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ABSTRACT

Modeling Sorption and its Impact on
Perceived Indoor Air Quality

Wafa Sakr, Ph.D.
Concordia University, 2004

A variety of studies have demonstrated that building materials, in addition to being an
important source of indoor pollution through emission, are also capable of changing the
concentrations of indoor pollutants by their interaction either with other pollutants that
might exist indoors or/and with each other through adsorption/desorption phenomena.
This study aimed to investigate and to quantify the impact of sorption processes on
perceived air quality using sensory panels as the measuring device.

The experiments were performed in four similar, adjacent, unfurnished offices. Samples
of carpet, painted gypsum board, virgin gypsum board, linoleum and Semia were tested
individually and as a combination of two materials. To invéstigate the interaction
between the pollutants emitted from the test building materials and the actual room
surfaces, the air polluted by two different building materials was mixed in a separate
room without the presence of the building materials. Each experiment lasted between one
week (adsorption stage only) to 10 days (adsorption and desorption stages). Untrained
panels assessed the air quality at specific time intervals after moving the materials into or
out of the rooms, depending on the design of each experiment. The results indicated that
sorption affects the perceived air quality significantly. For all perf;)rmed experiments,
the presence of an additional room surface (samples of painted gypsum board) together

with samples of carpet or linoleum improved the perceived air quality in that room and in

il



comparison to the air in the room with carpet alone or painted gypsum board alone. The
improvement was consistent despite the different kind of building materials used in the
experiments, the different panels that performed the sensory assessments and the different
environmental conditions for the different experiments. Moreover, adsorption/desorption
coefficients for the room surfaces and the painted gypsum board were calculated
assuming a Langmuir type of adsorption and when the pollution source was either carpet
or linoleum. As anticipated the linear Langmuir model appeared to be suitable for the
painted gypsum board and the room surfaces (flat smooth surfaces). In this work, based
on sensory data, it was possible to get reasonable values for sorption parameters for
painted gypsum board and the room surfaces presumably because the chemicals emitted
from the carpet or linoleum used in the experiments were relatively similar in terms of
their sorption parameters. The results demonstrated that sensory assessments could be
used to derive sorption parameters for common indoor materials interacting with
common indoors pollution sources. The outcome is of direct relevance to perceived air
quality since the chemicals measured by human subjects are the same ones that affect
their assessment of the acceptability of the indoor air and which are usually presented at

concentrations too low to be measured by the traditional chemical methods.
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CHAPTER 1

INTRODUCTION

1.1 Indoor air quality problems

The high population, the demand for better housing conditions, the improved life
standards and the need to reduce energy expenditure on heating, ventilation and cooling
systems are all factors behind the health and comfort problems related to the indoor
environment. New building materials and furniture that contain more artificial
components are more in use, while at the same time, less outdoor air is allowed to enter
as buildings have become better isolated and less ventilated. The combined effect of the
reduced outdoor air ventilation rate and the use of new building materials have caused a
high concentration of indoor contaminants and more complaints about indoor-air-quality
related symptoms, known as Sick Building Syndrome (SBS). The term (SBS) is used to
describe the acute health effects and discomfort (headache, eye, nose and throat irritation,
dizziness, fatigue, difficulty in concentration, etc) that building occupants experience
when they spent some time indoor, but no specific illness can be identified (ECA, 1989,
US EPA, 1991).

During the last two decades, it was often believed that Volatile Organic Compounds
(VOCs) are indoor pollutants that could cause SBS (WHO 1989, Nielson 1987; Skov et
al. 1987; Molhave 1998). VOCs has been defined by the WHO working group as organic
compounds with boiling point ranged from 50°C to 260°C (WHO 1987). Building
materials, furniture and office equipments were found to be the major VOC sources

indoors (Fanger et al. 1988, Wolkoff, 1995). Recent studies suggest that many VOCs



other than those defined by the WHO, and non-volatile organic compounds could cause
an increase of SBS. Moreover, experimental evidence has shown that reactive chemistry
may produce strong eye and airway irritants (Wolkoff, 2001).

The diversity of the sources and types of indoor contaminants, and the fact that people
spent most of their time indoors where they are continuously exposed to indoor pollutants
that affect their health, comfort and productivity, make indoor air pollution a topic that

attracts the attention of many researchers in different parts of the world.

1.2 Sorption phenomena

Applied in most natural physical, biological and chemical systems, sorption is a
generalized term for both adsorption and absorption. Adsorption involves separation of a
substance from one phase accompanied by its accumulation at the surface of another and
absorption indicates the uptake of substance into the physical structure of the solid.
Desorption, on the other hand, refers to reversal of the adsorption and involves the release
of what was adsorbed back into the original phase.

Sorption occurs outdoors, indoors and at the interface in between (Weschler, 2002). Most
of the existing adsorption research is directed toward industrial applications that involve
the use of prepared adsorbents to achieve high rate of adsorption.

According to Slejko (1985) four types of adsorption could be distinguished: exchange,
physical, chemical and specific adsorption. Exchange adsorption involves electrostatic
attachment of ionic species to sites of opposite charge at the surface of an adsorbent.
Physical adsorption is expected to be reversible as the adsorbate in this case is bound to

the adsorbent by relatively weak intermolecular Van Der Waals forces. Chemical



adsorption involves a reaction between an adsorbate and an adsorbent, hence forming a
stronger bond than that generated from the physical Van Der Waals forces. Specific
adsorption ihvolves binding of molecular groups without chemical transformation (e.g.
polar adsorbate binding to polarized adsorbent surface).

Adsorption is affected by number of parameters. For adsorbate there are concentration,
molecular structure, molecular polarity, and the nature of competitive adsorbates. For
adsorbent the most important factor that determine the equilibrium capacity is the surface
area, the physicochemical nature of the surface and the availability of that surface to
adsorbate molecules or ions. System parameters as temperature and pH could have an
impact on adsorption if they effect changes in any of the aforementioned parameters

(Slejko, 1985).

Adsorption and desorption are limited by an equilibrium state. The time required to reach
equilibrium is an important factof in studying the adsorption processes. Under steady
state conditions the rate of adsorption is equal to the rate of desorption and the adsorbed
phase equilibrium concentration is related to the free phase equilibrium concentration and
to the temperature and gas phase pressure of the considered system (Axley, 1991). When
the relationship between the concentrations of the two phases (adsorbed and free) is
reported at constant temperature and atmospheric pressure, it is called adsorption
isotherm. Experimentally determined adsorption isotherms, may be approximated by one
of the following equilibrium models: The linear model, Langmuir model, Brunaur-
Emmett-Teller (BET) model or Freundlich model. The first three have theoretical basis

while the last one is empirical.



In this document the term sorption refers to (adsorption and absorption).

1.3 Sorption and indoor air quality

During recent years a variety of studies have demonstrated the fact that building materials
with a large surface to volume ratio, in addition of being an important emission source for
VOCs indoors, they influence the dynamic variation of VOCs concentration in a space by
their interaction with VOCs through the sink effect (adsorption/desorption) (Seifert and
Schmal 1987; Berglund et al.,1989; Colombo et al., 1993; Jorgensen et al., 1993;
Kephalopoulous et al., 1996; Tirkkonen and Saarela 1997; Won et al.2001). Although the
uptake of VOCs will lower their peak concentrations, the subsequent slow re-emission at
low concentration will prolong the presence of VOCs in indoor air and make the building
materials responsible for indoor air pollution for a long time (Nielsen, 1987; Sparks et
al.,1991; Schlitt and Knoppel, 1997). The low emitting building materials and furniture
that are recently being used in many countries also play a role in polluting the indoor
environment through sorption /re-emission, as a non- emitting material in contact with
polluted air will act as a sink as long as the concentration of a compound in the
surrounding air is higher tha;l the gas phase equilibrium concentration of this compound
within that material, becoming in itself an emitting source when the concentration in the
air decreases. An investigator of ‘sick buildings’ should therefore know that the cause of
pollution might well be the re-emission from innocent materials (Berglund et al., 1988).
On the other side, many temporary pollution events (painting, cleaning, smoking, etc) are
pollution sources from emission caused by sorption of pollutants produced from these

activities on many materials found indoors and their subsequent slow desorption,



affecting the indoor air quality well after the pollution event had stopped (Van Loy et al.

2001; Singer et al.,2002a; Salthammer 1999). "For sorbing compounds, more than half of

daily potential exposures occurred during non-smoking periods" (Singer et al.,2002b).

1.4 Objective of this study:

Sorption Phenomena have an important impact on the concentration of pollutants indoor,
(Seifert and Schmahl, 1987; Berglund et al., 1988; Borazzo et al., 1990; Tichenor et al.,
1991; Jorgensen et al., 1993; Colombo et al., 1993; Kephalopoulos et al., 1996) which, in
turn, affects the degree of human exposure to indoor air pollution. Therefore, many
researchers studied sorption by building materials to better determine its impact on the
quality of indoor air. They developed models and data to deal with adsorption of
chemical compounds to a variety of indoor surface materials using static or dynamic
chamber experiments. Most of this research has been carried out with single VOC and
single materials (Tichenor et al. 1991; Kirchner et al. 1995). Only a few of the studies
investigated sorption of mixtures of VOCs on single materials or single VOC on
combinations of materials (Jorgensen et al. 1993; Wouda et al. 1997). In most of these
studies, samples of indoor materials were exposed to an artificially polluted atmosphere
(one or several VOCs) with concentration usually much higher than the one found in
actual indoor environments. A number of studies were also performed to compare
measured concentrations in field experiments with calculated concentrations based on
data from small chamber experiments (Zellweger et al. 1995; Dokka et al. 1999; Sparks

et al.,, 1999). The results showed that the predicted concentration (based on chamber



experiments) were considerably higher than the measured concentration in an actual
indoor environment.

Despite the improvement achieved during the last few years, in understanding the
sorption phenomena and the development of quite a few different sorption models, there
is no tool yet to easily and reliably estimate the sorption behavior of different materials
and its impact on the indoor environment. The need is still there for a simple sorption
model that describes the impact of this phenomenon on the indoor air quality in a real life
environment (where different types of VOCs co-exist with different kinds of surface

materials under different environmental conditions).

The aim of this study was to investigate the impact of sorption of building materials on
perceived indoor air quality, the experiments were performed in real rooms where the
pollution sources and the sinks were the actual building materials commonly found in
indoors environment.

The ultimate goal of this work is to contribute to the development of a simple and reliable
sorption model based on sensory measurements. This approach eliminates the difficulty
to simultaneously investigate all the sorption processes as faced by the existing
experimental methods. At the same time, it accounts for the ability of the human nose to
detect low concentrations of indoor air pollutants. This is needed, as the VOCs
concentrations in real life, normally, are several orders of magnitude lower than the ones
used to investigate sorption processes and for the diversity of the pollutants that exist

indoors.



CHAPTER 2

LITERATURE REVIEW

2.1 Interaction of volatile organic compounds (VOCs) with indoor

surfaces and the impact on indoor air quality

Theoretically, the concentration of VOCs indoors depends on the emission rate of these
compounds and the ventilation rate. However, a variety of studies have demonstrated that
in the real indoor environment, the indoor air pollutants interact with the indoor surfaces
by (adsorption/desorption) and this influences the pollutants concentration indoors
(Seifert and Schmal 1987; Tichenor et al. 1988; Berglund et al. 1988) and makes it
difficult to trace the origin of a specific contaminant in the air of sick buildings by
chemical classification (Baird et al. 1987). The first qualitative study of VOCS adsorption
on indoor materials was performed by Seifert and Schmal (1987). Their focus was to
determine the adsorption and desorption behavior of several organic compounds of
different polarity and boiling points with plywood and carpeting. They concluded that no
rule could be deduced to predict the sorption behavior of different VOCs with different
materials. In The Danish Town Hall Study, 40 parameters describing the indoor climate,
or conditions that could influence the indoor climate were measured or registered.
A strong inter-correlation was found between indoor environment problem and the fleece
and shelf factors. The fleece factor was defined as the area of textile flooring, curtains,
and seats divided by the volume of the room, and the shelf factor was defined as the
length of all open shelves divided by the volume of the room. Materials capable of

depositing/adsorbing pollutants might influence the indoor air quality during the entire



life of the building (Nielson, 1987), the influence can be both negative and positive, but it
will become negative with the accumulation of the pollutants. This study provided
empirical evidence that re-emission of indoor pollutants, including VOCs from fleecy
materials, may contribute to sick building syndrome (Nielson, 1987, Valbjorn and Skov,
1987). In 1988, Berglund et al. presented an extensive literature review on organic
compounds indoors with special attention to emission, adsorption and desorption in
indoor materials. They also reported that organic compounds adsorbed on building
materials in a 7 year old buildings were desorbed when placed in an environmental test
chamber and ventilated with clean air over an experimental period of 40 days. They
concluded that the exchange of contaminants between room air and room surfaces
demonstrates the difficulties to be expected when one wants to trace the origin of a
specific contaminant in indoor air. Tichenor et al. (1991) conducted experiments to
determine the magnitude and rate of adsorption and desorption of two organic
compounds and five materials. The results demonstrated the relevant sink effect
parameters for each tested material and the two organic compounds. Kjaer and Nielsen
(1991) studied the adsorption and desorption of organic compounds on fleecy materials.
They indicated that adsorption/desorption of indoor VOCs on ordinary building materials
could have a crucial influence on indoor air quality. Jorgensen et al (1993) performed
tests aimed to quantify the adsorption of organic compounds (toluene and « -pinene) on
material surfaces (wool carpet, nylon carpet, wooden bookshelf with books, window
glass and ceiling sheets of rock-wool). They found that the two organic compounds had
significant adsorption and desorption on and from the wool carpet, nylon carpet and

wooden bookshelf with books, while window glass and ceiling sheets showed no



adsorption of the two compounds. Meininghaus et al. (1999) studied the sorption and
diffusion of VOCs by indoor materials using small-scale chambers. They concluded that
the masonry of a room might reduce peak concentration and increase the time required to
remove a compound from a space so the right choice of wall materials can have an
impact on the indoor air quality. Saarinen and Saarela (2000) investigated the sorption
phenomena of VOCs on material surfaces. They exposed five different building materials
to VOCs emitted from paint in a model room. They found clear divergences in sorption
behavior of different tested materials and that porous materials (gypsum board) are more
capable of adsorb and desorb compounds. Jorgensen et al (1993) reported that
adsorption/desorption might have an important impact on the ventilation strategy to be
applied in office buildings. Tirkkonen and Saarela (1997) studied adsorption of VOCs on
interior surfaces in a full-scale building. They compared emission profiles of five
different surface materials from a single-family house (tested in small test chambers) with
the emission from the corresponding surfaces in the full-scale building (using FLEC-
tech;lique). The results demonstrated that the compounds emitted from the floor were
adsorbed on other interior surfaces especially on painted walls. Sparks et al. (1999)
studied the sink behavior of VOCs from latex paint. Emission models developed using
small chamber data were combined with an Indoor Air Quality (IAQ) model to analyze
the impact of VOC emissions from latex paint on indoor environments. The experiments
were performed in the EPA TAQ test house. Thé results show the large effects of sinks on
the test house concentrations of VOCs from latex paint and that the sink model
parameters determined from small chamber tests did not agree with sink model

parameters estimated from the test house data. Dokka et al (1999) also compared



measured concentrations in field experiments (a refurbished bedroom) with calculated
concentrations based on data from small chamber experiments. Mathematical models
were used to predict the concentration of Total Volatile Organic Compounds (TVOC) in
the bedroom based on chamber data and compared this with the measured concentration
in the bedroom. The results showed that the predicted concentration in the bedroom is up
to ten times higher than the measured concentration in the bedroom, but after 29 days the
predicted and measured concentration were the same. They mainly referred this
discrepancy to the strong adsorption on thé bedroom surfaces and the very slow
desorption. Moreover, Jorgensen et al. (1999) investigated the interaction between
different ventilation strategies and adsorption/desorption of VOCs on material surfaces.
| They evaluated three different ventilation strategies and each strategy comprised two
different ventilation rates (a low rate during the night and a high rate during the day); the
only difference between the strategies was the length of day/night periods used. They
concluded that ventilation strategy influences the indoor pollution concentrations and that
sorption should be included when estimating the concentration variations in a room based

on source characteristics and ventilation rates.

2.2 Factors affecting sorption of VOCs on and desorption from building
materials surfaces

Sorption is a highly complex phenomenon. It depends on numerous factors, including the
material properties, VOC type, and environmental conditions, such as temperature,

relative humidity, air velocity, and VOC concentration in the air.

Colombo et al. (1993) studied the adsorption of the following VOCs (tetrachloroethene,
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2-butoxyethanol, o-pinene, 1,2, 4-trimethylbenzen, 1,4-dichlorobenzene, n-decane,
2-ethylhexanol, n-dodecane) that were different in volatility and polarity, on three widely
used building materials (nylon carpet, wall coating vinyl and gypsum board). The
experiments were carried out in three small-scale test chambers under controlled
temperature, RH and ACH. They found that the adsorption of most compounds on
studied materials is remarkable and tends to increase with their boiling point, and that the
physico-chemical properties of the adsorbed compounds and the adsorbing materials play
an important role. Kephalopoulos et al. (1996) performed a series of experiments aimed
to identify how physicochemical properties of chemical compounds (vapor pressure,
octanol/water partition coefficient) and experimental parameters (adsorption time and
concentration in the chamber air) control the sorption process. They studied sorption of 8
VOCs on glass, different types of carpet, gypsum board and a wall covering in a small
scale test chamber. The results showed that the adsorption factor K,4s (was defined as the
ratio of the mass adsorbed per unit area and the vapor air concentration) strongly depend
on VOC vapor pressure and less on their octanol/water partition coefficient and that VOC
concentration has no influence on adsorption factor in a limited concentration range,
however the adsorption factor decreases at higher concentrations. They also found the
longer the adsorption time the smaller appears the desorbed fraction after a given
desorption time. Tichenor et al. (1991) studied the sorption of tetrachloroethylene on
carpet under different concentrations (5mg/m’ — 50 mg/m?) in a small-scale test chamber.
They fouﬁd that the sink strength presented by the equilibrium coefficient (K¢) is
independent of the concentration in the test chamber. They also investigated the impact of

temperature on sorption of tetrachloroethylene on carpet. Experiments were performed
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under two different temperatures (23°C and 35°C). They found that both adsorption and
desorption rates were higher at higher temperatures and both the type of material and the
type of organic compound affect the rate of adsorption and desorption.

An et al. (1999) studied the adsorption/ desorption of 5 VOCs representative of
hydrocarbons, aromatics, ketones, aldehydes and chlorine substituted compounds on
carpet, vinyl floor tile, painted drywall and ceiling tile. The tests were performed using a
dynamic chamber test system under controlled temperature, RH and ACH. They found
that the sink capacity increased linearly with the inverse of VOC vapor pressure and that
the adsorption rate constant and the adsorption/desorption equilibrium constant are
strongly material dependent. Meininghaus et al. (1999) reported that porous construction
materials (gypsum boards) have high sorption capacities for polar VOCs while carpet
demonstrates more affinity to non-polar compounds. Won et al. (2000) conducted a
series of experiments where eight VOCs were tested with several carpet systems and
environmental conditions. The aim was to characterize the sorptive interaction between
VOCs and carpet. The experimental system consisted of four small stainless steel
chambers. The results showed that the sorption capacities (K.) were inversely related to
vapor pressure and linear relationships were observed between octanol-air partition
coefficient and equilibrium partition coefficient (K¢). Variation in RH had significant
impact on the degree of sorption for highly water soluble VOC while RH had little effect
on sorption parameters for all non-polar VOCs. The concentration of VOC had no
significant impact on material-gas equilibrium partition coefficient. To account for the
roughness of material surface Kirchner et al. (1996) measured the specific area (defined

as the efficient surface area per gram material (m%/g)) of gypsum board and of acoustic
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tiles by using nitrogen adsorption technique. The results showed that the greater the
specific area the larger the equilibrium coefficient. Morrison and Nazaroff (2000)
introduced Ry "normalized surface area" that is the ratio of the actual surface area of a
material (including roughness and porosity) to nominél surface area (or projected surface
area).

Van der Wal et al. (1998) investigated the sorption effect of a number of combinations of
indoor materials and volatile organic compounds. The aim was to develop a quick
screeniné methc;d to investigate the dynamic sorption effects of indoor
materials/compound combinations. They also performed a limited number of experiments
to investigate the influence of concentration of pollutants and the temperature on the
sorption. They observed an inverse relationship between the extent of adsorption and the
compound vapor pressure. They also found that adsorption time, desorption time,
concentration of compounds and temperature have an influence on adsorbed and
desorbed masses (smaller at higher temperature). Jorgensen et al. (1993) found no
measurable effect on the sorption of toluene and a-pinene on the wool and nylon carpet
when the relative humidity varied between 20-50%. Jorgensen et al. (1999b) reported the
results obtained on adsorption and desorption of two VOCs (toluene and a-pinene) on
and from wool carpet, nylon carpet, PVC floor covering, and cotton curtain materials.
Air velocity was varied between 0.1 and 20 cm/s (in this work, the air velocity was varied
independent of the ACH, which meant that the air velocity would not influence the
concentration of pollutant in the test chamber). The results showed that the adsorption of
a-pinene was higher than the adsorption of toluene for all tested materials. The air

velocity, measured 1 cm above the material surface had no influence on the sorption of
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a-pinene and toluene on wool carpet tested with air velocities at 0.1 and 20 cm/s.

Jorgensen and Bjorseth (1999) investigated the impact of material loading factor (the
ratio of surface area of the material to the volume of the test chamber) on the sink
strength and concluded that the loading factor has no influence on sorption capacity or
the mass adsorbed per area at equilibrium. Zhang et al (2002) developed a small-scale
test system to conduct sorption tests. The aim of the study was to investigate
experimentally the impact of temperature, RH and air velocity on sorption capacity of
carpet, ceiling tile and painted drywall. The results indicated that the sorption of VOCs
on ceiling tile and painted drywall were relatively weak compared to carpet for the same
VOC. Sorption strength of the carpet increased with the increase of temperature from

10.5° C to 23°C while decreased with the further increase of temperature from 23°C to

35°C. The effects of RH and air velocity for all three materials were insignificant for
most compounds except dodecane sorption on carpet that increased with the increase of
the air velocity. Won et al. (2001) studied sorptive interactions between eight VOCs and
various materials. They observed relationships between sorption parameters and chemical
vapor pressure and octanol-air partition coefficient, no effect of inlet concentrations on
sorption parameters, no apparent effect of ACH and no impact of variation in RH on
sorptive interaction between non polar VOCs and building materials but increase in RH
increased the degree of sorption of a highly polar compound to carpet. They also found
that the extent of sorption is highly dependent on material characteristics. Meininghaus et
al. (2000) introduced molecular parameters to characterize the sink effect. They reported
that although the sink effect of a compound depends on its boiling point, vapor pressure

and octanol /air partition coefficients, these parameters are poor physico-chemical
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predictors of sorption. They applied an existing model, Quantitative Structure Activity
(QSAR) model, on data from three dynamic sink effect experiments where a mixture of
20 compounds was introduced into small chambers contained samples of gypsum board
and wallpaper paste on aluminum plates. They found that compounds with a strong
tendency to form hydrogen bonds may exhibit a strong sink effect and the model is

reasonably capable to predict sorbed masses of VOCs.

2.3 Overview of the existing sorption models

The aforementioned literatures showed the importance of sorption phenomena on the
indoor air quality and the prevalence otf sick building syndrome therefore a realistic
estimate of human exposure to VOCs indoors requires a knowledge not only on the
emission from building materials but also their adsorption /desorption capacity. To better
understand this phenomenon, an accurate knowledge about the dynamic behavior and
surface sorption of VOCs indoors is essential. Several researchers developed sorption
models using different experimental methods and based on different assumptions, the aim
was always to find a model that allow the prediction of sorption impact on indoors air
quality.

Zhang et al. (2000) classified the existing sorption models into either first order
adsorption/desorption rate models or equilibrium-interface models. The model
parameters for the first order adsorption/desorption are obtained from experimental data
by curve fitting while for the equilibrium interface models the parameters are obtained

through independent measurements.
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2.2.1 First order adsorption/desorption models:

Assume that the two processes adsorption and desorption occur simultaneously. This

model is appropriate for cases of physical adsorption of gases at very low concentration
on homogeneous surfaces with many sites available for adsorption (Slejko, 1985).
Tichenor el al.(1991) proposed Langmuir model to study the VOC sorption by building
materials. The model assumes a monolayer of molecules with all adsorption sites
mutually independent and the adsorption on the sink surface is proportional to the
concentration in the space. They concluded that Langmuir adsorption theory appears
adequate to describe the behavior of smooth materials as wallboard and ceiling tile while
desorption kinetics of rough, complex materials, such as carpet appears to be covered by
non-Langmuir processes. The drawback of Langmuir model is that it considers only the
fast surface sorption process while ignoring the in material diffusion process. To
overcome this problem the two sink model was proposed (Colombo et al. 1993, De
Bortoli et al. 1996). The two-sink model assumes that the material is composed of both
fast sink and slow sink. Dunn and Chen, (1993) proposed the K-diffusion model and the
sorption-diffusion hybrid model to account for in material diffusion. Jorgensen et al.
(2000) introduced a sink-diffusion model to describe the interaction between material
surfaces and VOCs indoors. The experiments were performed in small-scale chambers
where toluene and a-pinene were tested with carpet and PVC samples. The results
showed that the sink-diffusion model gave a better description of desorption curve than

Langmuir model and it improved the predictions for stronger sorption effects.

2.2.2 Equilibrium-interface models:

Assume that the equilibrium condition always exists at the material-air interface and the
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sorption rate is governed by the slow diffusion within the material.

The simplest equilibrium-interface model was proposed by (Axley, 1991). He formulated
two families of adsorption models: the first is the equilibrium adsorption models based on
assuming that zone air concentrations and material concentrations remain in equilibrium
at all time. The model uses only one parameter: the material air partition coefficient
(Kma)- To improve the model the second family (the boundary layer diffusion controlled
adsorption models) was proposed. It is based on the use of boundary layer theory to
model the rate of mass transfer from the bulk through the boundary layer to the material.
To consider the diffusion in the material (Little and Hodgson, 1996) proposed a strategy
to characterize homogeneous diffusion-controlled indoor sources and sinks. They used
Fick’s law to describe the in material diffusion process. The parameters for the diffusion-
controlled sink model (K, Dm) are physical properties of the material and can be
measured independently. Bodalal et al. (2000) developed a novel method to determine the
diffusion coefficients and the partition coefficient. Experiments were conducted in two
identical small-scale test chambers. The tested materials were: plywood, vinyl floor tile
and carpet. Tested materials were placed between the two chambers and VOC compound
was introduced to one chamber and gas samples were collected from both chambers to be
analyzed by GC/FID. The results showed that VOCs with largest molecular weight had
the smallest diffusion coefficient and VOCs with lowest vapor pressure had the largest
partition coefficient. Kirchner et al. (1996) used a microbalance to measure material
properties. In this method sample of tested material is placed on a microbalance inside a
small-scale chamber. The chamber was then flashed by gas containing a known

concentration of VOCs. The sorption is measured from the weight increase of test sample
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by time. Meininghaus et al. 1998 developed CLIMPAQ method to measure the diffusion
and sorption properties for two VOCs (n-octane and ethyl acetate) and 9 building
materials (gypsum board, carpet, aerated concrete, solid concrete, brick wall, wallpaper
with paste, acrylic paint on woodchip paper, and PVC floor covering. The materials to be
tested were placed between two small-scale chamber type CLIMPAQ. Air with constant
concentration of VOC was introduced to one chamber and clean air to the other chamber.
Concentrations were measured on both sides of the material with photo acoustic detector.
All tested materials showed measurable permeability except PVC and both concrete
samples had high sorption capacities for ethyl acetate. Kirchner et al. (1999) compared
three experimental methods used to test sorption and diffusion properties of a material.
The methods were: the microbalance, the cup and the CLIMPAQ method. They
concluded that the microbalance and the cup methods are easier to implement than
CLIMPAQ method but their drawback is that testing has to be done at unrealistic high
VOC concentrations. The advantage of the CLIMPAQ method is the possibility to
characterize simultaneously both sorption and diffusion coefficients and can be set up for

more realistic VOC concentrations.

In addition, numbers of numerical models have been developed to describe sorption
phenomena and to predict the impact of sorption on indoor air quality. Yang et al. (2001)
reported a numerical model (CFD model) to study the indoor air quality in a room with
different emission sources, sinks and ventilation methods. Murakami et al. (2003)
proposed physical models for sorption of VOC that are used for analyzing numerically
the transportation of VOCs from building materials in a room. The performance of the

proposed physical models was examined numerically in a test room with a technique
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supported by (CFD). The results of numerical prediction show that the physical models
and their numerical simulations explain the mechanism of the transportation of VOCs in

da roomi.

2.4 Sensory evaluation and sorption

Sensory evaluation is based on the use of human subjects as measuring instruments. The
nose is a sensitive instrument; it perceives the presence of pure chemicals and chemical
mixtures at levels much lower than the detection limit of most conventional analytical
instruments (ECA-TAQ, 1999). In fact, humans perceive the air by two senses: the
olfactory which is situated in the nasal cavity and is sensitive to odor, and the general

chemical sense that is situated all over the mucous membranes in the nose and the eyes

and is sensitive to irritants in the air. The combined response of these two senses
determine the perceived quality of the air (fresh, pleasant, stuffy, irritating...... ) (CEN
report,1998). Olfaction distinguishes itself from the chemical sense in remarkable
variation in sensory quality such as fishy, floral and so on (Cometto-Muniz and Cain
1995). The two senses are influenced differently by adaptation (Engen, 1986). The
olfactory sense is sensitive to odors and likely to adapt while the common chemical sense
is sensitive to irritants and not likely to adapt (Gunnarsen, 1990).

Historically, the presence of odor in indoor environment has been associated with
dangerous places having unsanitary conditions. Moreover, odor in indoor environments is
undesirable because it may indicate an annoyance factor for the exposed occupants, low
air exchange rate between indoor and fresh outdoor air or the emission of VOCs
(Moschandreas, 1992). The notion that odor level perceived by visitors to an occupied

space could offer a quantitative criterion for ventilation requirements in buildings goes
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back to 1936 when Yaglou applied a psychophysical scaling to study the level of
occupancy odor depended on ventilation rate in nonsmoking environments. He concluded
that the range of ventilation rate should depend on the occupancy density. Both American
and European standards have relied explicitly on Yaglou’s results. In 1981 the American
Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) published
its standards on ventilation for acceptable indoor air quality (ASHRAE Standards 62) that
defines acceptable air as the air to which 80% or more of the people exposed to it do not
express dissatisfaction. Based on that, two ventilation rates were determined for both
smoking and nonsmoking environments. The European committee for standardization in
its report, published in 1998, classified the indoor environment in three categories A, B
and C where the desired perceived air quality expressed as percentage dissatisfied was
15%, 20% and 30% respectively assuming that the occupants are the only source of
pollution. They accord a ventilation rate needed for not to exceed the desired percentage
dissatisfied for each category and thus for no smoking environment and for 20% and 40%
smokers.

However, the recommended ventilation rate did not prevent serious complaints
concerning air quality in many buildings. It was also found that human bioeffluents
comprise very little of the pollution sources, whereas materials in spaces and ventilation
systems were the major cause of the poor air quality in many buildings (Fanger, 1989).

By acknowledging these new sources of pollution, most of the existing ventilation

standards were modified.
The introduction of the olf unit (Fanger, 1988) makes the quantification and the

comparison of different pollution sources possible. Fanger suggested quantifying the
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sensory pollution for a material by the number of equivalent persons (olfs) required to
provide the same level of annoyance (percentage dissatisfied) as the tested material. One
olf is the emission rate of air pollutants (bioeffluents) from a standard person.
The decipol was introduced to quantify air pollution perceived by humans, one decipol is
the pollution caused by one olf ventilated by 10 I/s of unpolluted air. Using olf and
decipol, Fanger introduced the new comfort equation for indoor air quality. The equation
incorporates all pollution sources in a space to derive the ventilation rate that is required
to achieve an acceptable air quality.
G=0.1 (Ci-C0) Q ettt e 2.1
Where: G: total pollution load or source strength (olf)

Ci: perceived indoor air quality (decipol)

Co: perceived outdoor air quality (decipol)

Q: outdoor air ventilation rate (L/s)
Since then many researchers used the comfort equation to investigate the additivity of
different pollution sources that exist in one place (Lauridsen et al.1988, Bluyssen and
Fanger 1991, Iwashita and Kimura 1995, Wargoscki et al. 1996, Blussen and Cornlissen,
1997). These studies used different sources of pollution, different pollution loads,
different kind of panel (trained, untrained), and different experimental procedure.
However, none of these studies considered sorption phenomena, the investigated
combinations of materials were always placed together in the same space (decipolmeter
or chamber). The compounds emitted from one material could be adsorbed on the other
material surfaces and result in changing the sensory pollution load of each individual

material when it is placed with other materials. The magnitude of this change depends on
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many factors like the nature of the tested materials, the environmental conditions of the
experiments, the length of time for which the materials were placed together before the
sensory assessment. Wargoscki (1999) extensively reviewed the previous studies on
addition of sensory pollution sources and he pointed to the sorption process as being
responsible for the discrepancy between the predicted and the measured pollution load
especially when experiments were performed with a mixture of building materials with at
least one fleecy material included. He recommended that sorption should be controlled in
future studies on addition of sensory pollution sources.

On the other hand, Gunnarsen et al. (1999) used sensory evaluations to investigate the
impact of intermittent ventilation strategy on percéived air quality in comparison with
continuous ventilation. Experiments were performed both in laboratory (using small scale
chambers) and in office buildings. The results indicated improvement in perceived air
quality when a continuous ventilation strategy was applied. Haghighat et al. (2000) and
Sakr et al. (2000) conducted a series of experiments aimed to study the impact of the
operation of ventilation systems and the combinations of several building materials on
perceived air quality. They used small-scale chambers to investigate the air quality under
intermittent and continuous ventilation conditions and to establish the exposure-response
relationships for the tested material. The results showed that intermittent ventilation
reduces the daytime air quality and that perceived air quality may improve when two
materials are presented at the same space. Results from these two studies indicated that
sorption could have an impact on the perceived air quality. For ventilation strategy
experiments, the deterioration in perceived air during the day time could be referred to

the increase in pollution level caused by the reemission of pollutants that were adsorbed
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during the night when the ventilation system was turned off and concentration of
pollutants were high. Moreover, the improvement in perceived air quality when two
materials were placed in the same place, was probably due to the interaction between the
two materials, i.e., the emission from one material being adsorbed by the other, which
indicates that sorption may have a positive impact on the perceived air quality.

A limited number of studies used sensory measurement to study directly the phenomenon
of sorption. Wouda et al. (1997) conducted chemical and sensory experiments aimed to
investigate the sorption effect of a mixture of 12 compounds on the following individual
and combined indoor materials: empty chamber, carpet tiles, curtain, gypsum board, and
combination of carpet/curtain and carpet/curtain/gypsum board. The experiments
performed in 15-m® chamber for which the inside surfaces were covered by Teflon. For
sensory evaluation, air was exhausted via a Teflon tube through one of the walls to a
decipol meter*. Air loaded with chemicals (12 compounds) was supplied to the chamber
for 48 hrs. After the air supply was stopped the concentration during the desorption
period was measured chemically and sensory. Air samples were collected on Tenax tubes
and analyzed with gas chromatography. Before the sensory experiments, a panel was
selected and trained. Sensory evaluations conducted by a trained panel, were made 1, 24,
and 48 hrs after the supply of chemicals had stopped. The surface area under the decay
curve (the relationship between perceived air quality in decipol and time) represents the

sensory desorption for each tested material and combination of materials.

*Decipol meter: consist of a three liter jar made of glass covered with a plastic cap, a fan and a diffuser. The cap
has two holes, the fan is placed in one of them to suck the air through the jar, the fan is selected to produce at
least 0.9 L/s. On top of the fan, a cone diffuses the exhausted air. To train the panel, different concentration of 2-
propanone are generated by different decipolmeter serve as reference for the panel. During the training ,several
unknown decipol levels are evaluated several times using the reference. The panel members are also exposed,
during the training to pollution sources other than 2 propanone. (Bluyssen and Cornelissen 1995, Bluyssen and et
al. 1996)
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The sensory and chemical measurements showed that the tested curtain is a weak sorbant
in comparison with the tested carpet and gypsum board. The data of the individual
materials were added to see if the desorbed mass of combination of materials could be
predicted from the data of individual materials.

The results of calculations were compared with the measured data for combination of
materials. The results showed that gypsum board had a very strong adsorption for polar
VOCs and a relatively small desorption. The results from the chemical experiment
indicated that for the more volatile organic compounds the desorbed mass of individual
materials could be used to give a possible prediction of the desorbed mass of combination
of material. No such correlation was found from the results of the sensory experiment.
This could be due to the few points used in the regression analysis (3 points: after 1, 24,
48 hrs), which might have affected the accuracy of the fitted curve. The comparison of
chemical measurements with sensory measurements showed that the chemical decrement
of the tested compounds proceeds faster than the sensory decrement, which means that a
trained sensory panel is able to detect far lower concentrations than the used chemical
detection methods. |

Kjaer et al. (1996) studied the sorption behavior of building materials while air from a
recently renovated office was passed through small test chambers that contained samples
of waterborne paint applied on tinned steel plates and carpet. The desorption of VOCs
from the test samples was analyzed chemically and sensory. An untrained panel of 22
persons assessed the air quality of the exhaust air from the small chambers (CLIMPAQ),
in terms of acceptability and odor intensity. Although the sensory evaluations were not

very successful, the authors concluded that it is possible to calculate the impact of the
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sinks on the indoor air quality by comparison with indoor relevant thresholds for odor

and mucous membrane irritation.

2.5 Conclusion

Sorption could have a significant impact on the concentration of pollutants in
indoor air ( Seifert and Schmahl, 1987; Berglund et al. 1988; Borazzo et al. 1991;
Jorgensen et al. 1993; Kephalopoulos et al. 1996; Tirkkonen and Saarela 1997,
Spark et al. 1999; Jorgensen et al. 1999;Saarinen and Saarela,2000; Won et al.
2000) and that would affect the human exposure to indoor air pollution (Nielson,
1987; Valbjorn and Skov, 1987).

Sorption is affected by the physical properties of building materials, the chemical
properties of VOCs (Colombo et al. 1993; Kephalopoulos et al. 1996; Van der
wal et al. 1998; An et al. 1999; Meininghaus et al. 1999; Meininghaus et al. 2000;
Won et al. 2000) and the environmental conditions:

Temperature (Tichenor et al. 1991; Van der Wal et al.1998; Zhang et al. 2002)
Air velocity ( Jorgensen et al 1999b, Zhang et al.2002)

Relative humidity in the case of polar compound (Won et al. 2000; Won et al.

2001; Zhang et al.2002)

According to the assumptions used to describe the surface sorption, the existing
models could be classified in two categories regardless of the approach used to
develop the model (Zhang et al. 2000):

The first order models (Tichenor et al. 1991, Colombo et al.1993, Bortoli et al.

1996; Jorgensen et al. 2000)
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The equilibrium interface models (Axley et al. 1991; Little and Hodgson,1996)

Sorption can be detected by conventional experimental methods so it could be
detected by sensory measurements as a sensory panel is able to detect far lower
concentrations of the mixture than the chemical detection methods (Fanger,1988;
Wouda et al. 1997; ECA-IAQ,1999)

Due to the intensive previous efforts in studying the sorption phenomenon, a big
improvement was achieved in understanding the different processes and factors
influencing this phenomenon. Several models were developed aimed to
investigate how this phenomenon affects the indoor environment, but none of the
existing models could easily and reliably be used to estimate the sorption behavior

of different materials and its impact on indoor environment.
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CHAPTER 3

INTERACTION BETWEEN BUILDING MATERIALS AND THE
IMPACT ON PERCEIVED INDOOR AIR QUALITY

The conducted literature review cited in the previous chapter has demonstrated the fact
that building materials, in addition to being a main source of indoor pollution through
emission, are also capable of changing the concentrations of indoor pollutants by their
interaction either with other pollutants that might exist indoors or/and with each other
through adsorption/desorption.

The performed experiments, as detailed below, aimed to investigate the impact of

sorption processes on perceived air quality using sensory panels as the measuring device.

3.1 Methods

3.1.1 Experimental Plan

An untrained panel assessed the air quality in four similar offices where the air was
polluted either by individual building materials or a combination of two materials. The
pollution source varied from one office to another. For experiments 1, 2 and 7, two
offices had one material each, another had a combination of two materials and the last
office received a mixture of the exhaust air from the two offices with a single material
each (see Fig 3.1). Sensory evaluations were performed at specific time after moving the
materials into or out of the rooms depending on the design of each experiment (see Table
3.1. for the design and conditions of the performed experiments). Experiments 3 and 4

were performed using the same sensory panel and the same environmental conditions but

42



with different materials. The same applied to experiments 5 and 6 that had the same
sensory panel and environmental conditions (but different from experiments 3 and 4).
Experiments 1, 2, 3 and 7 were performed with the same materials but with a different

panel and different environmental conditions.

Outdoor air QOutdoor air Outdoor air

l Q=8.8 Ls lQ1 l Q
Screen
Two One One
materials: material: material:
Painted Painted Mixing Painted
gypsum gypsum room g
ypsum

boards 4 boards, 3 2 boards, 1
with carpet or carpet or
carpet or linoleum linoleum
linoleum

Ql ——- e () 1

|

Figure 3.1. Experimental set-up

3.1.2 Facilities

Experiments were conducted in similar, adjacent, unfurnished offices located at the
International Centre for Indoor Environment at Technical University of Denmark. Each
office had a volume of 40 m® and 13-m?-floor area made of low polluting polyolefin. The
offices had painted brick walls and ceiling tiles made of compressed mineral wool.

Each office had one glass window on the external wall.
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Table 3.1. Summary of performed experiments design

gypsum board

(23 m?)

Room 2: exhaust air
from rooms 1&3
Room 3: carpet

(16 m?)

Rooms 4: carpet and
painted gypsum
board (16 m*+23m?)

performed for the
empty rooms then 4,
24 and 120 hrs after
the materials were
placed inside the
rooms

Test materials Sensory Experiment conditions
assessments
Experiment 1
Ventilation rate:
Room 1: painted Assessments Room 1: Q= 8.81/s

(outdoor air)

Room 2: Q=8.8 I/s =2 Q,
(Qy=4.4 I/s from rooms
1&3)

Room 3: Q;= 8.8l/s
(outdoor air)

Room 4: Q= 8.81/s
(outdoor air)

Average T=23.8+0.8°C
Average RH =38 £ 3%

Experiment 2

Room 1: painted
gypsum board

(23 m?)

Room 2: exhaust air
from rooms 1&3
Rooms 3: carpet
(14 m%)

Rooms 4: carpet and
painted gypsum
board

(14 m*+23m?)

Assessments
performed for the
empty rooms then 4,
8,24, 48,72, 144 and
168 hrs after the
materials were placed
inside the rooms

Ventilation rate:

Room 1:Q;= 4.41/s (outdoor
air)

Room 2: Q=8.8 1/s=2 ),
(Q,=4.4 /s from rooms
1&3)

Room 3: Q,=4.4l/s
(outdoor air)

Room 4: Q= 8.8l/s

(outdoor air)

Average T=28+ 0.6°C
Average RH=48+2 %

Experiment 3

Part 1

Part2

Room 1: carpet

(14 m?)

Room 2: painted
gypsum board

(23 m?)

Rooms 3: carpet and
painted gypsum
board (14 m*+23m?)

Room 1: empty
Room 3: painted
gypsum board (23m?)

Assessments
performed for the
empty rooms then 4,
24,48, 72, 96,and
168 hrs after the
materials were placed
inside the rooms

Assessments
performed for room 1
and room 3

4,24 and 48 hrs after
taking the carpet out
of the rooms

Ventilation rate:
Room1: Q= 8.81/s
(outdoor air)
Room 2: Q=8.81/s
(outdoor air)
Room 3: Q= 8.8l/s
(outdoor air)

Average T=25+ 0.6°C
Average RH =50+ 3 %

Average T=22.6+ 0.4 °C
Average RH =50+ 3 %
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Test materials Sensory Experiment conditions
assessments
Experiment 4
Ventilation rate:
Room 1: carpet Assessments Room 1: Q=8.8 I/s

(14 m%)

Room 2: virgin
gypsum board

(23 m?)

Room 3: carpet and
virgin gypsum board
(14 m*+23 m%)

performed for the
empty rooms then
after 4, 24,48, 72, 96,
and 168 hrs of
placing the materials
inside the rooms

(outdoor air)
Room 2: Q=8.8 I/s
(outdoor air)
Room 3: Q= 8.8l/s
(outdoor air)

Average T= 24.6+0.6 °C
Average RH =50+ 3 %

Experiment S

Part 1

Part2

Room 1: Linoleum
(14 m®)

Room 2: painted
gypsum board

(23 m?)

Room 3: Linoleum
and painted gypsum
board (14 m*+23m?)

Room 1: empty
Room 3: Painted
gypsum board (23
m’)

Assessments
performed for the
empty rooms then
after 4,24,48,72,96,
and 168 hrs of
placing the material
inside the rooms

Assessments
performed for room 1
and room 3 after 4,
24, 48 and 72 hrs of
taking the linoleum
out of the rooms

Ventilation rate:
Room 1: Q= 8.81/s
(outdoor air)

Room 2: Q=8.8 I/s
(outdoor air)

Room 3: Q=8.81/s
(outdoor air)

Preset T and RH (for both
parts):

T=22°C

RH =40 %

Experiment 6

Part 1

Part 2

Room 1: Linoleum
(14 m?)

Room 2: Semia (24.5
m’®)

Room 3:
Linoleum+Semia
(14 m*+24.5m%)

Room 1: empty
Room 3: Semia
(24.5m)

Assessments
performed for the
empty rooms then
after 4,24, 48,72, 96,
and 168 hrs of
placing the material
inside the rooms

Assessments
performed for room 1
and room 3 after 4,
24, 48 and 72 hrs of
taking the linoleum
out of the room

Ventilation rate:
Room 1: Q= 8.8l/s
(outdoor air)
Room 2: Q=8.8 I/s
(outdoor air)
Room 3: Q= 8.8l/s
(outdoor air)

Preset T and RH(for both
parts):
T=22°C

- RH =40 %
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Test materials Sensory Experiment conditions
assessments
Experiment 7
Ventilation rate:
Room 1: carpet Assessments Room 1: Q;=4.4l/s

(14 m%)

Room 2: exhaust air
from rooms 1&3
Rooms 3: painted

performed for the
empty rooms then
after 4,8, 24,48, 72,
and 144 hrs of

(outdoor air)

Room 2: Q=8.8 I/s =2 Q,
(Q;=4.4 Vs from rooms
1&3)

gypsum board placing the materials | Room 3: Q;=4.4l/s

(23 m%) inside the rooms (outdoor air)

Rooms 4: carpet and Room 4: Q= 8.8l/s

painted gypsum (outdoor air)

board

(14 m*+23m?) Preset T and RH (for both
parts):

T=22°C, RH =35 %

To allow mixing the exhaust air from the two other adjacent rooms, two holes in the two
opposite walls were equipped by two axial fans and dampers. By changing the velocity of
the fans and the position of the damper the air exchange rate between the rooms was
controlled. The supply air to this room (mixing room) was solely from the two adjacent
rooms. The outdoor air was supplied to the other three rooms by ventilation systems,
located in each room, consisting of an axial fan mounted to the window and a damper to
control the flow. The outdoor air was neither filtered nor conditioned. To assure that all
the outdoor air supply to the rooms, where individual materials were placed, is
transferred to the mixing room in the middle, the gap under the doors in these two rooms
was sealed so no airflow from or to the corridor could occur. The air from the other two
offices was exhausted through the gap underneath the door to the corridor. Small fans
were distributed in the four offices to ensure that the air was well mixed. Each office had

a screen, which served to hide the test materials from the panel’s view.
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3.1.3 Building materials

Samples of carpet, painted gypsum board, virgin gypsum board, linoleum and Semia
were used in these experiments. The carpet was approximately 24 years old, taken from
an office building. The gypsum board was painted (on both sides) six months before the
experiment. The linoleum was 5 years old. Virgin gypsum board was new and it had been
received one month before the initial experiment. Semia is absorbing sheets consisting of
fine activated charcoals particles embedded between polyester-filament non-woven
layers. The Semia was delivered three months before the experiments took place and it
was kept in its original package until it was used. The carpet and linoleum samples were
~stapled back to back to reduce emission from the backside and they were hung on
stainless steel racks when placed behind the screen in the rooms. The size of material
samples was determined assuming that the office floor (used in this experiment) is
covered with carpet or linoleum (wall to wall) and the walls were made of painted

gypsum boards.

3.1.4 Sensory Panel

Untrained panels, composed of different numbers of subjects randomly chosen from
students and employees at the center, took part in these experiments. See Table 3.2 for
data concerning the panel for each experiment. For experiments 1, 2, 3 and 4 the
participants were volunteers while thirty-one students were recruited to participate in
experiments 5 and 6, and thirty-four recruited students participated in experiment 7.
Before the start of the experiments, the panel was carefully instructed on how to use the

acceptability scale (See Figure 3.2), and it was pointed out that focus should be on the
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initial perception and that no communication on air quality is allowed during the
assessments. They were asked not to eat spicy food or garlic on the experiment day and

the day before, and not to use strong deodorant the day of the experiment.

3.1.5 Procedure

Seven experiments were performed during a one-year period. Each experiment lasted
between one week (for experiments aimed to study adsorption stage only) and ten days
(for experiments that studied adsorption and desorpfion stages). Sensory assessments
took place every day except on weekends. Before each experiment the rooms were

cleaned and ventilated for 48 hrs at a high air exchange rate.

Table 3.2 Data on participating subjects

Experiment Number of Average age * Standard Males Smokers
subjects deviation % %o
(years)
Experiment 1 16 29.5+7.3 53 13
Experiment 2 15 28.2+6.9 67 13
Experiment 3 18 30.6 £ 8.1 61 11
Experiment 4 18 30.6 £ 8.1 61 11
Experiment 5 31 24.7+43 74 10
Experiment 6 31 24.7+43 74 10
Experiment 7 34 25.1+£5.1 70 6

Then the air exchange rate was adjusted using tracer gas (SF6) decay method
measurements (Kjaer Multi-gas monitor 1302 and Multipoint sampler and Doser 1303).

See Table 3.1 for ventilation rate for each room and each experiment. The air exchange
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rate was chosen to be rather low to maximize the impact of sorption. The same samples
of materials (carpet, linoleum, painted gypsum board) were used in all experiments.

Before the start of experiments (except experimentl), the material samples were
ventilated for 48 hrs in two different places with high supply rate of outdoor air so the
materials could get rid of what might have been previously adsorbed on their surfaces.
Before the materials were introduced to the rooms, the sensory panel assessed the air
quality for the empty rooms. Sensory evaluation followed a time schedule that was preset
for each experiment (see Table 3.1). The sensory panel assessed the air quality of the
offices using a continuous acceptability scale shown in Figure 3.2. Sensory assessments
were performed according to a randomized plan that was different for different subjects

and different days of the experiment.

Name: ..o e e e e e Room :

Date: oo oo e e

Imagine that during your daily work you are exposed to this air.

How do you assess the airquality? —— Clearly acceptable

Notice the distinction between
acceptable and unacceptable

—L Just acceptable
—— Just unacceptable

—— Clearly unacceptable

Figure 3.2. Acceptability scale
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The subjects were unaware of the experimental conditions in the rooms where they
assessed the air quality. Only one participant at a time was allowed to enter the same
room for sensory assessments. Subjects were asked to keep two minutes interval between
one assessment and the other. For experiments 5, 6 and 7 and between the sensory
evaluations of the rooms, the panel was seated in an office next to the offices used in
these experiments. This office was naturally ventilated and the windows were kept open
to assure the freshness of its air. After each assessment, the participating subjects were
asked to spend two minutes in this room before proceeding to the next assessment.
Temperature and relative humidity were measured during all experiments and they were
controlled in experiments 5, 6 (T= 22 °C, RH= 40 %) and experiment 7 (T= 22 °C, RH=

35 %) by electrical heaters and ultrasonic humidifiers.

3.1.6 Calculation of Sensory Pollution Loads

The assessments of acceptability of the air in the offices were used to calculate perceived
air quality in decipol and the sensory pollution loads expressed in olf units. The subjects
were asked to do the assessments by marking on the acceptability scale. Numbers were
assigned to the marks: clearly acceptable = 1, clearly not acceptable = -1, just
acceptable/just not acceptable=0 and any mark in between was considered to belong to a
linear scale. Then the mean acceptability votes were calculated for the whole panel and
used to find the percentage of dissatisfied people (Gunnarsen and Fanger, 1992), from
which, the perceived air quality in decipol (Fanger, 1988) was found using the following
equations:

-0.18-5.28.Acc.
pp- | ) 1000 o G.1)
1+ exp(-0.18-5.28.Acc.)
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Acc.= mean acceptability vote

C=112 (In (PD)-5.98)" ..errrririreiieieereeeerreeeereee e ceen e (3.2)

PD = percentage of dissatisfied (%)

C = perceived indoor air quality in (decipol)

The perceived air quality (in decipol) and the measured ventilation rate can then be
applied in the comfort equation (Fanger, 1989) to find the sensory pollution load in the
studied space expressed in olfs.

O U8 0 I (G 7 N 3.3)

G = sensory pollution loads in olf

Q = measured outdoor air supply to the room L/s

C = perceived indoor air quality (decipol)

Co= perceived air quality of outdoor air (decipol), in this study C, is the perceived air

quality of the empty room (background)

3.1.7 Statistical Analysis

In this study, which is based on data obtained from sensory assessments of human
subjects, the non-parametric statistical tests are more convenient than the parametric tests
due to the small size of samples and the unknown distribution of the population. In
behavioral science where data rarely satisfy the assumption of parametric test (normal
distribution for the population) and where it could be categorized only as plus or minus
(better or worse) a nonparametric statistical test is superior in power to a parametric one
(Siegle and Castellan 1988).

Wilcoxon Matched Pairs Test, a non-parametric test, was used to compare two paired
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groups of the data obtained from sensory assessments of acceptability of the air in the
studied offices. To compare more than two groups Friedman's two-way analysis of
variance test, another nonparametric test, was used. The results of statistic analyses for all

experiments are presented in Apendix A.

3.2 Results

3.2.1 Carpet and painted gypsum board

Four experiments were performed using carpet and painted gypsum board as test
materials. The aim was to investigate the impact on perceived air quality of having the
two materials (carpet & painted gypsum board) together in one room in comparison to the
case where the air is polluted by only one of these two materials (carpet or painted
gypsum board). In other words, to study the interaction between the indoor material
surfaces and the impact on perceived air quality. Sensory assessments for the air in the
mixing room, experiments 2 and 7, aimed to isolate the impact of sorption on the room
surfaces from the impact of sorption on the test building materials surfaces. This was
done so that the interaction between the pollutants emitted from the test building
materials and the room surfaces could be investigated. The results of the sensory
assessments for these experiments, expressed in terms of acceptability, perceived air
quality (decipol) and pollution loads (olf) together with the environmental conditions

during all assessments are presented in Tables 3.3, 3.4, 3.5 and 3.6.

3.2.1.1 Experiment 1:

A sensory panel of an average of 15 subjects assessed the acceptability of the air in three
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similar offices where the air was polluted either by individual materials or by a
combination of two materials. The average standard error of all acceptability votes was
+ 0.1. Assessments were performed first for the empty rooms, then after 4, 24 and 120 hrs
of placing the materials inside the rooms. The air exchange rate was equal to 0.8+ 0.05 in
all the rooms. The average measured temperature and relative humidity of the three
rooms during each assessment are shown in Table 3.3. The results show that perceived
air quality improved significantly when carpet and painted gypsum board were placed
together in a room in comparison with the case where the air was polluted by carpet alone
(P<0.001, four hours after the materials were placed together and P< 0.01 after 24 hours).
Acceptability assessments performed four hours after the materials were placed inside the
room showed that the air of the room with the two materials was perceived not only
better than the carpet alone but even better than the painted gypsum board. The level of
improvement decreased with time, and the perceived air quality for combined materials
approached that of the carpet alone. The difference between the conditions was no longer
significant (P=0.7) after 120 hrs. Painted gypsum board was perceived to be almost the
same during all assessments. Figure 3.3 shows the mean acceptability votes for the three
different rooms. Assessments performed four hrs after the materials were placed inside
the rooms indicated a low acceptability of the air polluted by carpet alone (Acc.= -0.46,
PD = 90%). This is believed to be due to pollutants that may have been adsorbed on the
carpet surface when it was stored in the same place as other polluting materials. This
assumption could also explain the big improvement of the air quality polluted by carpet
when it was assessed again 24 hrs latter, and the deterioration in perceived air quality in

the room with combination of two materials after 120 hrs when the sink is full and no
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more pollutant could be adsorbed.
For the experiments performed later on, in order to overcome this complication, the
material samples to be tested were ventilated in isolation for 48 hrs before they were used

in the experiments.

1.0 o e e e e e s St et e s e e i s e o
¢ Carpet

0.8 W Painted gypsum board

0.6 o A Carpet &painted gypsum board
£ 02 _29:99? _______ POOt IO
8 ] ]
.y 0.0 o
8 0 2 ................................................................................................................................
< 0'4 R ¢ |

0. o T

B

-1.0 T 1 T T T i

0 24 48 72 96 120 144

Time after the materials were placed inside the rooms (hrs)

Figure 3.3. Mean assessments of acceptability of air polluted by carpet, painted
gypsum board and by combination of carpet and painted gypsum board

It might be useful to point out that the results of assessments in the mixing room were not
considered valid due to a mistake in the experimental design. As shown in Table 3.1 the
mixing room took air only from the two adjacent rooms that contained samples of carpet
or painted gypsum board (4.4 1/s from each room), which means only half of the outdoor
ventilation rate to each adjacent room was transferred to the mixing room. This resulted
in overestimation of the impact of mixing, as the concentration in the mixing room would

be half of the sum of the concentrations in the adjacent rooms. This was corrected in the
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other mixing experiments performed later on , Experiment 2 and Experiment 7.

3.2.1.2 Experiment 2

Samples of carpet and painted gypsum board were tested individually, as a combination
of the two materials, and for the case when the air polluted by these two materials was
mixed in another room. A sensory panel consisting of 15 subjects assessed the
acceptability of the air in the four rooms. Assessments were performed first for the empty
rooms then after 4, 8, 24, 48, 72, 144 and 168 hrs. The average standard error for all
assessments was + 0.1 (mean standard deviation of + 0.36). The results from the sensory
assessments and the average measured temperatures and relative humidities for the four
rooms during each assessment session are presented in Table 3.4. The mean votes of
acceptability for the air in the four rooms and the level of significance between
assessments performed in the room with carpet and the room with carpet and painted

gypsum board are shown in Figure 3.4.

The results, in general, showed a low acceptability of the air in the four rooms during all
assessment sessions. However, an improvement of perceived air quality in the mixing
room and in the room that contained both materials (carpet and painted gypsum board) in
comparison with the perceived air quality of the air polluted by carpet alone was
observed during the one week experimental period. In this experiment the participating
subjects were not the same for all assessments, hence a comparison of acceptability
assessments could only be conducted for assessments performed at the same sensory

session and not for different sessions performed at different times.

56



10 9

N 4 Carpet '
08 4 | M Painted gypsum board |
' i A Carpet &painted gypsum board l
0.6 e | o Mixing exhausts ]
2

002 ‘

a P=0.01 P=0.03  P=0.001 P<0.01 P<0.01 P=0.01
- B A, W B ‘
5 0.0 4 &-m n -
S B S S S e b . S ;
© 0279 0o
<
I
¢ g L 2 * L 4 :
0.8
1.0 +—— : : : : : :

0 24 48 72 96 120 144 168 192

Time after the materials were placed inside the rooms (hrs)

Figure 3.4 Mean assessments of acceptability for air in the rooms that contained
carpet, painted gypsum board, carpet and painted gypsum board together and
for the room where the exhaust air from the rooms with carpet and painted
gypsum board were mixed.

The temperature was relatively high during the whole experiment. Based on the results of
Fang et al (1998), this would be expected to adversely affect the perceived air quality. It
might alsé increase the emission rate of selected pollutants and decrease the sorption to
room surfaces. Hence, the low acceptability of the air observed in all the rooms during
this experiment is consistent with expectations. As mentioned earlier, the results showed
that perceived air quality improved for the cases when carpet and painted gypsum board
were placed together in the same room, and when air polluted by both materials was

mixed in another room (without the materials themselves). One contributing factor to this
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result could be that the air change rate was 0.4 h ' in the rooms with individual materials
while it was 0.8 h ! in the other two rooms. Another contributing factor, believed to be
more important, is the impact of sorption. Figure 3.4 shows that perceived air quality
improved when exhaust air polluted by the two individual materials was mixed in a third
room (P=0.01). This improvement is presumably due to the impact of sorption. When
pollutants emitted from carpet and painted gypsum boards were transferred to the mixing
room, some of them were adsorbed on its surfaces. Further improvement, in comparison
with the case of mixing exhausts, was observed when the two materials were placed in
the same room. This is presumably due to sorption on the material surfaces.

The relatively high temperature during all assessments could be behind the observed low
impact of sorption. According to previous studies, at high temperatures sorption is less

(Tichenor et al 1991,Van der Wal et al. 1998).

3.2.1.3 Experiment 3

In this experiment, the impact of desorption was investigated in addition to the impact of
sorption. Sensory assessments for air polluted by carpet or painted gypsum board or by a
combination of both were performed during a one-week period. Later on, the carpet was
taken out of the rooms and the sensory panel assessed the air of an empty room and a
room with painted gypsum board (both of which had carpet in the first part of the
experiment). The results of this experiment are presented in Table 3.5 and Figure 3.5.
The level of significance for assessments performed in the room with carpet and the room

with carpet and painted gypsum board are shown in Figure 3.5.
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The results show that the air polluted by both materials (carpet and painted gypsum
board) was perceived better than that in the room polluted by carpet alone, but less
acceptable than the air polluted by painted gypsum board. The improvement was
observed for all six assessments, although statistical analysis did not show the same level
of significance for all assessments (see Figure 3.5). A big improvement in perceived air
quality was observed soén after the carpet was taken out of the rooms. However, it was
only after three days that the air in the rooms that contained carpet in the first part of the
experiment (i.e., the empty room and one polluted only by painted gypsum board), could

be perceived as though the carpet was never there.
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Figure 3.5. Mean assessments of acceptability of air polluted by carpet, painted
gypsum board and by a combination of carpet and painted gypsum board. Included
are assessments that were made after the carpet was taken out.

60



"SJUDWISSISSE 99/M19¢ UOSLIBAUIOD MO[[E 03 POIOPISUOd 21am (S1031qns 1) §1091qns Wes Y} AQ POULIOYISd SJUSUISSISSE AJUO JUSWLINAXS JO MBd STYI UL 44
SWOO0I a3 opIsul paoe[d s1om S[RLISTRW S} IO QWIL, 4

€FIs | €07T e €60 s'€ 19 9°9¢ 0'91 9I'0FLO0 E€T0F8T0 T
€F0S | ¥0FET Iy S6'I 9¥ Tt 6T vLT 91'0%20°0 POFST0 wel
€F0¥ | PO FET 158 4 81T I's ST SSy 96T ¥1°0700°0 9T°0FET 0 it
pieoq
winsdA3 fdwuyg | no jadae)
pajureq #»C HEd
€FLE | POTET 'L 0s ¥'91 I's L's L'81 €LS I'8¥ L'T8 01'0F60°0- | 60°0F70°0- | 01°0FEEC0- 891
E€FIS | 80FST S8 9T 891 96 6'C 61 ¥'79 0'€e v'e8 60°0FE1°0- LO0OFOI'0 | IT0FHE0- 96
€F9Y | 8'0FST I 15 4 TLT L I's s'6l 9'0L s'sy I'v8 60'0F0C0- 01°0F700°0 | YI0FSE0- i
€FIS | Y0 FST s v'e 81 6 6'€ 691 T'19 1°6€ V6L 60'0FTI"0- 0T°0FS0°0 | IT°0F6T°0" 1
€F9S | P'0FST V9 VT LI €L 8T g6l 0'ss 8'I€ I'v8 IT°0FL0°0- | OL'0FII'0 | 60°0FSE0- vz
€F6S | Y0 FST §'s p'e 871 €9 6'€ 9¥1 0°1S 1°6€ 0°SL IT0FP0°0- |  60°0FS0°0 | LOOFPTO- ¥
13ed
€¥SP | 9'0¥ST $1 0 70 LT $0 0 0'€T 08 0'8 0T'0FT0 | 60°0FEHO | 60°0FHF0 a_m_m.om
) ndxy
pieoq pleoq
°% HY Do L | wnsd43 wnsd£3 pieoq pavoq
pajuied paeog pajuted paeogq winsd43 pleoq winsd43 paeog
» wnsd£3 » uinsd£3 pojured unsd43 pajuted wnsd43 «(s14)
yodue) | pajureg | odie) | jpdie) | pajureg | jodae) wpdie) pajurey pdie) pradie) paureJ jadae) Qui,
UOIJBIAJD
piepuelg gr0) (1odroap) (%)
F SUOIIPUOD peo] uonnjod Aypenb are paaedsag PaysnessIp 98e3udda3 J10112 prepueysFAqeIdaddy
[EIURWUOXIAUY

¢ yusuLRdxy Sunnp pourtoysod s)UIWISSISSE Y)Y JO [[& SULIND SUONIPUOI [BIUIWUOLIAUS PuE Ajfenb Jre pasdIdd "g'¢ AqelL

61



This result could be explained by adsorption (on the rooms and painted gypsum board
surfaces) that took place when the carpet was in the room. As soon as the carpet was
taken out of the room, the drop in concentration initiated the desorption process, and it
took three days to desorb the emissions that had adsorbed to these surfaces. Before the
start of this experiment the carpet and painted gypsum board were ventilated separately
for 48 hrs in rooms with a high supply rate of outdoor air to get rid of what might have
been adsorbed on their surfaces during the storage time. In this experiment the
temperature was relatively high (average temperature= 25+ 0.4° C) which might have
affected the perception of the assessed air to be less acceptable (Fang et al 1998), but
temperature and relative humidity, measured on the day of the assessments, were the
same for the different rooms.

The panel participating in this experiment consisted of an average of 18 subjects, seven
of which participated in all the assessments, while the others were different throughout.
As this and the impact of changing temperature and relative humidity during the one-
week experiment could lead to errors when comparing assessments performed on
different days, in this expefiment it is only valid to compare assessments performed on

the same day.

3.2.1.4 Experiment 7

A larger panel of thirty-four recruited subjects participated in this experiment (a total of
30 attended all assessments) for which the environmental conditions (temperature and
relative humidity), were controlled. Before the start of the experiment, the temperature
and relative humidity were set at T= 22°C and RH=35%, the measured temperature and

relative humidity during all sensory sessions are shown in Table 3.6. The same carpet
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and painted gypsum board used in the previous experiments were used in this experiment
too. Before the start of the experiment the two test materials were ventilated separately
for 48 hrs in two different places with high supply rate of outdoor air to clean the
materials from any pollutants that might be adsorbed previously. The air exchange rate
fixed to be 0.4 h for two rooms where carpet and painted gypsum board were being
tested individually and 0.8 h™* for the other two rooms, one where the air polluted by the
two individual materials was mixed and the other is for the room used for testing
combination of carpet and painted gypsum board. See Table 3.1 for the experimental
design. The results of acceptability assessments for the four rooms during the one-week

experiment are presented in Figure 3.6 and Table 3.6.
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Figure 3.6 Mean assessments of acceptability for the air in the rooms that contained
carpet, painted gypsum board, carpet and painted gypsum board together and for
the room where the exhaust air from the rooms with carpet and painted gypsum
board were mixed.
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The average standard error for all assessments performed in this experiment was + 0.07
and the mean standard deviation was + 0.41. The results show that the air in the room that
had the combination of two materials was perceived to be the best among the four rooms
and thus during the whole experiment. As shown in Figure 3.6 the acceptability of the air
polluted by both materials placed in the same room was better than the air polluted by
carpet alone (P<0.01) or painted gypsum board alone. This suggests that both materials
are acting as pollution sourcé and sink at the same time. The air quality improved when
air polluted by carpet or gypsum board was mixed in a third room, in comparison with
the air polluted by carpet alone, an improvement, which is referred to the impact of
sorption on the room surfaces.

The further improvement when carpet and painted gypsum boards are placed together in
the same room is mainly due to sorption on the test material surfaces. In this experiment
the results show that the sorption has a significant impact on perceived air quality even
after 144 hrs (P<0.001), which might be resulted from using cleaner materials surfaces as

a result of the pre-ventilation.

3.2.2 Carpet and virgin gypsum board

3.2.2.1 Experiment 4
This experiment was conducted using the same sensory panel as Experiment 3. Sensory

assessments for the air quality in rooms that contained virgin gypsum board alone and for
combination of carpet and virgin gypsum boards were performed during one week and

the results are presented in Table 3.7 and Figure 3.7.

The average standard error for all acceptability assessments performed in this experiment
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was + 0.1 and the mean standard deviation was = 0.41. For all assessments, the air
polluted by carpet and virgin gypsum board was perceived better than the air polluted by
carpet alone. However, no statistically significant improvement was noticed except for
the assessment performed after 24 hrs of placing the two materials together (P=0.04).

The relatively small improvement in perceived air quality may be due to the fact that the
virgin gypsum board alone was perceived to be much less acceptable compared to the
painted gypsum board, the reason could be that virgin gypsum board used in this
experiment was new while painted gypsum board was painted 6 months before the

experiment.

1 .0 g o i S S e e e i ottt St e Sttt i+ oottt i
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1.0 : : : : . : : |
0 24 48 72 96 120 144 168 192

Time (hrs)

Figure 3.7. Mean assessments of acceptability of air polluted by carpet, virgin
gypsum board and by a combination of carpet and virgin gypsum board.
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Another factor could be that subjects were not familiar with this kind of pollution as they
are with painted gypsum board; hence they assessed the air polluted by virgin gypsum
board alone as being less acceptable. It could be also assumed that painted gypsum board
is a better adsorbent for what is emitted from the carpet but this is hard to prove since the
air polluted by virgin gypsum board and the painted gypsum board alone is not perceived
equally. Another possibility is that both materials have the same adsorption capacity, but
the emission rate and the kind of pollutants emitted from virgin gypsum board are above

the adsorption capacity of the carpet. The results also show that the improvement

diminishes with time.

3.2.3 Linoleum and painted gypsum board

3..2.3.1 Experiment S

Thirty-one subjects were recruited to participate in sensory assessments belonging to
experiments 5 and 6. The panel consisted of the same subjects throughout all scheduled
assessments. Temperature and relative humidity were controlled during both
experiments, and they were preset at T= 22 °C and RH= 40% (the measured temperature
and relative humidity are shown in Table 3.8). Samples of linoleum and painted gypsum
board were ventilated in two different places with high rate supply of outdoor air for 3
days before they were placed inside the rooms for sensory assessments. The results of
this experiment are presented in Table 3.8 and Figure 3.8 that shows the mean
acceptability assessments of air polluted by linoleum alone and by a combination of
linoleum and painted gypsum board for a one-week experiment. It also shows the results

for an empty room and a room with painted gypsum board alone after the linoleum was
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Acceptability

taken out. The average standard error and the mean standard deviation of the performed

assessments were + 0.07 and + 0.41 respectively.
1.0 ¢
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Figure 3.8. Mean assessments of acceptability of air polluted by linoleum and by a
combination of linoleum and painted gypsum board. Included are assessments that
were made when the linoleum was taken out.

The results of the first part of the experiment (before taking out the linoleum) showed a
significant improvement of perceived air quality (P<0.001 for assessments after 4, 24, 72
and 168 hrs, P<0.01 for assessments performed after 72 hrs) when the air was polluted by
a combination of two materials (linoleum and painted gypsum board) versus the case of
air polluted by linoleum alone. After 72 hrs of placing the materials inside the rooms,
and in addition to the official panel, the assessments were performed by 23 guests to the

center that day. Based on their assessments, the mean acceptability votes of the room

polluted by linoleum alone was Acc= -0.3, and Acc= -0.04 for the combination

69



LF0y | €0F¢TT L't Lo I'e 80 (44 TU | LO0F60°0 80'0FFE0 iT44
LFOY | TOFETT 6T Aré Y 4 v'se 9'67 | LO'0F80°0 60°0FE1°0 917
LF0b | TOFETC (47 (A4 8F s (1344 967 | LOOFFIOO 60°0FET°0 761
LF0Y | TOFP'TC 8 '8 v's 76 oLy I'r9 | 80°0F10°0 LO0FTI0- LT
pleoq piroq piwoq paeoq jno
winsd£3 LAdwuy | wnsd£3 Aduyg wnsd£3 fdmy wnsd43 LAdwy | WhIOUrY
pajureq pajureg pojureq pajureq C1HEd
1F0b | T0FCTT 9L'L €9°¢ 1891 78’8 €'y 0161 6'6S A1 4 pes | LOOFITO- 80°0FP0°0 | LOOFPED- 891
[F0¥ | T0FITZ 09°6 65T 1981 16°01 ve't ST'IC 099 0°€E 898 [ LO0FIT0- LOOFT0 | LOOF6E0- 96
150¥ | T0FC 66'T1 ST¢E 19°81 £€9°¢1 69°¢ ST'IT L'TL 8LE 898 | LOOFITO- LO0F90°0 | LOOF6E'0 L
LF0b | T0FI'X €9°¢l sT'e 1961 6v°'S1 69°¢ 8T'TT L'9L 8'LE S'88 | LOOFITO- LO0F90°0 | LOOFTY'O- 8y
150 | T0TTTL 66’11 £€9°¢ 876l £9°¢1 €Ty 16’17 LT oy 6'L8 | 80°0FTTO- | LOOFFO'0 | LOOFIPO- 44
[F0r | T0FITT €88 sT¢ (481 c0'01 69°¢ 99°81 9€9 8'LE L8 | LOOFPI0- LO'0FI0°0 | LOOFEE0- L4
I Hed
wood
I F0¥ TOFCT 1240 6L°0 6L°0 79°0 6'0 0670 01 14! 4! 80°0+8¢€"0 LO'OFIE0 80°0FIE°0 L dwy
S) RAXY
paeoq pigoq paeoq pleoq

% Do L | wnsd43 winsd43 wnsdA3 winsd43 (@92

i pauted pajured pajured pojuted paeog

pul und pu wnd » wnd » wnsd43
mpoury | (g9d) | -loury | ndjoury (g5d) | -roury | wndjoury | (god) | -fouwr] | wndjoury | pajuied uimnajoury #(S1Y)
UOIIBIAIP aur],

paepuels G10) (fodrap) payshessip
F SUOBIPUOD peoj uonniod Aypenb are pasRdIag abejuadiad 10113 paepuelSFANIqerdacdy
[BpUSWUOIIAUY

*G JuaWLIdAX7 JO SJUAWSSISSE [[€ SULINp SUONIPUO) [BJUIWUOLAUS put Ajjenb i1e paArdId{ "§°¢ e L

70



of linoleum and painted gypsum board. The statistical analysis of their acceptability
assessments resulted in the same level of significance obtained by the official panel
(P<0.01).

The results of acceptability assessments performed 4 hrs after linoleum was taken out of
the room showed a significant improvement of the perceived air quality in both rooms but
it took three days for the empty room and two days for the room with painted gypsum

board to get rid of the impact of having linoleum earlier.

3.2.4 Linoleum and Semia
3.2.4.1 Experiment 6

In this experiment linoleum and Semia (absorbing sheets consisting of activated charcoal)
were tested individually and as a combination for one week, after which linoleum was
taken out of the rooms and the sensory panel proceeded in assessing the air quality in the
three rooms; the two that had linoleum before and the one that continued to have the
same Semia samples. The three rooms had the same air exchange rate
(ACH=0.8 + 0.02 h™"), and the same environmental conditions of the preset temperature
and relative humidity (T= 22° C, RH= 40 %). The average measured temperature in the
three rooms + standard deviation are shown in Table 3.9. Temperature and relative
humidity were measured each day before the start of sensory assessments. The sensory
panel assessed the acceptability of the air in the three rooms, after 4, 24, 48, 72, 96, 168
hrs after the materials were introduced to the rooms and then 4, 24, 48 and 72 hrs after
the linoleum was taken out of the room, with an average standard error of + 0.08 (mean

standard deviation of + 0.45). The results of sensory assessments, also presented in Table
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Acceptability

3.9 and in Figure 3.9, show that when Semia was tested alone the acceptability of the air

was as good as an empty room. In addition to that a big improvement on the perceived

air quality was observed when linoleum was placed together with Semia in the same

room in comparison to when linoleum was tested alone. The assessments of acceptability

performed 4 hrs after placing the materials inside the rooms showed that the air quality in

the room that contained linoleum with Semia was perceived as good as the room having

only Semia (or an empty room). 24 hrs later the acceptability dropped to be almost the

same for the rest of the assessments (further deterioration was observed for the

assessments performed after one week). The improvement was statistically significant for

all performed assessments (P< 0.0001) indicating the high sorption ability of Semia.
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Figure 3.9. Mean assessments of acceptability of air polluted by linoleum, Semia
and by a combination of linoleum and Semia. Included are assessments that were
made after the linoleum was taken out.
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By taking the linoleum out of the rooms the acceptability of the air started to improve in
both rooms (the big improvement was 4 hrs after removing the linoleum) but it took two
and three days for the air quality to be perceived as good as a room with Semia alone and
as an empty room. The air of the room that had only Semia from the beginning continued

to be perceived as being almost the same for all assessment sessions (See Figure 3.9)

3. 3 Discussion

These experiments (outlined in Table 3.1) have demonstrated that air polluted by two
different building materials placed in the same room is perceived to be better than air in a
room polluted by the more polluting of the two materials; sometimes air polluted by two
different materials is even better than air in a room polluted by the less polluting material.
Assessments performed after 4 hrs in Experiment 1 and all assessments in Experiment 7
show that the air polluted by carpet and painted gypsum board was perceived to be better
than the air polluted by carpet alone or painted gypsum board alone.

Based on the results of Experiments 1, 2, 3, 4 and 7, the average percentage dissatisfied
caused by air polluted by carpet decreased by approximately 25% when carpet was
placed together with painted gypsum board, and by 10% when carpet was placed together
with virgin gypsum board. Results from Experiments 5 and 6 show that the percentage
dissatisfied due to air polluted by linoleum dropped by 18% for a combination of
linoleum and painted gypsum board and 65% when linoleum and Semia were placed
together in the same room. From Experiment 7 it was possible to investigate the sink
effect associated with the room surfaces. As mentioned earlier, air polluted by carpet

(Room 1) and painted gypsum board (Room 3) was mixed in Room 2, where the only
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sinks were the room surfaces. The improvement in perceived air quality in this room in
comparison to the air polluted by the individual material is believed to be mainly due to
sorption on the room surfaces. The results show that the percentage dissatisfied with the
air in the mixing room was, on average, 14% less than the percentage dissatisfied with
the air in the room with carpet alone.

Whether the improvements were statistically significant or not, taken together the results
from Experiments 1 through 7 are consistent despite the different kinds of building
materials used in the experiments, the different panels that performed the sensory
assessments and the different environmental conditions for the different experiments. The
results indicate that the tested building materials interact with each other and with the
room surfaces by sorption/desorption phenomena. The pollutants emitted from one
material are adsorbed on the surface of the other material and on the room surfaces,
reducing the concentration of pollutants and affecting the perceived air quality. Another
indication of the occurrence of sorption is apparent in the results of Experiments 3, 5 and
6 during the desorption stage. In these experiments, when the strong pollution source
(carpet or linoleum) was taken out of the room, more than three days of ventilation were
required before the room air was perceived to be free of the emissions from the polluting
material. This indicates that sorption took place when the material was present, and when
the polluting material was removed, the concentration of pollutants in the air dropped and
the pollutants that had been adsorbed on the surfaces of the room or the gypsum board
desorbed into the room air, prolonging the presence of certain pollutants (from carpet or
linoleum) in the room air even after the source had been removed.

The results of the aforementioned experiments indicate that sorption affects the perceived
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air quality significantly. In the next chapter the impact of sorption phenomena will be
quantified. Adsorption/desorption coefficients will be calculated based on results from
the experiments detailed in the present chapter. These calculations will permit

comparisons among the different materials when exposed to different pollution sources.
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CHAPTER 4

DETERMINATION OF SORPTION PARAMETERS

Data obtained from the experiments cited in the previous chapter were analyzed assuming
a Langmuir type of adsorption and using the sink model proposed by Tichenor et al.
(1991). The aim was to calculate adsorption desorption coefficients to characterize the
sink effect of the room surfaces and painted gypsum boards when the source of pollution

was either carpet or linoleum.

4.1 Background

The linear Langmuir model is the most widely used model to predict sorption, due to its
simplicity of use and acceptable accuracy when applied under appropriate conditions
(well mixed room with low concentration of pollutants, smooth surfaces for materials that
act as sink for indoor pollutants). Tichenor et al. (1991) used the Langmuir model, to
examine the impact of sorption on indoor environments. They studied sorption/desorption
of two chemicals with five common building materials. They concluded that the model is
appropriate to study sorption for flat smooth surfaces like wallboard but less appropriate
for complex surfaces like carpet where diffusion into the materials should be taken into
account. Since then, maﬁy researchers have used the Langmuir model to study the
interaction of indoor pollutants and materials surfaces (Jorgensen et al. 1991, Jorgensen
and Bjorseth 1999, An et al. 1999, Won et al. 2001, Zhang et al 2001). These researchers
have found that the linear sink model is appropriate to describe the sink effect for a range

of chemicals concentrations found indoors.
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Herein, the linear Langmuir model will be used to predict sorptive interactions between
indoor pollutants emitted from building materials (carpet or linoleum) and indoor
materials surfaces (painted gypsum board and the room surfaces). In this chapter, carpet
and linoleum will be considered as pollution sources while gypsum board and the room
surfaces will be treated as sinks. These assumptions were made to simplify the
calculations, and are based on the fact that carpet and linoleum were much stronger
pollution sources than the painted gypsum board or the room surfaces used in the
experiments detailed in Chapter 3. Data from sensory measurements in the rooms that
had one building materials, in room with a combination of two materials, and in the
mixing room (where the air was polluted by building materials located outside the room),
will be used to estimate sorption parameters for the room surfaces and for painted

gypsum board.

4.1.1 Principle of Langmuir model applied in this study

Sorption in the test rooms used in the experiments presented in Chapter 3 can be
described using Figure 4.1 where the outdoor airflow rate to the room is Q and the
outdoor air pollutants concentration is C,. G(t) is the emission rate of the pollution
source. The exhaust air has a concentration equal to the room concentration C(t). The
mass of indoor pollutants adsorbed per unit area of the room surfaces is Miyom(t).
KaroomC(t) and Kgroom Miroom(t) are the adsorption rate to the room surfaces and the
desorption rate from the room surfaces to the room air. My(t) is the mass of indoor
pollutants adsorbed per unit area of test material that act as a sink. The adsorption rate

from the room air to the surface of test sample is k,; C(t) and the desorption rate from the
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surface of building materials sample to the bulk air is kq; Mj(t).

Sorption parameters, represented by the mass per unit area of the sink (M) the
equilibrium constant (K.) (also referred to as the material/air equilibrium partition
coefficient), the desorption rate constant kg and the adsorption rate constant k, could be
determined using the time concentration data during adsorption stage only, desorption
stage only or the whole adsorption /desorption period.

We will begin with a summary of the calculations that apply during the desorption stage

of the experiments.

k C(t) k droom Mmc,m(t)

2 "

Co

N

AR

C

ki CO  Gff)

/

R

D |

Sample of test building
material acts as source

Sample of test building
material acts as sink

Figure 4.1 Schema of sorption in the test room

The first step is to calculate the mass in the sink that is assumed to be at equilibrium with
room air at (ts) just before the pollution source was taken out of the room. The total mass
of pollutant measured from (t;) until the end of the experiment is equal to the mass in the
chamber air at (t;) plus the mass of pollutants emitted from the sink (Me). The total mass
of pollutants can be obtained from the area under the desorption curve (A.) multiplied by

the air exchange rate (N) and the chamber volume (V). This desorption curve represents
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the relationship between the perceived concentration and the time (see, for example,

Figure 4.2).

The area under the curve is calculated using the trapezoid rule (see appendix B):

A= Z [(CHC (t i+1‘ti)/2] ............................ (4.1

The mass of the pollutants in the room air is the product of the concentration at
equilibrium (C,) and the chamber volume (V).

And the equilibrium mass in the sink per unit area (decipol m*/m?) is:

Me=(A.NV-C. V)/A  ........... e (4.2)

The strength of the sink expressed by the equilibrium coefficient K, could be determined
assuming a Langmuir type of adsorption. At equilibrium the Langmuir isotherm can be

described as:

KaCe(1-0)=Kg 0 torvreeiiiieeeiiia 4.3)

where :

k,: adsorption rate constant (m/h)

Ce: equilibrium concentration (decipol)

kq : desorption constant (mg/m*.h)

0: proportion of available adsorption sites occupied

For low indoors pollutants concentrations, as was the case in these studies, it can be

assumed that the sites occupied are a very small fraction of the available sites (B<<1) and

the previous equation can be reduced to the linear equation:

The mass in the sink per unit area at equilibrium M. is proportional to the available
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adsorption sites occupied and therefore:
ka Cc= kd Mc ..................................... (4.5)
kq: desorption rate constant (h™)

And the equilibrium constant K. is equal to kq/kg or Me/C,

4.1.1.1 Determination of k, and kq:

The sink model proposed by Tichenor-et al (1991) assumes that the air in the room is
perfectly mixed and that at equilibrium the sorption rate k,C. is equal to the desorption
rate k¢M, (Langmuir adsorption process). Based on these assumptions the following
differential equations were developed:

dC¢/dt= NCy, — NC;- k,CiL+kgML ... (4.6)

dM/dt=k,C; - k4yM
where:

Cy: the concentration in the room (mg/m’ or decipol for the perceived concentration)

Cin: concentration of pollutant in the inlet air (mg/m® or decipol)

k,: adsorption rate constant (m/h)

kq: desorption rate constant (h™")

L: loading factor = sink area/volume of the room (m™)

M: mass per unit area of the sink (mg/m? or decipol*m3 /m?)

The previous mass balance equations were solved for the desorption phase considering
the following initial conditions: t=0, C(0)=C. and M(0)= M¢=Ce(ka’kq) (Tichenor et
al.1991):

C(t) = Ce (N-1p) €™ = (N-17) € ™) /(11T2) voovvvreeeannne, (4.8)
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M(t) = koCe (11 € ™ =12 €™ / Kg (T12) +oeeeeeeeeeeeeaaann, (4.9)

Where:

I 12 = [((N+ ka L+kg) £ (N+ ky L+ke)*—4 Nko)"™ /2 ... (4.10)

Values for k, and kg could be obtained by fitting Equation (4.8), where C. is a known
experimental value, to the room concentration versus time data from (t) to the end of the

test using a nonlinear regression curve fit routine.

The aforementioned procedure was used to find sorption parameters for the room

surfaces.

4.2  Sorption parameters for the room surfaces

4.2.1 Calculations based on data from the desorption stage (Tichenor model, 1991)
Using the procedure just described, the sensory assessments performed after the
equilibrium was reached and the pollution source was taken out of the room were used to
calculate the mass in the sink (M), the equilibrium constant (K¢), the desorption rate

constant (kq) and the adsorption rate constant (ky).

4.2.1.1 Sorption parameters for the room surfaces when carpet was the pollutioh

source during sorption period

The result of sensory assessments for Experiment 3, Chapter 3, during desorption stage
are shown in Table 4.1. Assessments were performed just before the carpet was taken out

of the room and then 4, 24 and 48 hrs after it has been taken out.
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Table 4.1 Sensory assessments for an empty room, after the carpet samples were

taken out of the room.

Time (after the materials Acceptability Perceived air quality
were taken out of the (decipol)
room) (hrs)
0 -0.33 18.7
4 0.13 2.5
24 0.15 2.2
48 0.28 1.1

The change in perceived air quality with time, during the desorption stage, is presented in

Figure 4.2. The figure was used to calculate A, (area under the curve) using the trapezoid

rule (see appendix B for detailed calculations):

A, = 101.08 decipol *h

20.0 -

-

bl

[on)
!

10.0 -

Perceived air quality (decipol)
o
[=]

y = 2.9837¢0019%

R?=0.89

0.0

48 72

Time (hrs)

Figure 4.2 Perceived air quality for the empty room, after the carpet was taken out.

Desorption from the room surfaces is represented by hatched area.

The mass per unit area of the sink: M=(AQ-C.V)/A
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Where Q=N*V in Equation 4.2

M, = ((101.1%32) — 18.7*40) / 90 =27.63 decipol m*/m’

Ke=M/Ce=27.63/18.7=1.48 m

ka=Kc* kg=1.48 k4

11 =[N+ 1.48kg L + k) + (N+ 1.48 kg *L ) > =4 N kq ))'* 12

r=[(N+ 1.48ks L + kq) - (N+ 1.48 kg *L)*—4 N kg ))* 172

N: the air exchange rate in the room =0.8 h !

L: loading factor and it is equal to (room surface area/volume of the room) =

90/40=2.25 m™!

For each value assumed fof kg, 11 and r, were calculated and used to find C(t) :

C(t) = Ce ((N-12) €™ = (N-17) e ™Y /(11T2) wvvvveeaannn, (4.11)

Where:

C, is the perceived concentration just before the source of pollution was taken out of the
room (in this experiment C.= 18.7 decipol)

The least square method was applied to determine the value of k4 (that gives the
minimum sum of (Ct —Ct') 2

For this experiment:

1 =092, r,=0.03

Sum of errors =1.21, kg=0.035 h! and ka=1.48* 0.035 = 0.052 m/h

4.2.1.2 Sorption parameters for the room surfaces when linoleum was the pollution

source during the sorption period

The same procedure detailed above was applied on the sensory data obtained from
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Experiment 5, Chapter 3. Again, sensory assessments were performed before taking out
the linoleum and then 4, 24, 48, and 72 hours after taking linoleum samples out of the
room. The results are presented in Table 4.2 and Figure 4.3. The hatched area represents
desorption.

Table 4.2 Sensory assessments for the empty room after the linoleum samples were

taken out of the room.

Time (after the materials Acceptability Perceived air quality
were taken out of the room) (decipol)
(hrs)

0 -0.34 19.1

4 -0.12 9.2

24 0.13 2.5

48 0.13 2.5

72 0.34 0.8

25‘0 . et e
3
’g 20.0 &
=2
a .
= 15.0 4
I
S5
o
= )
g 10.0 4 / y = 10,8¢70.0388x
o v/ R*=0.86
2 / /
3 4
o
Q.
L)
72 96

Time (hrs)

Figure 4.3. Perceived air quality for the empty room, after the linoleum was taken out.

Desorption from the room surfaces is represented by hatched area.
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Again the area under the curve was calculated using trapezoid rule and below are the

Calculation results:

A=1229.4 decipol *h , M, =73.09 decipol m’/m?*, K¢=M./Cc=3.8 m

=181, ,=0.05 and ks=0.11h"

ka=Kc* k4=3.8¥0.11 =0.42 m/h, Sum of errors = 3.1

Adsoption and desorption rate constants when linoleum was the pollution source are:

k,=0.42 m/h and kg=0.11h"

A summary of the sorption parameters for the room surfaces when the source of pollution

was either carpet or linoleum is presented in Table 4.3

Table 4.3 Sorption parameters for the room surfaces when either carpet or linoleum

was the pollution source.

Pollution ka kq Ke M.
source m/h h' m decipol m*/m*
Carpet 0.05 0.04 1.48 28
Linoleum 0.42 0.11 3.8 73

4.2.2 Calculation of adsorption rate constant for the test room surfaces based on

data from the adsorption stage

As mentioned before, sorption parameters could be estimated from the adsorption stage
data, desorption stage data or data from both stages. In the experiments shown in

Chapter 3, it was impossible to get a clear sorption curve (exponential curve)

86




demonstrating the increase in concentration in the room air until the equilibrium is
reached. The reason is mostly due to the presence of the pollution sources (linoleum or
carpet) and the sink (room surfaces, painted gypsum board) in the same place. Although
it was assumed that linoleum and carpet will be considered as emission sources and the
room surfaces and painted gypsum boards as sink but in reality all surfaces in one place
act as pollution sources and as sinks at the same time. As mentioned earlier, the
assumption was made, for simplification and based on fact, that emissions from carpet
and linoleum were much more important than those from room surfaces or painted
gypsum board. In addition the area, an important factor in sorption, was bigger for room
surfaces and painted gypsum board (A;pem= 90 m?, A pgp =23 mz) than the ones for
linoleum or carpet (Acarpec=Alinoleum =14 mz). The calculations shown below are based on
the assumption that for the first assessments performed after the materials were placed
inside the room the impact of adsorption is much higher than the impact of desorption
and at this point, desorption could be neglected. In Experiments 3 and 7 detailed in
Chapter 3, carpet and painted gypsum board were tested individually, in combination,
and when air polluted by carpet and painted gypsum board was combined in a mixing
room. By applying the mass balance equation on the first sensory assessments data
performed after the pollution source was introduced to the rooms, and by assuming that
the change in concentration in a very small fraction of time is small and could be
neglected, the following equations could be derived:

For the room that contained only carpet:

Cearpet = Gearpet/ 0.1 (Q+ K aroom *A room) «-eeveeeeervenerennes (4.12)

For the room that contained only painted gypsum board
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Cros = Gpga/ 0.1 (Q+ K 2r00m FA room ) +eevevreereeenenenenn (4.13)

Where:

Ceapet OF Cpgp : perceived air quality in the room that had samples of carpet or painted
gypsum board (decipol)

G campet : SENSOrY emission or sensory pollution load caused by carpet (olf)

G pgn : sensory pollution load caused by painted gypsum board (olf)

Q: outdoor air supply rate to the room (I/s) or (m*/h)

K aroom *A room : surface removal (m3 /h)

A oom - area of the room surfaces (mz)

Kka room : deposition velocity or adsorption rate coefficient for the room surfaces (m/h)

For the mixing room that takes air from the two adjacent rooms where carpet and painted
gypsum board were placed and ventilated, see Figure 4.4. The concentration in that room

could be expressed by the following equation :

Cnixing room = (G carpet TG painted gypsum board) / 0.1% (Q + Ka room ™ A room) vvvvveevvvnnenn (4.14)
Air polluted by E karoom C a )
painted gypsum : ; Air polluted by
hoard E : carpet
: ¢ i
2, € room vith PGB i E Q2> C room with carpet

v Q’ C mixing room

Figure 4.4 Mass balance for the mixing room

Where:

Chixing room : perceived air quality in the mixing room (decipol)
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Gicarpery: sensory pollution load caused by carpet and transmitted from the room that

contains carpet to the mixing room (olf)

G (pgB): sensory pollution load caused by painted gypsum board in the adjacent room and
transmitted to the mixing room (olf)

Q: air supply to the room (from the two adjacent rooms that contain carpet or painted
gypsum board) = 2 Q; (I/s) or (m’/h)

A room : area of the room surfaces (mz)

ka room : adsorption rate coefficient for the pollutants from carpet and painted gypsum
board sorbed on the room surfaces (m/h)

For the room where samples of carpet and painted gypsum board were placed together
the change in the room concentration is due to the impact of ventilation, the impact of
sorption on the room surfaces and the impact of sorption on painted gypsum boards. The
carpet also adsorbs some of the pollutants; however, since it is the source of these
pollutants the net sorption to carpet is expected to be small in comparison to the sorption
on room surfaces and painted gypsum board and for simplification it was neglected.
Hence, carpet was considered as the pollution source while painted gypsum board was
considered as a sink. Based on that and from the mass balance equation applied during
the early assessments, when desorption was small, the concentrati‘on in the room with the
combination of carpet and painted gypsum board could be estimated from the following
equation:

Cm = (G carpet +G PGB) /0.1* (Q+ka room*Aroom +ka gypsum board *A gypsum board) -------- (4 1 5)

Where:

Ch: perceived air quality measured in the room where the two materials were placed
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together (decipol)

G carper: pollution load caused by the carpet when tested individually (olf)

G caper = 0.15C capc * (Q + Ka room A room)

G pgp : pollution load caused by painted gypsum board tested individually (olf)
G paB = 0.1* C painted gypsum board * (Q + Ka room A room)

Q: outdoor air supply to the room (I/s) or (m*/h)

ka room: adsorption rate coefficient for the room surfaces (m/h)

A toom : area of the room surfaces (m?)

Ka painted gypsum board: @dsorption rate coefficient for the painted gypsum board (m/h)

A gypsum board : area of gypsum board samples used in the experiment (mz)

4.2.2.1 Calculation of adsorption rate constant for the room surfaces Kk, yoom When

the pollution source was samples of the carpet

Equation (4.14) was applied to data from Experiment 7, Chapter 3 to find the adsorption
rate constant for the room surfaces (ka room). Sensory assessments used in the calculation
were the one performed 8 hrs after carpet and painted gypsum boards were placed in the
two adjacent rooms. See table 4.4.

The calculation resulted in K, room = 0.05 m/h; this value is quite similar to the value
calculated previously (K, room = 0.06) during the desorption stage. Considering that the
data used to obtain these values for k, were from two different experiments performed
using different subjects, the agreement is remarkably good. It should be noted that An et
al. (1999) and Zhang et al (2001) reported that k, estimated from different periods
(adsorption period only, desorption period only or periods when both processes were

important) were not always consistent for the VOCs that they evaluated.
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4.3 Sorption parameters for painted gypsum board

4.3.1 Adsorption rate constant for painted gypsum board K,pcp calculated from

adsorption stage data

4.3.1.1 When carpet was the source of pollution

Data from Experiment 7, Table 3.6, was used together with Equations (4.12) (4.13) and
(4.15) to find kupgn. Sensory assessments used in the calculation were the ones performed
8 hrs after the materials were placed inside the rooms. The results are shown in Table 4.5.
The adsorption rate constant for carpet emissions to painted gypsum board was found to
be equal to kipgs =2.48 m/h. Calculations were | also performed using data from
Experiment 3, Table 3.5 that was performed with a different sensory panel but in the
same rooms as the other experiments and using the same test materials; kypgs was found

to be equal to 3.06 m/h. Results are shown in Table 4.6.

4.3.1.2 When Linoleum was the source of pollution

After replacing Gearpet by G finoleum it Equations (4.12) and (4.15), they were used together
with Equation (4.13) to estimate k,pgs When linoleum was the source of pollution. The
data used in the calculation were the results of the early sensory assessments performed
after the materials were placed inside the rooms for Experiment 5, Table 3.8. The
calculated results are shown in Table 4.7 and the adsorption rate constant for painted

gypsum board when linoleum is the pollution source was found to be kspge = 3.7 m/h
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4.3.2 Sorption parameters for painted gypsum boards, estimation based on

desorption stage data:

Sensory assessments performed in the room with painted gypsum boards just before and
after the pollution source (carpet or linoleum) was taken out, i.e. during the desorption
stage, were used to determine sorption parameters for the room with painted gypsum
board. Tichenor model assumes that there is no sink effect from the room surfaces or the
effect is very small. To account for mass adsorbed and desorbed from the actual test room
surfaces in addition to the test material surfaces that act as a sink, two more terms should
be added to Tichenor mass balance. Thus Equation 4.6 becomes:

dCy/dt= NCj; — NC; - kaCILHkgML- kg ClLytkaiMiLy oo (4.16)

Where k, and kq are the adsorption rate constant and the desorption rate constant for the
room surfaces. L is the loading of the room and M is the mass of pollutants adsorbed per
unit surface of the room. k,; and k4; are adsorption and desorption rate constant for
painted gypsum board and L; and M, are the loading and the mass of pollutants adsorbed
per unit area of painted gypsum board respectively.

The mass changes per unit surface area of the test samples and the room surfaces are
described as:
dM/dt=k, C; - kgt M;
dM/dt=k,C; - keM

In this study, it was possible to estimate k,, k. and kg from the sensory assessments
performed in the four rooms and by using different approaches. We know that when
carpet is the pollution source, k, and kg are 0.06 m/h and 0.04 h™', respectively (see Table

4.3). Hence, for sorption to painted gypsum board k, =2.77m/h. It is apparent that the
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surface removal for the room surfaces (0.06 * 90 = 5.4 m’/h) is much smaller than that
for the painted gypsum board (2.77* 23= 63.71 m’/h). Hence, for carpet emissions
sorption by room surfaces is negligible compared to sorption by the painted gypsum
surface.

In an analogous manner, when linoleum was the pollution source: k,, adsorption rate
constant for the room surfaces = 0.42 m/h and the room surface removal rate= 0.42* 90=
37.8 m’/h . The adsorption rate constant for the painted gypsum board ko =3.7 m/h and
the removal rate by the surface of painted gypsum board:

ko *A =3.7* 23= 85.1 m’/h . Hence, for linoleum emissions sorption by the painted
gypsum board still dominates that by room surfaces, but the two sinks are closer in value
than was the case for carpet emissions.

Previous calculations have shown that the room surfaces played the role of sink for
pollutants emitted from linoleum and carpet (se.e Table 4.3). In the case of carpet the
room surfaces are a small sink in comparison to painted gypsum board. In the case of
linoleum, the room surfaces are more important. Nonetheless, for simplification, the sink
effect of the room surfaces will be neglected in Equation 4-16 so the original Tichenor
Equation 4-6 will be applied on the sensory data from the room with painted gypsum
board after the pollution source was taken out, as shown below. The effect of this

assumption on the linoleum results will be discussed later.

4.3.2.1 Sorption parameters for painted gypsum board when carpet was the

pollution source during sorption stage

Data from Experiment 3, Chapter 3 presented in Table 3.5 was used to calculate sorption

parameters for the room with painted gypsum board during the desorption stage. Sensory
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assessments results are shown in Table 4.8.

Table 4.8 Sensory assessments for the room with painted gypsum board just before

and after the carpet samples were taken out

Time (after the materials Acceptability Perceived air quality
were taken out of the room) (decipol)
(hrs)

0 -0.09 8.1

4 0.00 5.1

24 0.02 4.6

48 0.07 3.5
8.09%

= -0.014x

6.0 - y = 6.6351¢

R%?=0.78

/

/ A
y / / 7 :
4.0 1 / // / // N,

Perceived air quality (decipol)

2.0 1

0.0 ' T Y )
0 24 48 72
Time (hrs)

Figure 4. S Perceived air quality in the room that contained painted gypsum boards

after the carpet was taken out (data include emission from painted gypsum board)

Figure 4.5 was used to calculate Ac (area under the curve ) = 64.03 decipol *h
M= (A*Q-C* V) /A

M1 = ((78.32%32) — 8.1*40) / 23 = 110.56 decipol m*/m*
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Kei = Mo/Ce=110.56/ 8.1 =13.63 m
Ker=ka/kg=13.63 and k, = 9.26 k4
=217, r,=0.06

N: the air exchange rate in the room (h ™)

Li: loading factor and it is equal to (area of the painted gypsum board samples/volume of

the room ) = 23/40=0.575 m™

ka =0.16 b, kg = 22m/h and Sum of errors= 22.32

The measured perceived air quality shown in Table 4.8 includes the emission from
painted gypsum board that was found (from another experiment) to be equal to 3 decipol
after one week. Consequently, this value was subtracted from the ones shown in table 4-8

to exclude the emission from painted gypsum board, see Figure 4.6.

Figure 4.6 was used to calculate the new Ac (area under the curve) = 89.49 decipol *h

10.0

8.0 -

6.0 -

y= 3 74e—0,0412x

Perceived air quality {decipol)
]

72
Time (hrs)

Figure 4. 6. Perceived air quality in the room that contained painted gypsum boards

after the carpet was taken out and emission from painted gypsum boards was excluded
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Mer= ((Ac*Q)-Cc* V)/ A

Me1 = ((89.49*32) — 5.1%40) / 23 = 115.64 decipol m*/m?

Ket = Met/Cei= 115.64/ 5.1 =22.68 m

N: the air exchange rate in the room (h ™)

L;: loading factor and it is equal to (area of painted gypsum board samples/volume of the
room ) = 23/40= 0.575 m™'

kqi = 0.05h7%, ka= 12m/h,  Sum oferrors=0.15

4.3.2.2 Sorption parameters for painted gypsum board when linoleum was the

pollution source during sorption stage

In Experiment 5, Chapter 3, linoleum and painted gypsum boards were placed together in
the same room for one week then linoleum was taken out of the room and sensory
assessments were performed after 4, 24, 48, and 72 hrs. The results of these sensory
assessments are shown in Table 4.9. Again the values shown in the table include the
emission from painted gypsum board and to exclude-its effect 3 decipols (that present the
emission from painted gypsum board after it has been placed in a ventilated room for one

week) was subtracted from the measured perceived air quality.

Table 4.9 Sensory assessments for the room with painted gypsum boards after

linoleum was taken out i.e. during desorption stage

Time (after the materials Acceptability Perceived air quality
were taken out of the room) (decipol)
(hrs)
0 -0.11 8.8
4 -0.01 54
24 0.014 4.8
48 0.08 3.3
72 0.09 3.1

99




1 0 s 0 g e om0 e e P P P —

8.0

y= 6.81 679'0‘0125)(
R?=0.81

8.0 -

Perceived air quality (decipol)

4.0 1
*
2.0 1
0.0 T . T 1
0 : 24 48 72 96

Time (hours)

Figure 4.7 Perceived air quality in the room with painted gypsum boards after the

linoleum was taken out (data include emission from painted gypsum board)

Figure 4.7 was used to calculate the area under the curve (Ac)
A, =108 decipol *hr

M, = 134.96 decipol.m

Ke=1534m

r;=2.28, r,=0.087

kai=0.12h" .  ky=19m/

To account for the emission from painted gypsum board, three decipols were subtracted
from the perceived air quality measured in the room with painted gypsum after the

linoleum was taken out of the room. And sorption parameters for painted gypsum board

were recalculated.
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Figure 4.8 was used to calculate the area under the curve (Ac)
A; = 83.72 decipol *hr

M, = 106.4 decipol.m

Ke1=18.34m
ka1 =0.07h" | ky=126m/h, Sum oferrors=0.4
10.0
S 8.0
[&
<]
Z
2 604
[
-
(=2
=
® 4.0 -
?
'Z y - 4‘59e-0.0534x
3 R*=0.97
= 20 -
g N .
7/ / /
' / / /] / i
0 0 / //1/ / // ’l/ / ,1/,-’/ ]
0 24 48 72 96

Time (hours)

Figure 4. 8 Perceived air quality in the room with painted gypsum boards after the

linoleum was taken out

Sorption parameters for the room surfaces and painted gypsum boards calculated when

the pollution source was either carpet or linoleum and for the two cases: when the

emission from painted gypsum board was taken into account and when it was ignored are

i

summarized in table 4.10.
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Table 4.10 Summary of the results: sorption parameters for the room surfaces and

for painted gypsum board
Pollution source | Ka , Kai kq, kai Ke Kei Me, Mgy
(m/h) | @ (m) (decipol*
m’/m?)
For room surfaces Carpet 0.06 0.04 1.5 28
Linoleum 0.42 0.11 3.8 73
For painted gypsum Carpet
board. Data from - Experimentl 2.5
adsorption phase - Experiment? 3.1
Linoleum 3.7
For painted gypsum
board using desorption
data and Tichenor model
1. When the data Carpet 2.2 0.16 13.7 111
included the
emission from PGB | Linoleum 1.9 0.12 15.3 135
2. When the emission | Carpet 1.2 0.05 23 116
was subtracted from
the sensory data Linoleum 1.3 0.07 18 106

4.4 Sorption parameters for Semia

4.4.1 Adsorption rate constant for Semia

Semia and linoleum were tested individually and in combination, see Experiment 6,

Chapter 3. From the sensory assessments performed 4 hrs after the materials were placed

inside the rooms i.e. at sorption stage and by using Equations (4.12) (4.13) (4.15) the

adsorption rate constant for Semia was calculated as shown in Table 4.11. The resulting

value, 62 m/h is unrealistically high. It is significantly larger than the predicted transport
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limited rate of adsorption (Nazaroff et al.,1993). Presumably this reflects the fact that the
actual surface area of Semia (the area of the activated charcoal impregnated in the fabric)
Is much larger than its projected surface area (24.5 m?). For example, if the actual
surface area of Semia were 100 times larger than the projected surface area (not
unrealistic), the re-calculated value for k, semia Would be 0.62 m/h. Unfortunately, the
actual surface area for Semia is not known. Special experiment, beyond the scope of the

present thesis, would be necessary to determine this value.

4.4.2 Sorption parameters for Semia based on data from desorption
stage

The adsorption rate constant (k,) for Semia, calculated from sorption stage indicates the
high ‘sorption capacity of this material in comparison with the room surfaces when
linoleum was the pollution source. It was found that for Semia, k, semia = 62 m/h while for
the room surfaces, K, room surfaces = 0.42 m/h. One could try to estimate, sorption
parameters for Semia based on the sensory data from Experiment 6, Chapter 3, during the
desorption stage (after the linoleum was taken out of the room). However, in this case
the approach would not give valid results. The system containing Semia has not reached
equilibrium. This is apparent if the perceived air quality at the moment that the linoleum
is taken out of the Semia containing room is compared to that measured after a week
when linoleum was in a room without Semia (2.5 decipol versus 19.1 decipols). If the
Semia containing system had been in equilibrium, these sensory assessments should have
given roughly similar results. If the model is applied on the data in Table 4.12, the results

will be more indicative of what is happening on the room surfaces rather than what is
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happening on the surface of Semia. This is demonstrated with the following calculation,

made in a manner analogous to earlier “desorption stage” calculations.

The results of sensory assessments performed during desorption stage Experiment 6 are

summarized in table 4.12.

Table 4.12 Sensory assessments for the room with Semia after linoleum was taken

out i.e during desorption stage

Time (after the materials Acceptability Perceived air quality
were taken out of the room) (decipol)
(hrs)
0 0.13 2.5
4 0.21 1.6
24 0.24 1.3
48 0.34 0.8
72 0.30 0.9

The sensory data for the room with Semia during desorption stage is presented in Figure

4.7 as well. Desorption is represented by the hatched area.

Perceived air quality (decipol)

2.0 1

1.0 1

y = 1.9489¢ 0018
R?=0.83

0.0

24 48 72 96
Time (hrs)

Figure 4.9 Perceived air quality in a room with Semia after the linoleum was taken out
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Sorption and desorption rate constants were estimated from the measured perceived air
quality in the test room by least square regression method.

The calculation results are summarized as follow:

A; =36 decipol*hr , M. =42.94 decipol m>/m? , Ke=17.18 m

11=2.25, r=0.046

k=223 m/h, ks=0.13 h'

kq for Semia is similar to that measured for linoleum desorbing from room surfaces (see
Table 4.3). Indeed, during the desorption phase of the Semia experiment most of the
desorption is anticipated to have come from the room surfaces and very little desorption

is anticipated to have come from the activated charcoal that constituted the Semia.

4.5 Discussion

Sorption parameters for the test room surfaces, for painted gypsum board and for Semia
were estimated based on sensory data from either the sorption or desorption stage. Two
different approaches were applied depending on the stage in which the assessments were
made. In these sorption experiments carpet and linoleum were used as the pollution

SOUrces.

4.5.1 Sorption parameters for the room surfaces:

The adsorption rate coefficient, k,, for the room surfaces was estimated using two
different approaches. The first approach is based on the mass balance considerations in
the test rooms and it was applied to early sensory assessments for the mixing room during

the sorption stage. The second approach is based on Tichenor model and it was applied
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on sensory data from desorption stage. The second approach allowed for the calculation
of other sorption parameters as well. The values of adsorption rate constant for the room
surfaces k, obtained from the two approaches were almost the same, and indicated that
the room surfaces act as moderate sinks for pollutants emitted from carpet. The capability
of a sink material to adsorb indoor air pollutants is represented by the surface/air
equilibrium partition coefficient, K.. The higher the value of K¢, the greater the amount
of pollutant adsorbed on the sink (i.e., the stronger the sink).

The results summarized in Table 4.3 show that K. for the room surfaces was different for
the two different pollution sources used in the experiments (linoleum and carpet). K, was
larger for emissions from linoleum than from carpet indicating that the room surfaces are
a stronger sink for the compounds emitted from linoleum than the ones emitted from
carpet. The nature of the chemicals emitted from linoleum might be the reason, as they
tend to be more polar than the chemicals emitted from carpet. Most of the indoor surfaces
are moderately polar and, as they age, they oxidize and become increasingly polar
(Weschler, 2003). Consequently, room surfaces are expected to adsorb the more polar

compounds more strongly.

4.5.2 Sorption parameters for painted gypsum board:

To quantify adsorption rate coefficients for painted gypsum board from the sorption stage
data, sensory assessments made during the first few hours that the two materials were in
the room were used. The calculations excluded the impact of the room surfaces by taking
Ka reom Into account. With carpet as the pollution source, results calculated using data from

two different experiments performed with different panels at different time of the year

107



yielded almost the same value for k, to the gypsum board (2.44 m/h and 3.06 m/h). With
linoleum as the pollution source, the same procedure yielded an adsorption rate
coefficient to the painted gypsum board of 3.7 m/h. This is larger than the value found
using the same panel for the assessments when carpet was the pollution source (2.44
m/h). These two values were obtained not only using the same panel, but the assessments
were performed at almost the same time (one week interval) and using the same test
materials and the same room conditions. Hence, direct comparisons between these two
values should be quite valid. These values for k, pgp carry some errors as a result of
neglecting the sink impact due to either carpet or linoleum when they were placed
together with the painted gypsum board. The difference between the sink behavior of
carpet and linoleum could influence the calculated values of k, for painted gypsum board.
Another factor that is expected to play a larger role is the difference in the chemical
nature of the pollutants emitted from the two different pollution sources. For the same
reasons that were discussed for the room surfaces, one would expect linoleum emissions
to have a larger k, to the surface of painted gypsum boards than the carpet emissions.

Adsorption rate coefficients for painted gypsum board were also calculated, together with
the other sorption parameters, using data from the desorption stage by applying Tichenor
model. The impact of the emission from painted gypsum board on the perceived air
quality was subtracted from all assessments performed after the source of pollution
(carpet or linoleum) was taken out of the room. The results showed similar values for
painted gypsum sorption parameters when either carpet or linoleum was used as source of
pollution, (see table 4.10). However, and as mentioned earlier, the room surfaces were a

stronger sink for the emissions from linoleum (Ke = 3.8 m) than the emissions from

108



carpet (Ke =1.48 m). Neglecting the sink effect of the room surfaces introduces some
error into the value of K. pgp calculated when linoleum was used as the source of
pollution, and this could result in a larger calculated value for K. pgp than is actually
correct. Another point to consider is the equilibrium concentration C, which, in this
study was assumed to be reached after one week for the two different sources of pollution
used in these experiment. This assumption could also be the source of some error in the

estimated value of K, if equilibrium had not been reached.

4.5.3 Sorption parameters for Semia:

An adsorption rate coefficient was also calculated for Semia when tested with linoleum
based on the first sensory assessment performed after placing the two materials together.
The calculated value of k, gemia = 62 m/h was much larger than the one for painted
gypsum board and the one for the room surfaces. This may partially reflect the fact that
the actual sorbing area of the Semia is much larger than the projected area of Semia used
" in the calculation. The Tichenor model was also applied to the data obtained from the
desorption stage (after linoleum was taken out of the room). M., the mass adsorbed at
equilibrium per unit area of Semia was relatively small (M. = 43 decipol m3/m2). This is
most likely not a correct value due to the relatively short time of this experiment (one
week); given the large sorbing area (and sorbing capacity) for Semia, one week was
probably insufficient for the system to reach equilibrium. Another factor to consider is
that sorption to Semia may be somewhat non-reversible. The Tichenor model, is based on
the first order reversible adsorption/desorption Langmuir isotherm, and is not appropriate
for a system in which irreversible adsorption occurs. However, the calculated sorption

parameters for Semia, although inaccurate, at least are indicative of Semia’s ability to act
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as a sink in an indoor setting. The experiments conducted as part of this thesis

demonstrate that, at least over a one-week period, Semia is an exceedingly strong sink for

linoleum emissions. Indeed, it is such a strong sink that the room containing Semia and

linoleum had assessed air quality that was almost as good as an empty room.

Table 4-13 shows some of the results from previous studies that aimed to investigate the

sink effect of painted gypsum board by testing it with different chemicals. The same

linear sink model (Tichenor model) used in this study was used in the referenced studies.

Table 4.13. Selected sorption data from peer-reviewed literature (analyzed by linear
Langmuir model) for cases where painted gypsum board was used as a sink.

Method | Reference Pollution source Ads. Des. Equil.
Coeff. k, | Coeff. ky | Coeff. K.
(m/h) () (m)
Sensory | The present study | Carpet 1.2 0.05 24
Linoleum 1.3 0.07 19
Chemical | Won, Corsi & Iso-propyl alcohol 0.08 0.24 0.33
Rynes (1999) (IPA)
Tetrachloroethene 0.06 0.45 0.13
(PCE)
o-dichlorobenzene 0.26 0.25 1.04
(DCB)
1,2,4- 0.5 0.29 1.72
trichlorobenzene
Popa & Iso-propyl alcohol 0.43 2.67 0.16
Haghighat (2003) | (IPA)
Methyl ethyl 0.05 0.47 0.11
ketone (MEK)
Perchloroethylene 1.1 5.52 0.2
(PCE)
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Although a strict comparison between results from previous studies and the present one is
not feasible due to the lack of a common comparison base, Table 4-13 is useful as'a
demonstration of the different behavior of a sink (the painted gypsum board in the present
study) when exposed to realistic conditions (air polluted by hundreds of chemicals
emitted from other building materials) compared to when it is exposed to an artificial
environment (air polluted by one or several VOCs with concentrations usually higher
than the ones found in a real indoor environment).

The large values for the room surfaces and the painted gypsum board equilibrium
partition coefficient (K.) found in this study could be explained by the fact that the
compounds that chiefly affect sensory assessments of the indoor air quality usually have
different physicochemical properties than the volatile organic compounds that have been
routinely used in sorption experiments. These properties include solubility and octanol-
air partition coefficient (Cometto-Muniz and Cain, 1994; Won et al., 2001) and vapor
pressure/molecular size (within a homologous series, compounds with higher molecular
weight can be perceived at lower concentrations, Cometto-Muniz and Cain 1995,
Abraham et al. 1998, Weschler 2003). In general, the compounds that elicit a sensory
response are expected to have smaller kq’s and larger K.’s than those reported for the
smaller volatile organic compounds that have been investigated in previous sorption
experiments.

Weschler 2003, explained the relationship between the molecular weight and nasal
pungency. He reported that the sensation of nasal pungency produced by a short-term
sniff occurs only when the gas phase concentration exceeds 10% of its maximum value

which means that for small molecules, the concentration required to produce a pungency
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response is very high (higher than what typically found in indoor environment) and only
large molecules could approach concentrations necessary to elicit a pungency response.
On other hand, the same paper showed a linear relationship between log saturated vapor
pressure of a compound and its molecular weight (large molecules have lower saturated
vapor pressures). As it is well documented that compounds with lower saturated vapor
pressures tend to be adsorbed more (Kephalopoulos et al. 1996, Van der Waal et al. 1998,
An et al. 1999, Won et al. 2001), the molecular weight (a simple property of a
compound), can be used to obtain a rough estimate of a compound’s tendency to be
adsorbed by the different surfaces.

It is important to point out that the chemicals addressed in this study are specifically the
ones that evoke a sensory response and that the methods used work only if this set of
chemicals have relatively similar adsorption and desorption constants. In all of the
performed experiments with different pollutions sources and sinks, the calculated k, (or
kq) for each source-sink combination represents a “grand aggregate” value for the
sorption constant. This only works if the chemicals responsible for eliciting a sensory
response for a given material have almost the same ka’s (or kd’s). In this work, based on
sensory data, it was possible to get reasonable values for sorption parameters for painted
gypsum board and the room surfaces presumably because the chemicals emitted from the
carpet (or linoleum) used in the experiments are relatively similar in terms of their
sorption parameters. Otherwise, the method used in this study would not be valid. For
instance, it is not expected that the same method applied in the present study would be
valid if tobacco smoke were used as a pollution source. Although many of the different

chemicals emitted from a cigarette could be measured by sensory evaluations, the
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differences among the sorption parameters of these components make it impossible to
derive informative data on the sink’s sorption properties. To state it more explicitly,
some of the tobacco smoke emissions that humans sense are small molecules and some
are much larger molecules; these molecules have quite different k,’s (and kq’s); an
approach that uses sensory assessments to derive one overall value for k, (or kg) will not
work in such a case.

Another important point to be mentioned is that the Langmuir model used by Tichenor
and applied in this work, assumes that sorption happens only on the material surface
(ignoring diffusion into the material). This assumption may not always be met in reality,
especially for porous materials. It is expected that after some time, the compounds
adsorbed on the surface of a porous material will diffuse into the interior of the material.
Therefore, the Langmuir model may not be suitable when diffusion is dominant (eg.
sorption on carpet) (Tichenor et al., 1991, Zhang et al., 2001).

Bearing in mind the above caveats, this work has demonstrated that sensory assessments
can be used to derive sorption parameters for common indoor pollution sources
interacting with common indoor surfaces. Most of the chemicals detected by the human
subjects in these experiments were present at concentrations too low to be measured by
traditional chemical methods. Hence, sensory assessments were able to provide
information on sorption processes that could not have been obtained by chemical means.

The resulting information is of direct relevance to perceived air quality since the
chemicals “measured” by the human subjects are the very ones that influence their

overall assessment of the acceptability of the air that surrounds them.
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CHAPTER 5

5.1 CONCLUSIONS

Seven experiments were performed in real offices using either carpet or linoleum as pollution
source and painted gypsum boards and the room surfaces as sinks. Moreover Semia, a
sorbing material consisting of activated charcoal was also tested when linoleum was the
pollution source. The aim was to investigate the impact of sorption on i:)erceived indoor air
quality. Each experiment lasted between one week (for experiments aimed to study
adsorption stage only) and ten days (for experiments that studied adsorption and desorption
stages). An untrained sensory panel composed of different numbers of subjects assessed the
air quality in the rooms using an acceptability scale. Sensory evaluations were performed at
specific time after moving the materials into or out of the rooms depending on the design of
each experiment and following a randomized plan that was different for different subjects
and different days. To quantify the impact of sorption phenomena sorption parameters for the
room surfaces, painted gypsum board and Semia were estimated based on the experimental
results and using Langmuir model as proposed by Tichenor et al. 1991. These calculations
permitted comparisons among the different materials when exposed to different pollution
sources. Based on the results of this study the following conclusions could be drawn:
e Sorption affects the perceived air quality significantly. The magnitude of this impact
depends on the kind of pollution sources and on the area and nature of the sink.
e Sensory measurements can be used to study sorption phenomena in real indoor
environments, where different building materials co-exist with different kinds of air
pollutants. It overcomes some of the limitations associated with conventional

chemical methods.
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The use of the Langmuir model as proposed by Tichenor et al. (1991), and based on
the results of sensory assessments performed in this study, it was possible to estimate
the sorption parameters for the room surfaces and for painted gypsum board. The
model appeared to be suitable for these two sinks. However, for other surfaces, when

diffusion is dominant (e.g. sorption on carpet) the Langmuir model may not be

convenient.

The results demonstrate a higher sink effect for the room surfaces when linoleum
was the pollution source than when carpet was the source of pollution. In turn,
painted gypsum board was found to be a stronger sink than the room surfaces for the

two different pollution sources (carpet, linoleum).

The relatively large values of equilibrium partition coefficients calculated for the
room surfaces and the painted gypsum boards indicate that the compounds sorbed on
the studied surfaces have high molecular weights and low saturation vapour
pressures. Since the “instrument” used to derive these sorption parameters is sensory
assessment, this information tells us something about the chemical properties of the
emissions that are responsible for sensory effects. As anticipated, these are not
chemicals that would be classified as volatile organic compounds (VOCs). The
derived sorption parameters indicate that the chemicals responsible for the sensory

responses are larger and more complex than the so-called VOCs.

The results from the Semia experiment demonstrate an application where the sorption
phenomenon is used to improve the perceived air quality indoors. However, questions
remain concerning the period of time during which such a product would remain

effective,
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5.2 Practical implication of this study

The results of the present work demonstrate the significant impact of sorption phenomena on
perceived indoor air quality. When two materials were placed together in the same room, the
air was perceived to be better than the air polluted by the more polluting material. The
pollutants emitted from one building material were adsorbed on the other, reducing the
concentration of pollutants and improving the quality of the perceived air for that room.
However, the subsequent slow desorption prolongs the presence of the pollutants in that
room even after the elimination of the source, which leaves the question of whether the
presence of sorbent materials has a negative or positive effect on the perceived air quality.
The limited available data indicate that the influence can be both negative and positive.
However, given the accumulation of pollutants over time, sorption appears to be, on balance,
negative. Sorption converts materials capable of adsorbing pollutants to reservoirs of
pollutants that will act as sources whenever the equilibrium conditions are changed in such a
way that the room air concentration no longer supports the surface concentration. As long as,
there is insufficient data on the nature of different sinks in real rooms and on how to control
the equilibrium conditions for different materials found indoors, would be imprudent to
consider the impact of sorption as being positive. On the other hand, a material such as Semia
might be used in a deliberate way to sorb sources during periods when a room is occupied

and then the material might be “regenerated” when the room is not occupied.

This study opens the door for a new method of studying sorption phenomena in real rooms.
The method allows for derivation of sorption parameters for common indoor pollution
sources interacting with common indoor surfaces, based on assessments performed by human

subjects. Despite the limitations discussed in the previous chapter and until another method
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becomes available, sensory evaluations could be used to study sorption impact on perceived

air quality in real life environments. Many questions related to sorption phenomena and the

impact of sorption on air quality still without answers and need to be investigated. Below are

some suggestions for future work based on the results of the present research.

5.3

Recommendations for Future work

Additional experiments should be conducted using human beings as sources of indoor

pollution to investigate the extent to which indoor materials act as a sink for human

bioeffluents.

It would be useful to separate the sink and the source, i.e., to test the sink effect of a
building material by exposing it to an air polluted by another building material
without that material being present. Such a separation prevents the source from

behaving as a sink and reduces the error on estimated sorption parameters.
The sink effect of building materials, other than the ones used in this work, and

which are typically found indoors should be tested using the same procedure. There is
a need to collect data on the sorption characteristic of different materials used
indoors. Materials should be classified not only regarding to their emission but also to

their ability to adsorb and desorb indoor pollutants

The impact of the area of the sink, the ventilation rate and the environmental
conditions on the materials that act as a sink, should be investigated more using

SENsory assessments.
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e Semia should be tested for a longer time (until equilibrium is reached). At such a
point, the pollution source could be taken out to investigate to what extent is the

sorption on Semia reversible and “loaded” Semia becomes a pollution source.

e It is recommended to revisit previous studies where sorption was not taken into
account. As shown in the present work, sorption can significantly change the sensory

pollution load caused by different pollution sources located in the same room.
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Appendix A
Statistical analysis for the data obtained from the seven performed experiments
Wilcoxon matched pairs test

This test is a nonparametric test and it is alternative to the t-test for dependent
(correlated) samples. Variables will be specified in two lists. Each variable from the first
list will be compared with each variable from the second list. This is the same
arrangement of data that is expected for the t-test (dependent samples) in the Basic
Statistics module. The procedure assumes that the variables under consideration were
measured on a scale that allows the rank ordering of observations based on each variable
and that allows rank ordering of the differences between variables.

If the assumptions for the parametric t-test for dependent samples (interval scale) are met,

then this test is almost as powerful as the t-test.

Friedman test

Friedman ANOVA is a nonparametric alternative to one-way repeated measures analysis
of variance. The procedure expects the data to be arranged in the same way as one would
arrange a data file for a within-subjects (repeated measures) analysis of variance with
ANOVA/MANOVA. Specifically, the values for each level of the repeated measures
factor should be contained in a different variable. The Friedman ANOVA by ranks test
assumes that the variables (levels) under consideration were measured on at least an
ordinal (rank order) scale. The null hypothesis for the procedure is that the different
columns of data contain samples drawn from the same population, or specifically,
populations with identical medians. Thus, the interpretation of results from this

procedure is similar to that of a repeated measures ANOVA.
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Experiment 1
Carpet and painted gypsum board

~ Confid. Confd. | ] Standard
Time Valid N 'Mean  -95.000% +95.000% Minimum Maximu Std.Dev. Error
Room1 (empty) 4 16 0341 0141 ' 0540 = -025 078 0374 0094
. {Room2 (empty) . B 16 0188 -0042 0417 -043 090 0430 0.108
Room3 (empty) 16 - 0402 0206 : 0597 - -045 100 0367 0.092
Painted gypsumboard 17 - 0.034 -0.185 ' 0253 -0.68 ' 0.75 0426 0.103
4hrs  |Carpet ] 17 T -0275 0441 . 0109 -0.88 020 0324 0.079
Carpettpainted gypsum board 17 0.050 -0.139 ° 0.239 ' -0.63 1.00 0367 0.089
Painted gypsum board 17 0034 -0185 % 0253 -068 075 0426 0.103
24hrs  |Carpet ... 17T 0275 0441 0109 , -088 020 0324 . 0079
Carpet+pa|nted gypsum ‘board 17 0.050 . -0.139 : 0.239 - 063 . 1.00 0367  0.089
. Painted gypsumboard 16 ) - 0190 0308 = -0.90 : 095 . 0467 0.117
120hrs  |Carpet 16 ©-0493 : -0.035 - -1.00 - 073 0430 0.107
Carpet+pa|nted gypsum board .16 -0.478 0.037 - -0.93 : 098 0483 : 0.121
Wilcoxon Matched Pairs Test (exp.1)
Time vl
N T Z . plevel
4hrs  |Carpet vs carpet and painted gypsum board 7 1 346449 0.00053
24hrs |Carpetvs carpet and painted gypsum board 17, 15 2.74056 0.00614
120hrs [Carpet vs carpet and painted gypsum board 16. 455 _0.439_445_0.66035
‘Friedman ANOVA and Kendall Coeff. of Concordance (exp. 1)
~ 'ANOVA Chi Sqr. (N = 16, df = 2) = 1193548 p < 55059
‘Coeff. of Concordance = .03730 Aver. rank r = -.0269
Time _‘Average Sumof . _
(hrs) Rank 'Ranks :Mean ‘Std.Dev.
4hrs  'Carpet - 1.78125 285 -0.4313. 0.33398
24hrs  Carpet - 2125 34: 0. 2766 033435
120hrs  Carpet - 2.09375 33.5 -0.2641 0.42992
~ ‘Friedman ANOVA and Kendall Coeff. of Concordance (exp. 1)
f}ANOVAChl Sqr (N 16 df 2) 5375000p< 06807 -
:Coeff. of Concordance = .16797 Aver. rank r = 11250
Time _-Average :Sum of - L
(hrs) ‘Rank Ranks “Mean Std.Dev.
4hrs  .carpetand painted gypsum board ~ © 2375 38014083, 0.45377
24hrs ‘carpetand painted gypsumboard 20625 33 005625 037832
120hrs carpet and painted gypsum board 1.5625 25. -0.2203 0.48306
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Experiment 2

Carpet and painted gypsum board

Descriptive Statistics (new.sta)

o ) ~ Confid.  Confid. Standard
Time Valld N  Mean .-95.000% .+95.000% ‘Minimum Maxtmum Std.Dev. Error
Room i(empty) 13 0279 - 0087 : 0471 - -0.18 © 083 0.317 0.088
Room 2(empty) ;13 '0.248 0037 _ 0460 : -0.23 0.90 0.350 0.097
N mpty) (0296 : 0154 . 0439 ' -0.10 063 : 0236 0.065
Room 4(empty) 0400 : 0.202 ; 0598 -0.38 0.90 0.328 0.091
) APalnted gypsum board 15 -0.068  -0.255 °© 0.119 -0.45 - 065 0.338 0.087
dhrs 15 0.102  -0.29 0086 . -0.78 0.80 0.340 0.088
[Carpet 15 0337 . 0457 " 093 018 0325  0.084
Carpet+painted gypsum board 15 -0.127 ¢ 0031 ! 050 * 060 0.284 0.073
. |painted gypsum board 15 _-0.002 : ©0122 ; 038 0.40 0.224 0.058
8hrs Mixing room 15 0127 0080 ° -068 ° 075 0.373 0.096
|Carpet o 15 0228 1,004 098 . 048 0420 0108
Carpet+palnted gypsum board 15 0.028 0.240 -0.55 0.85 0.383 0.099
o Painted gypsum board 13 0002 . 0.185 -0.43 0.58 0.303 0.084
24hrs | Mixing room 13 0228 ¢ -0.85 0.50 0.389 0.108
“{Carpet ‘ 13 0408 -0.95 0.25 0.433 0.120
Carpet+pa|nted gypsum board 13 0142 -0.90 0.58 0.497 0.138
.. . |Painted gypsum board 15 -0.63 0.75 0.409 0.106
48hrs i 15 ~-0.90 0.43 0.378 0.098
Jearpet o s 080 020 0346 0089
Carpet+painted gypsum board 15 -0.73 0.73 0.375 0.097
. Painted gypsum board 12 i 048 ; 058 0.284 0.082
72hrs 12 5 058 . 065 0.337 0.097
“|Carpet 12 i 098 . 023  0.363 0.105
12 ‘088 ! 065 . 0423 0.122
o 15 073 0.95 0.487 0.126
144hrs 15 . 093 ° 070 0.397 0.103
Jeapet 5 0 0% . 018 0360 0093
Carpet+painted gypsum board 15 ; -0.58 0.78 0.382 0.099
o Painted gypsum board 11 ¢ -0.65 0.35 0.312 0.094
168hrs  |Mixingroom T 1 0.83 0.38 0.329 0.099
|carpet o Bk -0.90 0.10 0308  0.093
Carpet\‘palnted gypsum board 11 -0.83 0.93 0.530 0.160
Wilcoxon Matched Pairs Test (exp.2)
. . . |Compared rooms . Valid ,
Time ‘N T 2 p-lewel
4frs_ [Caet & _mixing exhausts 15 22 21583 00309
/ Carpet & Combined materials’ 15 3 3.2374  0.0012
mixing exhausts&combined materiais 15 52 0.0314 0.9750
8hrs Carpet & mixing exhausts 15 .45 . 08519 03943
Carpet & Combined materials i 156 15 23541 0.0186
mixing exhausts&combined materials 15 28 1.8175 0.0692
24hrs Carpet &  mixing exhausts 13 15 21315 0.0331
Carpet & Combined materials 13 16 2.0616  0.0393
mixing exhausts&combined materials 13 37 0.5940 0.5525
48hrs  |Camet & mixing exhausts 5. 18, 24990  0.0125
_Carpet& Combined materials 15 2 3.2942 0.0010
’ mixing exhausts&combined materials 15 46 © 0.7951 0.4265
72hrs_|Campet & _mixing exhausts T2 72510 0012
|Camet & Combined materials _~~ * 12 . 0 . 3059 . 000222
mixing exhausts&combined materials 12 20 - 1.156 0.2478
144hrs  fCamet & mixing exhausts ‘ 15 16 2.499 0.0125
Carpet & Combined materials 15 12+ 2726  0.0064
mixing exhausts&combined materials 15 48.5 :0.251106 0.801734
168hrs  |Carpet &  mixing exhausts " .85 2178316 0.02939
Carpet & Combmeq matenals 1 5.5 2.445048 0.014489
mixing exhausts&combined materials 31 0.177822 0.858864
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Friedman ANOVA and Kendall Coeff. of Concordance (exp2.sta)

ANOVA Chi Sqr. (N =5, df = 6) =

6.863309 p < .33370

"Coeff. of Concordance = .22878 Aver. rank r = .03597

:Awerage -Sum of :
Rank V Ranks ‘Mean Std.Dev.
4hrs  “Mixing room 36 - 18 : 019 = 0181
8hrs  :Mixing room 48 . 24 1 002 0.455
24hrs _‘Mixing room ' L7 ""13 5 | -0.425 0.443
48hrs  :Mixing room . 55 215 ;i 007 . 0275
ohe 2 . SO ‘. f_16_.‘5“ - ﬁ.ﬁ_orm . 0581
144hrs 4.8 24 | 005 0512
168hrs 33 165 | 0195 039
‘Friedman ANOVA and Kendall Coeff. of Concordance (exp2. sta)
~ (ANOVA Chi Sqr. (N = 5, df = 6) = 9.021583 p < .17241 . :
"'Coeff. of Concordance = .30072 Aver. rankr- 42590 0
Time 5 . Awerage - Sum of
e R e Ramke  iean Std.Bet
4hrs Carpet 49 = 245 0.22 0.330
ghrs  Capet 5 . 25 1 016 0244
24nrs  Carpet 3 15~ 0455  0.501
48hrs  .Campet ©7 36 18 | 0.3 0.192
72hrs  Campet ' .34 15.5 0.515  0.488
144hrs : I 57 28.5 0.13 0.289
168hrs  .Campet 2.7 13.5 048 0345
:Friedman ANOVA and Kendall Coeff. of Concordance (exp2.sta)
"'ANOVA Chi Sqr. (N = 5, df = 6) = 10.58696 p < .10205
Coeff of Concordance = .35290 Aver. rank r = .19112
Time iAwverage Sumof .
(hrs) Rank ~ 'Ranks  ‘Mean Std.Dev.
4hrs Carpet&pamted gypsum boards 3.9 19.5;  -0.105! 0.257633
8hrs arpet&painted gypsum boards 6 30;  0.175 0.256174
24hrsCarpet&painted gypsum boards 3 150 -0.32 0.634035
48hrs. inted gypsum boards 43 215 0.1 0.27329
72hrs Carpet&pamfed gypsum boards 32 16 -0.305 0.455316
144hrs  ‘Carpet&painted gypsum boards 5.2 © 260 0.105 0.476445
168hrs  Carpet&painted gypsum boards 24  12.  0.37 0.449096
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Experiment 3

Carpet and painted gypsum board

Confid. Confid. ) . Standard
Time ValidN  Mean -95.000% +95.000% Minimum "Maximum Std.Dev. Error
.Room 1(empty) - 18 0443 - 0263 ' 0623  -0.55 0.90 0.362  0.085
Room 2(empty) o o8 0437 . 0259 - 0615  -0.25 100 0390  0.085
‘Room 3(empty) 18 0.200 : -0.004 . 0404 , -0.55 0.90 0.449 0.098
‘Painted gypsum board 19 0.050 -0.148 0.248 -0.75 0.65 0.411 0.094
4hrs Carpet 19 -0.227 : -0.368  -0.087 . -0.80 0.33 0.308  0.067
Carpet +painted gypsum board - 19 -0.042 0.264 - 0180 -0.85 0.95 0.488 0.107
_ Painted gypsum board L 0.115 . -0.088 - 0319 - -0.90 0.85 0.447  0.097
24hrs  Capet 18 0.369  -0.567 ~ -0.172 ; -0.98 060 0398 0094
Carpet +painted gypsum board - 18 0.014 -0.246 | 0218 : -0.73 083 0466  0.110
Painted gypsum board o .18 0.047 -0.154 0249 -0.68 0.95 0.419 0.096
48hrs  Carpet i - 18- -0.200 -0.521  -0.060  -0.88 0.85 0.464  0.109
-Carpet +painted gypsum board 18 0.117 0312 0079 -0.85 0.63 0.393  0.093
Paint ‘ » .20 0000 . 0215 0215 088 088 - 0459  0.103
72hes | ‘Carpet’ T a0 0.350 0574 . -0.126 ; -0.98 075 0480  0.107
) Carpet +painted gypsum board © 20 -0.204  -0.397 ~ 0010 * -0.93 055 . 0.413 0.092
... ..  pantedgypsumboard o1 o103 -0.050 © 0.256 080 . 088 0.345 0074
96hrs ~ Carpet . ... . .. .18 0343 052 0115 . 098 - 075 0.474  0.109
‘Carpet +painted gypsum board © 19 0.130 : -0.326  0.065 -0.83 0.83 0.405 0,093
_ . . Painted gypsumboaed 17 -0021 . -0.201 : 0158 083 © 085 0.383  0.086
16hrs  Capet o -0.334 0545 . -0.123 © 095 ° 033 0410 0.099
“Carpet +painted gypsum board 17 0.087 0298 0 0.124 0.75 0.48 0.411 0.100
Part2 :
(carpet was taken out of rooms 2 and 3)
172hrs _Empty room T 10 0425 0233 0483 0.83 0.83 0.501 0.158
" ’Painied gypsum board ) ¢ 10 0.002 0307 ° 0312 ;. -0.93 0.48 0.432 0137
192hrs __Empty room 12 0.150  -0.149 0449 - -0.60 0.85 0.471 0.136
"7 "7 ‘Painted gypsum board o 12 0023 -0331 0377  -0.98 088 0557 0.161
216hrs Empty room 10 0.275  -0.024 0574 ' 053 0.98 0.417  0.132
"~ 7" Painted gypsum board S0 0073  0.287 ' 0432 0.78 0.85 0.503 0.159
ched Pairs Test (exp.3)
Valid
Time N T Z p-lewel
4hrs _|Carpet vs Carpet+painted gypsum board 21 525  1.8600 " 0.050009
24hrs  |Carpet vs Carpet+painted gypsum board 18 10 13.2881  0.00101
48hrs  [Carpet \s Campet+painted gypsum board 18 37 21122 0.0347
72hrs  JCarpet vs Carpet+painted gypsum board 20 47.5 2.1466 * 0.0318
96hrs Carpet vs Carpet+painted gypsum board 19 32 - 2535 0.0112
168hrs  |Carpet w Carpet+painted gypsum board 17 9 © 3.195 0.0014
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Desorption phase for the empty room that had carpet

__;Friedman ANOVA and Kendall Coeff. of Concordance (exp3.sta)
- ANOVA Chi Sqr. (N = 8, df = 2) = 1.750000 p < .41687 ‘
‘Coeff. of Concordance =.10938 Aver rank r=-.0179
5 Awerage .Sum of

Time ‘Rank Ranks  ;Mean :Std.Dev.

172hrs Empty room o - 225 18" 0.184375. 0.396624
192hrs |Empty room ’ 1.625 13 0.103125 0.408052
216hrs  |Empty room - L2125 17. 0.25625' 0.458988

Desorption phase for the room with paited gypsum board after taken out the carpet

:Friedman ANOVA and Kendall Coeff. of Concordance (exp3.sta)

- |ANOVA Chi Sqr. (N = 8, df = 2) = .0689655 p < .96611
{Coeff. of Concordance = .00431 Awer. rank r= -.1379 |

Time - Average :Sum of ;

iy N . Rork Ranks  Mean | Std.Dev
172hrs Painted gypsum board 2.0625: 16.5° -0.04688: 0.470645
192hrs  [Painted gypsumboard ~  1.9375] 155 -0.04375 0.472786
216hrs  Painted gypsum board 20 16! -0.00312 0.477613

Experiment 4
Carpet and virgin gypsum board

o o - . Confid.  Confid. : Standard
Time B ) ‘Valid N Mean -95.000% +95.000% Minimum Maximum Std.Dev. Emor

Room 1 ‘ _ 21 0.262 . 0.06t 0463 : -060 . 098 . 0.441 0.096

|Room2 " - S 0.311 0126 0495 : 053 1.00 0.406 0.088

Room 3 21 0.437 0259 0615  -0.25 1.00 0.390 0.085

Virgin gypsun board » 20  -0.057 -0.214 0099 -0.70 - 0.50 0.334 . 0.075

4hrs [vGB+Carpet o 20 0109 - -0.311 , 0093  -0.88 0.75 0432  0.097

" |carpet i 20 0239  -0.385 -0.093 - -0.80 033 0312 0.070

j Virgin gypsun board » 18 -0.076 0255 ' 0102 = -0.68 0.70 0359 0085

24hrs  [VGB+Carpet ' 18 0176 - 0402 0049 : -0.93 0.60 0.454 0.107

© 7 iCarpet T 18 0369 ~ -0.667 -0.172 - -0.98 060  0.398 0.094

Virgin gypsun board T 18 0113 -0.279 . 0054 - -0.90 0.48 0.336 0.079

48hrs  |VGB+Carpet | ' ' 18 -0.204 - -0.359 . -0.050 | -0.80 - 0.35 0.310 0.073

~ " Tlcarpet o 18 - 0279  -0.511 0047 . -0.88 0.85 0.467 0.110

Virgin gypsun board 20 0056  -0311  0.198 095 0.88 0.544 . 0122

72nes | [VGB+Carpet ) ' ) 20 0274  -0.480 -0.068 - -0.93 073 0.440 0.098

) Carpet o ) 20 035 ~ -0574 -0.126  -0.98 0.75 0.480 0.107

Virgin gypsun board 19 -0.105 -0.311 0.100 -0.85 0.83 0.426 0.098

96hrs VGB+Carpet ) 19 -0.239  -0.430  -0.049 . -0.95 0.60 0.395 0.091

77 iCarpet o 19 -0.343  -0572 0115  -0.98 0.75 0.474 0.109

Virgin gypsun board ’ 17 -0.031 0311 . 0249 - 085 0.93 0.545 0.132

168hrs  |VGB+Carpet . 17 0299 0541 0056 ' -080 . 083 0.472 0.115

"~ |Carpet’ o ) B 17 -0.334 0545 0123 ' -0.95 0.33 0.410 0.099
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Wilcoxon Matched Pairs Test (exp.4)

Valid

Time N T Z p-level
4hrs Carpet vs Carpet+virgin gypsum board 20 68.5 1.3626 0.173005
24hrs Carpet vs Carpet+virgin gypsum board 18 39.5 2.0033 0.045152
48hrs Carpet vs Carpet+virgin gypsum board 18 52 1.4589 0.1446
72hrs Carpet vs Carpet+virgin gypsum board 20 58.5 117569 0.2397
96hrs Carpet vs Carpet+virgin gypsum board 19 57.5 1509 0.1313
168hrs  |Carpet vs Carpet+virgin gypsum board 17 64 0.207  0.8361

Experiment 5
Linoleum and painted gypsun board

Confid. Confid.

Standard

Time Valid N __Mean -95.000% +95.000%Minimum .Maximu Std.Dev. Error
Empty ) ) ] .32 0312 0149 0475 063 095 0452 0.080
Empty 32 - 0380 0227 0534 -045 . 1.00 . 0425 0.075
4hrs Linoleum ) , 33 -0.333 0466 . 0199 -095 073 0377 0.066
Linoleum+painted gypsum board 33 -0.145 -0.283 -0.007  -0.95 068 - 0.389 0.068
24hrs  |Linoleum 29 - -0498 -0641 - 0355 -098 050 ° 0376 0.070
Linoleum-+painted gypsum board 29 : -0.206 -0.371 . -0.041 -0.93 - 080 - 0434 0.081
48hrs  [Linoleum ) 29 -0410 -0562 -0.258 -098 060 0400 0074
Linoleum+painted gypsum board 29 -0271 0409 -0132 -085 0.50 - 0.365 0.068
72hcs [linoleum 32 -0391 0540 0243 -098 060 0411 ~ 0073
Linoleum+painted gypsum board 32 . -0224 0365 . -0084 - 095 065 . 0390 0.069
Shrs |Lindeum 32 0395 -0540 0250 098 055 0402 0071
Linoleum+painted gypsum board 32 -0.160 -0.305 - -0.015 -0.93 063 ' 0403 0.071
168hrs |Linoleum ) ) 31 0339 -0474 - -0204 -093 - 073 0368 0.066
Linoleum+painted gypsum board 31 -0.108 -0.245 = 0.029 085 093 0374 0.067
Part2 )
172hrs  [Empty v o 27 0417 -0257 0023 -080 = 088 ' 0354 . 0.068
painted gypsum board 27 - 0105 -0.064 - 0274 . -053 093 . 0427 . 0.082
192hrs  |Empty 28 0136 -0050 0322 -075 095 0480 0.091
painted gypsum board 28 0.013 -0.139 ' 0.166 -0.78 088 0393 0.074
216hrs (Empty ) 29 0125 0070 - 0320 -0.93 ' 093 0514 0095
painted gypsum board 29 0084 0069 - 0237 -083 078 0402 ' 0075
240hrs  |Empty o 29 033 0175 - 0496 -073 098 0422 0078
painted gypsum board 29 . 0.088 -0.065 = 0.241 -0.68 093 0.401 0.075
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}Wilc‘oxon’Métched, Pairs Test (exp.5)

Time ‘N T Z p-level
 |The two empty rooms | 32 1545 13623 01731)
4hrs Linoleum vs Linoleum+painted gypsum boardi“ 33 49 . 3.5068 . 0.00045 "

24hrs_ [Linoleum vs Linoleum+painted gypsum board . 20 375 3.6398 000027

48hrs [Linoleum vs Linoleum+painted gypsum board” 29 128 ~ 17079 - 00877 [

72hrs  |Linoleum vs Linoleum+painted gypsum board . 32 1025 28513 00044 |

96hrs  |Linoleum vs Linoleum+painted gypsum board 32 815 - 3413 0.0006 o

168hrs  [Linoleum vs Linoleum+painted gypsum board 31 64 3.466  0.0005 T

Desorption phase for the empty room that had linoleum

Friedman ANOVA and Kendall Coeff. of Concordance (exp.5).
, ANOVACh| Sqr. (N = 25, df 4) 34. 79184p< 00000
_;Coeff of Concordance = .34792 Aver. rank r = .32075

Time . ~ Average Sumof .~ - |
(hrs) Rank __Ranks ‘Mean _ Std.Dev.|
168hrs  Linoleum } 17 425 -0.353 0.36907|
172hrs - Empty _ A S 2.56 64 -0 126 0.36575]
192hrs 'Empty o , 358  89.5: 0.148 0.45922f
216hrs Empty © 344 86 0.091/ 053189
240hrs _ Empty 4060 101.5] 0317

0.43408 o

_ iFrledman ANOVA and Kendall Coeff. of Concordance (exp.5);
\{ANOVAChI Sqr (N 26 df - 3) =18. 82470p< .00030 :
‘Coeff. of Concordance = .24134 Aver. rank r = .21100

Time L . . Average :Sumof . |
(hrs) Rank __Ranks ‘Mean _ Std.Dev.|
172hes  Emply , T 169231 44 -0.124, 03585
192hcs  Empty - N 251923 655 0.17692 0.47349|
216hrs Emply | 257692 67 010192 0.52411
240hrs  'Empty . 3.21154- 83.5 0.34038! 0.44171

137



Desorption phase for the room with painted gypsum board after taken out the linoleum

Friedman ANOVA and Kendall Coeff. of Concordance (exp.5)

ANOVA Chi Sqr (N 25 df = 4) = 4.782077ps .310425 )

‘Coeff. of Concordance = .04782 Aver. rank r = .00815 -
Time ‘Average :Sumof - |
(hrs) Rank  iRanks Mean :Std.Dev.
168hrs .Linoleum +painted gypsum board 2441 612 -0.104;  0.371
172hrs \Painted gypsum board 334 835 . 0 11 .. 0443 ?
192hrs  ‘Painted gypsum board 3:‘ o 7§'"_ 0018 04120
216hrs‘_ -Painted gypsum poa_rd 3.02. 755 « 0052 \0 410 o
240hrs Painted gypsum board 3.2 80 0.083 0425 o
Experiment 6

Linoleum and Semia

L Confid. ‘Confid. :Standard
Time ValidN Mean -95. 000°+95000'M|n|murrMaX|mum Std Dev. Error
“|Empty 32 0381 0239 0524 ' 048 . 098 | 0395 ; 0070
Empty 32 0352 0215 0490 ° 045 | 095 | 0382 [ 0.068
ahrs |Lnoleum 733 0355 0197 - 0512 063 098 0445 . 0078
Linoleum+Semia 33 0321 0166 - 0476 -0.80 : 098 | 0437 i 0076
24hrs  |Linoleum 29 0383 0219 0546 -068 . 095 0430 0.080
Linoleum+Semia 29 0170 -0.009 ' 0348 = -058 . 095 0.469 0.087
48hrs  |Linoleum 29 0343 0164 . 0522 - -050 . 095 0471  0.088
Linoleum+Semia 29 0.180 0.023 : 0337 © 070 : 0.85 0.413 0.077
72hrs  {Linoleum ) 32 0423 - 0.268 : 0579 < -0.78 093 = 0432 0.076
Linoleum+Semia 32 0162 0006 - 0317 -0.83 - 083 ' 0431 0.076
96hrs  |Linoleum 32 0423 0264 0581 078 _ 098  0.439 0078
Linoleum+Semia 32 0184 0031 : 0337 ! -005 © 098 - 0424 0.075
168hrs _|Linoleun , 31 0322 0137 0506 -095 095 0503 0090
Linoleum+Semia 31 0.130 : -0.061 - 0320 . -0.93 -~ 093 | 0.520 0.093
Part2 - . ) }
172hrs |Empty ~ 27 0373 0160 - 0586 -0.85 _ 093 _ 0539  0.104
Semia 27 0208 0006 0410 -0.85 098 ° 0511 ° 0098
192hrs |[Empty 28 0329 0149 0510 -0.80 093 . 0466 . 0.088
Semia 28 0243 0054 0432 -0.93 0.93 0.487 0.092
216hrs |Empty 20 0313 0146 0480 . -0.93 . 098 _ 0440 0.082
Semia 29 033 0170 0502 095 - 098 0436 0.081
240hrs [Empty 29 0317 0127 0508 _ -078 095 | 0501 0093
Semia 29 0288 - 0129 ° 0446  -053 © 090 - 0417 . 0077
Wilcoxon Matched Pairs Test (exp.6)
. Vald _ R i
Time N T Z p-level
The two empty rooms 32 198 070961 O4780 |~
4hrs|Uinoleum vs Linoleum+Semia 33 3 49583 | 7.14678E-07|
24hrs  |Linoleum vs Linoleum+Semia 29 8 45301 ' 591796E-06 | -
48hrs  |Linoleum vs Linoleum+Semia 29 1 43721 . 0.00001
72hrs |Linoleum vs Linoleum +Semia 32 245 42782 . 000002 | . .
96hrs  |Linoleum vs Linoleum +Semia 32 225 4419 | 000001 |
168hrs_|Linoleum vs Linoleum+Semia 31 46 38% ;00001 | .
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Desorption phase for the room with Semia after taken out the linoleum

Friedman ANOVA and Kendall Coeff. of Concordance (exp.6)
ANOVA Chi Sqr. (N = 25, df = 4) =
Coeff. of Concordance = .02354 Awer. rank r = -.0171

2.354379 p < 67089

Time “Awerage  Sum of

(hrs) ‘Rank  Ranks :Mean  'Std.Dev.
168hrs  “Linoleum +Semia ©28 70 ~ 0.109 0.519
172hrs  Semia 308 77 0194 0.501
192hrs Semia ) 274 e85 | 0202 0470
216hrs  Semia 334 835 0323 0.440
240hrs  Semia 304 76 . 0246 | 0.426

Experiment 7
Carpet and painted gypsum board

v . iConfid. Confid. Standard
Time ‘Vaiid N ‘Mean ;-95.000%+95.000% Mlnumun‘Maxnmum :Std.Dev: Error

"[Room 1(empty) 30 0268 0300 050 ~ 093 0328  0.060
Room 2(empty) 30 0252 0370 - 025~ 090 0317 ' 0058
|Room 3(empty) .30 0273 0401 - 028 . 088 ' 0343 0063

Room 4(empty) 30 ! 0316 0455 050 . 093 . 0373 0.068

- |carpet 33 :-0025:-0206: 0156 : -075 . 088 . 0511 0.089
4hrs  [Mixing exhausts 33 0059”— ) 0203 083 093 0405 0071

Painted gypsum board .33 70024 ...0163 . -083 ~ 093 0301 0068

Carpet+pamted gypsum board : 33 0.015 0177 -0.85 : 0.93 0456 °  0.079

, Carpet 30 . -0.097 : 0066 . -088 ' 083 0437 0.080

8hrs  IMixing exhausts ] . .30 -0 042___ 0086 : -063 : 063 0.341 - 0.062
Pamted gypsumtk board 30 -0.032 ° -0.1¢ 0098 078 063 0.349 0.064

Carpet+pamted gypsum board 30 . -0.022 | -0.178 0.133 -0.75 0.90 0.415 0.076

Carpet 35 -0.123 : -0.257 0011 . 085 055  0.389 0.066

24hrs  |Mixing exhausts 35 . 0011 : -0.163 »0184 - -1.00 0.83 0505 0.085

Painted gypsum board 35  0C 064 -0.084 0212 | -090 090 | 0.431 0.073

Carpet+pa|nted gypsum board 35 0.194 . 0.044 0343 - -0.73 1.00 0434 -~ 0.073

Carpet ] 35  -0.121 ' -0.256 0013 : -0.83 083 . 0.391 0.066

48hrs  |Mixing exhausts 35 : 0014  -0126  0.154 -0.75 0.88 : 0.408 0.069

~|Painted gypsum board 35 0058_ . -0.083 0199 | -075 ° 080 0411 0.070

Carpet+pa|nted gypsum board 35 0118 - -0.018 0253  -050 . 095  0.395 0.067

~ |carpet _ 33 1009070254 0074 ~ 093~ 093 | 0462  0.080

72hrs | Mixing exhausts 33 _ 0.040 - -0.115 0195  -0.73 090 0437 0.076
Painted gypsum board 33 . 0160 . 0014 0.305 -0.63 093 . 0410  0.071

Carpet+palnted gypsum board 33 0222 . 0105 . 0339 -0.35 093 : 0329 0.057

~ |Carpet ) 35 -0114 1 -0271: 0.043 -0.85 083 0457 . 0077

144hrs jMixing exhausts 35 0019 :‘ -0.158 0.197 -0.88 0.95 0.517 0.087

Painted gypsum board 3B 00§2 0 -0.093  0.197 -0.95 0.95 0.422 0.071

Carpet+pamted gypsum board 35  0.155 : 0.000 0.310 -0.70 0.98 0.453 0.077
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'Ffiedman test to compare the empiy f'doms »

Friedman ANOVA and Kendall Coeff. of Concordance (exp 7)
ANOVA Chi Sqr. (N 30, df = 3= 1. 070671 P < 7841\‘6‘\%
Coeff. of Concordance = .01190 Aver. rank r = -.0222

Wilcoxon Matched Pairs Test‘ (exp.7)

Average ! Sumof @ ;
e - AR
Room1 2.483 N 745 | 02675 :0.327685| 4
Room2 e T assreet osirads|
Room3 2517 T 755 . 0.2725 ‘0343433
Room4 2.667 80  10.315833 ' 0.372924

Time  |Compared rooms Valid :
N T Z p-level
4hrs [Carpet & mixing exhausts .33 | 208 12954 01952
_ Carpet& Comblned m enals 33 \ 217 08789 0.3795
mixing exhausts&combined materials 33 2535 © 0.4824  0.6295
8hrs Carpet & mixing exhausts ., .30 : 204 505862 05577
|Carpet & Combined materials .30 162  0.9336 0.3505
mixing exhausts&combined materials © 30 | 232  0.0103 0.9918
24hrs  |Carpet & mixing exhausts - 35 167 20280  0.0426
Carpet & Combined materials 35 80  3.8491 0.0001
mixing exhausts&combined materials 35 © 1935 ° 1.7780 0.0754
48hrs  |Carpet& mixingexhausts = 35 - 147 = 25730 0.0101
Carpet& Combinedmaterials =~ 35 . 122 ~ 3.1612 0.0016
mixing exhausts&combined materials . 35 © 197.5  1.7097 0.0873
72hrs  |Carpet & mixing exhausts 33 | 1495 - 1.707 0.0878
Carpet & Comblned matenals 33 555 4 020 0.00006
mixing exhausts&combined materials | 33 ¢ 131.5 - 2478 0.0132
144hrs |Carpet & mixing exhausts P38 1 2165 - 1613 0.1067
|Carpet & Combmed materlals 3 | 64 3 992 0.0001
mixing exhausts&combined materials 35 1775 22521 0.0243
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Appendix B

Least square method

1. Sorption parameters for the room surfaces:

1.1 when linoleum was the pollution source

Time Perceived concentration | Perceived concentration- the test | Trapezoid area
(hrs) (decipol) room background (decipol)

0 19.100 18.300 16.711
1 15.922 15.122 13.797
2 13.272 12.472 11.368
3 11.064 10.264 9.343
4 9.223 8.423 16.283
6 8.660 7.860 15.106
8 8.046 7.246 13.921
10 7.475 6.675 12.819
12 6.944 6.144 11.796
14 6.452 5.652 10.846
16 5.994 5.194 9.963
18 5.569 4.769 9.142
20 5.173 4373 8.380
22 4.806 4.006 7.672
24 4.465 3.665 7.014
26 4.148 3.348 6.403
28 3.854 3.054 5.835
30 3.581 2.781 5.307
32 3.327 2.527 4.817
34 3.091 2.291 4.362
36 2.871 2.071 3.939
38 2.668 1.868 3.546
40 2.478 1.678 3.181
42 2302 1.502 2.841
44 2.139 1.339 2.526
46 1.987 1.187 2.233
48 1.846 1.046 1.961
50 1.715 0915 1.709
52 1.594 0.794 1.474
54 1.480 0.680 1.256
56 1.375 0.575 1.053
58 1.278 0.478 0.865
60 1.187 0.387 0.690
62 1.103 0.303 0.528
64 1.025 0.225 0.377
66 0.952 0.152 0.236
68 0.884 0.084 0.106
70 0.822 0.022

72 0.763

Total area= 229.4
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Me= ((Ac*Q)-Ce* V)/ A
Ac =229.43 decipol* hour
Q=32 m3/h

Ce=19.1 decipol

V=40 m3 and A=90 m2
Me 73.08

Ke=Me/Ce 3.8m

Matlab 6.5:

function C=CVAL22(k,t)

ka=k;%(1);

kd=ka/3.8;%k(2);

N=8;

L=2.25;

Ce=19.1;
r1=((N+ka*L+kd)+sqrt((N+ka*L+kd)"2-4*N*kd))/2;
r2=((N+ka*L+kd)-sqrt((N+ka*L+kd)"2-4*N*kd))/2;
C=Ce*((N-r2)*exp(-r1*t)-(N-r1)*exp(-r2*t))/(r1-r2);

function Err=errortotal(k)
DataB=[ 0 19.1000
4.0000 9.2000
24.0000 2.5000
48.0000 2.5000
72.0000 0.8000];
mm-=max(size(DataB));
for i=1:mm
Erri(i)=CVAL22(k,DataB(i,1))-DataB(i,2);
end

Err=norm(Erri)"2;

clear
cle
k=0.0:.001:2.0;
m=length(k)
for km=1:m
yaxis(km)=errortotal(k(km));
end

plot(k,yaxis),grid

hold on
kamin=fmin(‘errortotal',0,5)
plot(kamin,errortotal(kamin),'o")

143



...........

i i
t ¥
: 1 .
% +
] ¥ -
***** beemaund 5 ; ;
H ‘
' [ ¢ :
; : : : :
£ ¥ H :. i
14 £ H H
..... Py ; :
% ¥ H )
t 0 e Bleebeasvany Bawaanvaanva fuvrmemannan T LTI T Tavesnvnans -
? 1 : ;
I € H H
* ¥ H H
..... Lmmmnmmd H :
¥ ¢ ) i “efen -~
t ¥ ' H H H
¥ E H P i ‘
) 1 - L
‘ ) il Karoom= 0.42 m/h, A N
..... .}.—...«.....f
: : Sum of errors= 3.1 ‘
s %
E 1
¥ [
1 13
o P
f )
] ¥
E] 1]
i 1
3 ¥
Lwmwwwnn “*
t t
1 )
t
t
¥
4
H
}
€
%
€
¥

.............................................................

g S

—r R R

o

1.2 when carpet was the pollution source

Time (hrs) Perceived Perceived Trapezoid area

concentration concentration- the test

(decipol) room background

(decipol)

0 18.700 18.200 14.504
1 11.307 10.807 8.572
2 6.837 6.337 4.985
3 4.134 3.634 2.817
4 2.500 2.000 4.147
6 2.648 2.148 4.192
8 2.545 2.045 3.990
10 2.445 1.945 3.795
12 2.350 1.850 , 3.608
14 2.258 1.758 3.428
16 2.170 1.670 3.255
18 2.085 1.585 3.089
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20 2.004 1.504 2.930
22 1.926 1.426 2.777
24 1.851 1.351 2.629
26 1.778 1.278 2.488
28 1.709 1.209 2.352
30 1.642 1.142 2221
32 1.578 1.078 2.095
34 1.517 1.017 1.974
36 1.458 0.958 1.858
38 1.401 0.901 1.747
40 1.346 0.846 1.640
42 1.294 0.794 1.537
44 1.243 0.743 1.438
46 1.195 0.695 1.342
48 1.148 0.648 1.251
50 1.103 0.603 1.163
52 1.060 0.560 1.079
54 1.019 0.519 0.998
56 0.979 0.479 0.920
58 0.941 0.441 0.845
60 0.904 0.404 0.773
62 0.869 0.369 0.704
64 0.835 0.335 0.637
66 0.802 0.302 0.573
68 0.771 0.271 0.512
70 0.741 0.241 0.453
72 0.712 0212 0.396
74 0.684 0.184 0.342
76 0.658 0.158 0.289
78 0.632 0.132 0.239
80 0.607 0.107 0.191
82 0.584 0.084 0.144
84 0.561 0.061 0.100
86 0.539 0.039 0.057
88 0.518 0.018
Total area= 101.08

Q=32 m3/h

Ce=18.7 decipol

V=40 m3 and A=90 m2

Me=
Ke=

Matlab.6.5:

function C=CVAL22(k,t)
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ka=k;%(1);

kd=ka/1.48;%k(2);

N=238;

L=2.25;

Ce=18.7;

rI=((N+ka*L+kd)+sqrt((N+ka* L+kd)"2-4*N*kd))/2;
r2=((N+ka*L+kd)-sqrt((N-+ka*L+kd)"2-4*N*kd))/2;
C=Ce*((N-r2)*exp(-r1*t)-(N-r1)*exp(-r2*t))/(r1-r2);

function Err=errortotal(k)
DataB =[ 0 18.7000
4.0000 2.5000
24.0000 2.2000
48.0 1.1000];

mm=max(size(DataB)),

for i=1:mm
Erri(i)=CVAL22(k,DataB(i,1))-DataB(i,2);

end

Err=norm(Erri)"2;

clear
cle
k=0.0:.001:1.0;
m=length(k)
for km=1:m
yaxis(km)=errortotal(k(km));
end

plot(k,yaxis),grid

hold on
kamin=fmin('errortotal',0,5)
plot(kamin,errortotal(kamin),'o")
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2.1. when linoleum was the pollution source and sorption on room surfaces was neglected
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36 0.671
38 0.603
40 0.542
42 0.487
44 0.438
46 0.393
48 0.354
50 0.318
52 0.286
54 0.257
56 0.231
58 0.207
60 0.186
62 0.167
64 0.150
66 0.135
68 0.122
70 0.109
72 0.098

1.27
1.14
1.03
0.92
0.83
0.75
0.67
0.60
0.54
0.49
0.44
0.39
0.35
0.32
0.29
0.26
0.23
0.21
0.10

Me= ((Ac*Q)-Ce* V)/ A
Q=32 m3/h
Ce=8.8-3=5.8decipol
V=40 m3 and A=90 m2

Me= 106.4
Ke= 1834 m
Matlab 6.5

function C=CVAL22(k,t)

ka=k;%(1);

kd=ka/18.34;%k(2);

N=238;

L=0.575;

Ce=5.8; '
r1=((N+ka*L+kd)+sqrt((N+ka*L+kd)*2-4*N*kd))/2;
r2=((N+ka*L+kd)-sqrt((N+ka*L+kd)"2-4*N*kd))/2;
C=(Ce*((N-r2)*exp(-r1*t)-(N-r1)*exp(-r2*t))/(r1-12));

function Err=errortotal(k)
DataB=[ 0 5.8000
4.0000 2.4000

Total area = 83.72
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24.0000 1.8000
48.0000 0.3000
72.0000 0.1000]

mm=max(size(DataB)),

for i=1:mm
Erri(i)=CVAL22(k,DataB(i,1))-DataB(i,2);

end

Err=norm(Erri)"2;

clear
cle
k=0.0:.001:2.0;
m=length(k)
for km=1:m
yaxis(km)=errortotal(k(km));
end

plot(k,yaxis),grid

hold on
kamin=fmin('errortotal',0,5)
plot(kamin,errortotal(kamin),'o")
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2.2. when carpet was the pollution source and and sorption on room surfaces was

heglected
Time (hrs) Perceived concentration Trapezoid area
(decipol)
0 3.743 7.191
2 3.447 6.622
4 3.175 6.098
6 2.924 5.616
8 2.692 5.172
10 2.479 4.763
12 2.283 4.386
14 2.103 4.039
16 1.936 3.720
18 1.783 3.425
20 1.642 3.154
22 1.512 2.905
24 1.393 2.675
26 1.282 2.464
28 1.181 2.269
30 1.088 2.089
32 1.002 1.924
34 0.922 1.772
36 0.849 1.632
38 0.782 1.503
40 0.720 1.384
42 0.663 1.274
44 0.611 1.173
46 0.563 1.081
48 0518 0.995
50 0.477 0916
52 0.439 0.844
54 0.405 0.777
56 0.373 0.716
58 0.343 0.659
60 0.316 0.607
62 0.291 0.559
64 0.268 0.515
66 0.247 0.474
68 0.227 0.437
70 0.209 0.402
72 0.193 0.370
74 0.177 0.341
76 0.163 0314
78 0.151 0.289
80 0.139 0.266
82 0.128 0.245
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84
86
88
90
92
94
96
98
100

0.118
0.108
0.100
0.092
0.085
0.078
0.072
0.066
0.061

0.226
0.208
0.192
0.176
0.162
0.150
0.138
0.127
0.061

Me= ((Ac*Q)-Ce* V)/ A
Ac =89.49 decipol* hour
Q=32 m3/h

Ce=8.1 -3 = 5.1decipol
V=40 m3 and A=23 m2

Me= 115.64
Ke= 22.68m
Matlab 6.5

unction C=CVAL22(k,t)
ka=k;%(1);
kd=ka/22.68;%k(2);
N=.8;

L=0.575;

Ce=5.1;

r1=((N+ka*L+kd)+sqrt((N+ka*L+kd)"2-4*N*kd))/2;
r2=((N-+ka*L+kd)-sqrt((N+ka*L+kd)"2-4*¥*N*kd))/2;
C=(Ce*((N-r2)*exp(-r1 *t)-(N-r1)*exp(-r2*t))/(r1-12));

function Err=errortotal(k)

DataB=[0 5.1000
4.0000 2.1000
24.0000 1.6000
48.0000 0.5000]

mm=max(size(DataB));
for i=1:mm

Erri(i)=CVAL22(k,DataB(i, 1))-DataB(i,2);

end

Total area = 89.49

151



1.19 m/h

Sum of errors= 0.15

Ka
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I:m

yaxi;(km)=errortotal(k(km));

norm(Erri)"2;
end

plot(k,yaxis),grid

hold on
kamin=fmin('errortotal',0,5)

0.0:.001:2.0;
length(k)

for km

C

1

ks
plot(kamin,errortotal(kamin),'o")

Err
clear
C

m
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3. Sorption parameters for Semia when linoleum was used as pollution

source:
Time (hrs) Perceived Perceived Trapezoid area
concentration concentration- the test
(decipol) room background
(decipol)

0 1.949 1.2490 2.441
2 1.892 1.1922 2.329
4 1.837 1.1370 2.220
6 1.783 1.0834 2.115
8 1.731 1.0314 2.012
10 1.681 0.9809 1.913
12 1.632 0.9319 1.816
14 1.584 0.8843 1.722
16 1.538 0.8381 1.631
18 1.493 0.7932 1.543
20 1.450 0.7496 1.457
22 1.407 0.7074 1.374
24 1.366 0.6663 1.293
26 1.326 0.6265 1.214
28 1.288 0.5878 1.138
30 1.250 0.5502 1.064
32 1214 0.5138 0.992
34 1.178 0.4784 0.922
36 1.144 0.4440 0.855
38 1.111 0.4106 0.789
40 1.078 0.3782 0.725
42 1.047 0.3468 0.663
44 1.016 0.3162 0.603
46 0.987 0.2866 0.544
48 0.958 0.2578 0.488
50 0.930 0.2299 0.433
52 0.903 0.2028 0.379
54 0.876 0.1764 0.327
56 0.851 0.1509 0.277
58 0.826 0.1261 0.228
60 0.802 0.1020 0.181
62 0.779 0.0786 0.134
64 0.756 0.0559 0.090
66 0.734 0.0338 0.046
68 0.712 0.0124 0.004
70 0.692 -0.0084

72 0.671 -0.0285

Total area = 35.96
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Me= ((Ac*Q)-Ce* V)/ A
Ac =35.96 decipol* hour
Q=32 m3/h

Ce=2.5 decipol

V=40 m3 and A=24.5 m2

Me =42.94
Ke =17.18 m
Matlab 6.5

function C=CVAL22(k,t)

ka=k;%(1);

kd=ka/17.18;%k(2);

N=.8;

L=0.6125;

Ce=2.5;
r1=((N+ka*L+kd)+sqrt((N+ka*L+kd)"2-4*N*kd))/2;
r2=((N+ka*L+kd)-sqrt((N+ka*L+kd)"2-4*N*kd))/2;
C=Ce*((N-r2)*exp(-r1 *t)-(N-r1)*exp(-r2*t))/(r1-r2);

function Err=errortotal(k)
DataB =[ 0 2.5000
4.0000 1.6000
24.0000 1.3000
48.0000 0.8000
72.0000 0.9000];
mm=max(size(DataB));
for i=1:mm
Erri(i)=CVAL22(k,DataB(i,1))-DataB(i,2);
end

Err=norm(Erri)"2;

clear
cle
k=1.5:.001:2.5;
m=length(k)
- for km=1:m
yaxis(km)=errortotal(k(km));

end

plot(k,yaxis),grid

hold on
kamin=fmin('errortotal',0,5)
plot(kamin,errortotal(kamin),'o")
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Appendix C
Best fit curve using linear Langmuir model

1. For empty room data

1.1 Desorption from room surfaces when linoleum was the pollution source during

~ the sorption stage

Langmuir model

ka=0.41;%(1);
kd=0.107;%k(2);

N=.8;

1L.=2.25;

Ce=19.1;

DATA=[0 19.1
4 92
24 2.5
48 2.5
72 0.8];

b=0; yaxis=[0 20]
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m=max(size(DATA));
t=0:.05:DATA(m,1);
Data=DATA-b*ones(m,1)*[0 1];

r1=((N+ka*L+kd)+sqrt((N+ka*L+kd)"2-4*N*kd))/2;
r2=((N+ka*L+kd)-sqrt((N+ka*L+kd)"2-4*N*kd))/2;
C=(Ce*((N-r2)*exp(-r1*t)-(N-r1)*exp(-r2*t))/(r1-12));

plot(t,C,Data(:,1),Data(:,2),'s")
xlabel(‘time (Hour)")

ylabel('Percieved air quality (decipol))
axis([ min(t) max(t) yaxis ])

1.2 Desorption from room surfaces when carpet was the pollution source during the

sorption stage

Langmuir model

ka=0.052;%(1);

kd=0.035;%k(2);

N=.38;

L=2.25,

Ce=18.7,

DATA=[0 18.7
4 25

157



24 22
48 1.1];
b=0; yaxis=[0 20];

m=max(size(DATA));

t=0:.05:DATA(m,1);

Data=DATA-b*ones(m,1)*[0 1];
r1=((N+ka*L+kd)+sqrt(N+ka*L+kd)"2-4*N*kd))/2;
r2=((N+ka*L+kd)-sqrt(N+ka*L+kd)"2-4¥*N*kd))/2;
C=(Ce*((N-r2)*exp(-r1*t)-(N-r1)*exp(-r2*t))/(r1-r2));
plot(t,C,Data(:,1),Data(:,2),'s")

xlabel('time (Hour)")

ylabel("Percieved air quality (decipol)’)

axis([ min(t) max(t) yaxis ])

2. For painted gypsum board

2.1 Desorption data for the room with samples of painted gypsum board after the
carpet was taken out of the room

1 i i {

15 200 -25 30 3

" time (oun)
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ka=1.19;%(1);
kd=0.052;%k(2);

N=.238;

L=0.575,

Ce=5.1; DATA=[0 8.1
4 5.1
24 4.6
48 3.5];

b=3; yaxis=[0 10]
m=max(size(DATA));
t=0:.05:-DATA(m,1);

Data=DATA-b*ones(m,1)*[0 1];

r1=((N+ka*L+kd)+sqrt((N+ka*L+kd)"2-4*¥*N*kd))/2;
r2=((N+ka*L+kd)-sqrt((N+ka*L+kd)"2-4*N*kd))/2;
C=(Ce*((N-r2)*exp(-r1*t)-(N-r1 y*exp(-r2*t))/(r1-12));

plot(t,C,Data(:,1),Data(:,2),'s")

xlabel(‘time (Hour)")

ylabel('Percieved air quality (decipol)')

axis([ min(t) max(t) yaxis ])

2.1.1 Langmuir model fit to data that include the emission from painted gypsum boards

time (Hour) -
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2.2 Desorption data for the room with samples of painted gypsum board after the
linoleum was taken out of the room

Langmuir model

ka=1.26;%(1);
kd=0.07;%k(2);
N=.8;
L=0.575;
Ce=5.8;
DATA=[0 8.8

4 54

24 4.8

48 3.3

72 3.1]; b=3; yaxis=[0 10]
m=max(size(DATA));
t=0:.05:DATA(m,1);
Data=DATA-b*ones(m,1)*[0 1];
r1=((N-+ka*L+kd)+sqrt((N+ka*L+kd)"2-4*¥*N*kd))/2;
r2=((N+ka*L+kd)-sqrt((N+ka*L+kd)"2-4*N*kd))/2;
C=(Ce*((N-r2)*exp(-r1*t)-(N-r1)*exp(-r2*t))/(r1-12));
plot(t,C,Data(:,1),Data(:,2),'s")
xlabel('time (Hour)')
ylabel('Percieved air quality (decipol)’)
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axis([ min(t) max(t) yaxis ])

2.2.1 Langmuir model fit to data that include the emission from painted gypsum boards

o
B =]
&
S
.&,

3. Desorption data for the room with samples of Semia after the linoleum was
taken out of the room

ka=2.23;%(1);
kd=0.13;%k(2);

N=.8;

L=0.6125;

Ce=2.5;

DATA=[0 2.5
4 1.6
24 1.3
48 0.8
72 0.9];

b=0;

yaxis=[0 10]
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Langmuir model

m=max(size(DATA));

t=0:.05:DATA(m,1);

Data=DATA-b*ones(m,1)*[0 1];
r1=((N+ka*L+kd)+sqrt((N+ka*L+kd)"2-4*N*kd))/2;
2=((N+ka*L+kd)-sqrt((N+ka*L+kd)"2-4*N*kd))/2;
C=(Ce*((N-r2)*exp(-r1*t)-(N-rl)*exp(-r2*1))/(r1-r2));
plot(t,C,Data(:,1),Data(:,2),'s")

xlabel(‘time (Hour)")

ylabel('Percieved air quality (decipol)')

axis([ min(t) max(t) yaxis ])
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Appendix D

Chemical emissions

1.Compounds emitted from linoleum

Chemical measurements of the concentrations of VOCs in outdoor air supplied to an office
and in the office air with and without pollution sources (linoleum, aged sealant, wooden

shelves with books) inside the office. (Data taken from Wargocki et al., 2002)

Compound Odor Office without pollution Office with pollution sources
threshold | sources
(ng/m3) | Outdoor air Office air Outdoor air Office air
(Devos et concentration | concentration | concentration | concentration
al.1990) | (ng/m?) (ng/m®) (ng/m?) (ng/m?)
2-Propanone 34674 dl di dl 4.68
Heptanal 23 di dl di 0.6
Hexanol 58 dl 1.15 dl 1.92
Ethanol 54954 dl dl di 1.36
Phenol 425 0.58 dl dl 1.69
Hexanal 58 di 1.15 dl 1.92
Octane 27542 di dl di di
Nonanal 13 0.63 2.86 dl 3.09
Octanal 7 dl 0.84 di 1.23
2-(2-butoxyethoxy) | n/a di dl dl 1.38
ethanol
Xylene 1413 dl 1.62 dl dl
2-Butanone 23442 dl dl dl 0.42
1,2- Propanediol | n/a dl dl dl 1.1
Benzoic acid n/a 1.1 1.37 0.64 1.25
Propanoic acid 110 dl dl dl 0.93
Decanal 6 0.6 2.0 dl 1.93
Benzaldehyde 186 1.06 1.11 0.73 1.13
1-Butanol 1514 dl 3.86 dl 3.8
2-Ethyl-1-hexanol | 1318 dl dl dl 1.09
2-Methyl-1- 2570 dl dl dl 2.74
propanol
Phenol 427 0.58 dl dl 1.69
Pentanal 22 dl dl dl 1.29
1-Ethyl-2-methyl | /5 di di di 0.59
benzene
Heptane n/a di dl 0.38 0.77
Pentadecane n/a dl dl dl 0.62

*These data were for an air exchage rate in the office was 1h™
dl: indicates that concentration were below detection limits
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2. Compounds emitted from carpet

Chemical measurements of the concentrations of VOCs in outdoor air supplied to an office
and in the office air with and without carpet inside the office (Data taken from Wargocki et

al, 1999)
Compound Odor Office without carpet Office with carpet
threshold | Outdoor air | Office air Outdoor air | Office air
(ng/m3) | concentration | concentration | concentration | concentration
(Devos | (ug/m®) (ng/m?) (ng/m?) (ng/m?)
et
al.1990)
toluene 5.9%10° |9.25 10.5 13 13
benzene 12%10° |3.25 8.5 3.25 7.15
butyldiglycol n/a 2.02 2.6 1.9 3
butyldiglycol n/a 1.98 9.1 1.86 9.65
phenol 427 1.9 2.55 2.85 3.5
acetone 34*10° |60 75 135 125
acetic acid 363 24.5 39 29 60.5
hexanoic acid 60.3 1.2 2.6 1.25 1.55
octanoic acid 24 2.65 3 0.82 3.2
nonanoic acid 12.6 3.15 3.45 1.5 3.05
formaldehyde 1.1%10° | 3.78 16.8 1.83 14.4
hexanal 575 4.05 5.7 4.8 6.8
heptanal 229 NI NI 1.41 3.05
nonanal 13.5 14.5 18 9.75 16
decanal 59 9.55 11.5 6.3 10
benzaldehyde 186 4.95 4.9 5.75 5.35
butyldiglycolacetate | n/a 0.67 43 0.63 5.1
hydrocarbon n/a 1.8 6.3 32 9.55
isopropylmirystate | n/a NI NI 0.55 1.15
octanal 7.2 4.65 6.5 4.25 6.35
xylene 1.4%10° 19.95 9.9 24.5 26
styrene 631 2.6 2.35 2.7 2.75
decane 44%10° | NI NI 1.55 2.3

NI: compound not identified

n/a: no odor threshold available
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