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ABSTRACT
On-line Energy Prediction Using Artificial Neural Networks
Jin vang
A literature survey is provided to summarize the existing approaches to building energy
prediction. The survey examines both the theory behind each prediction model and
practical issues such as data pre- and post-processing. It also points out the pros and cons

of each prediction method.

Artificial Neural Network (ANN) is identified in the survey as the most popular and
effective way to predict building energy demand. The ANN theory is thoroughly
reviewed in this thesis. In particular, the ANN prediction model is presented as a
generalized nonlinear least squares method. In addition to discussing the architecture and
training methods employed by an ANN, we also examine implementation issues such as
how to select the input to an ANN through day-typing and how to remove data
redundancy and reduce the dimension of the input vector space via principal component

analysis (PCA).

While most of the existing ANN models for building energy prediction are static in
nature, this thesis focuses on developing dynamic ANN models that can evolve over
time. The dynamic ANN models developed in this thesis are capable of adapting
themselves 1o unexpected changes in the incoming data. When the dynamic model is
combined with an automated data acquisition system, it can be used to provide real-time

ooline building energy prediction.
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A number of experiments have been performed to test the effectiveness of the ANN
models developed in this thesis. The experiments use both simulated data and real data
in a commercial building and a lab. It is demonstrated that it is relatively easy to build a
static ANN model to predict the building energy demand at certain hour when the input
elements of the ANN consist of the environment and operational variables measured
during the same hour. However, in practice, the environment and operational data
associated with hour ¢ is often not available until the £+ 7 hour. Thus, the prediction model
must rely on time-lagged measurements. The experiments in this thesis show that
including as many Jags as possible and then using PCA to remove redundancy seems to
be an effective strategy. This strategy also providtzé the basis for the dypamic ANN

model developed in this thesis. Numerical experiments show that they are quite effective.
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L INTRODUCTION

1.1 Motivatien and Objective

The objective of this thesis is to develop a flexible and robust model that can be used to
predict hourly building energy demand. The prediction model is established by utilizing
energy demand data collected in the past. It is designed in a way that it is dynamic and
adaptive in nature. That is, the model can evolve and adapt itself to new features in

energy demand pattern as new data becomes available.

The prediction of building energy demand plays an important role in building
management. An accurate and reliable energy prediction scheme can be used to help
building managers understand the diurnal and seasonal variations of energy demands and
the variation of energy demand due to change in scheduling and other retrofit measures.
When combined with an automated energy data collection apparatus, a fully automated
energy prediction system becomes a powerful tool for identifying maintenance problems
that often contribute to unnecessary increase in energy use, and for determining the best
energy control strategies (Dhar et al. 1999a). Due to this wide spectrum of demands and
applications, the subject of developing an effective energy prediction scheme for

residential and commercial buildings has received considerable attention in recent years.

1.2 Background

An automated energy prediction system is often built on top of a mathematical prediction
model consisting of several parameters. The model parameters are estimated using

existing data that typically include energy demand and temperature measurements



recorded in the past. A varicty of prediction models have been proposed in the literature,
These models have been implemented and tested on various types of buildings.
However, there is yet no consensus on which model is the best. One of the purposes of
this thesis is to summarize and compare the existing building energy prediction models

through an extensive literature survey.

The literature survey presented in this thesis covers a wide range of computational
prediction models. These models include time-series models, Fourier series models.
single and multiple regression models, Artificial Neural Network (ANN) models and
Fuzzy logic models. Both the strength and pitfalls of each model are discussed. The
survey provides not only the general design philosophy for each prediction model, but
also some discussions on the implementation details and the performance associated with

these models.

Among all the papers surveyed, a large number of them are concerned with using ANN
models to predict either long-term or short-term energy use in commercial buildings.
Therefore, in this thesis, we take a closer look at the theoretical and practical aspects of

using ANN to predict energy usage.

With the exception of time-series models and a few ANN models, most of the surveyed
literatures focus on static prediction, a prediction scheme that involves a single prediction
model that does not evolve over time. In a static model, once the estimation of the model

parameters is completed, the model is fixed. To obtain an accurate static model, a large

©



volume of historical data is required to estimate the model parameters, A dynamic
prediction model that constantly updates model parameters based on newly available
energy measurement data alleviates the need to archive and to retrieve a large volume of
historical data. As the energy data collection process is automated, the entire process of
retrieving new measurements, updating the model and making short-term energy
prediction can be performed in ‘real time’. This dynamic prediction scheme will be

referred to as on-line prediction in this thesis.

Two variations of ANN on-line prediction models are proposed in this thesis. They differ
in the way past data is selected for leamning. In the first model, the model parameters are
obtained by accumulating historical data. The second model makes uses of a fixed

volume of data shifted in time to estimate the ANN model parameters.

The performance of these two ANN models is tested on two data sets. The first data set
consists of simulated energy data associated with a building in Montreal, The quantity to
be predicted is the total electric demand (in kW) of the building. The second data set
consists of real energy demand and temperature measurements collected from sensors
installed in the HVAC system of the CANMET Laboratory in Varenes. Both the heating
and cooling energy demand are predicted from a variety of environmental and operational

data,

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 contains a literature survey that examines

the existing approaches to building energy prediction. The survey provides some



background information on ecach prediction model, and discusses how each mode! is used
in practical applications. Both the theoretical and the implementation aspects of each
method are examined. A comparison of different methods is provided at the end of the
chapter. In Chapter 3, the ANN model is presented in great details. The discussion
focuses on the issues of how to choose appropriate input, the internal structure of the
network, training methods, and adaptive ANN models. The relationship between ANN
training and the classical methods for solving nonlinear least squares problems is
presented. The technique of principal component analysis (PCA) used to reduce the
dimension of the input and to remove redundancies in the data is also introduced. Two
adaptive ANN on-line prediction models are introduced. Computational experiments are
presented in Chapter 4 to demonstrate the effectiveness of ANN models on two data sets.
Both static prediction models and adaptive (online) models are tested. The accuracy of
the models is reported. The thesis ends with a conclusion, list of contributions and

suggestions for future work.



2. LITERATURE SURVEY

Building energy prediction is a compley issue. 13 uilding energy demand depends on many
factors such as climate conditions. building characteristics. and the type of heating,
ventilation, and air conditioning (HVAC) equipment used. The quantities to be predicted
may include electrical demand, thermal (heating and cooling) loads or energy demand. It
is pointed out in (Katipamula et al. 998) that a reliable prediction model must be based
on sound enginecring principles. In this chapter, a literature survey is presented to
provide an overview on the start-of-the-art models currently used to predict building
energy demand. Prediction models proposed in the surveyed articles can generally be
grouped into four categories: 1) Regression Models, 2) Time Series Models, 3) Artificial
Neural Networks, 4) Other Methods. Fach of these categories is described further below.
The basic concepts behind each model as well as its strengths and weaknesses are
described. How each model was used to make various building energy predictions is
summarized, and the effectiveness of each model reported in the literature is also
discussed. Most of the papers surveyed in this thesis use ecither the Coefficient of
Variatior (CV) or the Root Mean Square Error (RMSE) as the metric for measuring the
aceuracy of the prediction. The CV value of a prediction is defined as (Curtiss et al.

1995)

]
j [‘vl’r‘«‘eu’ (1) - Yitata (1 )]?
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where vorea(?) is the predicted energy use at time /, yau(f) is the measured energy use at

time /, and 3, is the average of the measured data.

The RMSE value associated with a prediction is defined as
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Other criteria for measuring prediction aceuracy such as Mean Bias Errors (MBE), R~
Square (R*) are presented in Appendix A. The chapter ends with the results of the

shootout experiment, a comparison and a conclusion.

2.1 Regression Model

Regression analysis is a data fitting technique that makes use of a function constructed
from realistic engineering principles to model a particular physical phenomenon. An
independent variable of the function is often called a regressor. The function itself is
called a regression model. A regression model usually contains a number of adjustable
parameters called regression coefficients. These coefficients are chosen to minimize the
discrepancy between the measured data and the corresponding values calculated with the
regression model. Once these parameters are determined, the regression model can be

used to predict desired quantities.

Regression models have been demonstrated to be effective for building energy
predictions in a number of experiments (Fels 1986; Kissock et al. 1992; Ruch and
Claridge 1992; Kissock et al. 1998; Katipamula et al. 1998). Usually regression models
can be classified into two categories: a single variable regression model and a
multivariate regression model. For instance, a single variable regression function relates
the energy demand to the change of outdoor temperature (Fels 1986; Kissock et al. 1993),

and a multivariate function takes climate conditions, building usage, system

6



characteristics and the type of HVAC equipment used into account (Fels 1986;

Boonyatikarn 1982; Sullivan and Nozaki 1984, Katipamula et al, 1998).

A single variable regression model hased solely on ambient-temperature is described in
detail in (Kissock et al. 1998) and the literatute cited therein. It is pointed out that the use
of an ambient-temperature regression model can reduce the influence of changing
weather conditions on building energy demand so that retrofit savings may be more
acourately measured. Another advantage of this single variable model is that it avoids the
multicollinearity problems often encountered in multivariable regression models.
Multicollinearity occurs when the regressors are linearly dependent. As a result, the least

square solution is non-unique. This problem leads to model uncertainty.

Four regression functional forms (2-parameter, 3-parameter, 4-parameter, S-parameter)
are provided in (Kissock et al. 1998) along with the contexts in which they should be
used. The authors pointed out that the selection of a regression function should be based
on both the best-fit criterion (minimizing the least squares error) and the expected
relationship between energy demand and weather for the particular heating and cooling
system being considered. They also discussed the appropriate choice of a time-scale for
data measurements used for accurately determining the regression parameter. A case
study is provided in (Kissock et al. 1998) to demonstrate the effectiveness of the
regression model. When the proposed prediction models are applied to an engincering
center located in Texas A&M, both coefficient of determination (Rz) and coefficient of

variation (CV) values associated with the prediction of cooling energy demand are shown
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to be equal to 80% and 8% respectively. For heating energy prediction. the R? and CV

values are 88% and 26% respectively. Average daily savings are 44.0 +5.7 Gl/day for

cooling modeling, and 37.2 +4.8 Gl/day for heating modeling.

A methodology for developing multivariate linear regression (MLR) models is proposed
in (Katipamula et al. 1998). Several multivariate regression functions for predicting
cooling energy demands are given for both dual-duct constant volume (DDCV) and dual-
duct variable air volume (DDVAV) HVAC systems. The authors also discussed the
choice of appropriate time resolution when hourly measurement data is available. For
example, related operational parameters change each hour but they are generally constant
on a monthly or daily basis. Therefore, monthly and daily energy demand show much
less scattering compared to the hourly energy use. The MLR regression model is applied
to five commercial buildings located in central Texas with four different time scales:
Monthly, Daily, Hourly and Hour of Day. Coefficients of variation (CV) and mean bias
errors (MBE) were used as criteria for accuracy evaluation. The values of CV ranged
from 5% to 15% while the MBE values ranged from 2% to 12%. Daily energy prediction
provided the best performance. Its CV and MBE values reach the lowest level among
those predicied. Compared to single-variable models, MLR models typically have
somewhere between 12% and 54% lower CV values. Based on these results, it is
concluded in Katipamula's work (Katipamula et al. 1998) that MLR models - are more

accurate than a single variable regression model.



2.2 Time Series Model

The patiern of building energy usage is typically eyelical due to earth rotation, weather
conditions and human activities, which vary with hours in a day, and days of the vear.
From this point of view, a set of time series data is needed to understand the changes in
energy usage. If the history of energy use is viewed as a time series, then it is natural to
use standard time series analysis techniques to forecast energy use in future time. A time
series model consists of a set of observations of a continnous-time variable ( for example,
energy use) measured at equally spaced time intervals (Harvey 1992). Time serics models
offer the advantage that they take into account the time while traditional statistics

techniques tend to ignore the time dimension.

The most frequently used time series models are: autoregressive model (AR),
autoregressive moving average model (ARMA), autoregressive integrated moving
average model (ARIMA), autoregressive moving average with exogenous input model
(ARMAX), exponentially weighted moving average (EWMA), and Fourier series model.

Each of these models is described further in the sub-sections below.

2.2.1 Autoregressive (AR) model

An AR model assumes that the current predicted energy is linearly related to the energy
use detected at an carlier time. A typical autoregressive model can be expressed by

YVo=Dy bt d pViptEn =120, (3)
where ¢ represents the energy demand at time 7, p is the order of the autoregressive

noise. This autoregressive model is often denoted by AR(p).



The advantage of this model is its simplicity in parameter caleulation. But its success
depends largely on the assumption that the present value is a linear combination of the
previous ones. This assumption is not always valid in reality. In (Liu et al. 1996), AR is
used and compared with other techniques. It is discovered that the prediction errors of an
AR model increase as the order of the model is increased. This is especially true when
model order is larger than five. However, it is also shown in Liu’s paper that the AR
model he developed is less accurate than a neural network or a fuzzy logic model when

signal is highly nonlinear.

2.2.2 Autoregressive moving average (ARMA) model

The AR model introduced above can be extended to include a moving average of the
predicted data to produce an autoregressive moving average (ARMA) model. An ARMA
model equation can be written as

V=Dt @y, e+ O b, ,, =121 (4)

where the additional parameters 0,,j=12,.,qaccount for the moving average of past

(-

disturbance. This time series model is often denoted by ARMA(p,q). Both the AR and the
ARMA time series models are considered to be stochastic models. The stochastic nature
of these models is reflected from the random disturbance term g. If the roots x of the
characteristic polynomial

2B @ D =0 (5)

are bounded by | in absolute value, then both AR(p) and ARMA( p.q) are known to be

stationary stochastic models. One of the characteristics of a stationary stochastic model

1s that the observation y; is expected to fluctuate around a mean value p (Harvey, 1992),
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2.2.3 Autoregressive integrated moving average (ARIMA) model

In practice, a stochastic process is not always stationary. Because an ARMA model
assumes that the time series fluctuate around a certain mean value, it cannot
accommodate sudden changes in the dynamic process. An autoregressive integrated
moving average (ARIMA) model can overcome this difficulty by incorporating
differences of the observations in the model. The first difference between the observation
y measured at time £ and time #-1 is defined by A'y, =y, ~ v, The d-th difference of y at
time 7 can thus be defined inductively by A”y, =A%y, A"y | If the d-th difference of
the observation satisfies an ARMA(p,q) model, then the time series itself is said to satisty
an ARIMA model, and it is usually denoted by ARIMA (p.d.q) (Harvey 1992). This
model is sometimes referred to as a Box-Jenking model. Kimbara et al. experimented
with the ARIMA model (Kimbara et al. 1995) and found the performance of ARIMA to

be better than a two dimensional AR model.

2.2.4 Autoregressive moving average with exogenous input (ARMAX)
model

An ARMAX model of energy prediction model consisting of the parameters output y, ,
input w4, and noise vy is introduced in (MacArthur, et al. 1989). The model can be
described by the following formula

Az Dy, =Bz Du, +Cz"w,,  (6)
where z”'is the time delay or lag operator, defined by (z7")y, = y,_,, and

A Y =1+az" +a,2”

Bz y=14bz " bz b 27 (T)
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defines how delayed output, input and noise are combined. The coefficients
a;,h;,¢1,1=1,2,..p, are to be determined. This model represents a relationship between

energy use and ambient temperature.

Several new models and applications have been implemented based on the ARMAX
model. MacArthur and coworkers (MacArthur et al. 1989) presented an on-line recursive
(LR) algorithm. Their paper provides a comparison between the predicted total daily load
and actual daily load. The agreement appears to be quite satisfactory. The authors showed
that typical prediction error was on the order of 5%, Hong-1zer and coworkers (Hong-
Tzer et al. 1996) combined an ARMAX model with a genetic algorithm to improve the
accuracy of the prediction, the case study presented there demonstrates that this method

provides a high accuracy.

2.2.5 Exponentially weighted moving average (EWMA)

Another way to combine time series data in a prediction model is to take an exponential
weighted moving average of the time series using an exponential smooth constant A
(Seem and Braun 1991). Mathematically, the model can be described by
V= 2 A=Y pas ()
J
where y; is the predicted energy usage at time , A is an exponential smoothing constant,
and A is the time step. The advantages of this model are: 1) predictions can be made from
the previous forecast and observation so that the whole set of history of past data is
unnecessary, ii) less effort is needed to estimate the model parameters. EWMA is used in

(Seem and Braun 1991) for predicting electric demand of a building in Madison during



the twentieth week of the year. The results are compared with that generated from a
harmonic model. 1t is concluded that a significant improvement can be achieved using

EWMA,

2.2.6 Fourier series models

It has been observed that hourly energy use in almost all commercial buildings exhibits
some periodic patterns (Dhar et al. 1998). This observation provides motivation for using
a Fourier Series model to predict energy use. A Fourier series model decomposes the
time series as a linear combination of sines and cosines with distinct frequencies. It 1s
also referred to as frequency analysis of a time series model. A standard linear least
squares (regression) technique can be used to determine the coefficients of linear
combination to minimize the difference between the predicted and measured energy data,
The number of terms used in the Fourier Seriers Model can be initially determined by
Mallow’s Cp criteria (Dhar et al. 1998). It can be reduced by using a reasonable partial R-

square (residual square) cutoff.

It is pointed out in (Dhar et al. 1998) that to make effective use of a Fourier Series Model,
energy data should be separated into different groups based on their distinctive energy
usage characteristics. This is also known as day-typing. A separate Fourier Series Model
is developed for each day-type (for example, weekdays and weekends). Different day
types that do not show significant statistical difference may be aggregated after a

statistical test known as Duncan’s multiple range test (Ott 1988) has been performed.



Model equations are provided in (Dhar et al.1998 and Dhar et al.l 999a.b) to fit both
weather independent and weather dependent data.  For weather independent data, the
model equation consists of three parts. The first part uses hour of day as the independent
variable; the second part uses day of year as the independent variable; and the third part
contains a mixed term using both hour of day and the day of year as the independent
variables. A case study involving a large institutional building that contains classrooms,
labs, offices and computer facilities called the ZEC building from University of Texas A
& M is used to demonstrate the effectiveness of the model. Coefficients of determination
(RZ) are around 85% to 91% and coeflicients of variation (CV) are around 6% to 15%. In
particular, the authors discussed how energy data is grouped (into day-types) and the

number of Fourier terms required to accurately predict energy nsage.

For weather dependent data, such as hourly cooling and heating, two model equations
have been developed in (Dhar et al. 1999b). If the outdoor dry bulb temperature, outdoor
specific humidity and horizontal solar flux are available, a Generalized Fourier Series
(GFS) model equation that takes these variables into account can be used. When
humidity and solar data are unavailable, one can use a Temperature Fourier Series (TFS)
model. The temperature dependent model must take into account 1) the nonlinear
relationship between energy usage and outdoor temperature, and 2) the interaction
between outdoor temperature variation and time (hour of day). The detail of this model is
discussed in (Dhar et al. 1999a). Both model equations are applied to analyze energy
usage in the ZEC building (Dhar et al. 1998 and Dhar et al. 1999z, b). The reported

Coefficients of determination (R®) values for different day types are between 85% and



92%, and the reported coefficients of variation (CV) values are between 6% and 21%.
For cooling simulation, the reported R? values of a GFS model are a little higher than
those of a TFS model, and the reported CV values are a little lower than those of a TFS
model. For heating energy prediction, it is concluded that TFS models perform better
than GFS models. This is probably because a TFS model only partially captures the
variation of humidity and solar energy when cooling energy is predicted. It is well known
that heating energy use should not be dependent on these variables. Both models compare

favorably with the winners in the Predictor Shootout [ (Kreider and Haberl 1994),

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) is a type of Artificial Intelligence technique. It can
describe a nonlinear relationship between the input and output of a complicated system,
The theory of artificial neural networks has evolved over the last fifty years and its
development is motivated by the desire of trying to understand how the human brain
works. Practical use of artificial neural networks has recently become common in
scientific research and commercial applications, ANN is successiully used in the field of
medicine, military systems, financial systems and power systems. It is also capable of
solving different kinds of problems such as signal processing, pattern recognition,

planning, control and search, image processing and computer vision.

Similar to a buman neural system. an artificial neural network is an information
processing structure that consists of a number of input units and output units connected in
a systematic fashion (Kreider et al. 1995). Between the input and output units, there may

be one or more hidden layers, each consisting of a number of units called neurons, nodes



or cells. The connections between units lying on different layers are assigned with
varying weights. Information processing oceurs at neurons. Input signals (or data sets)
are fed in from the input layer. They follow all possible connection paths to reach the
next layer. Along each connection link, the signal is weighted by a weighting factor.
Multiple weighted signals entering into the receiving neuron are then summed and passed
through an activation function. An activation function represents a basic operation of one
heuron: summing its weighted input and applying them to the output. The output from the
activation function becomes the input for the next phase of network flow. Eventually, the
weighted signals reach the output units. Then these weights are summed and passed

through an activation function to produce the final output.

2.3.1 ANN static predictions

The main advantage of an ANN model is its self-learning capability. In Chapter 3, the
mechanism through which an ANN learns is explained. Various design choices of an
ANN and learning algorithms for improving the reliability and flexibility of an ANN

prediction model are also examined.

The use of ANN in building energy prediction has been investigated by many rescarchers
(Curtiss et al. 1993; Curtiss et al. 1994; Curtiss et al. 1996; Kawashima et al, 1995).
Although the ANN models described in the surveyed articles share some similarities,
they differ significantly in implementation details. Each article proposed an ANN that is
tailored towards a specific type of energy prediction under a specific building

environment.



Batlier studies (Curtiss et al. 1995; Curtiss et al. 1994) have demonstrated the success of
the use of ANN as predictors for hourly building energy demands. These ANN models
contain less than a dozen inputs. In one case, predictions are made to obtain the whole
building energy use in the next three hours using measured energy demand in the
immediate past one or two hours. The accuracy achieved is reported as Coefficient of
Variation (CV) of 5% to 10%. In another case. prediction is made without the knowledge
of the actual energy demand for the immediate past hours. This problem is known to be

more difficult and the results appeared to be less accurate in general.

An alternative approach proposed by Curtiss et al. (Curtiss et al. 1995) makes use of
internally generated “past” data during the training process of an ANN. To be more
precise, the predicted results are fed back into the network to make future predictions.
This approach is referred to as recurrent neural networks. They report that recurrent
neural networks can provide accurate predictions for cooling and heating loads of a test
building without using actual load from the immediate past few hours. An example is
provided in (Curtiss et al. 1995) to compare the quality of a recurrent neural network with
a non-recurrent neural network. The networks used dry bulb temperature, humidity ratio,
horizontal solar flux, wind speed, hour of day, weekday /weekend binary flag as input.
One or two hidden layers containing five or six neurons were employed. Both chilled
and hot water loads were predicted. It is shown that recurrent neural network is effective,
but not as accurate as the non-recurrent prediction obtained by training the neural

network on measured data.
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A case study that involved a large building at the University of Colorado is presented in
(Anstett and Kreider 1993). An energy monitoring system called BEACON was installed
in the building along with an actificial neural network (ANN) simulator. An optimized
backpropagation method called flat spot elimination is adopted in the training. The
training method appears effective for improving the prediction capability. Multiple
networks are trained and evaluated using different network configurations and parameter
settings. A series of independent variables such as month of year, scheduled hours, high
outdoor temperature, low outdoor temperature, water temperature, and cafeteria sale are
used as inputs for water, steam, electric and natural gas prediction. The prediction of
electric demand and steam are shown to be quite accurate. The reported R? and RMS
values are 96.9% and 0.7k WH respectively for electric demand, and 96.7% and 0.97LBs
respectively for steam prediction. The reported RMS values associated with the water and
natural gas prediction are 0.9 GAL and 0.09CCF respectively. The reported R* values
associated with the water and natural gas prediction are 95.6% and 96.4% respectively.
Based on these experiments, it is concluded that: i) the flat spot elimination method is
useful for modifying the weights and is easy to implement; ii) the performance of each
single network is better than combining the four networks together; and iii) increasing the

number of input variables could improve the generalization ability of an ANN.

In (Kawashima et al. 1995), several hourly thermal load prediction techniques are tested
and compared. ANN proved to be the most accurate model, The proposed ANN consists

of fifteen inputs (seven ambient temperature measurements, seven solar insolation



measurements obtained six hours before the prediction period, and the thermal load at
time t-24). One hidden layer with thirty-one units and one output (thermal load) are used
in this particular ANN model. A backpropagation training method is adopted. In the
training process, hourly loads are updated by multiplying the ratio of the total predicted
and observed loads. The learning rate is reduced gradually using a “three-phase annealing
procedure” (Kawashima et al. 1994) to accelerate the process. A case study in
(Kawashima et al. 1995) showed that the accuracy of the ANN model improves when

more input variables are used.

In (Curtiss et al. 1996) it is shown that an ANN is also able to predict the pre-retrofit
chilled water demand so that the energy savings between the pre- and post-retrofit
periods can be calculated. In this case study, a six-month pre-retrofit data set is selected
as inputs of the network. The network consists of one input layer with eight units, two
hidden layers and one output layer. The input variables contain hour number (0-23),
ambient dry-bulb temperature, horizontal insolation, humidity ratio, wind speed,
weekday/weekend binary flag, past hour’s chilled-water demand and second past hour’s
chilled-water demand. It is shown that there is no obvious discrepancy between the
measured energy demand and the predicted values. It is also demonstrated that the
designed ANN can predict energy demand for commercial building as well as for

residential buildings.

In a more recent article (Curtiss et al. 1998a), an ANN was used to predict a 13-day

chiller power demand and 5-day ice storage tank charging and discharging in HVAC
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plant systems. The building investigated is a 10,000 square feet commercial buildin g with
a maximum ¢ooling load of 229 KW. Six inputs were selected for chiller power demand
prediction: three past histories of three-way valve position, evaporator inlet temperature
and evaporator outlet temperature, and ambient temperature. The architecture consists of
these six input units with one hidden layer of five nodes and two outputs (thermal load
and chiller power demand). Coefficient of variation (CV) and root mean square error
(RMSE) are used as criteria for evaluation of prediction performance. For chiller load and
demand modeling, the reported CV values are 6.82% and 12.1% respectively, and the
RMSE values are 1.17 ton and 2.1KW. For ice tank discharging, the CV value is 13.1%
and the RMSE value is 2.1 ton. These simulation results show that a neural network can
model the equipment performance with fewer inputs and less computation time. It also

has the ability of self-calibration.

A general framework is established in (BreekWeg, et al., 2000a, b) for selecting an
appropriate neural network model to predict building energy demand. The authors
examined various aspects of a neural network model including the choice of an activation
function, the number of hidden layers and training methods, etc. The authors emphasized
design issues related to the general applicability of a neural network model to bwilding
energy prediction. Due fo the variation in data characteristics, the authors suggested that a
general prediction model should not be completely data driven. They maintained that a
general model should have the capability to preprocess the data to extract only the
relevant information. They also pointed out that a good model should address the

problems of missing or inconsistent data and take into account additional physical



considerations of the building whenever possible. In these papers, a neural network is
viewed as a nonlinear modeling technique for the energy demand function
approximation. The authors pointed out that cased-based reasoning (CBR) can be used as
a learning technique for local training. In CBR, a new training subset is chosen from the
entire input data for each new test case. This local training technique is faster compared
to the other algorithm described in this paper: clustering. With the clustering approach,
the data set is partitioned into several disjoint subsets using some predefined similarity
measure. In the presented case studies, five buildings are tested using the proposed
prediction models. The performance results were mixed. The prediction model performs
well for some models but poorly for others. However, the CV values were within 5% in

most cases.

An ANN for predicting the hot water supply temperature of the same building in (Curtiss
et al. 1998a) is discussed in (Curtiss et al. 1998b). To minimize the excess peak energy
use, an ANN was used to predict the hot water supply temperature and boiler outlet
temperature. Four input and two output variables are selected for the network. The input
variables are: hot water supply temperature, boiler outlet temperature, boiler stage
controller output (0,1,2,3), three-way valve controller output (Voltage~0%-100%). The
output variables are: hot water supply temperature and boiler outlet temperature. The net
has two hidden layers and used an inverted triangle method to determine the number of
units in every hidden layer (Wasserman, 1989). For these two cases, the training data is
collected every 15 seconds, input and output layers use lincar activation function while

the hidden layers use sigmoid activation function. In the two simulations, ANN works



with PNN (predictive neural networks) controller to optimize the energy use and its
performance is compared with that of a proportional integral and derivative (PII)
controller. The authors showed that a PNN can understand which controller output were
needed to maintain the setpoint. So the deviation of a PNN is smaller than that of PID

controller,

Electricity use of whole power system is also an important part of energy demand,
Applications of ANN predictor in the power system is also demonstrated to be effective
by many researchers in (Alves et al., 2000; Bakirtzis et al., 1995, Drezga and Rahman
1999; Khotanzad et al. 1995, Kim et al, 2000; Lee et al., 1992:Lu et al,, 1993,
Mohammed et al.,1995; Yoo and Pimmel 1999). When selecting input variables, most of
these researchers only use previously recorded load and temperature as major input.
Compared to the input of HVAC prediction, the input selection for electric power system
is much simpler. Some researchers use the load data of the past 24 hours, others use the
load of previous day at the same time. Besides using recorded temperature at previous
time, Khotanzad et al,, 1995, Lu et al., 1993 and Mohammed et al., 1995 also used
forecasted temperature of previous or current hour as input. Since date and hour are also
factors that cannot be ignored, some researchers use sine and cosine to indicate the date
and hour because energy use is periodic. Design of ANN architecture for electric power
prediction is also simple. Most of these researchers used only one hidden layer, only a
few of them used two hidden layers. They use Mean Absolute Percentage Error (MAPE)

or Standard Deviation Percentage Error (Details can be found in Appendix A) to test the



accuracy of the ANN predictors. It is shown that the results are quite satisfactory, Most

errors are within 5%.

A heterogeneous artificial neural network that contains different ANN types is used for
short-term load forecasting for different regions (Piras et al. 1996). The authors show that
this model is better than a single model through the combination of the supervised part
and unsupervised part. The supervised part of the model is used to analyze the process in
sub-models capturing the local features in the data and suggesting regression variables.
The unsupervised part called mutilayer perceptron provided the approximation of the
underlying function. These two parts are combined to predict the short-term load in five
European regions. The mean absolute percentage errors (MAPE) are used to evaluate the

performance. It is shown that most of the forecasting errors are lower than 5%.

2.3.2 ANN on-line predictions

In most energy prediction applications, researchers use outside temperature, date, time,
day types (weekday/weekend) as input variables, some of them also use solar radiation as
input. Outputs predicted by these neural networks are hourly thermal load, electricity
usage, chilled water use, ete. Usually one hidden layer is enough to make a prediction.
Sometimes some researchers use two hidden layers. There is no published systematic
way to decide the input variables and number of neurons in the hidden layer. Ixperience

and knowledge are important for designing a good artificial neural network.

The literature review presented above primarily focused on static prediction. In the

following paragraphs, the literature about dynamic or on-line predictions is summarized.



Compared to the number of static predictions, the number of papers on on-line
predictions found in the literature is limited. Some examples have been found in the field

of electric load forecasting for power systems.

An on-line algorithm consisting of supervised and unsupervised learning for short term
ANN load forecasting is presented in (Djukanovic et al 1995). Thirty-eight input
variables are sclected. These variables include:
e maximum temperatures and minimuam temperature for previous two days and the
current day,
® twenty-four hourly loads for the current day and

¢ eight howly recent loads before the prediction hou.

An unsupervised learning algorithm is used to classify these thirty eight inputs into one of
five subsets consisting of different day-types stored in a data set. These five subsets
include:

1. working days (excluding Monday);

2. Saturdays;

3. Sundays;

4. Mondays;

i

Holidays.
Then supervised learning is used to train the ANN associated with the above five classes,
and to forecast hourly power load. The output of the supervised learning network consists

of the next twenty four howrly loads to be predicted. All ANNs except the one used to



predict the power load on holidays are retrained weekly. For subset D), forecast is made
sixteen to forty hours in advance. If the hourly power load is to be predicted for week £,
the training set used consists of the data associated with weeks (k-1)... (k-4) and the
weeks (k-47). (k-48)... (k-53), where (k-47), (k-48) ...(k-55) are the data associated with
the weeks at the same time in the previous year. For subsets 2), 3) and 4), data used for
training is associated with weeks (k-1), (k-2)...(k-6) and weeks (k-46), (k-47)...(k-56).
For holidays, the same day from the previous year forms the training set. This method is
characterized by its self-revision and adaptation. The network is retrained weekly using a
slightly different set of data to modify the weights of the network. These subsets used for
the weekly training session forms a window. This window moves forward through
removing old measurements while adding newly measured data. 1t allows the
incorporation of possibly most recent changes in climate factors, regulation constraints
and localized phenomena. This window evolves with time, hence is referred to as a

moving window.

This algorithm is used to forecast the load for the Electric Power Utility of Serbia. The
data associated with year 1990 are provided to predict the hourly load associated with
1991, The results of this case study show that both absolute percentage errors and

absolute percentage errors are below five percent.

In (Khotanzad et al. 1995), a combination of three separate models is used for short-tertn

load forecasting. They are weekly, daily and hourly models.
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Both the daily and the weekly models consist of seven ANNs. Fach ANN is used to
forecast the hourly load of the i-th day of the week, but the input selection strategies for
these two models are different. For the weekly model, the selected inputs are hourly load,
actual temperature and the temperature forecast for the i-th day of the previous week. For
daily models, the actual hourly load and the hourly temperature measurements from the
previous day as well as the forecasted hourly temperature of the i-th day are selected as
inputs. Weekly ANN models are updated weekly once the new data is available at the end
of the previous week. Daily models are updated on daily basis when the new data are
available at the end of the day. The outputs associated with both models are the 24 hourly

load forecast of the i-th day.

The hourly module consists of twenty-four ANNSs, one for each hour of the day. The
input of the i-th ANN consists of

» the actual load, temperature and humidity at the i-th hour of the previous day;

¢ the actual load, temperature and relative humidity of the i-th hour from two days

ago;

e day of the vear;
These ANNs are updated daily. The network is retrained at the end of each day when the
new measurements become available. The new data is combined with the previous data to
achieve higher accuracy (accumulative training). The retrained network is used to

forecast the hourly load for the next day.
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The outputs from all three ANNs are combined to provide the final load forecast for each
hour. If we denote the forecast for the load at the k-th hour from the weekly module by
LW(K), the forecast from the daily module by LD(k), and the forecast from the hourly
module by LH(k), then the final load forecast has the form

LK) = al(ky*LW(k) + a2(ky*LID(K) + a3(k)*LHK),
where the coefficients al(k), a2(k) and a3(k) are also determined in a dynamic fashion
through a Recursive Least Square procedure (RLS). Similar to on-line update of ANN

weights, the coefficient a(k) is updated by the RLS algorithm on a daily basis,

Where, j=1..N, N is the total number of the forecasts made from the beginning till
present, 3 is a weighting factor to forget the old data, heref=0.99. The results of one-day

ahead forecast show that mean absolute percentage errors for twenty utilities across the

““““

are pretty low, they are all below 5%,

Similar to the above example, three ANN adaptive mechanisms are utilized in
(Mohammed et al. 1995) to accurately forecast the short-term electric load for power
systems. These three schemes are Daily Adaptation (DA), Weekly Adaptation (WA) and

Monthly Adaptation (MA).

In'a DA mechanism, a two-stage training algorithm is used to provide the load forecast.
The ANN inputs used for the training at the first stage consist of

» the temperature forecast of the hour,

b
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¢ the load of the hour from the previous day,

s the maximum and minimum temperatures of the previous and present day

A set of ANN weights are produced through the training in the first stage to capture the
general, day by day trend of the electric load. These weights are saved as the starting
weights for the initial ANN training associated with the next day. During the second-
stage training, the ANN is refined and enhanced to capture special features of the day for
which the forecast is made. The second stage training uses a subset of data consisting of
those that share similar temperature conditions with the day being forecasted as well as
data from the previous five days. Once the forecast is made, the weights obtained from
the second stage are discarded and only the weights from the training in the first stage are

kept. Then the above process is repeated to forecast the load for next days.

The adaptive mechanisms arc applied to the Florida Power and Light Company for load
forecasting. The result shows that the mean absolute percentage error for all hours

forecast in 1990 are within 6%.

Sforna and Proverbio designed a recurrent neural network on-line system for short-tertn
load forecasting in (Sforna and Proverbio 1995). The system consists of two windows
that are for different uses. The first window is a short-term training window. This
window is used for training and load prediction. It is controlled by operators. The
operator can stop training at anytime when they think the forecast is satisfactory.

Otherwise a relearning activity is available. The training set for this window is the data



associated with five previous weeks, this is the default option. When rapid changes oceur,
especially near summer or seasonal holidays, only the data associated with the previous
week is used for training. Eleven inputs are selected, They are combined with the loads of
the same day in previous weeks and the loads of the day before the current day. These
eleven inputs are listed as follows:

® [oad at d-7 for Monday

¢ load at d-7, d-1 for Tuesday

¢ load at d-7, d-1 for Wednesday

o Jload at d-7, d-1 for Thursday

o d-7, d-1 for Friday

e d-7 for Saturday

d-7 for Sunday
The network has two hidden layers. The first hidden layer has nine neurons. The second

hidden layer has four neurons. One output is hourly load of the next day i.e. day (d+1).

The second window of the system is an on-line correction window. Two types of on-line
correctors are designed to minimize the prediction error. The first one is called on-line
error corrector. This corrector predicts prediction errors two hours in advance through
learning predicted errors associated with the previous three or four hours by a dynamic
network. The second corrector is an on-line error estimator. The estimator is used to

compute the forecast errors when the current actual load is available.



This model is used to forecast the electric load of the Electric Power Utility in Serbia.
The average errors obtained from the forecast for twenty four hours are all within a range
of five percent. Operators plays very important roles in determining the aceuracy of the
forecast but their effect is not obvious, The forecast with the operator’s help performed
better than the one without the operator. With the operator, the mean prediction error is

1.18%, while it is 1.93% without operator.

Instead of forecasting the short-term load directly, an ANN is used to fotecast the relative
increment in load in (Charytoniuk and Chen 2000). The relative load increment is defined
by d(t+1) = (L(t+1)-L(t))/L(1), where 1(1) is the energy load at time t. The rationale for
this approach is that the relative load increment is much smoother than the actual hourly
load. Charytoniuk and Chen proposed to use an adaptive scheme that involves a moving
window. The network is daily retrained. For a given date, the 3 recent weeks of the
current year data and the 2 weeks around the given day of the past year data are used for
training. This set of data forms a window for training and retraining. The window is
moving by discarding the old measurements while adding newly available measurements.
The data within the window is sampled every 3-5 minutes. The proposed method reduced

the error by 47% and training time by 66% compared to the traditional forecaster.

2.4 Other Methods

In addition to the three types of prediction models described above, other models such as
the fuzzy set model (Tobi and Hanafusa 1991; Mori and Kobayashi 1996; Youn et al.
2000; Liu et al. 1996) and Bayesian Regression model bave been shown to be effective

when used appropriately for certain types of prediction,



The fuzzy approach is an alternative technique used in system control. information
processing and management (Shalkoff 1997). It provides a robust mathematical
framework that is able to solve various problems such as nonlinear problems that include
non-numerical domain knowledge, An obvious operation feature of fuzzy system is its
ability to capture uncertainty. There are no absolute true or false values in the fuzzy set
member function, Each variable can take a degree of truth. In general, fuzzy member

function reflects the approximate relationships between observations and response.

Detailed procedures of fuzzy system design can be found in (Shalkoff 1997).

Energy prediction can be viewed as a type of inference process. One technique for
dealing with systematic inference is fuzzy logic. A fuzzy system is an inference model
that is built upon a set of inference rules. Each rule consists of a premise (input), a
consequence (output) and a set of membership functions that define the relationship
between some premises and consequences. A typical rule can be described as follows
(Mori and Kobayashi 1996): Rule &: if x, is A/jkg X718 Ag/‘, ooy and X, 18 /1,,,-7", then y is wy,
where 4,* is the j-th membership function associated with the input variable 7, where

i=1.. .n.

In (Mori and Kobayashi 1996) each membership function is constructed as a localized
piecewise linear function. Each rule is characterized by its “true value”, which is defined
as the product of the membership function: pe= 4,5 4,/ Aqf It is easy to verify that
the product of all “true values” is 1. An output variable can be expressed as y = Z W, s

k
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where wy is a weight. The optimal weights can be obtained through a supervised learning

process. One way 1o obtain an optimal set of weights is to minimize the cost function

“4 ]‘ A i I . Al .
B o= 7\72( v, ~d;)  where d) is the target of the /th data set and yi is the output
{ia}

associated with the /-th data set, using a gradient based algorithm such as the steepest

descent algorithm.

A key aspect of fuzzy system modeling is the determination of the number and location
of the member functions. In (Mori and Kobayashi 1996), a special coding mechanism
was introduced to allow each configuration of the member function be represented by a
bit sequence. The optimal sequence can be obtained through a simulated annealing
process. Simulated annealing was proposed in (Mori and Kobavashi 1996) as a promising
way 1o set the number and location of the member functions. However, no computational

details were provided in that paper.

In addition to the cost function, the quality of a fuzzy system model can be evaluated by

an index function such as (Mori and Kobayashi 1996)

b
EERun N iy - , 9
f 5 p-m %)

max

where £,,,, is defined to be the model error with membership functions at both edges,

f1s some parameter, and m is the number of membership functions. This function can be
used as the energy function for the simulated annealing process used to find an optimal

configuration for the fuzzy system.

Lo
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A fuzzy system has the same ability as ANN in approximating any functions. According
to (Mori and Kobayashi 1996), it has the advantage of capturing cause and effect in the

inference process.

In (Mori and Kobayashi 1996), a fuzzy system is used to forecast short-term (one hour
ahead) power system load. The input variables are chosen to be the power load at time 7,
the difference between the power load at time ¢ and the average power loads, and the
difference between the averages calculated at time ¢ and r+/. The results show that
accuracy of the prediction is comparable with that obtained from a multi-layer
perceptron (MLP) neural network prediction model on the same training data set.
However, a better accuracy is achieved by the fuzzy inference on a testing data set than

that obtained by an MLP neural network.

In (Liu et al., 1996), three methods were used for short-term load forecasting: fuzzy logic,
neural networks and the autoregressive (AR) model. A simulation is carried out for the
next 24 -hour load trend forecasting in winter with the metered history data. Then, the
forecasted data is compared to the real load. The RMS value is used as the criterion to
evaluate prediction performance. Fuzzy logic and neural networks are better than AR
since the RMS values of these two approaches are 1.0% while the RMS value of the AR

model is 7%,

The details of a Bayesian regression model that was declared as the winner of the 1994
Energy Prediction Shootout competition are presented in (Mackey 1994). The author

views neural network Jearning as “an inference of the most probable parameters for a
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model, given the training data.” He points out that the main objective of neural network
training is to minimize an error function that describes the discrepancy between the
output of the nonlinear map (implicitly defined by the neural network) and the measured
data. Minimization often includes regularization to avoid noise amplification, He argues
that within a probabilistic framework, one can view the error function as the logarithm
likelihood for a noise model, and can view a regularizer as a prior probability distribution
over the parameters. It then follows that the minimization of a regularized error function
1s equivalent to the inference of the parameters of the prediction model, given the

measured data,

By making use of Bayes™ theorem, which basically states that the posterior probability
distribution of model parameters is proportional to the product of the likelihood and the
prior probability distribution, the author proposed to determine the regularization
parameters by maximizing what he called the “evidence” term. He also introduced the
concept of Automatic Relevance Determination that “puts a prior probability distribution
over the regression parameters that embodies the concept of relevance.”  The
regularization constants for redundant inputs can automatically be detected because they

tend to be large,

Some implementation details such as the architecture of the neural networks, pre- and
post-processing of the data are discussed. The author provided some explanation on why

some of the local trends in the testing data are not correctly predicted. Both coefficient of



variation and mean bias error showed this particular prediction model is superior to other

models used in the competition,

2.5 The Great Energy Predictor Shootouts

The accuracy not only depends on the model itself but also depends on the quality of the
data used to perform the prediction. It is somewhat difficult to compare all the models
proposed in the surveyed articles directly because many of them used different data sets
to predict different quantities. Fortunately, this issue has been addressed, to some extent,
by two competitions called the Great Energy Predictor Shootout [ and 11 held in 1994 and
1996 respectively. Many research groups participated in these two competitions in which
the same data set was provided fo test various prediction models. The conclusions of
these competitions have been described in (Kreider and Haberl | 994) and (Haberl and

Thamilseran 1996).

In the first competition, two data sets generated from the same building, a university
engineering center were made available to the contestants. One data set consisted of
hourly measurements of chilled water, hot water and whole-building electricity use for a
four-month period. Weather data and time stamps were included. The other data set
consisted of solar radiation measurements. Some of the dependent variables were
withheld from each of the data sets. They are used to test the accuracy of the submitted
prediction model. The quantities predicted include the whole building electricity, chilled
and hot water use. The performance of each prediction model is determined by the CV
and MBE criteria. A Bayesian non-linear model (Mackey 1994) was identified as the

most accurate prediction model among the contestants. It was found that neural networks-



based models generally performed quite well compared to traditional statistical
approaches. It was also found that all methods performed better when predicting the

chilled water use than when predicting the hot-water use (Kreider and Haberl 1994).

In the second competition, energy data generated from two different types of buildings,
one an engineering center, the other a business building, were provided to the contestants.
Both buildings had been retrofitted to include more efficient HVAC systems. Hourly
energy measurements from both the pre-retrofit and post-retrofit period were included in
the data set. Some data were removed from the pre-retrofit period for testing the accuracy
of the contestants’ prediction model. The winner of the competition used a combination
of ten neural networks with two hidden layers of 25 units each (Haber! and Thamilseran
1996). To many people’s surprise, one of the contestants showed that a carefully

assembled statistical model could perform as well as the neural network approach.

2.6 Generalization and Comparison

Choosing a building energy prediction model is not an easy task. The prediction methods
described in the above literature review all have distinctive features. Some of them
perform better than others, but none of them is perfect. The regression and time series
models are based on classical mathematical theory. Thus, the behavior of these models is
well understood. The estimation of model parameters is usually straightforward.
However, these models tend to work well only for energy systems that are well behaved.
They are usually not amenable to dramatic changes in energy use due to unexpected

events. The artificial neural network model generally works better for buildings that

exhibit highly nonlinear energy demand patterns. However, the success of using ANN
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depends on a number of design issues such as the choice of input and output, the number
of hidden layers, the mumber of neurons used in each layer and the training algorithms

used.

To provide guidance on how to choose an appropriate building energy prediction model,
the advantages and disadvantages of all models discussed are summarized in the

following table.



Table 1. The advantage and disadvantage of various energy prediction models

Advantages

Regression
method

A simple function consisting of related
regressors. Relatively fewer
parameters are required. It reduces the
time and effort needed to determine the
values of the parameters

Disadvantages

1) It does not accurately reflect the hourly
energy variation with time. For different
buildings with different environment and
weather conditions, much effort and time
must be spent on selecting time scales
and regressors to find a best it model,

i) Aunto-correlation or multicollinearity
problems must be considered when
evaluating the performance of prediction
because they tend to lead to model
uncertainty,

Time series
model

i) They can capture the relationship
between the hourly energy use and
time variation given a set of time series
data.

ii) Fourier series models can even
provide a better accuracy of prediction
with less computation effort by
multiplying the periodic parameters
sine and cosine

i) The success of AR models only
depends on the assumption that the
present value is a linear combination of
the previous ones. ARMA and AR
models both work under the stationary
condition. In most cases this is invalid.
The prediction errors of models increase
as the number of variables is increased.
il) ARIMA model and ARMAX models
can handle the changes in the
unstationary process, but many types of
parameter estimation are still required.
At the same time these models cannot
ignore the auto-correlation between the
variables because it strongly impacts the
accuracy of the prediction.
11i) Fourier series models are much easier
and provide better performance
compared to the above time series
models and other techniques. But it is
based on the assumption that “hourly
energy use in almost all commercial
buildings is periodic” (Dhar et al. 1998),
If dramatic changes happen this model
may not be the proper choice. To resolve
dramatic changes, high-frequency
Fourier components must be included in
the model. This would dramatically
increase the computational cost.




Networks

Typically operate like a black box. It is
not known what happens between the
output and the input, and no meanings
are applied fo the weights,

i) Hard to distinguish structure from
noise in the data, and ANN fends to

i) ANN models are capable of
approximating a multivariable
nonlinear function without knowing
previous relationship between

variables; memorize noise
Artificial i) ANN models are able toreduce the | 0 " o
Neural time of parameter estimation through 1i) It might not be able to adapt 1

dramatic changes. For example, the
power load - temperature relationship
may exhibit unstable behavior, That

learning from examples and updating
their learned knowledge automatically
i1i) It is possible to ignore excess data e .
LT AR means that the results from a prior
that is unimportant, and to concentrate

o N B training session may not be able to
on the more salient inputs (Curtiss et , " N o
al. 1994); handle the unexpected changes in this
(3 2 ¥ 5

relationship. Some remedies can be
found in (Kawashima et al. 1994; Yoo
and Pimmel 2000}, but a significant
amount of effort is still needed.

In (Kawashima et al. 1995) different forecasting methods are used and compared. It is
found that Artificial Neural Networks provide the best performance. The reported CV
and mean bias crrors (MBE) values are 10% and 0.5% respectively. By contrast, the
reported CV and MBE values associated with the ARIMA the model are 24% and 1%
respectively. In (Dhar et al. 1998) Fourier series models were compared to ANN and the
winners in the Great Energy Prediction Shootout. The reported CV values of Fourier
series models are the lowest in four out of eight cases when compared to the performance
of ANN. The performance of Fourier series is also comparable to the winners in the
shootout competition as described before. Based on the above information and
description, Fourier series models and Artificial Neural Networks based models are the
two most recommended methods found in the literature survey, Hybrid prediction models
that combine more than one technique are also recommended. Such models include

Fuzzy-Neural Networks and Baysian Regression models. These models usually generate
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accurate results but the design of these models is more complicated than any of the

methods described in section 2.1 to 2.5,

If the energy use pattern is highly non-linear with respect to the independent variables
such as weather and operational variables, a single physical model expressed by an
explicit mathematical formula (e.g., a regression model or a time series model) may not
be enough to accurately describe the complicated time-dependent relationship between
the inputs and outputs. Moreover, physical models tend to cause problems such as multi-
collinearity that leads to model uncertainty. By contrast, an Artificial Neural Network
(ANN) model is more flexible in terms of modeling a nonlinear mapping. It does not rely
on a fixed mathematical description of the physical phenomenon. Once the input and

output data are provided, ANN models able to describe a highly nonlinear phenomenon.

A number of building energy prediction models have been examined in this chapter. A
brief description of each of the prediction methods examined has been provided here to
illustrate how these prediction models are used in practice and the type of prediction
performance achieved by each model. The advantages and disadvantages of these models
are summarized in Table 1. Much emphasis has been placed on the Artificial Neural
Network model because it has the unique advantage that no clear relationship between
the input variable and output needs to be defined before the model is used in the
prediction process. Once the input and output are selected and fed into an ANN, the
relationship between the input and output is identified through a self-learning process.

The accuracy of the prediction can be improved by adjusting the architecture of the ANN.
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Because of this unique feature, the time and effort that are normally required 1o establish
a proper mathematical model in a conventional prediction methodology can be saved.
The ANN based models appeared to perform well in the two Great Energy Shootout
competitions. The ANN model has also been successfully used in HVAC plants and
power system as an energy predictor and controller. Besides the advantages summarized
in Table 1, ANN is also easy to use. It can be installed on alimost any desktop computer
and the memory requirement for running an ANN based building energy predictor is

small.

Although ANN models have been used in a number of building energy prediction
applications, the design of an effective ANN prediction model is still not a trivial task.
Designing an effective ANN model requires experience in choosing the appropriate
inputs, the number of neurons per hidden layer and the number of hidden layers per
network. Further study of ways to improve the accuracy and efficiency of ANN based
prediction methods is still needed. In addition, the following problems should be
addressed in the future for building energy prediction methods:
e For different buildings with different environment and weather conditions, different
independent variables and time scales must be selected to ensure that prediction errors
can be minimized. Much experience and knowledge is building-dependent (Anstett

and Kreider 1993). This is a general problem that cannot be avoided.

e To accurately and successfully model complex buildings, a certain level of experience

is required with selecting the proper inputs (Kreider et al. 1995). This is especially

41



true in neural network models. To present a good performance of prediction, all the
methods must define day-type groups to deal with energy use on different types of

days such as weekday, weekend and holiday.

Almost all ANN models for building energy predictions presented in the surveyed
literature focus on static predictions. In a static prediction, the prediction model is set up
n advance using historical data, It is highly possible that this model maybe invalid when
new data that records the energy and environmental changes association with a different
and more recent time period becomes available. In this case, a dynamic prediction that
can adapt itself to such changes in the energy demand pattern is desirable. This is
especially true for short-term energy prediction, In this thesis, dynamic ANN models are

proposed for on-line building energy prediction.



3. ON-LINE BUILDING ENERGY PREDICTION
USING ARTIFICIAL NEURAL NETWORKS

The ANN model is identified in the literature survey as the most powerful and flexible
prediction model. There are many variations of ANN models, each well suited for a
particular application. Although the basic concept of ANN is casy to understand, there
are several issues one should address carefully in designing an effective ANN prediction
model. In this chapter, several key issues related to applying an ANN model to building
encrgy prediction are examined. The discussion focuses on how to choose appropriate
input, the internal structure of the network, training methods, and adaptive ANN models.
The methodology for solving nonlinear least squares problems between ANN training
and the classical methods are presented. T

(PCA). which is used to reduce the input dimension and redundancies in the data is

introduced. Two dynamic ANN models are proposed.

3.1 Input and Output

The output of the ANN used for energy prediction is often easy to choose. It is usually
the total electric, gas or chiller energy consumed by a building, a quantity that is of
interest to the building manager. The input vector to an ANN varies from one application
to another. In building energy prediction applications, typical input elements include
outdoor dry-bulb temperature, wet bulb temperature, horizontal solar flux, and hour of
the day, ete. For long-term prediction, one may also include day of the month and month
of the year as input variables. For some applications, one may not have access to all

environmental variables that contribute to variations of energy usage. In this case, the



accuracy of the ANN prediction will be limited by the incompleteness of the measured
data. In other applications, the measurements may contain environmental data that do not
actually contribute to variations of energy usage. These measurements should be pruned
from the list of input elements to the ANN predictor for two reasons:
* If some measurements are irrelevant to the energy usage to be predicted, they
carry no useful information and contribute only noise to the ANN output (Dodier
1995). Removing these type of measurements from the list of inputs can improve
the accuracy of the prediction.
¢ Removing irrelevant measurements can also reduce the volume of the training

data significantly, thereby improving the efficiency of an ANN predictor,

There are several ways to detect irrelevant input elements to ANNs. Dodier proposed
using the Wald’s test (Wald 1943) as a criterion to determine the relevant input variables.
The Wald’s test is based on the theory of hypothesis testing commonly used in statistical
experiment design. In Dodier’s scheme, all measurements are selected as inputs to ANNs
for initial training. The decision on which input variables to retain is based on the
probability distribution of the weights associated with each neuron in the input layer.
The Wald’s test assumes that the distribution of the weights follow a Gaussian
distribution. This assumption only holds when the volume of data is large enough. It is
not clear how large a volume of the data is required for the Wald’s test to be valid. Thus,

this approach is not pursued in this thesis.



Mackey used a technique called ‘automatic relevance determination’ (ARD) to choose
input variables (Mackey 1992). The ARD method is very close to the Wald’s test. The
major difference is that an ARD test is a “soft” test. At the end of an ARD test, irrelevant
measutements are not completely pruned from the list of inputs. They are simply
weighted by significantly smaller weights.

Ohlsson (Ohlsson et al. 1994) used a statistical test for nonlinear correlation called
‘Delta-test” to choose relevant input variables. A similar approach was taken by
Charytoniuk and Chen (Charytoniuk and Chen 2000) to calculate the significance of the
correlation between the input and output using non-parametric correlation. However, no

details were provided in either one of these approaches.

Feuston and colleagues (Feuston and Thurtell et al. 1994) used a well-known multivariate
statistical analysis technique called Principal Component Analysis (PCA) to assemble,
synthesize and select relevant input variables among a large number of measurements. As
a consequence, the neural network input vector does not consists of the original
environmental and calendar variables directly, but linear combinations of these variabies.
The PCA technique is well established in other fields. It is conceptually simple, and it is
also supported in the MATLAB ANN Toolbox. Thus, this technique is used in this

thesis. The details will be presented in Section 3.4,

3.2 Internal Structure

Although ANN models for building energy prediction can come in different ways, the

basic structures of these models are usually the same. Between the input and output
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layers are a number of hidden layers containing a set of neurons. Figure 1 shows a
typical diagram for a multi-layer ANN. The input to the network is denoted by
P =123 The output of the network is denoted by y. There is only one hidden layer
n the figure. The diagram contains a single output, a situation that is commonly seen in
building energy prediction such as the total eleciric energy demand of a building.
However, the structure presented does not prevent one from including additional output

variables to the network.

Figure 1.The basic architecture of a simple ANN( Matlab User’s Giuide, Version 4)
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Each input to the network is weighted before it is fed into a neuron., The weight
associated with p, and the j-th neuron in the first hidden layer is denoted by mf‘m ;- The
weighted input variables entering the j-th neuron are surmmed (denoted by the z sign
in the diagram) and shifted by a bias denoted by /;’j . The result is then passed into an

activation function £, which allows some information to pass through the network while
inhibiting the propagation of other information. The standard activation functions
include: the Jdentity function, the Binary Step function, the Binary Sigmoid function, and
the Bipolar Sigmoid function (Fausett 1994). Non-linear activation functions are
preferred in a hidden layer because of their flexibility in handling sophisticated input-
output mappings. The activation function often contains a threshold that determines the
level to which the input signal will be mapped. The simplest activation function has the
form

_qw[x §20
TO=1 0 s<o

Here the threshold is zero. More sophisticated activation functions include the sigmoid

(10)

type of function such as

f(s) =tanh(es),  (11)
where « is a slope parameter that plays the role of a threshold. Figure 2 shows the shape

of this function.
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Figare 2. The bipolar sigmoid activation function

The ANN shown in Figure 1 is {fully connected. The significance of the links between
newrons in two adjacent layers is determined by the weights attached to the links. The

k

combination of weights @f, and biases S,

transformed by activation functions f;,
make the output of the ANN a highly nonlinear function of the input. The nonlinear

mapping can be analyzed as follows, If we let

FU 3 i

@y, W, ( n (ﬁx
W=\, @, o, p={p,| and b=|4| (12)

; ! 1 ]

Wy Oy, @55 Lp;@ ﬁ _

then the output from the first hidden layer can be expressed by

g= LW p+h). (13)

Continuing in this fashion by taking ¢ as the input to the next layer, then the output can

be obtained as follows:
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y= LWg by = £ L0p b +6)], (14)

where
ay i /J
W, =) |. ¢=|q,| and [)’3 . (15)
2 , z
W ,} VED '

3.3 Training Methods

A set of pre-assigned weights and biases would most likely lead to a network output that
1s quite different from the desired response. By allowing the weights and biases to vary
based on the difference between the network output and the desired response, one can
enable the neural network to learn from its own mistake, thereby improving the

prediction accuracy.

To facilitate the learning capability of an ANN, one must provide a set of desired
response or measured data to allow the ANN to correct itself by repeatedly modifying its
weights and biases. The process of feeding an ANN with measured data so that it can
recognize the pattern of the data by adjusting the weights and biases associated with
various link is called a fraining process. Assuming the same data set is used to train an
ANN, the quality of the training is determined by the way weights are modified in

response to the prediction error produced by the ANN.

Using the notations established in Section 3.2, one can formulate the ANN training

process as @ way to solve a nonlinear least squares (NLS) problem. If it is assumed that m
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sets of input-output pairs (p'”,3'7), £ = 1.2,...m. are available for training, then the
objective of the training process can be simply described by

3

]

i (W W = A few w . N‘)T
m%{ﬁf)}f (W, W,,b,b,) Z‘[‘ FOW Wy, b,b,p" ) (16)

where v = f (.0, b, by p) = fW, 1,00, p + b))+ b,

The standard approach to minimize a function F, (x) follows these steps( Fletcher 1987):
Choose a starting point xp;

Choose a search direction s such that Fx, +as) < F(x,)for some step length o ;

Choose an appropriate step length o and set X, € X, oS

If Fi(x,) is still too large go back to step 2;

Steps 2-4 above form one iteration cycle of the minimization procedure. In ANN

terminology, it is referred to as an epoch.

There are a number of ways to choose a search direction. A standard choice is the

negative of the gradient of Fx), which is the steepest descent direction at point x. To

compute the gradient of F(x), one must calculate the derivative of F with respect to x, i.e.
(oF )

G

VEF(x) = (17)

oF
It follows from the NLS formulation established above that one must compute the partial
derivatives of F(W;, Wy, by, b;) with respect to the weights and biases associated with all

active neurons within an ANN in order to obtain a gradient descent search direction. The

special structure of the neural network illustrated in Section 3.2 allows one to compute
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the partial derivative of £ with respect to some of the wei ghts and biases by making use

of the chain rule. This is the essence of the back~propagation algorithm.

An alternative search direction can be caleulated by approximating F(x) near xy by a
quadratic model { Fletcher 1987)

m(x) = F(x) + VE(x) (0= x0)+ (0= x) V2 (e (x - L) (18)

where V*F is the Hessian of F(x). If m(x) and F(x) are in good agreement near xg, one
may choose the search direction to be the minimizer of

mis) = F(x)+VF(x,) s+ VF(x)s.  (19)
The minimizer of the above quadratic form satisfies

VoF(x,)s = ~VF(x,). (20)
The search direction s defined by the above equation is often called a Newton’s direction

(Fletcher 1987). The main advantage of using a Newton direction is that when x, is near
the minimizer of F(x), the convergence of the training process is quadratic. However, to
obtain a Newton direction we must compute both the first and second derivatives of ¥

and solve a linear system of equations at each x.

Simple Hessian updating formulae have been developed to save the amount of
computation involved in Hessian calculation and in solving equation (20). One of the
well-known updating formula is the Broyden, Fletcher, Goldfarb and Shannon (BFGS)
formula (Fletcher 1987). If we use H to denote the Hessian of F(x) at xq, then the BFGS
formula suggests that

Tl T 5
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where ¢ =VF(x,). can be used to approximate the Hessian of F(x) at x+s. Formulae
like (21) define a class of optimization algorithms known as the Quasi-Newton algorithm.
The solution to

s =~V F(x,) (22)
defines a Quasi-Newton search divection (Fletcher 1987).

Yet another way to choose a search direction is to take advantage of the NLS structure of
the objective function in (16) and express the Hessian of F(x) by

il

H=J"J+Y rVr, (23),
Foid
where r, = y'9 — FW,,W,,b,,b,; "), and J is the Jacobian of the residual function

“y

m
.“r(m) y

with respect to the weights o/ ;and biases B, If either r,or V7, is small in some
sense, then the Hessian can be approximated by J'J. This approach yields the Gauss-
Newton search direction (Fletcher 1987) defined by

J'Js==J"r. (25)
Once a search direction is chosen, one must determine a step length o to complete one

iteration of the minimization procedure. The step length is often referred to as the
learning rate in ANN literature. If the search direction is chosen to be the gradient
descent direction, then one can achieve F(x,+as)<F(x,) by choosing «to be
sufficiently small. However, a tiny « can result in many training iterations (epochs),

thereby slowing down the convergence of the training process.

L
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When a Newton, Quasi-Newton or Gauss-Newton search direction is used, an additional

constraint of the form ﬁ\]

= Ats often imposed to ensure that the x stays within the region
in which /7(x) and the quadratic model m(x) arc in good agreement. Otherwise, a Nowton-
like search direction may not even be a descent direction. The constraint M < Ads often
called a trust region (a region where one can trust the quadratic model m(x) to be an
accurate approsimation to F(x)). A Gauss-Newton search direction combined a trust
region strategy for choosing an appropriate step length yields a method known as the

Levenberg-Marquardr method (Fletcher 1987).

The MATL.AB ANN ToolBox provides a variety of training methods. For example, one
can use the command
net=newff([-1 2;-3 3;0 6],[3 7 1],{‘tansig’, “tansig’, ‘purelin’}, ‘trainlm’);

to set up a feed-forward neural network (i.e., ‘newff”) with three input elements, one
output and 1 hidden layer with three and seven neurons in the first and second layers
respectively. The first argument of this function call specifies the numerical ranges of the
three input elements (i.e., [-1 2;-3 3;0 6]). Sigmoid functions ‘tansig’ are used at the first
and second hidden layers. A linear function ‘purelin’ is used at the output layer to allow
the network to produce values outside of the range ~1 to 1. The last argument of this
function call specifies that the Levenberg-Marquardt method will be used to train the
ANN (ie., trainim). The last argument can be replaced with any of the strings listed in

Table 2 to invoke other training methods.
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Table 2. Training methods available in MATLADB ANN toolhox

Argument Deseription

traingdm Gradient Descent Method
trainbfy BFGS Quasi-Newton
trainseg Scaled Conjugate Gradient
traincgl Fletcher-Powell Conjugate Gradient
trainim Levenberg-Marquardt

3.4 Dimension Reduction

In practice, it is difficult to decide which independent variable from a long list of
variables should be kept as an ANN input and which should be removed. Sometimes,
two independent variables are clearly correlated, In this case, only one of them is needed
as an input 1o the desired ANN. However. in many cases, the correlation among multiple
variables is not so obvious. Thus, a more systematic way of removing data redundancy is
required. Furthermore, it is often desirable to reduce the size (number) of the input to the
ANN used for real-time energy prediction so that ANN training can be completed within

a reasonable amount of time.

It is well known in multivariate statistical analysis (Johnson and Wichern 2002) that the
task of reducing the dimensionality of the data and removing redundancy can be
accomplished through the use of Principal Component Analysis (PCA). The main idea of
PCA is to seek clusters of data points that can be used to represent the main features of
the data. In PCA, each input variable (vector) that assumes » values in time can be
viewed as a point in an n-dimensional space. Assume m vectors are potential candidates

for the independent variables of an ANN model, and they are named as x,, x,, ..., X,,.



To identify a cluster that contains a number of vectors that are “close”™ together, one can
seek a vector u such that the sum of the projections of x,, Xya.ns X, 0080 # 15 maximized.

That is, one needs to solve

11

max > (x] 1)’ (26)
fufn]
B Fued

If one uses X =(x,x,..., x,) to denote a matrix consisting of column vectors

Xpa Xy, ...y X, . the above maximization problem can be written as
max w' XX 27
=

Therefore, finding a unit-norm vector u that identifies a cluster of X Xyy e, X, 18
equivalent  to  computing  the cigenvector of the variance-covariance
matrix XX " corresponding to the largest eigenvalue of XX7. The eigenvector u is called
a (dominant) principal component of the set of variables X, Xy,..., X, , the eigenvalue

A that satisfies

XXTu=u  (28)
can be used to measure the variances among the variables X, X,, ..., X, with respect to the

principal component . The principal component # is capable of capturing the common
features of variables x;, x,,..., x, . However, it is not sufficient to use u as a single input

to the ANN to be designed. To identify additional feature of the data, one can seek an

I
additional vector v that is orthogonal to u such that > (x/v)* is maximized. The solution
jul

of this problem is associated with the second largest eigenpair of XX . Because u and v

are orthogonal by construction, they are completely uncorrelated. The eigenvalues

A
(3



associated with u and v indicates the importance of these principal components in terms
of representing the features of the original data set x,, Nyyooon X,
One can continue the above process to compute more principal components that are
mutually orthogonal. When the ecigenvalue associated with a particular principal
component becomes negligibly small, the process can be stopped. The principal

component vectors computed up to this point can be used as input to the ANN.

3.5. Other Issues

Typically one or two hidden layers are sufficient in an ANN designed for building energy
prediction. The number of neurons in each layer may vary depending on the quantities to
be predicted. The presence of redundant neurons does not pose a si gnificant problem. A
good learning algorithm tends to ignore the excessive parameters in the system. The
redundancy can also be detected by “examining column dependency in the matrix of the

hidden neuron outputs computed from the training data” (Chartoniuk and Chen, 2000).

To prevent an ANN from memorizing the noise in the training data, it may be
advantageous to reserve a subset of the data for cross validation. The magnitude of the
cross validation error can be used as a stopping criterion for the ANN training. It may
also be advantageous to preprocess the data in advance so that data with distinctive
features are grouped together. Instead of building a large ANN to accommodate the entire

data set, several ANN models can be constructed to tackle each group of data.
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3.6 Adaptive ANN Models

Unlike a time series prediction model, the ANN prediction model described above is
static in nature, In a static prediction model, one tries to establish the model in advance
and estimate the model parameters using either historical or experimental data, Once the
model is built, it is rarely changed even though the presence of new data may indicate
that the model is no longer valid. Such a model can estimate, for example, the savings in

energy cost when a building undergoes a retrofit.

However, such a model is not suitable for short-term energy predictions that are intended
to provide valuable information aimed at improving the flexibility and accuracy of an
energy management system (EMS). For example, for the optimal control of HVAC
systems, an optimum strategy is to seek to minimize the utility cost with efficient cooling
allocation between the chiller and storage. The control actions taken by the supervisory
controller are chiller operating level, start time of charging, and start time of depletion of
storage etc. To determine these parameters, a prediction of the next hour and next day’s
building cooling load profile, an adaptive update of the predicted profiles, a building
electric demand profile and a mechanism to use this updated load profile to determine the

storage discharge profile are required by the optimal controller

Although it may be possible to accomplish the above tasks by a static prediction model,
the drawback for using a static prediction model for building encrgy prediction is clear.
In order to accurately predict the building energy usage for all seasons, a large-scale
global ANN prediction model must be trained with a sufficiently large volume of

historical data to capture daily, monthly and yearly variation of energy usage. Historical



data that spans multiple years and distinctive environmental and weather patterns is
usually difficult to obtain. Training an ANN using such a large volume of data is often a
difficult task. Even if one has the data and completes the training process successtully,
the ANN prediction model may still miss-predict energy usage when there is an

unexpected change in, for example, weather conditions.

Therefore, it is highly desirable to develop a dynamic ANN model that can be constantly
modified and updated as new environmental and operational data becomes available. The
ANN prediction model should have an inherent self-revision and adaptation capability to

adapt to abnormal weather, holiday and other condition changes.

Clearly, the ability to adapt to new input-output mapping patterns is the key in a dynamic
prediction model. In building energy prediction, a dynamic prediction model is often
called an “on-line” prediction model to reflect the fact that new environmental and
operational data becomes available in a continuous fashion. In the following section, the
design and implement of an online ANN model for building energy prediction is

described.

The need for on-line prediction provides motivations for developing dynamic models. An
intuitive way to build a dynamic ANN prediction model is to simply divide the time line
into multiple segments, for example, segments of days or weeks, and to periodically build
or redefine a prediction sub-model for each time segment. The sub-models can differ in
many ways, One can certainly modify the ANN architecture of the sub-model from one

time segrent to another if it is believed that certain time segment requires a more
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complicated ANN architecture to capture a highly irregular relationship between the
preseribed independent variables and the energy output to be predicted. However, it is
often sufficient to just retrain an existing ANN model established for the previous time
segment with a new set of data to obtain a new set of weights and biases. When a
reasonable number of neurons (each associated with a weight and bias) are present in the
hidden layer of the network, an ANN is often capable of modeling moderately

complicated nonlinear mappings.

It remains to be decided how one should partition the time line, i.e., how often should the
ANN sub-model be modified or retrained? Should it be retrained daily, weekly or hourly?
(Mobammed et al. 1995). Usually the choice of the frequency with which the sub-model
should be retrained is determined by the pattern of the data or the actual need. For
example, if the temperature measurement shows large daily variation, it will be

appropriate to retrain the network daily.

Another important issue to be addressed is what portion of the data one should use to

retrain an. ANN model. Two approaches are proposed in the next two subsections.

3.6.1 Accumulative training

It is known from the literature mentioned in Section 2.3.1 that an ANN can be retrained
periodically by a set of augmented data infused with freshly recorded measurements. This
type of training strategy is referred to as accumulative training. Accumulative training
has the obvious advantage of being able to identify both the local (for example, daily) and

the global (seasonal) trend of energy variation. Its main disadvantage lies in the fact that
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the volume of data accumulated continuously may become too Jarge to be manageable.
The larger the volume of the training data, the longer it takes to training the ANN. When
the volume of the training data becomes too large, it may become difficult in practice to
obtain the prediction result in real time. It is also possible that local changes in the
accumulated training data set have smaller impact on the prediction results.  This is

because the local changes are viewed as small on a relative scale.

The concept of accumulative training is illustrated in Figure 3.

Algorithm: Accumulative training

Input: Initial training data set (which includes the environment, operational and energy
demand measured during some period in the past)
Output: predicted chiller electric demand in future hours t=1 2oy
1. Preprocess the training data to
1) Normalize all variables so that they lie between -1 and 1;
2) Use PCA to reduce the dimension of the input;
2. Define a training interval At, error tolerance, maximum number of epochs allowed etc.;
3.Train the baseline ANN until the MSE between the training output and the target is
less than a prescribed tolerance or when a maximum number of epochs are used;
4, t():‘lg
5. While (t <t
) Query for new measurements that can be used as ANN input;
2) Preprocess the ANN input in the same way that is done in Step 1;
3) Use current ANN model to predict energy demand at the t-th hour;
4) Post-process the output;
Sy t=t+1;
6) If (t=ty+At)
a) Add the measurements collected between toand ty+At into the training data set;
b) Retrain the ANN;
¢) Set ty=t;
6. End while

Figure 3. Accumulative training algorithm
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3.6.2 Sliding window

Alternatively, an ANN can be retrained just by a fixed amount of the most recent data,
As new measurements become available, they are added into the training data set while
some of the least recent data are dropped from the training set in such a way the size of
the data set remains constant. This approach can be viewed as sliding a time window
across a time series of measurements to select the training data. A dynamic ANN model
based on this training technique is called a sliding window ANN. A dynamic ANN
prediction algorithm based on the sliding window approach is outlined in Figure 4. The
relative small (constant) size of the training data makes it possible to perform ANN
prediction rapidly. The drawback of this approach is that the training data may only
contain local information, and the prediction result may not accurately reflect the annual

or seasonal change in energy usage pattern.

It is difficult to determine the ideal size of the window ahead of time. Clearly, the
window size cannot be too large. Otherwise, it defeats the purpose of limiting the training
data volume. However, if the window size is too small, the resulting ANN model maybe

unable to completely capture the behavior of the energy demand.

61



Algorithm: Sliding window training

Input: Initial training data set (which includes the environyment, operational and energy
demand measured during some period in the past)
Output: predicted chiller electric demand in future hours t=1 Byeers bimax
1. Preprocess the training data to
1) Normalize all variables all so that they lie between 1 and i
2) Use PCA to reduce the dimension of the input;
2.Define a training window size W, training interval At, error tolerance, maximum
number of epochs allowed etc.;
3. Train the baseline ANN until the MSE between the training output and the target is
less than a prescribed tolerance or when a maximum number of epochs are used;
4. Set ty = 1,
5. While (t <ty
1) Query for new measurements that can be used as ANN input;
2) Preprocess the ANN input in the same way that is done in Step 1;
3) Use current ANN model to predict energy demand at the t-th hour;
4) Post-process the output;
3) =t
6} If (= ty+AL)
a) Remove T oldest measurements from the training set and add the
measurements collected between tyand to+At into the training set;
b) Retrain the ANN;
¢) Set ty=t;
6. End while

Figure 4. Sliding window training




4.COMPUTATIONAL EXPERIMENTAL RESULTS

This section contains the computational results obtained from applying the ANN model
discussed in Chapter 3 to two data sets. The first data set contains simulated energy data
produced by the DOE 2.1E energy analysis software (MICRO-DOE-2.1F User’s Guide
Acrosoft International Inc. Golden, Co. 1994). The building for which the energy
prediction is made is located in the region of Montreal. The second data set contains real
measurements collected from the CANMET Energy Technology Center in Varennes,

Quebec.

The simulated data associated with the Laval Building is noise free. This means that the
building is assumed to operate under normal conditions, and there is no measuring errors
or operation mistakes. Because the simulated data is generated from a well-behaved
energy model by using the DOE 2.1E simulation software, it provides an ideal scenario
under which the variation of the energy demand is more “predictable”. Such a data set
makes it possible to quickly develop and test an ANN prediction model. Performing
experiments on this data set serves as the first step towards testing a realistic ANN
design. Therefore, the ANN models developed in this thesis are first tested on the Laval
data set. As will be shown in Section 4.1, the ANN models developed in this thesis

indeed perform well on this data set.
To demonstrate the effectiveness of these ANN models in a real world environment,

experiments are performed in Section 4.2 to show the effectiveness of using the ANN

models dewveloped in this thesis to predict both the gas and chiller energy demand
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associated with the CANMET Lab. The CANMET data set contains a mumber of
anomalies that make it more challenging to produce highly accurate prediction vesults.
These problems will be discussed in Section 4.2, The experiments shown in Section 4.2
demonstrate the typical difficulties encountered in developing an ANN model to predict

the energy dernand in a real building.

Several experiments are performed for each data set, Because a static ANN model serves
as the building block for developing a dynamic ANN, it is constructed and tested in
Sections 4.1.3, 4.2.3 and 4.2.4.1-2 before the experiment associated with the dynamic
models are shown in Sections 4.1.4, 4.2.4.3-4. This is because dynamic predictions can
only be expected to produce accurate results when the results of static predictions are

reasonably accurate,

Several experiments are performed in Sections 4.1.3, 4.2.3 and 4.2.4 to compare different
parameter settings of the ANN prediction model and different input choices. Lag-free
environmental variables are used as ANN inputs first in Sections 4.1.3.1, 4.2.3.1 and
4.24.1 for static predictions, because it is important to verify that the ANN models
developed in this thesis can at least capture the instantancous nonlinear mapping between
the energy demand and the environmental variables. Because in reality the environmental
variables measured at time ¢ cannot be used immediately as the input to predict the
energy dermand at time £, the input variables to the ultimate ANN model developed in this
thesis must consist of time lagged measurements. The experiments presented in Sections

4.122, 4.1.2.3, 4242 and 4.2.4.3 demonstrate the effect of including time lagged
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measurements as ANN input and show that the prediction efficiency and aceuracy can be

improved by making use of the technique of PCA.

With a reliable and accurate static prediction model on hand, it becomes easier to modify
the model to make it adaptive to new features of energy demand pattern present in the
most recent measurements.  As discussed in Section 3.6, this can be achieved through
periodically retraining a static model. In Sections 4.1.4.1 and 4.2.4.3, experiments are
performed to evaluate the performance of accamulative training. In Sections 4.1.4.2 and
4.2.4.4, experiments are performed to assess the accuracy and efficiency of a dynamic

ANN trained by a sliding window.

Since the heating and cooling systems have different working environment and operation
characteristics, they are treated separately in the case of the CANMET building. That is,
the chiller and gas energy demands are predicted from two different ANN models.
“xperiments related to gas energy prediction are described in Section 4.2.3. Experiments
related to chiller energy prediction for the CANMET building are described in Section

4.2.4.

4.1 Predicting the Chiller Energy Usage for the Laval Building

The Laval office building, located in Montreal, was built in 1972. The building has a total
floor area of 10,410m? spread over a seven-floor office tower, an underground garage and
a ground floor (with a bank, a restaurant and an office spaces). There is a central Variable
Alr Volume system, which provides cooling in the summer and ventilation all year to the

office spaces from 7:30 am to 11:00pm, from Monday to Friday. The supply fan has a
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capacity of 38,000 L/s and a motor of 93 kW, and the return fan bas 35,000 L/s and 36
kW. The cooling set-point temperature is 23-24°C. Direct expansion cooling coils are
comnected to four condensing units, each equipped with two compressors with a
refrigeration capacity of about 90 kW, The supply air temperature is controlled in terms
of the outdoor air temperature; it has a minimum value of 14°C when outside temperature
is 9 °C or higher and a maximum value of 16 °C when outside temperatue is -20 °C or
lower. The system is also equipped with a dry-bulb temperature economizer systern that

closes the dampers to a minimum position when the outdoor temperature is too high.

The value to be predicted here is the electric demand by the chiller using an air cooled
condensor. The data set consists of hourly measurements of the dry-bulb temperature, the
wet-bulb temperature, the temperature of the water leaving the chiller, the temperature of
the water entering the condenser, as well as the hourly electric demand by the chiller.
These values are extracted from the DOE-2 output and are used as experimental data. To
simplify the discussion, the notations defined in Table 3 will be used to refer to these
variables.

Table 3. Variables used in the chiller electric demand prediction for the Laval building.

|__Variable Description Unit
Td( Dry-bulb temperature F

L Twi(1) Wet-bulb temperature °F

T Temperature of chilled water leaving the chiller °F
Te(t) Temperature of the air entering the condenser °F
H(t Hour of the day Hour
E(t) Chiller electric usage at time t kW

The electric usage of the chiller is assumed to be a function of the above quantities and

the hour of the day. Thus, the goal of our experiment is to use measurements of the
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above environmental and operation variables collected at hours i, for i=/.2, .., as the

input to an ANN to predict the electric energy consumed by the chiller at the #-th hour.

The data used in this section is considered noise-free. This means that the building
operates under normal conditions with no measuring error or operation mistakes. A
subset of the data is reserved for training purpose, while the rest is used to assess the

accuracy of the model.

The experiments performed below are coded in MATLAB 6. The MATLAB ANN
Toolbox is used to build, configure and train the network specifically designed to predict

chiller energy usage.

4.1.1 The ANN Model

The ANN model used in the following experiments consists of one hidden layer in
addition to the input and output layers. The input layer contains # neurons from which 7
different inputs are fed into the network. The output layer contains one neuron from
which the predicted chiller electric usage will be extracted for the next hour. The hidden
layer consists of 2n+1 neurons (Hecht 1989). This three-layer ANN model was found to
be sufficient for making a reasonably accurate prediction of the chiller electric demand.
Adding more layers and/or neurons can potentially improve the prediction accuracy.
However, using more layers and/or neurons per layer adds complexity to the ANN
training time, and may degrade the computational efficiency of the ANN model. A
number of" experiments have been performed using different number of hidden layers.

But the performance of the experiments does not show significant difference. In
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particular, when the number of hidden layer is increased, the accuracy of the prediction
result does not necessary improve. So in the following experiments, only one hidden

layer is used.

As discussed earlier, the MATLAB ANN Toolbox allows one to choose from several
back-propagation algorithms to train the network. All of these algorithms were tested.
When the data size is small, the Levenberg-Marquart (LM) algorithm appeared to be the
fastest training algorithm (the mean square error of the ANN output approaches to zero at
a quadratic rate). However, because the LM method must solve a lincar system of
equations in order to obtain a search direction, the computation becomes expensive when
the number of input elements and the volume of the training data increase. Therefore,
when the number of input elements or the volume of the data is large, the standard

gradient descent algorithm is used for training the ANN.,

Biploar sigmoid functions are used as the activation function in each neuron. In the
output layer, a linear transfer function is used in addition on the output to allow the
network to produce values outside of the range [-1, 1]. The training process is terminated
when the wmean square error (MSE) between the ANN output and the target values
becomes less than 107 kW, or when a maximum of 500 epochs is reached, whichever
condition is reached first. The initial weights and biases of the ANN are generated

randomly.
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4.1.2. Data processing

In addition to setting up the architecture parameters of the ANN as discussed above, the
following issues need to be considered before an effective ANN prediction can be carried

out.

1) Prediction for Working Hour Only

It has been recognized in the surveyed literature that it is important to adopt a day-typing
procedure to separate energy data with distinet load patterns into different prediction
groups. Energy prediction can be made within each group instead of on the entire data
sel. An obvious separation can be drawn between weekdays and weekends (holidays). In
this simulation, the Laval building typically operates from 7 am. to 7 p.m. Monday
through Friday. It is assumed that the chiller usage is zero during non-working hours.
Thus, non-working hours are removed from the data set and prediction is made only for
the working hours. With all the data, the implementation would be easier but the

prediction errors increase as demonstrated below,

Two experiments were conducted by using measurements associated with June to predict
the electric demand of the chiller in July. In the first test, the training process is carried
out using only the working-hour measurements. For the second test, the entire
measurements associated with the month of June were used. The prediction accuracy is
measured by the coefficient of variation (CV) and the root mean square (RMSE) defined

in Appendix A. The CV and RMSE values for both experiments are listed in Table 4.
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Table 4. Comparison of the C'V and RMSE values associated with excluding and
including non~working hour measurements in the prediction model.

Training Data CV %] | RMSE (kW)
Working hour only 20 27.0
All hours included 67 344

Clearly, removing the non-working hour from the entire data set significantly improves
the accuracy of the prediction. Therefore, the simulation results to be presented below

assume that all the non-working hour data is removed.

2) Normalization
Because the numerical range of the input and output variables may be quite different for
some applications, it is often useful to scale the input and output variables so that the
training process does not suffer from severe numerical round-off effects. In the following
experiments, all input and output variables are scaled to have values between —1 and 1.
This scaling operation is accomplished by calling the MATLAB utility function

[dinn, minp, maxp, doutn, mint, maxt ] = premnmx(matin, matout);
where matin and matout are matrices containing the original input and output, and dinn
and doutn are the scaled input and output matrices. The mint and maxt matrices are
required to scale the ANN output back to its original units after the training process is
completed. The postprocessing can be accomplished by calling the MATLAB utility
function

y = postmmumx{yn, mint, maxt);

where yn is the normalized output produced by an ANN, and y is the unscaled version of

the output.
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3) Dimension Reduction
As mentioned in Section 3.4, it may be helpful 1o use the technique of principal
component analysis (PCA) to reduce the dimension of input data and to reduce the
redundancics among the data. The MATLAB ANN Toolbox provides a set of functions
to accomplish this task. To perform PCA on a set of input vectors contained in a matrix
called pmat, one must first call

[pn. meanp, stdp, tn, meant, stdt] = prestd(pmat, tmat);
to preprocess the network so that the normalized input (pn) and target (tn) both have zero
mean and variance 1. A subsequent call to the function prepca produces a new input
matrix pp that contains the principal components of the normalized pmat.

[pp, transMat] = prepca(pn, 0.01);

The matrix transMat contains the principal component transformation matrix, which is
not used in subsequent computation. The output pp is obtained from the product of
transMat and the input vector pn. The matrix pp does not contain the normalized version
of the original input vectors. Instead. it contains a synthesized version of the original
iput. The number of vectors in pp may be significantly less than that contained in pmat
(or pn). The level of reduction in dimension is determined by the second argument of
prepca. This argument specifies that only those principal components that contribute
more than a minimum fraction of the total variance are returned in the first output
argument pp. These vectors will be uncorrelated. Here prepca eliminates those

components that contribute less than 1% to the total variation in the data set.



4.1.3 Training and Testing — Static Prediction Model

Twenty-tive percent of the data are set aside for testing. The vest of the data is used to
train the ANN. In particular, the measurements corresponding to the second week of each
month is put aside for testing or prediction, This is a rather arbitrary choice. Since the
data set used in this section originates from a computer simulation. Such a choice is not

unreasonable.

Based on visual inspection of the variation in 7/(t) and Te(t), it is concluded that these
two variables behave in a similar way though they may bave different uses. Thus, there
is no reason to keep both of them as input elements to the ANN. Hence, Te(?) is removed

from the input.

4.1.3.1 Experiment 1 —~ Modeling the nonlinear mapping between Electric Demand
E(t) and the temperatures

When H(6),Td(t), Twt) and TI(t) are used as the iput variables to train the ANN, it is
expected that the weights and biases obtained at the end of the training process will
capture the natural dependency of the chiller electric demand with respect to Td), Twit)
and 77(t) at the 7-th hour, Because the number of input elements is relatively small, the
Levenberg-Marquardt algorithm was used to train the ANN. Training only takes 4.9
seconds. Figure 5. shows that the mean square error (MSE) between the output of the
ANN and the target electric demand decreases rapidly during training. The MSE reaches

below 10 KW in less than 10 epochs.
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Figure 5, Training history

In Figure 6, the final output of the ANN upon the completion of training is compared
with the target chiller electric demand, The difference between the solid (the ANN

output) and the dash (the target data) curves is hardly visible.
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Figure 7 shows the difference between final output of the ANN and the target defined by

(1) is the predicted chiller electric demand obtained from the
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trained ANN. err(t) is within the interval [-6, 10] (kW).

74



| SO S

G 100 200 200 400 500 GO0 760 800
Hewar

Figure 7. The difference between the ANN output and the target during the training phase

Once the training process is completed, the quality of the ANN prediction model is
assessed by using it to predict the chiller electric demand associated with the second
week of each month (the test data). It can be seen from Figure 8 that the ANN output
matched the measured electric demand relatively well except in the places where the

electric dermand shows a significant fluctuation.
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The distribution of the error is plotted as a bar graph in Figure 9. The figure shows that

most of the error is in the range of [-7,10] (kW).
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Figure 9. Error distribution detected in experiment 1 of section 4.1.3.1

The overall size of the error is measured by calculating the CV and RMSE values of the
prediction error associated with the test. The CV and RMSE values from the testing data

for this experiment are 4% and 6.10 kW respectively.

4.1.3.2 Experiment 2 - Using time-lagged measurements as inputs

Although Experiment 1 indicates that the ANN model constructed in that experiment can
effectively capture the nonlinear relationship between the chiller electric demand E(t) of
the Laval building and various temperature measurements, the model cannot be used
directly in practice. The reason for this is that the input variables Td(1), Tw(t) and Tl(t)
are not available until the end of the hour. Thus one must resort to using data collected in

the past or time-lagged measurements as input to the ANN prediction model.
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One possibility is to use H(t), Td(t-1), Tw(t-1) and Ti(t-1) as input variables to train the
ANN to predict F(t). It is observed that this change of input vectors to the ANN leads to
a longer training period. Training takes 11.4 seconds. Even when the Levenberg-
Marquardt algorithim is used, the mean square error between the ANN output and the
target decreases slowly to zero. In Figure 10., the final output of the ANN upon the
completion of training is compared with the training target. Although one can see some
deviation of the ANN training output from the target, the figure mostly shows a fairly
close match between the two curves. In Figure 11. the difference between the final
output of the ANN and the target is plotted. It is observed that the size of the error, err(1).
ranges from 100 KW 10100 kW. This error interval is much larger than the one observed
in Figure 7. However, a close examination reveals that this large error interval is
attributed to a few “spikes” in the error curve. If one excludes these “spikes”, most of the
prediction error appears to lie within [-60, 40] (kW). Nonetheless, the presence of the
large error “spikes™ in the ANN training results indicates that it is somewhat difficult to
capture the dependency between the temperature measurements collected in the past and

the chiller electric usage at the current time 7.
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Figure 10.Comparison of the ANN output and the training target when the input consists

of H(t). Td(i-1). Tw(t-1) and Ti(-1).
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Figure 11. The difference between the ANN output and the training target when the input
consists of H(ry, Ted(e-1). Twit-1) emd TI(1-1).

This difficulty is even more pronounced when the ANN model is applied to the test data

for prediction. The ANN output and the measured clectric demand are plotted in Figure

12. This figure shows that the predicted electric demand matches the measured electric

demand reasonably well most of the time, except near a few time locations where the

ANN model significantly under-predicted and over-predicted the true electric demand.

The most severe under-prediction seems to occur at the beginning of each second week.

300 T 1 g (A
: s mieaﬁumdmg
; Lo predcted |
H
' % 4
250 ! -
i
%
LA
Ay
20074 t ;’M -
by I ‘&%’X
=y IR
o o
£ i
& i
& 150 5
b i
) £
B ] !
@ j
uj g i
100} 1 & -
Ay g A
o i
PR Y 7
i Y !
q # o
i
508
|
9 H i - H 1
G 50 104 150 200 250

Hour

Figure 12, Comparison between the ANN predicted electric energy usage
and the actual energy usage when the ANN input consists of H(r), Td(t-1). Tw(t-1)
and Tl(1-1).
This type of difficulty contributed to the relatively large CV and RMSE value observed in

this experiment. The CV and RMSE values of testing data observed in this experiment
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are 16% and 25.46 kW respectively. It can be observed from the error distribution curve

shown in Figure 13. that most of the error lies between —40 and 40 kW.
60 e H v El T ¥ T :
50
}‘
40} .
8
%
8agl )
5 30
® ;
‘é }
2 20} .
] l l
-80 60 <40 -20 0 20 40 80 80 100

Error size (k\;\ﬁ

Figure 13. Error distribution when the ANN prediction is made by using of H(7), Td(t-1).
Tw(t-1) and Tl(1-1) as the input.

4.1.3.3 Experiment 3 ~ Using additional time-lagged measurements as inputs and
PCA to reduce the dimension of the input.

To improve the prediction accuracy, past history temperature measurements with longer
periods of lag are included as additional input data to train the ANN model. The rationale
for including additional temperature measurements collected in the past is that the extra
input may help establish the trend of temperature variation and its impact on the present
electric energy usage. However, the question of how many time-lagged variables should

be included remains to be addressed.
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Many time lagged input combinations with at most six hours delay are tried and tested. It
is assumed that H(t) and T1(-1) are always chosen as input variables. Table 5 lists a few
of these combinations and the resulting CV and RMSE values obtained from testing the
corresponding ANN, Each row in the table specifies a particular combination of time-
lagged temperature input. If a particular time-lagged variable is chosen as an input
variable, a *x” is placed in the column labeled with that variable. It is seen from Table 3
that different combinations of the time-lagged temperature measurement can result in
quite different prediction accuracy. It is interesting to note that including all temperature
measurement collected at time i, for i=1,2,...6, does not necessarily gives the best

performance.

Table 5. Comparison of using different combinations of time-lagged temperature
measurements as the ANN input to predict chiller electric usage at time £.

Pattern Td Tw CV[%| BRMSE (kW)

f-1 2 -3 -4 =5 | 1-6 -1 -2 {3 [ o) -3 -6
! % x x Ix e Ix x 151 220
2 % ® X % 17.3 26,3
3 ¥ x P x X % % X < « 174 26.7
4 x « X % < x % X ¥ ¥ % % 224 34.4

The best prediction result is obtained when the choice of input variable follows the first
pattern listed in Table 5. With this set of input variables, the CV and RMSE values of the

prediction (on the test data) dropped to 15.1% and 22.0 kW respectively.

It should be noted that when the number of input variables increases, it becomes more

time consuming to use the Levenberg-Marquardt algorithm to train an ANN. This is due



to the fact that the Levenberg-Marquart algorithm must solve a linear system to obtain a
search direction for each epoch. The dimension of the linear system is proportional to the
number of input variables. As the number of variables increases, so is the computational
cost associated with each epoch. When the number of input variables becomes larger than
six, the gradient descent algorithm appears to be a more efficient training algorithm. Even
though the convergence rate of the algorithm is linear, the computational complexity
within each epoch is lower than that associated with the Levenberg-Marquardt algorithm.
Thus, the experiments performed above utilized the gradient descent algorithm in the

{raining process.

The reason why adding all possible time-lagged measurements may not be effective is
that adding too many measurements collected in the past may introduce undesirable
redundancy. The redundancy in the ANN input makes it difficult for the back-
propagation algorithm to capture the optimal weights and biases for the desired ANN
model. Thus, a meticulous selection of time-lagged data must be used to train the ANN
model. However, in practice, it is not possible to try all possible combinations of lagged
timed temperature measurements before a prediction is made. As discussed in Section
3.4, this problem can be overcomed by using the technique of principal component

analysis (PCA).

In the following experiment, PCA is used to select appropriate input data from H(), 1(t-
0), Td(1-k), Tw(i-k), for k=1, 2, ...6. Six principal components that contribute to more

than one percent of the variance of all past history data are retained. Training takes 9.8



seconds. With the help of PCA, the trawing time reduced to 9.9 seconds, the CV and
RMSE values of the prediction are reduced to 7.2% and 11.01 kW respectively. Figure
14. shows that the predicted electric demand curve matches well with the measured
energy curve. The CV and RMSE values of the prediction obtained in this experiment are
much better than the ones obtained in Experiment 2. If the error spike around the 160-th
hour is excluded, the CV and RMSE values would be much smaller. This phenomenon i
also revealed in Figure 15. in which the distribution of the error is plotted as a bar graph.

Most of the error lies within [-20, 20] (kW), except for a few outliers in Figure 15.
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Figure 14, Comparison of the predicted and measured chiller electric energy usage when
the ANN input consists of the principal components associated with all possible time-
lagged temperature measurements.
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Figure 15. Error distribution associated with the PCA-enabled prediction.

To summarize the experiments performed in this section, the CV and RMSE values
obtained in each experiment are listed in Table 6. Clearly, the nonlinear relationship
between. input variables Td(t), Tw(), TI(t), H(t) and output variable £(?) can be accurately
described by the ANN constructed in Experiment 1. In practice, the prediction must be
made using measurements collected in the past. Measurements collected from the
immediate past hour or several hours back can be used to improve the prediction
accuracy. When combined with PCA, the ANN can produce fairly accurate prediction in

an efficient manner.



Table 6. Comparison of CV and RMSE values obtained from experiments in Section

4.1.3
Experiment (static) CV (%] | RMSE QW) | g
o I{instantaneous mapping) 4 6.10 4.9
2 (using one- hour lag inputs) 16 25.5 1.4
3 (using six~ hour lag inputs) 7 11.4 9.9

4.1.4 Training and Testing: On-line Prediction Model

There are two simple ways to modify a static ANN to make it adaptive and suitable for
on-line energy prediction. The modifiecd ANN model can take advantage of new
measurements that become available on a continuous basis. The first approach simply
accumulate all the measurements collected up to time £, and retrain the ANN periodically
using the entire set of measurements. This is presented to as accumulative training in
Section 3.6, The second approach maintains a fixed amount of training data by discarding
old measurements while adding new measurements. It is presented as a sliding window
training model in section 3.7. In this section, computational experiments are carried out

to examine the effectiveness of both approaches.

4.1.4.1 Accumulative training

In the following set of experiments, the temperature and chiller electric demand
measurements are set aside for the month of June, and this portion of the data file is used
to establish (through training) what is called a ‘bascline® ANN model for the chiller

electric demand prediction,
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The *baseline” ANN model is used to predict the chiller electric demand associated with
the first day of July. Once the prediction has been performed, the hourly temperature and
electric demand measurerents associated with the day being predicted is added to the
initial data set allocated for ‘baseline’ training. This updated data set is used to retrain
the ANN model for carrying out subsequent predictions. The weights and biases that
emerge from the ‘baseline’ model are used as the initial weights and biases during the
retraining process. Since these initial weights and biases are likely to capture some
features of the nonlinear mapping between the independent temperature variables and the
electric energy to be predicted, it is conceivable that retraining will not take as long as the
baseline training. This behavior is confirmed in our experiments. The results presented
below compares the impact of different choices of input variables on the accuracy of the
accumulative on-line prediction model. In particular, the possibility of using past
temperature and electric energy measurements as input to train an ANN model is

examined,

Experiment 4 - Accumulative training with time-lagged temperature measurements
as input

Similar to static prediction, the input to the ANN model consists of a combination of the
past history temperature measurements 7d(t-k), Tw(i-k) and 7TI(t-I),where 1<k<6. The
output of the ANN is the chiller electric demand Ef#). PCA is applied to the time-lagged
temperature measurements to remove the redundancy in the input and to reduce the
dimensionality of the data. Only components that contribute to more than 1% to the
variance in the potential input are retained. Six principal components emerged as the

input to the: ANN after PCA has been applied.
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The baseline model is modified and retrained daily by including the actual electric
demand and temperature measurements collected on the previous day in the training data
set. No difficulty is encountered in the training process. The value of MSE between the
target and ANN training output converges to zero rapidly. Training takes 50 seconds for
the whole experiment. Figure 16 shows that the predicted chiller energy usage maitches
the actval usage reasonably well in general. However, mis-predictions can be observed at
the beginning and i the middle of July (hour 120 and 145). The error distribution shown
in Figure 17 indicates that most errors are concentrated in the range [-25,25] (kW). The
CV and RMSE values obtained from testing are 15% and 28.26 kW respectively. These

numbers are comparable to the CV and RMSE valued observed in static ANN models.
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Figure 16. Comparison between the measured chiller electric energy usage (the dashed
curve) and the ANN predicted energy usage (the solid curve) with an ANN trained
incrementally.
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Figore 17. Error distribution associated with the accumulatively trained
ANN used in Experiment 4.

IExperiment 5 - Accumulative training with time-lagged chiller energy usage as
inputs

It is conceivable that the chiller electric demand in previous hours can have some impact
on the chiller electricity demand at the present hour. Thus, it is hoped that by including
past energy usage data into the set of input variables, the accuracy of the prediction can
be improved. In this experiment, E(#-k) is added into the set of input variables, the ANN

is constructed and trained in a way similar to that carried out in Experiment 4,
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Figure 18. Comparison between the measured chiller electric encrgy usage (the dashed
curve) and the ANN predicted energy usage (the solid curve). The ANN is trained
incrementally using accumulated measurements collected in the past. The input variable
consists of 7d (1-k), Tw(t-k). Tl(t-1), h(t), as well as E(t-k), k = 1,2,...6,

It is shown in Figure 18. that the predicted energy usage matches the measurements
reasonably well except at the beginning of the first week of August (hour 120 in Figure
18). The obvious under-prediction and over-prediction raises some concerns on the
reliability of the prediction model. Figure19 shows that most of the errors falls within the
range [-20,207 in kW. No significant improvement is observed from either Figure 18. or
Figure 19. compared to the prediction results presented in Figure 16 and Figure 17. The
CV and RMSE values obtained from this experiment are (see Table 7) are 17% and

28.92kW respectively.
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Table 7. Comparison of CV and RMSE values associated with two experiments that use
accumulatively trained ANN.,

Experiment | CV [%] | RMSE (kW)
4 15 28.26
5 17 28.92

4.1.4.2 Sliding window training

As described in Section 3.6, it scems natural to consider limiting the volume of the
training data by setting up a selection window before a forecast is to be made for a
prescribed period of time. The training data will only consists of the temperature

measurements and electric energy usage enclosed by this window. The selection window
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is shifted forward with respect to time as new data becomes available, The size of the

window is fixed.

To compare with accumulative training approach, the ANN model used in the shiding
window approach has the same architecture as the one used in the accumulative
prediction model. The same parameter settings (such as the learning algorithm, training
convergence tolerance and the maximum number of epochs allowed) are used for the
following experiments. The experiments use variables Tdit-k), Tw(t-k) and TI(t-1),where
15k<6 as the input to the ANN. The output of the ANN is the chiller electric demand
().

Experiment 6 - Sliding window training using temperature data collected in
previous hours

Several choices of window sizes have been experimented. It is shown from Table 8. that
experiments show that a window size of 20 working days seems to provide a reasonable
balance between accuracy and computational complexity per on-line prediction cycle.
Thus, all subsequent experiments use the window size of 20 working days.

Table 8. Comparison of results using different window size

CV [%] RMSE (kW)
10 days 25 45.5
20 days 4 8.05
30 days 2 3.00
40 days 46 82

The temperature measurements and the electric demand associated with the first twenty

days of June were selected as the initial set of training data. The prediction is made on a
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daily basis. Thus. once the initial training is completed and a prediction has been made
for the electric demand on the twenty-first working day in June, the hourly temperature
and electric demand measwrements corresponding to the first working day of June is
dropped from the training data, and the temperature measurements and the actual electric
demand associated with the twenty-first day is added into the training data. Consequently,
the volume of training data remains the same, and the selection window is shifted
forward in time by one day. It is found that training only takes 45 seconds for the whole

experiment, which is less than that of accumulative training.

After PCA is applied to the initial set of time-lag temperature measurements to select
principal components that contribute to more than 1% to the total variance in the
temperature measurements, six principal components emerged as the ANN input.
However, the number of principal components may change when the sliding window is
updated. More or fewer principal components may appear as daily training and prediction
move forward. When the number of principal components associated with the new
training data set is different from the one associated with the previous training data, one
cannot restart from the ANN model obtained from previous training cycle. Weights and

biases must be reinitialized randomly, and the training may take more time,
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Figure 20. The comparison between the predicted and actual electric usage. The
prediction is made using a dynamic ANN trained by the sliding window technique.

Figure 20.shows that the overall sliding window training produces a good prediction. The
predicted electric demand matches with the actual load curve reasonably well except at
that the error distribution concentrates in the range of [-25, 25] (kW). The overall CV

and RMSE values obtained in this experiment are 15% and 27.73 kW respectively.



B0 T

4Gt

304

Figure 21, Error distribution associated with the adaptive ANN trained by the sliding
window approach in Experiment 6

Experiment 7 - Sliding window training using temperature and energy measured in
the previous hours as inputs

In this experiment, we investigate whether adding E(r-k) to the list of input variables:
H(r), Tl(i-k), Td(e-k), Tw(t-k), k=1, 2, ...6, can improve prediction accuracy. The PCA

technique is used to remove the potential redundancy in the data.
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Figuare 22. Comparison between the predicted and measured chiller
electric energy usage. The prediction is made by an adaptive ANN trained using
a sliding window approach.

Figure 22 shows that no clear improvement in prediction accuracy is observed when E(r-
k) is added to the list of ANN input variables compared to Experiment 6. In particular,
severe mis-predictions at the end of the first week of July (hour 120) remain. The error
distribution pattern shown in Figure 23 is similar to the one shown in Figure 21 and it
ranges [-25,251kW. The CV and RMSE values of the prediction are 16% and 27.78 kW,
which further indicates that adding E(t-k) into the list of input variable does not help

much.
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Figure 23, Error distribution associated with the adaptive ANN trained by the sliding
window approach in Experiment 7.

Table 9. Comparison of CV and RMSE values associated with two experiments that use
sliding window training.

Experiment | CV [%] | RMSE (kW)
6 15 27.73
7 1 27.78

=

Table 10. Comparison of training time for on-line predictions

Experiment Training time (seconds)
4 50.1
0 44.8

4.1.5 Summary

The experiments carried out in this section demonstrated the success of using ANN 10

model the nonlinear mapping between the simulated temperature measurements and
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chiller electric usage for the Laval building. The experiments indicate that the chiller
electric usage E(1) depends strongly on the temperature variables 7dt), Tw) and Tift)
and hour of the day Hrr). However, for practical purposes, a weaker relationship is
modeled between E(t) and He), Td(-k), Tw(-k), Tit-k), k=1.2,...6. The use of PCA to
reduce the dimension of the input and to remove the redundancy in the data allows us to
include temperature measurements obtained several hours before the hour for which the
prediction of the electric energy usage must be made. This turns out to be critical in
using temperature measurements and electric energy usage collected in the past to predict

the electric energy usage in future hours.

The ultimate goal of this section is not to construct and make use of a single static ANN
model to predict future chiller electric energy usage. Instead, it is to develop a dynamic
ANN model that is trained periodically so that the prediction model can adapt to new
features in the data. The concept of accumulative training and sliding window training
were both tested. Both approaches produced satisfactory results overall. However, due to
the limited size of the training data, noticeable prediction error is observed when chiller

electric demand undergoes a sudden and unexpected change.

4.2 Predicting the Gas and Chiller Energy Usage at the
CANMET Center

This section contains the results of using ANN techniques to predict the gas enery
demand and the chiller electric energy demand at the CANMET Energy Technology
Center located in Varennes, Quebec. Unlike the simulated and noise-free data used in

Section 4.1, the data used in the prediction for CANMET center consists of
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measurements obtained from sensors installed in the HVAC system of the building.
Because the original data provided in this experiment is not prepared in a format that can
be directly used by the MATLAB code developed in this thesis, the raw data must first be
preprocessed and converted into the desired format. During the process of conversion,
several problems associated with the completeness and accuracy of the data were
discovered. Thus, first, the problems encountered and methodologies for addressing these

problems are described before discussing the ANN experiments and results.

4.2.1 Data Processing

The original data obtained from CANMET Energy Technology Center is stored as a
Microsoft Access (MA) file. The file contains measurements collected by Research &
Development lab at the Center. The Access file contains various quantitics measured
hourly between 12:00 P.M. June 21, 2002 and 12:00 A.M. March 27, 2003, and between
11:00 A.M. May 8, 2003 and 0:00 A.M. July 10, 2003. The Access file is organized in a
tabulated form with four columns and many rows. Each row corresponds {o an hour. The

columns are arranged in the following order:

1. The name of the variable measured
2. The hourly average value of the variable
3. The mode

4. The time stamp at which the variable is measured

The mode values appear to be ‘1’s for all rows. Thus, this column is ignored in the data
manipulation and conversion process described below. The rows of the original table

appear to be sorted by the time stamp that appears in the last column of this table. There
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are typically several rows with the same time stamp indicating that several variables are
measured in each hour. The rows associated with the same time stamp appear to be sorted

by the variable names (listed in the first column) alphabetically.

Since the ANN energy prediction code developed in this thesis is written in MATLAB,

the original data set must be converted into a matrix format that can be gasily

mavipulated by MATLAB matrix operations.
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4.2.1.1 Variable Selection
The potential candidates for the input and output variables to be used in the ANN

prediction model are chosen based on the cooling and heating system diagrams provided

by CANMET.
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Figure 24, Heating system diagram
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Figure 25, Cooling system diagram

The objective of this study is to predict the electric demand in kW by the chiller and the
gas demand in kW of the boilers at a particular time 7. Thus, the choice of output

variables in an ANN are the electric demand of the chiller, which will be denoted by Cr1),

and the gas demand, which will be denoted by G(1).

As shown in Figure 24. and 25, the heating system of the building is completely
separated from the cooling system. Thus, C() and Gt} will be predicted by two separate
ANN meodels. Otherwise, if C1) and G(t) are predicted by one network, chiller related

variables are useless for G prediction and they will become noise for ANN Gyi)

prediction, and vice versa for C(1) prediction.
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Based on the heating system diagram, the variables listed in Table 11 are initially

identified to be the independent variables that can potentially affect the variation of (7).

Table 11. Potential input variables related to the gas demand.

 Variable Description Units
Bla) On/off status of boiler 1

B2 On/off status of boiler 2

Hn) Holiday indicator

IIIIIIIII W) On/off status of hot water

__MBI¢t) 1| Percentage of maximum capacity boiler 1 %
MB2c) Percentage of maximum capacity boiler 2 %

_TODw) Outdoor temperature °C

I8l | Temperature of the hot water supplied by boiler 1 °C
TB2(1) Temperature of the hot water supplied by boiler 2 °C

 TM) Mixing temperature of 7B/ (t) and TB2(1) °C
TRy Returning hot water temperature to boiler 1 and 2 °C

_ WS@) Weekday schedule

The numerical ranges of the measurements associated with some of the input variables
and the output variable for the gas demand are listed in Table 12, along with the average
values. This statistic calculations are made after outliers existing in the data is removed.

Table 12. Some statistics of the selected variables gas demand prediction.

Variable | Min | Max | Average | Unit

G) 0 625.5 114.07 kW
TBi) 0 100 59.07 °C
TB2(1) 0 100 59 °’C
TM() 0 100 51.54 °C
TR 0 100 53.30 °C
10D | -25.38 | 34.98 3.97 °C
MBI 0 100 3.79 %o
MB2(1) 0 100 3.71 Yo
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As 1o the chiller energy prediction model, the variables listed in Table 13 are initially

identified to be the independent variables that can potentially affect the electric demand

_._Table 13. Potential input variables related to the chiller electric demand
Vam.able Description Units
SCT {t) On/off status of compressor 1
SC2a) On/off status of compressor 2
bc 3(!) On/off status of compressor 3
o On/off status of compressor 4
SO r’t} On/off status of compressor 5
SCH(t) On/off status of compressor 6

Teq) Temperature of the chilled water entering the ice tank °C
Tev(r) Temperature of the return chilled water entering the °C
—— evaporator
Tht) Temperature of the supply chilled water leaving the °C
evaporator
L Sew(t) On/off status of the chilled water
Smode(t) | On/off status of ice mode control
Humt) Outdoor relative humidity %
170D Outdoor temperature C
SVIia Whether to bypass the cooling coil to fabricate ice
{yes/no)
SV2¢t) Percentage of return chilled water in the mixing with Yo

the water coming out of the ice tank
HDyt) Holiday indicator

WS¢t Weekday schedule

CR(1) Electric current used by the chiller Amp

The numerical ranges of the measurements associated with some of the input and output
variables used for the chiller energy prediction are listed in Table 14, along with the
average values. Variables appear to lie within the normal ranges after the outlier data is
removed. The zero values detected in the chiller demand measurements indicate that the

chiller can be completely shut off during some hours.
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the chiller

Table 14. Some statistics of the selected variables related to the electric energy used by

Variable | Min Max Average Unit
Ct) {0 68.7 4.18 kW
Te(t) -0,44 29.1 12.52 °C

Tev(t) -4,38 29.4 11.93 °C
Tiv(t) -6.39 29.4 12.73 °C
HUM) 0 99.1 63.41 %%
TOD | 25,38 34.98 3.97 °C
ST2¢0) 0 100 61.42 %
CR() 0 76.28 10.99 Amp

4.2.1.2 Data Analysis
A closer examination of the data reveals that not all of these variables listed in the data

file are measured at every hour. Furthermore, the number of measurements associated
with each variable is different indicating a rather irregular missing pattern. For example,
there are 3318 measurements for the variable BJ (1), but there are only 3179
measurements for Sew(t). If measurements are made at every hour between 12:00 pm
6/21/2002 and 12:00 am 3/27/2003, the total number of measurements for each variable
should be 6696. However, a quick ingpection indicates the number of hourly
measurements for each variable is roughly 50%-70% of the total number of hours

between the beginning and ending period of the measurements.

By visual inspection, it is found that the gas encrgy usage shows an unusual distribution

pattern. This problem is revealed in Figure 26 and Figure 27 in which the gas energy

usage is plotted as a function of time. One can clearly see that the measured gas energy
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usage appears 1o fluctuate mainly among three levels: 156.3 KW, 312.7 KW and 469.1
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Figure 26. The gas energy demand pattern for the entire measurement period.
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Figure 27. Zoom-in view of the energy usage pattern between the 5000-th and 5100-th
hour n Figure 26
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One explanation for this kind of fluctuation is that the gas metering is done in terms of
pulses. Each pulse corresponds to 100 cubic feet of gas. Hence, there may be one, two, or
three pulses per hour, which corresponds to the readings of 156 kW, 312 kW, and 469

kW,

An equally surprising observation is that the measurements for the chiller electric energy
usage C(#) are completely missing between 06/21/2002 and 08/28/02. Sporadic chiller
encrgy usage measurements are present in the data file between the period of 08/20/29
and 03/16/03. However, the number of measurements is far from complete. The load
pattern of the chiller between 6/21/2002 and 03/2003 is shown in Figure 28. The negative

readings correspond to the period in which the chiller usage data is missing.
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Figure 28. The electric energy usage pattern of chiller

It is clear from the above data analysis that the quality of the raw data provided by the

CANMET center is quite poor. This makes it difficult to design, train and test an ANN.
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It also makes it difficult to interpret the experimental results to be presented below.
However, this situation is typical for the measuring systems installed in buildings to
analyze and predict the energy use. The challenge is to design an ANN system to provide
good on-line predictions of energy demand even if the data quality is poor. An attempt is

presented in following sections.

4.2.2 The ANN Model

Tust like the ANN model used to predict the chiller electric demand for the Laval
building, the ANN models designed to predict the gas and chiller electric demand for the
CANMET building consists of one hidden layer in addition to the input and output layers.
The input tayer contains # neurons from which » different inputs are fed into the network.
The output layer contains one neuron from which either the predicted gas demand or the
chiller electric demand is obtained. The hidden layer consists of 2n+Ineurons (Hecht

1989).

As usual, biploar sigmoid functions are used as the activation function in each neuron. In
the output layer. a linear transfer function is used to allow the network to produce values
outside of the range -1, 1]. As will be shown shortly, that this choice of activation
functions is not appropriate for gas energy prediction because the gas energy
measurements fluctuate among a few discrete levels while the nonlinear mapping

modeled by an ANN with sigmoid and linear activation functions is continuous in nature.

The training process is terminated when the mean square error (MSE) between the ANN

output and the target values becomes less than 107 kW, or when a maximum of 500
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epochs is reached, whichever criteria is reached first. The initial wei ghts and biases of the
ANN are generated randomly. Whenever possible, the Levenberg-Marquardt (L.M)
algorithm is specified to train the network. When the mumber of wput elements or the
volume of the data is large, the standard gradient descent algorithm is used for training

the ANN.

4.2.3 Training and Testing — Static Gas Energy Prediction

There appears to be no previous attempts in the literature in using ANN to predict the gas
energy usage of a commercial building. Part of the difficulty is that the gas demand does
not seem to be a continuous function of the temperature and other environmental
variables. This is observed in the CANMET data set as reported above. The discontinuity
in the variable to be predicted makes it difficult to use a conventional ANN to model the
relationship between the input and output because the nonlinear mapping rendered by an
ANN is typically continuous (when biploar sigmoid activation functions are used). This

difficulty is illustrated in Experiment 8 below,

The discrete nature of the gas energy usage provides some motivation for using a
perceptron network to classify the input into differem‘ groups. However, this approach
has not been successful either as we will illustrate in Experiment 10. It is conjectured
that the incompleteness and poor quality of the data attributed to this failure.

4.2.3.1 Experiment 8- Modeling the nonlinear mapping between Gas Demand G(®)
and other wariables

In this experiment, a standard ANN is used to explore the nonlinear relationship between

the variables listed in Table 11 and the gas demand G1). Since gas is only used in the
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winter, the data associated with the summer and the autumn is ignored, Unlike the
complete data associated with Laval Building, too much data associated with the gas
demand of the CANMET center is missing during December, 2002 and January, 2003, It
is impossible to find the data associated with a whole week in each month for training.
Especially in January, 2003, almost half of the data associated with J anuary is missing. In
this case, all the measurements collected in December, 2002 are selected as the training
data and all the measurements collected in January, 2003 are used for testing or
prediction. The gradient descent algorithm is used to train the network due to the
relatively large number of input variables. The traini ng process is terminated after 500
epochs have been completed or when MSE is reached 107 kW, whichever occurs first.
Upon the completion of the training process, the mean squares error (MSE) becomes
0.06kW. This is above the convergence folerance (set to 10™) set in advance. Fi gure 29
shows that there is significant mismatch between the measured and the predicted gas
energy usage curve. In particular, the predicted (solid) curve is not able to capture the
discrete nature of the gas energy usage pattern. The C'V and RMSE values obtained in

this experiment are 62% and 134.2 k'W respectively.
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Table 15. The ANN input variables chosen in Experiment 9,

Variable Description (1sk<6)
Hit) Hour of the day
Bl (t-k) The on/off status of boiler 1 k hours before Hir)

B2(-k) The on/off status of boiler 2 k hours before Ht)

Wit-k) The on/off status of hot water k hours before H(t)
MBI(-k) | percentage of maximum capacity of boiler 1 & hours before
H()
MB2(1-k) | Percentage of of maximum capacity of boiler 2 k hours
betore Ht)
_LODG-k) | Outdoor temperature & hours before /(1)
TBI(t-k) | Temperature of the hot water coming out of boiler 1 & hours

. before H(t)
TB2(1-k) | Temperature of the hot water coming out of boiler 2 £ hours
_— before Hit)

_wm?i?\/l(‘!mk) Mixing temperature of 7B/ (1-k) and TB2(t-k)
TR(t-k) Returning water temp of boiler 1 and 2 k hours before H1)
- G-k) Gas energy used & hours before H(1)

The technique of PCA is used to reduce the dimension of the input and to remove
redundancies in the input vectors. Only components that contribute to more than 1% of
the total variation among the input vectors are selected. This choice yields roughly nine

principal components (9 input vectors).

After the ANN with this particular set of input variables has been trained for 500 epochs,
it is applied to the test data. Figure 30 shows that the predicted gas energy usage is
nowhere close to the actual energy usage. The CV and RMSE values obtained in this

experiment are 53% and 111.6 kW respectively.
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Figure 30. Comparison of the actual gas energy usage and the usage predicted in
Experiment 9.

4.2.3.3 Experiment 10 ~ Classification of the input

The discrete nature of the gas energy usage provided motivations to use a single-layer
perceptron network to identify the pattern of the input variables listed in Table 11. A
single perceptron neuron produces a ‘1" if the net input into the transfer function is equal
to or greater than 0; otherwise it produces a 0. A perceptron neuron uses a transfer
function that gives a perceptron the ability to classify input vectors by dividing the input
space into two regions. Outputs will be 0 if the net input n is less than 0, or 1 if the net

input is 0 or greater.



The rationale for performing this experiment is simple: if the each gas encrgy usage level
corresponds to certain terperature and operational patterns, then one should be able to
classify these pattern using a perceptron network.

Thus, a simple perceptron is constructed in this experiment to explore this possibility.
The input of the network consists of variables listed in Table 11. Three ouiput units are
used to match with the three discrete gas energy usage levels. Each unit can only assume
the values of zero or one. The mapping between the ANN output units and the discrete
gas energy levels is described in Table 16. For example, if the first output unit assumes
the value of one, the second and the third output units assume the values of zeros, then

the gas energy level is assigned to the level of 156.3 KW.

Table 16. The mapping between the perceptron output patterns and the gas energy usage

levels.
Pattern | Output1 | Qutput2 | Output3 | Gas demand (kW)
1 1 0 0 156.3
2 0 1 0 312.7
3 0 0 1 469.1

To force the perceptron to produce discrete output, the binary pulse function

is used as the activation function.

Although this approach seems to have a great deal of potential in theory, the simple
perceptron was not able to successfully classify the patterns of the input variables. Figure
31. shows that after the perceptron has been trained to classify the temperature and

operational patterns, the mapping from the resulting classes to the discrete gas energy
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levels had only about 50% of accuracy (i.e.. among the 300 predicted values, only 160
completely mateh the actual gas demand after statisties). The CV and RMSE values are

50% and 121.8 KW respectively.
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Figure 31. Comparison between the gas usage predicted by the perceptron and the actual
gas energy usage.

It is conjectured that the error is mainly due to the incompleteness and the poor quality of

the original data.

4.2.4 Training and Testing ~ Static Chiller Electric Demand Predictions

It is important to understand how the cooling system in the CANMET Building works
before one constructs, trains and uses an ANN to predict the chiller energy usage of the
building. It is shown in Figure 25 that the chilled water for the building can be generated
by either ice tanks or chillers. When there is sufficient amount of ice left in either ice

tanks, chillers are all automatically turned off. The electric energy used by the chiller is



zero. Henee it has no relationship with respect to the temperature and other operational
variables listed in Table 13. Thus, when there is safficient ice lefi in the ice tank, there is
no need to predict the chiller electric demand because it is zero. The chiller electric
energy demand ouly needs to be predicted when the amount of ice left in both ice tanks is

low and at least one of the compressors is turned on.

Ideally, one would use the amount of ice left in both ice tanks as an indicator to predict
whether the chiller will be turned on in the next hour. A separate ANN can be constructed
to predict the status of the chiller (on or off) based on the remaining ice level. However,
the original data file provided by CANMET does not contain measurements related to the
amount of ice in the ice tank. Thus, it is not possible to predict the status of the chiller
using measurements collected in previous hours. However, the status of each COMPpressor
at time / is given by variables SCi(y), i=1,2..6. This information will be used to
determine whether the chiller electric demand usage should be predicted in the following
experiments, In another words, a prediction of the chiller electric energy usage is made
only when one of the compressors is turned on (indicated by SCi(t) = 1 for some
i=1,2...6). Although this approach is not entirely practical, it is the best one can do given
the existing data file. As a result, both training and testing are only performed on
measurements associated with non-zero SCi(t) values. When SCift) = ¢, for some 7, it can

be deduced immediately that C(z) = 0, and no prediction is needed.

Although the chiller is usually turned on in the summer for cooling, the CANMET data

set does not contain any chiller energy measurements corresponding to the summer
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months of 2002 (from June to August). Some measurements are available for the month
of September and October. However, even for these two months, the measurements are
far from complete. The incompleteness and rather low volume of the data makes it
difficult for the training process to render an accurate ANN prediction model, as is shown
next.

4.2.4.1 Experiment 11 - Modeling the nonlinear mapping between the Chiller
Electric Demand E() and other temperature and operational measurements

In this experiment, we use all variables listed in Table 13 except the status variables
(SCi(®), i = 1, 2,...0) as the input elements to an ANN. Note that the measurements
associated with a nonzero SCit), for any 1<is6 are removed from the training data set
ahead of time. With the limited amount of the data, 80% of the nonzero measurements
(the measurement associated with 130 hours), which include the measurement associated
with September, 2002 to May, 2003, are reserved for training. The remaining data
including zero and nonzero measurements associated with May to July, 2003 is set for
prediction. After training the network for a maximum of 500 epochs, the MSE becomes
less than 10°kW. When the trained ANN model is applied to the testing data which
contains both zero and nonzero chiller measurements, the ANN output is multiplied by
the union of SCi(t), 1 = 1,2,...6. Thus, if SCi(2) = 0 for 1<i<6, the predicted chiller energy
usage C() will be exactly zero. Otherwise, the predicted Cy) equals what is computed
by the ANN. shows that the predicted chiller energy usage matches with the actual chiller
energy demand extremely well. This observation is further confirmed in Figure 33 and
Figure 34, where the error and error distribution of the ANN prediction are plotted
respectively. These figures show that the nonlinear mapping between the chiller energy

usage and the environmental and operational variables listed in Tablel3 can be easily



modeled even though the volume of the training data is low. The CV and RMSE values

are quite small, they are 0.23 and 3.73kW respectively. Training takes 2.4 seconds only.
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Figure 32. Comparison between the predicted and the actual chiller electric usage.
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4.2.4.2 Experiment 12 - Chiller electric demand prediction with previous hour
measurements

As discussed earlier, even though the chiller encrgy usage C) clearly depends on
quantities that reflect the environmental conditions and the operational status of the
cooling system (listed in Table 13) at time 4 it is not practical to use the ANN model
developed in Section 4.2.4.1 to make chiller energy prediction. This is because the
present-time values of the environmental and operational variables are often not available
until the end of the hour. To be able to predict future energy usage using present and
previous measurements, one must develop an ANN model that takes only previous

environmental and operational measurements as input.

In this experiment, an ANN model is developed that predicts C(2) based on measurements
collected in previous hours. The input variables chosen for this ANN are listed in Table
17.

Table 17. The ANN inpul variables that consist of environmental and operational

measurements collected in previous hours.
Description

Variable

0y

Number of hour

| Te(t-k), 1<k<6

Temperature of the water entering the ice tank

 Tev(i-k), 1<ks6

Temperature of the water entering the evaporator

Thv(i-k). 1<k<6

Temperature of the water leaving the evaporator

| Sew(t-k), 1<k<6

The on/off status of cooling water

Smode(i-k), 1<k<6

The on/off status of ice mode control

Hum(1-k), 1<k<6

Outdoor relative hwmidity

Outdoor temperature

SVI(t-k), 1<k<6

Whether to bypass the cooling coil to fabricate ice (yes/no)

SV2(t-k), 1<ks6

Whether to mix the returning cold water with the water coming
out of the ice tank (yes/no)

Current used by the chiller in Amp

Chiller energy usage in kW




PCA is used to reduce the dimension of the input and to remove redundancy in the data.
Six principal components that contribute to more than 1% of the total variation are
retained. This new network is somewhat more difficult to train. The training time, which
is 5.7 seconds, is twice longer than that of the first experiment. The MSE of the ANN
output at the end of the training process is around 10°kW. Figure 35. shows some visible
discrepancy between the predicted and the actual energy load curve. However, the overall
prediction accuracy provided by this ANN is satisfactory. Figure 36 shows that a large
number of occurance of the error is within [-5,5] KW, which is quite reasonable. The CV

and RMSE values obtained in this experirent are 26% and 4.28 kW respectively.
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Figure 35. Comparison between the predicted and actual chiller electric energy usage in
Experiment 12 of section 4.2.4.2,
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Figure 36. Error distribution detected in Experiment 12 of section 4.2.4.2

Table 18. Comparison of training time for static chiller demand predictions for CANMET

Lab
Experiment Training time (seconds)
11 2.4
12 3.7

4.2.5 Training and Testing — On-line Chiller Electric Demand

Predictions

In this section, experiments with both accumulative training and sliding window training
are cartied out. The input data listed in Table 17 associated with September, 2002 to
May, 2003, which include 130-hour nonzero measurement is reserved for training, The
data including zero and nonzero measurements associated with May to July, 2003 is set
for prediction. Unlike the static predictions conducted in Section 4.2.4, for on-line
prediction, it is impractical to use variable SCi(t) to indicate the on-off chiller status at

time t because SCi(t) is not available at the time predictions start . Thus it is reasonable to



assume the SCit-1) is same as SCi(t) and to use SCi(t-1) instead of SCi(t) . Though the
accuracy will be sacrificed a little, it is the best one can do if there are no other variables
can be used to prediet the on-off status at the time t. In the following experiments, on-line
predictions using both variables SCi(t+1) and SCi(t) are carried out. The details and
results are presented below.

4.2.5.1 Experiment 13 -On-line prediction using SCi(t) with accumulative trained
ANN

The ANN developed in Section 4.1.4.1 serves as the building block for constructing a
dynamic (on-line) prediction model. In this experiment, the chiller related variables
measured between September 2002 and May 2003 are set aside for baseline training.
Note that the number of hours during which the chiller is turned on is only 130, Thus, the
volume of the training data is rather small. Once the baseline training is completed, the
initial ANN model is used to predict the chiller electric usage for the next 24 hours. In
this accumulatively trained on-line model, the ANN is updated daily by adding
measurements that become available on the day chiller energy is to be predicted into the
training data set. Note that only the data recorded during the hours at which a chiller is
on are added to the training data set. That is, if the chiller is turned off for the next 24

hours, then the training data will remain unchanged.

Figure 37 shows that the predicted chiller energy usage matches well with the actual
usage for the first 200 hours of the testing data (the first eight days in June 2003). At the
end of the eighth day, the chiller energy usage exhibits a daily increasing pattern. This

“unexpected” pattern presents some challenge for the ANN prediction model because the
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model has not been trained adequately for increased energy demand at that point,
However, after newly measured data are added incrementally into the training data set,
the accuracy of the prediction gradually improves. Figure 38 shows that a large number
of the error occurrences are within |-5,5] kW. The small percentage of relatively large
errors (around 40 to 50 kW) is associated with the mis-prediction for days 9-12 when the
chiller energy usage undergoes a significant daily increase. The overall CV and RMSE

values obtained in this experiment are 38% and 2.56k'W respectively.
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Figure 37. Comparison between the actual chiller energy usage carve and the one
predicted by the accumulatively trained ANN developed in Experiment 13 in Section
4.2.4.3.
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42N:]2 Experiment 14 - On-line prediction using SCi(t-1) with accumulative trained
A

Itis described in Section 4.2.4 that variable SCi(t) has a direct impact on the on/off status
of the chiller. Though good performance is obtained in Experiment 13 by using SCi(t) to
determine whether the chiller electric demand should be predicted, this is impractical
because SCi(t) is not available at the time prediction is to be made. In this experiment, the
on/off status of the chiller at the previous hour, SCi(t-1) is used. The rationale for using
SCi(t-1) is simple. The chiller tends to be turned on or off for a period of time. Thus, if
SCi(t-1) is 1 (or 0), then one would expect that SCi(t) is likely to assume the value of 1
(or 0) also. In this case, SCi(t-1) is a reasonable choice. The results of the experiment

using SCi(t-1) will be compared to the one obtained in Experiment 13.



Figure 39 shows that the predicted energy usage matches the actual measurement fairly
well at most time spots, but visible discrepancy is still observed between the ANN output
and the true measurement at hours 300 and 500, It can be seen from Figure 40 that the
distribution of error has a wider range than the one observed in Experiment 13, its range
is [-50, 50] kW. The CV and RMSE values also become larger, they are 253% and

13.29kW respectively.
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Figure 39. Comparison between the actual chiller demand and the one predicted by the
accumulative trained ANN developed in Experiment 14 in Section 4.2.4.3
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Figure 40. Hrror distribution in Experiment 14 of Section 4.2.4.3

4.2.5.3 Experiment 15 -On-line prediction using SCi(t) with sliding window training

It is advantageous to use a sliding window to manage the training process of a dynamic
(online) ANN prediction model when the volume of training data becomes exceedingly
large. In such a case, a time window with a fixed size is used to maintain a fixed volume
of training data. As new data becomes available, old data is deleted from the training
window. The sliding window has to be large enough to contain sufficient amount of data
so that the training process can identify a time-dependent nonlinear mapping between the
input and output. In the meantime, the window size has 1o be small enough to allow the

training process to be completed quickly.

127



The data set provided by CANMET center has such a small volume that it is difficult to
develop a dynamic model based on sliding window training. Just like Experiment 13, the
chiller related variables measured between September 2002 and May 2003 are set aside
for baseline training. Note that the number of hours during which the chiller is turned on
is only 130. Once the baseline training is completed, we use the initial ANN model to
predict the chiller electric usage for the next 24 hours. The ANN is updated daily by
adding new measurements into the training data set and deleting some previous
measurements from the training set. Note that only the data recorded during the hours
during which a chiller is on are added to the training data set. The amount of data deleted
from the training set equals the amount of new data added. This is to ensure the volume
of the training data is constant. Network training and retraining only take 30 seconds for
the whole experiement, which is 40% faster than that of accumulative training. Figure 41
shows that the limited size of the training data contributed to relatively large errors
observed when the ANN is applied to the testing data. But the overall CV and RMSE
values appears to be smaller compared to the result obtained from Experiment 13 using

accumulative training in Section 4.2.4.3, they are only 9% and 4.39kW respectively
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Figure 41. Comparison between the actual chiller energy usage curve and the one
predicted by the sliding-window on-line ANN model developed in Experiment 15 of
Section 4.2.4.4.



400 { ! 1 T i f

A50 - -

300

260 1

F00 |

tramber of nosuranee

1501

100 -

o « , s e i .HWMWW
4] 10

«553 4} By -2 =10 it F 40
Ervar size(loN)

Figure 42. Distribution of the error detected in Experiment 15.

4.2.54 Experiment 16 - On-line prediction using SCi(t-1) with sliding window
training

Variable SCi(t-1) is used to decide if the electric demand is needed to be predicted in this
experiment, The prediction result is shown in Figure 43. Figurc 43 shows that the
predicted energy usage matches the measurement fairly well at most time spots. But
compared to Experiment 15 presented in this section, the difference between the
predicted energy usage and measurement becomes larger. The error ranges from ~60 to
60 kW. The CV and RMSE values are also larger than the ones observed in Experiment

15. They are 26% and 12.88k W respectively.
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predicted by the sliding window on-line ANN model developed in Experiment 16 of
Section 4.2.4.4

400 : 7

350+

300

Number of pociwance
ny Y
£y in
o 2

H

P
i
<

106 -~

50

0 wmmmmulmwmm' M.‘,MML.MW.,MM,«m,“
-5 B0 40 -2 0 20 40 80
Error sizelkW)

Figure 44. Error distribution in Experiment 16 of Section 4.2.4.4



Table 19. Comparison of the training time for on-line chiller demand predictions for

CANMET
Experiment CV (%) | RMSE (kW) | Training time (seconds)
13 38 2.56 50.4
13 9 4,39 30.9

4.2.6 Summary

Unlike the experiments conducted on simulated data in section 4.1, the experiments
carried out in this section involve additional work in terms of data processing. The data
set prepared by CANMET are recorded in a Microsoft Access (MA) file which cannot be
used directly by the MATLAB ANN code developed in this thesis, additional programs
must be written to convert the MA file into a matrix data format that can be easily
handled by MATLAB. This appears to be a typical problem in computational energy
prediction. The lack of standards in energy data makes it difficult to automate the
prediction process. Another difficulty associated with this data set is the completeness
and accuracy of the measurements. It is found that there is a massive amount of missing
measurements., Some of the measurements are apparently out of the physical range of the
quantity measured. The lack of high quality data also makes it difficult to perform

experiments and draw sensible conclusions from the experiments.

Attempts are made to predict both the gas energy demand and the chiller electric energy
use in the building. Because the boiler and chiller are controlled by two separate
systems, the predictions of these quantities are treated separately. That is, one ANN is
built to predict the gas energy demand while a different one is use to predict chiller

energy demand.
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Because the gas demand fluctuates among three levels, conventional ANN prediction
models such as the ones developed in Section 4.1 for the Laval building do not work
well. Limited success is achieved using a perceptron network developed to classify the

measurements of environmental and operational variables into a few clusters,

A higher level of success is achieved with respect to the chiller energy prediction. The
key 10 a successful prediction is to identify the on-off status of the chiller. When the ice-
tanks of the building are non-empty, the chiller is completely turned off. Hence the chiller
energy demand is zero. No prediction needs to be made. The ANN prediction model is
used only when the chiller is turned on. The on/off status of the chiller can, in principle,
be predicted by looking at the ice-tank level. However, such type of information is not
present in the CANMET data set. No variable can be found to indicate on-off status of
the chiller in the next hour. Thus, the best one can do is to use the previous on/off status
of the chiller to predict the future on/off status of the chiller, The problem is when the
chiller turns off, the system will miss it by one hour since it assumes it is ON based on
the previous hour. Only in the following hour will the system finally see it as OFF and
then work properly. The prediction of the ON/OFF is always lagged by one hour. Both
accumulative and sliding window training produced reasonably satisfactory result.
However, due to the limited amount of data, it is difficult to make a fair comparison
between these two training schemes other than the fact that the sliding window training

scheme is more efficient in terms of CPU time use.
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5. CONCLUSION

5.1 Summary

A wide spectrum of computational models for building energy prediction has been
examined in this thesis. A comprehensive survey is presented to summarize the pros and
cons of each method. The survey presented both the general design philosophy for each
prediction model and constructive discussions on the implementation details and the
performance using these models. It is evident from the surveyed literature that the
artificial neural network (ANN) prediction model is the most attractive model among all
models. lts main advantage lies in its flexibility in modeling any nonlinear mapping

between a set of independent variables and dependent variables.

A detailed discussion on the theory and practice of ANN models is presented in this
thesis. While most of the surveyed literature focused on using a static ANN model to
predict energy usage during a fixed period of time, this thesis investigated dynamic ANN
models that evolve over time, A dynamic model has the apparent advantage of adapting
itself to seasonal or year-to-year change in energy demand patterns. A dynamic model
can be combined with an automated data acquisition system to provide online building

energy prediction.

A number of computational experiments have been performed in this thesis to
demonstrate the effectiveness of a dynamic ANN model. The experiments were carried
out on two data sets. The first data set contains simulated data. The second data set

contains measurements recorded by sensors installed in the building investigated. It is
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found that the nonlinear relationship between the environmental/operational
measurements and the building energy demand is relatively easy to model by an ANN,
This instantaneous mapping is pursued in most of the surveyed literature. However,
because the prediction of the energy demand must be made using
environmental/operational measurements obtained in previous hours, what should be
modeled is a weaker but still nonlinear mapping between time-lagged measurements of
the environmental/operational variables and the present building energy demand. To
accurately model the impact of the change in environmental/operational variables to
building energy demand, it is desirable to include as many previous measurements as
possible in the ANN input. However, this could impose a severe computational burden to
the ANN training process. It is shown in this thesis that the use of PCA can alleviate this

problem by reducing the dimension of the input and removing the redundancy in the data.

Two types of adaptive ANN training schemes have been experimented in this thesis. The
sliding window training approach, which keeps the volume of the training data set at a
constant level appears to be slightly better than the accumulative training scheme, which
simply adds newly available data into the training data set. This is observed in
experiments that involve the simulated data (for the Laval Building) and the real data (for

the CANMET building).

3.2 Contributions
The most up-to-date literature survey is presented in the thesis. Several different

prediction models are presented and summarized in detail. The advantages and
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disadvantages of these models are analyzed and compared to provide comprehensive

overview on methodology for building energy prediction problems.

Dynamic ANN models for energy prediction problems have been examined in detail
while most researchers only focus on static model. The models are proved to be effective

by experiments performed using both simulated data and real measurements.

While most of the surveyed literature focus only on using ANN to model instantancous
mapping between the environmental/operational variables and building energy demand
for static prediction models, this thesis used ANN to dynamically model the nonlinear
mapping between time-lagged measurements and the present building energy demand.
This method is more practical because of the difficulty that the instantancous
measurements will not be available until the end of the hour. As many previous

measurements as possible are included as ANN input variables.

Principle Component Analysis (PCA) is used in the thesis to reduce the input dimension

and remove the redundancy in the data.

Two ways to update the dynamic ANN model have been presented in this thesis. The
updating is accomplished through retraining the network periodically. Two approaches
for network retraining, accumulative training and sliding window training are developed.
The experiments shown in this thesis demonstrated the effectiveness of these two online

training schemes.
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5.3 Future Research Direction

[t is conceivable that a dynamic ANN trained with a sliding window can outperform an
accumulatively trained ANN both in accuracy and efficiency. However, a fair
comparison requires a sufficiently large volume of data, which is not available to this
author at this time. When a large volume data becomes available, an optimal window
size needs to be determined. Additional research is needed to investigate how to

determine an optimal window size.

It is suggested in this thesis that the prediction of gas energy usage requires the use of an
ANN that is capable of classifying the environmental and operational data into several
discrete groups. A simple perceptron is developed in this thesis with limited success.
Additional research is required to develop a more sophisticated classification network to

improve the accuracy of gas energy prediction.

Another future research direction is to combine the ANN prediction models developed in
this thesis with an automated data acquisition software package to produce a truly on-line
building energy prediction system. To make this system portable to a larger number of
commercial buildings, one must also standardize the format in which the measured

energy data is stored.

Energy predictions for holidays are not fully addressed in this thesis. In the experiments
for Laval building, energy demand at non-working time is not predicted because energy

demand at this time is zero. For the energy prediction of CANMET Lab, only one ANN



is used to predict the energy for both holidays and working days. In the future, two
separate ANN models can be used to make energy predictions for holidays and working

days respectively.

. Table 20. CV and RMSE values obtained from experiments for Laval Building

Experiments for Laval Building CV (%) | RMSE (kW)
Static prediction

1-Modeling the non-linear ruapping between E(t) and 4% 6.10

the temperatures

2-Using time-lagged measurements as inputs 16% 25.46
3-Using additional time-lagged measurements as 7% 11.01

_inputs and PCA to reduce the dimension of the input

On-line prediction

4-Accumulative training with time-lagged temperature 15% 28.26
measurement as input

S-Accumulative training with time-lagged chiller 17% 28.92
energy usage as inputs

6-Sliding window training using temperature data 15% 27.73
collected in previous hours

7-Sliding window training using temperature and 16% 27,78

energy measured in previous hours
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Table 21. CV and RMSE values obtained from experiments for CANMET Center

Experiments for CANMET Center CV (%) | RMSE (kW)
Static prediction
Gas demand prediction
8-Modeling the non-linear mapping between G(t) and 62 134.2
other variables
9-Gas energy prediction using measurements recorded 33 1116
in previous hours
10-Classification of the input 50 121.8
Chiller electric demand
I1-Modeling the nonlinear mapping between the 23 3.73
chiller energy usage E(t) and other teruperature and
operational measurements
12-Chiller energy prediction with previous hour 26 4.28
measurements
 On-line chiller demand prediction
13 - Prediction using SCi(t) using accumulative 38 7.56
trained ANN
14~ Prediction using SCi(t-1) using accumulative 253 13.29
trained ANN
15 ~Prediction using SCi(t) using sliding window 9 4.39
training
16- Prediction using SCi(t-1) using sliding window 26 12.88
training
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APPENDIX A-MAIN CRITERIA FOR EVALUATION
OF ENERGY PREDICTION PERFORMANCE

A number of criteria are used in the energy prediction literature for evaluating the
accuracy of energy prediction. They include coefficient of variation (CV). robust
coefficient of variation (RCV), mean bias error (MBE), root mean square error (RMSE),

e n " ' . _— e ] \ »
coeflicient of determination (R7), expected error percentage (EEP) and mean absolute

percentage error (MAPE)  Following variables are used in these criteria:

Yaaat  vepresents measured data at time t or data value of the dependent variable
corresponding to particular set of the independent variables,
Ypredt - Yepresents predicted data at time 1,

Ydatamax = tepresents maximum measured data,
¥ s - YEPYesents mean value of the measured data, and
n - is the number of data points in the data set, some times in regression models n can be

replaced by n-m where

m ~is the total number of regression parameters in the model

These criteria are defined as follows.

I Coefficient of Variation (CV):

i ) ‘3
Z- (:V predy Yy duta t )
1]

1

4y
R dute




2 Robust Coefficient of Variation (RCV):

1
2’““ ¢ 82 ’ -
() ! preds ydum,x ) x 90%besr
4] =)

ROV = 4

y Y
derter, 95% dettr 5%

3 Mean Bias Errors (MBE):

5
Z (v predys ™ Y data )
i

MBE = et
3.}"4«2!::!

i

4 Root Mean Square Errors (RMSE) or Standard Deviation (Std):

s

i
f (y preds ydalu,r )4
RMSE = V =)

¥

i

5 Coefficient of Determination (R%):

n )
Z (y predg " Y data s )
tesl

R? = (l - 7
. 42
Z (,V pred g )
[:::;5

),

6 Expected Error Percentage (EEP):

n
2
/2 (yprcd,r - ydamJ )
4l =l

EEP - &

V

1y
o data may




7 Mean Absolute Percentage Errors (MAPE)

i
. ] I datir - ﬂm’ri’,!é
MAPE = Z sssns s A s

K

b
oy Ydota g
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APPENDIX B - PART OF MATLAB CODES
SELECTED FROM THE EXPERIMENTS

1.Code for Experiment 1- Modeling the nonlinear mapping between Electric
Demand E(t) and the temperatures

5% static elect

ic demand prediction without fime delayed inputs$?

clear;

format ab RT

load delay0.mbx

Inrows,neols] = size (delay0y;

&
% reorganize the data, seperate the lnput from the —
ndays w 04

ntrndys ndays ~5%4;
nhrapdy = 12;
ntrnhrs = ntrndys*nhrspdy;

4]

% input

e Wity Twity, TL{t)
matin = delay0{l:intrnhrs,l:4);

Snumber of columns
ninput = gize{matin,2);
% output

.
)

matout = delayl(l:ntrnhrs,5);
&
% normalize the data

[dinn, minp, maxp, doutn, mint, maxt ] = premnmy(matin', matout');
pr o= minmag (dinn);

define the range of training data

pr={-1 1
-1 1
-1
-1 17;

i

o

%
% create a new network only in the first iteration:
&
t

net = newff

‘purelin® t, ‘ttrainlm')y;
net.trainfaram, lr = 0,01;
net.trs Param. epochs = 50;
net.trainParam.goal = 1.,0e—-4;

%

(pr, [ninput Z*ninput+l 13, {(‘tansig',
o L

% train the network
%
ht=cputime; [net, trl=train(net, dinn, doutn) jeputime~-ht % calculate
the training time
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dabel (fepochs');
2L (THBET

% see how ANN performs on the training data;
2.
.

yn o= osim{net, dinn);

o
9
% pogtprocess the ANN ocutput to compare with the

original targ

= postmnmx {(yn, mint, maxty:
postmnmd (doutn, mint, maxt);

it}

% Plet both the target and the ANN out to see how they differ.
@,

k<]

figure (2);
crfs
plot{t, 1 -y,
hold;

get’, Tann-output ') ;

#label {"Hour');
viabel ("Electric demand (kW) ')

% Plot the error curve in a diffesrent Figure,
%

figqure (3);

clf;

plot {(t-yi;

rlabel ( "Hour');

viabel ('Srror size (kW) ') ;

display ("ANN training completed. Hit any key to continue...');
pause;

Q.
%

% Now uge the trained ANN to make prediction on test data.
%

totalhrs = ndays*nhrspdy;

pl = delay0(ntrnhrs+l:totalhrs,1:4); % input

%

% the target is the electric usage at time t

tl = delayl (ntrnhrs+l:totalhrs, 5);

[tinn, minp, maxp, toutn, mint, maxt ] = premnmx{pl’, t1%};
vin = sim(net, tinn);

vl = postmnmx{vin, mint, mazxt)';

err = tl-yl;

figure {1y;
olf;
plot{cly;

hold;

plot{ydl, 'z ;

legend { 'neasured’, 'predicted? ) ;
xlabel { "Hour');
ylabel { "Electric demand (kW)’);

figure (2} ;
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olfs

plot {ere) ;

Alabel (YHour');

ylabel (‘Error size (kW) )

o

fligure (3);
clf;
Ihbar, xhi
bar{Aw,.bA:
xlabel {"Error @ (kWY 'y
yld%@"'Nnmb@L of error occurance’
b Clengbh(yvi)) /mean{tl);
)if;
1

—r ,ms
g'!-
?ﬁ
¥ (a1
-
S
L5
s
~

Y oe

ii

mae nmvm{exr}fﬁqrd(;ﬁmqth{y
prantf(' oV

1h.3e, rmese = $11.3e\n', v, rmze);

2.Code for Experiment 4- Accumulative training with time-lagged temperature
measurements as input

p
febe
St
,.z

slectric demand prediction using accumulative ANN training

anr;

format short e;

load delayvk.mbx

lag = &3

[arows, ncole] = sizeldelayk):

% time lagged input H{L), P34 {t-k), Tw(t- )y, Tl le-10)
matin = delayk(:, 1:14);
% outpuot

3

%
matout = delayk{:,15);
nhrs = 127
nday VA
nbase = nhrs*nday; % nunber of data sets used to train the initial
ANN
interval = 12; % The ANN ils trained every interval hours
nsteps = 20; % number of davs to be predicted
ninput = ¢;
for 4 = 1:nsteps
%

[¥)

5 preprocess tralning data

[pn, meanp, stdp, tn, wmeant, stdtl= prastd{matin', matout?®);
[ptrans, transMatl=prepca(pn,’.01)

pr o= mirmax{ptrans);

ninput = size (ptrans,l);

fprintf ('3 = %d, ninput = %d\n', 4, ninput);
% create a new network only in the first iteration;

it (g

I ninput
nelt = newff {(pr, [ninput 2*ninput+l 1], {'tansig®

ninput )

14
‘purelin® }, "trainlm');
net. trainParam. lr = 0,01;



L e YT
1. 0a~d;

@nd;

% train the network, compute the training time
%

patime; [net, trl=traln{net, phtrans, tr);opubtis

% sea how ANN performs on the training data;

yioo= simi{net, phtrans);

ks
kd he ANN outpul to with the

.vqu
3t£{yn,
b {Lsnbhas

% Plet both the target and the ANN output to see how they di

Figure (1) ;

wlf

plot{ty;

hold;

plot{y, "v');

legend {"tavget’, 'ann-output 'y ;

i
k3

P

¢ Plot the error curve in a
flgure (2 ;

clf;

plot (t-y);

fprint€ ("ANN training completed. Hit any key to continue...\n'
Bpavse;

arent Figure,

.

% Now use the trained ANN to make prediction on test data.

21 o= matin nba%@+]:nba%@+int@rval HE I
P '
= matout {nbase+l:nbasetinterval};

the target is the slectric usage at time t

pln = trastd
tln = tLdufd
plntrans = t
¥in = sim{ne
¥yl = postst

{pl, meanp, stdp);

{tl, meant, stdt);

rapca{pin, transMat);

L, plntrans);

divyvin, meant, stdt):

wl:‘ nterval*i) = tl-yl;

+1l:interval*j) = t1;
+lrinterval ) = yi;

% accumulate training data
nbase == nbase + interval;
ninput0 = ninput;

and;

figure (1} ;



-

lgure (2},
ol

ihbay, xhl=hist F
bar(zh, b :
wlabel (7 Lxror & YV

viabel ("Number of srror ogcurance');
wvwnmrm{pw Bt ghh{mesy) ) /mean (nesy ) ;
le gth\m”‘ﬁ>3;

norm{prec-
ﬁprlnkf(’ 11, 3e\nt, ov, rmsed;

3.Code for Experiment 15- -On-line prediction using SCi(t) with sliding window

3

% electric demand prediction using sliding window ANN tra.
cutoff=0,01;

trnalg=2;

nepochg=25;

ning

Form&t short

L4
-~

% load ilce bank status indicator. When ice bank has
% ice left, the chiller is turned off.

load icestat,tut
s
$]

% load working hour measurements. Part of the data will
$ be used to train the first ANN which predicts the

% variations of the chiller usage with respect to

% the environmental and operational variables.

:,
)

load chilwork.txt

% load the entire meaurement data. Part of the
% be used to ts he ANN.

load c¢hillall.txt

[nrows, neols] = size(chillall);

= reorganize the 1, seperate o
remowve the zero data from the original

cv, rmse] = csldpca{cutoff, trnalg, nepochs);



Cﬁi ata
Lmnz,
lags=6;

% Take

o,
i

trdata
[mtr, nt

% Lra1ninq data from August, 2002

plrags
pﬂndw%l)
nbase=phe x; :

% dnput variab)
matin = |

,xdataitb@q+ldq 1

¥

"“5 w

Eoy
matim

s lag
»{mﬁ" T
txi&ta(;pv_

aend;

ninput
matout
% {3111";313?“

% normalize the

»{matin, 2):
a{tbeg+lag:tend, 5);

data

nsteps = 10;
htls=cputime;
ninputl={;

for i= 1:nsteps

[pn, meanp, stdp, tn, meant, stdt]
{ptrans, +transMat] prepca{pn, 0.
ninput = size(ptrans,1i);
&pllhtf{'finpUL = $d\n',

fprintf{'step = $d\n',i);

ninput);

pr = minmax(ptrans);

5 oreate
% 1f the
network
5 otherwi

a new network only in
number of inputs in
is kept unchanged;
@ Lt is reinitialized

~e pinput()

e

the

avary

vious hour
\:Taﬂde,G:C}.
Tand~1,18:20

to May

bhe First iter

fol

43

twe

2003

1

o406 ...
SRR

estd{matin’

lowing iterations

)
fipr, [ninput 2*niopput+l 1], {‘tansig’

dayes

the training datae sat

gdue to the &

matout');

At Lo

s the

[SN
25

same,



wwlf ipr, Ininput
angdm®) ;

"purelin

and;
nwtl

netl, trainParam, goal w
l,"l)ﬁ
&

network

thae

rain(netl, ptrans,

muisl ANN

ginal

postprocess the
targel

meant, stdt);

the

% Plot both

target

figure{(1);

clfy

plot{t, ==ty ;
hold;

plot{y, "r'};
legend { “target’,
display{
pause;

%

% Now use the trained ANN to make prediction on test data.

@
4

ohil

for j = 2:lag

TANN training completed.

Ol

nﬁardm.cpawhﬂ = nepochs;

(e=-4;

b

training data;

ocutput to

and the ANN output to

ann-output ')

Hit

COMPALES

lag~1,

with the

how they

fehillall (nbasetlag~linbase+tinterval+lag-1,4:86).
lall {nbaset+lag~Llinbasetinterval+

MS.ZO;};

P <5 B

i f

any key to continue...’

chillall (nkaset+lag~i:nbasetinterval+lag— 3,10.&0)];

5 target of testing data
1l o= chillal l{nb wsetlaginbaset
% the the electric
pln = trastd{pl®, meanp,
tln = trastd{tl’, meant,
pintrans = poa(pln, t
yin = =im(netl, plntrans);
vl = pogtstd(ylin, meant,

stdt

ansMat

interval+

demand at bime

stdp);

} s

r
pl =[pl chillall (pbaset+lag-7:nbase+interval+lag-7
d

lag, 5);

'
[

e,

.

2



15

indng da

R TLOEY GG B A B 8
LR BT EREEHEEY

LA MO - SN

LRLHLLLLGR 00
EN R SEREEEBEYS

R

e AR IR R T
R y\(éu SEHERERY

[
)

tlagiobaset

% chiller on-off status

foutsyl vy,
tatus value

first network

” (:iw-“

Jeliinterval*ivl) = £1;
JHlrinterval *{+1Y = fout;

newliptsf§
plinewipt,
Ll newipt,
1E (pla~=
matinespl
matoutst
alse
matin=matin;
matout=matoul;
end:

sPlot the predicted slectric demand and actual demand
figure{2);

elf;

plot(mesr, '--1);

hold;

plet{pred, 'r');

legend ( "measured’, 'predicted’);

xlabel { "Hour');

ylabel { "Chiller electric demand(kW)');

Brr=mesyr-pred;

figure {33 ;

ol

plot(ery);

zlabel { *Hour');

ylab 2L { "Brror size(kW)"*
figure {4);

clf;

{hbar, xh] nhi st {err, 15);
bar (xh, hbar)

wlabel { 'E,rr@r aive (kW) ") ;

ylabel { *Number of occurance');

cv = normierr)/sqet (length{err)) /mean(tl);
rmse = normierr)/sgrt{length{err));
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Fprintf oy = S11.3e\nt, ov, rmee);

s

nbase
ninputleninput;

and;
i Ze=gpias -
htiotal




APPENDIX C - METHODS OF CONVERTING
ORIGINAL DATA OBTAINED FROM CANMET TO
MATLAB FORMAT

To make use of the data in the MATLAB ANN prediction program, we converted
EnergyData.txt into a matrix format that can be easily manipulated in MATLAB. Two
matrix files are created as the result of this conversion process. One contains
measurements related only to chiller energy prediction, and the other contains
measurements related only to boiler energy prediction. Each matrix consists of multiple
rows and columas. The first four columns list the month, the day, the year and the hour at
which the measurements are made. Column S represents either the chiller energy demand
(kW) or the boiler gas demand (kW), The next columns correspond to other independent
variables extracted from the original data. Under this representation, each matrix row
containg the values of various variables measured at a specific hour. An example of the
matrix file corresponding to heater gas usage is shown below, where

Ist column: month

2nd column: day

3rd column: year

dth column: hour

Sth column: kw_gaz

6th column: tschl

7th columin: tsch2

8th column: tta_eau_rep

9th column: tir_eau_rep
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10th column: ad_chaudiere]
Ith column: ad_chaudiere?
12th column: gv_heat_central
13th column: modul_chaud1
14th column: modul_chaud2
15th column: fete_m2 _m3

16th colummn: ws_systeme_m3

17th column: text_12

To change the original data into the format described above, we took the following steps:

First we create a table called gazrable that contains 6696 rows and 17 columns, where
6696 is the total number of hours between 12:00 pm 6/21/2002 and 12:00 am 3/27/2003.
Hach row of this table is used to store data measured at a particular hour. The data entries
of the table are initialized to ~99.0 if they are floating point numbers and -1 if they are
integer values. This initial value indicates that no value was read from the database yet.
The first column of the table lists the month in which the data is measured, the second

column lists the day, the third column lists the year, and the fourth column lists the hour.

We then read the EnergyData.txt file line by line. Each line is parsed so that the month,

date, year, hour, variable name and its quantity are separated,
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Based on the month, date, vear and hour at which the variable is measured we can easily
caleulate the row index associated with the measured data just retrieved from

EnergyData.ixt.

Once the row index 7 is obtained, we can simply store the measured quantity to the

appropriate columau of the i-th row in gaztable.

Once this conversion process is completed, it is discovered that gaztable containg many ~
1.0 and -1, the original initialized values indicating that the original data set is
mcomplete. As a result, a piece of code is added to go through the gaztable and print out
the beginning and ending hour of the period during which the values of KW _GAZ are
missing. A separate file called gazpatch.txt is created to store only rows of gaztable that

correspond to missing data. The file looks like the following:

Boahd
R 01
B0er O3l )
QL -4

DG

B F00G0L -1 ] =h B 200R400E 8. 900ae00Y w1 b -8 B00eD0L

S00eyidl -4,
B

bl
GG 001 -8,

-2 H00E400]
LH00e+001 -
IO HO0T <L -

L B0 001 -3
5. 9000001 -2, 4

LAGIERRES

. ki » 400
~8, 9006+001

.::’('AOe';H'H); .;i()(\c-t-mﬂi i

SO0 0L w3, HUG00%
“B L HOCu UL ~8, D00e 5. 900ee041 <3
<L QUDaEO0L -8, B0 & a+GhL - i
=8, 8006001 -9, 8006+001 -9, 800E$O01 -2, 8000+000 ~L -1

9, 900RAROL -

=8, SODakI0E

Using gazpatch.txt as the starting point, we can then interpolate the missing data
manually in gazpatch.txt. Once the interpolated data has been created in gazpatch.ixt, an
additional c¢ode is used to read both the original data file EnergyData.txt and the

interpolated data file gazpatch.txt to create a final matrix data file gaztable.txt.
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A similar strategy is used to create a data file for chiller energy demand.

Figure. 1 shows the diagram of the data processing for gas usage data.

Criginal data

Read one line at a time

&

Parse to extract ™ Create a table
month, day, year, indexed by

hour and the ) month, day, year
measurements //

R ——a

st

"

v
Find row index / \ ; Er
based on month, T
j

day, year, hour.

Insert into the i-th
row of the tabie

Figure.1 Data processing diagram for gas usage
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