On Refactoring of Use Case Models

Jian Xu

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

February 2004

© Jian Xu, 2004



3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91141-1
Our file  Notre référence
ISBN: 0-612-91141-1

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.



i



ABSTRACT

On Refactoring of Use Case Models

Jian Xu

Use case models are widely used in software engineering. It is important to improve the
understandability and  maintainability of use case models. Refactoring is a
behavior-preserving transformation. The research shows that refactoring as a concept can
be broadened to apply to use case models to improve their understandability,
changeability, reusability and traceability. In this thesis a use case metamodel is described
for use case modeling in detail. Then some refactoring rules for the use case metamodel
are defined and implemented. Based on the Drawlets framework, a prototype tool is
implemented for defining the use case models and applying refactorings to the models. A
case study js also presented to illustrate the practical use of these refactorings. The

experience shows that the tool facilitates the refactoring process greatly.

it



Acknowledgements

I would like to thank my supervisor, Prof. Gregory Butler, for his guidance,
encouragement and inspiration. Without his suggestions and helps, the work would not be
what it is today.

I would also like to thank Kexing Rui who shares his great idea with us and helps us on
making the idea come true,

1 also want to thank the people in our research group, Wei Yu and Renhong Luo, for their
helps, contributions and experiences so that I can finish my work as my might expect.

Finally, I wish to dedicate the work to my family, especially to my wife Xiuhui, for their
loves, supports and encouragements throughout the entire process of my master program
study.



Table of Contents

LAst Of Tables v A e R A e s s At en s e v Vi
2. Requirement Engineering and Use Case Model v oot e e siesaasseesamresreesaeneare &
2.1 Requirement ENgINeeIing oo ieeoseesianesesos s sssesessss seneesessn RVTRSSRP" |

2.2 U8 Ca88 MOGE]ovvviiriviii it sttt msarss s s tes e eseresesen s ennens 5

3. Use Case Metamodol .v e ensten s essaiesssesessessnesssssesesessssessesessens
3.1 Regnell's Use Case Metamodel i ninineeiceseessresseensessseseasersssnorsesses L

3.2 Use Case Metamode] ..o s sscssneeseoresoessessesseessnesnsoessens 13

A, RETACTOTING 1orrvevrciitiiimniminsinss e scar e sesinsnsss st msessess s sns st ssaereensseonensessesassonnensssenssssonerons 20
A1 INEOAUCHON. oottt vttt eas s st s ansesereresesessesseesesmsnsssesesennnsresees 20}

4.2 Refactorings on Use Case Modela. o, RSN SUO S VSONPRORROII ¥ |
4.2.1 Refactoring Definitions.......e.ccveivennnn. RN e et s e e 27

4.2.2 Impleroented Refactorings oo eieesnen. cerrernen e RO rereneeneas vrneerenen 31

5. Tool Design and Inplementation ...o...veevieicncnes s vevecnren A e et aber coennrs 41
5.1 Drawlets FrameworK. oo . R . et e 41

5.2 System Desigi oo s s e reenesannesrenare e eeences e B3
5.2.1 Overview,......... TR rcrcanaren e b a et ser et et n st ran e TR |

5.2.2 Data Structure and StOrage ....oooevevervnnnnn. e e e T, 44

5.2.3 System Framework Design ..., e e RO RIOT . ¥ |

5.3 Summary........... devenseere e T TR L b e et bbb eR b e 4he e a ke ar e s beteesenn reenenerns 69

6. Case Study ..o e e v bbb R et b e e et e reveeenen 71
6.1 Requirements of ATM System .......ccoeoenan.n. e ea e IO crvreens rireerrens reerrenees W7

6.2 Creation of ATM Use Case Model......... pene e e US|

6.3 SUMMArY ..cocvvvevvevnrierreneicernas bbb st as et e R e R e R e St esarerentetenbeenereenon 83

7. Concluasions..evrreerennionnnens VRS U PSSOV UORTRNON 85

Appendices .............. v s OO OO TR v s L92
A. Architecture of Refactoring Tool v, e e et e vea e s RO 92

B. Use Case Metamodel of ATM system ... STV RSO ceresesninn s saserenarany 93

B.1 Environment Level............ T OO B SS PSR OUUUOPOPRIIR.* .

B.2 Structure Level ... U e e enes SRR e covmreeronns 97

B3 Event Level oo es s sesmsessenssonseseomonnenne. 106



List of Figures

Figure 1. Regnell's use case metnmiode] e iiecsiseecen e eeesrensressesesossssnesnonn. 1
Figure 2. Use case metamode] oo s scssscsesssasseeserssessesessmeesesneenores 14
Figure 3. Major interfaces in Drawlets Framework .o o seeceseesssnesoness oo 41
Figure 4. XML representation of use case and 40t0% ..o eserinomeons e esesssersacsasarsesess 50
Figure 8. XML representation of relaionship ... e oo seresvssesessosnsonees 51
Figure 6. XML representation of other elements ..o, DN TRIURSP: 1
Figuare 7. XML representation of epiSodes ..o ceeresresesseresessesseeoesvensenens 33
Figure 8, XML representation of GVENLS .o remncrioniisssssesesresossssssesseessesesessensss 34
Figure 9. Use case diagram of refactoring 1006 ..o oo eesecosnesesesrern 38
Figure 10, Use case diagram of environment level v, e s e et sres 99
Figure 11, Use case diagram of SUcture 10Vel o coeneresresssesssnsessser e 50
Figure 12. Use case diagram of event level ..., hes v e e et 60
Figure 13. Packages of refactoring tool ..., ST e e e s sarasna 60
Figure 14. Packages of use case model on environment level ............. bt e crerreees 61
Figure 15, Class diagram of object definition ......ooevvcevnenennn. caveranes s werrerrens RN .62
Figure 16. Class diagram of EntityBase......ocooovvernivenen. deneonraniaraeas rrore e RO crervnne 02
Figure 17. Class diagram of EntityBaseTool ........... e SRS e 63
Figure 18. Class diagram of RelationBase........c......... rrces e ceereesernaes TN rree s 64
Figure 19. Class diagram of RelationBaseTook........ocoooveviernoneeieereens e, e e s 05

figure 20, Class diagram of Refactoring .............. ST UORTRION e s .05
Figure 21. Class diagram of XML parser............... e s PR 66
Figure 22. Class diagram of goal model ................. e et e es 67
Figure 23. Class diagram of episode mOdel.....ocviamiriorerinseeses s esss oo seeseeses s s 67
Figure 24. Class diagram of eVent MOACL ..o oo eseesece et s eeese e en 68
Figure 25. Screenshot of refactoring 00 ..o oviieererereeens feraev e e aen T e 69
Figure 26. Use case model of ATM system after SEEP Lo eveeceeeos oo .76
Figure 27. Use case model of ATM system after Step 2 ..ov..vvveveenee. e e w77
Figure 28, Use case model of ATM system after Step 3 .o SOV OTRN bt 77
Figure 29, Use case model of ATM system after Step 4 .vovvvveenee. e r et an e wverene 18
Figure 30. Use case model of ATM system after Step 5 .voovcvvivennen. rreee e et L7179
Figare 31, Use case model of ATM systerm after SEP 6 oo eevecerenersessessenenns 80
Figure 32. Use case model of ATM 8ystem after S 7 v sseceveess e, 80
Figure 33, Use case model of ATM system alter SIep 8 ooveviovverrvrcviinsseeesesesressees s eeeseens, 81
Figure 34, Use case model of ATM system after Step 9 oo, USROSV v v 82
Figure 35. Use case model of ATM system after Step 10 ..o, coreimat e PR e B3
Figure 36. Architecture of Refactoring Tool cv.verinerecnvrene. renereees e .92

vi



List of Tables

Table 1. Use case relationship .o SR U U OTOUISRPUORURIOR &
Table 2. Summary of Relationships ..o sessssssssssemsenssries 10
Table 3. Refactorings on the Eovironmment Level i ineesreanes 28
Table 4. Refactorings on the Stuchire Level i osceneensseriens 29
Table 5. Refactorings on the Event Level s snsasseesss 30

vii



1. Introduction

Requirements change. [t happens sometimes right before the system is going to be
released. Those projects to be done in a very short time will take more risks, It is obvious
that to make a clear and complete requirement specification is one of the key points of
finishing a software system with all the required features on time. Different ways have
been tried and applied to building the requirement model as well as refactoring on the
model in recent years. Use case model is one of the very popular ways of construcling the
requirement model. It shows the functional requirements of the software system. In the
use case model, some elements are used to describe the model. For example, a use case
represents a series of transactions between the actor and the system. An actor represents a
certain user type or a role played by users. It is a challenge to manage use case model
effectively during software evolution,

Source code refactoring has already been used in mature development products and
enhanced the quality of codes greatly. But to make clearly what the users want and define
the requirements as precise and complete as possible is always better than altering the
system design and architecture in the later stage or just before the system to be released. 1
choose 10 work on extending the concept of refactoring from source code to use case

model in order to get better-desctibed requirement model. My work attemipts to show



how refactoring as a concept can be broadened to apply to use case models to improve

their understandability, changeability, reusability and traceability.
1.1 Objective

In the thests, a use case metamodel and some refactoring rules are introduced. Based
on the extension of Regnell's use case metamodel, a three-level use case metamodel 1
used to record different aspects of system requirements. A refactoring tool is designed
and implemented to help people define the use case model and apply refactoring rules to
the use case model easily. The implementation of the metamodel and the refactoring rules
in the refactoring tool is also discussed. In the case study, the use case model of an ATM
system is created and improved by using refactoring rules according to the changes on
requirements. The experiences with the tool show that it greatly facilitates the defining
and refactoring process.
The whole project is teamwork. I worked with other two graduate students. We all
took part in the following work of the project:
a) discuss with Rui about the use case metamodel and its implementation
b) discuss with Rui about the definition of the refactoring rules and the
implementation of the rules in the refactoring tool
¢) discuss and design the general systemn structure and data structure of the
refactoring tool

Besides the work done together with other two students, I did the following work of

fav



the project independently:

a) understand the concept of use case model including Regnell’s use case metamodel

and refactoring

b) study and extend Drawlets framework to be the base framework of the tool

¢) design data structure and system structure of use case model on environment level

d) implement use case model on environment level in the tool

e) implement refactoring rules related to use case model on environment level

f) use the tool to make an case study which is a use case model of ATM systen

The implementation of goal and task model editor and related refactoring rules was
done by Renhong Luo. The implementation of episode and event model editor and related

refactoring rules was done by Wei Yu.
1.2 Scope of Thesis

The thesis is organized as follows. In section two, requirement engineering and use
case model are introduced. In section three, our own use case metamodel is discussed. In
section four, refactoring is mentioned and the refactoring rules are defined for the use
case metamodel. In section five, Drawlets framework is described. Also the system
design, modules and data structure of the tool are described in the same section. In
section six, a case study is used o show the way of defining a use case model with the

tool. The thesis is summarized and the future work is discussed in section seven.



2. Requirement Engineering and Use Case
Model

2.1 Requirement Engineering

The essence of software engineering is constructing and maintaining computer-based
systems. This construction typically commences with Requirement Engineering (RE),
The major objective of Requirement Engineering is defining the purpose of a proposed
system and outlining its external behaviors. RE also gives strong support for system
design, implementation and testing.

Requirement Engineering activities can be divided into five categories: [29]

1) Requirements elicitation which is the process of exploring, acquiring, and reifying
user requirements through discussion with the problem owners, introspection,
observation of the existing system, task analysis and so on.

2) Requirements modeling where alternative models for target composite system are
elaborated and a conceptual model of the enterprise as seen by the systems
eventual users are produced. This model is meant to capture as much of the
semantics of the real world as possible and is used as the foundation for an

abstract description of the requirements.



3) Requirements specification where the various components of the models are
precisely described and possibly formalized to act as a basis for contractual
purposes between the problem owners and the developers.

4) Requirements validation where the specifications are evaluated and analyzed
against correctness properties (such as completeness and consistency), and
feasibility properties (such as cost and resources needed),

5) Requirements management refers 1o the set of procedures that assists in
maintaining the evolution of requirements throughout the development process.
These include planning, traceability, and impact assessment of changing
requirements and so on.

A software requirement is a feature, functionality, or property that a software product

must have: [26]
1) Auser-level capability (e.g., the spreadsheet software should provide a facility
for computing the standard deviation)
2) Aspecific constraint on the software system (e.g., all column and row

surmmations should be updated every 15 seconds)

2.2 Use Case Model

In order to have a well-documented description of the system requirements, use case
was introduced and developed in the past years. After years of development, use cases

have been a powerful and widely recognized ool for functional requirements elicitation,



Following are some people who made great contributions on use case concept and its
usage.

Ivar Jacobson is regarded as the inventor of use cases. He defined use case as follows:
“Ause case is a specific way of using the system by using some part of the functionality.
A use case constitutes a complete course of interaction that takes place between an actor
and the system” [15]. Although this definition is brief, broad, and imprecise, his
introduction of use cases immediately improved the situation that requirement documents
often have a poor fit with both business reengineering and implementation. Use cases
have been widely used in requirement gathering and domain analysis. With the release of
the Unified Modeling Language (UML) specification version 1.1, the scope of use cases
has broadened to include modeling constructs at all levels. Currently, there are various
approaches to describe and formalize use cases. They represent different perspectives on
use case modeling.

Jacobson, Griss, and Jonsson provide a thorough methodology addressing
architectural, process, and organizational aspects of software reuse [16]. They propose
requirement gathering through use scenarios, first captured informally, then expressed
more formally in a use case model. The use case model is considered to be the starting
point for the test model. Each exccution of a use case described as a scenario will
correspond to one test case. They paid considerable attention to component systems and
variability mechanisms. Variability in component systems oceurs at variation points and

utilizes one of three mechanisms: inheritance, configuration, and parameterization.

6



Inheritance is used to specialize or extend behavior through the <<usesy> and
<<extends>>  stereotypes. Configuration slots are filled by choosing alternative
component implementations. Parameterization can take the form of a bound variable, a
template instantiation, or an evaluated expression. Moreover, they introduced
responsibility into use case description so that use cases can provide usage-oriented view
of component system documentation that enables a developer to leam more quickly how
to design from the component systems by seeing how they were intended to be used.

Cockburn identifies four dimensions to use case descriptions: purpose, content,
plurality, and structure [5]. Bach of these dimensions has an enumerated domain value.
Purpose can be either for user stories or requirements. Content can be contradicting,
consistent prose, or formal content. Plurality is either 1 or multiple. Structure can be
unstructured, semi-formal, or formal structure. He introduces a theory based on a small
model of communication, distinguishing goals as a key element of use cases. In so doing,
goals and goal failures can be explicitly discussed and tracked. The goals structure is
useful for project management, project tracking, staffing, and business process
reengineering. His approach is defined as requirements, consistent prose, multiple
scenario, and semi formal structure, which is the same as Jacobson s approach.

UCDA (Use case driven analysisy has basic concepts like actors and use cases. An
Actor is a specific role played by a system user, and represents a category of users that
demonstrate similar behavior when using the system. By users means both human beings,

and other external systems or devices communicating with the system. An actor is

b



regarded as a class and users as instances of this class. One user may appear as several
instances of different actors depending on the context. A use case is a system usage
scenario characteristic of a specific actor. A number of typical use cases for every actor
are identified during the analysis, Use cases are expressed in natural language with terms
from the problem domain.

In Regnell's thesis, he mentioned the new way of requirement engineering which is
called UORE (Usage-Oriented Requirement Engineering). In the thesis, UCDA is
extended with a synthesis phase, where use cases are formalized and integrated into a
Synthesized Usage Model.

Regnell investigates the role of use case modeling in requirements engineering and
its relation to system verification and validation [20]. His approach utilizes three levels
for use case modeling. It allows a hierarchical structure and enables graphical
representation at different abstraction levels. He investigates the possibility of integrating
the two disciplines of use case modeling and statistical usage testing and discusses how
they can be integrated to form a scamless transition from requirements models to test
models for reliability certification. Two approaches are proposed for the integration of the
use case model and the operational profile model. He also defines use case syntax and
semantics.

Buhr has developed Use Case Maps (UCMs) as a visual notation for comprehending
and developing the architecture for emergent behavior in large, complex, self modifying

systems [3]. UCMs are a two dimensional map of cause-effect chains from points of



stimuli through the system to points where responses are observed. UCMs consist of
three primary constructs. Responsibilities are represented as dots, with the responsibility
described by active natural language phrases. Causality is ropresented as a path that
connects the dots, with start and end points that have associated pre- and post-conditions.
Components are represented as simple boxes with associated responsibilities. UCMs can
be refined through decomposition and partitioned by factoring.

UML represents the merger of three main contributing methodologies: OMT, Booch,
and Objectory. However, UML’s definition for use case has shifted from Jacobson's
original emphasis on use to a more system-centric viewpoint. According to UML [25]: a
use case is the specification of sequences of actions including variant sequences and error
sequences that a system, subsystem, or class can perform by interacting with outside
actors.

The OPEN Modeling Language (OML) is a competing notation to the UML. It
represents the merger of SOMA [11], MOSES [12] and Firesmith [13]. A key principle
behind OML is the notion of tasks and techniques. A task may be accomplished by one or
more appropriate techniques. In OML, the relationship between a use case and a scenario
is described in several ways as a specialization of a use case, an instance of a use case,
and as a component of a use case. A use case links with objects via a participation
association. OML also defines a specific category of scenario relationships, which are
precedes, invokes and uses. In OML, capturing user requirements involves the use of task

seripts, which are supported by a task-action grammar that consists of, a: Subject Verb



Direct Object Preposition lndirect Object (SVDPI). These task scripts can be organized
into composition, classification and usage structures. Component scripts are derived
through hierarchical task analysis. Side scripts deal with exceptions. Task scripts deal
with business processes and not business functions. OML has explicit support for rule
assertions that an object’s operations must not violate. They take the form of

pre-conditions and post-conditions and invariants.

10



3. Use Case Metamodel
3.1 Regnell's Use Case Metamodel

In Regnell’s use case metamodel, he defines three levels for use case modeling, His
model allows a hicrarchical structure and enables graphical representation at different
abstraction levels. The conceptual framework for the presented use case modeling

approach {20] and their relations are illustrated in Figure 1

u N = has ‘
agr ol feton e 3ol
. partcipates-in bsotisfies
Environment gy e beipa TS
Use Case o Servies
fS@&J&ﬁfﬁ%‘gf!&my %\M
Scenatio consste-of
Etmgmm { 8 dafines
BV 8
, Episode Praecond Fostcond
OIS G
SOt sy 5 gt
CONSIHLS l Stimulus
Event B-a
Level Event |- Response
{53
Action

Figure 1. Regnell’s use case metamodel
In figure 1, a use case model can be viewed on different abstraction levels.
1} The environment level
The wsers belong 1o the intended target system’s environment and can be either

humans or other sofiware/hardware based systems. A service is a package of

1



2)

functional entities (features) offered to the users in order to satisfy one or more
goals that the users have. Users can be of different types, called actors. A user is
thus an instance of an actor. An actor (also called user type or agent) represents a
set of users that have some common characteristics with respect to why and how
they use the target systemn. Each actor has a set of goals, reflecting such common
characteristics. Goals are objectives that users have when using the services of a
target system. Thus, goals are wsed to categorize users into actors. The goals are
described as patterns using general temporal operators such as achieve, cease, and
maintain [7]. A use case represents a usage situation where one or more services of
the target system are used by one or more actors with the aim to accomplish one or
more goals.

The structure level

The structure level includes concepts that relates to the internal structure of use
cases, such as different variants and parts of a use case. A use case may be divided
into coherent parts, called episodes. The same episode can occur in many use cases.
A scenario is a specific realization of a use case described as a sequence of a finite
number of events. A scenario may either model a successful or an unsuccessful
accomplishment of one or more goals. A use case may cover an unlimited number of
scenarios as it may inclhude alternatives and repetitions. A scenario, however, is ¢
specific and bound realization of a use case, with all choices determined to one

specific path. Every use case (and scenario) has a context that demarcates the scope



of the use case and defines its preconditions (properties of the environment and the
target system that need to be fulfilled in order to invoke the use case) and
post-conditions (properties of the environment and the target system at use case
termination). It is possible to have different degrees of scenario instantiation [18]; a
completely instantiated scenario corresponds to a system usage trace, where the
sequence of events is totally ordered and every parameter has a specific value. A
scenario may also be on a slightly higher level, having symbolic names instead of
specific parameter values.
3) The event level

The event level represents a lower abstraction level where the individual events are
characterized. The lower abstraction level of uses cases, scenarios, and episodes
includes events of three kinds: stimuli (messages from users to the target system),
responses (messages from the target system to users), and actions (target system
intrinsic events which are atomic in the sense that there is no communication
between the target system and the users that participate in the use case). Stimuli and
responses can have parameters that carry data to and from the target system. In
order to express parameters, and also conditions on data, a use case model may be

complemented by a data model.

3.2 Use Case Metamodel

For our own use case metamodel, we follow Mr. Rui’s (Ph.ID.) proposal [23] that is

13



an extension of the Regnell's use case metamodel. Our metamodel also has three levels
that are environment level, structure level and event level, Figure 2 shows our use case

metamodel,

Task
1. Fulfills

Has

User Actor Goal
P nstanciates * L1.* Pas *
) @ F
Purticipates~ia Satinfies
* .‘1,,4 £
Participatas-in » [ilge Casel 1« Describes » harvice 1 3¢
- o s e it A gt i 3 £
Ervvivonment Lovel o ATH e AN CR TR ) TR
I T
i Consistseof
J— J—— T SR E—— [opep— - P Ji— —
L
| * 0.1
i . -
Scenarip R bpisade Context
] v‘g”“zi l #
Structure Lovel T e
L Gefines Defines
* »
FreCondition PostCandition
Consists-of
K
Event Lewvel . Event -
Jor oo
/!
Stimufus Response Actian

LA L

« [Parameter ] »

Figure 2, Use case metamodel



We deline the most comprehensive use case relations in owr use case metamodel,

which cover UML, OML, SOMA, OOSE, and so on.
Objectory SOMA OML UML
Jacobson Graham Firesmith Rational
Use Case | ygeg Usage Invokes Includes
Relationship | ) N
Extends Composition Precedes X tends
Specialization Jeneralization

Table 1. Use case relationship

In the Table | we list the terminology on use case relations as described for
Objectory by Jacobson [15], for SOMA by Graham [11], in the OPEN Modeling
Language (OML) reference manual by Firesmith [8] and the Unified Modeling Language
(UML) version 1.3 [14].

Among these relations, the uses-relation is semantically equivalent with an
includes-relation. In fact, uses-relation is defined in UML version 1.1 [19], but it is
replaced by includes-relation in UML version 1.3, Basically, the usage-relation,
composition-relation and invokes-relation can be expressed by includes-relation. Since
both specialization-relation and generalization-relation aim at a hierarchical structure
with inheritance, we only keep generalization-relation in our metamodel. Besides these
relations, we add similarity-relation because it provides a way to carry forward insight
about relationships among use cases when the exact nature of the relationship is not yet
clear. We add equivalence relation because it can be very useful when a single definition
covers two or more different intensions from the user’s perspective. As Larry L.

15



Constantine puts: it makes it easier o validate the model with users and customers while

also assuring that only one design will be developed [6]. Table 2 shown below is the

summary of relationships defined in our use case metamodel.

Actor Generalization
Actor generalization
Relatioship
|
}
Use case | Inclusion Precedence
Extension Similarity
Generalization Equivalence
inclusion precedance similarity
| !
L L }
. - , . v
extension Use Case Relationship L PgUvalEnCe
Y
I . .
generalization
Task Inclusion Generalization
inclusion Task generalization
i Relatioship |o
Goal Inclusion Generalization
£ . o bw oty
inclusion N Gaol generalization
{4 Relatinship |«

Table 2. Summary of Relationships

16



An mclusion relationship between two use cases means that the behavior defined in
the target use case is included at one location in the sequence of behavior performed by
an instance of the base use case. It specifies that one use case explicitly incorporates the
behavior of another at the given point. When one use case instance reaches the location
where the behavior of another use case is to be included, it performs all the bebavior
described by the inctuded use case and then continues according to its original use case.
One use case may be included in several other use cases and one use case may include
several other use cases. The included use case may not be dependent on the base use case,
In that sense the included use case represents encapsulated bebavior that may easily be
reused in several use cases. Morceover, the base use case may only be dependent on the
results of performing the included behavior and not on structure, like attributes and
associations, of the included use case.

An extension relationship between two use cases specifies that one use case extends
the behavior of another at the given extension point. One use case extends another by
introducing alternative or exceptional processes. It defines that instances of a use case
may be augmented with some additional behavior defined in an extending use case. The
extension relationship containg a condition and references a sequence of extension points
in the target use case.

A generalization relationship between two use cases implies that the child use case
contains all the attributes, sequences of behavior, and extension points detined in the

parent use case, and participates in all relationships of the parent use case. The child use

17



case may also define new behavior sequences as well as add additional behavior and
specialize existing behavior of the inherited ones,

A similanty relationship between two use cases defines that one use case corresponds
to or is similar to or resembles another in some unspecified ways. Similarity is a
relationship often noted early in use case modeling. It provides a way to carry forward
insight about relationships among use case even when the exact nature of the relationship
1s not yet clear.

An equivalence relationship between two use cases defines that one use case is
equivalent to another, that is, serves as an alias. Equivalence flags those cases where a
single definition can cover what are, from the user s perspective, two or more different
intensions. It makes it easier to validate the model with users and customers while also
assuring that only one design will be developed.

A precedence relationship between two use cases define that one use case is
sequenced (appended) to the behavior of the preceding use case. Two or more actors may
have commonalities, i.e. communicate with the same set of use cases in the same way.
The commonality is expressed with generalizations to another (possibly abstract) actor,
which madels the common role(s). This means that the child actor will be able 1o play the
same roles as the parent actor, L.e. communicate with the same set of use cases, as the
parent actor,

An inclusion relationship between two tasks defines that one task contains another

task, which is a subtask. One subtask may be included in several other tasks and one task

18



may include several other subtasks. Two or more tasks may have commoualities, i.c.
contain the same set of subtasks. The commonality is expressed with generalizations to
another task, which models the common task(s). An inclusion relationship between two
goals defines that one goal may contain another goal, which is a subgoal. One subgoal
may be included in several other goals and one goal may include several subgoals. Two
or more goals may have commonalities, i.e. contain the same set of subgoals. The
commonality is expressed with generalizations 1o another goal, which models the

coramon goal(s).



4. Refactoring
4.1 Introduction

The high cost of developing software motivates the reuse and evolation of existing
software. Object-Oriented programming features such as abstraction, encapsulation,
modularity and inheritance provide an infrastructure to software reuse. While code level
reuse brings us with many benefits, people acknowledge that in the long run the design
level reuse is more important,

Refactoring is the way of transform approach for iterative software development
from changing a variable to changing the structure of the system with the behaviors of the
system preserved. Refactoring has been used in source code for years. So applying
refactoring to use case model is a very exciting approach. The principle of refacmriné 18
to change the structure or relations between objects in the product without modifying the
behaviors of the product. After refactoring users should feel no differences between the
previous version and the version being refactorred. It's not easy to apply refactoring
process on the requirement analysis because of the infinity of defining the requirements
in a uniformed model. In code refactoring. tools can always find the exact code to be
refactorred and the relations of the code as well. But in the requirement analysis stage, we

have to use text, graphics and some other literal descriptions to describe what we get



from the customers. When refactoring is applied to the requirement model, the tool
should have enough mtelligence and rules to make sure those refactorred requirements
are depicted correctly without duplications and misses.
Following are brief introductions on some of the theories and people who contributed
a lot to refactoring.
1. Opdyke
William Opdyke’s Ph.D. thesis [17] is the first serious publication in refactorings.
Inspired by the work of Banerjee and Kim for object-oriented database schema evolutions
[1], his work is focused on automatic support for program restructuring (refactoring) to
the object-oriented program. In his Ph.D. thesis, he identifies seven invariants required to
preserve the behavior of C++. When a refactoring tends to violate an invariant, enabling
conditions are added to ensure that the invariant is preserved. Seven invariants are
Unique Superclass, Distinct Class Names, Distinct Member Names, Inherited Member
Variables Not Redefined, and Compatible Signatures in Member Function Redefinition,
Type-Safe Assignments, Semantically Equivalent References and Operations.
In his thesis he defines 26 low level refactorings as follows,
I Creating a program Entity:
(a) create_empty_class
{(b) create_member_variable
(¢) create_member_function

2. Deleting a program entity:



(a) delete_unreferenced_class
(¢) delete_member_functions
. Changing a program entity:
(a) change_class_name
(b) change_variable_name
(d) change_type
{e) change__access_control_mode
(f) add_function_argument
(g) delete_function_argument
(h) reorder_function_arguments
(1) add_function_body
(j) delete_function_body
(k) convert_instance_variable_to pointer
(m) replace_statement_list_with_function_call
(n) inline_function_call
(0) change_superclass
4. Moving a member variable:

(a) move_member_variable_to_superclasses

22



(b) move_member_vanable _to_subclasses
5. Intermediate level (composite) refactorings:
(a) abstract_access_to_member_variable
(b) convert_code_segiment_to_function
(¢) move_class
Each refactoring has some preconditions. Because these small refactorings are
correct under certain preconditions, large changes that are composed solely of small
refactorings must be correct. Therefore, refactoring can support software design and
evolution by restructuring a program in the way that allows other changes to be made
more casily. Complicated changes to a program can require both refactorings and
additions. With these low level refactorings, a set of three high level refactorings which
are more abstract are defined as follows.
1) Refactoring to generalize: creating an abstract superclass
2) Refactoring to specialize: subclassing, and simplifying conditions
3) Refactoring to capture: aggregation & components
2. Lance Tokuda
Based on Opdyke’s research, Lance Tokuda goes further o evolve object-oriented
designs with refactorings [27]. His research shows that all three kinds of design evolution,
which are schema transformations, design pattern micro-architectures, and the hot-spot
driven approach, are automatable with refactorings. Schema transformations perform

many of the simple edits encountered when evolving class diagrams, They can be used

23



alone or in combination to evolve object-oriented designs. The schema for an
object-oriented database management system (QODBMS) looks like a class diagram of
an object-oriented application. Among the 19 object-oriented database schoma
transformations, 12 transformations are implemented as automated refactorings by
Tokuda. As with database schema transformations, refactorings have been shown to
directly implement certain design patterns. Six patterns are automatable as refactorings
(“Command, Composite, Decorator, Factory Method, lterator and Sin gleton”). A number
of patterns can be viewed as automatable program transformations applied to an evolving
design. At Jeast seven patterns from [10] can be viewed as a program transformation
(“Abstract Factory, Adapter, Bridge, Builder, Strategy, Template Method and Visitor™).
The hot-spot-driven-approach provides a comprehensive method for evolving designs to
manage change in both data and functionality. Meta-patterns can be added to evolve
designs. Most of them can be viewed as transformations from a simpler design.
Refactorings automate the transition between designs granting designers the freedom (o
create simple frameworks and add patterns as needed when hot-spots are identified.
3. Donald Bradley Roberts

To make refactoring more practical, Donald Bradley Roberts dedicated to developing
a commercial-grade tool, the Refactoring Browser for Smalltalk. In his Ph.D. thesis [21],
he illustrates ways to make a refactoring ool both fast and reliable so that it is more
useful. First of all, he extended the definition of refactoring presented by William F.

Opdyke by adding post-conditions, which are assertions that a program must satisfy for



the refactoring to be applied. Post-conditions describe how the assertions are transformed
by the refactoring and they can be used for several purposes: to reduce the amount of
analysis that later refactorings must perform, to derive preconditions of composite
refactorings, and to calculate dependencies between refactorings. These techniques can
be used in a refactoring tool to support undo, user-defined composite refactorings, and
multi-user refactoring. He also defined a method to calculate the preconditions for
composite refactorings. Each atomic refactoring within the composite has its own
preconditions that must be true for the refactoring to be legal. Given a sequence of
refactorings that make up a composite refactoring, it would be nice to be able to derive
the preconditions for the composite refactoring from the individual refactorings that it
comprises. In addition, he defined the dependency between refactorings based on
commutativity. Large design changes can be composed of a sequence of smaller, more
primitive refactorings. Since each step is a refactoring, the entire composition is also a
refactoring. This composition property is very powerful in that it allows us to define and
automate simpler, low-level refactorings, and then compose them into larger, complex
refactorings. However, although the refactorings were initially specified in a sequence,
they do not necessarily have to be performed in that sequence. Therefore, the real
refactoring sequence should be defined in order to determine which refactoring occurs
before others. Donald Roberts defined the formula for calculating the conditions under
which any two refactorings may commute. Further, he implemented a set of applications

that use the dependency information calculated from a chain of refactorings. Three of

25



these applications are as follows. Undo, Parallelizing Refactorings and Merging
refactorings in multi-user programming environments. Finally, he developed a scheme for
using dynamically obtained information to perform refactorings, which can eliminate
expensive static analysis by deferring the analysis to runtime,
4. Martin Fowler

Compared with Donald Roberts, Martin Fowler has been focusing on another
direction, the refactoring process, to make refactoring more practical. With contributions
of Kent Beck, John Brant, William Opdyke, and Donald Roberts, Martin Fowler
published a book [9], which explains the principles and best practices of refactorings.
Moreover, it provides a guideline for the refactoring process, where to start refactorings,
when to start, when to stop, etc. The core of the book is a comprehensive catalog of
refactorings. Each refactoring illustrates the motivation and mechanics of a proven code
transforrmation.
5. Cascade Refactoring

Cascaded Refactoring [4] is a hybrid approach for the development and evolution of
application frameworks. Jt combines the modeling aspects of top-down domain
engincering approaches and the iterative, refactoring approaches of the bottom-up
object-Griented community. It weaves together steps for partial domain engineering to
better uniderstand the domaiu and how to evolve the current working set of partial models,
and steprs of system refactoring and extension. It stresses traceability between models and

defines an alignment of models to be a traceability mapping that is consistent with the



mapping of common and variable features. The set of models that are used in Cascaded
Refactoring are a feature model, a use case model, an architectural model, a design and
the source code. Cascaded Refactoring relates the set of refactorings across the set of
models through change impact analysis using trace maps. The impact of the refactorings
for one model is translated via trace maps to determine constraints on the refactorings of

another model,

4.2 Refactorings on Use Case Model

Some refactoring rules are defined according to the definition of our use case
metamodel. The refactoring rules are grouped into different categories. Each category
consists of some detailed rules for creation, deletion or move, etc. As the first version of

refactoring tool, the rules apply to the environment level and structure level only.
4.2.1 Refactoring Definitions

Refactoring rules defined for each level of our use case metamodel are shown in
Table 3, Table 4 and Table 5 [24]. For those implemented in the current version, brief

explanations are given.,

Category Refactorings

Create Create empty use case Create empty user
Create empty actor Create empty task
Create empty goal Create enpty service




Dielete

Delete unreferenced use case
Delete unreferenced actor

Delete unreferenced goal

Delete unreferenced user

Delete unreferenced task

Delete unreferenced service

Extend use case
Precede use case
Equal use case

Include task

Change Change use case name Change task name
Change actor name Change goal name
Change user name Change service name

Move Move goal

Distribute Decompose use case Decompose task
Decompose goal

Compose Include use case Include goal

Change parent use case
Change parent actor
Change parent task

Change parent goal

Table 3. Refactorings on the Environment Level

In Table 3, move goal is to move a goal into a parent/child actor. The distribute
category contains refactorings for distributing behavior. Decompose use case, for
example, is to split one use case into two use cases. The compose calegory contains
refactorings in  establishing  generalization, inclusion, extension, precedence and

equivalence relationship. For example, change parent actor is to establish an inheritance



relationship between actors,

Category Refactorings

Create Create empty context Create empty post-condition
Create empty precondition Create empty episode

Delete Delete empty context Delete emipty post-condition
Delete empty precondition Delete unreferenced episode

Change Change precondition name Change episode name

Change post-condition name

Compose Sequence episode Except episode
Alternative episode Interrupt episode
Repeat episode Encapsulate episode
Parallel episode Change parent episode
Move Move episode Move episode to parent use case

Table 4. Refactorings on the Structure Level
In Table 4, the compose category contains refactorings in organizing episodes. For
example, if there is time order between two episodes, sequence episode can be used to
organize them. If one episode is an alternate of another, alternative episode can be used to
implement this relationship. Move episode is to move an episode from one use case to

another use case.



Category

Refactorings

Stimulus Change parent stisnulus Repeat stimulus
Move stimulus Except stimulus
Sequence stimulus Interrupt stimulus

Response Change parent response Repeat response
Move response Except response
Sequence response Interrupt response

Action Change parent action Move action

Table 5. Refactorings on the Event Level

In Table §, there is a list of refactorings for organizing events. For example, change

parent stimulus refactoring can be used to specialize/generalize one stimulus from others.

-

T'he concept of cascaded refactoring is used to relate refactorings across different levels.

The refactoring of one level determines constraints on the refactoring of another level via

the traceability and alignment maps, which preserve their internal consistency and

traceability. Our alignment maps are as follows:

1. the trace map from the environment level to the structure level;

b2

Lad

the trace map from the structure level to the environment level;

the trace map from the structure level to the event level;

4. the trace map from the event level to the structure level;

30



4.2.2 Implemented Refactorings

In the first version of the tool, we implement the rules listed above. The arguments,
precondition, post-condition and a briel description are given below for some of the
implemented rules.

Refactorings on the Environment Level
Create Category
1. create_empty usecase
Description: create a new use case without any defined attributes (episodes, context,
etc.)
Arguments: new use case name
Precondition: the name of the new use case is not used by an existing use case in the
model.
2. create_empty_actor
Description: create a new actor without any reference with other element (actor, use
case, goal, etc.)
Arguments: new actor name
Precondition: the name of the new actor is not used by an existing actor in the model.
3. create_emptly_user
Description: create a new user without any reference with other element (actor, task,

216

n



Arguments: new user name
Precondition: the name of the new user is not used by an existing user in the model.
4. create_empty_task
Description: create a new task without any reference with other element (user, task,
ete.)
Arguments: new task name
Precondition: the name of the new task is not used by an existing task in the model.
5. create_empty_goal
Description: create a new goal without any reference with other element (actor, goal,
ete)
Arguments: new goal name
Precondition: the name of the new goal is not used by an existing goal in the model.
6. create_empty_service
Description: create a new service without any reference with other element (use case,
ete.)
Arguments: new service name
Precondition: the name of the new service is not used by an existing service in the
model.
7. create_empty _context
Description: this refactoring defines a new context for U,

Arguments: use case U



Precondifion: there is no context defined in U,
Delete Category
1. delete_unreferenced_usecase
Description: this refactoring deletes an unreferenced use case.
Arguments: use case U
Precondition: at least one of the following two conditions is met.
1) Uis empty and is not referenced by any other use case.
2) U is not referenced by any actor or any other use case.
Post-condition: after this refactoring, U is deleted from the model. This deletion will
be cascaded to the structure level and event level, Suppose that U contains an episode E.
If E is only referenced by U, E should be deleted as well. The same applies to event
level.
2. delete_unreferenced_actor
Description: this refactoring deletes an unreferenced actor.
Arguments: actor A
Precondition: Ais not referenced by any other actor, use case, user or goal
Post-condition: after this refactoring, A is deleted from the model,
3. delete_unreferenced_user
Description: this refactoring deletes an unreferenced user.
Arguments: user U

Precondition: U is not referenced by any use case, actor or task.



Post-condition: after this refactoring, U is deleted from the model.
4. delete_unreferenced_task

Description: this refactoring deletes an unreferenced task.

Arguments: task T

Precondition: T is not referenced by any other task or user.

Post-condition: after this refactoring, T is deleted from the model.
5. delete_unreferenced_goal

Description: this refactoring deletes an unreferenced goal,

Arguments: goal G

Precondition: G is not referenced by any other goal or actor.

Post-condition: after this refactoring, G is deleted from the model.
6. delete_unreferenced service

Description: this refactoring deletes an unreferenced service.

Arguments: service S

Precondition: S is not referenced by any user or it is empty (it contains no use case).

Post-condition: after this refactoring, S is deleted from the model.
Change Category
1. change usecase_name

Description: this refactoring changes a use case name.

Arguments: use case U, new name

Precondition: new name is not used by an existing use case in the model.

M



Post-condition: after this refactoring, U is changed to the new name,
2. change_actor_name

Deseription: this refactoring changes an actor name.

Argumenis: Actor A, new name

Precondition: new name is not used by an existing actor in the model.

Post-condition: after this refactoring, A is changed to the new name.
3. change_ user_name

Description: this refactoring changes a user name.

Arguments: user U, new name

Precondition: new name is not used by an existing user in the model.

Post-condition: after this refactoring, U is changed to the new name.
4. change_task_name

Description: this refactoring changes a task name.

Arguments: task T, new name

Precondition: new name is not used by an existing task in the model.

Post-condition: afler this refactoring, T is changed to the new name.
5. change_goal_name

Description: this tefactoring changes a goal name.

Arguments: goal G, new name

Precondition: new name is not used by an existing goal in the model.

Post-condition: after this refuctoring, G is changed o the new name.



6. change_service name
Description: this refactoring changes a service name,
Arguments: service S
Precondition: new name is not used by an existing service in the model.
Post-condition: after this refactoring, S is changed to the new name.
Compose Category
1. change_parent_usecase
Description: this refactoring changes the super use case of Ul to U2 (i.e. U2 becomes
Ul’s parent use case).
Arguments: use case U1, use case U2
Precondition: following two conditions should be met
1) All episodes currently inherited in Ul will be identically inherited from U2,
2) There does not exist such an episode E that E exists in U2 but does not exist in
Ul
2. change_parent_actor
Description: this refactoring changes the super actor of Al to A2 (i.e. A2 becomes Al’s
parent actor).
Arguments: actor Al, actor A2
Precondition: following two conditions should be met
1) All goals currently inherited in Al will be identically inherited from A2

2) There does not exist such a goal G that G exists in A2 but does not exist in Al

36



3. change _parent_goal
Description: this refactoring changes the super goal of G1 to G2 (i.e. G2 becomes G1s
parent goal).
Arguments: goal Gl, goal G2
Precondition: following two conditions should be met
1} All actors currently inherited in G1 will be identically inherited from G2
2) There does not exist such an actor A that A exists in (G2 but does not exist in G
4. change_parent_task
Description: this refactoring changes the super task of T1 to T2 (i.e. T2 becomes T1%s
parent task)
Arguments: task T1, task T2
Precondition: following two conditions should be met
1) All users currently inherited in T1 will be identically inherited from T2
2) There does not exist such a user U that U exists in T2 but does not exist in Tl
5. include_usecase
Description: this refactoring establishes an inclusion relationship between Ul and U2,
Ul includes U2,
Arguments: usecase Ul, U2
Precondition: every episode in U2 also exists in U1
6. equal_uvsecase
Description: this refactoring establishes an equivalence relationship between Ul and

kY]



2.
Arguments: use case Ul, U2
Precondition: Ul and U2 share the same set of episodes
Post-condition: after this refactoring, an equivalence relationship is established
between Ul and U2,
Refactorings on the Structure Level
Create Category
1. creaie_empty episode
Description: define a new episode without any defined event.
Arguments: new episode name
Precondition: the name of this episode does not clash with an already existing one in
the model.
Delete Category
1. delete_empty_context
l)escriﬂian: this refactoring deletes an empty context for a use case.
Argumentis: use case U
Precondition: the context in U is empty, that is, there isn’t any defined precondition or
postcondition
Post-condition: afler this refactoring, the context is deleted from U,
2. delete_unreferenced_episode

Description: this refactoring deletes an unreferenced episode.



Arguments: episode B
Precondition: E is not referenced by any use case or any other episode
Post-condition: after this refactoring, B is deleted from the system. This deletion will
be cascaded to the event level. (refer to delete_unreferenced _usecase refactoring)
Change Category
1. change_episode_name
Description: this refactoring changes an episode name.
Arguments: episode E, new name
Precondition: new name does not clash with an existing one in the model.
Post-condition: after this refactoring, E is changed to the new name.
Move Category
1. move_episode
Description: this refactoring moves episode E in use case Ul to use case U2
Arguments: use case Ul and its episode E1, use case U2
Precondition: U1 and U2 share same actors or actor of U2 is a super actor of the actor
of UL. None of Ul and U2 is referenced by another use case. E1 is not referenced by
any other episode in U1,
Post-condition: E1 is moved to U2. If U2 already contains EI before this refactoring,

keep only one El in U2. El is deleted from U1,



to use case U which is the parent use case of U1, U2, ..., Un

Arguments: use case U and its sub use cases U1, U2, ..., Un

Precondition: there is a common episode B which exists in UL, U2, ..., Un
Post-condition: after this refactoring, there is one and only one E in U. There is no E in

UL Uz, ..., Un

40



5. Tool Design and Implementation
5.1 Drawlets Framework

Drawlets {22] is a two-dimensional graphics framework written in Java for building
graphical applications that are inherently graphical. Its original framework, named
HotDraw, was developed by K. Beck and W. Cunningham in Smalltalk. RoleModel

Software Corporation ported it into Java and renamed it Drawlets.

interface interfane
Relabivelocator Movablelocator
; i . 1
LT e
«‘“}
interface Y.
interfaoe
7 s : PolygonFigure
interfacs e
Paintable |
<} interface
¢ S {pussible) 2 123 T pnterhacs g T
e YL | LineFigure | 0CHLUCE
interface | 2 TTOTepmemessmm—pet o LT
DramidngSiyle "/ Kk
MWM«L ﬁlg‘ux;&:a
interface
\ SeguenceQi¥iqures
7
A
interface aalag
.ﬁ"ﬁlﬁ@ﬁﬁﬂ&ﬁ 1 interface interface
stle] .
———— e A Drayingt
Fal ] | s paeron drawing
A
r interface ihendles
Hanedle oz

Figure 3. Major interfaces in Drawlets Framework

4]



Drawlets is a 2D graphical drawing framework that provides flexible interfaces for
vary applications. The major feature of the Drawlets framework is the drawing canvas
that contains the tool and drawing components. The drawing component holds figures
and listeners. Following is the class diagram for intended use of Drawlets fundamental
roles

The tool component allows user to interact with figures to modify the attributes of a
figure such as size and Jocation. A special selection tool can select multiple figures and
modify all of them.

As a framework, a) it is a collection of abstract classes and/or interfaces that provides
an infrastructure common to a family of applications; b) it supports degrees of
abstraction/interfaces and permits partial specifications; ¢) it is also a concrete realization
in source code of a domain specific software architecture (graphical drawing). Tt can be
applied in the reuse of code as well as requirements, architecture, design and
documentation,

Drawlets supports several shapes, such as lines, frechand lines, triangles, rectangles,
rounded rectangles, pentagons, polygons, ellipses, and text boxes. Fach figure has ¢
separate drawing tool. There are more than 100 classes, 35 interfaces and 40,000 lines of
code and documentation. In the Drawlets framework there are many software design
patterns, which provide great flexibility to the new application. The main interfaces used
in Drawlets are shown below,

In our system, I use the Drawlets [ramework in the implementation of the

42



environment level subsystem. Drawlets has been extended to define and show the
elements such as use case, actor, ete. in graphics. The subsystem is very easy to extend
for further modifications and new features since it is based on the Drawlets framework.
For the structure level and event level, they don't use the graphical representations. Tree
and list structures are used to show the episode and event instead of graphical elements.
Because I work on some modules of the environment lével, [ will describe more about the

design and implementation on that level than the other two levels.
5.2 System Design
5.2.1 Overview

The use case model refactoring tool is an MDI application. It uses Drawlets, tree and
listbox in its GUI presentation. According to the objective, the tool can be divided into
two parts:

1) definition subsystem

In the definition subsystem, use case model can be defined in three levels that
are mentioned in the use case metamodel and the definition data are stored in the

XML format. The environment level is shown in graphics while the other two levels

are shown in tree and list structures, The elements like use case, actor, elc. are

extended from the basic shapes defined in the Drawlets framework.

2) refactoring subsystem

43



In the refactoring subsystem, refactoring rules can be applied to the metamodsl
defined by the definition subsystem in order to improve the model according to the
changes on the system requirernents. Refactoring rules can be used to modify the
design of the model without changing its behaviors. The pre-conditions defined for
the refactoring rules are used to validate the refactoring processing before it can be

done. The refactoring method can be done only when all the pre-conditions are met,
5.2.2 Data Structure and Storage

XML is widely accepted for storage and information exchange [28). It provides a
number of positive attributes, such as tractability, extensibility, structure, openness, and
independence between data and style. Document Type Definition (DTD) provides a
grammar for creating XML document structure. We store our use case model using the
XML format. Totally we use four XML files to store the use case layer, episode layer,
event layer and goals separately.

a) Element definitions

Here T will introduce the definitions of elements used in the environment level in
detai] because my work focused on this level. For the other two levels, [ will show some
examples

1) Model
It is an aggregation of the entities, relations and some other elements.
Description:

44



R

<IDOCTYPE UsecaseModel |
<!ELEMENT UsecaseModel (Usecases?, Actors?, Relationship?, Other?)?
.
Entity
There are two entities are defined in the model: use case and actor.
Description of use case and actor:
id is unique for each use case and actor. Td is also used as a reference in the
episode and event level, The position and size are also saved for being shown on
the screen.
< ELEMENT Usecases (Usecase)®»
<!ELEMENT Usecase(Name,Coordinate,Size® Description, EpisodeID)>
<IATTLIST Usecase id CDATA #REQUIRED:>
<IELEMENT Actors (Actor)*>
<!ELEMENT Actor (Name,Coordinate,Size* Description, UserID)>
<IATTLIST Actor id CDATA #REQUIRED:
<IELEMENT Name (#PCDATA )
BLEMENT Coordinate EMPTY >
<!ATTLIST Coordinate x CDATA #REQUIRED y CDATA #REQUIRED:>
<IELEMENT Size EMPTY:-
<IATTLIST Size width CDATA #REQUIRED height COATA #REQUIRED:>

<IBELEMENT Description (#|PCDATA Y-



<IBLEMENT Episodelld (#PCDATA Y

<TELEMENT UserdD (#PCDATA )=

Relation

There are seven relations defined in this level: Association, Generalization,
Inclusion, Extension, Similarity, Equivalence and Precedence.

Description of relations:

Relations must be adhering to use cases or actors,
<IBLEMENT Relationship{Association|GeneralizationInclusion]Extension]Similarity
[Equivalence[Precedence)*>
<IBLEMENT Association {Actor-Usecase™) 7>
<!ELEMENT Generalization (Usecase-Usecase]Actor-Actor)*>
<IBELEMENT Inclusion (Usecase-Usecase™)y?>
<IELEMENT Extension (Usecase-Usccase™)?>
<!ELEMENT Similarity (Usecase-Usccase™®) T
<IELEMENT Equivalence (Usecase-Usecase®) 7>
<IELEMENT Precedence (Usecase-Usecase™)
<!IELEMENT Usecase-Usecase (UsecaseRef 1, UsecaseRef2):»
<IELEMENT Actor-Actor (ActorRef 1, ActorRef2»
<TELEMENT Actor-Usecase (ActorRef, UsecaseRefy»
<IELEMENT UsecaseRef #PCDATA Y-

ELEMENT ActorRef (#PCDATA >

46



<IELEMENT UsecaseRef] (#PCDATA
<IBLEMENT ActorRef1 (#FPCDATA Y
IBELEMENT UsecaseRef2 (FPCDATAY
IBLEMENT ActorRef2 (#PCDATA >
4y Other
Elements defined below are complementary for the entities and relations. They are
used to help complete the use case model. Three elements are defined:
SystemBound, ServiceBound and TextLabel
Description of SystemBound, ServiceBound and TextLabel:

<!ELEMENT Other (SystemBound|ServiceBound

Textlabely s
<!IELEMENT SystemBound (Name, BoundRect, Description)>
<!ELEMENT ServiceBound (Name, BoundRect, Description, UsecaseEID)>

<IATTLIST ServiceBound id CDATA #REQUIRED:>
<IELEMENT TextLabel (BoundRect, Description)>
<IELEMENT BoundRect EMPTY:»

<IATTLIST BoundRect

% COATA #REQUIRED y CDATA #REQUIRED

width CDATA #REQUIRED height CDATA #REQUIRED

IELEMENT UsecaseBID (FPCDATA )Y
b) Data storage

47



o

In the environment layer, there are five major entities; Model, Actor, Use case,
Relation and Supplementary Entity.

1) A Model entity contains the model information and defines the possible sub-entity
types in the model,

2) AnActor entity contains the actor information, such as name, communicating use
case, parent actor, and so on. The id attribute of an Actor entity identifies the actor.
Other attributes: x. y, width and height, are used by the use case editor to store the
position and size of the actor figure.

3) A Usecase entity stores the use case information. Each Usecase entity has an
identification attribute id. Other attributes are used by the use case editor, just like
those of the Actor entity. An EpisodelD) attribute stores the information of the
referenced episode.

4) ARelation entity defines the relationship between two use cases, two actors or a
use case and an actor. There are seven relations defined in this level: Association,
Generalization, Inclusion, Extension, Similarity, Iquivalence and Precedence. The
ActorRef and UsecaseRef attributes refer to the id value of the corresponding actor
and use case.

5) Supplementary Entities are used to help complete the model being compatible with
UML semantics. There are three entities defined in the model: system bound,
service bound and text label,

In the structure level, episode, subepisodes and subepisode are defined.

48



1) Episode is related 1o a use case. A use case can contain more episodes, There are
two types of episode: primitive and composite. Primitive episode can be shared
between use cases and be unique in the metamodel. Composite episode have four
types: sequence, parallel, alternation and iteration

2) Subepisodes is used when composite episode is detined. It consists of subepisode.

3) Subepisode is included in Subepisodes which could be primitive or composite
episode.

Inn the event level, primitiveevent is used to define one of stimuli, action and response.

¢) Data Storage Example

A simple example of use case metamodel is shown below. It contains all three layers

that describe the system requirement of access control system (ACS).

Environment layer:

1) use case and actor definitions
Entity’s id 1s a unique id in the model. It is generated by the system automatically.

Users cannot change the id. When the episode of the use case is defined, the id of a

use case will be passed to the structure level as reference id.



2 "84
«NatmzrOpen Door</Mama:s
«Coordinate x="258" va"125" /s
<Bize witthe"124" haight="58" /o
=Dasnription f»
<EpisodelDs B4« /Episude]le
zfsecasans
- wlizecase id="59"
wMams>-Maintenanoe</Mames
wCoordingte »="263" y="281" /»
<Gilze widths="149" height="88" />
<Description S
<Episode Dy B9 /Bnisndellis
<AIsenase D
- ellsenase d="G3"
<MamexChecke/Names
<Cnordinate #="481" y="183" /»
<Bize width="118" height="58" /»
LDsscription S
<hpisodslDs63</Episode s
«flsenases
wflsecasass
S BELOrg s
-~ whntar id=" 50"
<MamerEmployee</Nameas
<Loordinate x="137" y="115" />
<Hize width="78" height="88" /»
<Dasoription /i
“WUserlDex50</ UseriDs
</hctors
-~ <hotor id="§1">
<MamerAdministrators/Name:
<Coordinate s="129" y="241" />
«<Zize width="93" height="88" />
<Dascription /»
<UseriDsal</UsariDx
w/actors
~ Antor id="66"»
zName>Resident</Name>
<Coordinate x="33" v="163" />
«<Bize width="20" height="88" />
zDescription f»
laeriDe 66 < /Usarlls
w/Antors
S ACTOrE s

Figure 4. XML representation of use case and actor

50



2) relation definitions

- Relatiorshipos
- e hEsociations
- g rtor-tisenasens
whastorRef80</ontariels
stsacaselelsSd4csecasalafs
sfacior-Usecases
- ACLOr-Usecasny
<ACtorfe 80/ sotorRats
wUsernasaRel=-59< UsncaseRefs
wfActor-Usscases
- B Otor-Usseases
chctorfef>S1i</ActorRels
<UserassRels50</UsaraseRefs
wlactar-Usecases
wfAssaciations
~ sGerearalizations
~ etor-Actors
whrtorRellsS0a/actorbefls
chCtarBefesbbc/actoiefo:
<fantor-aotors
~ whstor-antars
cactorBefl=81</actorRefl >
wArtorRelfs662/sctorfefay
lbctor-actors
</Generalizations
~ wlirclusions
-~ gllsacase-Usenases
wilspraselafls>S4< Asacasplells
<Usecasalel2>63«/secaseRe s
</lserasa-Usacases
-~ <lisgcase-Usecases
<Usecaselefl>59 </ UsecaseReflx
xuacr:a:.«aRaf’Eaﬁ&dUwcm&Raf
=/Usacase-Usecases
=/ nclusiorss
< /Refationship>

Figure 5, XML representation of relationship
System will check the entities linked by the relation. If the entities are not allowed
to be linked by the relation that user wants to define, system will not generate the

relation and show error to the user,



3y other definition

~ <Qthers
- <hysiambounds
<Mame>Accessing Control Bystem</Mamas
<BoundRect w="241" y="61" width="324" height="298" /=
<Descripting S
«/SystemBounds
w/Others
< AsecaseMadels

Figure 6. XML representation of other elements
In the system, system bound, service bound and textbox are defined as Other

entities. They are the supplementary of the model.

i
[



Structure layer:

< wrrd wergions"1.0" ancoding="UTF-@" s
\:"lww 3 ; . s
- wEpisadeModsl
~ wllseCaze D="54" PreCondition="" Context="" PostConditions":
- wEpisode name="84" {ypes"Sequence Episode"s
~ <Bubkpisodess
EpisodnsxGrant Access</Subpisades
</SubEpisodis s
</Epizones
<Eplsady name="Grant Access” type="Atomic Episode’ /-
= UsRCase
- wilgellase IDe"59" MreCondition="" Contest="" PostConditions""
- eEpisode names"S9" types"Sequence Episode”s
« < Subkpisodess
<HubEpisodes-Main Menuwe/Subipisodas
w/Bubbpisodess
<fBpisodes
~ =ipisode name="Main Menu" type="Alternation episodes
- <HubBplsndass
wHubbpisadasRegister/SubBpisades
«HubBpisoderProduce Lag«</SubEpisades
<fBubBpisodess
</Episndes
~ <lpisode name="Register’ type="Sequence Episode’s
~ <SubEpisodesy
<SubEpiscde-Dravw New Card and Register Card</SubEpisodes
<SubEpisnde>Drav Card and Enter New Code</SubEpisodes
</ SubEpisodesy
</Episndes
~ <Episode name="Produce Log" type="alternation Episode’s>
- <Subkpisades>
«SubEpisnde>User Log</SubEpizodes
<SubEpisodexSystem Log<SubBpisodes
<HubEpisode»Door Log</SubEpisades
</GuhEpisodess
</Episodes
<Episude name="Draw New Card and Register Card" type="Atomic Episode” />
<Episode name="Draw Gard and Enter New Code" type="Atomic Episode® />
<Episode name="User Log" type="Atomic Episode” />
wEpisace name="8ystem Log" type="Atomic Episode’ />
<Episods names="Door Log" type="Atomic Episode” /»
wflsaCasas
- <Usplase I0="63" PreCondition="" Context="" PostConditiorn=""»
- <Episode name="63" type="Sequence Episade"s
- <SubBpisodas>
«SubkpisodesOraw Card and Validate Card«/SubEpisades
<SubpisodesEnter Code and validate Code</SubBpisodax
w/SubBEpisadess
< Episocles
<Episode narme="Draw Card and Yalidate Card" type="Atomic Episode" />
Episode name="Enter Code and Validate Code” type="Atomic Episode” /»
w/Algelases
<Episodebbadals

Figure 7. XML representation of episodes

A



Event layer:

<l wersion="1.0" encoding="UTF-8" 75

<l . . e

- wBEyventiiodels
ePrimitivelvant names"Display Message" types="Response” />
wRrmitivabvent names"Input Code types"Stimuli" />

ahrimitivelvent namas"Timeout" type="Response’ /s
aPrimitiveBvent name="Validate Code" type="Action” />
</BventModsl>

Figuare 8, XML representation of events

5.2.3 System Framework Design

Object-oriented methodology is used to design the system. According to the
definition of the use case metamodel, the system has three levels: environment, structure
and event level. Environment layer uses graphics to present the entitics while tree and list
structures are used in the other two levels to show the information of episode and event.

The Drawlets architecture is extended in three aspects.

a) The frame is extended in order to have a MDI interface.

b) The definition of object is extended in order to add new objects like use case,

actor, service, etc,

¢)  Some new modules are added for use case, episode, event, goal and task.

Tuse Drawlets architecture in the implementation of the environment level. Drawlets
is used as the basic framework of this level that provides the graphics supporting and
event processing. Drawlets is also extended in order to implement the special needs from

our metamodel, For example, interface Figure in Drawlets is extended to describe the

54



entities like use case, actor, relations, etc. When the model is loaded into memory,
Drawlets memory structure is used to store the runtime model structure. The XML file is
used to store the model on the disk for future modification and data exchange.

Figure and DrawingCanvas are the two most important interfaces in Drawlets. All the
Entities like actor, use case, ete. implement the Figure interface so that they can be added
to the figure container without any further operations. DrawingCanvas is implemented as
the figure container in order to keep all the entities at runtime.

1. System modules

The system structure of tool can be divided into four parts:

a) use case definition tool (environment level)

"This tool contains drawing module, data reading/writing module, and refactoring
module. By using this tool, we can define the use case as described in the UML
specification. Use case, actor and service are used to describe the system
functionalities, system users and services. Several relations are also defined to
indicate the relationships between use case and actor.

b) goal description tool (environment level)

This tool includes goal definition, data display and refactoring supporting module.
In our model, goal is used to describe what the actor can achieve afier using system
functions. It can be regarded as one of the ways to group users.
¢) episode description tool (structure level)

This tool has episode definition, context/pre-condition/post-condition definition,

55



data display, data reading/writing and refactoring supporting modules. Episode gives
necessary validation when refactoring is to be done at use case layer. With this tool,
we can give more detail description on the use case. The pre-condition and
post-condition defined are the conditions must be met when the use case is invoked.
The only way to go into episode layer is by selecting a use case in the use case layer.
The data in episode layer are synchronized with use case layer. Moreover, episodes
are shared by all the use cases in the same session that avoid duplication of episode.
d) event description tool (cvent level)

This tool is made up of event definition, data displaying, data reading/writing and
refactoring modules. Similar to episode layer, it uses tree hierarchy structure to define
and show the event. It also supports the synchronization between event layer and
other layers. The events are shared by all the episodes as well.

Since I worked on the environment level, I will introduce more about this level other
than the other two levels. In the environment level, it has four major parts:
a) Drawlets extension module
In this module, the main frame class in Drawlets is extended with some new

features:

1) muake the application to be a MDI application which can allow all the layers

to be shown in the same frame
2) add loading and saving functions

3) define our own toolbar and palette

56



4y add avtomatically save all layers function
b) Model definition module

This module provides the capabilities of defining the use case view of the model
including the use case, actor, relationship and service, ete. It also provides the way of
stepping into structure level (from use case) and goal model (from actor).
¢) Refactoring module

In this module, several refactoring rules are defined and applied to the use case
model created by model definition module. It cooperates with episode and event
layer to validate the pre-condition of refactoring rule. It also updates the use case
metamodel according to the refactoring result.
d) JUnit testing module

Based on JUnit, some testing codes are added to verify the main functions
defined in refactoring module. It gives an automatic and the fastest way of checking
the refactoring functions especially after the modification on code. Several test suites
are created which test different modules of the system.
System design diagrams

In the project, the use case editor is implemented based on the Drawlets framework.

Several classes, such as SimpleDrawingCanvas, SimpleDrawing and BasicObservable,

are modified. We add some new shapes such as actor, use case, and so on, based on the

original shapes. Farthermore, we implement the attribute pane for some shapes, such as

actor and use case, to define attributes of shapes. Tn order to store the use case model in

57



the XML. format, some classes are also added to the framework to parse and print the use
case metamodel. The episode and event definition GUI are based on the Tree and List.
They provide the way of defining primitive and composite episode and event. The
Refactoring Tool GUI is embedded into the use case editor. Different refactoring rules
can be chosen from the popup menu when different entities are selected. After a
refactoring rules being selected, users will be guided to go through several steps to finish
the refactoring process. In the steps, users may be asked to choose a use case or other
entities, or to give a new value. The tool will validate the selection or input from user
with the precondition of the refactoring rules. The refactoring rule can only be finished
when all the preconditions are matched. Errors will be prompted when one of the
preconditions isn’t satisfied. Following are some use case and class diagrams of the tool.
a) Use case diagrams
Following are some use case diagrams for the refactoring tool.

Refactoring Tool Use Cases:

Use Case Model Hefactoring Tool™

e i R
("" Envirgnment o
Level Refactoring
o o
~ d,f” . K“w.
y T ey o
-‘Jr‘-‘ (/" Structure Level - =
R et Refactoring B e i
4% &
Pl g )
Architecture memt
Dusigner o o Dasigner
‘“"‘n o ”,I "
s e o
" Event Layel s

C éﬁf:ammmg )

Figure 9. Use case diagram of refactoring tool

Architecture designee and model designer will be the users of the system. They are

58



allowed to create and modify use case model through several refactoring rules categories
like creation, deletion, change and compose,

Environment Level Use Cases:

Refartorivg ~ Eavironmient Lev el

incluting: i - .
1. chahge use Lage name o including: P
2. change acror dame ﬁ\ reute e o b L. CFEBLE RIMPLY WS R CasE

4. change gaal name W 2. create gmpty actor

4, chunge task name . orvedte emnpty geoul

5. change yesr nume SN 4. croate empry task

I

K T ann e - "
change service name W 2 L;wﬁi zmgi; ;??;;m
P ¢ & i o W2 e

Delete e s e o o] IVCHA NG, N
W Lo delete uareferenced use case

. delete unreferenced uctor

3

trrzliedinng: [\ . delere ynreferenced goal
1. muove goal } ) T R 4. defete unrefervnced task
ol e ove & §. delete unreferanced service
&, delere unreferenved user
incluging: {\ﬂ\
1odmchude use case {‘,«Mw
2, inctude goal : -4 trcluding: I,

3. include task 1 dectnpasa use Cuse

4, garend use o 2. dunompose gosl
@ " " o . ,
5. precede use case g 3. decomposs task

&, equal ure case } » Compose

V. change parent use case L\.___,__.,..)
B change parent actor
8, change parent task

1t change parent goal

Figure 10. Use case diagram of environment level

Structure Level Use Cases:

Refactoring - Atracture Level

including: ™
L. create empty episode T e ate
U, create gmply context 18 hanle w including: [
3. craate empty precondition 1. delete unreferenced spisode
4, create empty post condition e % delete EMPLY COHNTENT
¢ Deleve e 113 delete enpty precondition
"‘--Wj 4. delete emipty postcandition
including: tl T,

1. change episode name | T - ‘(_ “Change }
2. change precondition name inclading: [E

3. change postcondition name 1, sequencs episode

oo 2. alvernative episode
Fompoc?‘“ A orepent episode

. parallel episode

L axcent episode
Cintereupt aplsaide
Cenvapsulate episode

. charige parent episode

mcluding: ™, R

Ko

Lotove episode W P Mave
2.omove episode to parent yse Case

N T Rl

Figure 11, Use case diagram of structure Jevel

59



Event Level Use Cases:

including:

CIMOYE YESpOnse
Csgquente response
L repedt response
Caxgeprespanse

L Herrupt respanse

RS I QYT X

Cehange parent response

RN

Retactoring - Event Level

- St

Seirvudus Ty b

e Tt
el

including:

b charge parent stimulus
Zomove stimulus

3 osequence stimulus

4. repeat stimulug

5. eweept sthmulus

6. interrupt stimulus

“,

™ Response m‘“}

r%ﬁ?w”"} -

ingluding: {t"
1. change parent mcrion
2.omave action

Figuare 12, Use case diagram of event level

b) Class diagrams

[ System main packages

The whole system can be divided into three packages: Drawlets framework,

metamodel and JUnit. The packages are shown in Figure 13.

i
images
i
mod ules
+T5 Masahodel AliTasty

amodal

[ junit
rolemodeisolt Tramewathk
uwi
util

Figure 13, Packages of refactoring ool

Drawlets provides the base framework and give exira supports on the

implementation of environroent level subsystem. Metamodel is the aggregation of the

&0



implementations of all the three levels that are environment, structure and event.
TUnit test helps us write testing code.
1. Use case model on environment level

Figure 14 shows the packages of the use case model on environment level.

FetRElaiing onjaet
+T§ Refactaring AllTests definitions
+UsecaseRefactoringAstion xmlparsar
+Usecas eRefacrodngltitity
+TC Refactoring UtilioyTest

+T0 Refastoring ActionTest

THIG
gxiensigns

operations

utilities
+UsecaseMalnFramedction
+UsecaseMainFrame

Figure 14. Packages of use case model on environment level

Frame package is inherited from the Drawlets {ramework; object package is used
to define the entities and load/save data from/to XML files; refactoring package
contains refactoring rules and unit test codes.

1) Object definition

Each object has two parts. One is the definition part that records the

attributes of the object. The other part is the operation part that provides the way

of how to create object, how to draw object and how to change object attributes.

There are two types of objects: Entity (EntityBase and EntityBaseTool are the

base classes) and Relation (RelationBase and RelationBaseTool are the base

classes).

61



¥ Rervanglet ogl
Adornedlinetgol e
RelationBasaTool EntityBaseTool
interfaog
OaiectPropety Fool
P # o o
o I e .
e | .,
factanglethane OBjetivropeitos ) T
EntityBase i Adorriedline
KelationBase

Figare 15, Class diagram of object definition
a) EntityBase
intityBase is the base class for objects like Actor, ServiceBound,
SystemBound and UseCase ete. EntityBase extends RectangleShape in
Drawlets and defines the property collection of enii ty. In the subclass of
EntityBase, how to draw an entity is defined in detail. The real values of

properties are also given in the subclasses.

Hectanyglebhapy
EntityBase

¢ \
4 % L
’ﬁ ‘t Y
& "‘. ™
/ K
ri kY ", y
/ kY Y
Aciar \ Uselase
Y
3
%
"i
&9
LerviceReund Sygbemilsing

Figure 16. Class diagram of EntityBase

b) EntityBaseTool



EntityBaseTool 1s the base class for ActorTool, ServiceBoundTool,
SystermBoundTool and UseCaseTool, ete. EntityBaseTool extends
RectangleTool in Drawlets and defines the way of accessing properties of an
entity. The subclass of EntityBaseTool defines how to create a new entity

and react to various events from mouse or keyboard.

UseCaseoal AdtartaeT

senvicabaundToal V4 Ve iETRI oY

T, S e
e, O

7 s
0 g i
G fE
| HacrangleToul
EntityBaseTnol

Figure 17. Class diagram of EntityBaseTool
¢) RelationBase
RelationBase is the base class for relation objects like Generalization,
Extension, Similarity, Equivalence, Association, Precedence and Inclusion,
etc. RelationBase extends AdormedLine in Drawlets and define the
properties collection of relation. RelationBase also defines the locators of a
connection line between two entities. The subclass of RelationBase defines

how to draw the connection line with specified text.

63



{()!v}é:ﬁti‘(’apﬁi Heea e
b Adornedline
T SMNN———— RelatienBase
Fasvaronmrrms e
e - MA‘”'«‘,.
o
“,/'"' “M\
7 .
Ganecalization intlugion
",
;/ Y
A{f
Extension FPraTedanen )
/ SPOS—
;i i
A |
KMy Egurvaience Agsacintion

Figure 18. Class diagram of RelationBase

d) RelationBaseTool

RelationBaseTool is the base class for GeneralizationTool,
“xtensionTool, SimilarityTool, EquivalenceTool, AssociationTool,
PrecedenceTool and InclusionTool, ete. RelationBaseTool extends
AdornedLineTool in Drawlets and define the way of accessing the properties
of a relation. RelationBaseTool also defines how to check a relation can be
created or not between two entities. For example, Generalization relation is
not allowed between an Actor and a UseCase. The subclass of
RelationBaseTool defines how to create a new relation when the relation is

allowed between the two selected entities.

64



TAETN R TOGTY [STRIANTRTeeTY [ Freaedeniatonl

GURSTAIESTERTaRTy Y ! S .
\ F Equivalenca Tool
s [/
\ /
‘\\ \ £ v
R kY /’ g
xv\‘.\ 4“,"“ ! j"‘/
EXteagiontanly Ay ~ ]
-, \ / d Assoaciatiantnol
M, w,w
S o
" \ / A
™ \x)«r i g™
e N A
AdornediineTool
RelavionBaseTool

LA

Figure 19. Class diagram of RelationBaseTool

2) Refactoring

Refactoring rules are implemented in two classes. One of the classes is
UsecaseRefactoringAction that contains all the refactoring rules applied to the
use cases at use case level. The other one is UsecaseRefactoringUtility which
facilities the refactoring process and exposes interfaces to the other two levels for
them getting entity information from use case level. JUnit TestCases are created
in the Refactoring module so that each refactoring rules can be tested instantly

and automatically within the JUnit framework application.

Usecaseliefartoring UUTTY Usecasehafactoring Action
M Ay i
i
Junit framewori Testlase _umitframework TestCase
T Refactoving UsilityTagt TC Refactoring ActionTost

Junlt framawenk Testlase
T8 Refactoring AllTegty

Figure 20. Class diagram of Refactoring
: 2 g

05



3) XML parser

XML parser is a package that provides the functionalities of loading and
saving use case metamodel data from/to XML files, XMLProcessor is responsible
for loading the data from XML files. It parses the XML files and translates the
XML structures into use case metamodel elements structures and call the
corresponding tools to create the entities or relations. XMLProcessor validates
the data according to the DTD defined in the XML file. For saving the model, the
classes, which implement the XMILGenerator interface, will save the DTD and

the model data into XML file.

inrurtaca
KXMLR OO IVEY
meartace
KXML Gonarator)
A )
B £
g ; .i e s & A
RUGTHEAEMOTET By KRTFrEEessoT L i T
. ]
. |
‘ s { i
by ¥ \l/ Tsadasaadel T TFeEREaMa el DOES TR USEEasadod el Hats
interface

xlispcaseModelticmont Container

A

ASHRFaTsET ¥usedizeModal]

xseravedodalElEment

Figure 21. Class diagram of XML parser

66



I Goalm

odel

by DefaulidurabieY reebiode

Trgeiwaaisisrenery .

SHalRMOR ey

GoalXMLReadev

Goalinde

g

[N

AnternalFram b

Ei LS

g

GaalinternalFrame

J
AddExtstGoalDialay

Dialog

ferame

tsavaseBafactoring Frame

UscoaseRafactoring Apj

Vo alog
GuoaltditDialag

In the goal model, goals can be defined and saved through the GUI interface.

Figure 22. Class diagram of goal model

Goals are related to a specified actor. While doing refactorings on actors, goals will

be checked to validate the refactoring rule. Class diagram of goal model is shown in

Figure 22.

IV. Episode

model

rafactacing lule

framé

+EptsodeRefactoringfula
isecaselipisodefefactoring
+Generalizationkelated Action

obiact

+EpisodainternaFrame

dialog

+Eplsoder oralits eease
+FileName
+EpisoderorUsegase
+EpisodeType
+ReferenceRecord
EptsodeForaliUsscaseBackup
+EpisodeGlobalvarible
+PrimitivelinisodeRecord
+Episode
Foantent
+RMLTreebtructure

+importEpisodelialoy
+EpizodebditDinlog

+Contextialog

+EphsndeBditDigloglistener
+Episodeinternalfranetistengr

Al
+EpicodeXMi filp

talife P
+TableSorter +Treglnitialize
+Tablemay EpisodalreeMadellittener
+EpisodeTableModel +Episa reatinde

EpisodeTreetelRenderer

popypiiend

TreePopupMeny
Framaf ot phdo na

+FrametabieRopupMeny

el ablePopupMenulistenar
tlefopupMenudction

+EramelreePupupMenulistener

Figure 23. Class diagram of episode model

o7



In the episode model, context, precondition and post-condition of use case can be
defined. Users can also add primitive and composite episodes, Episodes can be shared
between different episode models. Duplicated episodes are not allowed in the same
episode model. Class diagram of episode model is shown in Figure 23,

V. BEvent model

[Lat1al wmg Rule A SELEO N
+Eventinternal Frame
SR |
o B1eck [
4 EventGlobalVarigble
4 EventForaliEpisode Frad fahita
+Glokalvarible EventTreatellRend erer 4 Tablesorer
+MyEvent +Treeinitialize +MyTablaMadel
FiteName +EventTreemuds +TableMap
+EventForbpisede EventTreeMadellistener
+XMLUTreadtructure
+ReferenceResord
+MyLventType R
dialig
e +MyEditDialog
+MyEdieliglaglistener
] ‘EpisodelnternalFramealistener
+EventXMLEile
papuphMénu
+FrameTreePopupMenulistener
+FrameTablefopupMenu
Frarmefome piderny
+FrameTablePopupMenutistener
+FrameTreefopuphanu

Figure 24, Class diagram of event model
In the event model, actions, responses and stimulus of a episode can be defined.
Similar to episode model, all type of events can be shared between event models.
Class diagram of event model is shown in Figure 24.
3. System screenshot
In the screenshot, different levels are shown in different sub-windows. Window on the

top left represents the environment level. Window on the bottom left represents the

o8



structure level. Window on the top right represents the event level, Window on the

bottom right represents the goal definition that belongs to the environment level.

{6 UMRS < Use Laee Mol

o

i1 BOr HBPE e UiE EAae

Shet

Tlusatase | Goal; Depoal
I epizode ' 4 [ . : Gaual; tnouy

Figure 25, Screenshot of refactoring tool
This screenshot shows a very simple use case metamodel. There are only one use case
and one actor defined in the environment level. In the structure level, a primitive episode
of the use case is defined and an event of the episode is defined in the event level as well.

Also three goals of actor are defined.
5.3 Summary
The refactoring tool is implemented according to the system design described above.

69



Users can use the tool to create use case model and apply the refactoring rules to the
model. For understandability, more information of requirement of the targeting systerm
can be described in the model with the too! that can help users have better understanding
on the requirements. For reusability, the tool helps users reuse previous work easier
because it provides both practical ways of refactoring on the model and the capability of
extending the model to meet the changes on the requitements. For changeability, users
can easily move information between different entities or levels with the refactoring rules
in the model for decreasing the redundancy of the information. Those rules make further
changes on the model become easier. For traceability, the tool also provides convenient

ays of tracing the information of the model, for instance, users can get all the episodes
of a use case at environment level, get the belonged use case of an episode at the structure
level, or show all the events of a selected episode at structure level, etc.

Some issues are faced in implementation of my part of work of the tool. The
Drawlets framework is based on AWT while all of us are working with Swing. 1 have to
mix these two sets of GUI libraries in the implementation of the tool for making less
modification on the Drawlets framework. MDI application is implemented to show not
only different levels opened in different sub-windows but also different models opened in
different sub-windows at the same time. XML parser is added to the tool for loading and
saving model data because it is not provided by the Drawlets framework by default. This

parser is also used in implementation of other levels.

70



6. Case Study

After the tool has been implemented, I use this tool to finish a case study that is a use
case metamodel of ATM system. I chose the ATM (automatic teller machine) system
because it’s a very well known sample system that has been investigated thoroughly and
referenced very often. The ATM system is used in lots of systems for functionalities
testing and validation. With our tool, I designed and improved the use case metamodel of
ATM  system. The experience does validation on functionalities, feasibility and
practicability of our metamodel and refactoring rules. A complete use case metamodel of
ATM system is created in the end with full information. The metamodel is described in
three levels and it can be used as the reference model for coding afterwards. The model is
also easily altered by using the refactoring rules when the requirements change. I will
give a brief description of the system requirements of ATM first. Then 1 will show the
whole process of creating the use case metamodel according to the requirements. The
process starts from a very simple definition of the requirements. Then by applying the
refactoring rules to the metamodel according to changes on requirements, the metamodel

is changed and becomes more complex,
6.1 Requirements of ATM System

The following description of the requirements of the ATM system is based on Prof.



Russell C. Bjork’s ATM Simulation example used in the course called “Object-Oriented
Software Developrment™ {2].

The ATM systern provides the ability for banking customers to deposit, withdraw,
and transfer funds. I also allows them to inquire about account balances. The commonly
used ATM unit is built into a wall and provides a small screen with battons on both sides
and a keypad below. Some problems with this ATM is that the lines and arrows usually
do not line up with the correct buttons and because the key pad is so far away from the
screen, the user has trouble noticing some of the buttons like clear and cancel,

Design the software to support a computerized backing network including both
human cashiers and automatic teller machines (ATMs) to be shared by a consortium of
banks. Bach bank provides its own computers to maintain its own accounts and process
transactions against them. Cashier stations are owned by individual banks and
communicate directly with their own bank's computers. Human cashiers enter account
and transaction data. Automatic teller machines communicate with a central computer
which clears transactions with the appropriate banks. An automatic teller machine accepts
a cash card, interacts with the user, communicates with the central system to cairy out the
transaction, dispenses cash, and prints receipts. The system requires recordkeeping and
security provisions, the system must handle concurrent accesses. The banks will provide
their own software for their own computers; you are to design the software for the ATMs
and the network. The cost of the shared system will be apportioned to the banks

according to the number of customers with cash cards.



=

The ATM is used by customers of a bank. Fach customer has two accounts: 4
checking account and a savings account. Each customer has a customer number and a
Personal Identification Number (PIN). Both must be typed into the simulation to gain
access (o the accounts, Once they have gained access, the customer can select an account
(checking or savings). The balance of the selected account is displayed (initially zero).
Then the customer can deposit and withdraw money. The application terminates when the
user selects exit rather than an account. Since this is a simulation, the ATM does not
actually communicate with the bank. It simply loads a list of customer numbers and PINs
from a data file.

The software to be designed will control a simulated automated teller machine (ATM)
having a magnetic stripe reader for reading an ATM card, a customer console (keyboard
and display) for interaction with the customer, a slot for depositing envelopes, a dispenser
for cash (in multiples of $20), a printer for printing customer receipts, and a key-operated
switch to allow an operator to start or stop the machine. The ATM will communicate with
the bank's computer over an appropriate communication link. (The software on the latter
is not part of the requirements for this problem.)

The ATM will service one customer at a time. A customer will be required to insert
an ATM card and enter a personal identification number (PIN) - both of which will be
sent to the bank for validation as part of each transaction. The customer will then be able
to perform one or more transactions. The card will be retained in the machine until the

customer indicates that he/she desires no further transactions, at which point it will be

73



returned - except as noted below.

The ATM must be able to provide the following services to the customer:

1.

o)

(%41

A customer must be able to make a cash withdrawal from any suitable account
linked to the card, in multiples of $20.00. Approval must be obtained from the
bauk before cash is dispensed.

A customer must be able to make a deposit to any account linked to the card,
consisting of cash and/or checks in an envelope. The customer will enter the
amount of the deposit into the ATM, subject to manual verification when the
envelope is removed from the machine by an operator. Approval must be
obtained from the bank before physically accepting the envelope.

A customer must be able to make a transfer of money between any two accounts
linked to the card.

A customer must be able to make a balance inquiry of any account linked to the
~ard.

A customer must be able to abort a transaction in progress by pressing the

Cancel key instead of responding to a request from the machine.

The ATM will communicate each transaction to the bank and obtain verification that

it was allowed by the bank. Ordinarily, a transaction will be considered complete by the

bank once it has been approved. In the case of a deposit, a second message will be sent to

the bank indicating that the customer has deposited the envelope. (If the customer fails to

deposit the envelope within the timeout period, or presses cancel instead, no second

74



message will be sent to the bank and the deposit will not be credited to the customer.)

If the bank determines that the customer's PIN is invalid, the customer will be
required to re-enter the PIN before a transaction can proceed. If the customer is unable to
successfully enter the PIN after three tries, the card will be permaneatly retained by the
machine, and the customer will have to contact the bank to get it buck.

If a transaction fails for any reason other than an invalid PIN, the ATM will display
an explanation of the problem, and will then ask the customer whether he/she wants to do
another transaction.

The ATM will provide the customer with a printed receipt for each successtul
transaction, showing the date, time, machine location, type of transaction, account(s),
amount, and ending and available balance(s) of the affected account ("to" account for
transfers).

The ATM will have a key-operated switch that will allow an operator to start and stop
the servicing of customers. After turning the switch to the "on" position, the operator will
be required to verify and enter the total cash on hand. The machine can only be turned off
when it is not servicing a customer. When the switch is moved to the "off" position, the
machine will shut down, so that the operator may remove deposit envelopes and reload
the machine with cash, blank receipts, etc.

The ATM will also maintain an internal log of transactions to facilitate resolving
ambiguities arising from a hardware fatlure in the middle of a transaction. Entries will be

made in the log when the ATM is started up and shut down, for each message sent to the

75



Bank (along with the response back, if one is expected), for the dispensing of cash, and
for the receiving of an envelope. Log entries may contain card numbers and dollar

amounts, but for security will never contain a PIN,

6.2 Creation of ATM Use Case Model

According to the requirements described above, T use the tool to define the use case
model of the ATM system in the following steps.
1. Create a new metamodel. Add three use cases: “Withdraw®, ‘Deposit’ and ‘Inquire’

and one actor ‘Customer’ to the model. ‘Customer” uses those three use cases.

Byuteny ATk Sralern
P
{ Withtiraw /‘)
""»«. '
g

w,f"
o
w(\\- - w;) ”‘;;o,)
‘/ ,u<\ eps

Guslomer .,
..

[JU—

o,
Moy
N
C frigyusies )
.

Figure 26. Use case model of ATM system after Step 1

2. Define goals of the actor ‘Customer” and the pre-condition, context and

post-condition of the use cases ‘Withdraw’, ‘Deposit’ and ‘Inquire’

76



| Bove Ht)
i’ &

f& v st AVH Shotver
it WA
il L
GnaE e

g

A R D NSO e

T £yt Y it g Diogoat

1A dnposi Tl s lu%’»mm W ERDALE am\w'acmu?' 4
1 B0 .. Gheshingg furt: b Faon 6T gonuting arimms, o
b i b e i 5 el e obn, 0 90 Rt THE Sealpetin iy ki
] fms\.- st 9 £ s B vty ot e AT €
thi syt 1 $hin SEeatel § e B
imnm,) WA 0 PO O 3 ikl CorRalnit tant ang
Kor 2hioties borieg 2 i%pust & weuiph, Dots M Dreslapi B koen
1 }ce WG, # GO e 13 SOt R W MRnd, B £t B o ,4{
- AnK SAN Gradit M Lunininti's SLEOH - Soshnighn on mmw% et
wau n‘ihn ey umu pz 7 193:0!2 e st o
¥ £

.
i
1
4

it defi ponint

Figure 27. Use case model of ATM system after Step 2

3. Define episodes of use cases "Withdraw’, ‘Deposit’ and ‘Inquire’

) Sustemer enters e
» 173 cusluniar sutects haok g
}; \ I U AT gyetinn duds iy fex
. £ G- Rank uhiwes eawtabon

{7 Aves waters ity atoom

2 ATat gsten putens wecow

174 ATM syeteon updatss by

1) Banw dontey operatian 1

LA gt wocls it

 Ealiode tie usorae Depadr - o 1 51

Gustgrmng

j :} l.nmmef IRSERS Dank (AR
{7} customer insens nonik s ; . i i £ tusomar znters BN sore
£ ustorans ontars 9IM code i} AT anlieud gl rhin ¢ 1y Gustomar et bank acteunt
1) Custamar subytty bink seemum i k " } {3 Guatoress entaig st of mongy
19 Crantomnior prters st of monay E % ind e p 51 TR Syetasn 4o denusit proch
e Syuten s proces R " i i Biftrers IpUIlnn
Bank tws ppistion i g eraw 4 1% Gostormr iy prvet
3 atomen gets ragh e S, el 173 AR vt spetatg s b
m undadng tank seeoutt batance | 1Y roet tuen n ki 0 SO [y sustemmer et revript
onvmum : L‘ Bk durins sheratian

> case model of ATM system after Step 3

4. Define events

“Withdraw’, "Deposit’ and ‘Inquire’



H e MR e {0y
{1 Cualomar ontors 44 eady
L G éennt

Spsiet S Wl OSSN
% AY0 wmashinn sisita bank osd

A A R G e \)‘M’)“)U‘u")v/‘l‘u,\‘)/u'))f«)A
Gkl Bl ithiok I

Gt

Figure 29, Use case model of ATM system after Step 4
Transaction s needed in banking system. The current three use cases should support
transactions. Also shared episodes are found in the current three use cases. So a super
use case ‘Do Transaction’ is created to be the parent use case of those three use cases.
Those shared episodes will be moved to super use case ‘Do Transaction’. A new
service is also created to include all the use cases.
1) Use ‘Create Empty Service' to create service 'Operation’
2)  Add use cases “Withdraw’, ‘Deposit’ and ‘Inquire’ into service 'Operation’.
3) Use 'Create empty use case' to create a use case Do Transaction’. Use case ‘Do
Transaction' is also defined in the service 'Operation’
4)  Use ‘Change Parent Use Case' to set use case Do Transaction’ as the parent of
use cases ‘Withdraw’, ‘Deposit’ and “Inguire’.

5} Use 'Move Episode to Parent Use Case' to move common episodes in use cases

78



‘Withdraw®, ‘Deposit” and “Inquire’ to use case 'Do Transaction'

s e : i G
it
A 0 A R R B B B B P B AR MR B B W DN
T Mgl Betnctantog  LEenant Dl (e d i

LA B ‘

hrsleer T Bynkerny

it Oppiistion

.
,}
e

Figure 30. Use case model of ATM system after Step S
6. Because of security reasons, every customer’s operations should be kept in his own

session. In the session, customer will be asked to input his PIN to validate his identity.
The ATM system will do approval process to check the PIN. If the PIN is not correct,
invalid PIN extension will be processed from within a transaction.

1) Use 'Create Empty Use Case' to create use case 'Open Session’, ‘Do Approval

Process' and 'Process Invalid PIN'

2) Create Association between actor 'Customer’ and use case 'Open Session'.

3)  Use 'Create Empty Actor' to create actor "Bank'

4y  Create Association between actor 'Bank' and use case Do Transaction'

5) Remove the Associations between actor 'Customer' and use cases "Withdraw',

Deposit’ and Tnquire’

79



i

2 4 m&«»»?f'/l’»ff)?)”Fftwmmm&Wiﬂ/&”@”(ﬂwﬂw}w&wp)ﬂvd»ﬂ?a{wwwm
' Ml roruatneion - Unsiy o ol

2;{3;

(Binnpsa invard 0
.

S

g i
e 1

TS e

Canntam

AN
Binh

T —,

eGP AR it

Figure 31. Use case model of ATM system after Step 6

7. Define episodes, pre-conditions, context and post-conditions of new us

Session’, ‘Do Approval Process’ and ‘Process Invalid PIN’

~

. wigls

Syptorn, AT Byblorn

Haview, Operaton

1

~ s - onch

A
Luatoner

L
1Y 19 gystar exity weration
IHEAPRIC LUStmT G5 dbns

Figure 32. Use case model of ATM system after Step 7

€ Cases

‘Open

80



8. Make use case ‘Open Session” include use case ‘Do Approval Process” and “Do
Transaction’. Add use case ‘Process Invalid PIN® as an extension of use case ‘Do
Transaction’

1) Use 'Include Use Case' to make use case 'Open Session' include use case Do
Transaction'

2) Use 'Include Use Case' to make use case '‘Open Session' include use case Do
Approval process'

3) Create 'Extend' between use case 'Process Invalid PIN' and Do Transaction’

. Lt
R R RGBT R R0,
. a iy 5

Synigen ATe Yalevn

Honigw: Tpeivn

ke
N
Suatieney

N SR R

e, -

R R

b
5 g
T e e O

Figure 33. Use case model of ATM system after Step 8
9. Customers need to transfer funds between different accounts. A new use case
“Transfer’ is created. It should support transaction. Its episodes, pre-conditions,
context, post-conditions and events are defined as well.

1) Use 'Create Empty Use Case' to create use case "Transfer’

81



2)  Define pre-conditions, context and post-condition of use case “Transfer’

3) Define episodes of use case "Transter'. (Some episodes ate imported from use
case “lransaction’)

4)  Define events of episodes in use case Transfer'

5) Use 'Change Parent Use Case' to make use case 'Do Transaction' as the parent of

use case "Transfer

eldubn wingaw

GO R
eC U ot (Uwlicd)

Lalarmm

£

ik

Figure 34. Use case model of ATM system after Step 9
10. ATM system needs to be maintained by the operator from bank. New use cases ‘Start
System’ and ‘Stop System’ are created. The new use cases are grouped into a new
service. The episodes, pre-conditions, context, post-conditions and events of new use
cases are defined. A new actor ‘Operator’ is added to interact with the new use cases.
1) Use 'Create Empty Use Case' to create use case 'Start System' and 'Stop System '

2) Define episodes, preconditions, context and post-condition of use case 'Start

82



System' and 'Stop Systeny’

3)  Define events of episodes in use case 'Start System' and ‘Stop System'

4)  Use 'Create Empty Actor' to create actor ‘Operator’

5) Define goals of actor 'Operator’

6) Create associations between actor ‘Operator’ and use cases ‘Start System', 'Stop
System'

7) Use 'Create Empty Service' to create service 'Maintenance'

8) Put use cases 'Start System’ and 'Stop System' in the service 'Maintenance'

algln)

lf‘ﬂ’ i’ﬂ(r@ i e e e D I RS e e B B
¢ Mool itoruetaving tmr:omu mwmn Wmﬂmvﬁ

i e
N T R S R AR

7
Bank

T

SRR R

R R s

Cparator

5
5
}
|
b
1
|
t
I
it
L
i
2
5
i
{

5
o

1

B R b A e

%@*

Figure 35. Use case model of ATM system after Step 10
6.3 Summary
After ten steps, an ATM use case model is defined according to the requirements. By
inspecting the process of creating a metamodel, I get a conclusion of necessary steps of

83



making a use case metamodel with the refactoring tool, The steps are:
1) analyze the requirements and get a brief description
2) define use cases and actors
3) define the episodes of use cases and goals of actors
4) define context, precondition and post-condition of use case
5) define the events of the episode
6) apply refactoring rules to the model according to the changes on requirements
7) repeat step 2) — step 6) until the model meeting the requirements
This case study shows all the aspects of getting a use case metamodel by using the

tool. It proves the feasibility of use case model and the refactorings on the model,

84



7. Conclusions

This thesis introduces the practice in designing and implementing a refactoring tool
for defining our use case metamodel and applying refactorings to the model. A use case
metamodel and some refactoring rules ave introduced and implemented in the refactoring
tool. The tool has facilitated generating use case model greatly. The works I have done
are a) describe refactoring rules related to use case and actor in detail with arguments,
pre-conditions and post-conditions b) define data structure of use case model on
environment level d) extend Drawlets framework to be the base framework of the tool e)
design and implement the use case model editor of environment level f) implement some
of the refactoring rules related to use case and actor g) make a case study with the tool.
The works haven’t been finished are a) refactoring rules in move category, distribute
category and some rules in compose category are not implemented b) extension of
interfaces and classes in Drawlets framework for structure and event level are not
provided. In the case study, a use case metamodel of ATM system is created with the
refactoring tool. The model is improved by applying refactoring rules and some other
extension functions provided by the refactoring tool to the model according to the
changes on requirements. The result shows that making refactoring on use case model is

feasible. Refactorings facilitate the process of reusing requirement fragroents, which

85



reduces elaboration time and fmproves requirement quality.

The other two students’ work also shows some issues on the implementation such as

a) the representation of structure and event level are not straightforward b) not all the

refactoring rules are implemented, for example, the refactoring on the event level ¢) goal

model are not fully defined and implemented d) some refactoring rules need to be

improved for better description, validation and implementation, ¢te.

In the future, following features may be added to the refactoring tool for facilitating

the refactoring process and making use case refactorings more practical.

b

scripting

Allow users to write scripts for metamodel definition and refactoring

redo and undo

Allow users (o recover to the previous status or reapply the refactorings

data exchange

Help users to exchange data with other modeling systems, The issue could be
faced is that other use case modeling ¢
defined in our metamodel or vice versa. The information of environment level
may be exchanged without big changes while the other two levels may not be
exchanged directly. Users may have to define the structure level and event level
by themselves after the use case model imported.

maodel optimization

806



Help users to analyze metamodel according to pre-defined use case design
patterns. Some refactoring suggestions of how to optimizing model and possible
results after optimization are shown to users. The tool could finish the refactoring
process automatically if users satisfy with the result of refactoring on the model,
5. more graphical representations
Consider using graphical representations on structure level and event level.
Currently tree structure is used on these two levels. When composite episode or
event is defined in the model, the tree structure may not show the sequences of
the atomic episode or event clearly. With graphical representations, users can
understand the definition of the composite episode or event easily. In order to use
more graphical representation, extensions of interfaces and objects of the
Drawlets framework should be provided.
Refactoring rules may be added or altered according to the feedbacks from the users
of the tool. Test model may be set up for verifying that behaviors of use case model are
preserved after refactoring applied. More case studies are needed to help on evaluating

the metamodel and refactoring rules, and improving the refactoring tool as well.

87



References

1.

b

6.

Jay Banerjee and Won Kim, “Semantics and implementation of schema evolution in
object-oriented databases™, In Proceedings of the ACM SIGMOD Conference, 1987.
Russell C. Bjork, “ATM Simulation”, Gordon College, 2002.
hitp://swww.math-cs.gordon.edu/local/courses/cs21 1/ ATMExample/

Ray Buhr, “Use case maps (UCMs) Updated: A Simple Visual Notaticeon for
Understanding and Architecting the Emergent Bezhavior of Large, Complex, Self
Modifying Systems”, 1995.

ftp://ftp.sce.carleton.ca/pub/UseCaseMaps/ucmUpdate.ps

Gregory Butler and Lugang Xu, “Cascaded refactoring for framework evolution”, In
Proceedings of 2001 Symposium on Software Reusability, ACM Press, pp.51-57,
2001.

Alistair Cockburn, “Structuring Use Cases with Goals” - JOOP/ROAD Vol. 10(5),
pp-35-40, Sep.1997 and Vol. 10(7), pp.56-62, Nov.1997.

Larry L.. Constantine and Lucy A. D. Lockwood, “Structure and style in use cases for
user interface design”, Addison-Wesley, ISBN:0-201-65789-9, pp.245-279, 2001.

A. Dardenne, A, van Lamsweerde and S. Fickas, “Goal-directed Requirements

Acquisition”, Science of Computer Programming, Vol. 20, pp.3-50, 1993.

88



& D. Firesmith, B. Henderson-Sellers and 1. Graham, “OPEN Modeling Language
(OML) Reference Manual™. Sigs, New York, 1997,

9. M. Fowler, “Refactoring: Improving the Design of Existing Code”, Addison-Wesley,
ISBN:0-201-48567-2, 1999,

10. Erich Gamma, Richard Helm, Ralph Johnson, and John Viissides, “Design Patterns -

Massachusetts, 1993,

L1 1. Graham, “Migrating to Object Technology”, Addison-Wesley, ISBN:0-201-59389-0,
1995.

12. B. Henderson-Sellers and D.G. Firesmith, “Choosing between OPEN and UML”,
Awmerican Programmer, 10(3), pp.15-23 COTAR Contribution no 97/5, 1997,

13. Brian Henderson-Sellers, Donald G. Firesmith, and Ian Graham, “OML Metamodel:
Relationships and state modeling”, JOOP Vol. 10(1), pp.47-51, March/April 1997,

14. 1. Jacobson, G. Booch and J. Rumbaugh, “The Unified Software Development

o " M ] M }" oy
WER R L N £
Process”. Addison Wes

15. 1. Jacobson, M. Christerson, P. Jonsson and G. Overgaard, “Object-Oriented Software
Engineering, A Use Case Driven Approach”, Addison-Wesley, Wokingham,
ISBN:0-201-54435-0, 1992,

16. Ivar Jacobson, Maria Ericsson and Agneta Jacobson, “the Object Advantage -
Business  Process Reengineering  with  Object  Technology”, ACM  Press,

ISBN:0-201-42289-1, 1994,

89



17.

18.

19.

20,

22,

o]
23

b
h

26.

27.

W. E Opdyke, “Refactoring Object-Oriented Frameworks”™, Ph.D. thesis, University
of linois, 1992,

C. Potts, K. Takahashi, A. Anton, “Inquiry-Based Requirements Analysis”, 1EEE
Software, pp.21-32, March 1994,

Rational, UML Summary, Semantics, Notation Guide, Version 1.1, Rational Software
Corporation, 1997,

Bjorn Regnell, “Requirements Engineering with Use Cases - a Basis for Software

Development”. Ph.D. thesis, Lund University, 1999.

.Donald Bradley Roberts. “Practical Analysis for Refactoring”, Ph.D. thesis,

University of Illinois, 1999,
RoleModel Software, “Drawlets Framework™, 2003.

http://www.rolemodelsoftware.com/drawlets/index.php

3. Kexing Rui, “Refactoring Use Case Models”, Thesis proposal, University of

Concordia, 2002.

Study”, University of Concordia, 2002.

-J. Rumbaugh, 1. Jacobson and G. Booch, “The Unified Modeling Language Reference

Manual”, Reading, MA: Addison-Wesley, ISBN:0-201-30998-X, 1999,
Hossein Saiedian, “Introduction to Requirement Engineering Management”,
University of Kansas, 2003,

Lance Tokuda, “Evolving Object-Oriented Designs with Refactorings”, Ph.D. thesis,

20



University of Texas at Austin, 1999,

28. Y. Yamane, N. Igata and L Namba, “High-performance XML Storage/Retrieval
System”, FUITTSU Sci. Tech. J., 36(2), pp.185-192, 2000.

29. Didar Zowghi, “RE@UTS - Requirements Engineering Activities”, 2002,

http://research.it.uts.cdu.au/ve/re_uts_activitics.html



Appendices

A. Architecture of Refactoring Tool

e fpfartoring Toot

[

e

Metarpodel Module Layar
o iGN Laepl | EpIoda s,

g ———

T Refantoriog

R Vo o
[:;:j £} Eplade
m Fress Modal Defivifion
%
%,

-

Fafarioning

nnnnnnn

GLi

e Mordel

Evam.
[5 Dhedinition

-

s Egiviromment Level ;_m Vg CRase smommaman,

G55 BN PR

T Refactoring

Bt Ll || B e,

A

s —— —
, B

GUl gt
Driwlets e
et sl pors Diafirition |
] Extapsion i ;
o [ /

A

Imww\wwwwmp«m»xmm .
Z

[VMW s
Rirtep o

T Retactoring

-

S il

r,w«mﬁmrirmmam Lavel SR e s,

rsanend

Gt

Tres Rlodad

. -
{: Chow
 Defindtions

L

w0 Tool | Framewok Layey

JUrit Prarossyork

¥

5
-

Erswieis Frammeswaork

SO ———

ot
A0 Parser

7y

e Rfactoring Tonl

oW

{x\h [%\ "’{\K\
ooty R ST, )
Evntrorrses Shrpeiiae Evont Lenel
Loveerd Digrtin Level Data Dta
%,

/
Metamudel Dats Laymrwnj;—‘w.ﬁ%

Figure 36. Architecture of Refactoring Tool

%,




B. Use Case Metamodel of ATM system

B.1 Environment Level

<UsecaseModel>
<Usecasess

<Usecase id="60">
«<Name>Do Transaction=/Name:
<Coordinate x="257" y="220"f>
<8ize width="105" height="58"/>
<Description></Descriptions
<EpisodelD>60</EpisodelD»

<fUsecases

<Usecase id="91">
<Name>Process Invalid PIN</Name>
<Coordinate x="355" y="149"/»
<Size width="100" height="58"/>
<Description></Descriptions
<EpisodelD>9 L </EpisodelD>»

</Usecase>

<Usecase id="41">
<Narne>Withdraw</Name>
<Coordinate x="123" y="293"/>
<Size width="101" height="538"/>
<Description>Withdraw money from the given bank account</Description>
<EpisodelD>41</Episodeliy:-

<Usecase>

<Usecase id="42">
<Name>Deposit</Name>
<Coordinate x="215" y="293"/>
<Size width="100" height="58"/>
<Description>Deposit money to the selected bank acount</Description>
<EpisodelD-42</EpisodelD>

</Usecase>

<Usecase id="43">
<Name>Inquire</Name:»
<Coordinate x="300" y="292"/>
<Size width="100" height="58"/>

93



<Deseriptionz>CGet account information frosm the selected account.</Descriptions

<BpisodellDz43</Hpisodell»
<Usecages
<Usecase 1d="89">
<Name>Open Sesston</Narng:>
<Coordinate x="132" y="149"/>
«<Rize width="100" height="58"/>
<Deseriptiors</Descriptions
<Episodell>8%9</Episodelld>
</Usecase
<Usecase id="90"»

<Name>Do Approval Process</Name:

<Coordinate x="115" y="58"/>
<Size width="135" height="58"/>
<Descriptions</Descriptions
<IpisodellD»90</EpisodelD>

<Isecase

<Usecase id="99">
<Name»Transfer</Name:
<Coordinate x="401" y="294"/>
<Size width="100" height="59"/>
<Description></Descriptions
<EpisodelD>99</EpisodelD>

</Usecase>

<Usecase id="138">
<Name>Start System</Name:
<Coordinate x="120" y="395"/>
<Size width="135" height="58"/>
<Description></Description>
<EpisodelD>138</EpisodelD>

</Jsecase>

<Usecase id="139"»
<Name>Stop System</Name:>
<Coordinate x="118" y="453"/>
<Size width="139" height="58"/>
<Description></Description:
<EpisodelD>139</Episodell:

</Usecase>

</Usecases:>
<Actors»
<Actor id="40">

94



<Name»Customer</Names
<Coordinate x="8" y="138"/x
<Size width="75" height="88"/»
<Drescription>Normally, Customers have an account opened at the bank. They can
access to their aceount 1o do some transcations like withdrawing money, ete.</Descriptions
«<Userily»40</Userld>
</Actors
<Actor id="92">
<NamexBank</Name:»
<Coordinate x="530" y="220"/>
<Size width="50" height="88"/:»
<Description=</Description=
<Userl=92«</Userll»>
</Agtors
<Actor id="141">
<Name>Operator</Name>
<Coordinate x="7" y="406"/>
«<Size width="068" height="88"/>
<Description></Description>
<UserID>141</UsertDz
</Actors
</Actors>
<Relationship>
<Association>
<Actor-Usecase>
<ActorRef>92</ActorRel>
<UsecaseRef>00</UsecaseRef>
</Actor-Usecase>
<Actor-Usecase>
<ActorRef>40</ActorRef>
<UsecaseRef>89</UsecaseRef>
</Actor-Usecase>
<Actor-Usecase>
<ActorRef>141</ActorRef>
<UsecaseRel>138</UsecaseRef>
</Actor-Usecases
<Actor-Usecase
<ActorRef> 14 1</ActorRef>
<UsecaseRel>139</UsecaseRef»
</Actor-Usecasen

</ Associations>

a5



<Cleneralization:
<Usecase-Usecases
<UsecaseRefI»43</N IsecaseRef 1>
<UsecaseRel2=00</Usecase Ref2s>
<fUsecase-Usecases
<Usecase-Usecases
<UsecaseRef1»42</UsecaseRef 1>
<UsecaseRef2>60</UsecaseRef2>
<MUsecase-Usecases
<Usecase-Usecases
<UsecaseRef1»41</UsecaseRef 1>
<UsecaseRef2>60</UsecaseRef 2>
</Usecase-Usecaser
<Usecase-Usecases>
<IlsecaseRef 1=99</UsccaseRef 1>
<UsecaseRel22-00«</UsecaseRef2>
</Usecase~Usecases
</CGeneralization>
<Inclusion>
<Usecase-Usecasex
<UsecaseRel1»>89</UsecaseRef 1
<UsecaseRet2x060</Usecase Ref 2
</Usecase-Usecases
<Usecase-Usecases
<UsecaseRef1>89</UsecaseRefl>
<UsecaseRef2>90</UsecaseRef2:
</Usecase-Usecages>
</Inclusion>
<Extension>
<Usecase-Usecase>
<UsecaseRef1>91</UsecaseRef 1=
<UsecaseRef2>60</UsecaseRef2>
</Usecase-Usecase>
</Extension>
</Relationship>
<Other:>
<ServiceBound id="140">
<Name>Maintanence</Name:
<BoundRect x="106" y="379" width="161" height="142"/>
<Description»</Description
<UsecaseEID=</UsecaseEID>

96



</SeyviceBound:>

<ServiceBound id="55":
<Name>»UOperation</Name>
<BoundRect x="107" y="45" width="399" height="321"/>
<Descriptions</Description:
<Usecase I/ UsecaseBID-

<fServiceBound»

<SystemBound>
<Name>»ATM System</Name>
<BoundRect x="84" y="17" width="438" height="522"/>
<Descriptiones</Description>

</SystemBound>

</Other>
</UsecaseModel>

<GoalModel>
<Goal name="Goal: Withdraw" descriptions="Achieve getting money from ATM machine>

text
<Actor name="All" description="">text</Actor>
</Goal>

<Goal name="Goal: Deposit” description="Achieve depositing money to given account”>
text
<Actor name="All" description="">text</Actor>

</Goal>

<Goal name="Goal: Tnquire" description="Achieve getting account information™>
text
<Actor name="All" description="">text</Actor>

</Goal>

</GoalModel>

B.2 Structure Level

<EpisodeModel>

<UseCase 1D="41" PreCondition="1. Customer should have a valid bank card which is accepted by
the ATM muachine 2. Customer should know the PIN of the card as well. 3. ATM is working
propx‘::rl&." Context=" A withdrawal transaction asks the customer to choose a type of account to
withdraw from (e.g. checking) from a menu of possible accounts, and to choose a dollar amount from
a menu  of possible amounts.  The system verifies that it has sufficient money on hand to satisfy
the request before sending the transaction to the bank, (If not, the customer is informed and asked to
enter a different amount.) If the transaction is approved by the bank, the appropriate amount of cash is

97



dispensed by the machine before it 1ssues a receipt. (The dispensing of cash is also recorded in the
ATM's log.) A withdrawal transaction can be cancelled by the customer pressing the Cancel key
any time prior to choosing the dollar amount. * PostCondition="1. ATM machine will return to the
login  sereen for next customer. 2. Customers will get the amount of money they request.”>»
<Episode name="41" type="Sequence Episode"
<SubBEpisodess
<dSubEpisodexCustomer inserts bank card=/Sublpisode
<SubEpisodexCustorer enters PIN code</Subpisode
<SubEpisodexCustomer selects bank account</SubEpisode
<Subkpisode-Customer enters amount of money</SubEpisodes
<SubEpisode>ATM system does withdrawal processing</SubEpisode
<SubEpisode>ATM machine ejects bank card</SubEpisode>
</SubFpisodes:
</Episode>
<Hpisode name="ATM System does withdrawal processing” type="Alternation Fpisode">
<SubEBpisodes>
<SubEpisode>Bank allows operation</SubEpisode>
<SubEpisode>Bank denies operation</SubEpisodes
</SubEpisodes>
</Episode>
<Episode name="Baok allows operation” type="Sequence Bpisode">
<SubEpisodes>
<SubEpisode>Customer gets cash</SubEpisode>
<SubEpisode>ATM system updates bank account balance</SubEpisode>
</SubEpisodes>
<fEpisode>
<Episode name="Customer enters amount of money" type="Atomic Episode" />
<Episode name="Customer gets cash" type="Atomic Episode" />
<Episode name="ATM system updates bank account balance" type="Atomic Episode" />
</UseCasex>
<UseCase 1="42" PreCondition="1. Customer should have a valid bank card which is aceepted by
the ATM machine 2. Customer should know the PIN of the card as well. 3. ATM is working properly.”
Context=" A deposit transaction asks the customer to choose a type of account to deposit to (e.g.
checking) from a menu of possible accounts, and to type in a dollar amount on the keyboard. The
transaction is initially sent to the bank to verify that the ATM can accept a deposit from this customer
to this account. If the transaction is approved, the machine accepts an cnvelope from the customer
containing cash and/or checks before it issues a receipt. Once the envelope has been received, a
second message is sent to the bank, to confirm that the bank can credit the customer's account -
contingent on manual verification of the deposit envelope contents by an operator later. (The receipt of
an envelope s also recorded in the ATM's log.) A deposit transaction can be cancelled by the

customer pressing the Cancel key any time prior to inserting the envelope  containing the deposit.

98



The transaction is automatically cancelled if the customer fails to insert the envelope containing the
deposit within a reasonable period of time after being asked to do so. " PostCondition="1. ATM
machine will return to the login screen for next customer. 2. Customers will receive a receipt.">
<Episode name="42" type="Sequence Episode™>
<SubEpisodes>
<SubEpisodex»Customer inserts bank card</SubEpisodex
<SubEpisodex>Customer enters PIN code</SubBpisodes
<SubEpisode>Customer selects bank account</SubEpisodes
<SubEpisode>Customer enters amount of money</SubEpisodes
<SubEpisode>ATM system does deposit processing</SubEpisode>
<SubEpisode>ATM machine ejects bank card</SubEpisode>
</Subkpisodes:>
</Fipisode>
<Episode name="ATM System does deposit processing” type="Alternation Episode">
<SubEpisodess»
<SubEpisode>Bank allows operation</SubEpisodes
<SubEpisodesBank denies operation</SubEpisode:-
</Subkipisodess
</Episodex
<Episode name="Bank allows operation” type="Sequence Episode">
<SubEpisodes>
<SubEpisode>Customer inserts envelope</SubEpisode>
<SubEpisode>ATM system updates bank account balance</SubEpisode>
<SubEpisode>Customer gets receipt</SubBEpisode>
</SubEpisodes>
</Episode>
<Episode name="ATM system updates bank account balance” type="Atomic Episode” />
<Episode name="Customer inserts envelope” type="Atomic Episode” />
<Episode name="Customer enters amount of money” type="Atomic Episode” />
<Episode name="Customer gets receipt” type="Atomic Episode" />
</UseCasex
<UseCase ID="43" PreCondition="1. Customers should have a valid bank card which is accepted by
the ATM machine 2. Customers should know the PIN of the card as well. 3. Customers should
have a bank book if they want o update the information on it.” Context=" An inquiry transaction
asks the customer to choose a type of account to inquire about from a menu of possible accounts. No
further action is required once the transaction is approved by the bank before printing the receipt.
An inquiry transaction can be cancelled by the custorer pressing the Cancel key any time prior o
choosing the account to inquire about. " PostCondition="1. ATM machine will return to the login
screen for next customer. 2, Bank book may be updated.">
<Episode name="43" type="Sequence Episode">
<SubEpisodes>

99



<SubEpisodesCustomer tnserts bank card=/SubEpisodes»
<Sublpisode>Customer eoters PIN code=/SubEpisodes
<SubEpisode=Customer selects bank account</SubBEpisodes
<SubEpisode>ATM system does inquiry processing=/SubFpisodes
<SubEpisode>ATM machine ejects bank card</SubEpisode>
</SubEpisodess
</Episode
<Episode name="ATM system does inquiry processing” type="Alternation Episode™>
<SubEpisodes»
<Subkipisode>Bank allows operation</SubEpisodes
<SubEpisode=Bank denies operation</SubEpisode>
</SubEpisodes>
</Episode
<Bpisode name="Bank allows operation" type="Alternation Episode”s
<SubFpisodes>
<SubEpisode>ATM system prints account information on screen</SubEpisodes
<SubEpisode>ATM system prints account information un‘ff:c;c;:iptai/Subl?”tpimda:»
<SubEpisode»ATM system updates bankbook</SubEpisode:
</SubEpisodes:>
</Episodex
<Episode name="ATM system prints account information on screen” types="Atomic Episode” />
<Episode name="ATM system prints account information on receipt” type="Atomic Episode” />
<Episode name="ATM system updates bankbook” type="Atomic Episode" />
</UseCasex
<UseCase TD="60" PreCondition="" Context=" " PostCondition="">
<Hpisode name="60" type="Sequence Episode” />
<Episode name="Customer selects bank account” type="Atomic Episode” />
<Episode name="Customer inserts bank card" type="Atomic Episode" />
<Episode name="Customer enters PIN code" type="Atomic Episode” />
<Episode name="ATM machine ejects bank card" type="Atomic Episode” />
<Episode name="Bank denies operation” type="Atomic Episode” />
</UseCasex»
<UseCase [D="89" PreCondition="1. Bank card should be inserted into the ATM machine" Context="
A session is started when a customer inserts an ATM card into the card reader slot of the machine. The
ATM pulls the card into the machine and reads it. (If the reader cannot read the card due to improper
insertion or a damaged stripe, the card is ejected, an error screen is displayed, and the session is
aborted.) The customer is asked to enter his/her PIN, and is then allowed to perform one or more
transactions, choosing from a menu of possible types of transaction in each case. After each
transaction, the customer is asked whether he/she would like to perform another. When the customer is
through performing transactions, the card is ejected from the machine and the session ends. If a
transaction is aborted due to too many invalid PIN entries, the session is also aborted, with the card

160



being retained in the machine.  The customer may abort the session by pressing the Cancel key when
entering a PIN or choosing a transaction type. " PostConditions="1. Bank cards should be gjected. 2.
Money may be dispensed upon the customers' requests 3. Login screen is shown on the ATM
machineg">»
<Episode name="89" type="Sequence Episode” />
<Episode name="Customer selects bank account” type="Atomic Episode" />
<Episode name="Customer inserts bank card” type="Atomic Episode” />
<Bpisode name="Customer enters PIN code" type="Atomic Fpisode" />
<Episode name="ATM machine ejects bank card" type="Atomic Episode” />
<Hpisode name="ATM system sends PIN to bank™ type="Atomic Episode" />
<Hpisode name="ATM system gets result from bank” type="Atomic Episode” /=
<fUseCases
<UseCase ID="91" PreConditions"the bank reports that the customer's transaction is disapproved due
to an invalid PIN" Context=" An invalid PIN extension is started from within a transaction when the
bank reports that the customer's transaction is disapproved due to an invalid PIN. The customer is
required 1o re-enter the PIN and the original request is sent to the bank again. If the bank now
approves the transaction, or disapproves it for some other reason, the original use case is continued;
otherwise the process of re-entering the PIN is repeated. Ounce the PIN is successfully re-entered, it is
used for both the current trangaction and all subsequent transactions in the session. If the customer
fails three times to enter the correct PIN, the card is permanently retained, a screen is displayed
informing the customer of this and suggesting he/she contact the bank, and the entire customer session
is aborted.  If the customer presses Cancel instead of re-entering a PIN, the original transaction is
cancelled. " PostCondition="If the bank now approves the transaction, or disapproves it for some other
reason, the original use case Is countinued; otherwise the process of re-entering the PIN is repeated.">
<Episode name="91" type="Sequence Episode>
<SubEpisodes>
<SubEpisode>Iteration: Customer re-enters the PIN</SubEpisode>
</Subkpisodes>
</Episode>
<Episode name="Tteration: Customer re-enters the PIN" type="Tteration Episode">
<SubEpisodess>
<SubEpisode>ATM system checks customer input</SubEpisode>
</SubEpisodes>
</Episode
<Episode name="ATM system checks customer input" type="Alternation Episode">
<SubEpisodes>
<SubEpisode>Approve customer operation</SubEpisode:
<SubEpisode>Disapprove customer operation</SubEpisodes
</Subbipisodes>
</Episode>

<Episode name="Approve customer operation” type="Sequence Episode">

104



<SubEpisodess
«<SubEpisode=ATM system exits iteration</SubEpisode:s
</SubBpisodes:
</Episodes
<Episode name="Disapprove customer operation” type="Sequence Episode">
<SubBpisodess>
<SubEpisode>ATM system checks re-entering times</SubEpisodes
</SubBpisodes:
</Episode>
<Episode name="ATM system checks re-entering times" type="Alternation Fpisode">
<Subbipisodess
<SubEpisode>Clustomer re-enters over 3 times</SubEpisode:>
<SubEpisode>Customer re-enters less than 3 times</SubEpisodex
</SubEpisodes:
</Episodex
<Episode name="Customer re-enters over 3 times" type="Alternation Episode">
<SubEpisodes
<SubEpisode>ATM system retains card</SubEpisodes
<SubEpisode>ATM system displays error</SubEpisodes
</SubEpisodes>
</Episode>
<Episode name="Customer re-enters less than 3 times" type="Alternation Episode">
<SubEpisodes>»
<SubEpisode>Customer enters PIN code</SubEpisodes
</SubEpisodes>
</Bpisode>
<Episode name="Customer enters PIN code" type="Atomic Episode" />
<Episode name="ATM system cancels operation" type="Atomic Episode" />
<Episode name="ATM system retains card" type="Atomic Episode" />
<Episode name="ATM system exits iteration” type="Atomic Episode" />
<Episode name="ATM system displays error" type="Atomic Episode" />
</UseCasex
<UseCase 1D="90" PreCondition="PIN has been entered or re-entered. It's going to be sent to the
bank for validation" Context="A approval process is started when PIN has been entered. PIN will be
validated at bank. If it's approved, customers can do transactions with bank. Otherwise, customers will
be asked for re-entering the PIN." PostCondition="Customer should get the approval or disapproval of
doing furthur transactions. 1f approved, transaction menu will be shown on the screen. If not approved,
entering PIN screen will be shown instead.">

<SubEpisodes>
<SubEpisode>ATM system sends PIN to bank</SubEpisode>



<SubEpisodex=ATM system gets result from bank</SubEpisodes
</SubEpisodes:
</BEpisode»
<Episode name="ATM system sends PIN to bank™ type="Atomic Episode” />
<Hpisode name="ATM systern gets result from bank” type="Atomic Episode" />
</UseCase
<UseCase I1D="99" PreCondition="Customer should have more than one type of account.” Contextz="
A transter ransaction asks the customer to choose a type of account to transfer from (e.g. checking)
from a menu of possible accounts, to choose a different account to transfer to, and to type in a dollar
amount on the keyboard. No further action is required once the transaction is approved by the bank
before printing the receipt. A transfer transaction can be cancelled by the customer pressing the
Cancel key any time prior to entering a dollar amount. " PostCondition="Money has been transfered
and exchange rate is applied if nceded™>
<Episode name="99" type="Sequence Episode">
<SubEpisodes:s
<SubEpisodex>Customer inserts bank card</SubEpisode>
<SubEpisode>Customer enters PIN code</SubEpisodex
<SubEpisode>Customer selects 'From which account'</SubEpisode>
<SubEpisode>Customer selects To which account'</SubEpisodes
<SubEpisodexCustomer enters transfer amount</SubEpisode:
<SubEpisode>ATM system does transfer processing</SubEpisode
<SubEpisode>ATM machine ejects bank card</SubEpisode>
</SubEpisodes:
</Episode>
<Episode name="ATM system does transfer processing” type="Alternation Episode">
<SubEpisodes>
<SubEpisode>Bank allows operation</SubEpisodes
<SubEpisode>Bank denies operation</SubEpisode>
</SubEpisodes>
</Episode>
<Episode name="Bank allows operation” type="Sequence Fpisode">
<SubEpisodes>
<SubEpisode>Customer gets receipt</SubEpisode>
</SubEpisodes>
</Episode
<Episode name="Customer selects 'From which account™ type="Atomic Episode"

(

<Hpisode name="Customer selects "To which account™ type="Atomic Episode” />
<Bpisode name="Customer gets receipt” type="Atomic Episode" />

<Episode names="Customer enters transfer amount" type="Atomic Episode" />
</UseCase>

<UseCase T="138" PreCondition="Operator should know the user name and password." Context="

103



The system is started up when the operator turns the operator switch to the &quot,on&quot; position.
The operator will be asked to enter the amount of money currently in the cash dispenser, and a
connection to the bank will be established. Then the servicing of customers can begin, "
PostCondition=" ATM machine is ready for using. Some mouey has been put in the dispenser. The
connection to the bank has been established.™>
<Episode name="138" type="Sequence Episode”>
<SubEpisodes
<SubEpisodexOperator tams on the ATM machine</SubEpisode
<SubEpisode>ATM System starts</SubEpisode
</SubEpisodes>
</Bpisode
<Episode name="ATM System starts" type="Alternation Episode™>
<Subbpisodes>
<Sublipisode=ATM machine starts successfully</SubFpisode:
<SubEpisode>ATM machine couldn’t be started</SubEpisodes
</SubEpisodes:»
</Episodex
<Episode name="ATM machine starts successfully” type="Sequence Episode">
<SubEpisodes>
<SubEpisode>Operator inputs administrator password</SubEpisode
<SubEpisode>ATM system does password checking</SubEpisode>
</Sublpisodes:
</Episode
<Episode name="ATM system does password checking” type="Alternation Episode">
<SubBpisodes>
<SubEpisode>Operator is allowed to enter the system</SubEpisode>
<SubEpisode»Operator is not allowed to enter the system</SubEpisode>
</SubEpisodes>
</Episode>
<Episode name="Operator is allowed to enter the system" type="Sequence Episode”>
<SubEpisodes>
<SubEpisode>Operator enters the amount of money currently in the dispenser</SubEpisode>
<SubElpisode>ATM system establishes the connection to the bank</SubEpisode>
</SubEipisodes>
</Episode=>
<Episode name="Operator turns on the ATM machine" type="Atomic Episode” />
<Episode name="Operator inputs administrator password" types="Atomic Episode” />
<Episode name="Operator enters the amount of money currently in the dispenser” types="Atomic
Episode" />
<Episode name="ATM system establishes the connection to the bank™ t ype="Atomic Episode” />
<EBpisode name="ATM machine couldn't be started" type="Atomic Episode" />

104



<Episode name="Operator is not allowed to enter the system” types="Atomic Episode” />
<fUseCaser
<UseCase ID="139" PreCondition="No customer is using the ATM machine” Context="  The system
is shut down when the operator makes sure that no customer is using the machine, and then turns the
operator switch to the &quot;off&quot; position. The connection to the bank will be shut down. Then
the operator is free to remove deposited envelopes, replenish cash and paper, ete. " PostConditions="
ATM machine is turned off and the connection to the baak is cut down."»
<Episode name="139" type="Sequence Episode’>
<Subkpisodes>
<SubHpisodexOperator inputs administrator password</SubFpisodes
<SubEpisode>ATM system does password checking</SubEpisodes
</SubFpisodess>
</Episodex
<Episode name="ATM systein does password checking" type="Alternation Episode">
<subBpisodes>
<SubEpisode>Operator is allowed to enter the system</SubEpisodes>
<SubEpisode=Operator is not allowed to enter the system</SubEpisodes
</SubEpisodes>
</Episode>
<Episode name="Operator is allowed to enter the system" type="Sequence Episode">
<Subkpisodes>
<SubEpisodex>Operator turns off the machine</SubEpisode>
<SubEpisode»ATM system turns off</SubEpisode>
</SubEpisodes:
</Episode>
<Episode name="ATM syster turns oft" type="Alternation Episode">
<SubEpisodes>
<SubEpisode>ATM machine is turned off successfully</SubEpisodes
<SubEpisode>ATM machine couldn't be turned off</SubEpisode>
</SubEpisodes:
</Episodez-
<Episode name="ATM machine is turned off successfully" type="Sequence Episode">
<SubEpisodes>
<SubEpisode>Operator cuts the connection to the bank</SubEpisode>
<Subkipisode>Operator removes deposited envelopes</SubEpisodes
<SubEpisode>Operator replenishes cash and paper</SubEpisode>
</SubEpisodes>
</Episodex
<Episode name="Operator inputs administrator password" type="Atomic Episode" />
<Episode name="Operator cuts the connection to the bank” type="Atomic Episode" />
<Episode names="Operator turns off the machine” type="Atomic Episode” />



<Episode name="Operator removes deposited envelopes” types="Atomic Episode” /i
<Episode name="Qperator replenishes cash and paper” types="Atomic Episode" /»
<Episode name="ATM machine couldn't be turned of " types"Atomic Episode” />
<Episode name="Operator is not allowed to enter the system” types="Atomic Episode” />
</UseCasex

</EpisodeMuodel>

B.3 Event Level

<EventModel>-
<Primitivelivent name="Display Message" type="Response” />
<PrimitiveEvent name="Input Code” type="Stimuli" />»
<PrimitiveEvent name="Timeout" type="Response" />
<PrimitiveEvent name="Validate Code" type="Action" /-
</EventModel>

106



