matthew B. Doar is used to generate tier graphs.

The major parameters chosen for this model are:

e Ny, the number of WANs; N, the number of MANs per WAN; and Ny, the
number of LANs per MAN. To simplify, the number Ny is set as 1 to generate one

connected WAN graph.

e SNy, the number of nodes in a WAN; SNy, the number of nodes per MAN;

and SN, per LAN.

Accordingly, the total number of nodes in the graph is given by N = SNy + Ny X

SNM—FNM X NL X SNL, with NW = 1.

5.2 Comparison of Simulation Results

5.2.1 Terms and Simulation Results

For the three tree-based algorithms used in simulation only one traffic demand be-
tween each pair of nodes in the network was assumed. The terms used in the tables
of simulation results are defined as follows: N denotes the total number of nodes in
the graph. Average degree means the average number of adjacent nodes per node
within the whole network graph. Before backup spare paths and after backup spare
paths denote respectively the results before and after using backup spare paths gained
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from the backup parents and cycle edges. Restorability is the percentage of the work-

ing bandwidth that could be restored in case of a single failure, defined as before:

restorable traf fic capacity

of fected tra} ie capacity - Work capacity is defined as the sum of work bandwidth on

every link using the shortest path routing. Similarly, spare capacity is defined as the
sum of spare capacity on every spare link. We have used 5 topology models to do the

simulation. The detailed descriptions of the models are given in the last section and

18, 19, 20].

Altogether, we generate 4 topologies using Inet generator; 2 kinds of topologies for
100 nodes and 2 for 200 nodes. Using GT-1TM generator, we have 4 kinds of topologies
for pure random model and 4 for transit-stub model, including 2 topologies for 100
nodes and 2 for 200 nodes. And we use Tiers generator to get 2 topologies with one
for 106 nodes and the other for 200 nodes. For every topology we generate 10 example
graphs to do the simulations. Adding the three examples from [7], we have used 15
topologies, that is 143 networks as examples to do our simulations. The following
tables are some of the simulation results, with the 2 Inet topologies, 3 GT-ITM pure

random topologies, 1 transit-stub topology, 1 tiers topology and the topologies from

7).
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The meaning of the abbreviations in the following tables are:

N : Number of nodes in the graph

Av. : Average

H.T. : Hierarchical Tree algorithm with backup parents

S.T. : Spanning Tree algorithm with backup parents

S.T.C. : Cycle Tree algorithm with backup parents and some cycle edges

Graph Model : AS-level Internet topology (generated by Inet)
Restorability

N Av. Work Before backup spare paths | After backup spare paths

Degree | Capacity | H. T. S.T. | ST.C. | H. T. S.T. | ST.C.
100 | 3.62 19058 | 23.86% | 23.86% | 23.86% | 62.22% | 62.03% | 68.86%
100 | 3.92 18792 | 22.49% | 22.49% | 22.49% | 61.63% | 61.34% | 74.90%
100 | 3.58 19096 | 25.01% | 25.01% | 25.01% | 62.94% | 62.62% | 76.15%
100 | 3.74 18604 | 20.87% | 20.87% | 20.87% | 60.66% | 60.54% | 68.73%
100 | 3.84 18992 | 21.66% | 21.66% | 21.66% | 61.17% | 60.91% | 73.03%
100 3.7 19096 | 20.52% | 20.52% | 20.52% | 60.48% | 60.35% | 73.82%
100 | 3.86 18782 | 17.95% | 17.95% | 17.95% | 59.09% | 59.08% | 67.19%
100 | 3.76 18994 | 24.02% | 24.02% | 24.02% | 62.40% | 62% | 68.65%
100 | 3.94 18816 | 17.15% | 17.15% | 17.15% | 58.79% | 58.64% | 67.11%
100 3.9 18928 | 32.00% | 32.00% | 32.00% | 66.56% | 66.26% | 71.37%
Av. | 3.79 18916 | 22.55% | 22.55% | 22.55% | 61.59% | 61.39% | 70.98%

Table 1: AS-level Internet topology networks with 100 nodes — restorability
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Graph Model : AS-level Internet topology (generated by Inet)

Spare Capacity

N Av. Work Before backup spare paths | After backup spare paths

Degree | Capacity | H. T. | S. T. S.T.C. H.T. | SST. | ST.C.
100 | 3.62 19058 1742 1742 1742 4281 2859 4297
100 | 3.92 18792 1560 1560 1560 4323 2738 5662
100 | 3.58 19096 2158 2158 2158 4716 3354 6694
100 | 3.74 18604 1948 1948 1948 4602 2841 4823
100 | 3.84 18992 1624 1624 1624 4580 2859 6076
100 3.7 19096 1536 1536 1536 4365 2989 6454
100 | 3.86 18782 1352 1352 1352 3987 2644 4480
100 | 3.76 18994 1824 1824 1824 4364 3073 4540
100 | 3.94 18816 1196 1196 1196 4104 2420 4463
100 3.9 18928 3094 3094 3094 5547 4046 5317
Av. | 3.79 18916 1803 1803 1803 4487 2982 5281

Table 2: AS-level Internet topology networks with 100 nodes — spare capacity
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Graph Model : AS-level Internet topology (generated by Inet)

Restorability

N Av. Work | Before backup spare paths | After backup spare paths

Degree | Capacity | H. T. S. T. S.T.C. | H . T. S.T. | S.T.C.
200 3.2 84774 | 21.28% | 21.28% | 21.28% | 61.24% | 61.25% | 78.21%
200 | 3.54 83902 | 22.74% | 22.74% | 22.74% | 61.95% | 61.98% | 88.90%
200 | 3.06 83582 | 22.54% | 22.54% | 22.54% | 61.80% | 61.81% | 81.46%
200 3.2 83112 | 24.15% | 24.15% | 24.15% | 63.13% | 63.16% | 77.79%
200 3.2 83470 | 22.74% | 22.74% | 22.74% | 62.32% | 62.34% | 82.60%
200 | 3.46 83252 | 25.12% | 25.12% | 25.12% | 63.50% | 63.49% | 73.17%
200 | 3.38 82664 | 17.08% | 17.08% | 17.08% | 59.07% | 59.02% | 90.60%
200 3.5 85132 | 26.80% | 26.80% | 26.80% | 64.11% | 64% | 79.54%
200 3.5 82614 | 18.29% | 18.29% | 18.29% | 59.42% | 59.47% | 75.45%
200 | 3.38 84666 | 29.10% | 29.10% | 29.10% | 65.56% | 65.59% | 77.12%
Av.| 3.34 83717 | 22.98% | 22.98% | 22.98% | 62.21% | 62.22% | 80.48%

Table 3: AS-level Internet topology networks with 200 nodes — restorability

Graph Model : AS-level Internet topology (generated by Inet)

Spare Capacity

N Av. Work Before backup spare paths | After backup spare paths

Degree | Capacity | H.T. | S. T. S.T.C. HT | S.T. | S.T.C.
200 3.2 84774 8144 8144 8144 19726 | 14045 | 33224
200 | 3.54 83902 7760 7760 7760 19810 | 13292 | 47279
200 | 3.06 83582 7894 7894 7894 19908 | 12991 | 38740
200 3.2 83112 10420 | 10420 | 10420 21053 | 15582 | 32759
200 3.2 83470 9752 9752 9752 20497 | 15490 | 40732
200 | 3.46 83252 9816 9816 9816 20484 | 14300 | 24592
200 | 3.38 82664 5734 5734 5734 18014 | 11380 | 51556
200 3.5 85132 9236 9236 9236 20638 | 14253 | 30194
200 3.5 82614 6724 6724 6724 19986 | 12471 | 29928
200 | 3.38 84666 12664 | 12664 | 12664 23100 | 17139 | 28536
Av. | 3.34 83717 8814 8814 8814 20322 | 14094 | 35754

Table 4: AS-level Internet topology networks with 200 nodes — spare capacity
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Graph Model : Pure Random (generated by GT-ITM)

Restorability
N Av. Work | Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. S. T. S.T.C. | H . T. S.T. | S.T.C.
100 | 8.92 23086 | 72.56% | 72.56% | 72.56% | 88.16% | 87.66% | 90.68%
100 | 7.72 24468 | 73.97% | 74.01% | 74.01% | 88.79% | 88.22% | 91.14%
100 | 9.28 22660 | 73.96% | 74.07% | 74.07% | 88.66% | 88.27% | 90.82%
100 5.5 28676 | 67.30% | 67.33% | 67.33% | 84.22% | 83.77% | 86.66%
100 | 4.62 31088 | 63.60% | 63.60% | 63.60% | 81.31% | 81.49% | 84.57%
100 6.5 26116 | 70.30% | 70.30% | 70.30% | 86.58% | 86.11% | 90.13%
100 | 6.24 26722 | 71.29% | 71.29% | 71.29% | 86.95% | 86.81% | 90.18%
100 | 6.54 26100 | 72.80% | 72.74% | 72.74% | 87.72% | 87% | 89.90%
100 6.18 26832 70.21% | 70.04% | 70.04% | 86.29% | 86.04% | 88.93%
100 | 5.56 28580 | 66.39% | 66.32% | 66.32% | 84.06% | 83.79% | 86.69%
Av. | 6.71 26433 | 70.24% | 70.23% | 70.23% | 86.27% | 85.92% | 88.97%
Table 5: Pure random topology networks with 100 nodes — restorability
Graph Model : Pure Random (generated by GT-ITM)
Spare Capacity
N Av. Work Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. | S. T. S.T.C. HT | SST. | ST.C.
100 | 8.92 23086 4436 4436 4436 5873 5475 5899
100 | 7.72 24468 5376 5398 5398 6515 6391 6839
100 | 9.28 22660 4124 4146 4146 5238 5046 5430
100 5.5 28676 6778 6796 6796 8518 8308 8734
100 | 4.62 31088 7510 7510 7510 10120 | 10065 | 10533
100 6.5 26116 5742 5742 5742 7349 7148 7932
100 | 6.24 26722 6362 6362 6362 7766 7632 8130
100 | 6.54 26100 5582 5620 5620 6898 6748 7159
100 | 6.18 26832 6232 6210 6210 7518 7446 7835
100 | 5.56 28580 7102 7126 7126 9165 8985 9391
Av. | 6.71 26433 5924 5935 5935 7496 7324 7788

Table 6: Pure random topology networks with 100 nodes — spare capacity
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Graph Model : Pure Random (generated by GT-ITM)

Restorability
N Av. Work Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. S. T. S.T.C. | H. T. S.T. | S.T.C.

100 | 3.54 37812 | 54.74% | 54.41% | 54.41% | 73.72% | 73.89% | 76.49%

100 | 3.48 37124 | 51.97% | 52.23% | 52.23% | 72.48% | 72.49% | 75.59%

100 3.3 37124 | 56.10% | 56.19% | 56.19% | 74.27% | 74.30% | 77.87%

100 3.5 37454 | 51.07% | 51.23% | 51.23% | 72.94% | 72.66% | 75.94%

100 | 3.34 38946 | 50.75% | 50.62% | 50.62% | 70.18% | 69.91% | 72.90%

100 | 3.64 35670 | 56.91% | 56.91% | 56.91% | 74.21% | 74.49% | 77.43%

100 | 3.06 44450 | 52.77% | 52.77% | 52.77% | 70.09% | 70.09% | 73.43%

100 | 3.36 39664 | 55.34% | 55.34% | 55.34% | 73.76% | 73.76% | 76.72%

100 | 3.26 38330 | 51.41% | 51.64% | 51.64% | 69.85% | 69.60% | 72.08%

100 3.4 38312 | 53.53% | 53.53% | 53.53% | 71.78% | 71.57% | 74.75%

Av. | 3.39 38489 | 53.46% | 53.49% | 53.49% | 72.33% | 72.28% | 75.32%

Table 7: Another pure random topology networks with 100 nodes — restorability

Graph Model : Pure Random (generated by GT-ITM)

Spare Capacity
N Av. Work Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. | S. T. S.T.C. HT | ST | SST.C.

100 | 3.54 37812 10876 | 10436 10436 16101 | 15579 | 16013

100 | 3.48 37124 9524 9824 9824 13847 | 13660 | 14104

100 3.3 37124 11790 | 11750 11750 15415 | 15358 | 15753

100 3.5 37454 9620 9792 9792 13895 | 13910 | 14323

100 | 3.34 38946 10394 | 10414 10414 14779 | 16022 | 15412

100 | 3.64 35670 9116 9116 9116 12530 | 12271 | 12663

100 | 3.06 44450 13776 | 13776 | 13776 20006 | 19910 | 20497

100 | 3.36 39664 11552 | 11552 11552 15217 | 15396 | 15798

100 | 3.26 38330 10040 | 10124 | 10124 15916 | 15600 | 15920

100 3.4 38312 10040 | 10040 10040 14646 | 14484 | 14876

Av. | 3.39 38489 10673 | 10682 10682 15235 | 15119 | 15536

Table 8: Another pure random topology networks with 100 nodes — spare capacity
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Graph Model : Pure Random (generated by GT-ITM)

Restorability
N Av. Work | Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. S. T. S.T.C. | H.T. S.T. | S.T.C.
200 | 8.43 107634 | 79.36% | 79.29% | 79.29% | 90.79% | 90.95% | 92.61%
200 7.19 115130 | 76.65% | 76.66% | 76.65% | 89.49% | 89.42% | 90.94%
200 | 7.95 110852 | 77.07% | 77.08% | 77.08% | 89.80% | 89.79% | 91.26%
200 | 9.77 102148 | 79.86% | 79.89% | 79.89% | 91.10% | 90.99% | 92.38%
200 6.4 121188 | 75.16% | 75.19% | 75.19% | 88.59% | 88.62% | 90.45%
200 | 7.94 110676 | 78.51% | 78.50% | 78.50% | 90.43% | 90.44% | 92.06%
200 | 7.44 113048 | 78.10% | 78.07% | 78.07% | 90.34% | 90.20% | 91.86%
200 | 9.65 102244 | 79.15% | 79.14% | 79.14% | 90.82% | 90.75% | 92.16%
200 | 8.74 106170 | 78.18% | 78.19% | 78.19% | 90.22% | 90.22% | 92.02%
200 7.13 114910 | 73.32% | 73.35% | 73.35% | 87.72% | 87.80% | 89.33%
Av. | 8.06 110400 | 77.54% | 77.53% | 77.53% | 89.93% | 89.92% | 91.51%
Table 9: Pure random topology networks with 200 nodes — restorability
Graph Model : Pure Random (generated by GT-ITM)
Spare Capacity
N Av. Work | Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. | S. T. S.T.C. HT | ST | SST.C.
200 | 8.43 107634 | 18940 | 19122 | 19122 22462 | 22694 | 23842
200 | 7.19 115130 | 21372 | 21372 | 21372 25871 | 25266 | 26274
200 | 7.95 110852 | 19270 | 19274 | 19274 | 24191 | 23404 | 24361
200 | 9.77 102148 | 17162 | 17112 | 17112 20161 | 19826 | 20775
200 6.4 121188 | 24334 | 24336 | 24336 29948 | 29438 | 30591
200 | 7.94 110676 | 20004 | 20140 | 20140 | 23513 | 23448 | 24497
200 | 7.44 113048 | 21240 | 21164 | 21164 | 26363 | 26154 | 27192
200 | 9.65 102244 | 16254 | 16230 | 16230 19793 | 19273 | 20282
200 | 8.74 106170 | 18780 | 18790 | 18790 22553 | 22044 | 23235
200 7.13 114910 | 21616 | 21564 | 21564 | 27454 | 27008 | 27941
Av. | 8.06 110400 | 19897 | 19910 | 19910 24231 | 23856 | 24899

Table 10: Pure random topology networks with 200 nodes — spare capacity
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Graph Model : Transit-stub (generated by GT-ITM)

Restorability
N Av. Work | Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. S. T. S.T.C. | H. T. S.T. | S.T.C.
100 5.3 43010 | 13.74% | 13.74% | 13.74% | 48.18% | 48.07% | 48.88%
100 | 5.06 45084 | 14.63% | 14.63% | 14.63% | 47.24% | 47.23% | 48.35%
100 | 4.48 48230 6.45% | 6.45% | 6.46% | 30.18% | 30.18% | 30.82%
100 | 4.58 47648 | 13.23% | 13.23% | 13.23% | 45.75% | 45.75% | 46.76%
100 | 4.54 44402 7.91% | 7.91% | 7.91% | 40.38% | 40.38% | 41.15%
100 | 5.22 45840 | 14.28% | 14.28% | 14.28% | 37.43% | 37.43% | 38.16%
100 | 5.12 44642 | 11.34% | 11.34% | 11.34% | 42.20% | 42.02% | 43.09%
100 | 4.22 45642 | 16.75% | 16.75% | 16.75% | 46.05% | 45% | 46.33%
100 | 4.64 44854 | 12.45% | 12.45% | 12.45% | 42.43% | 42.45% | 43.09%
100 | 4.44 46790 7.20% | 7.20% | 7.20% | 38.65% | 38.65% | 39.58%
Av. | 4.76 45614 | 11.80% | 11.80% | 11.80% | 41.85% | 41.74% | 42.62%
Table 11: Transit-stub topology networks with 100 nodes — restorability
Graph Model : Transit-stub (generated by GT-ITM)
Spare Capacity
N Av. Work Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. | S. T. S.T.C. HT | ST | ST.C.
100 5.3 43010 9952 9952 9952 24627 | 22792 | 23016
100 | 5.06 45084 9538 9538 9538 27004 | 24999 | 25350
100 | 4.48 48230 4508 4508 4508 15967 | 15645 | 15882
100 | 4.58 47648 10350 | 10350 | 10350 26350 | 25883 | 26205
100 | 4.54 44402 4086 4086 4086 22526 | 20867 | 21092
100 | 5.22 45840 7696 7696 7696 19903 | 19220 | 19473
100 | 5.12 44642 5456 5456 5456 21761 | 20647 | 21011
100 | 4.22 45642 10336 | 10336 | 10336 24764 | 23905 | 24163
100 | 4.64 44854 10448 | 10448 | 10448 23908 | 23019 | 23172
100 | 4.44 46790 4948 4948 4948 24195 | 23526 | 23792
Av. | 4.76 45614 7732 7732 7732 23101 | 22050 | 22316

Table 12: Transit-stub topology networks with 100 nodes — spare capacity
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Graph Model : Tiers— WAN-MAN-LAN (generated by Tiers)

Restorability

N Av. Work Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. S.T. | ST.C. | H. T. S.T. | S.T.C.
200 | 242 279168 | 9.34% | 9.34% | 9.34% | 36.74% | 36.74% | 36.86%
200 | 2.49 264082 | 7.09% | 7.09% | 7.09% | 38.19% | 38.19% | 38.26%
200 2.4 271346 | 10.01% | 10.01% | 10.01% | 37.38% | 37.38% | 37.47%
200 | 2.06 350758 | 1.12% | 1.12% | 1.12% | 15.10% | 15.10% | 15.11%
200 | 2.21 294898 | 7.76% | 7.76% | 7.76% | 23.71% | 23.71% | 23.80%
200 | 2.41 321978 | 4.04% | 4.04% | 4.04% | 31.13% | 31.13% | 31.17%
200 | 2.61 264890 | 15.08% | 15.08% | 15.08% | 44.37% | 44.37% | 44.51%
200 | 2.46 267124 | 7.01% | 7.01% | 7.01% | 35.40% | 35.40% | 35.49%
200 | 2.59 293428 | 8.60% | 8.60% | 8.60% | 35.21% | 35.21% | 35.31%
200 | 2.35 317328 | 3.40% | 3.40% | 3.40% | 26.63% | 26.63% | 26.66%
Av. | 240 292500 | 7.35% | 7.35% | 7.35% | 32.39% | 32.39% | 32.46%
Table 13: Tiers topology networks with 200 nodes — restorability
Graph Model : Tiers— WAN-MAN-LAN (generated by Tiers)
Spare Capacity

N Av. Work | Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. | S. T. S.T.C. H. T. S.T. | S.T.C.
200 | 2.42 279168 | 59440 | 59440 | 59440 | 214112 | 209845 | 209980
200 | 2.49 264082 | 56528 | 56528 | 56528 | 234047 | 231706 | 231789
200 2.4 271346 | 74892 | 74892 | 74892 | 221625 | 209356 | 209495
200 | 2.06 350758 | 28582 | 28582 | 28582 | 273606 | 273606 | 273617
200 | 2.21 294898 | 64242 | 64242 | 64242 | 201318 | 191358 | 191468
200 | 241 321978 | 58910 | 58910 | 58910 | 271973 | 270527 | 270577
200 | 2.61 264890 | 83844 | 83844 | 83844 | 199553 | 199167 | 199374
200 | 2.46 267124 | 42322 | 42322 | 42322 | 203768 | 199720 | 199826
200 | 2.59 293428 | 71578 | 71578 | 71578 | 219155 | 217841 | 217991
200 | 2.35 317328 | 27218 | 27218 | 27218 | 227022 | 224249 | 224274
Av. | 240 292500 | 56756 | H67H6 | 56756 | 226618 | 222738 | 222839

Table 14: Tiers topology networks with 200 nodes — spare capacity
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Graph Model : Three examples (with existing spare topology)

Restorability

N Av. Work Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. S. T. ST.C. | H T. S. T. S.T.C.
13 3.54 324 71.61% | 71.61% | 71.61% | 80.56% | 80.56% | 98.77%
17 3.65 640 75.00% | 75.00% | 75.00% | 80.94% | 80.78% | 100.00%
20 3.7 966 73.29% | 73.29% | 73.29% | 79.92% | 79.92% | 99.79%
Av.| 3.63 73.30% | 73.30% | 73.30% | 80.47% | 80.42% | 99.52%

Table 15: A set of example networks with existing spare topology — restorability

Graph Model : Three examples (with existing spare topology)

Spare Capacity

N Av. Work | Before backup spare paths | After backup spare paths

Degree | Capacity | H.T. | S.T. | ST.C. | H.T. | S.T. | ST.C.
13 3.54 324 192 192 192 199 199 213
17 | 3.65 640 342 326 326 350 334 371
20 3.7 966 552 552 552 569 569 639
Av. | 3.63

Table 16: A set of example networks with existing spare topology — spare capacity
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Graph Model : Three examples (without spare topology)
Restorability
N Av. Work Before backup spare paths | After backup spare paths
Degree | Capacity | H. T. S.T. | ST.C. | H. T. S.T. | ST.C.
13 3.54 324 43.21% | 43.21% | 43.21% | 74.69% | 74.69% | 89.82%
17 3.65 640 45.00% | 45.00% | 45.00% | 74.53% | 74.53% | 86.56%
20 3.7 966 47.00% | 47.00% | 47.00% | 79.30% | 79.30% | 90.06%
Av. | 3.63 45.07% | 45.07% | 45.07% | 76.17% | 76.17% | 88.81%

Table 17: The same set of example networks without existent spare topology — restora-

bility
Graph Model : Three examples (without spare topology)
Spare Capacity

N Av. Work Before backup spare paths | After backup spare paths

Degree | Capacity | H. T. S. T. S.T.C. H. T. S.T. | S.T.C.
13 3.54 324 126 126 126 181 181 207
17 3.65 640 238 238 238 351 336 368
20 3.7 966 360 360 360 545 526 569
Av. | 3.63

Table 18: The same set of example networks without existent spare topology — spare
capacity
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5.2.2 Comparison between Spanning Tree Based Algorithm

and Hierarchical Tree Algorithm

We have used 5 models to do the simulations. In Inet model, from the Table 1 —
Table 4, we compared our new spanning tree based algorithm with the hierarchical
tree algorithm, concluding that two restorabilities are the same for before backup spare
paths. In addition, for after backup spare paths, the restorability of spanning tree based
algorithm is very slightly higher or lower than the hierarchical tree algorithm. This
can be explained by their similar tree structures. However, we notice that their spare
capacities are much different for after backup spare paths. In one set of examples the
spanning tree algorithm can save an average of 33.5% of spare capacity compared to
the hierarchical tree algorithm. This is because the different sequence of the backup
parents brings on the different length in backup spare paths. In the hierarchical
algorithm, the order of the backup parents is according to the spare capacity to the
root. Whereas, in the spanning tree algorithm, we just select the backup parents in
term of the serial numbers of nodes. But in the graph generated from the generators
mentioned above, the sequence of the serial numbers is usually determined by the
degree of the nodes, but not precisely. That is, the node 0 has the highest degree,
the node 1 takes second place, - - -, and so on. Consequently, from this analysis, we
concluded that selecting the backup parents with higher degree is much more efficient
on spare capacity, because they usually bring shorter backup spare paths than the

nodes with lower degree.
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The example results of GT-ITM pure random model are present in Table 5 — Ta-
ble 10. From these results, we see that the restorabilities of the two algorithms are
very similar (average difference is about 0.1%), no matter before backup spare paths or
after backup spare paths. At the same time, although the needed spare capacities in
spanning tree algorithm before backup spare paths are almost a little more than that
in hierarchical tree algorithm, they are all a little less after backup spare paths with
the same slight lower restorability. These also demonstrate that the spanning tree
algorithm can economize some more spare capacity than the hierarchical algorithm
after backup spare paths. Most importantly, we use this model to compare the restora-

bilities themselves with different average degrees, the details are in Section 5.2.3.

For the model GT-ITM transit-stub, the results are in Table 11 and Table 12. Be-
fore backup spare paths, the restorability and the spare capacity of the two algorithms
are the same. After backup spare paths, although the restorability of the spanning
tree algorithm is on average 0.11% lower than that of hierarchical tree algorithm, it

economizes about 4.5% spare capacity.

Table 13 and Table 14 show the results of examples expressed by model Tiers.
Before backup spare paths, the restorability and the spare capacity of the two algo-
rithms are the same. After backup spare paths, the two average restorabilities are
almost the same (the restorability of spanning tree algorithm is 0.01% higher than
that of hierarchical tree algorithm), but the spanning tree algorithm save an average

of 1.7% more spare capacity than the other one.
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Regarding the three examples from another paper [7], because the number of nodes
is not the same, we do not give the average spare capacity. These models are mainly
used for the comparison between the network with or without existing spare topology.
As we have already mentioned in Section 3.1, using the existing spare topology, we
can get higher restorability, no matter before backup spare paths or after backup spare
paths. In addition, for these three examples, with the existing spare topology, there
is only one example just after backup spare paths, the restorability of the spanning
tree algorithm is a little lower than that of hierarchical tree algorithm and the spare
capacity is also smaller. For the other conditions, with or without existing spare
topology, before backup spare paths or after backup spare paths, the restorability of
the spanning tree algorithm is the same as that of the hierarchical tree algorithm,

with the same or less spare capacity.

Generally, with almost the same restorability, the spanning tree algorithm always
saves more spare capacity in comparison to the other one. This means that if the
capacity is a big issue in a given network, then our new spanning tree algorithm is
the better one to use, since it can reach almost the same restorability using much less

spare capacity.
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5.2.3 Comparison between Cycle Tree Algorithm and Hier-

archical Tree Algorithm, Spanning Tree Algorithm

For every model, the cycle tree based algorithm and the spanning tree algorithm are
all using the maximum spanning tree method as their basic mode to generate the basic
tree topology, so before backup spare paths; the restorability and the spare capacity
for each of them are the same. The comparisons between the spanning tree algorithm
and the hierarchical tree algorithm are already done in Section 5.2.2. Therefore, all
comparisons in the following paragraph are for after backup spare paths. Because the
cycle tree based algorithm expands the new spanning tree algorithm with some cycle
edges, the restorability is always no less than that of the spanning tree algorithm.
And for all the results, the spare capacity of cycle tree algorithm is always more than

that of the spanning tree algorithm.

In Inet model, the restorability of cycle tree based algorithm is always much higher
than that of the hierarchical tree algorithm. In one topology, the difference achieves
27%. The difference reaches an average of 18% in this set of topologies. Nevertheless,
simultaneously, the spare capacity needed is much more than the hierarchical tree
algorithm. Compared to the increase of 18% in restorability, the average difference in
spare capacity between them is about 76%. Compared to the spanning tree algorithm,
the increased spare capacity even reaches 154%. This is a 200 nodes network. For
another example topology with 100 nodes, the increased restorability is 10%, with the

increased spare capacity 18%. Compared to the spanning tree algorithm, the spare
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capacity has increased by 77% with the same 10% higher restorability. The increased
spare capacity is strongly dependent on the network topology itself and the size of
the network. From the above analysis, with the restorability increased, there is more
need for spare capacity. The reason is that the backup spare paths generated by the
cycle edges and the tree edges usually have much longer path lengths, especially for

larger graph.

From those results in Table 5 — Table 10 for GT-ITM pure random model, the
restorability of the cycle tree algorithm is always higher than that of hierarchical tree
algorithm. The differences of restorability in the three kinds of topologies, between
the cycle tree algorithm and the other two, are at the same level; with the average
of 2.5%. The spare capacity is a little larger too; the average increased amount is
about 2.9%. In this kind of model, compared to the hierarchical tree algorithm and
the spanning tree algorithm, the restorability of the cycle tree algorithm is always

higher and proportional to the increased spare capacity.

We use this model to indicate that the network redundancy can have a great effect
on the restorability. In our simulation network examples, the average degree is used
to indirectly reflect the network redundancy. From the theory and our simulation
results, for higher redundancy network topologies with the same size and same kind
of model, using any of the three algorithms, we can usually get higher restorability
than in lower redundancy networks. Obviously, this happens because more redundant
edges can generate more efficient tree topology, more backup connections and more

cycle paths, therefore we can get more efficient spare paths and more valid backup
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spare paths.

For the model GT-ITM transit-stub , the results are in Table 11 and Table 12. The
restorability of the cycle tree algorithm is 0.77% higher than that of the hierarchical
tree algorithm, furthermore it saves about 3.4% more spare capacity. In this model
the cycle tree algorithm needs less spare capacity than the hierarchical tree algorithm
with a little higher restorability. Compared to the spanning tree algorithm, the cycle
tree algorithm use about 1.2% more spare capacity to reach 0.88% higher restorability,

which sounds very reasonable.

The results of examples expressed by model Tiers are shown in Table 13 and
Table 14. The spare capacity of the cycle tree algorithm is less than that of the
hierarchical tree algorithm about 1.67%, with 0.05% higher restorability. Compared
to the spanning tree algorithm, the cycle tree algorithm uses about 0.05% more spare
capacity to reach 0.05% higher restorability. This is very similar with the above

transit-stub model, because they have similar hierarchical structures.

For the three examples from another paper [7], excluding the comparison in the
above section, we conclude that the restorability using cycle tree algorithm is always
much higher than that of the other two algorithms, with very little increased spare
capacity. On average, the increased restorability is 19% for existent spare topology,
and 12.6% for non existent one. Compared to the restorability, the increased spare
capacity is more economical than of other models. In one example, it just consumes

6% more spare capacity to get 18% higher restorability than that of the hierarchical
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tree algorithm, using existing spare topology.

Commonly, although the difference of restorability among the three algorithms
may be more or less, and the restorability itself may be higher or lower, the cycle tree
based algorithm has always higher restorability than the other two algorithms, with

very reasonable increased spare capacity.
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Chapter 6

Conclusions and Future Work

In this thesis, we introduced two new spare capacity design algorithms: spanning tree
based algorithm with backup parents, and cycle tree based algorithm with backup
parents and some cycle edges. In addition to the hierarchical tree algorithm that we
used for comparison, altogether there are three algorithms presented in this thesis.

All of them can be used as pre-planned path restoration algorithms.

From the analysis in the preceding sections, the time complexities for the two new
algorithms introduced in this thesis are the same as of the hierarchical tree algorithm:

O(n*). The space complexity of the three algorithms is the same too: O(n?).

The spanning tree based algorithm with backup parents needs much less spare
capacity than the hierarchical tree algorithm, which can sometimes economize nearly
40% spare capacity. Nevertheless, the difference between the two restorabilities is

minimal. So if the spare capacity is a big issue in a given network, then the new
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spanning tree algorithm is the best one to use among the three algorithms.

The cycle tree based algorithm with backup parents and some cycle edges has not
only the merit the other two have, nonetheless, it derives some good ideas from the
cycle-oriented algorithms which make it stronger than the other two. With the same
upper bound of time and space complexity, although the difference of restorability
among the three algorithms may be bigger or smaller, and the restorability itself may
be higher or lower, for every model, the restorability of the cycle tree based algorithm
is always higher than of the other two algorithms. In one topology, the difference
reaches about 27%. When compared to the higher restorability, the increased spare

capacity is very reasonable.

Furthermore, we can get much advantage in using backup parents in all of the three
algorithms. From the simulation results, we always can get much higher restorability
after using backup parents than before using them. From the results of the spanning
tree algorithm and the hierarchical tree algorithm, we can see the effect of only using

backup parents. In one topology the difference can achieve amazing figure: 46%.

We have used 5 topology models for the simulation. The restorability and the
spare capacity can be very different for various network models. From the simulation
results, the two new algorithms work very well on mesh-like random models, such as

pure random model and AS-level Internet model.

For some hierarchical models, such as transit-stub model and Tiers model [18], we

notice that our new algorithms do not work as well as the above networks generated
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randomly, although the cycle tree based algorithm provides a little better restorability
than the other two tree-based algorithms. In future research, we hope to modify it
to suit this kind of model in order to get sub-spanning tree with backup parents
and cycle edges for every sub-structure, then get another spanning tree with every

sub-spanning tree as one node.

Using the cycle edges in the cycle tree based algorithm, causes much higher restora-
bility than the other two algorithms. The selection of cycle edges and cycle paths
can play a very important role in the algorithm; good cycle edges and cycle paths
bring much higher increase of the restorability. In our future work, we will do further

research on constructing more useful cycle edges in getting more powerful cycle paths.
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