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New Econometric Models for Longitudinal Count Data with an Excess of Zeros: Two

Applications in Health Economics.

Jean-Eric Tarride, Ph.D.

Concordia University, 2004

The ﬁurpose of this doctoral thesis is to provide new econometric models to
analyze longitudinal count data characterized by a high proportion of zeros in the data.
Previous econometric studies have dealt with many characteristics such as the discrete
and longitudinal aspects of the dependent count variable or the presence of covariates
and unobserved individual heterogeneity. However, none have taken into account the
issues associated with an excess of zeros in a longitudinal framework. While it is well
known in the univariate case that when an excess of zeros is significant, the mean has to
be corrected to take into account this feature of the data, this issue has often been
ignored in the longitudinal case. An excess of zeros in the data may lead to important
modeling issues associated with the analysis of longitudinal count data.

Two new econometric models are presented to address the six following
characteristics: 1) count outcome 2) a limited number of repeated measurements, 3)
presence of covariates, 4) unobserved heterogeneity, 5) presence of correlation due to
the repeated nature of the data and 6) an excess of zeros.

The first model, a Quadrivariate Negative Binomial Hurdle model, was developed

to analyze the number of doctor visits made by a pane! of more than 4,000 German
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followed over 4 years. In the second example, a Quadrivariate Negative Binomial Zero-
Inflated model was used to analyze an unpublished subset of a longitudinal clinical trial
in which the treatments were very effective in reducing the number of occurrences of
one variable collected over time in this trial. These two new models were nested to the
Quadrivariate Negative Binomial model, allowing us to test for an excess of zeros.

The main result is that the excess of zeros was significant in our two examples
and assuming that only one process generates the data is incorrect. As such, the
Multivariate Negative Binomial Hurdle and Zero-Inflated models are superior than
standard Univariate Negative Binomial model, Quadrivariate Negative Binomial model
and Generalized Estimating Equations model. These new models performed well in
predicting the mean counts and the mean proportion of zeros in the data at each time
period. This thesis demonstrated that caution should be taken in analyzing longitudinal
count data in the presence of a high proportion of zeros in the data and correlation over

time. Models ignoring these features may yield inconsistent estimates.
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Longitudinal count data or panel count data refers to a series of non-negative integers
measured over several time periods for individual units such as persons, households,
firms and regions. Economic examples include the annual number of patents gener-
ated over time by a sample of firms (Haussman et al. 1984; Cincera 1997; Crepon
and Duguet 1997; Montalvo, 1995), the number of days of absence of a cohort of
workers followed over several years (Ruser, 1991; Wagner et al., 1993) or the number
of insurance claims during a certain period of time (Pinquet, 1998). Applications are
common in Health Economics and include the analysis. of the number of physician
or hospital visits generated by a panel of households (Geil et al., 1997; Winkelman,
2001) or the analysis of the number of occurrences of a specific event over-a certain
period of time {Diggle, 1995; Albert, 2000). By following firms or individuals over
time, longitudinal count data offers a richer framework than cross-section data.

The purpose of this doctoral thesis is to provide new econometric models to an-
alyze longitudinal count data characterized by a high proportion of zeros. Previous
econometric studies have dealt with many characteristics associated with longitudi-
nal count data such as the discrete and longitudinal aspécts of the dependent count
variable or the presence of covariates and unobserved individual heterogeneity, but
none have taken into account the issues associated with an excess of zeros in a longi-
tudinal case. However, a zero value is a natural outcome for firms who do not patent
(voluntary or involuntary) or for individuals who do not seek medical care. This may

lead to important modelling issues associated with the analysis of longitudinal count



data characterized by a high proportion of zeros in the data. Although it is well
recognized in the univariste case that not taking into account the presence of extra
zeros will result in inconsistent estimates because the mean function would not be
correctly specified (Mullhahy 1997; Cameron and Trivedi 1998; Greene, 2000), this
issue is typically ignored in longitudinal count data. Solving this problem by “choos-
ing companies so as to minimize the problem (“only 8 per cent of the observations
were zeros in any one year”) as in Haussman et al. (1984, page 910), has several
limitations such as introducing a selection bias. For example, such methods may not
be suitable in analyzing the number of patents awarded to small or medium firms
which are less likely to patent innovations than larger firms.

Instead it is important to develop new models for longitudinal count data which
are able to test and treat for an excess of zeros (i.e., a high proportion of "zero”
outcome in the data) in the longitudinal context. In some cases this excess of zeros
is significant and should be taken into account by assuming for example that two
processes generates the data instead of one. These models must also address the
characteristics inherent in longitudinal count data such as repeated observations of
a count outcome, the presence of covariates, correlation due to the repeated nature
of the data and unobserved heterogeneity. In order to generalize the findings of this
research, these new models will be compared with traditional approaches used for the
analysis of longitudinal count dats in health economics through two applications.

Chapter 2 reviews the traditional econometric approaches used to analyze longitu-

dinal count data. Parametric and non-parametric models which address the discrete



and repeated aspects of the data are presented. In these models the covariates are
introduced through the mean function and the correlation is treated by deriving fixxed
effects or by conditioning. Non-parametric medels for longitudinal count data assume
that while not specified, the a-priori “distribution” of the dependent variable is from
the linear exponential family and/or that the mean function is correctly specified.
In some cases these two assumptions may be violated. Generalized Auto-Regressive
(GAR) models or time series models have also been introduced to model correlation
in time series of count data. When only a limited number of repeated observations is
awvailable for analysis it is not known in Generalized Auto-Regressive models how to
treat the initial value. Before this problem is resolved, it is not possible to test these
models in the same way as a Prais-Winsten approach in the linear regression model.

This survey of the literature indicates that the problem associated with an excess
of zeros (i.e. high proportion of zeros) in longitudinal count data is traditionally
ignored. Recently a2 model was developed by Chin-Shang et al. (1999) to take into
account an excess of zeros in the univariate case in which three count variables were
observed at the same time. Unfortunately this methodology is not generalizable
when the number of repeated measurements increases over time. The review of the
literature supports evidence of the need for new econometric models to address all the
characteristics associated with longitudinal count data and to allow for the testing
and treatment of an excess of zeros in the longitudinal case.

A well known area of research in health economics is the analysis of the usage of

medical services for which count data models are widely used. Several studies have



been conducted over the last two decades to identify the determinants of the number of
physician visits or to assess the impact of a health policy reform aimed at reducing or
controlling health expenditures. The model of reference to explain the determinants
of the demand for medical care was developed by Grossman (1972). In most empirical
studies which use the Grossman’s framework, the demand for medical care is generally
defined as the number of medical services consumed (e.g., the number of doctor or
hospitals visits) by a sample or panel of individuals. Because some individuals do not
visit their physician or do not go to a hospital, a “zero” value is a common cutcome.
The specific nature of count data with excess zeros is well documented in the analysis
of the demand for medical care in the univariate case. Two-part models have been
shown to be superior to standard (one—pért) models in several applications in health
economics using cross-section data.

A review of several recent econometric studies indicated that the vast majority
of empirical work conducted in this area of research used cross-section surveys to
analyze the usage of medical services. This may be due to the paucity of panel
data integrating detailed health related questions. In Canada, the only source of
information is the Canadian Health Survey (CHS) which is an annual cross-section
of a representative sample of Canadian households. Rochon (2003) used two cross
sections (1994 and 1998) of the CHS database to examine the effect of the health care
system reforms implemented in Canada during the mid-1990s. However, even when
longitudinal data is available for analysis, it is common to find models pooling the

data and applying a univariate count distribution to the pooled data. This may be



undesirable if the data is correlated over time. Following a panel of households over
time is likely to provide more accurate information on the dynamics of the utilization
of medical services rather than pooling different cross sections.

In Chapter 3, a new approach is proposed to analyze the demand for physicians
using a panel of German individuals followed over four years. The dependent count
variable - the number of doctor visits - is characterized by the presence of a high
proportion of zeros and correlation over time. After comparing in the presence of
correlation univariate count models applied to a pool of cross-sections and longitudinal
count data models, a new methodology is presented based on an extension of the
Hurdle model to accommodate an excess of zeros in the longitudinal case. This
chapter will also document if determinants of the number of physician visits are
different between men and women as shown by Geil et al. (1997) in their analysis
of hospital visits in Germany. A separate analysis will also be conducted to model
the demand for general practitioners and specialists as they may differ as found in
Pohlmeier and Ulrich (1995) in their analysis of the number of physician visits in 1984
in Germany.

Chapter 4 presents a new way of looking at the analysis of longitudinal clinical
trial count data. While this area of research is typically conducted by biostatisti-
cians, economists and especially econometricians have a growing role to play in the
determination of drug efficacy in order to conduct economic drug evaluations. Phar-
macoeconomic or the economic evaluation of pharmaceutical products is a growing

area of research which is fueled by increased public regulations aimed at controlling



health expenditure increases. Since 1994, Canada has developed guidelines to con-
duct pharmacoeconomic studies. It is now mandatory in Canada to provide economic
evaluations for any new pharmacotherapy in order to get it approved for public re-
imbursement. Over the last decade, guidelines, publications and textbooks have
flourished in the area of pharmacoeconomics providing guidelines in the conduct of
pharmacoeconomic studies. The reader is referred to Drummond et al. (1998) for a
comprehensive review of the theory and methods for economic evaluations of health
care programs. Unfortunately, the literature on pharmacoeconomics has generally
ignored the statistical issues associated with the determination of the efficacy of drug
treatments. However, if the design of the statistical analysis is incomplete or incor-
rect, parameter estimates may be inconsistent. In a worst-case scenario, no treatment
differences between a new and old pharmacotherapy will be detected while one treat-
ment is more effective than the other. With this scenario (i.e., no superior clinical
profile), the economic profile may not demonstrate the superiority of this new treat-
ment even if the new product is launched at a discount price. From a societal point
of view, the economic and humanistic impacts are considerable. The government will
lose money because it refused a cost-effective treatment. Patients will be deprived
of an improved treatment. The pharmaceutical company which developed the com-
pound will not make a positive return on its investment because this new treatment
may be not accepted by public or private formularies for reimbursement. In countries
where the public health system is predominant, public listing (i.e. reiﬁbursement) is

key in order to offer to the afflicted population free access to a new drug treatment.



In this context, Chapter 4 concentrates on the comparison of the efficacy of treat-
ments which are very effective in preventing the occurrence of a health count outcome
(e.g., number of seizures, number of episodes of asthma, etc.). High treatment efficacy
translates into a high number of zeros episodes observed among cured patients. This
is illustrated through an analysis of an unpublished subset of a clinical trial. The
analysis concentrates in a count variable which was one of the secondary endpoints
collected in this trial. This dependent count variable is characterized by overdis-
persion and correlation between consecutive time periods. A new model based on
a Quadrivariate Negative Binomial Zero-Inflated distribution, is presented to ana-
lyze this clinical trial. Results are compared to the standard methods of analysis to
analyze longitudinal count data in clinical trials, including Generalized Estimation
Equations models. The last chapter concludes by summarizing the main results and
implications of this research in the area of health economics. Limitations associated
with the two new models presented in chapters 3 and 4 are discussed before identifying

future areas of research.



Conventional linear regression models may not be appropriate for longitudinal count
data as some basic assumptions such as the normality of the residuals are violated.
Instead the discreteness of the count variable and the repeated aspect of the data have
to be taken into account by the use of appropriate models for analyzing longitudinal
count data. These models also need to accommodate two additional characteristics
associated with longitudinal count data, which are the presence of unobserved het-
erogeneity and the correlation over time arising from the repeated aspect of the data.
In addition, in some cases the data can be characterized by a high proportion of zeros
which need to be taken into account as well.

This chapter reviews the econometric literature on longitudinal count data with
an emphasis on longitudinal count data characterized by a small number of repeated
measurements on the count dependent variable. Short longitudinal count data sets
are common in the real world and present special features which make them different
from pure time series count data. Four types of models to analyze longitudinal count
data were identified in the economic literature: 1) Parametric models which extend
the Poisson univariate or Negative Binomial univariate distribution-based models to
the longitudinal case; 2) Non-parametric models relaxing the assumptions on the
distribution of the dependent variables such as Pseudo Maximum Likelihood models
or models based on generalized estimations equations; 3) Generalized Auto-Regressive

models which include the past value of the dependent count variable in the covariates

8



and 4) A Multivariate Zero-Inflated Poisson model which has recently been developed
and applied to the bivariate and trivariate case. A summary of recent applications of
these models is presented before identifying important features of longitudinal count

data which have traditionally been underreported in the literature.

2.1.1 Poisson Models

Basic Poisson Model The starting point of dealing with discrete non-negative
integer values is to consider the simple Poisson regression model. Let y;; be the
dependent variable which represents the count outcome of individual 7 at time t,
where i=1,...,N indexes individuals and t=0,...,T, indexes time periods. The y;’s are
assumed to be independent across individuals and across time and have a Poisson
distribution conditional on parameters A;. To ensure non-negativity, the parameters

i depend on a set of k explanatory variables, xz;, such as:

Ase = exp(zqf). (1)

The term z;; /3 is the inner product of the covariate vector for individual ¢ at period
t and a parameter vector § which is assumed to be the same for all individuals. The
Poisson distribution is given by:
Aie) A

Py | dee) = ;e}ipl(:“r—“”- (2)

Yig:



The dependent variable is related to the set of explanatory variables through
the parameter of the Poisson model A;. The parameter § can be estimated by the
maximum lkelihood method. The log-likelihood function I{8) to maximize with

respect to [ is:

N T N T N T
1By =~ Z Z exp{zi ) + Z Z YieTaeld — Z Z In{y:!). (3)

i=1 t=0 i=1 {=0 =1 {=0

In this equation, ¥ = (%:,..., ¥i7) represents the number of counts from t=0
to T for individual 4, and ¢=1...N. This function [{3) is § globally concave, hence
uniqueness of the global maximum is ensured. The First-Order Condition (FOC) is

given by:

DD ma [yu — expl(zuB)] = 0. (4)

g=1 t=0

The mean and the variance of the Poisson distribution are given by:
E(yit | 7, 8) = Var(ys | i, 8) = i = exp(z:). (5)

The Poisson distribution assumes a mean-variance ratio equal to unity. However,
most of the longitudinal count data sets which have been analyzed in the economic
area suggest that the dependent count variable is typically overdispersed (i.e. the
variance of the dependent variable is greater than its mean). As is well known,

overdispersion is associated with unobserved heterogeneity among individuals.
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Unobserved heterogeneity in count data can be modelled by the introduction of
an individual specific effect in the parameter of the Poisson distribution. A more
general formulation of the Poisson mean considers that conditional on A; and random

parameters oy, ¥y 18 Poisson distributed as:
Y ~ P (ai)‘it)- (6)

In this specification, the individual specific effects, ¢y, are multiplicative. As pre-
viously Ay is defined as \; = exp(z;4). Based on this specification, two approaches
have been developed to integrate unobserved heterogeneity in the Poisson model.
Fixed effects models assume that the o;’s are unknown parameters to be estimated.
In Fixed Effects models, the «;’s are eliminated in the maximization process either
by concentrating the likelihood function or by conditioning on the sum of the number
of counts over time. Random effects models assume that the ¢,’s are independently
identical distributed (iid) random variables generated by a specific distribution. If a
Gamma distribution is taken, this leads to the Multivariate Negative Binomial model

as 3 Poisson-Gamma mixture.

Poisson Fixed Effects (PFE) Model The Poisson Fixed Effects (PFE) model
considers that conditional on A;; and parameter o, y; is Poisson distributed with

mean:

E (yz‘t | Aigy o) = Py = 0 Ag = oy eXP(%tﬁ)« (7)
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oy is the individual fixed effect, Ay is a specific function of covariates z; and [,
such as Ay = exp(z3). The conditionsl joint density for the i** observation is given

by:

Pr(yﬁ;yﬂsw:yit ] xit,f?’,ai)z

[exp( -'OLiAit) (&z‘/\gt)yit :}
ya!

=0

T Yz Yit
Lo pY:
— exp( o § :Azt) Ht ) Ht £14
=0

Ht yitg ‘ (8)

It follows that the log-density function for individual ¢ is defined by:

T T T T
In Pr(yﬂ, Yizy -5 Yiz i ay, /3) = —Qy Z A +1noy Zyit + Z Yie In Ay — Z Iyl

=0 =0 t=0 =0

©)

Differentiating with respect to a; and setting the resulting equation equal to zeros
defines the First-Order Condition (FOC) of the Poisson Fixed Effects model given

by:

A ZTt:o Yie

;= . (10)
Ez;o it

This First-Order Condition is substituted back in the log-density function for
individual ¢ given in equation (9} to yield the concentrated log-likelihood function for

all the sample,
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Yit .
i( ﬁ) ‘ ( Z;{‘—-U Yir ) H{—;O )‘?;t
=0 2?:0 Ait H,f:o Yis!

/\ét Yie
———————Zz;l /\is) } . (11)

In this result, the individual effects a;’s have disappeared. Differentiating this

expression with respect to [ yields the second First-Order-Condition which is inde-

pendent of the a;, the fixed effects parameters:

Z Z Zit (Yir — Zt“" Za=o¥ity g (12)

i=1 {=0 Zt*ﬂ it

Estimates of 3 are consistent for fixed T and n — co. This result holds despite the
presence of the incidental parameter o, as discussed by Cameron and Trivedi (1998).

Another approach to estimate the fixed effects, o;’s, in a Poisson model, is the con-
ditional maximum likelihood method which was proposed by Haussman et al. (1984)
based on the specification of Anderson (1970). As in the preceding approach, the con-
ditional maximum likelihood method considers that the unobserved heterogeneity is
the result of an unobserved fixed effect. The conditional maximum likelihood method
allows for the fixed effects to be correlated with the regressors by conditioning on
the sum over time of the counts for a given individual. In models with multiplicative
effects such as p;; = o4, the conditional maximum likelihood method is straight-
forward since the sum over time of the counts, ), ¥, is distributed as Poisson with

parameter o; Zt Ait. Conditioning to the sum of counts over the whole period allows

13



removal of the individual specific effects from the distribution of the dependent vari-
able. The conditional joint density of the conditional Poisson Fixed Effects model is

given by:

T T 71
Pr i1y Jidy oovs YiT—15 (g it T i :
Pr(ya, Yz, s Yie | Zyu) _ Prlya via, s ir-1, g Yt = 2 g )

=0 Pr( EZ:O y":t)

exp(— 3, ashg ) (@ dg Vit
— Ht yis!
exp(-— Et aiA‘it)(Zt aiAit)(Et Vit)

Zg yit!

_ Cwi ( M ) (13)

- [T ! 0 D¢ At
Again the individual fixed effects, a;’s, have disappeared in equation (13) because
the o;’s simplify to in this equation. In the special case A; = exp(z; ) the preceding

expression becomes:

(Et yit)! ( exp(mitﬁ) )yit
Pr(y1, Yios -y Yit ) = |
I‘(y 1y Yiz Y, ‘ Z Y t) Ht Yie! oy ZS exp(ﬂfitﬁ) (14)

It follows that the conditional maxdimum likelihood estimator of the Poisson Fixed

Effects model maximizes with respect to § the following conditional log-likelihood
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function:

18 =Y (S p) - 3 In(gal) + S

=1 =0 =0 =0

Equation (15) is proportional to the concentrated log-likelihood function given in
equation (11) implying that the concentrated maximum likelihood estimate equals
the conditional maximum likelihood estimate (Cameron and Trivedi, 1998). The
First-Order Condition associated with the Poisson Fixed Effects model is obtained

by differentiating equation (15) with respect to 3, yielding:

i=1 ¢=0

Rewriting this equation by setting y,, = %ZZ;O y; and ;\it = %Z;‘l o Ait With

it = exp(zif) yields the following expression which is equivalent to equation (12):

n T -
Z Zfﬂz’t(yit ~diy — o, (17)

i=1 =0 Aiz

Because (Y1, ¥i2, -, Yt | 2, Yie) is multinomial distributed with probabilities p, ..., pir
{(Cameron and Trivedi, 1998; Winkelman, 2000), with p;; = A/ Y, As, it follows that
in the conditional fixed effects model, y;; is Poisson with mean p;; >, Ay. The fixed
effects o; are again estimated by 3, vi/ >, Aa

The Poisson Fixed Effects model allows the introduction of individual unobserved

effects which have to be estimated jointly with the coefficients of the covariates. By
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concentrating the likelihood function or by conditioning in the total number of counts,
the fixed effects can be estimated. The conditional maximum likelihood method al-
lows the control of correlation because the events at a particular point of time are

conditional on the total number of counts.

2.1.2 Multivariate Negative Binomial (M

{B) Models

In the preceding Poisson models, the individual specific effects were assumed to be
fixed over time. It is possible however that the unobserved effects are still invariant
over time but random across individuals according to a specific distribution. In a
Poisson Random Effects model for longitudinal count data, the Poisson’ s parameter

becomes:

tig = exp(zif + €;) = exp(zaf)y; = Ay, with v; = exp(e;) (18)

The random term ¢; takes into account heterogeneity in the data or possible spec-
ification errors of \; = exp(z;3). These misspecifications may result, for example,
from the omission of non-observable explanatory variables or from measurement errors
of these variables. This review of Multivariate Negative Binomial models starts with
a basic description of the different Univariate Negative Binomial models since they
are sometimes used for the analysis of longitudinal count data in health economics
(i.e. by pooling the data). The Multivariate Negative Binomial model (Johnson,

1997) and its random effects (Haussman et al. 1984) are presented thereafter.
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Univariate Negative Binomial Models For any given parametric family of dis-
tributions f(y | ) conditional on vy, where v is a random variable with distribution

(G, the unconditional distribution Fi; can be written as:

%@=/ﬂmwwm. (19)

This integral has an explicit solution when y is distributed as Poisson with pa-
rameter § = Ay and v is Gamma distributed. Differentiating with respect to <y yields
the Univariate Negative Binomial distribution as a Poisson-Gamma mixture. For ex-
ample, in Cameron and Trivedi (1986), v, has a Gamma distribution (¢;, o) such as
9(v:) = (G exp(%;’“‘-);y%, with E(y;) = ¢; and Var(y;) = 1¢7. Integrating the
probability mass function with respect to «; yields the following Univariate Negative

Binomial (UNB) distribution:

UNmnzwzréﬁ&?n[mf@rwmf@Jf 20)

The mean and the variance are E(y;) = ¢; and Var(y;) = ¢; + 2¢7. Several for-
mulations of the Univariate Negative Binomial distribution can be formulated based
on the relation between the underlying parameters of the gamma distribution and
the covariates as discussed in Cameron and Trivedi (1986). In the Negative Binomial

Type 2 (NB2) model, a quadratic form is assumed for the mean-variance relationship
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such as:
Var(y) = E(y:) + o [E@)] . (21)

The mean, E(y;) = ¢; = exp(x;0), corresponds to the parameter A; in equation

(18). The Negative Binomial Type 1 (NB1) model has mean and variance given by:

E(y;) = exp(z:f) (22)

Var(y:) = (1+ ) E(y:)- (23)

Equations (22) and (23) implies a variance to mean ratio constant across individ-
uals and independent of the mean. Another specification of the Univariate Negative
Binomial (UNB) distribution is given by Winkelman (1994) as follows:

. Da+wn) A" 1 )
UNB(Y,=y) = T(a)T (g + 1) {(1 + Ai)} {(1 + /\i)] . 2

In this specification the mean and the variance are given by E(y;) = a); and

Var(y) = ad(l+ A).

Multivariate Negative Binomial Distribution Mixture representations can be
extended to the longitudinal case when y is a vector V' =(yg,...%), € a scalar and

f(. | 8) is the product of its T marginal distributions. Assuming independence,
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equation {19) is still a mixture given by:

F(Y) = / gj} fulwe | M)A (). (25)

In this expression, G and each f; are univariate distributions. The interpretation
of v is that of a common heterogeneity component affecting all counts. It has been
shown that multivariate distributions generated in this way have univariate marginals
in the same family (Marshall and Olkin, 1990; Kocherlakota and Kocherlakota, 1993).
For example, Marshall and Olkin (1990) have generated a bivariate Negative Binomial
distribution with f; and f; being Poisson distributed with parameter A7y and Ayy
and v has Gamma distribution with parameter 1/o. Cameron and Trivedi (1998)
observed that there was no application or computational experience of multivariate
distributions generated in this way.

In the longitudinal case it is assumed that the counts observed at each time period
are independently distributed Poisson conditional on v, with mean g, = Ayy;, and
7., the unobserved heterogeneity variable, has a Gamma distribution. The term A; is
related to the set of covariates by the exponential function as Ay = exp(z;[) in which
Zy 18 the vector of covariates of unit ¢ at time t and 3, the associated parameter vector,
is assumed to be the same for all individuals. For simplicity unknown parameters and
strictly exogenous variables are suppressed in the following eguations without loss of
generality.

The Multivariate Negative Binomial {M N B) probability mass function of ¥ =

(Y0, ---¥ie) is generated by integrated out v, in:
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After collecting the terms independent of 7, and using the properties of the

Gamma distribution, it can easily be shown that the Multivariate Negative Bino-

mial (MNB) density function can be written as:

ot (04 (stom) ) lovsmm)
MNB(Y,) = =0 . S— .
(i) = S (g + D [ A\ T2 W
@7)
A complete description of the properties of the Multivariate Negative Binomial
distribution can be found in Johnson et al. (1997). In particular, the mean and the

variance of y;; at period £ of this distribution are given by:

E(yzt) = CM/\\,;t (28)

Var(ys) = ari(l + Ag). (29)

The variance is greater than the mean thus modelling overdispersion and the
variance-mean ratio increases with the mean. Using the distribution defined by equa-
tion (27), the likelihood of the Multivariate Negative Binomial probability distribu-

tion, (8, ), has a simple form that is tractable and is given by:
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N
_ e+ jy:) —nT(e) - T nT{ye + 1) +
HB.e) = ; { Z;f:n {yalndie} — (a+ Eg;oyit) In(1 + E?:O)‘it) ) (30)

After parametrization of (M, ..., Aiz), estimation can be performed by maximizing
the likelihood function given in equation (30} with respect to §, the vector of parame-
ters, and «, the coefficient of overdispersion which is assumed to have the same value
for all individuals, using the Newton-Raphson algorithm.

The Multivariate Negative Binomial model offers several advantages over the pre-
ceding Poisson models. The Multivariate Negative Binomial model accounts for un-
observed heterogeneity at the unit level while allowing the data on the observed count
to be correlated among individuals over time. The coefficient of correlation between

two time periods r and s is given by (Johnson et al., 1997):

)\ir/\is

pi(r,8) = (31)

Multivariate Negative Binomial Fixed Effects (MNBFE) Model Similar to
the approach of the Poisson Fixed Effects model, Haussman et al. (1984) derived
a fixed effects version of the Multivariate Negative Binomial model in order to add
individuals specific effects to the Multivariate Negative Binomial model. In this new
specification, the individuals specific effects are derived conditional on the total num-
ber of counts observed over the period of analysis. Haussman et al. (1984) used a
Univariate Negative Binomial Type 1 distribution because the sum of independent

Negative Binomial random variables is again Negative Binomial distributed only if
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the distribution is Negative Binomial Type I (Winkelman, 2000). This model assumes
that the counts are independent over time and that the individual fixed effects are
constant over time for each individual.

In the case of two repeated measurements at t= 1 and t= 2, y = y; + ¥y is
distributed as Negative Binomial with parameter (A\; + Ao, 8), the following can be

written:

Pr(y;) Pr(ya)

Priy, e ly=y+10) = =

D(Artys) )(1 +5)——(y1+yz)(%)>q+z\z_£()\_2ﬂ/2L

_ T +1 by )
(A1 4+de+ ” ; .
O (14 8) s (Lt

The ratio (735)*+*2 as well as (14-6)~®1*¥2) cancels out in expression (32) yielding:

T+ )P + )T + X)) (y + 1)

Prlyn, e ly=mn+u) = (33)

More generally, the Multivariate Negative Binomial Fixed Effects (M NBFE)

distribution for longitudinal count data is given by:

T
MNBFE(yin, v, -y | Y 1e) = (

£==0

D%t + yar) ) F(Et M) DO, Y + 1)}
F()‘it)l_‘(yit +1) F(Zt At + Zt Yit) .

(34)

The parameters of the underlying model are (X, 6;) = (eaxp(a:itﬁ), e—xf(im) The
unobserved heterogeneity is individual specific rather than constant across individu-
als because ¢, and u; vary across individuals in the fixed effects specification. ¢, is
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the individual specific effects in the conditional expectation function and y; is an
individual specific fixed dispersion parameter. Only the ratio ———(f——) is identified in
this model, but it cancelled out when conditioning on the individual specific sum of
counts ZZ;.Q ¥ and only )\ = exp(z;0) appears in the final equation. The mean

and the variance of the Multivariate Negative Binomial Fixed Effects distribution are

given by:

E(yu) = exp(zal + 1:)/¢; (35)
\_ [exp(zaB+ pg)\ [ 1+ exp(u,)
ot = (e (o)

The mean-variance ratio is different from the original Negative Binomial Type 1
model. The log-likelihood function, {(3), associated with the Multivariate Negative

Binomial Fixed Effects model is:

B = Zzln(r(/wyw) sz [T (hae)T(gie + 1)] +

=1 t=0 'z._l t~0
3N T(Z A,t)} + Z Z In {F(z Yir + 1)}

Z Z In T(Z A + Z yit)] . (37)

This Multivariate Negative Binomial Fixed Effects model accounts for the lon-
gitudinal aspect of the data, the presence of covariates and the between subject

heterogeneity by introducing a fixed effect factor. It allows a variance to mean ra-
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tio increasing with the mean but it assumes that the random eflects are constant
across individuals which may be a limitation of this model. Another weakness of
this model is that the probabilities and the marginal effects cannot be computed be-
cause the estimation of the fixed effects model réqmﬁres the fixed eflects estimators
to be conditioned out (Greene, 1998). Because it is not possible to decompose the
Negative Binomial Fixed Effects distribution according to a product of conditional
distributions it is not possible to define the distribution for the initial observation for

modeling purposes as it will be discussed in Chapter 3.

Moultivariate Negative Binomial Random Effects (MINBRE) Model In the

preceding fixed effects model, the parameters of the underlying model are:

(i, 61) = (emp(a:itﬁ), ex;?(im)) ., (38)

In this equation ¢; and y,; can vary across individuals. Haussman et al. (1984)
have integrated random effects in the Multivariate Negative Binomial Fixed Effects
distribution. In this new specification, it is assumed that 6;/(1+ ;) with §; = ;{-g%@,
is randomly distributed across individuals, independent of the covariates, as a beta

random variable with parameters (a, b) with density function, mean and variance

given by:

& o d;
1+6; (1_1+6i

Fl16:/(1+6)] = [B(a,5)] . (39)
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6,; a
E(l—i—éi):a-%—b (40)
51' _ ab
Vari 3 5) = o Dt (41)

Haussman et al. (1984) showed that the probability mass function of the Mul-
tivariate Negative Binomial Random Effects (MNBRE) distribution can be written

as:

Ta+8Ta+ 57 AT+ 57 ys) vy TOus + 5Ly
MNBRE(yi, Ya, - ¥it) = ( IACEDI) Tt) ( z}—Oyf) I‘( )j FZ‘M ?/it)
T(e)T (o) (a + b+ thg Az + thg Yit) P (Qat)T(yae + 1)

(42)

Estimation can be done by maximizing the associated log-likelihood function with
respect to 8 and the parameters of the Beta distribution, a and b. The log-likelihood
function of the Multivariate Negative Binomial Random Effects model, I(3, a,b), is

given by:

N " 1n1‘(a+b) —é—hlI‘(a«}—Zf:Q )\zt) _‘_lnr(a_*_zg;zay%)_
(,0,5) =" | InT(a) = InT(8) ~ InT(a+ b+ g e+ gl |

(43)
=1 Z?:o {ln T(di + Zz;o Yir) — InT(Ay) — InT(ys + 1)}

Overall, the Multivariate Negative Binomial Random Effects model accounts for
over-dispersion, serial correlation and heterogeneity at the individual level modelling.
This specification is referred to by Haussman et al. (1984) as conditional or within-

firm model as opposed to the Multivariate Negative Binomial Fixed Effects model or
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between-firm model. Between-firm models or marginal models estimate the marginal
(between) dimension of the data by averaging the counts over the time period (Hauss-

man et al., 1984).

2.2 Non-Parametric Models

The models presented so far can all be estimated by maximum likelihood techniques.
However, longitudinal count data have also been estimated with non-parametric mod-
els. The starting point of this methodology is the linear multivariate linear exponen-

tial family for which a representative probability mass function is given by:

F i, 1) = exp [A(p;(B)) + Blws) + C(1:(6)) ] (44)

where y;is a K dimensional and random count variable with mean and variance
E(y;) = p; and Var(y;) = V;. The functions, A and B, are real valued functions,
C is a K dimensional vector valued function; g, depends on a parameter vector, 3.
This family includes specific distributions for count data such as the Poisson and the
Negative Binomial (o given) distributions, as well as the gamma (« given), normal
(o given), binomial (n given), multinomial (n given) and the normal multivariate
(3_ given) distributions (Gourrieroux et al., 1984). This family of distribution has

desirable properties that are discussed in the following sub-sections.
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2.2.1 Pseudo Maximum Likelihcod (P)

;) and Quasi Generalized Pseudo

Maximum Likelihood (QGPML) Methods

The Pseudo Maximum Likelihood (PML) method consists in taking a distribution
which is a member of the family of linear exponential distribution. Although this
distribution may not belong to the true one, when a distribution pertaining to the
linear exponential distribution is taken and provided that the mean is correctly speci-
fied, consistent and asymptotically normal estimates can be achieved with the Pseudo
Maximum Likelihood method as demonstrated by Gourrieroux et al. (1984). Any
linear exponential family will yield consistent estimates of the parameters of a cor-
rectly specified mean function, regardless of the true model. For longitudinal count

data the log pseudo-likelihood to maximize is:

> D [Awa(B)) + Olua(B))yee) - (45)

i=1 t=0

This expression depends on the chosen pseudo distribution. For a Poisson dis-
tribution with mean Elyy | z4] = p, = exp(zaf) , the objective function to be

maximized is (Gourieroux et al, 1984):

N T

Z z [— exp(zuf) + yuzil) . (46)

The First-Order Condition resulting from maximizing equation (46) is similar to
the First-Order Condition obtained from the Poisson likelihood specification defined

in equation (4). If the distribution is assumed to be Negative Binomial Type 2 with
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parameter 0, the corresponding Pseudo Maximum Likelihood estimates of § can be

obtained (Blundell et al., 1895) by maximizing the following equation:

N T

Z z [‘—yitwitﬁ - (% +y) In{(1+46 eXp(%‘tﬁ))‘JT . (47)

i=1 t=0

The asymptotic variance-covariance matrix of the Pseudo Maximum Likelihood

estimator is given by J~1IJ~! where J and [ are:

_ plongtm
J = E[aﬁzolaﬂ}, (48)

_ O ., Ot
I = Ebﬁzﬂlﬂofgg]. (49)

The term ) _ o is the variance of the gamma distribution and {)g is the variance of
the true distribution. Because the Pseudo Maximum Likelihood model assumes that
only the mean is correctly specified, the Pseudo Maximum Likelihood estimates of
the Negative Binomial Type 1 and Type 2 models are similar.

The variance-covariance matrix can be estimated in different ways. Gourrieroux et
al. (1984) developed a two-step method which provides better asymptotic estimators
than the estimates obtained by Pseudo Maximum Likelihood methods assuming that
the conditional moment of second order is known. This method is referred in the

economic literature to the Quasi-Generalized Pseudo-Maximum Likelihood (QGPML)
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method . In the first step, a consistent estimator of § is computed by:

22 [(yzt - GXP(yz'tg))z - exp(yitl;)} eXP(Qxit@

exp(éixit?;\)

5= (50)

In this equation b are the first estimates of § estimated by Pseudo Maximum
Likelihood. In the second step, estimates of parameter [ are performed by Pseudo
Maximum Likelihood with the second order moment taken into account using the
estimated consistent value of 6, 3 For the gamma pseudo-distribution, the objective

function to be maximized is:

D { plzd) = (—Zaf} — Yt exp(—waﬁ))} : (51)

o L1 +Eexp(a:itb)

The asymptotic variance-covariance maftrix is equal to:

E (zita:gt exp(:vz'téj )} - ‘ (52)

1+ gexp(xit@

The matrix of the Quasi Generalized Pseudo Maximum Likelihood estimator is
smaller than the matrix of the Pseudo Maximum Likelihood estimator J1IJ™" de-
fined by equation (48) and (49). Both Pseudo Maximum Likelihood and Quasi Gener-
alized Pseudo Maximum Likelihood models assume that the mean function is correctly

specified and the distribution is a member of the linear exponential family.
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2.2.2 Generalized Estimating Equations (GEE) Model

Liang and Zeger (1988) and Zeger and Liang (1988) have proposed quasi-likelihood
longitudinal count data methods that describe the correlation structure among the re-
sponses while also taking overdispersion into account. Generalized Estimating Equa-
tions models are an extension of the Generalized Linear Model from the independent
case to repeated measurements by extending the concept of quasi-likelihood to corre-
lated observations. Generalized Estimating Equations models adjust for correlation
on observations of the same individual or firm by the introduction of an arbitrary
covariance matrix in the score equations of generalized linear models. Similar to
Pseudo Maximum Likelihood and Quasi Generalized Pseudo Maximum Likelihood
specifications, Generalized Estimating Equations models assume that the distribution
governing the counts over time is from the multivariate linear exponential family. For

this family, Gourieroux et al. (1984) showed that:

0A/Bu, + (8C[Opy)py = 0and (53)

8C /oy, = V7 (54)

With respect to 3, the First-Order Condition for maximizing a likelihood function

based on this distribution is:

DD (Buat/BBYV ™ (yie — pir) = 0. (55)

=1 t=0
This system of equations is called Generalized Estimating Equations (GEE). Liang
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and Zeger (1986) have proposed various models for the correlation structure including
an independent model, an exchangeable or an unspecified correlation structure. In
Generalized Estimating Equations models, the mean is related to the set of covariates
by a link function & such as A{u,) = A{(E(ys)) = zu:0.

The functional form between the variance and the mean is specified as Var(y;) =
ag(p1;), o being the so called dispersion parameter. Through selection of h and g, a
general class of responses can be modelled (continuous, binary and count). For count
data the link function h is the natural logarithm, whereby h(y,,) = log(u,) = zuf
and g is the identity function specified as g(p;) = gy

Generalized Estimating Equations estimates are asymptotically consistent even if
the covariance matrix is misspecified as long as the regression equation for the mean
is correctly specified and the marginal distribution of the counts is from the expo-
nential family (Liang and Zeger, 1988). However, this may be a poor assumption
since the analysis may indicate that a model outside the linear exponential family
is required. For example, if the Negative Binomial distribution happens to be the
true distribution describing the data, applying a Generalized Estimating Equations
model is only correct if the value of the coefficient of overdispersion is known (Lindsey,
1999). If not, the Negative Binomial distribution does not belong to linear exponen-
tial families. In a Generalized Estimating Equations model, the score equation for
many covariance matrix cannot be integrated back to a likelihood function making
comparisons difficult among different models. This is also true for all non-parametric

models. Albert (1999) noted that although likelihood-based methods are less robust
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than Generalized Estimating Equations models, they are generally more efficient and

offer well-defined means of assessing model adequacy.

2.2.3 Generalized Method of Moments (GMM) Model

All the models presented so far assume strict exogeneity of the covariates. However,
this may not always be the case and other models have to be sought. The Generalized
Method of Moments model allows for correlated fixed effects but relaxes the strict
exogeneity assumption of the regressors. Similar to the Poisson multiplicative effect
distribution, the Generalized Method of Moments model (Hansen, 1982) assumes the

following set of conditional mean restrictions:

E(yis | 2i5,8:) = explzaf + &),V s < ¢ (56)

Here z;, s=0, 1, 2,....,t, represents any set of instruments such as equation (56)
holds. The unobserved fixed effect, €;, can be removed by a quasi transformation

proposed by Chamberlain (1992 a):

Eys — Y1 exp {(Ti — Za11)0} | 2] =0,V s < L. (57)

These orthogonality conditions remain valid under weak exogeneity of the re-
gressors because the conditioning set is dated at period t or earlier (Blundell et al.,
1995). Generalized Method of Moments models allow for heteroskedacity and any

serial correlation pattern of the errors terms while relaxing the assumption of the
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strict exogeneity of the regressors. However, as Generalized Estimating Equations
models, Generalized Method of Moments models can not be inflated to accommodate

an excess of zeros.

Another non-parametric approach which has been recently used for panel count data
analysis (Cincera, 1997) is based on simulated likelihood methods. The Simulated
Maximum Likelihood approach assumes that the distribution of the random ¢; is
associated with a random vector which is generated by a known distribution, F, as

follows:

&y = F(ué, 9) (58)

Here 8 is a vector of parameters and the distribution of u; is given. Gourieroux et
al. (1991 a, b) showed that when the ¢; represents a univariate continuous variable, the
function F(u;, ) can be chosen as the inverse of the cumulated distribution function
of the ¢; and in such a case, the distribution of the w; is the uniform distribution on

[0, 1]. With these assumptions, the log-likelihood function can be written as:

N T +oo o — €XpPl—Ty u; 1 ){e — Ty ;) ¥t
2.2 0 ([m e ﬁ+yiz§)( Pzl + ) dy(uz-)). (59)

The integral of this log-likelihood function can be computed by simulation on the

u; and by taking the sample mean. These simulations are quite simple given that the
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distribution of the w; is known, yielding:

i i I (;{1? i exp(— exp{—zuf + un)) (exp(—zuf + uih))“‘) _ (60)

L
i=1 ¢=0 h=1 Yie:

This method is referred to the Simulated Maximum Likelihood method. When
H is fixed and tends to infinity, the estimator is biased and the asymptotic bias is
of the order of %. The Simultated Maximum Likelihood estimator is consistent and

asymptotically efficient when H and N tend to infinity such as % tends to zero.

2.3 Generalized Auto-Regressive (GAR) Model

Generalized Auto-Regressive (GAR) models have been proposed to analyze longitu-
dinal count data. In these models, the analysis is conditional on past cutcomes as
well as current and past values of exogenous variables. In the first Auto-Regressive

model the conditional mean follows an AR(1) process of the form:

E(yu) = exp(zaB + pyi—1)- (61)

Here ;.1 appears as a regressor in the conditional mean. Cameron (1998) notes
that this model is explosive for p > 0. Instead, he recommends the following approach

(Cameron and Trivedi, 1998):

E(yie) = pigpp = exp(z:f + plny;_,) = exp(zuh) (Yi—1)" (62)
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In this equation, y};_, is a transformation of y;_; such as:

Yy = max(c,yi-1),0<c<1

Y1 = ¥Yit-1+¢ c>1L (63)

Cameron and Trivedi (1998) indicated that this transformation was required be-
cause if y;;_; = 0 then the conditional mean p,,_; = 0 then y;; = 0. Once the process
for determining the evolution of the mean and the functional form of the conditional
distribution has been chosen, then parameter estimation can be implemented. For
example if the conditional density f(yi | Zis, Yiz—1) is Poisson or Negative Binomial
distributed, estimation can be done by maximizing the likelihood function, {(3, p),

given by:

1B, p) = Z Zf(yit | it Yit—1)- (64)

i=1 =1

It is not clear, however, how to treat the initial value in short longitudinal count
data sets in which the number of repeated measurements is small. In the normal case,
it has been shown that treating the initial value as a covariate may lead to inconsistent
estimates (Greene, 1998; Greene, 2000). First-Auto-Regressive models have also been
estimated using Generalized Estimating Equations models (Diggle, 1996; Liang and
Zeger, 1988; Zeger, 1988) which included past values of the dependent variable as
regressors. Markov models have also been used to model a time series of epilepsy

seizures (Le et al., 1992; Zeger.and Liang 1991).
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Using patent data, Blundel et al. (1995) proposed a Linear Feedback model which
determined whether the presence of serial correlation could be viewed as an issue of
dynamic specification in the patenting process. The Linear Feedback model is defined

by the following quasi-differenced orthogonality conditions:

E [(yit — ¥5-10) — aerr — yip)exp { (el — z5) B} | 2] =0,V s <t (65)

where:

Y{; = (?h‘t; y'it-—-l,yit~2)’ pl = (PlaP2>P3)7 x:: = (kitasit) and 6*’ = (ﬂk’ ,33)

In equation (65), lagged values of the count variable among the regressors are
present. Fixed effects can be removed by first or quasi differencing. If the t-2 lagged
and higher values of Y}; are used as instruments for (yi—1 — ¥i—2), then consistent
estimates can be obtained as long as the residuals are not serially correlated (Cincera,
1997).

Other models cited in the econometric literature on time series count data are
First-Order Integer—Valuéd Autoregressive, INAR(1), (Al-Osh and Alzaid, 1987),
First-Order Integer-Valued Autoregressive Moving Average, INARMA(1), (McKen-
zie, 1986; Al-Osh and Alzaid, 1987) or serially correlated models (Zeger 1988). These
models have been developed for pure time series of count data when T goes to infinity.
INAR(1) and INARMA(1) are parametric models that consider that y; is the sum of

an integer whose value is determined by past outcomes and independent innovation
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whose value does not depend on the past outcome. Serially correlated errors mod-
els consider that the serial correlation is introduced in y;, via serial correlation in
a multiplicative latent variable. Covariates have recently been integrated in mixed
INAR(1) models by Bockenholt (1999). However, these models are not suitable for
short longitudinal count data because they assume that T goes to infinity which is a

strong assumption in the case of short longitudinal count data sets.

2.4 Multivariate Zero-Inflated Poisson (MZIP) Model

To account for an excess of zeros in the data, an extension of the Univariate Zero-
Inflated model developed by Lambert (1992) has been recently extended to the mul-
tivariate case by Chin-Shang et al. (1999). In this concept, the term "multivariate”
does not refer to longitudinal count data but to the observation of m discrete outcomes
(y1,¥2, ---» Ym) &t one point in time. The authors have extended the concept of the Bi-
variate Zero-Inflated Poisson distribution to the multivariate case. With parameters
(A0, A205 -+--» Amo, Aoo), the Multivariate Zero-Inflated Poisson (MZIP) distribution is

defined as follows:
(Y1, Y2, -, Um) ~ (0,0, ..., 0) with probability po
~ (Poisson(A;),0,...,0) with probability p;

~ (0, Poisson{As), 0, ..., 0) with probability p,
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~ (0,0, ..., Poisson {\,)) with probability p,,

~ Multivariate Poisson{Aig, Asg, -y Amo, Ago) With probability pi;.

(66)

In this equation pp + p; + ... + P + P11 = 1. The terms Ay, Agg, ..., Amo, Ago are

the means of independent Poisson variables and A = Aig + Agg + ... + Amg + Ago-

The probability mass function associated with the distribution given in equation

(66) is:

Priyn. = 0,92 =0,...,ym = 0) = pg + p1 exp(—A1) + paexp{—As) + ...

+Pm exp(—Am) + P11 exp(—A)

21 AT exp(—A1) + puAiexp(—A)
yi!

Pr(yla Yz = 07 ey Y = 0) =

Pr(yl :{)) Y2, y3=07---9ym:0): [
Ya:

y

DoAY exp(—Xg) + pr1 A% exp(—X)

P A exp(—Anm) + P11 A0 exp(—2)

Pr(yl = 07y2 - 0’ Ym—-1 = 0; ym) = " i

The special case in which at least two of the y;’s are not 0 is defined by:
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min(ylay%“"ym) A’y]_«j )\320—3‘ )"ym—-j /xv[’j}e

?r(yla“'vym):pﬂ 10 ; m0 N .
; (1 — Dby — )17

exp{—A). (68)

Chin-Shang (1999) showed that when (y1,9s,...,¥m) has a Multivariate Zero-
Inflated Poisson (MZIP) distribution with Univariate Zero-Inflated Poisson (ZIP)

distributions as marginals. The marginal distribution of y; is given by:

y; ~ 0 with probability 1 — p; — pni1

y; ~ Poisson();) with probability p; + pi1. (69)

The mean and variance are defined by the two following equations:

E(y;) = (p: + p11)A; and (70)

Var(y) = (o + pr) A [1+ (1 — 1 — ) A (71)

The covariance matrix between y; and y; is given by:

Cov(yiy;) = prides + [Pl — pu — pi — p;) — 2ips] Ak (72)

The Maximum Likelihood estimates , can be obtained by maximizing the following
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log-likelihood with respect to (Mg, ..., Amg, Do, o) Pm):

l(/‘\w, ceey /\mg,pg, ,..,pm) = Z lOg Pl‘(yy, ooy Ymis )\w, caey }smg, /\gg, Po, ...,pm). (73)

=1

In this equation, ¥1 = (Y11,--»Ym1 )y - ¥n = (Yins -, Ymn )} are n independent
random vectors each having the m-dimensional Multivariate Zero-Inflated Poisson
distribution. The probability mass distribution of the Multivariate Poisson Zero-
Inflated,Pr, is defined in equation (68).

The main limitation of this Multivariate Zero-Inflated Poisson distribution given
in equation (73) is related to the complicated form of the maximum likelihood func-
tion. Nonetheless, it is possible to compute estimates in the bivariate and trivariate
cases as shown by Chin-Shang (1999). Chin-Shang (1999) applied a Trivariate Zero-
Inflated model to analyze the number of defects in a Nortel manufacturing plant of
electronic equipment when each item can have three categories of defect at the same
time. Results indicated that the Trivariate Zero-Inflated distribution is the preferred
distribution over Univariate Zero-Inflated or Trivariate distributions in predicting the
proportion of defects.

Although it may be possible in theory to adapt this model for longitudinal count
data, several practical limitations were associated with this distribution. In terms
of computation, there are eight joint probabilities and three of them are non zeros
in the three-dimensional case (Chin-Shang, 1999). When the number of types of
defects per item (as in Chin-Shang, 1999) or the number of repeated measurements

(in the longitudinal case) is greater than 3, the computation may be challenging as
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the number of joint probabilities increases. In addition, in this model, each defect
is expressed as a binary outcome (defect versus no defect) which is different from
classical longitudinal count data in which the outcome can take several discrete values.

Finally, this model does not include any covariate in the mean function.

2.5 Applications

Most economic applications of longitudinal count data models are found in the lon-
gitudinal analysis of the number of patents awarded to firms over a certain period of
time. Several authors (Haussman et al., 1984; Pakes and Griliches, 1984; Montalvo,
1993; Crepon and Dugret, 1993; Jaffe, 1986; Blundel et al., 1995; Cincera 1997) have
studied the dynamics of the structure of patent research and development (R&D) by
considering the annual number of patent applications generated over time as a func-
tion of present and lagged levels of research and development expenditures. Haussman
et al. (1984) have developed benchmark econometric models to analyze longitudinal
count data in the context of panel data. Starting with the basic Poisson model of
equation (2), Haussman et al. (1984) have developed Poisson and Negative Binomial
conditional (within firms) and marginal (between firm) models. The authors derived
in particular the Multivariate Negative Binomial Random Effects model which mod-
els the disturbance in the Within‘and between dimensions. The authors applied the
models given in equation (2), (14), (34) and (42) to a sample of 128 firms followed
over 7 years (1968-1974). The results indicated that the data wanted both a dis-

turbance in the conditional (within) dimension and a disturbance in the marginal
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{between) dimension. Technological dummies and a variable reflecting the pool of
spillovers arising from the technological activity of other firms have been introduced
by Jaffe (1986). Research activity, technological spillovers and sector based dummies
have been considered as explanatory variables by Crepon and Duguet (1997) and
Cincera (1997). Dynamic specifications of the patenting process were examined by
Blundel et al. (1995), Crepon and Duguet (1997) and Cincera (1997). In these mod-
els, past values of patents in the explanatory variables were used to test the impact
of those variables in the current patenting. Crepon and Duguet (1997} showed that
the past number of patents has a non-linear fixed effect in the production of current
patented innovations. The assumption of the exogeneity of the variables was relaxed
by Montalvo (1993) who used a Generalized Method of Moments estimator.

In health economics, applications of longitudinal count data models have concen-
trated in two areas. The analysis of the use of health resources such as the annual
number of days in hospital or the number of doctor consultations among a particular
population followed over several years, is critical to determine the determinants of
health care utilization or to measure the effect of a reform of the health care system.
Geil et al. (1997) examined for a panel of German households followed over 8 years
the annual number of days spent in the hospital in function of the status of insurance,
income, and work occupation. Winkelman (2001) analyzed the impact of a reform
of the health care system in Germany using a panel of households followed for sev-
eral years. Chiappori et al. (1998) investigated the presence of moral hazard in the

demand for health care services using a controlled natural experiment carried over
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2 years. Another area of research closely related to health economics is the analysis
of the recurrence of a particular event over a certain period of time. For example,
the analysis of the efficacy of a drug treatment in clinical trials in which a count
health outcome is measured at several points in time was studied by Diggle (1993),
Liang and Zeger (1995), Albert (1999) and Thall (1996) using Generalized Estimat-
ing Equations models. This area of research is very important since the estimates of
treatment efficacy are used to conduct economic evaluations of new drug treatments.

Longitudinal count data models have also been used by Ruser (1991) in labor
economics to model the number of days of absenteeism in 2,788 manufacturing estab-
lishments from 1979 through 1984. The Poisson Fixed Effects model was also used
by Page (1995) to model the number of housing units shown by housing agents to
each of two paired auditors who differed by minority status. Several models includ-
ing Haussman et al.’s Multivariate Negative Binomial Random Effects model (1984)
were considered by Pinquet (1997) to model the number and severity of insurance
claims to determine bonus malus coefficients used in experience-rated insurance. All
the data sets analyzed in these studies have in common that they are characterized
by a limited number of observations over time, outlining again the importance of the
treatment of the initial value. In addition, the majority of the publications do not
report the correlation of the dependent count variable nor the proportion of zeros in
the data. This is important, for example, if a two-part decision approach should be
considered to explain the patenting of small and medium firms. For example, the

data used by Cincera (1997) had 23% of firms with zeros patents but no attempt was
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made to test for an excess of zeros.

Other models identified in this survey of the literature are Generalized Event
Count models and Markov models for time series of counts. Generalized Event Count
models are based on the Katz family (Winkelman and Zimmermann, 1995) which
allows for the modelling of both underdispersion and overdispersion in count data.
Because all the empirical work identified in this review of the literature studies re-
ported overdispersion, the Generalized Event Count model was not considered in this
chapter. In addition, Cameron (1998) reported that the Negative Binomial model
and the Generalized Event Count models provided similar results in the estimation
of the number of doctor visits using a cross-section of Australian data. As noted by
the authors, the Negative Binomial model is easier to compute than the Generalized

Event Count model.

2.6 Discussion

The discussion centered on two aspects that are under-reported in the econometric
literature, namely the treatment of the initial value and the treatment of zeros in
longitudinal count data. The different approaches presented so far have focussed
on modelling a dependent count variable characterized by unobserved heterogeneity
and correlation over time. It is clear from the literature on parametric models that
the standard Poisson model is too limited to accommodate data characterized by
overdispersion. To fix this shortcoming, individual fixed or random specific effects

Poisson models have been introduced to characterize unobserved heterogeneity in



the data. Non-parametric Pseudo Maximum Likelihood, Quasi Generalized Pseudo
Maximum Likelihood, Generalized Method of Moments and Generalized Estimating
Equations models, while not specifying the density function, assume that the density
function is a member of the exponential family, which for count data applies only
to the Poisson distribution. In addition, if the data is characterized by many zeros,
the mean function may not be correctly specified and the assumptions of the Pseudo
Maximum Likelihood theory are violated.

Time series for longitudinal count data have also been developed to incorporate
the time series aspect of the data, assuming a sufficient number of repeated obser-
vations. However, with longitudinal count data for which the number of repeated
measurements is small, the initial value may be very important. For example, it is
not known what the role of the initial value is in the generalized autoregressive model
suggested by Cameron and Trivedi (1998) in equation (64). In econometrics, it has
been shown that dropping the initial value(s) in a time series context could be mis-
leading if T is small. The resulting loss in efficiency in small sample may be a problem
if the regressors have a trend component {(Greene, 1998). This is why methods for
maximizing the likelihood function for the last t-1 observations (Cochrane-Orcut) or
for all t observations (Prais-Winsten) are generally contrasted in a time series ap-
proach using normal data. In addition, when the initial value is one of the regressors,
the conditional definition of any multivariate distribution does not hold anymore.
This is only the case when a joint distribution is specified and when the conditional

distribution does not contain the initial value as a regressor.
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All but one of the studies reviewed in this chapter have not considered the prob-
lem arising from a high proportion of zeros in the data in the longitudinal case. This
is important for several reasons. While it is well known that overdispersion is caused
by uncbserved heterogeneity, it is less known that an excess of zeros can be a strict
implication of unobserved heterogeneity (Mullhaly, 1997). Since unocbserved hetero-
geneity and an excess of zeros are not mutually exclusive of each other, it is important
to have tools to deal with both.

The approach for extra zeros in the univariate case is to inflate the distribution
given to the dependent variable by assuming that two processes generate the zeros
instead of one {Zero-Inflated models) or by assuming a dichotomous process (Hurdle
models). In Zero-Inflated models, an additional route of zeros is added. The Hurdle
approach to the problem associated with an over representation of zeros is to capture
the differences between zeros and at least one occurrence by assuming that different
processes govern the zeros and the positive counts. As such, the Hurdle model is a
two-part model in which the first part is a binary outcome modelling the possibility
of crossing the Hurdle. The second part is a truncated count model which describes
positive observations arising from crossing the zero Hurdle.

In a model in which the probability mass function is never specified, it is not possi-
ble to inflate the distribution to accommodate the zeros. In this sense, non-parametric
models are unable to take into account an excess of zeros in the data. If the Hurdle
or the Zero-Inflated specification is the true specification governing the data, then

a model not taking into account this characteristic may lead to inconsistent results
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since the mean function is not correctly specified (Cameron and Trivedi, 1998; Greene
2000). For example, Generalized Estimating Equations or other non-parametric mod-
els based on Pseudo Maximum Likelihood theory may lead to inconsistent estimates
in the presence of an excess of zeros because the assumption on the mean does not
hold anymore. Following the benchmark study of Lambert (1992) in the univariate
case, Chin-Shang et al. (1999) developed a Multivariate Zero-Inflated Poisson model.
Unfortunately, this model is not practically computable for longitudinal count data in
which the outcome can take several discrete values and/or characterized by the pres-
ence of covariates and a large number of repeated measurements on the dependent
count variable.

The next two chapters present two new models to analyze longitudinal count data
characterized by a high proportion of zeros. These models were designed to fill a gap
in the literature on longitudinal count data which traditionally ignores the problem

of excess zeros in the longitudinal framework.

47



YSIS

SICIA

"ISITS

An important area of research in health economics is the study of the determinants
of the use of medical resources (e.g., number of physician visits). In most industrial-
ized countries, health expenditures as a percent of the gross domestic product have
increased during the last three decades. The three major reasons cited to explain
this growth are the ageing of the population and more expensive treatment alterna-
tives coupled with a large public health sector where the incentive structure does not
promote economic use of resources.

Confronted with this enormous rise in health expenditures, several countries have
put in place cost-containment strategies aimed at reducing or controlling health ex-
penditures growth. Some strategies are directed at the supply side (e.g., reform of
the public health insurance scheme, increased ambulatory care, generic prescribing,
economic evaluations of any new pharmaceutical product prior to public reimburse-
ment, licensing and pricing) and/or at the demand side (e.g., listing defining the
drugs eligible for reimbursement, patient cost-sharing such as caps or co-payment
for prescriptions). Health policies are multidimensional affecting the pharmaceutical

industry, wholesalers and retailers, consumers and prescribers of pharmaceuticals.
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In this cost-containment environment, the number of econometric studies to iden-
tify the determinants of the use of medical services has increased considerably over
the last twenty years. The work of Grossman (1972) provided the theoretical frame-
work to model the demand for medical services. In this framework, the demand for
health is seen as an individual investment decision similar to standard human capital
theory. The demand for medical care is derived from the demand for health which is
seen as a durable good that depreciates over time. Individuals maximize utility from
health given the production function of health and a budget constraint.

In studying the use of health services, count data models have a wide applicability
since most of the units are non-negative integers or count data such as the number of
hospitalizations or the number of physician visits over a certain period of time. Due
to the presence of excess zeros as a result of no visiting a physician or not spending
a night in a hospital, “in modelling the usage of medical services, the two-part model
has served as a methodological cornerstone of empirical analysis” (Deb and Trivedi,
1999).

Surprisingly, a review of literature indicated that almost all methods to analyze
the utilization of health services were based on univariate count data distributions
applied to cross-sectional data or by pooling several cross-sections. This may be due to
the absence of panel data sets following individuals over time and collecting medical
information (e.g., utilization of health care services, self-reported status of health)
along with demographic and socio-economic characteristics of these individuals. In

many countries such as Canada, only cross-sectional household surveys are available
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for analyzing the demand for medical care. This is not the case in Germany for which
a large public panel database (German Socio-Economic Panel, GSOEP) has been
available since 1984. Using this data set, three studies were recently carried out in
this country to analyze the number of physician or hospitalization visits. The most
recent study was conducted by Winkelman (2001) and reported in a discussion paper.
As such this discussion paper presents preliminary work. In this paper, Winkelman
(2001) pooled data from 1995 to 1999 to assess the impact of the 1997 German
health reform using the number of doctor visits over the last three months as a
primary outcome. This independence assumption (i.e. pooling data) may be a serious
limitation if in fact the dependent variable exhibits dependence over time. If repeated
observations on individuals are available over time, longitudinal count data methods
presented in Chapter 2 should be used to analyze the determinants of the demand
for medical care. Since some individuals may not consult their doctor or do not go
to the hospital, the methodology should also address the problem of excessive zeros
in the longitudinal case.

This chapter is organized as follows. Section 3.1 recalls the economic theory behind
the analysis of the number of physician visits, through the framework of Grossman
(1972). Econometric models reirieved from 10 studies conducted between 1988 to
2001 to analyze the number of physician or hospital visits are presented. A discus-
sion driven by the paper of Winkelman (2001) will focus on the appropriateness of
pooling various cross-sections and applying a univariate distribution to the pooled

data rather than exploiting the longitudinal aspect of the data through Multivariate
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distributions for longitudinal count data. Section 3.2 describes a longitudinal sub-set
of the German Socio-Economic Panel that is analyzed in this paper. The data con-
tains information on more than 4,000 individuals followed over 4 years and for whom
information was available each year. The dependent count variable, the number of
physician visits over the last three months, is observed each year for the period 1984-
1987 along with several individual covariates. The dependent variable shows signs of
overdispersion and correlation over time and is characterized by a high proportion of
zeros as almost half of the population did not visit a physician for a particular year.
Section 3.3 presents the results of the estimation of standard models currently used
to analyze the number of physician visits: the Univariate Negative Binomial model
applied to the pooled data set, a Quadrivariate Negative Binomial model and the
Multivariate Negative Binomial Random Effects model developed by Haussman et al.
(1984) for panel count data. A new methodology is presented in Section 3.4 based on
an extension of the Univariate Negative Binomial Hurdle model to the longitudinal
framework. Applied to the data, the resulting model is a Quadrivariate Negative Bi-
nomial Hurdle model which is nested to the Quadrivariate Negative Binomial model.
An interesting feature of this model is that correlation is introduced in each stage
of the Hurdle process. The Quadrivariate Negative Binomial Hurdle model is com-
pared with the standard Univariate Negative Binomial Hurdle model applied to the
pooled data in order to assess the independence assumption in two-part models (i.e.
Hurdle models). Section 3.5 presents the results of the analysis of the number of

specialist visits as in Pohlmeier and Ulrich (1995) who showed important differences
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in the analysis of the number of generalist and specialists visits. Section 3.6 concludes
by summarizing the main contributions of this chapter which are to have identified
and proposed alternative ways of dealing with important methodological gaps in the

economic literature relative to the analysis of the number of physician visits.

3.1 The Analysis of the Number of Physician Visits

Grossman (1972} derived a structural demand for health which has been the bench-
mark for the analysis of health care use. In Grossman’s model, the demand for medical
services is derived from the demand for health as individuals maximize their utility
from health. This theory of rational choice over health care is defensible on several
grounds because many health care options leave room for some thoughtful consider-
ation or at least some planning. This theory also implies that the physician serves as
an agent for patient-consumers and can make rational choices on their behalf even in
urgent situations, which is reasonable to assume.

Over the last twenty years count data models have been widely applied in health
economics to study the use of health services (e.g. number of physician/hospital
visits) in the context of Grossman. However, the majority of these studies have
analyzed cross-section data from household surveys. Even when the data was available
for longitudinal analysis, two recent studies pooled several cross-sections assuming
independence over time of the dependent count variable. A discussion motivated by
the recent working paper of Winkelman (2001) will concentrate on this methodological

aspect.
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3.1.1 The Model of Grossman

Grossman’s model of the demand for health is the most common economic approach to
analyze the number of physician visits. In Grossman’s model, the demand for health
is seen as an individual investment decision similar to standard human capital theory.
Health is considered as a durable good that depreciates over time. The stock of health
capital can be accumulated by combining medical services and other inputs to improve
health. In this context, the demand for medical care is derived because services serve
to maintain or improve health capital. In this model, individuals maximize their
utility from health given the production function of health and a budget constraint.

The structural form of the demand for medical services can be modelled as:

D(t) = Bo + B1H(t) + B W (2) + B3 P(t) + BLA(E) + Bs Env(t) + B E(t) + u(t).

(74)

D(t) represents the individual demand for medical services at time t (e.g., number
of physician visits with realizations 0, 1, 2,...) which is a function of the existing stock
of health capital #, the wage rate W, the price for medical services P, a time trend 4
to reflect the effect of age, a vector of environmental effects Env, education F and a
stochastic error 4. In this specification the coefficient associated with health, §,, en-
ters the specification with a coeflicient different from unity. Poor health will result in
a higher demand for medical care and we expect (3, to be negative and different from
unity. According to this theory, §, is expected to be negative because a high wage rate

implies better return from work leading to a substitution of time for medical services.
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Since higher prices for medical services should decrease the demand for medical care,
it is expected that (3;, the coefficient associated with the price of medical services, is
negative. In reality, the nominal price of medical services (exclusive of time costs) is
almost zero due to public insurance schemes in most Western countries. According
to moral hazard theory, insurance coverage should decrease the cost of medical care
and therefore insurance coverage increases the demand. The time trend, A, measures
the positive impact of age on the rate of health capital depreciation implying G, is
positive. The impact of environmental controls on D(t) should be positive if envi-
ronmental factors (Env) are damaging such as jobs with a high risk of injury. The
coeflicient associated with education is expected to be positive because education (E)
is associated with more efficient health production in Grossman’s model. Using this

framework, various authors have analyzed the number of physician or hospital visits.

3.1.2 Econometric Applications

This review presents the econometric models retrieved from 10 studies analyzing the
number of physician or hospital visits along with the main findings of these papers.
These models address the main characteristics of health care utilization data: 1)
count outcomes such as the number of doctor consultations; 2) overdispersion as
a result of unobserved heterogeneity; 3) the presence of covariates as identified in
Grossman and 4) presence of a high proportion of zeros as individuals may not seek
medical care. In general, two-part models such as Hurdle or Mixture models have been
shown to be superior to Poisson or Negative Binomial models (Pohlmeier and Ulrich,

1995; Winkelmann, 2001; Gurmu, 1997; Deb and Trivedi, 1995). While it is difficult
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to compare studies conducted in different health care settings and among different
populations, health status has always been identified as the major determinant of
the use of for medical services. Various conclusions were yielded with respect to the
impact of private insurance, income and education. The following presents a review

of the econometric models used in these 10 studies as well as their major findings.

Univariate Negative Binomial (UNB) Models Even when longitudinal count
data was available, the Univariate Negative Binomial distribution has been used in
almost every study analyzing the number of physician or hospital visits. For example,
Geil et al. (1997) used a Univariate Negative Binomial Type 2 model to study hospi-
talization in Germany. They analyzed a subset of a German panel data set in which
the waves 1984 to 1989, 1992 and 1994 were retrieved. The dependent variable was
the number of hospital visits. Their data was unbalanced due to missing data but
all individuals had to be observed at least twice. The analysis was based on 30,590
observations on 5,180 individuals aged 25 to 64. Their methods of analysis included
an Univariate Negative Binomial model (equation 20) applied to the pooled data. In
addition, to account for the panel aspect of the data, Geil et al. (1997) estimated
a Multivariate Negative Binomial Random Effects model (equation 42). The results
indicated small differences between the univariate and longitudinal models in terms
of significance, signs and estimates of the explanatory variables. Contrary to Gross-
man’s theory, age, income and education were found in their study to have a limited
and insignificant impact on the demand for hospital visits.

Another contribution of the authors is to have shown that men and women react
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differently to economic incentives. Geil et al. (1997) found that the kind of insurance
coverage did not play an important role for the hospitalization decision but that
women are more likely to react to economic incentives than men. For example, having
a private insurance is only associated with a significant reduction in the number of
hospital trips made by women. Estimation results indicated that a high level of private
insurance coverage in Germany was not significant to curb the demand for hospital
trips. This result was demonstrated using various dummy variables representing the
different types of public and private health insurance contracts in Germany. For both
genders, having children and working were significant variables but being married had

a different impact on men and women.,

Univariate Negative Binomial Hurdle (UNBH) Model Another important
potential source of overdispersion is due to an excessive number of zeros (e.g., high
proportion of zeros). Overdispersion may also induce an excess of zero counts than
would otherwise be the case (Mullahy, 1986) and the excess of zeros may be a stricts
implication of unobserved heterogeneity (Mullahy, 1997). Since these two possibilities
are not exclusive, it is important to test and to treat for an excess of zeros. This is very
important in heath economics since depending on the characteristics of the population |
or the health care system studied, the proportion of individuals not consulting a
doctor may be important. In studying the number of doctor visits, Hurdle or two-
part models were preferred to their parental model in Pohlmeier and Ulrich (1995),
Deb and Trivedi (1997), Gurmu (1995) and Winkelman (2001).

The Hurdle approach to the excess zeros problem captures the differences be-
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tween zeros and at least one occurrence of physician visits by assuming that different
processes govern the zeros and the positive counts. As such, the Hurdle model is a
two-part model in which the first part is a binary outcome modelling the possibility
of crossing the Hurdle. The second part is a truncated count model which describes
positive observations arising from crossing the zero Hurdle. The rationale for us-
ing Hurdle models in the analysis of physician visits comes from the principal-agent
theory (Pohlmeier and Ulrich, 1995) which suggests that a decision has to be made
by the individual about whether to contact a physician or not. Then a decision is
made about the frequency of trips according to a different process which may be
influenced by the provider of medical care. This is captured in Hurdle models by
explanatory variables, (4,, 3,), allowed to have different impacts at each stage of the
decision-making process. In a Hurdle model, two distributions fiand f, generate the
data. For a dependent count variable y;, the probability distribution of the Univariate

Hurdle model is given by:

Pr(y; =0) = fi(y: = 0) (75)
and Pr{y; = k) = foly: = k) * 1: j:;g’ z g; withk=1,2,...,. (76)

The distributions f; and f; are univariate probability distributions for non-negative
integers respectively, governing the Hurdle part and the process once the Hurdle has
been passed, respectively. The distribution f; represents the distribution for the con-

tact probability. Here 1 — fi(y; = 0) is the probability of crossing the Hurdle and
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1~ fo(y: = 0) is a normalization for f; . When f; = f,, the Hurdle model collapses to
the parent distribution (e.g. Univariate Negative Binomial). If f; and f; are from the
same family of distributions, an excess of zeros can be tested with Likelihood Ratio
Tests. If f1 and f; are different univariate distributions the fitness of the model can
be tested with the Vuong (1984) test or the Aikake Information Criteria (AIC). The

log-likelihood function of the univariate Hurdle, I(§,, §5), model can be written as:

N N
WB1,Ba) = D lgmolfii=0)+> lgsoh[l—fAm=0]+ (77)

=1 =1

N N
> lyoonfa(yi>0) =) lgsgn(l— fa(y=0).
=1

i=1

Maximization is done with respect to the set of parameters 3, and 3, defining f;
and fp. The term 1(,—¢) is a binary indicator equal to 1 if the number of physician
visits for patient 4, y;, is zero, 0 otherwise. The mean and the variance of the Hurdle
model are determined by the probability of crossing the hurdle and by the moments

of the truncated densities.

1—fily=0)

E(yi) = Pr [y, > 0] Eyi>0 [yz ‘ ¥ > 0} = 1___}%:65

E(y:) (78)

Var(y;) = Prly; = 0| Ey50 [y | s > 0] + Pry: > 0] Varyso [y | 4 > 0] (79)

It follows from equation (78) that the mean of the Hurdle specification differs from
the parental distribution (i.e., fi = fo) by %}%ﬁ—}g—gﬂ If the Hurdle model is the true

model governing the data (i.e. 2 distributions generate the data: f; # f2), estimating

58



the mean independently of the dispersion structure by assuming that only one process
generates the data leads to a loss of efficiency and a loss of consistency since the mean
function is not correctly specified. Therefore, in the presence of a significant excess
of zeros, Generalized Estimating Equations, Pseudo Maximum Likelihood models or
models not taking into account the potential over-representation of zeros should not
be used.

Unobserved heterogeneity in the univariate Hurdle framework is integrated by
taking a censored Negative Binomial specification for the binary process and a trun-
cated at zero Negative Binomial distribution for the behavior once the Hurdle has
been passed.

Pohlmeier and Ulrich (1995) analyzed the number of visits to general practitioners
and to specialists made by 5,096 German employees in 1985. The authors developed a
Negative Binomial distributed Hurdle model to model separately the decision to con-
tact a physician and how often to contact one. Specification tests indicated that the
Hurdle specification was preferred to the Univariate Negative Binomial Type 1 model
suggesting that a different view of health care is necessary. The results indicated
that the contact and frequency decisions followed different processes, which need to
be modelled separately. The authors concluded that “ignoring these differences leads
to inconsistent parameter estimates and to economic misinterpretations” (Pohlmeier
and Ulrich, 1995). By using a variable physician density per 100,000 habitants, the
authors also supported evidence of a supplier-induced demand in ambulatory services

provided by general practitioners. The variable representing physician density was
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ingignificant for the contact decision but significant in explaining the frequency of
visits once the contact had been made.

Their main results indicated that age, gender, income, private insurance, education
and health status were significant for the contact decision for general practitioners,
which supports Grossman’s theory. However, once the Hurdle was crossed only age,
health status and physician density were significant in explaining the number of visits.
Education, income and private insurance had not significant impact on the frequency
of visits, contradicting Grossman’s theory. The results indicated that the decision to
contact a physician differed by gender but once the Hurdle was crossed, gender was
not longer significant.

The authors also provided evidence to perform separate analyses of the number
of visits to GPs and specialists. For example, private insurance was not significant
for the contact decision with a specialist. Although significant in both stages of the
Hurdle, higher income led to more first contacts with specialists and fewer contacts
with generalists. The univariate Hurdle Negative Binomial model was also used by
Winkelman (2001) using German data and by Gurmu (1997) using American data.

Gurmu (1997) developed a semi-parametric estimation of a Hurdle model to eval-
uate the impact of managed care programs for Medicaid eligible on utilization of
health care services using the number of doctors and health care centre visits dur-
ing a period of four months in 1986 in the United States. The sample for analysis
was constituted of 511 individuals. In this semi-parametric model, the distribution

of the unobserved heterogeneity was approximated at each stage using Laguerre se-
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ries expansion. The semi-parametric univariate Hurdle model provided a better fit
for the data than the univariate Poisson and Negative Binomial models. The au-
thors concluded that health status measures and age seemed to be more important

in determining health care utilization than other socio-economic variables.

Mixture Models Mixture models were developed by Deb and Trivedi (1999) to
avoid the strong dichotomy between the population of non-users and users in the
Hurdle model. When the number of individuals not seeking medical care is low or if
healthy individuals routinely seek health care, Hurdle models may be too restrictive.
Mixture models discriminate between low and frequent users of medical services. Deb
and Trivedi (1999) compared mixture versus Hurdle models using a cross-sectional
sub-sample of the 1987-1988 National Medical Expenditure Survey to study the de-
mand for medical care by the elderly in the United States. In their sample of 4,406
individuals aged 66 and over, 85% of individuals had one visit or more.

Assuming only two populations (low and high users), the density of a Two-Point

Finite Mixture is given by:

fly) = mhilys) + (1 — ) fows)- (80)

Here f; and f, are Univariate Poisson or Negative Binomial distributions governing
low and high user populations. If 7 = 0, this expression resumes to the parental
distribution and f; = f,. As with the Hurdle modelling, the set of explanatory

variables can be the same with different parameters to incorporate differences between
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a low or high user population. Several measures of medical utilization {the number of
physician visits, the number of hospitalizations or the number of non-physicians visits)
were used in this study. Based on Monte Carlo experiments and specification tests, the
finite mixture Negative Binomial model was preferred over the Univariate Negative
Binomial model and its Hurdle specification. Deb and Trivedi (1999) concluded that
health measures were more important determinants of the demand for medical care

by an elderly population than socio-economic measures.

Panel Probit Model Chiappori et al. (1998) investigated the presence of moral
hazard in the demand for medical care in France following a health care reform. In
1993, the national French health insurance scheme reduced the coverage of ambula-
tory care and pharmaceutical products by 5%. Chiappori et al. (1998) used French
insurance data to identify two groups in order to reproduce a controlled natural ex-
periment.

A co-payment rate of 10% for physician visits was introduced in one group in
1994 while no change occurred for the other group. This allowed the authors to test
if the number of visits per individual was modified by the co-payment rate. The
longitudinal data set included information on 4,578 bank or insurance workers and
their relatives followed during two years, 1994 and 1995 respectively.

The number of physician and specialist office visits were analyzed as well as the

number of home visits. The authors used a panel probit model in which y; = 1 if
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individual 7 had a least one visit in year ¢ and 0 otherwise as:

v = lify;>0

yft = f(CE»;t)"i'Eit. (81)

To test the presence of moral hazard the following formulation was used by Chi-

appori et al.(1998):

K K
Y = (a + ﬁ;)Fi + ZﬁkXik + Zﬂlkrixik) +
k=1 k=1

K Ji¢
% (Aa + AR+ ) ABXu+ Y AB;FiXik) + €. (82)

k=1 k=1

The term I'; is a dummy variable equal to 1 if individual ¢ belongs to the control
population (no change between 1994 and 1995) and 0 if ¢ belongs to the group for
which a co-payment of 10% was introduced. -y, = 1 corresponds to the reference year
1994. Covariates included age, gender and location of work (represented by X;;) and
the products of I'; and v, with these observables. The error term ¢; is defined as
the sum of two independent, central, normal errors u; and v, with Var(y) = o2,
Var{v;) = 1, and Cov(v;1,vi2) = 0.

In this controlled natural experiment, it is expected that AfF=0 in the control
group. If the introduction of the co-payment has no effect on consumption of medical
services, ABy=0, AF,=0 and Aﬁ;c:{), ¥V k. If the introduction of co-payment has a
impact on consumption, it should only affect the tested population (I'; = 1) then

ABL=0,V k. If the AB, # 0V k, then the changes shouldn’t be only explained by
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the reform but by some other unobserved structural changes or by a misspecificaton
of the model.

Their results indicated that the presence of moral hazard is not supported in the
demand of doctor office visits suggesting a price elasticity close to zero. However a
moderate decrease was observed in the number of home visits suggesting the presence
of other non-monetary indirect costs such as transportation and time costs. Because
of these additional costs, a decrease of 10% in the price of office visits may be not
sufficient to impact the demand for office visits. On the other hand, the same 10%
reduction in the price of home visits may have a bigger impact because non-monetary
costs are zero for home visits. Their findings are in line with results derived from
the well-known health insurance experiment conducted by the RAND corporation in
the United States in the 1970s. In this experiment, among all physician services,
the highest elasticity was observed in the demand for home visits. Other important
results from the RAND experiment is that the elasticity of demand for physician
services was positive a least for large co-payments (Newhouse, 1996). Chiappori
et al. (1998) concluded that more work is guaranteed in the future such as using
simulation equations or multinomial probit models to estimate the change in the
whole distribution of number of visits per patient year. However, a major limitation
of any probit specification is that while it allows to model the contact decision with

the physician, it does not provide any information of the frequency of visits.

Probit-Poisson Log Normal Hurdle Model A new model, the Probit-Poisson

log normal model with correlated errors, was recently proposed by Winkelman (2001)
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to assess the impact of the 1997 reform of public health insurance in Germany on
the number of doctor visits using German panel household data. The sample was
constituted of Germans aged 20 to 60 years old benefiting from public health insurance
and for whom information was available from 1995 to 1999 through the German Socio-
Economic Panel database.

The new feature of this model is that the correlation between the zero-Hurdle and
the positive part of the distribution is captured which represents a serious advantage
over the univariate Hurdle model or the probit model presented previously. This
model combined a probit model for the Hurdle part with a truncated Poisson-log nor-
mal model for the positive counts as follows. The model considers a latent indicator,

z;, variable such that:

¥ = 0if z; >0 where z; = z;v+ ¢ (83)
¥i | i > 0~ truncated Poisson(\;). (84)

In this formulation, A; = exp(z;0 + u;) and ¢; and wu; are bivariate normal dis-

tributed with mean § and covariance matrix

1p0

Y= (85)

po o |

and € | u; ~ N{pu;/o,1 — p*). The model is defined by writing;
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Plyp = 0fw)=Ple; = —zy | w) (86)
pELEENIT) gy, (87)

Vi—p :

This expression gives the following density function:

eXP(*/\i(ui))(,\i(uz.))yi 1-d;
f—ep(X@)u |

Flys L) = @ (u)™ * | (1 - @ (ws)) (88)

The associated log-likelihood was then evaluated using Gauss-Hermite integration.
Based on specification tests (i.e., Aiwake Information Criteria and Vuong’s test),
Winkelman (2001) concluded that the Probit-Poisson log-normal Hurdle model offered
a better fit of the data than the Univariate Negative Binomial model and its Hurdle
version applied to the pooled data. The model was also preferred to the Univariate
Two-Point Mixture model of Deb and Trivedi (1997).

The dependent variable was the pooled number of doctor visits (general practi-
tioners and specialists) from 1995 to 1999. The covariates of Winkelman’s model
were age, education, marital status, household size, active sports, health status, em-
ployment status and income. Privately insured individuals were excluded from the
analysis. Taking 1995 as the reference year, a dummy was associated for each year
(here 1995 is the reference year) to assess the impact of the 1997 health reform, which
was their primary research objective.

Due to its Hurdle structure, the Probit-Poisson log normal model allows us to
assess the effect of the reform at different parts of the distribution. The results

indicated that the overall effect of the reform was a 10 percent reduction in the number
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of doctor visits. The reform affected the Hurdle part much more than the positive
part of the distribution. For example, the probability of being a user decreased by
6.7 percent between 1996 and 1998, almost three times the decreased frequency in
the number of visits (2.6 percent). As a result, the reform may discourage “healthy
individuals” from visiting their physician which in some cases will have prevented
more serious illnesses. These findings were validated by the results of the Two-Point

Mixture model for which the low user proportion exhibited the larger response.

Generalized Method of Moments Model The endogeneity of explanatory vari-
ables has been investigated in the univariate case by Windemeijer and Santos-Silva
(1997) in a model explaining the number of visits to doctors with a self-reported
binary health index as endogeneous variable.

In their multiplicative errors model, the conditional mean of the count variable is

specified as:

E(yi | 7:) = p; = exp(z:) (89)

This equation defines the following regression model:

¥ = exp(x:f + 75) = exp(@:f) * &; = p€;. (90)

The Poisson estimator will be inconsistent if some of the k elements of vector of
covariates are endogenous. If this is the case E(g; | z;) # 1. Generalized Method

of Moments techniques are available if instruments z; are available such that E(e; |

67



z;) = 1. In particular, the Generalized Method of Moments estimator minimizes the

following objective function:

(y— )y M Z(Z'02) 2 M (y — ). (91)

e

Here %, i are column vectors of the observations and conditional means, respec-
tively. M=diag(y,) and p; = exp(z;8), Z is an N*g matrix of instruments, and Z’ Oz

is the asymptotic variance of Z'M~1(y — u). The optimal instruments are given by:

7 =E@Q'WX | Z) (92)

and W=diag(y:/ ;). In the case of no endogenous regressors, Z=X and O~ = ML
The Generalized Method of Moments estimator can be applied when there is more
than one endogenous regressor.

Windemeijer and Santos Silva (1999) applied this model to a cross section of the
British Health and Lifestyle Survey 1991-1992 using a sample of 4,814 individuals. A
self-reported binary health index (H; = 1 if health is fair or poor; 0 otherwise) acted

as a possible endogenous regressor. Their model was specified as:

v = explaH; +z;0) +u

H;, = 1if H = 2,6 + w; > 0; H; = 0 otherwise. (93)

In this equation, z; represent the instruments which apart from z; include variables
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that explain health but have presumably no impact on the demand for doctor, other
than via health (i.e., socio-economic status, alcohol consumption, smoking status,
etc.). Based on a Haussman test, the authors rejected the endogeneity of the self-
reported health measure in explaining the number of doctor visits. A similar result
was found by Lahini and Xing (2002) who reported that the endogeneity of health
status was not accepted in a recent cross-sectional analysis of veterans’ health care
utilization in the United States. In addition, Lahini and Xing (2002) tested and
rejected the endogeneity of income and insurance. This was consistent with Cameron
(1988) who reported that the endogeneity of health insurance status was accepted
in some categories of health care services but not in others. As in Windemeijer and
Santos Silva (1997), Cameron’s results indicated that the health indicators were the

most important factors in determining the number of doctor visits.

3.1.3 Discussion

The discussion is driven by the recent discussion paper developed by Winkelman
(2001) as several limitations were associated with this paper. The major drawback of
this preliminary work is the method of analysis which relies on pooling the data set.
While five years of data were available for each individual, the author did not exploit
the full richness of the panel structure of the data which allows us to follow individuals
over time. “The basic empirical strategy is to pool the data over the five years
and estimate the effects of the reforms by comparing the expected number of visits
in 1998 and 1996 ceteris paribus, i.e., for an individual with given characteristics”

(Winkelman, 2001). Pooling the data may be convenient because the Vuong and
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AIC tests, two “univariate tests”, can be used to discriminate between the Negative
Binomial model and the new probit-Poisson normal model developed by Winkelman
(2001), both non-nested models. Currently, there are no tests which allow us to
discriminate among non-nested multivariate count data models for longitudinal count
data.

Assuming that the data is independent over time is a strong assumption which
may lead to inconsistent estimates if in fact the dependent counts are correlated over
time. To demonstrate the importance of this methodological aspect consider the
normal case in which two correlated random normal variables y; and y. are observed
at time t=1 and t=2. It is assumed that u,,0; and p,, o9 are respectively the means
and standard deviations of the marginal distributions of y; and 7. The bivariate

normal distribution, the joint density of ¢; and ys, is defined as follows:

Flyi,ye) = 2walazh exp {—1/2[(€] + & + 2pe1es) /(1 — p7)] } (94)

with ¢ = (yta;t“i), t=1,2. The correlation between y; and ys is modelled by the
parameter p. The covariance of the bivariate normal distribution is given by oy =
po109. If p = 0, the two variables y; and y» are independent and the bivariate normal

distribution is then equal to the product of the two marginal distributions of y; and

y2. In this case,

fl, ) = exp {—1/2 [(el + &)]} = F(v) f(32)- (95)

271'0'10'2
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Table 1: Monte Carlo Simulations. Bivariate versus Pooled Univariate Normal Models
Bivariate | Pooled data
Log-Likelihood | -5,399.63 | -4,142.10
ag Mean 1.055 0.961
(Std. Dev.) (0.1890) (0.115)
aq Mean 0.885 0.978
(Std. Dev.) (0.135) (0.060)
o1 Mean 2.645 4.143
(Std. Dev.) (0.042) (0.078)
09 Mean 2.298 3.128
(Std. Dev.) {0.036) (0.059)
P Mean 0.652
(Std. Dev.) (0.017)

Using Monte Carlo simulations, equations (95) and (96) were estimated by max-
imum likelihood methods. Two random normal variables, 1; and y, were generated
with mean and standard deviations respectively equal at 1.96 and 5.04 for y; and 1.93
and 3.83 for y3. The correlation between y; and yq, was 0.915 and only a constant and
one covariate were introduced in the model as ¥, = ag + @121 +¢; and &, ~ N, o),

t=1,2. The values of ag and a; were 1.1 and 0.9, respectively.

As indicated in Table 1, which reproduces the results of the Monte Carlo simu-
lations, if the variables are correlated over time, pooling the data gives inconsistent
estimates while ignoring the correlation arising from the longitudinal aspect of the
data. The values of the parameter estimates, ag and a; are different between the two
approaches. The parameter estimates of ag and a; given by the estimation of the
bivariate normal distribution are closer to the true values than those resulting from
a pooled approach.

While these results are well-recognized in the normal case, pooling the data is

sometimes used to analyze longitudinal count data even if the dependent variable is
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correlated over time. For example, this is the case for the data set that Winkelmann
(2001) used in his analysis of the impact of the 1997 German reform using data from
1995 to 1999. Using a subset derived from the same source of data as Winkelman
(2001), information was retrieved for 7,000 individuals followed from 1995 to 1998.
The year 1999 was not available in our version of the German Socio-Economic Panel
database. The correlation between the number of doctor visits over the years varied
between 0.3 to 0.4. Consistency should require that if the dependent count variable
is correlated over time, correlation should be taken into account by the method of

analysis.

Table 2 summarizes the studies presented in section 3.1.2 by authors and type of
models used to analyze the number of physician or hospital visits. As shown in this
table, recent empirical studies have concentrated on cross-section analyses and have
generally ignored the richness of longitudinal panel count data. Only Geil et al. (1997)
used a longitudinal count data model to analyze the determinants for hospitalization
in Germany. In this study, the authors estimated a Univariate Negative Binomial
model applied to the pooled data of various cross-sections of the German Socic-
Fconomic Panel database and the Multivariate Negative Binomial Random Effects
model in order o exploit the longitudinal aspect of the data. Results indicated that
pooling the data or using the random effects model for panel count data provided
similar parameter estimates in signs and magnitudes, which is in disagreement with
the findings of the literature on patent data. The authors did not mention that this

situation may have happened because the number of trips to a hospital were not
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Table 2: Count Models in Health Economics

Author Dependent Counts Models
(Year) Variable / Country /
Year(s) of Analysis
Winkelman # Dr. Visits Univariate Negative Binomial
(2001) Germany, Univariate Negative Binomial Hurdle
1995-1999 Finite Mixture
Probit-Poisson-log-normal
Lahiri and Xing | # Dr. Visits Univariate Negative Binomial
(2002) USA, 1992 Univariate Negative Binomial Hurdle
Generalized Method of Moments
Pohlmeier and # Dr. Visits Univariate Negative Binomial
Ulrich (1995) Germany, 1995 Univariate Negative Binomial Hurdle
Chiappori et al., | # Dr. Visits Panel Probit Model

1998 France, 1993, 1994

Geil et al. # Hosp. Visits Univariate Negative Binomial

(1997} Germany, Multivariate Negative Binomial

1984-1989, Random Effects
1992, 1994 Univariate Poisson Zero-Inflated

Univariate Poisson Hurdle

Gurmu # Dr. Visits Univariate Negative Binomial

(1997) USA, 1986 Univariate Negative Binomial Hurdle
Semi-parametric Hurdle

Deb and # Dr. Visits Univariate Negative Binomial

Trivedi (1997) USA, 1987 Univariate Negative Binomial Hurdle
Finite Mixtures Negative Binomial

Windmeijer # Dr. Visits Generalized Method of Moment

and Santos UK, 1991 Pseudo Maximum Likelihood

Silva (1997)

Lopez Nicolas # Dr. Visits Univariate Negative Binomial

(1998) Spain, 1986 Univariate Negative Binomial Hurdle

Cameron and # Dr. Visits Ordinary Least Square

Trivedi Australia Poisson

(1986) 1977-8 Univariate Negative Binomial

(Cross-section)

Quasi Generalized Pseudo
Maximum Likelihood
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correlated over years, which may justify pooling the data over time. For example, an
analysis of a GSOEP subset, presenting data on 7,000 individuals followed from 1995
to 1998, indicated that the coefficients of the correlation of the annual number of
hospital trips were less than 0.1 for the different time periods. In comparison to the
data used in Haussman et al. (1984), a correlation of almost 0.9 for all years of analysis
was observed for the annual number of patents awarded. It is therefore expected that
parameter estimates may be different between univariate and longitudinal approaches
in the presence of correlation as well known for patent data.

Another limitation associated with the methodology used by Winkelman (2001)
to study the impact of the 1997 German health reform is that the analysis did not
provide any insights into the disparity between men and women. Men and worﬁen
may react differently to economic incentives as found in labor economics (Winkelman,
1994) and as shown by Geil et al. (1997) in their study of the hospital visits. This
distinction may be very important in assessing a health care reform. For example, if
women do not react to economic incentives, any reform encouraging private insurance
coverage would not affect the use of health services by women. Of importance, for
recent years the German Socio-Economic Panel database does not allow us to perform
a separate analysis of the visits to general practitioners or specialists. As shown by
Pohlmeier and Ulrich (1995), modelling the demand for generalists versus specialists

is very important since the determinants are different.
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3.2 The Data

The source of the data analyzed in this chapter is the German Socio-Economic Panel
(GSOEP), a representative sample from Western Germany that has been collected
since 1984. The GSOEP is a wide-ranging representative longitudinal study of private
households, providing information on many indicators such as household composition,
occupational biographies, employment, earnings, héalth and satisfaction. The Panel
was started in 1984 and in 2000, there were more than 12,000 households and more
than 20,000 persons sampled. The German Socio-Economic Panel is maintained by
the Deutsche Institut fiir Wirtschaftsforschung (DIW, German Institute of Economic
Research ). The public use file of the German Socio-Economic Panel is provided free
of charge to universities and research centres. An English version of the GSOEP
is made available to non-German users who sign a data transfer contract with the
German Institute of Economic Research. The version used in this chapter is the
German Socio-Economic Panel 1984-1998. Since the time period ended in 1998, our
data set cannot be used to reproduce the work of Winkelman (2001) who used data
from 1995 to 1999.

Some limitations were identified with this data source. The English version does
not contain personal information such as the address of the people surveyed. There-
fore, it was impossible to incorporate a variable aimed at reflecting a supplier-induced
demand effect such as physician density per size of community of residence as in
Pohlmeier and Ulrich (1995). Secondly, the German Socio-Economic Panel does not

always allow for a longitudinal analysis because some variables may be omitted from
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some waves. For example, the most recent waves giving longitudinal information on
the number of visits to a physician are from 1994, 1995, 1996, 1997 and 1998. Un-
fortunately, it is not possible for this period of time to distinguish between visits to
a general practitioner or to a specialist, which may be important from an analytical
point of view as shown by Pohlmeier and Ulrich (1995). The only GSOEP waves
which provide this type of information on a longitudinal basis are those from 1984
to 1987 which are analyzed in this paper. For this reason, the data analyzed in this
chapter was retrieved from the waves 1984, 1985, 1986 and 1987 of the German Socio-
Economic Panel by selecting those individuals who provided information for each year
of the period of analysis. The data is balanced and our sample contains information
on 4,342 individuals (2,183 women and 2,150 men) followed from 1984 to 1987. The
sample was composed of individuals aged 25 to 60 in 1984, thus excluding the ma-
jority of studénts and retired people. The data is presented by gender to highlight
potential differences that may influence the determinants of the demand for doctor
consultations as found by Geil et al. in their analysis of hospital visits in Germany.

Tables 4 and 5 present the descriptive statistics of the sample by gender and per year.

3.2.1 Dependent Variable

The dependent variable is the number of physician consultations over the last three
months. The main analysis concentrates on the analysis of the number of visits to a
general practitioner (GP) in the last quarter prior to the surveys conducted in 1984,
1985, 1986 and 1987. Following Pohlmeier and Ulrich (1995), a separate analysis

will be conducted to analyze the number of visits to specialists where specialties
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are defined as all specialties in medicine except dentistry and radiology. The mean
number of generalist practitioner and specialist visits and their associated standard
deviations as well as the proportion of women who did not consult a GP or a specialists
are given in rows 2 and 3 of Table 3. Similar information is reported in Table 4 for
German men. The description of the covariates are also given in these tables.

Over time, the mean number of physician visits tends to increase from 1.39 to
1.76 for the female population and from 1.10 to 1.48 for men which may be seen
as a consequence of the ageing of our sample. Consistent with this assumption, the
health index decreases over the years for the two populations and the proportion of
individuals having chronic conditions increases with time. No major health reforms
were identified during this period of time which could have explained an increase in
the number of consultations between 1984 and 1987.

The analysis of the mean and the variance of the dependent variables indicates
that the data is characterized by overdispersion. Clearly the Poisson regression will
not fit this data since the variance is greater than the mean. Overdispersion in count
data can be caused by the presence of random effects such as unobservable individual
characteristics, which can be modelled by the addition of a random effect in the
Poisson conditional mean.

In our sample, between 50% (female) to 60% (male) did not have any contact with
a general practitioner (GP) and 75% and 50% of men and women, respectively, did
not consult a specialist for any given year of the period of the analysis. Therefore,

it may be also incorrect to assume that a single process generates the data may be
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incorrect due to the presence of a high proportion of zeros in the data.

Another important characteristic of the dependent variable is the presence of
correlation over time as shown in Tables 5-8. The correlation between the number
of GP visits during the period 1984 to 1987 ranges from 0.29 to 0.40 for women and
from 0.19 to 0.44 for men, depending on the years. Similar ranges are observed for
the specialist visits over time. The coefficients of correlation are generally higher
for consecutive observations but the correlation between non-consecutive years is not
negligeable. For example, the coefficient of correlation between the number of GP
visits in 1984 and in 1987 is 0.29 (women) and 0.19 (men) while the correlation
between two consecutive years range from 0.34 to 0.40 (women) and from 0.19 to 0.40

(men).

Not taking into account the correlation may lead to inefficient estimates since the
repeated or time series aspect of the data is not recognized. Due to the high presence
of zeros in our sample, the methodology should also be able to deal with unobserved
heterogeheity and an excess of zeros since they are not mutually independent, while

taking into account the correlation present in the data.

3.2.2 Independent Variables

Several variables were retrieved from the GSOEP to model the demand for medical
care as in Grossman. It is expected that the use of health care services will increase

with advancing age as indicated by our data. As indicated in Tables 3 and 4, the

78



Table 3: Descriptive Statistics: Means and (Standard Deviations). Female.

Female 1984 1985 1986 1987

GP Visits Mean 1.40 1.52 1.67 1.76
(Std. Dev.) (3.29) (3.39) (3.50) (3.95)
Zero visits 57.34% 55.32% 50.09% 51.60%

Specialist Visits Mean 1.74 1.64 1.82 1.74

(Std. Dev.) 4.07 3.62 4.42 3.84
Zero visits | 53.25% 55.04% 53.11% 52.70%

Age Mean 41.13 42.13 43.13 44.13

(Std. Dev.) (9.92) (9.92) (9.92) (9.92)

Health Status Mean 6.93 6.79 6.64 6.53
(Std. Dev.) (2.53) (2.37) (2.38) (2.35)

Chronic Complaints Mean 0.31 0.30 0.33 0.34
(Std. Dev.) (0.46) (0.46) (0.47) (0.47)

Private Insurance Mean 0.08 0.08 0.09 0.10
(Std. Dev.) (0.27) (0.28) (0.29) (0.29)

Income Mean 2,896.70 | 3,056.69 | 3,242.03 | 3,354.77
(Std. Dev.) | (2,070.97) | (2,054.90) | (2,445.08) | (2,334.91)

Married Mean 0.82 0.82 0.82 0.81
(Std. Dev.) (0.38) (0.38) (0.39) (0.39)

Children Mean 0.55 0.53 0.50 0.47
(Std. Dev.) (0.50) (0.50) (0.50) (0.50)

Education in years Mean 10.45 10.46 10.47 10.49
(Std. Dev.) (2.25) (2.26) (2.27) (2.53)

Labor Mean 0.54 0.52 0.51 0.52

(Std. Dev.) (0.50) (0.50) (0.50) (0.50)

Non West German Mean 0.24 0.24 0.24 0.24
(Std. Dev.) (0.43) (0.43) {0.43) (0.43)
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Table 4: Descriptive Statistics: Means and (Standard Deviations). Male.

Male 1984 1985 1986 1987

GP Visits Mean 1.10 1.40 1.51 1.49
(Std. Dev.) (3.02) (3.70) (3.96) (3.71)
Zero visits 63.27% 58.61% 56.44% 57.30%

Specialist Visits Mean 0.94 1.04 1.19 1.13
(Std. Dev.) (3.26) (3.52) (4.22) (3.65)
Zero visits 73.63% 75.67% 73.97% 72.14%

Age Mean 41.55 42.55 43.55 44.55

(Std. Dev.) (9.74) (9.74) (9.74) (9.74)

Health Index Mean 7.18 7.01 6.94 6.80
(Std. Dev.) (2.51) (2.34) (2.31) (2.28)

Chronic Complaints Mean 0.29 0.28 0.30 0.31
(Std. Dev.) (0.45) (0.45) (0.46) (0.46)

Private Insurance Mean 0.11 0.11 0.13 0.14
(Std. Dev.) (0.32) (0.32) (0.33) (0.34)

Income Mean 3,043.87 3,137.30 3,302.54 3,426.49
(Std. Dev.) | (1,842.13) | (2,083.55) | (2,374.59) | (2,305.21)

Married Mean 0.82 0.83 0.83 0.84
(Std. Dev.) (0.38) (0.38) (0.37) (0.37)

Children Mean 0.54 0.52 0.50 0.48
(Std. Dev.) (0.50) (0.50) (0.50) (0.50)

Education in years Mean 11.24 11.26 11.26 11.27
(Std. Dev.) (2.55) (2.56) (2.57) (2.57)

Labor Mean 0.95 0.90 0.89 0.88

(Std. Dev.) (0.22) (0.30) (0.31) (0.33)

Non West German Mean 0.30 0.30 0.30 0.30
(Std. Dev.) (0.46) (0.46) (0.46) (0.46)

Table 5: Correlation Matrix. Number of GP Visits, Female.

Female GP visits 84 GP visits 85 GP visits 86 GP visits 87
GP visits 84 | 1 0.40 0.30 0.29

GP visits 85 | 0.40 1 0.34 0.38

GP visits 86 | 0.30 0.34 1 0.37

GP visits 87 | 0.29 0.38 0.37 1

Table 6: Correlation Matrix. Number of GP Visits, Male.

Male GP visits 84 GP visits 85 GP visits 86 GP visits 87
GP visits 84 1 0.19 0.22 0.19
GP visits 85 0.19 1 0.40 0.42
GP visits 86 0.22 0.40 1 0.44
GP visits 87 0.19 0.42 0.44 1
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Table 7: Correlation Matrix. Number of Specialist Visits, Female.

Female Specialist Specialist Specialist Specialist
visits 84  visits 85  visits 86  visits 87
Specialist visits 84 1 0.29 0.29 0.24
Specialist visits 85 0.29 1 0.28 0.27
Specialist visits 86 0.29 0.28 1 0.37
Specialist visits 87 0.24 0.27 0.37 1

Table 8: Correlation Matrix. Number of Specialist Visits, Male.

Male Specialist Specialist Specialist Specialist
visits 84  visits 85  visits 86  wvisits 87
Specialist visits 84 1 0.32 0.24 0.25
Specialist visits 85 0.32 1 0.30 0.26
Specialist visits 86 0.24 0.30 1 0.35
Specialist visits 87 0.25 0.26 0.35 1

mean age of our sample was 41 in 1984 for both women and men. The impact of
age will be modelled as age * 107! but also as age * 107! + age * 1072 to investigate
non-linearities as supported by the findings of Pohlmeier and Ulrich (1995), Gurmu
(1997), Geil et al. (1997) and Winkelman (2001).

Short term health status is reflected by a self perceived health index ranging from
0 to 10, where 10 corresponds to excellent health and 0 to the worst possible, as per-
ceived by the respondent. This variable corresponds to a self-appraisal of physical and
mental well-being. Individuals with the worst self-perceived index may use medical
care more intensively. Similarly, respondents with a chronic condition are expected
to exhibit a greater tendency to seek care and to use more physician services. The
presence of chronic conditions is represented by a dummy variable equal to 1 if the
individual surveyed has reported any chronic conditions and 0 otherwise. Approxi-
mately 30% of our sample suffer from chronic conditions. Self-perceived health scores

decrease over time for women and men and the proportion of our sample with chronic
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conditions increases over time.

Insurance status is represented by a dummy variable equal to 1 if the individual
has private insurance and 0 otherwise. Distinguishing between several forms of public
insurance as in Geil et al. (1997) didn’t seem relevant since in Germany all members
of the public health insurance plan have the same benefits for outpatient care. 90% of
our sample have public insurance and this proportion is stable for the two first years
and increases thereafter. In Germany, having a pﬁvate insurance has been associated
with a smaller number of physician visits than public insurance (Pohlmeier and Ulrich,
1995).

In most empirical studies, gender has always been a significant determinant of the
use of health services, men using medical care services less often than women. As
reflected in the data, a higher number of physician visits is associated with women.
The proportion of women who have seen a GP is 10% to 20% higher than men,
depending on the year. This is more apparent for specialists where women consulted
on average 50% to 80% more than men. Geil et al. (1997) provided evidence that a
separate analysis for men and women is preferable to analyze hospitalization visits in
Germany. This approach seems relevant since in our sample, women are less privately
insured than men (8% versus 11% in 1984) and they are more frequently out of the
labor force than men (46% versus 5% in 1984). Another difference associated with
gender is a higher proportion of non-Germans among men (30%) than women (24%).

The presence of children may also play an important role in the demand for doctor

consultations. In order to control for this factor, the presence of children below 16 in
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the household is represented by a dummy variable for which a value of 1 corresponds
to the presence of children below the age of 16 in the household and zero otherwise.
More than 50% of our population have children below the age of 16. In Grossman’s
model, the education level influences the behavior of individuals towards utilization of
health care services as better education is associated with better health. Education,
represented in terms of number of years of school, was on average greater for men
(11.24 in 1984) than for women (10.50 in 1984).

Income and working status are used as proxies in the analysis to determine if
economic factors have a role to play in the decision to use health services. According
to Grossman theory, people with higher incomes should consume fewer health care
services than lower income respondents due to opportunity costs or a substitution
effect. The status of employment (1 if in the labor force, 0 otherwise) can represent
the environmental factor of the Grossman model. The occupational status of the
individual can be seen as a surrogate for the opportunity costs that are incurred
when health care is consumed. Employment status may also measure differences
in preferences. This aspect was studied in Germany by Pohlmeier and Ulrich (1995)
who investigated the impact of satisfaction with work on the consumption of physician
services through several variables related to work satisfaction. To be paid for sickness,
German employees need to present sickness certificates from a doctor. Unsatisfied
ernployees may visit their GP in order to be absent and paid for sickness. Moreover,
opportunity costs are usually higher for employed than unemployed people and as a

result, unemployed respondents may exhibit a greater tendency to seek medical care.
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95% of men and 54% of women were working in 1984 in our sample. Curiously, the

number of people in the labor force drops sharply from 1984 to 1985 and is steady

thereafter but below the employment rate level of 1984. This was not expected since

the retirement age is 65 in Germany and that unemployment statistics for Germany
- did not support a drop in the labor force for this ﬁme period.

Due to the limitations of the English version of the German Socio-Economic Panel
database, it was not possible to integrate variables to model physician influences such
as physician density as in Pohlmeier and Ulrich (1995) and Geil et al. (1997). It
was also impossible to benefit from the variable “distance to main city” to model
travelling costs as in Geil et al (1997). This variable was only available for the year

1994 in the English version of the German Socio-Economic Panel.

3.3 Standard Estimations

In this section the data set is estimated with the following models: the Univariate
Negative Binomial (UNB) model applied to the pooled data, the Quadrivariate Nega-
tive Binomial (QNB) model and the Quadrivariate Negative Binomial Random Effects
(QNBRE) model. Mixture models which split the population into low and high users
of medical care were not considered because this approach is more appropriate for a
population composed of older individuals who consult physicians regularly. However,
for a younger population as in our sample, this does not seems reasonable since in any
year more than half of the population did not consult a doctor. Generalized Method

of Moments models were excluded since the endogeneity of self-reported health, in-



surance and income was not supported in recent studies (Lahini and Xing, 2002;
Windemeijer and Santos Silva, 1999; Cameron 1988). Moreover, Generalized Method
of Moments models cannot accommodate an excess of zeros because no distribution
is specified. |

The three models presented in this section are one-part models as they assume
that only one process generates the data. The standard Hurdle version of the Uni-
variate Negative Binomial model applied to the pooled data (Winkelman, 2001; Geil
et al., 1999) will be presented in the next section and compared with a new two-part
model for longitudinal count data designed to model overdispersion, correlation and
an excess of zeros.

The objectives of this section are: 1) To compare standard univariate and multi-
variate approaches in the presence of correlation to determine to which extent conclu-
sions should be based on estimations from methods applying a univariate distribution
for count data to the pooled data; 2) To document if a separate analysis by gender
should be considered in explaining the number of doctor visits and 3) To evaluate the
different models in terms of predicting the mean counts and the percentage of zero

visits at each time period.

3.3.1 Model Specifications

Univariate Negative Binomial (UNB) Model on Pooled Data The first
model to be estimated is the Univariate Negative Binomial model applied to the
pooled data set as in Winkelman (2001) and Geil et al. (1999). The specification of

the Univariate Negative Binomial (UNB) distribution as given in as given in equation
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(24) (Winkelman, 1994) was considered for the analysis. A; =exp(z:() was defined

a8

e Bo + B1Age; + ByGender; + B dns; + B Edu; + BgLab; + 3,Chi;+
i = eXp ﬁg]'ﬂCq, -+ ,BgMa)‘ri -+ ﬂlOHlti -+ ﬁllch'fi + ,812NWG1' ’

(96)

In this equation and from left to right, the covariates for individual ¢ correspond

to age (age*107! or agex10™! + age? x 1073 to investigate non-linearities), status of
insurance (1 if private, 0 if public), the number of years of education, being in the
labor force (1 if employed, 0 otherwise), having children below the age of 16 (1 if
children, 0 otherwise), net household income*10™*, presence of chronic complaints
(1=if chronic complaints, 0 otherwise), self-reported health status measure (from 0
to 10, 10 being the best health self-appraisal, 0 the worst health self-appraisal), being
married (1=married, 0 otherwise), not being West-German (1=non West-German, 0
otherwise) and gender (1 = male, 0 = female). Once ); is parametrized, estimation
can be performed by maximizing with respect to § the set of parameters and «, the
coefficient of overdispersion, the log-likelihood function, (3, o), associated with the

Univariate Negative Binomial distribution:

T [ Wl(e+y) —1nl(e) ~Iny! +
1B, e :Z[ nyzl(;)\?—(af%ﬁn(l-i—%{) :j (o7)

=1

Quadrivariate Negative Binomial (QNB) Model Because the dependent vari-

able, the number of physician visits, is correlated over time, it is hypothesized that
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a multivariate approach is preferable to a univariate approach consisting of pooling
the data. The Multivariate Negative Binomial model was introduced in section 2.1.2.
In the following specification, Yi; = (v, Y1, ¥z, %s) represents the vector of the
number of visits observed for individual ¢ over the t periods when t = 0, 1, 2 and 3
representing the years 1984, 1985, 1986 and 1987, respectively. The counts observed
at each time period are assumed to be independently distributed Poisson conditional
on 7y, with mean 8; = Ayy,. In this formulation, XA; = exp(z;;) in which z; is the
vector of covariates for individual ¢ at period t. The variable ,, the unobserved het-
erogeneity variable, has a Gamma distribution. For simplicity, unknown parameters
and strictly exogenous variables are suppressed in the following equations without
loss of generality.

From equation (27) the Quadrivariate Negative Binomial (N B) probability mass

function of Y; = (v, Y1, Uiz, ¥i3) can be written as:

v - rertei 0 { () M o] @

The mean, the variance of y; at period t and the coefficient of correlation be-
tween two time periods r and s of this distribution were given in equations (28), (29)
and (31), respectively. Applied to our data, the log-likelihood of the Quadrivariate
Negative Binomial probability distribution defined in equation (98) has a simple form

given by:
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i=1

In order to maximize equation (99) with respect to , the vector of parameters and
«, the coefficient of overdispersion, the following parametrization used for individual
1 at time ¢ is:

\ Bo + B1Ageu + BsGender; + Insy + By Eduy + BgLaby; + B,Chiz+
it = €XP |

Bglncy + BogMary + ByoHlty + £1:Chris + B1oNwgs

(100)

Here t = 0, 1, 2, 3 represent the years 1984, 1985, 1986 and 1988. In this
parametrization, all explanatory variables are individually time-variant. They corre-
spond from left to right to the age, gender, the status of insurance, the number of
years of education, being in the labor force, having children below the age of 16, the
net household income, being married, having chronic complaints, the health status
measure and being not West-German of a particular individual ¢ at time t.

The associated coeflicients 3, to 3,5 are not time specific since this was not justified
in our analysis. However, in the case of a study developed to measure the impact
of a reform of the health care system (e.g., increase of private insurance coverage)
on the consumption of medical care over time, it is possible to assign to each year a
different coeflicient for the insurance variable (3., t=1984, 1985, 1986, 1987). This
will allow us to determine the time-shape of the impact of the health care reform on

the consumption of medical services. Similarly, a dummy variable can be introduced
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for each year of the analysis as in Winkelman (2001).

Quadrivariate Negative Binomial Random Effects (QNBRE) Model Hauss-
man et al. (1984) have developed a Negative Binomial Random Effects model for
panel count data in order to allow for individual specific unobserved effects. This
approach was used by Geil et al. (1997) in their analysis of the determinants of the
demand for hospitalization generated by a panel of German individuals followed over
years. When equation (42) is applied to our data and with A; given by equation
(100), the log-likelihood function, I(f3, a, b), to maximize with respect to § the vector

of parameters and to @ and b, the coeflicients associated with the Beta distribution,

is:

N [Inl(a+8)+InT(a+ 32  Aa) +InT(e+ 30, u)—
{Bab) =) InT'(a) ~InP(5) — InT(a +b+ S i+ S ow)+ | . (101)
=1 | 3 AT+ 3 ovie) —InP() —In Ty + 1)}

Overall the Negative Binomial Random Effects model accounts for over-dispersion,
serial correlation and heterogeneity at the individual level. Two major limitations
were identified in this model. Because individual effects are conditioned out of this
model, it is not possible to generate either marginal effects or predicted values making
it difficult to appreciate the fitness of the model (Greene, 1995; Haussman et al., 1984).
In addition, as will be shown in section 3.4, it is not possible to Hurdle or inflate a
Negative Binomial Random Effects distribution because by construction, individual-
specific random effects are not identifiable for the initial count in Negative Binomial

Random Effects models.
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3.3.2

The results of the analysis using one-part models are three-fold. First, it is shown
that results based on a univariate analysis may lead to erroneous conclusions because
the longitudinal aspect of the data is not considered. Pooling various cross sections
does not address this problem because assuming independence of the data over time
is not true in our case as shown in Tables 5-8. Secondly, specification tests indicated
that a separate analysis by gender is preferable to explain the demand for medical
care. Finally, it is shown that one-part models for longitudinal count data do not
provide a good fit of the data. They generally fail to predict the number of zeros at

each time period which is a serious limitation of these models.

Parameter Estimates Table 9 presents for the whole sample the maximum like-
lihood parameter estimates and their standard errors for each of the three models
estimated in this section. Column A of Table 9 corresponds to the Univariate Nega-
tive Binomial (UNB) model when the waves 1984, 1985, 1986 and 1987 are pooled as
in the German studies of Geil et al. (1997) and Winkelman (2001). Column B presents
the results from the estimation of the Quadrivariate Negative Binomial (QNB) model
and column C presents the results from the estimation of the Quadrivariate Negative
Binomial Random Effects (QNBRE) model of Haussman et al. (1984) as in Geil et
al. (1997). The results presented in Table 9 concern only one-part models (i.e., one

distribution governs the data).
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Table 9: Maximum Likelihood Parameter Estimates: Negative Binomial Models.

Maximum Likelihood UNB QNB QNBRE
Estimation Pooled data 84-87 84-87
Number of Observations (N*T): 4342%4 4342%4 4342*4
Log of Likelihood: -25,795.33 | -28,923.019 | -25,028.921
Variable Parameter A B C
Constant B 1.838* 0.889* 0.462*
(0.125) (0.146) (0.139)
Age*1071 B4 0.176* 0.257* 0.182*
(0.016) (0.019) (0.018)
Gender Bs -0.134% -0.116* -0.168*
(0.030) (0.039) (0.034)
Private Insurance B4 -0.319* -0.232* -0.232*
(0.051) (0.048) (0.054)
Education Bs -0.048* -0.064* -0.052*
(0.007) (0.009) (0.008)
Working Be 0.121%* 0.073* 0.078*
(0.033) (0.025) (0.033)
Children B 0.039 0.085* -0.021
(0.031) (0.030) (0.033)
Income Bs -0.485* -0.208* -0.230%*
(0.086) (0.063) (0.081)
Married By 0.050 -0.116%* 0.0538
(0.038) (0.040) (0.042)
Health Bio -0.192* 0.136% | -0.118*
(0.006) (0.004) (0.005)
Chronic conditions B 0.554* 0.390* 0.439*
(0.031) (0.004) (0.028)
Non West German Bz 0.152* 0.156* 0.003
(0.032) (0.043) (0.038)
Overdispersion o -0.693* 0.894*
(0.007) (0.012)
a 1.650%
(0.030)
b 1.538*
(0.039)

* indicates significant at the 5 % level.
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Age, Education, Income, Private Insurance, Working Status and Health
Status Globally, the variables representing age, education, income, private insur-
ance, working and health status are significant in all three models with the expected
signs, which support the theory of Grossman. The rate of depreciation of health cap-
ital stock increases with age. The health status variables (self-reported health and
the presence of chronic complaints) are an important determinant of the demand for
medical care. Education has a significant negative impact on the demand for medical
care because education contributes to a more efficient production of health. Income
has a significant negative impact for the demand of medical care due to a substitution
effect. According to the theory, private insurance has a significant negative effect on
the demand for medical care. Being in the labor force has a significant positive impact
on the demand for GP visits according to the three models. Working could represent
opportunity costs but also measures dissatisfaction with the job as investigated by
Pohlmeier and Ulrich (1995). In Germany, employees who are sick for more than two
days need to present a certificate of illness issued by a physician in order to receive sick
leave payments. The coefficients of overdispersion are always significant, indicating
unobserved heterogeneity in the data.

The models have different implications regarding the impact of the remaining vari-
ables (having children, being married and being non west German). These differences

are highlighted by a comparison of the results of the different models.

Univariate versus Longitudinal models Having children and being married

are significant in the Quadrivariate Negative Binomial model but not in the univariate
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model. According to the Quadrivariate Negative Binomial model, being married
significantly decreases the number of GP visits while having children significantly
increases the number of visits to General Practitioner.. Another difference between
the Univariate Negative Binomial and Quadrivariate Negative Binomial estimations
is the value on the parameter estimates of private insurance, working status, income,
health and chronic conditions which are slightly greater in the univariate model.
The Quadrivariate Negative Binomial and Quadrivariate Negative Binomial Random
Effects parameter estimates are very close for these variables.

Except for the differences observed in the impact of children, being married but
also being non-west German, the different models describe similar patterns. This
result was also reported by Geil et al. (1997) whose analysis indicated that the
pooled cross-section estimates were similar to the Quadrivariate Negative Binomial
Random Effects model when studying the determinants of hospitalization in Germany.
However as it will be shown later on, this is not anymore true in our example when

the analysis is done by gender.

Quadrivariate Negative Binomial Model versus Quadrivariate Negative

Binomial Random Effects Model If we compare the two longitudinal mod-
els, there is a significant increase in the log-likelihood function by adding specific-
individual effects in the Quadrivariate Negative Binomial specification. However, the
estimates of private insurance, education, being in the labor force, income, and to

a lesser extent, age, gender and the two health variables are similar in magnitude,

sign and significance in the two specifications of the Multivariate Negative Binomial
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model. The only differences between the two models are again in the impact of being
married and having children.

According to previous empirical results, having children significantly increases the
number of visits in the standard Quadrivariate Negative Binomial model but this
effect is negative and not significant in the Quadrivariate Negative Binomial Random
Effects model. Being married has a significant negative impact in the Quadrivariate
Negative Binomial model but a positive non significant impact in the Quadrivariate
Negative Binomial Random Effects model. Lastly, not being West-German has a
positive impact in both models but this effect is only significant in the Quadrivariate

Negative Binomial model and the Univariate Negative Binomial model.

Gender Analysis In all models, gender was found to be significant and a re-
duced number of visits was associated with the male population. These results have
been reported in almost all empirical studies on the determinants of medical utiliza-
tion. However, including a dummy variable reflecting the gender as a covariate does
not allow us to know if the explanatory variables have a different impact in modelling
the demand for GP visits as a function of gender. As shown in labor and health
economics, women and men respond differently to economic incentives (Zimmerman,
1993; Geil et al., 1997). Likelihood Ratio Tests were therefore conducted to determine

if splitting the sample by gender was justified from a statistical point of view.

The Likelihood Ratio Test (LRT) values are displayed in Table 10. Splitting the

data by gender is justified in the Univariate Negative Binomial (UNB) and the Quadri-
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Table 10: Likelihood Ratio Test Values for Splitting the Sample by Gender.

UNB QNB QNBRE
Pooled data 84-87 84-87
All observations 40.78 78.79 21.65
(X33 =22.36) (35 =22.36) (xi,= 23.69)

variate Negative Binomial (QNB) models but not with the Quadrivariate Negative
Binomial Random Effects (QNBRE) model. This is an interesting result which sug-
gests that allowing individual-specific overdispersion by the introduction of Random
Effects may be sufficient to explain differences between men and women. However,
in Quadrivariate Negative Binomial Random Effects models, no information is given

on any disparities between men and women.

According to the results of Quadrivariate Negative Binomial (QNB) model esti-
mations reported in column A (female) and B (male) of Table 11, women and men
differ in terms of income, being married, having children and occupational status.
Income, being married and having children are significant in explaining the demand
of men for GP visits but these variables are not significant for women. Working has
a positive significant effect for women and a negative non-significant impact for men.
All other parameters are similar between the two populations in the Quadrivariate
Negative Binomial model.

Bigger differences between univariate and multivariate models appear when the
analysis is conducted by gender. The results of the Univariate Negative Binomial
(UNB) model estimation are given in column C (female) and D (male). For example,

income has a significant negative impact for women in the Univariate Negative Bino-
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Table 11: Maximum Likelihood Parameter Estimates: Negative Binomial Models,

Gender Analysis.
Maximum Likelihcod QNB QNB - UNB UNB
Estimation 84-87 84-87 Pooled data | Pooled data

GPs visits Female Male Female Male

Number of Observations (N*T) 2183*%4 2159%4 2183*4 2159%4
Log of Likelihood: -14900.957 | -13982.667 | -13574.118 | -12200.817
Variable Parameter A B C D

Constant By 0.705* 1.001%* 1.713* 1.917*
(0.226) (0.209) (0.186) (0.181)

Age*1071 B 0.254* 0.268% 0.171* 0.177*
(0.028) (0.028) (0.023) (0.023)
Private Insurance B4 -0.226* -0.229% -0.316* -0.296*
(0.070) (0.066) (0.074) {0.072)
Education Bs -0.051%* -0.077* -0.038* -0.060*
(0.013) (0.013)) (0.010) (0.010)

Working Be 0.156* -0.038 0.122* 0.090
(0.03) {(-0.043) (0.039) (0.066)

Children B+ 0.067 0.132* -0.037 0.026
(0.042) (0.0428) {(0.045) (0.047)
Income*10~4 Bs -0.123 -0.339* -0.325* -0.700*
(0.077) (0.100) (0.105) (0.136)
Married By -0.068 -0.182* -0.005 0.121%+*
(0.053) (0.062) (0.050) (0.061)
Health Bio -0.136%* -0.135% -0.191* -0.192*
(0.005) (0.005) (0.008) (0.009)

Chronic conditions B11 0.269* 0.521* 0.468* 0.636*
{0.027) (0.028) (0.042) (0.046)

Non West German Bz 0.149% 0.154* 0.135* 0.168*
(0.063) (0.059) (0.045) (0.045)

Overdispersion o 0.901* 0.888* 0.719* 0.668*
(0.017) (0.018) (0.010) {0.009)

.
s

* indicates significant at the 5 % level.
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mial model but this impact is not significant for women in the Quadrivariate Negative
Binomial model. Having children and being married are not significant variables ac-
cording to the Univariate Negative Binomial estimation for men but these variables
are significant in the Quadrivariate Negative Binomial model for this population.
While the impact of income, being married and having children was different among
men and women in the Quadrivariate Negative Binomial model, in the Univariate
Negative Binomial model, the only difference between males and females was related
to working status. All other parameters were similar in the Univariate Negative
Binomial model.

These results suggest that in models supporting a splitting of the sample by gender
and in the presence of correlation, important differences appear between the estima-
tions of the univariate and the Quadrivariate Negative Binomial models. However,
this finding is attenuated because Likelihood Ratio Tests did not support the splitting

of the sample when a Negative Binomial random effect model was used.

Predictions Once the parameters were estimated, the predicted mean number of
GP visits were determined by gender and per year as well as the predicted mean
number of zeros using the Quadrivariate Negative Binomial model. It was impossible
to predict the mean counts and the number of zeros from the Quadrivariate Negative
Binomial Random Effects model because the marginals are not defined in this model
(Haussman et al., 1984; Greene, 1998). The difference between the observed and
predicted values of the mean number of GP visits is less than 10% as it can be seen in

Figure 1. Generally, the predicted mean values are smaller than the observed values.
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The omission in our structural equations of important variables such as a physician
density variable to represent a supply-side induced effect may explain this result.

Table 12 presents the predicted number of zeros using the Quadrivariate Negative
Binomial model. In the calculations, the number of zeros at each time period was
determined jointly when the count at time t was set equal to 0 according to the joint
distribution of the number of visits from 1984 to 1987. For example, the number
of zero visits in 1985 was calculated as QN B(ysq, yss = 0, yss, Ys7) according to the
density function of the Quadrivariate Negative Binomial given in equation (98). The
results indicate that the Quadrivariate Negative Binomial model is unable to predict
the number of zeros at each time period offering a poor fit for the data. However, the
probability for a particular individual of having zero visits each year of the period
1984 to 1987 was calculated as QN B(0,0,0,0). The results are presented in Table
12 and indicates that the Quadrivariate Negative Binomial model predicts that 21%
and 26% of women and men did not consult a GP over the full time period (versus
observed values of 23% and 24% for women and men, respectively).

Results also indicate that the Univariate Negative Binomial model applied to the
pooled data performs well in predicting the number of zeros and the mean counts
but the longitudinal aspect of the data is not integrated as the dependent variable
is assumed to be independent over time. In comparison, the Quadrivariate Negative
Binomial model takes into account the repeated nature of the data. The predicted
coefhicient of correlation between two consecutive years, calculated according to equa-

tion (31), were approximately 0.6 for women and 0.5 for men which compares to ac-
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Table 12: Zeros: Observed and Predicted Values - QNB Model - Analysis by Gender

QNB QNB
Female Male
1984-1987 | 1984-1987 | 1984-1987 | 1984-1987
Observed | Predicted | Observed | Predicted
0 visits in 1984 0.56 0.06 0.63 0.08
0 visits in 1985 0.55 0.06 0.58 0.09
0 visits in 1986 0.50 0.07 0.56 0.09
0 visits in 1987 0.52 0.07 0.58 0.09
0 visits 1984-1987 | 0.23 0.21 0.24 0.26

tual values of 0.4 and 0.5. The correlation between non-consecutive observations is
generally overestimated. .

However, the Quadrivariate Negative Binomial model assumes that only one pro-
cess generates the data which may be not true due to the high proportion of zero
visits in our sample. Due to these limitations, other alternatives have to be locked

into to obtain a better fit for the data and to draw final conclusions.

Figure 1: Observed versus Predicted Number of GPsVisits per YVear and
Gender -
QNB Model

Number of visits

#visis 84 #visita85  #visits 86 Hvisits §7 #visits 84 #visits &5 #visits 86 ¥ visis 87
Male

Female
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3.4

The models presented so far assumed that only one process generates the data which
may not be true to the high proportion of zeros in our dats as a result of 0 consul-
tations. The Quadrivariate Negative Binomial model was unable to correctly predict
the mean number of zeros for a particular year and the construction of the Quadri-
variate Negative Binomial Random Effect model makes it impossible to calculate
predicted values. To fix these shortcomings, a Quadrivariate Negative Binomial Hur-
dle model, nested to the Quadrivariate Negative Binomial distribution, is presented
in this section. This Multivariate Negative Binomial Hurdle model addresses five
characteristics that are commonly found in health care utilization data sets: repeated
observations on a count used to analyze the use of medical services, the presence of
covariates, unobserved heterogeneity, a count dependence structure and an excess of
zeros. Results are compared with the standard Univariate Negative Binomial Hurdle

model applied to the pooled data.

3.4.1 Model Specification

Multivariate distributions treat the longitudinal aspect of the data by conditioning
to previous events. By definition, any Multivariate Negative Binomial distribution

(MNB) can be written as the product of conditional distributions as:

MNB(Yit) = NBo(yio)NB1(i1 | Yio), s NBe(Yst | Yioy Uity s Yit—1)- (102)

In this expression Y = (v, %1, .--¥iz) is the vector of counts observed for indi-
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vidual i over the t periods. ¥ is the count observed at time ¢ for individual ¢ and
t = 1.. 7. It follows from this equation that the initial value at £ = 0, y;, should
be treated as an endogenous variable following an Univariate Negative Binomial dis-
tribution (IVB;). The expression NB;{y; | yio) represents the conditional Negative
Binomial distribution of the counts at t=1 conditional on the counts observed at t=0.
This conditional distribution, N B;(y:1 | yio), is calculated as the ratio of the Bivariate
Negative Binomial distribution of (y, ¥:1) and the Univariate Negative Binomial dis-
tribution of ;. For each subsequent time periods, the counts are similarly calculated
conditional on the previous observed counts.

As revealed by the literature review, applications of Hurdle models in health eco-
nomics have so far concentrated on the univariate case and have not been extended to
the longitudinal case. In the following the concept of the Hurdle model for univariate
count data is extended to the longitudinal case to address the problems of excessive
zeros in the longitudinal case and correlation over time. This methodology consists
to hurdle each conditional distribution defined in equation (102) so that the model
deals with the problem of zeros as well as with the correlation across time. The con-
struction of the Hurdle model implies that at each time period, the zero counts ?Jnd
the positive counts are generated according to two different processes.

A parallel to the principal-agent theory is to consider that each year individuals
have to make a choice about visiting a physician and how many times. This is not
unrealistic since sick (i.e. sick enough to go to the physician) is not generally an

absorbent state but rather a temporary one. This is reflected by the fact that each
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year almost 80% of the sample have two or fewer visits over the three-month period
prior to the survey. However, this assumption may not hold for those severely sick
individuals who require continuous follow-up examinations over time. It is believed
that this problem will not invalidate our results since only 3% to 5% of the sample
have more than 6 visits (assuming an average of 1 visit every 2 weeks) over the three-
month period prior to the survey. Similarly, this model does not consider multiple
iliness cells since no information was available for the analysis.

The following presents a Quadrivariate Negative Binomial Hurdle distribution
which was designed to analyze the number of physician visits made by individuals
followed over the period 1984-1987. The Quadrivariate Negative Binomial distribution
given in equation (98) was decomposed into a product of conditional probabilities
as in equation (102). The Quadrivariate Negative Binomial Hurdle was defined as
the product of three conditional Negative Binomial Hurdle distributions (¢t = 1985,
1986, 1987) and the Univariate Negative Binomial Hurdle distribution for the first

observation in 1984.

QN BH (yiss, yiss, Yiss, Yist) = NB Haa(yisa) N BHas(yiss | yisa)
N B Hzgs(yiss | yiss,yisa) N BHigy(Viar | Yiss,Yiss,Yise)
Since there is no previous information available for the first observation, the
Hurdle specification of the initial observation y;g4 for individual i corresponds to

a standard Univariate Negative Binomial Hurdle (N BHg,) model. Each subsequent

time period (t = 1985, 1986 and 1987) was hurdled conditional on the previous
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counts. In this equation, NBHgs{yss | yss) is the Negative Binomial Hurdle distri-
bution for the counts in 1985 conditional on the counts observed in 1984. Similarly
NBHgg{yse | ¥ss,yse) is the Negative Binomial Hurdle distribution for the counts in
1986 conditional on the counts observed in 1985 and 1984 and N B Hgr{ys7 | Use, Uss, Ysa)
is the Negative Binomial Hurdle distribution for the counts in 1987 conditional on
the counts observed in 1985 and 1984. The log-likelihood function of the Quadri-
variate Negative Binomial Hurdle distribution (LnLQNBH) generating the counts

(%84, Yiss, Yiss, Yis7), Was decomposed into the sum of four log-likelihood functions:

N N
LnLQN BH (yise Yiss Yiss, Yisr) = Z LnNBHg(yisa) + Z LnN B Hgs(yiss | yisa) +

i=1 i=1

N N
> LnNBHss(yims | tissyiss) + 9 LnNBHgr(yisr | yise yiss,Yiss). (103)
=1 =1

In this expression Zfi . LnN BHjg,, is the log-likelihood function associated with
the Univariate Negative Binomial Hurdle distribution applied to the counts observed

in the first year of observation in 1984. Here Zfil LnN BHg, is written as:

Lyise=0) In(N By (yigs = 0))+

N N 1 Lgiee>0) (1 — NBy{yiss = 0))+
Z InNBHg(on, B, 09,8:) = Z o - (104)
i=1 i=1 1(?Ii84>0) ln(NBz(yig4))+

L(yisa>0) (N Ba(yigs = 0))

The term 1(yigs—g) = 1 if 84 = 0 and O otherwise. The distribution N B, is the

Univariate Negative Binomial distribution governing the zeros in 1984 and N B, is
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the Univariate Negative Binomial distribution governing the positive counts in 1984.
Maximization is conducted with respects to the parameters a; and [,defining the
distribution NB; and oy and fydefining N B;. The terms o’s are the coefficients of
overdispersion and the 3’s the coefficients associated with the mean functions of NB;
and N Bs.

For the subsequent years each conditional distributions was hurdled. For ex-
ample, Zfil ImN BHgs, corresponds to the log-likelihood function of the Negative
Binomial Hurdle model in 1985 conditional on the counts observed in 1984. Then

Zﬁil ILnN BHgs was decomposed as:

1 (piss=0) In(NB1(yiss = 0| yise) )+

N N | Lyissso) 101 — NBi(yiss = 0| yiga))+
Z InNBHg = Z . (105)

i=1 i=1 Lyias>0) In(V Ba(yiss | yisa))+

1(%‘85>0) ln(NBZ(yi% =0 ‘ %84))

In this formulation, N B, is the conditional Negative Binomial distribution gener-
ating the zeros in 1985 conditional on the counts observed in 1984 witch is the ratio
of a Bivariate Negative Binomial distribution and the Univariate Negative Binomial

distribution as

BN B:(yis5 = 0, yisa)
UN B (yiss = 0)

NBi(yigs = 0| giga) = (106)

Similarly, the log-likelihood $"Y . LnNBHgs is calculated by conditioning over
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the counts observed in 1984 and 1985 and Zﬁ__l LnNBHg; by conditioning over the
counts observed in 1984, 1985 and 1986. Estimation is obtained by maximizing the
sum of these four log-likelihood functions.

The Quadrivariate Negative Binomial Hurdle model assumes that in each stage
the analysis is done conditionally on the number of previous physician visits observed
the years before. Therefore, correlation is introduced in the contact decision and in
the frequency of the visits. For t =1984, 1985, 1986 and 1987, the mean and variance

of this model are given by:

E(ys:) = Pr {yit >0 | Yz't—l] Ey.>o [yit | v > 0] (107)

Var(yi) = Priye = 0| Y1) Ey,n0 [yie | yie > 0] + Prlys: > 0] Vary,, 5o [ya | v > 0.
(108)

By construction, the Quadrivariate Negative Binomial Hurdle model is nested
to the Quadrivariate Negative Binomial model. When NB;=NB,, the likelihood
function of the Quadrivariate Negative Binomial Hurdle model given in equation {104)
resumes to equation {99). Therefore, using Likelihood Ratio Tests, it is possible to
know if the excess of zeros is significant when analyzing longi’cudiha,l count data.

By definition, the likelihood for the Univariate Negative Binomial Hurdle density
for the first cbservation has to be added to the quadrivariate likelihood function
in order to respect the conditional definition of any multivariate distribution given
in equation (102). Therefore, a random effects version of a Multivariate Negative

Binomial Hurdle model in which the random effects would be individual-specific,
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cannot be derived. In Haussman et al.’s model (1984), it is impossible to define
for the initial observation a Univariate Negative Binomial Fixed Effects distribution
because ¢; and exp(u;), which defines the individual random effects §; = 55;}%57 are

not identifiable in the univariate case.

3.4.2 Results

The likelihood functions of the Quadrivariate Negative Binomial and Quadrivariate
Negative Binomial Hurdle (QNBH) distributions were used to test nested hypothe-
ses. The parameter estimates of the Quadrivariate Negative Binomial Hurdle model
were also compared to the Univariate Negative Binomial Hurdle model applied to
the pooled data to examine differences between two-part models assuming indepen-
dence of the count dependent variable over time and two-part models treating the
longitudinal nature of the data.

Results indicate that two-part models are preferred over one-part models and that
an analysis by gender is preferable. However, when the dependent variable is corre-
lated over time, two-part models using pooled data may lead to inconclusive results
as suggested by different parameter estimates between the Univariate Negative Bino-
mial Hurdle and Quadrivariate Negative Binomial Hurdle models. The Quadrivariate
Negative Binomial Hurdle model offers a good fit of the data by correctly predicting
the mean counts and the zeros for each year of the analysis which is a great advantage

versus the standard Quadrivariate Negative Binomial model.
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Parameter Estimates The results of the Quadrivariate Negative Binomial Hurdle
(QNBH) model estimation are presented in Column 2 of Table 13. For the whole sam-
ple, the log-likelihood functions increased significantly from —-28,923.019 (Quadrivari-
ate Negative Binomial estimation) to -28,032.271 (QNBH) since twice the difference
in the log-likelihood function is 90.75 which is greater than 21.03, the 95% critical
value for the x%,. The excess of zeros is significant in our longitudinal count data set
and not addressing this feature of the data will result in inconsistent estimates since
the mean function would not be correctly specified. This result supports previous
findings suggesting that a different view of health care should be considered. The
demand for doctor visits follows a two-step process in which the decision to consult
a physician is taken and once this Hurdle is passed, the frequency of visits can be

modelled.

Private Insurance, Income and Health Variables According to Grossman’s
theory, the results of the Quadrivariate Negative Binomial Hurdle model indicated
that private insurance and income are significant in determining the demand for
medical care. Having private insurance and a high income have a negative impact on
the contact decision (1st stage) and on the frequency of GP visits (2nd stage). Health
and chronic conditions are also significant in both stages with the expected signs.

The results of the impact of other variables are not fully supported by Grossman’s
theory. For example, education and being in the work force have a significant impact
in the first stage only but not on the frequency of visits. Having children and being

married are not significant variables in the decision to contact a GP but are significant
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in the frequency of visits.

Quadrivariate Negative Binomial Hurdle Model versus Univariate Neg-
ative Binomial Hurdle Model Column 3 of Table 13 presents for comparison
the results of the Univariate Negative Binomial Hurdle (UNBH) model applied to the
pooled data. According to the Univariate Negative Binomial Hurdle model, the ex-
cess of zeros is also significant. If we compare the two models, the longitudinal Hurdle
specification and the univariate Hurdle specification have similar interpretations in
terms of significance of the explanatory variables. The only difference between the
two models is again the role of having children and being married. Having children
does not significantly impact the decision to consult a physician in both models but
it has a positive impact on the frequency of consultations in the Quadrivariate Nega-
tive Binomial Hurdle model and a negative non significant impact in the Univariate
Negative Binomial Hurdle model. Finally, comparing the estimates of the parameter
indicates that their vvalues and their standard errors are generally smaller using a

longitudinal approach rather than pooling various cross-sections.

Gender In both models, gender is significant only in the decision to contact a
physician. Being male has a significant negative impact on the probability of con-
tacting a GP. Once the Hurdle is crossed, gender is not significant in explaining the
frequency of the visits. This result was also found by Pohlmeier and Ulrich (1995) in
their analysis of the number of physician visits generated by a population composed

of employees using the 1984 wave of the German Socio-Economic Panel data set.
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Table 13: Maximum Likelihood Parameter Etimates: QNBH and UNBH Models.

Maximum Likelihood QNBH - UNBH
Estimation 84-87 Pooled data
GPs visits Total Sample Total Sample
Number of Observations (N*T): 4,342%4 4,342%4
Log of Likelihood: -28,032.271 -25,739.404
Variable Parameter | 1st step | 2nd step | 1st step | 2nd step
Constant Bq -0.723*% | 0.418* 2.637* 1.665%
(0.242) | (0.143) | (0.859) | (0.172)
Age*107! B, 0.018 | 0.164* | 0.190* | 0.178*
(0.042) | (0.018) | (0.039) | (0.022)
Sex Bs -0.189* 0.016 -0.269*% | -0.059
{0.056) | (0.033) | (0.064) | (0.040)
Private Insurance B4 -0.262* | -0.144* | -0.321*% | -0.329*
(0.104) | (0.051) | (0.087) | (0.076)
Education Bs -0.052* | 0.007 | -0.095* | -0.010
(0.013) | (0.008) | (0.017) | (0.010)
Working B 0.168% 0.007 0.234* 0.050
(0.064) | (0.025) | (0.067) | (0.045)
Children B -0.039 0.101* -0.005 0.058
(0.060) | (0.030) | (0.054) | (0.044)
Income*10~* Bs -0.378*% | -0.125*% | -0.370* | -0.640%
(0.180) | (0.061) | (0.132) | (0.125)
Married Bo 0.067 | -0.103* | 0.123 0.010
(0.072) | (0.038) | (0.067) | (0.053)
Health . Bio -0.111% | -0.116* | -0.217* | -0.192*
(0.011) | (0.004) | (0.040) | (0.008)
Chronic conditions B 0.403* | 0.258* | 0.802* | 0.463*
(0.061) | (0.020) | (0.159) | (0.042)
Non West German B2 -0.085 | 0.192* | 0.012 | 0.260*
: (0.061) | (0.037) | (0.056) | (0.044)
Overdispersion a 1.851% 1.275% | 0.642*% | 0.504*
(0.048) | (0.036) | (0.097) | (0.025)
* indicates significant at the 5 % level.
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However, including a variable gender does not allow us to test if other differences
exist by gender. In fact, Likelihood Ratio Tests indicated that the sample should be
separated according to gender since twice the difference in the log-likelihood is 118.12
which is greater than 33.89 the x2; value for the Quadrivariate Negative Binomial
Hurdle model. As reported previously in section 3.3 for one-part models, splitting
the model by gender indicates major differences with respect to an aggregated and a

longitudinal approach.

Gender Analysis The results of the estimation of the Quadrivariate Negative
Binomial Hurdle model by gender are presented in Table 14. One of the main differ-
ences when the sample is split by gender is that income is not longer significant at any
stage for both genders. This result is not in accordance with Grossman’s theory nor
with Pohlmeier and Ulrich (1995) for which income was significant in explaining the
contact decision. The impact of private insurance is different across the two popula-
tions according to each of the two stages of the Hurdle. For women, private insurance
is not significant in the decision to consult a physician but private insurance has a
significant negative effect on the frequency of visits. For men it is the contrary; having
private insurance significantly decreases the probability of contacting a GP but this
effect is not significant for the frequency of visits. Differences between genders also
appear in the impact of age, being married and having children.

A non-linear relation between age and the number of consultations was found
for the male population in modelling the probability decision to contact a general

practitioner. This result was not supported in one-part models (Univariate Nega-
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tive Binomial, Quadrivariate Negative Binomial and Quadrivariate Negative Bino-
mial Random Effects models) nor for the female population in the Quadrivariate
Negative Binomial Hurdle model . Interestingly, for women, age was not found to be
significant in explaining the contact decision. For both genders, being married does
not play a significant role in explaining the decision to consult a GP. However, being
married is significantly associated with a smaller number of GP visits generated by
men once the decision has been taken. Having children does not affect the probability
of contact but significantly increases the frequency of the visits for both genders. The
same pattern is observed for nationality: it does not matter when it is time to first
contact a GP, but significantly impacts the number of visits once the first contact has
been made. Finally, men and women behave similarly in terms of education. Higher
education significantly reduces the probability of contacting a GP for both men and
women. Education does not affect the frequency of visits for both genders once the

contact has been made.

Gender Analysis: Quadrivariate Negative Binomial Hurdle Model ver-
sus Univariate Negative Binomial Hurdle Model In order to compare in the
presence of correlation a two-part model for longitudinal count data with the stan-
dard univariate Hurdle model, Table 16 presents the estimation by gender of the
Univariate Negative Binomial Hurdle model applied to the pooled data. The results
are presented by gender since this was justified according to a Likelihood Ratio Test

value of 50.540 which is greater than 33.885 the x2; value. The results are contrasted
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Table 14: Maximum Likelihood Parameter Estimates: QNBH Model. Gender Anal-
ysis.

Maximum Likelihood QNBH QNBH
Estimation 84-87 84-87
GPs visits Female Male
Number of Observations: 2183*4 2159%4
Log of Likelihood: -14501.889 -13471.3204
Variable Parameter | 1st step | 2nd step | 1st step | 2nd step
Constant Be -0.627 0.190 0.693 0.718*
(0.356) | (0.206) | (0.513) | (0.215)
Age*107* B, 0.047 0.168* | -0.810*% | 0.172*
(0.042) | (0.026) | (0.165) | (0.028)
Age~2*1073 B - - 1.005% -
: - (0.201) .
Private Insurance B4 -0.138 | -0.160* | -0.389* | -0.117
(0.145) | (0.072) | (0.152) | (0.073)
Education Bs -0.064* 0.020 -0.044* | -0.006
(0.019) | (0.012) | (0.019) | (0.013)
Working Be 0.154* 0.068* 0.183 -0.068
(0.074) | (0.033) | (0.157) | (0.041)
Children B 0.011 0.089* -0.049 0.146*
(0.083) | (0.042) | (0.093) | (0.046)
Income*10~4 Bs -0.194 | -0.140 | -0.403 | -0.120
(0.227) | (0.077) | (0.265) | (0.102)
Married i 0.042 -0.046 0.078 | -0.194*
(0.096) | (0.049) | (0.119) | (0.062)
Health Bio -0.115% | -0.121* | -0.117*% | -0.112%*
(0.015) | (0.005) | (0.017) | (0.006)
Chronic conditions Bi1 0.301* | 0.140% | 0.561* | 0.398*
(0.083) | (0.005) | (0.093) | (0.031)
Non West German |  f,, | -0.164 | 0.207% | -0.033 | 0.174*
(0.087) | (0.052) | (0.091) | (0.053)
Overdispersion a -1.770% | 1.341*% | 1.843*% | 1.170%
(0.063) | (0.049) | (0.071) | (0.053)
* indicates significant at the 5 % level.
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against the Quadrivariate Negative Binomial Hurdle model. Important differences in
the impact of private insurance, income and employment status appear between the
Univariate Negative Binomial Hurdle and Quadrivariate Negative Binomial Hurdle

models when the analysis is conducted by gender.

In the Univariate Negative Binomial Hurdle model, private insurance is signifi-
~ cant for women in reducing the decision to contact a physician while this effect was
insignificant in the Quadrivariate Negative Binomial Hurdle model. For men, pri-
vate insurance is not longer significant in the contact decision while this variable was
significant in the Quadrivariate Negative Binomial Hurdle model. Income and em-
ployment status are significant in explaining the frequency of GP visits according to
the Univariate Negative Binomial Hurdle model while these variables did not play a
significant role in the Quadrivariate Negative Binomial Hurdle model. Income signifi-
cantly decreases the frequency of visits according to the Univariate Negative Binomial
Hurdle but not in the Quadrivariate Negative Binomial Hurdle estimations. In light
of these differences, a lot of caution should be taken when interpreting results from

univariate Hurdle models pooling count data.

Predictions Once the parameters of the Quadrivariate Negative Binomial Hurdle
model were estimated, the predicted mean counts at each time period t, were derived
from equation (108). As can be seen in Figure 2, which presents the predicted means
for the two populations, the Quadrivariate Negative Binomial Hurdle model gives

overall a good fit of the data. The predicted number of zeros at each time period was
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Table 15: Maximum Likelihood Parameter Estimates: UNBH model. Gender Anal-
ysis.

Maximum Likelihood UNBH UNBH
Estimation : 84-87 Pooled data
GPs visits Female Male
Number of Oservations (N*T): 2,183*4 - 2,159%4
Log of Likelihood: -13,543.7447 -12,170.39
Variable Parameter | 1st step | 2nd step | 1st step | 2nd step
Constant B -0.119 1.418* | 11.848* | 1.973*
(0.875) | (0.259) | (5.183) | (0.269)
Age*107t B4 0.127% | 0.167* -1.39 0.197*
(0.036) | (0.031) | (0.785) | (0.033)
Age*1072 By - - 2.154%* -
- - (1.074) -
Private Insurance B4 -0.228* | -0.322* | -0.549 | -0.309*
(0.087) | (0.108) | (0.345) | (0.110)
Education Bs -0.066* | 0.007 | -0.221* | -0.034*
(0.008) | (0.015) | (0.096) | (0.016)
Working Bs 0.119* 0.064 0.865 -0.012
(0.049) | (0.053) | (0.573) | (0.090)
Children By -0.002 0.045 -0.009 0.080
(0.053) | (0.061) | (0.196) | (0.067)
Income*10~4 Bs -0.106 | -0.514* | -1.364 | -0.854*
(0.109) | (0.160) | (0.750) | (0.120)
Married B -0.014 0.022 0.634 -0.007
, (0.058) | (0.067) | {0.357) | (0.009)
Health Bio -0.128% | -0.188* | -0.575% | -0.197*
(0.019) | (0.011) | (0:280) | (0.013)
Chronic conditions B 0.419* | 0.375% 2.424 0.558*
(0.077) | (0.055) | (1.349) | (0.064)
Non West German Bz -0.005 | 0.245* | 0.158 | 0.265%
(0.053) | (0.065) | (0.211) | (0.064)
Overdispersion a 1.404* | 0.656% | 0.332*% | 0.527*
(0.536) | (0.032) | (0.090) | (0.038)
* indicates significant at the 5 % level.
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calculated conditional on the previous number of physician visits. Due to its Hurdle
structure, the Quadrivariate Negative Binomial Hurdle model is also able to predict
the number of zero visits at each time period. As presented in Figure 3, this feature of
the Quadrivariate Negative Binomial Hurdle model represents a significant improve-
ment over Quadrivariate Negative Binomial models which are unable to predict any

zero at all for a particular year.

Figure 2: Observed versus Predicted Mean Number of GPsVisits per Year
and Gender. QNBH Model
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Figure 3: Observed versus Predicted Percentage of Zero GP Visits per Year
28d per Gender - QNBH Model
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3.5 The Analysis of the Number of Specialist Visits

The same methodology was applied for analyzing the of the number of specialist
visits to examine if differences exist in the demand for specialists and GPs as found in
Pohlmeier and Ulrich (1995). Results indicate that the analysis of GPs and specialists
should be done separate as several variables have different impacts in each analysis.
It is also shown that an analysis by gender is preferable and that the Quadrivariate
Negative Binomial Hurdle model is the preferred model since the excess of zeros is
significant. The results from univariate estimations are not presented in this section
which concentrates on highlighting the differences between the demand for general
practitioners and the demand for specialists when the analysis is conducted by gender
using count data models for longitudinal count data.

Likelihood ratio tests supported to conduct a separate analysis for the female
and male population for the Quadrivariate Negative Binomial model but also for the
Quadrivariate Negative Binomial Random Effects model. This is the first difference
between the analysis of the demand for specialists and the demand for GPs. Splitting
the model by gender was not justified when a Negative Binomial Random Effects

model was used to explain the number of GP visits (Table 10).

3.5.1 Quadrivariate Negative Binomial and Quadrivariate Negative Bi-

nomial Random Effects Estimations

Table 16 reports the Quadrivariate Negative Binomial (QNB) and Quadrivariate Neg-

ative Binomial Random Effects (QNBRE) estimation results for the specialist equa-
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tion after splitting the sample by gender. Results indicate that similar to the analysis
of GPs, there is a significant increase in the log-likelihood function when individual-
specific random effects are added to the Quadrivariate Negative Binomial Random
Effects modelling the demand for specialists. However, contrary to the findings of the
GP analysis, the results of the Quadrivariate Negative Binomial aﬁd the Quadrivariate
Negative Binomial Random Effects models are quite different in terms of significance
of the variables and magnitude of the parameter estimates. Other differences appear
in the impact of private insurance, education, working status and having children
in explaining the demand for specialist and GP. In the GP analysis, private insur-
ance, income, education and the health variables were all significant according to the
Quadrivariate Negative Binomial and Quadrivariate Negative Binomial Random Ef-
fects models. This is not anymore the case in the longitudinal analysis of the number

of specialist visits.

Private insurance is not significant in explaining the number of specialist visits
done by women in both models {Quadrivariate Negative Binomial and Quadrivariate
Negative Binomial Random Effects models) and for men in the Quadrivariate Negative
Binomial Random Effects model. This is different from the GP analysis for which
having a private insurance was associated with a significant reduction in the number
of GP visits.

Income, which was associated with a significant reduction for men in GP visits,
now has a positive and significant impact on the demand of women for specialist visits

in the Quadrivariate Negative Binomial model. However, this is not true according to
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Table 16: Msaximum Likelihood Parameter Estimates: QNB Models. Specialists.

Gender Analysis.
Maximum Likelihood QNB QNB QNBRE QNBRE
Estimation - 84-87 84-87 84-87 84-87
Specialists visits Female Male Female Male
Number of Observations (N*T): 2,183%4 2,159%4 2,183*4 2,159%4
Log of Likelihood: -16,665.479 | -11,771.207 | -13,858.188 | -8,5683.099
Variable Parameter
Constant B 1.989% 0.751% 1.662* 2.006*
. (0.442) (0.274) (0.400) (0.596)
Age*107! By -0.565% 0.198* -0.815* -1.669*
(0.193) (0.037) (0.181) (0.276)
Age~2*1073 B 0.580* - 0.714* 2.338*
(0.223) - (0.212) (0.319)
Private Insurance B4 -0.022 0.187* 0.060 0.028
(0.058) (0.076) (0.067) (0.088)
Education Bs 0.045* 0.027 0.044* 0.167*
(0.013) (0.016) (0.010) (0.013)
Working Be -0.011 -0.101 0.039 -0.443*
{(0.031) (0.045) (0.040) (0.068)
Children B+ 0.053 0.024 -0.100* 0.150%*
{0.040) {0.054) (0.047) {0.065)
Income Bs -0.309* 0.229* -0.037 0.156
(0.082) (0.052) (0.071) (0.096)
Married B 0.092 -0.192* 0.165* -0.864*
(0.050) (0.080) (0.053) (0.071)
Health B -0.105* -0.192* -0.082* -0.244%
(0.005) (0.006) (0.008) (0.010)
Chronic conditions B 0.557* 0.579* 0.563* 0.704*
(0.026) (0.033) (0.038) (0.053)
Non West German s -0.010 0.249% -0.253* 0.715*
(0.065) (0.087) (0.053) (0.063)
Overdispersion o 0.889* 0.617 - -
(0.016) (0.013) - -
a - - 1.520%* -1.008*
- - (0.038) {0.026)
b - - 1.724%* -1.063*
- - (0.062) (0.038)

* indicates significant at the 5 % level.
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the Quadrivariate Negative Binomial Random Effects model for which income does
not play a significant role in explaining the demand for women.

Education has s positive impact on the number of specialist visits generated by
women according to the two models and in the Quadrivariate Negative Binomial
Random Effects model for men. In comparison, education was associated with a
decrease in GP visits.

Working only has a significant negative impact in explaining the demand for spe-
cialists in the Quadrivariate Negative Binomial Random Effects model and only for
men. According to the Quadrivariate Negative Binomial and Quadrivariate Negative
Binomial Random Effects models, working status does not play a significant role in
the decision to consult a specialist for women. This is also different from the GP
analysis in which the two models found that working was associated with an increase
in the number of GP visits for women. Other differences between gender and/or
models appear with respect to the impact of having children, being married or not
being German.

While these results indicate that the analysis should be done by gender as in Geil
et al. (1997) and that the demand for GPs and specialists is different as in Pohimeier
and Ulrich (1995), the fact that almost 60% of the population did not consult a

specialist may suggest that the data should be tested for an extra zeros.
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al Hurdle (QNBH) Esti-

The Quadrivariate Negative Binomial Hurdle (QNBH) model given in equation {103)
was used to analyze the demand for specialists. Again the excess of zeros is significant
in explaining the number of visits to the specialists. With respect to the Quadrivariate
Negative Binomial model estimation, the log-likelihood function increased from —
16,665.479 to -15,710 for women and from -11,771.207 to -10,812 for men. Not taking
into account the zeros would lead to incounsistent estimates. In addition, specification
tests supported again that the determinants of the demand for specialist are different
for men and women.

While health and chronic conditions are significant with the expected signs in
explaining the demand for specialists and GPs, the results support the assumption
that the determinants for the demand of generalists and the demand of specialists are
different when two-part models are used to treat for an excess of zeros.

Private insurance is not anymore significant in explaining the frequency of visits
to specialists by women once the Hurdle is passed while this variable was reducing
significantly the demand for generalists. For men, private insurance has a positive
significant impact in the frequency of the visits to specialists while it was not signif-
icant for the demand for GPs. In fact, the probability decision to contact a GP was
reduced by having a private insurance.

Income was not significant in explaining the demand for GPs in both stages (i.e.,

contact and frequency) but it is significant in explaining the frequency of visits to
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Table 17: Maximum Likelihood Parameter Estimates: QNBH Models. Specialists.
Gender Analysis.

Maximum Likelihood QNBH QNBH
Estimation 84-87 84-87
Specialist visits Female Male
Number of observations: 2,183 2,159
Log of Likelihood: -15,710.077 -10,811.654
Variable Parameter | 1st step | 2nd step | 1st step | 2nd step
Constant By 0.668 0.514* -0.118 1.379*
(0.444) | (0.201) | (0.566) | (0.251)
Age*107t B, -1.296% | 0.092* | -1.357* | 0.094*
' (0.150) | (0.026) | (0.203) | (0.034)
Age~2%1073 B, 1.309* - 1.711* -
(0.179) - (0.244) -
Private Insurance By 0.051 0.021 0.148 | 0.163*
(0.128) | (0.058) | (0.146) | (0.079)
Education Bs 0.032 0.024* | 0.068* | -0.012
(0.017) | (0.011) | (0.019) | (0.013)
Working Be 0.152* -0.037 0.221 -0.198*
(0.073) | (0.031) | (0.162) | (0.445)
Children o 0.001 0.073 0.057 -0.011
(0.081) | (0.041) | (0.105) | (0.056)
Income*10™* Bs 0.022 -0.194* 0.178 0.163*
(0.168) | (0.070) | (0.209) | (0.054)
Married B 0.187** | -0.032 0.115 -0.071
(0.095) | (0.047) | (0.137) | (0.075)
Health B -0.069* | -0.090% | -0.149* | -0.151%
(0.015) | (0.005) | (0.019) | (0.007)
Chronic conditions B11 0.567* | 0.405% | 0.673* | 0.377*
(0.081) | (0.027) | (0.106) | (0.035)
Non West German B2 -0.327% | 0.241* | 0.079 | 0.218*
{0.089) | (0.057) | {0.106) | (0.070)
Overdispersion o 2.292* | 1.257* | 1.598* | 1.308*
(0.089) | (0.046) | (0.063) | (0.061)
* indicates significant at the 5 % level.
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specialists. Higher income reduces significantly the demand for specialist for women
which can represent opportunity costs. It is the contrary for men for whom a high
income is significantly associated with a higher number of visits to specialists once
the contact decision has been made.

Education which was decreasing the contact decision for generalists for both sex,
increases the probability of contact with specialist for men. For female, education is
only significant in explaining the frequency of visits but not the contact decision.

Working which was increasing significantly the frequency of visits to GPs for
women is insignificant in explaining the frequency of specialists. Still working explains
the contact decision of specialists for women. Working which did not play a role
for men in explaining the demand for GPs, decreases significantly the frequency of
specialist visits for men.

Having children significantly increased the frequency of GP visits but this effect
was not significant in explaining the demand for specialists. In both cases this variable
is not significant for the probability discussion. Being married was insignificant in
both stages in the GP analysis but for women, being married increases significantly
the probability of contacting a specialists. Finally and not least, while a non-linear
form of age was only supported for men in the demand for GPs, non linearities were

found for both genders for specialists.
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3.7 Conclusions

In conclusion, the analysis of longitudinal count data characterized by an excess of
zeros and correlation over time should be conducted carefully as illustrated through
the longitudinal analysis of the number of doctor visits in Germany. The contributions
of this chapter are threefold:

1. To have identified an important weakness in the current models used to analyze
the use of health services such as in Winkelman (2001) and Geil et al (1997). It was
demonstrated that in the presence of correlation, econometric models for longitudinal
count data should be used instead of univariate models applied to the pooled data.

2. To have proposed a new alternative to deal with an excess of zeros in the
longitudinal context while taking into account the other characteristics associated
with panel count data such as the presence of correlation due to the repeated nature
of the data.

3. To have provided evidence using a longitudinal subset of the German Socio-
Economic Panel that a) pooling data may result in inconsistent estimates if the de-
pendent count variable is correlated over time, b) the présence of excess zeros in the
longitudinal context can be tested and accounted for by Multivariate Negative Bino-
mial Hurdle models, ¢) two-part models do not fully support the Grossman’s theory
and d), analyses by gender or by speciality status should be conducted when neces-
sary and aggregating the data may result in a sub-optimal utilization of the data.
This is extremely important in setting health care policies since men and women may

react differently to economic or other incentives and the determinants to explain the
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demand for generalists and specialists are different.

More specifically, a multivariate framework to analyze longitudinal count data
in the presence of covariates, overdispersion, correlated counts and excess of zeros
was presented in this chapter. Suspicion of an excess of zeros was tested using Likeli-
hood Ratio Tests because the Quadrivariste Negative Binomial Hurdle model and the
Quadrivariate Negative Binomial model are nested. Due to the conditional specifica-
tion of the Quadrivariate Negative Binomial Hurdle model, correlation is introduced
in both stages (i.e., contact and frequency) by conditioning over the previous counts.

In addition to consider a two-part process generating the data, Multivariate Nega-
tive Binomial Hurdle models allow us to follow individuals over time and therefore take
into account any changes in the characteristics of these individuals. The Multivari-
ate Negative Binomial conditional Hurdle model complements standard multivariate
count models which have ignored the problem with zeros in panel count data. This
methodology is also preferable to univariate methods for analyzing longitudinal count
data because it accounts for the correlation arising from the longitudinal aspect of
the data while taking into account the excess of zeros.

It was first shown that the analysis of the number of doctor visits should be done
by splitting the sample by gender as found in Geil et al. (1997) in their analysis of hos-
pital visits. This result confirms Winkelman’s findings in labor economics (1994) and
supports the assumption that men and women react differently to economic incen-
tives. OQur results vindicated that men and women differ considerably and not taking

this characteristic into consideration in assessing health care policies may give an
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incomplete interpretation of the data. In our gender analyses, important differences
in terms of parameter values and significance of the variables were observed between
longitudinal count data models and univariate negative models pooling cross-section
data.

This finding differs from Geil et al. (1997) who observed similar patterns in the
estimations of longitudinal and univariate negative binomial models in their analysis
of hospital visits. The authors noted that “there is greater unobserved firm-specific
heterogeneity in the patents case than individual-specific heterogeneity in the hospital
visits case”. This is certainly true since our specification includes more information
in explaining the number of doctor visits than a general R&D variable in the patent
case. It is also important to recall that the correlation of the annual number of
patents over time is 0.9 versus a correlation of less than 0.1 in the case of the number
of hospital visits per year. Therefore, using a longitudinal approach or a pooled
approach for analyzing the number of hospital trips is expected to give similar results
due to the lack of correlation of the dependent variable over time. On the other hand,
the correlation has to be taken into account in the analysis of the number of patents
or the number of physician visits.

Our results differ due to the presence of correlation in the number of doctor visits
while the number of hospital visits at any given year is not correlated to previous
visits. When the analysis was conducted by gender, the analysis of the number of vis-
its to GPs confirmed that univariate and multivariate count models’ estimations are

different in many regards. This is an important result because most of the literature

125



in health economics has concentrated on cross section analyses or analyses applying a
Univariate Negative Binomial distribution to the pooled data (Winkelman, 2001 and
Geil et al., 1997). This important feature of the data would have been missed if split-
ting the sample by gender had not been investigated. When a dummy variable was
used for gender, the interpretation of the Univariate Negative Binomial, Quadrivari-
ate Negative Binomial and Quadrivariate Negative Binomial Random Effects models
were almost similar!

In light of these results, it is extremely important to be prudent in analyzing panel
or household longitudinal count data. Pooling various cross sections should be used
only if the dependent variable is not correlated. In addition, splitting the sample by
gender should be tested because men and women may differ in various regards. Based
on our results, it is not clear if the analysis of the impact of the 1997 German reform
on the number of GP visits (Winkelman, 2001) would have led to different results
if the authors had used in their preliminary work longitudinal count data models to
explain the number of visits by gender instead of pooling cross-sections for the whole
sample.

The most important contribution of this chapter is to have developed a new
methodology to deal with longitudinal count data characterized by an excess of ze-
ros, thereby filling an important gap in the economic literature. When the data is
correlated and the dependent variable is characterized by a high proportion of zeros,
it is not reasonable to use two-part univariate models (Univariate Negative Binomial

Hurdle) on pooled data as in Geil et al. (1997) and Winkelman (2001). Instead, the
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methodology should simultaneously account for the longitudinal aspect of the data
and the presence of zeros. To answer this dilemma, a new model was proposed based
on an extension of the Univariate Negative Binomial Hurdle model to the longitudi-
nal case. This model presents several advantages over existing models. Firstly, it is
nested to the Multivariate Negative Binomial model and due to its simple form, it
can be easily used to test for the presence of extra zeros in longitudinal count data.
If the presence of zeros is significant, non-parametric models for longitudinal count
data based on Pseudo Maximum Likelihood and General Linear Model theory are
not applicable since the mean function is not correctly specified due to this excess
of zeros. Secondly, the Quadrivariate Negative Binomial Hurdle model takes into ac-
count the correlation because at each time period the decision to contact a physician
and the frequency of visits once the contact is made, are determined conditionally
on the previous counts. This represents a significant improvement over univariate
Hurdle models applied to pooled data assuming independence of the data or over the
Panel Probit model used by Chiappori et al. (1998). This chapter demonstrated how
important it is to have instruments which allow for the detection and treatment of
an excess of zeros in longitudinal count data.

In the analysis of the number of doctor visits generated by a panel of German
households followed over 4 years, the excess of zeros was significant, which support
the idea that a different view of health care utilization should be considered when
analyzing longitudinal count data on utilization of health services. The Quadrivariate

Negative Binomial Hurdle model correctly predicted the mean counts but also the

127



number of zeros for each time period. The findings and implications of this research
support the development of panel household data sets in Canada and other countries
to fully understand the dynamics of health care services utilization. This methodology
is especially appropriate for testing the presence of moral hazard in the demand for
medical services when using natural experiments as Chiappori et al. (1998) in France.

The Multivariate Negative Binomial Hurdle model for longitudinal count data
with an excess of zeros is generalizable to other fields of economic research such as
the analysis of the number of patents generated by small or medium firms or the

number of loans generated by a panel of students over a certain period of time.
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Clinical trials are designed to determine whether treatments are safe and effective.
The analysis of clinical trials provides estimates of drug efficacy that are submitted
to health regulators by pharmaceutical companies to market a new drug. Economic
evaluations of drug treatments are developed based on the efficacy reported from the
clinical trial, to evaluate the costs and the benefits of the treatment of interest over
a certain period of time. Several validated techniques such as cost effectiveness anal-
yses are used and recommended for this purpose. Economic evaluations are critical
to obtain public reimbursement of a new drug treatment. If the new treatment is
not cost-effective versus standard treatment, the payer (e.g., government, private in-
surers) has no economic incentive to reimburse this treatment. Pharmacoeconomics
or economic evaluations of new pharmaceutical products are mandatory in several
countries including Canada, Australia, the United Kingdom and the United States.
However, it may happen that the efficacy of a drug treatment is not correctly
assessed due to improper choice of statistical methods. This was recently illustrated
by Mclntosh (2001) in a re-analysis of a clinical trial on bladder cancer in which the

primary endpoint was the number of tumor recurrences. Previous research (Lawless,
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1987; Kanifiard and Gallo, 1995 and Dean and Balshaw, 1997) reported that only one
treatment was effective. However the methods yielding these results were not optimal
as they did not fully consider the longitudinal aspect of the data and/or the intervals
between recurrences or the nuraber of tumors per interval. McIntosh {2001) analyzed
the data using a bivariate Negative Binomial model, an auto-regressive Weibull model
and an auto-regressive truncated Negative Binomial model. The estimations indicated
that both treatments were in fact effective. It is obvious that the results of any
pharmacoeconomic study of this clinical trial will be different if one or two drug
treatments are effective.

Therefore, it is crucial for the pharmaceutical industry and all the players to have
the most efficient and reliable estimates of drug efficacy. Traditionally, this area of
research is led by biostatisticians. As economic evaluations of drugs are required for
any new drug submission in Canada and several countries, health economists should
be concerned about the reliability of the estimates of drug treatment efficacy.

The objective of this chapter is three-fold. Firstly, to review important statistical
issues associated with the analysis of longitudinal clinical trials in which the efficacy
variable is a count and to show why traditional approaches used in biostatistics may be
unsatisfactory. Secondly, a methodology that improves on the shortcomings of these
models is proposed and applied to an unpublished longitudinal clinical trial count
data set. Results are compared with standard analyses. Finally, the implications of
these findings to pharmacoeconomics are illustrated through a hypothetical decision

tree cost-effectiveness example.
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It is often the case in medicine that the health outcome used as the efficacy variable
is a discrete variable or a count. Examples include the number of epilepsy seizures or
asthma episodes per time period, carcinoma tumors or the incidence of polio episodes
for any given years. In many clinical trials, or other experimental studies, repeated
observations of one or more efficacy variables are measured and collected on every
participant at several time intervals. It is the change in these variables which mea-
sures the efficacy of treatments. However, dealing with their initial value may be
problematic when the outcome is a count. Socio-demographic characteristics such as
sex, age, ﬁeight and height as well as pre-determined variables related to the medical
history of each subject are typically recorded in clinical studies.

In order to obtain the most efficient and reliable estimators of the treatment, all
the available information should be included in the analysis of longitudinal clinical
trial count data. This implies that the discrete and repeated nature of the clinical
trial is recognized in the analysis, especially when the efficacy variables are correlated
over time periods. Consistency requires that the initial efficacy variable be treated
as a random variable in longitudinal analysis rather than an explanatory variable. In
addition, the analysis should allow for the presence of random effects or unobserved
subject heterogeneity, which when ignored, can distort the assessment of treatment
effects. For example, small treatment differences may hide differential effects due
to heterogeneity (Lindsey, 1998). It is also very important to differentiate between
treatment effect and trend effect. This is especially important if at the end of the

clinical trial, the placebo group is getting better. Nonetheless, it is common to find
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analyses of longitudinal clinical trials focussing on the endpoint of the trial.
Another important feature of longitudinal clinical trial count data is the possible
over-representation of zeros in the data due to the effectiveness of the treatment. If the
treatments are very effective in preventing the event of interest, a high number of zeros
(i.e. 0 episodes or events) will be present at the end of the trial. As a consequence,
the functional form of the distribution may be distorted due to this excess of zeros.
Not taking this into account could lead to serious inference problems. As Lindsey
(1999) observed, “restricting comparisons of responses under different treatment to
differences in means can be extremely misleading if the shape of the distribution
is changing. This may involve changes in dispersion, or in other shape parameters
such as skewness in a stable distribution, with the treatments or covariates”. It is
therefore very important to have a methodology that tests and treats for an excess
of zeros in the longitudinal discrete case. This is particularly relevant because the
standard multivariate models used to analyze longitudinal clinical trial count data
are currently unable to deal with an excess of zeros. While models such as Hurdle
and Zero-Inflated models are used to treat for excess of zeros in count data in the
univariate case, these methods have not been adapted to longitudinal count data.
New methods for analyzing clinical trials are proposed to address six common
characteristics of clinical trials: multiple observations on each subject, non-normal
integer valued responses, the presence of covariates, the presence of unobservable
random effects, correlated responses, and distorted distributions due to an excess of

zeros. 'These inpovative methods are based on maximum likelihcod estimation of
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Multivariate Zero-Inflated distributions for longitudinal count data. Likelihood ratio
tests are used to test for the presence of zeros in the longitudinal setting.

The remainder of the chapter is organized as follows. Section 4.2 presents a quick
overview of important statistical issues associated with the analysis of longitudinal
clinical trial count data as well as the standard methods of analysis used in biostatis-
tics. The iniportance of treatment efficacy derived from clinical trials in economic
evaluations of medicines is outlined in a discussion. Section 4.3 presents the data of
an unpublished subset of a longitudinal clinical trial. The data to be analyzed is char-
acterized by four repeated observations on a count health outcome - corresponding
to one of the secondary endpoints collected in this trial -, the presence of covariates,
overdispersion, correlated counts, and a high proportion of zeros. A Quadrivari-
ate Negative Binomial model and a Generalized Estimating Equations model are
presented in Section 4.4 to analyze the data. The Quadrivariate Negative Binomial
model accounts for the discrete and repeated nature of the data and considers the
baseline efficacy variable as endogenous but fails to predict the number of cured pa-
tients (i.e.: O episodes) at each time period. This is also the case for the standard
Generalized Estimating Equations model used by Diggle (1993) for longitudinal clin-
ical trial count data for which not a single zero outcome was predicted. To take
into account the presence of excessive zeros associated with very effective treatments,
a Quadrivariate Negative Binomial Zero-Inflated model nested to the Quadrivariate
Negative Binomial model is presented in Section 4.5. In this specification zeros are

generated according to two regimes. Section 4.6 concludes by summarizing the find-
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ings and their implications for economic evaluations of pharmaceutical products when
the efficacy variable is a count. This chapter supports the need for the development

of guidelines for the statistical analysis of clinical trial count data.

NACOEeCOonoIIics

The following presents a quick overview of important statistical issues associated with
the analysis of longitudinal clinical trial count data characterized by an excess of zeros
and shows why traditional methods fail to address these issues. The implications of
these findings in economic evaluations of pharmacotherapies are discussed through a

fictive cost-effectiveness example.

4.1.1 Statistical Issues

Longitudinal clinical trials provide very rich and detailed data sets. Baseline data
on individual characteristics (e.g. sex, age, etc.) are collected as well as other pre-
determined variables related to the medical history of the subjects {e.g. blood pres-
sure, severity of disease, prior medications, etc.). In addition, a common response in
clinical trials involves the occurrence of events (e.g. the number of seizures). In this
case, the efficacy variables are represented by counts. The main feature of longitudinal
clinical trial count data is that the efficacy variable is measured at starting therapy
and thereafter at several times during the administration of the treatments. In this
sense, longitudinal clinical trial count data sets are rich in information to determine
whether treatments are effective.

Since responses are available for each individual subject, longitudinal clinical tri-
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als allow us to compare the treatment effects with respect to their trends over time,
to determine the presence of heterogeneity among individuals (between-subject het-
erogeneity) and the presence of a contagion effect (within-subject time dependence)
when the expected number of events at one time depends on the realized number of
events at some previous time. For example, if the longitudinal data is aggregated in a
single endpoint, contagion can not be detected. In order to obtain the best estimates
of the treatments including the time shape of the responses, the complete multivari-
ate sequence needs to be compared simultaneously across treatments, especially if
the responses or efficacy variables, are correlated over time. One way of modelling
longitudinal clinical trial count data is to assume that the repeated measurements
have‘ a multivariate discrete distribution (Lindsey, 1998). However, it is common
to find univariate analysis of longitudinal clinical trials relying on mean changes or
proportion differences from baseline to end of the study by applying classical theory.
Other type of analysis concentrates in the endpoint efficacy variable and treats the
baseline efficacy variable as a regressor along with other covariates. Such analyses do
not recognize the discrete and/or repeated nature of the data, and as a consequence
may yield inconsistent estimates.

The treatment of the baseline efficacy variable is an important methodological
issue which has received few attention in the literature on the analysis of longitudinal
clinical trials. This is important because many clinical trials are conducted over a
short time period (e.g., 12 weeks) and the repeated measurements are done weekly or

twice a month. In this case, the initial value may contain much of the information on
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parameter values relevant to the analysis. In econometrics, it has been shown that
dropping the initial value(s) in a time series context could be misleading when T is
small as discussed in section 2.6. However, longitudinal analysis (Diggle, 1993; Albert,
1999) of short longitudinal clinical trial count data considering the baseline efficacy
variable as a regressor is frequent. There are strong arguments showing that such a
practice could be misleading. Intuitively, for subjects enrolled in the placebo group
(i.e.: no treatment), it seems illogical to consider the repeated measurements on the
efficacy variable as random variables and the baseline value (t = 0) as exogenous.
Since these participants do not receive any treatment along the trial, the baseline
value of the efficacy variable has to come from the same distribution as the repeated
measures. Of course, the mean values of the counts for the placebo group may change
over time due to a natural trend effect but the distribution of the baseline and the
repeated observations of the efficacy variable should be the same for the placebo group.
More formally, treating the initial value of the efficacy variable y, as exogenous is
wrong because by definition any multivariate distribution is derived by conditioning
on the previous observations on the efficacy variable, including the initial value as
shown in equation (104).

There is also another practical argument for not using the baseline efficacy variable
as a regressor. In the analysis of clinical trials, it is very important to distinguish
between trend effect and treatment effect to not over-estimate the efficacy of the
treatments. For example, if the placebo group is getting better by end of the trial,

the trend effect and treatment effect need to be identified. One disadvantage of
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univariate methods which concentrate on the analysis of the endpoint is that they are
unable to identify the two effects. However, even in a longitudinal analysis the trend
effect wouldn’t be identifiable if the analysis does not include a covariate for the trend
or when the baseline value is treated as exogenous. In particular, using a multivariate
model to explain the number of counts at each time period by a constant, covariates,
treatment dummies and a trend variable requires that the baseline value be treated
as endogenous to identify the constant at time 0 (i.e. no treatment), and the trend in
subsequent observations. If the baseline is used as a covariate, the constant for “no
treatment” would not be identifiable at t = 0 and consequently the trend effect is not
identifiable at t = 1 because it is mixed with the constant.

Another important and less well-known methodological issue arises when the treat-
ments are very effective in preventing the occurrence of the event of interest. Treat-
ments are designed to alleviate symptoms, which translate into a reduction in the
efficacy variables or in the case of a complete cure, by 0 values of efficacy variables.
Therefore, if the treatments are very effective in reducing the event of interest, a high
percentage of 0 events would be reported at the end of the trial or slightly before.
Cured patients have no episodes or zerc counts.

This constitutes a major problem because standard distributions become less rep-
resentative of the data-generating process. More zeros are observed than any para-
metriﬁ distribution used for the analysis of count data (Poisson or Negative Binomial
distributions) would or could predict. For example, a Poisson model will underpre-

dict the true frequency of zeros and large counts while overpredicting the frequency
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of small counts. A Negative Binomial model tends to increase the frequency of ze-
fos and high counts but does not yield a good fit of the data if the excess of zeros
is unaccounted for (Gurmu, 1996). In economics, Hurdle and Zero-Inflated models
have been developed when excessive zeros are present. Hurdle models which allow
for a systematic difference in the statistical process governing individuals with zero
counts and individuals with one or more counts have been studied in Chapter 3.
Zerc-Inflated models allow two regimes to generate the zeros (Lambert, 1992). As
discussed in Chapter 3, it has been shown that if the excess of zeros is significant,
estimating the mean function independently of the dispersion structure governing the
Hurdle/Zero-Inflated model could lead to a loss of consistency and efficiency. If a
significant excess of zeros is present in the data, the mean function is not correctly
specified and models relying on Pseudo Maximum Likelihood theory or on Generalized
Estimating Equations theory cannot be implemented.

It appears therefore essential to develop new models to take into account the
problem of an excess of zeros. Other methodological problems arising in longitudinal
clinical trials count data, but not treated in this chapter, are related to dose effect,
missing data or modelling unbalanced repeated observations. For further related
discussion on these topics, the reader is referred to Wijenska (1995), Albert (1999),

Lambert (1996) and Cnaan (1997).

4.1.2 Standard Analyses

The standard models used to analyze longitudinal clinical trial count data can be

classified as Univariate models or Multivariate models relying on Generalized Esti-
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mating Equations models. Their main characteristics and drawbacks are summarized
below. For further details, a comprehensive review of the literature of the standard
practices in biostatistics can be found in Diggle (1993), Albert (1999) and Lindsey

(1998, 1999, 2000).

Univariate Models An approach that is sometimes used in the analysis of longi-
tudinal clinical trial count data is to specify a univariate distribution for the endpoint
efficacy variable and to include the baseline value as a regressor. For example, in
analyzing the total number of tumor recurrences over a 8-week time period in pa-
tients suffering from Stage I bladder carcinoma, Kanifiard and Gallo (1993) specified
a Poisson distribution for the endpoint defined as the sum of the number of tumors
observed over 8 weeks. The model includes the baseline number of tumors as a covari-
ate along with two treatment dummies, the largest baseline tumor size and the length
of the follow-up examinations. As stated in equation (102) in a longitudinal context,
when the baseline value is one of the regressor, the distribution of the endpoint is not
the conditional distribution of the endpoint variable given the baseline value. This
is only the case when a joint distribution is specified and when the conditional dis-
tribution does not contain the baseline value as a regressor. In addition, univariate
models concentrate on the endpoint of the clinical trial, thus discarding valuable in-
formation on the treatment effects. Consequently, the set of parameters that can be
estimated in the univariate case is smaller than in the longitudinal case. Trend effect
and treatment effect over time cannot be identified by any univariate analysis nor the

time shape of the parameters. This is inconvenient since knowing when a treatment
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reaches its maximum efficacy is very important from a medical point of view.

It should be noted that even when the cutcome is not normally distributed it is
frequent to find analysis of treatment effect based on means changes or proportion
differences. Two-way analysis of variance (ANOVA) and an analysis of covariance
(ANCOVA) with the baseline response as covariate are sometimes considered to an-
alyze longitudinal count data. As outlined by Lindsey (1999), conclusions based on
such models could be misleading especially if the shape of the distribution of responses
changes over time due to the high efficacy of the treatments. In addition, this type
of analysis does not recognize the discrete nature of the data and it assumes that
the treatment effect is constant among treatment groups, thus ignoring heterogeneity
within subjects. Furthermore, the covariates are generally ignored, which may lead

to inconsistent coefficient estimates.

Generalized Estimating Equations Models

Marginal Models Marginal models or population-averaged models are perhaps
the most widely used models in the analysis of longitudinal discrete data from clinical
trials. Marginal models estimate the effect of a set of covariates on the marginal expec-
tation of the response. The dependence/correlation structures among the responses
are assumed to be that of a nuisance parameter of secondary importance. Parame-
ter estimation is generally done by Generalized Estimating Equations models which
were presented in Section 2.2.2. Generalized Estimating Equations estimation is now

included as a macro routine in various software (SAS, Stata) which may explain why
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these models are so popular. Diggle {1993) used a Generalized Estimating Equations
model to analyze the number of seizure occurrences in a longitudinal epilepsy trial to
show little effect of progabide over placebo in reducing the number of seizures. Several
limitations associated with Generalized Estimating Equations models were identified

in Section 2.2.2.

Random Effects Models Random-effects models or subject-specific models
assess the effect of a treatment on an average subject. The subject variability (het-
erogeneity) is modelled through the addition of random effects in the mean regression
relationship. The mean response y;, for the i** response at time t depends now on a
set of covariates z;; and random effects variables z; such as p;, = log(E(ys | ) =
T3+ zy7y; for count data. The analysis of a clinical trial where the dependent variable
was the number of seizures suggested that regression estimates of a random effects
model are generally different from marginal model estimates (Diggle, 1993). Esti-
mation of random effects models is sometimes performed by Generalized Estimating
Equations models as in Diggle (1993). Therefore, the mean and the distribution as-
sumptions will be valid only if the data does not display a significant excess of zeros,

and if the marginal distribution of the counts is a member of the exponential family.

4.,1.3 Discussion

For health care interventions such as new pharmacotherapies, many countries have
formal requirements for provision of safety and efficacy data prior to product licensing,.

Randomized controlled clinical trials provide the assessment of the efficacy of a new
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drug treatment versus placebo or usual care. However, several global trends in health
care are contributing to interest in drug treatment beyond the historic hurdles of
efficacy, safety and manufacturing quality. Rising health care costs are pressuring
purchasers of health care to increasingly ask whether health care interventions they
currently pay for are efficient compared to standard treatments. In Canada, economic
evaluations have been mandatory for any new pharmacotherapy to be considered for
formulary approval or reimbursement since 1994. The same requirements are shared
by some managed care organizations in the United States and other governments such
as Australia and the United Kingdom.

There is a growing literature on economic evaluation in health care. Economic
evaluations, the comparative analysis of medical therapies in terms of both their
cost and consequences (Drummond et al., 1999), provide important information to
decision-makers regarding the effectiveness of a medical intervention. Economic eval-
uations of drug treatments are being conducted under a range of pharmacoeconomic
labels, the most common being a cost-effectiveness analysis. Cost-effectiveness evi-
dence at launch time is critical for gaining public or private reimbursement. If the
new drug treatment is not cost-effective versus standard care, payers may decide not
to reimburse this product. As such, economic evaluations are playing a key role in
marketing new pharmaceutical products. However, a pharmacoeconomic evaluation
of a health care program is only as good as the effectiveness data it is built upon
(Drummond et al., 1999).

A reason often expressed to explain the increase in health expenditures in de-
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veloped countries is the increase in the price of new medications marketed by phar-
maceutical companies. However, a high price for a very effective treatment may be
justified from an economic point of view.

Consider, for example, the following cost-effectiveness scenario in which two treat-
ments, A and B, are compared over a 3-month time period in terms of proportion of
patients cured (i.e., 0 episodes). Treatments A and B cost $20 and $10 respectively
over the period of analysis. Two visits to a general practitioner are assumed for cured
patients at a cost of $40 per visit. Four GP visits are associated with non-cured
patients. The cost of the visit for patients not cured is $50 due to an additional test
required to be performed. The three-month efficacy rates of treatments A and B
are derived from a clinical trial. Results indicate that 80% of the subjects are cured
(zero episodes) with treatment A and 60% with treatment B. The statistical analysis
indicated that treatment A is statistically superior to treatment B. For modelling
purposes, it is also assumed that only two outcomes are observed at the end of the
three-month time period: cured and not cured. Using this information, it is possible
to calculate a cost-effectiveness ratio in order to compare these two treatments using
the decision tree model reported in Figure 4. Decision tree analysis is commonly used
in pharmacoeconomics to represent the pattern of care of a particular disease. In this
example, the efficacy of each treatment is expressed in terms of percentage of patients
cured by the treatment. Other outcomes commonly used in pharmacoeconomics are
the number of events avoided by the treatment or the number of lives saved by the

treatment.
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In our example, the expected cost of treatment A and treatment B are calculated
at $124 and $138, respectively. Dividing the expected cost by the number of patients
cured yields cost-effectiveness ratios of $180 per cured subject for treatment A and
$247 per cured subject for treatment B as indicated in Figure 4. Based on these
results, it is concluded that treatment A, even at a premium price, is more cost-
effective than treatment B since it is associated with the lowest cost to cure one
subject. From an economic point of view, it is rational to reimburse treatment A
because more patients are cured at a lower cost which will in turn save money to be
reinjected into the health care system.

Decision tree analyses are of course more complex in reality with multiple branches
representing different potential outcomes over a certain period of time. Chance modes
are evaluated based on success and failure rates given by clinical trials. Failure or
dropout rates due to an adverse effect reaction are also collected during clinical trials
and may be introduced for modelling purposes if significant. Decision nodes represent
different treatment alternatives as a function of the the;‘apeutic response over a certain
period of time. For example, following an initial failure at the usual dose, therapeutic
options may be to increase the dosage of the treatment to its maximum or to switch
to another medication. Resources utilization such as the number of doctor visits,
laboratory tests, procedures and medications are identified and costed for each branch
of the decision tree to populate the model. Drug prices are introduced in the model
to determine the cost effectiveness profile of the treatments of reference.

Two pillars of any pharmacoeconomic study are the price of the treatment and its
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efficacy. The price of a new treatment may be determined by the economic evaluation
to fall under acceptable cost-effectiveness cut-off values. In general, higher prices will
be associated with products with better efficacy. Unfortunately, health economists do
not have any control over the determination of the efficacy of the treatment since this
analysis is conducted by biostatisticians. This may be unfortunate if the statistical
analysis is not well designed. In the worst case scenario, the analysis will find a
difference between two treatments where there is no difference or vice-versa. In this
scenario where both treatments are in fact similar in efficacy, treatment A is not any
more cost-effective versus treatment B. In our example, simple calculations indicate
that the cost per subject cured is $280 with treatment A if the efficacy is similar to
treatment B. This simple example demonstrates the importance of the détermination
of drug treatment’s efficacy to be used in economic evaluations.

Section 4.1.1 and 4.1.2 have reviewed the statistical issues associated with longi-
tudinal count data derived from clinical trials and the major limitations associated
with the standard methods of analysis. Analysis of the variance such as the ANOVA
procedure does not consider the discrete aspect of the data. Univariate analysis does
not consider the longitudinal aspect of the data. Generalized Estimating Equations
models assume that the data is from the linear exponential family and that the mean
is correctly specified and these models are unable to account for a potential excess of
zeros. All these limitations outline the importance of developing methods of analysis
which integrate all the characteristics associated with longitudinal clinical trial count

dats including the presence of extra zeros. This is extremely important since clinical
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data is used by health economists to perform economic evaluations of pharmaceutical

products for decision-makers.

Figure 4: Decision Tree Model

Cost per Visis Total Cost

# GPs visits 2 $4¢0 $80
Cured 20%
Treatment A -3-month treatment cost: $ 20
Expected cost $124
Cost per cured patient $180
Cost per Visit Total Cost
# GPs visits 4 $50 $200
Non cured 20%
Cost per Visit Total Cost
# GPs visits 2 $40 380
Cured 60%
Treatment B -3-month treatment cost: $ 10.00
Expected cost 3138
Cost per cured patient $247
Cost per Visit  Totaf Cost
# GPs visits 4 $50 $200
Non cured 40%

4.2 The Data

The data that is analyzed in this chapter is an unpublished subset of a twelve-week
randomized placebo-controlled clinical trial comparing the efficacy of two treatments
and a placebo. Subjects were recruited for the clinical trial and randomized to one
of the three groups. Participants were followed for several weeks after initiation of
the trial and one assessment was done every two weeks. During these encounters,
one primary endpoint and several secondary endpoints were collected to assess the
efficacy of the treatments. In the following analysis, one of the secondary endpoints
corresponding to the number of events or episodes that subjects were experiencing,
was used as efficacy variable. For illustration, subjects with zero episodes at the end

of the period of observation will be referred in the following text as cured subjects.
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Access to a subset of this clinical trial data was given on condition that the name
of the illness, the manufacturer(s), the treatments and the data set would not be
disclosed.

This data subset included information on 116 participants for the 6-week period
following initiation of the treatments. Thirty received placebo, 54 received treatment
A and 32 received treatment B. For our efficacy variable, the baseline value and the
number of events at week 2, 4 and 6 were available for each subject as well as the
following information: age, height, weight and “duration” as a health indicator. This
health indicator reflected how long the subject had been suffering from this particular
illness. The mean age of our sample was 59.

Table 18 reports the descriptive statistics of the counts at baseline and at weeks
2, 4 and 6. As can be observed in this table, there are some differences in the
baseline counts per treatment group. At the beginning of therapy, subjects assigned
to treatment B had on average a smaller number of episodes than the other groups.
As indicated in Table 18, the treatments A and B were very effective in reducing
the number of events. The mean number of events after 2 weeks of treatment was
reduced by more than 50% in the groups assigned to treatments A and B and this
reduction continued over time. After 6 weeks of treatment, the mean percentage of
reduction from baseline to endpoint was close to 90% for treatments A and B versus
almost 60% for the placebo group. Assuming that the observed reductions were only
due to the treatments would be incorrect, since there is a natural trend as indicated

by the reduction observed in the placebo group.
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Table 18: Descriptive Statistics: Dependent variable. Means and (Standard Devia-

tions).
Descriptive Statistics | Counts at | Counts at | Counts at | Counts at
per Treatment Group | week 0 2 weeks 4 weeks 6 weeks
Total Sample Yo Ui Ya Y3
Mean 19.98 9.89 5.67 4.12
(Std. Deviation) | (12.59) (9.67) (7.29) (7.15)
Treatment A Yo Y1 Y2 Ys
Mean 22.26 9.91 4.69 3.37
(Std. Deviation) | {12.99) {9.56) (5.77) {(5.40)
Treatment B Yo 4 Yo Y
Mean 16.09 6.56 2.59 1.47
(Std. Deviation) | (8.95) (5.81) {4.39) (3.15)
Placebo Yo () Yo Y3
Mean 20.03 13.40 10.73 8.30
(Std. Deviation) | (14.42) (11.96) (9.53) (10.58)

An analysis of the variance-mean ratios of the counts indicates that the distri-
bution of the counts displays signs of overdispersion. The variance is 5 to 13 times
greater than the mean depending on the treatment group and the time period, as in-
dicated in Table 18. The data is too overdispersed to consider a Poisson distribution
that requires the equality of the mean and the variance. The analysis should also
try to determine if the excessive zeros observed in the data are caused by effective
treatments or by unobserved heterogeneity that predisposes patients to be cured, for

example.
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Figure 5: Histogram of the Counts
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The analysis of the shape of the probability distribution of the counts indicates
that the data is strongly skewed to the right (lack of symmetry) and presents thin-
tails for the last two observations. Clearly, the shape of the distribution of the counts
changes over time as illustrated in Figure 5, the histogram of the counts per time
period. With time, more subjects are cured (i.e.: 0 episodes) due to the treatments.
The number of zeros becomes more significant, and as a consequence, the functional
form of the distribution changes. In this particular data set, 9 % of all participants had
zero episodes 2 weeks following initiation of the treatments versus 41% at six weeks.
This is depicted in Figure 6 which represents the percentage of subjects with zero
counts per treatment group and time period. Almost 20% of the subjects assigned to

the placebo group had zero episodes at 6 weeks which again indicates a trend effect.
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Table 19: Correlation Matrix
Yo Y1 Yo Y3
71 1 063 027 026

y; | 063 1 058 0.63
yo | 027 058 1 083
ys | 0.26 063 083 1

Figure 6: Percentage of Subjects with Zere Counts (N=116)
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Finally, due to the repeated nature of the data, the correlation matrix of the
counts at each time period given in Table 19 indicates a high positive correlation
in the responses reflecting a possible positive contagion effect, especially between 2

consecutive responses.

4.3 Standard Estimations

4.3.1 Univariate and Generalized Estimating Equations Models

Univariate Model Standard analyses include the fitting of the data by the
Univariate Negative Binomial defined in equation (24) applied to the last count ob-
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served at the end of the trial. The parameterization used for subject ¢ at period t=3
is:

o+ BrAi + BoaWi + B3 + B, D+

A = exp (109)

(TiTTtA) -+ (6,TTtB) ~+ gtB

In the parametrization, A;, W;, H; and D; are individual covariates for subject 1,
respectively age, weight, height and duration of iliness. TrtA and T'rtB are treatment
dummy variables taking the value 1 for those patients assigned to treatment A and
to treatment B respectively. In this formulation, the value of baseline count B is
introduced in the mean as commonly done.

Generalized Estimating Equations Model

A Generalized Estimating Equations model was also applied to the data. In
order to demonstrate the importance of the initial value, two Generalized Estimating
Equations models were applied to the data. The first model follows the specification
of Diggle (1994) and Albert (1999) in which the baseline value is introduced in the
regression mean. In order to capture the difference between each treatment and the
placebo groups, two additional variables were created by multiplying the baseline
value (B) by the dummy treatment (T'rtA or TrtB). The mean was expressed as
follows:

he = oxp Bo + BrAi + Bo Wi + B Hi + B, Di+

(raTrtA) + (0:TrtB) + 6;B + wy (B x TrtA) + we (B x TrtB)

(110)
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The second model is a Generalized Estimating Equations model in which the
baseline value is considered endogenous. In this case, the mean function is written as
in equation (111) with the exception that the baseline value is now endogenocus.

Bo + B1Ai + B Wi + B3 Hy + B4 Di+
Air = €xp (111)

(Tt A) + (64T rtB)

4.3.2 Resulis

Univariate Negative Binomial Model The resulis of the Univariate Negative
Binomial model which concentrates on the endpoint and considers the baseline value
as a regressor are reported in Table 20. The coefficient of overdispersion is significant
suggesting unobserved heterogeneity in the data. Surprisingly, as the duration of
symptoms increases, the number of events is significantly reduced. While the baseline
value is not significant at the 5% level, it is significant at the 10% level in increasing
the number of counts. Results indicate that the two treatments are significant in
reducing the number of episodes. However, a Likelihood Ratio Test failed to reject
the equality of the treatments. The value of the likelihood function of the univariate
model was -259.10 when the treatment parameters at the endpoint were set equal
(r3 = 63) versus -257.60 for the unrestricted model. Twice the difference is 3.01

which is less than 3.84, the critical value of x2.

Generalized Estimating Equations Model Generalized Estimating Equations

estimations were performed using the GenMod procedure of the SAS Institute (version
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Table 20: Maximum Likelihood Parameter Estimates: UNB Model.

Maximum Likelihood Univariate Negative
Estimation Binomial Model
Number of observations: 116
Convergence achieved after: 9 iterations
Log of Likelihood: -257.599
Variable Parameter | Estimate | Std. Error
Constant B, -1.176 3.370
Age B, -0.001 0.012
Height B 0.029 0.020
Weight Bs -0.013 0.008
Duration B4 -0.005* 0.003
Baseline Count Bs 0.024** 0.012
Efficacy Trt A T -1.021* 0.347
Efficacy Trt B ) -1.686* 0.423
Overdisp. Coeff. «a 0.725* 0.068
* indicates significant at the 5 % level.
** indicates significant at the 10 % level.

6.2). Column 2 of Table 21 presents the results of a Generalized Estimating Equations
(GEE) estimation as conducted by Diggle (1993) and Albert {(1999) in their analysis
of the number of epilepsy seizures. In this formulation, the baseline value is treated
as exogenous. Results indicate that the baseline value is significant and has a positive
impact on the number of counts at the end of the trial. The two treatments were
statistically significant in reducing the number of episodes. This result is, however,
attenuated in this model because for the two treatments the change in the number of
episodes before and after randomization was not significant at 95% but only at 90%.

Table 21 presents in column 3 the results when a Generalized Estimating Equa-
tions model is applied to the data when the baseline value is considered endogenous.
As can be seen, the two Generalized Estimating Equations models have different
implications. When the baseline value is treated as endogenous, treatment B is sta-
tistically significant at 95% level of confidence but treatment A is only significant
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at the 90% level. Due to the characteristics of the Generalized Estimating Equa-
tions model, it is not possible to investigate further. This example demonstrates the
importance of the treatment of the initial value in the analysis.

Another drawback is that the GenMod procedure from the SAS Institute to es-
timate Generalized Estimation Equations for longitudinal count data does not allow
us to have a sense of the time shape of the efficacy measures. While it is theoretically
possible in a Generalized Estimating Equations model to integrate different coeffi-
cients for the treatment coeflicients at different time periods, the GenMod procedure
does not allow it. In addition, based in our example, GenMeod estimations were un-
able to predict any zeros at all as reported in Table Al of the Appendix. Mclntosh
(2001) already observed that the results of the maximization of the Poisson likelihood
function does not correspond to the results given by the GenMod procedure for Pois-
son data. This is an important result since the software of the SAS Institute is the
standard statistical software used by the pharmaceutical industry to analyze clinical
trials. For the analysis for longitudinal count data, the SAS Institute refers to the
GenMod procedure using the example of Diggle (1993) but without identifying these

important limitations associated with this procedure.

4.4 Quadrivariate Negative Binomial Model

Multivariate Negative Binomial models for longitudinal count data were presented in
Section 2.1.2. To my knowledge, Multivariate Negative Binomial modeis have never

been applied to analyze longitudinal clinical trial count data. A Quadrivariate Neg-
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Table 21: Parameter Estimates: GEE Models.
Maximum Likelihood GEE GEE
Estimation (Baseline=covariate)
Number of observations: 118 116
Log of Likelihood: NA NA

Variable Parameter | Estimate | Std. Error | Estimate | Std. Error
Constant B, -1.223 1.377 -0.552 2.40
Age Gy 0.011 0.008 -0.005 0.006
Height Bs 0.017%* 0.009 0.009 0.013
Weight B -0.010* 0.004 -0.004 0.004
Duration B 0.154 0.131 0.135 0.100
Baseline Count Bs 0.016* 0.006 - -
Efficacy Trt A T -1.142% 0.323 -0.278%* 0.144
Efficacy Trt B 6 -1.649* 0.382 -0.670* 0.160
Baseline*Trt A BsT 0.021%* 0.010 - -
Baseline*Trt B 856 0.034%* 0.004 - -
* indicates significant at the 5 % level.
** indicates significant at the 10 % level.

ative Binomial model is therefore presented to analyze the clinical trial count data
presented previously The model addresses four characteristics that are commonly
found in clinical trials: repeated observations on a count used as an efficacy vari-
able, the presence of covariates, unobserved heterogeneity and a count dependence
structure.

In this sense, the methodology is particularly relevant for analyzing longitudinal
clinical trial count data. The repeated aspect of the data and the correlation between
the counts are implicitly modelled by Multivariate Negative Binomial distributions.
Unobserved heterogeneity is integrated through the Negative Binomial distribution.
The contagion effect is modelled by conditioning on previous events. By conditioning
successive responses to previous responses including the initial value, Multivariate
Negative Binomial distributions differentiate individual subjects in terms of their
specific characteristics, observed or not, and allow us to follow the evolution of the
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response of an average or typical subject. Treatment and trend effect can be differen-
tiated by the analysis and the time shape of the responses determined. In addition,
the methodology considers the baseline efficacy variable as a random rather than an
exogenous variable. This is of relevant importance in the analysis of clinical trial
count data due to the generally limited number of repeated observations available for

analysis.

4.4.1 Model Specification

In the following, Y = (v, Vi1, ¥z, ¥is) is the vector of counts observed for subject
i at period t {t = 0, 1, 2 and 3). The length of each period is two weeks. The
parameterization used for subject ¢ at time t is:

60 + ﬁlAi + ﬁgm + ,83H1 + 64Di+
Ait = exp (112)

(raTrtA) + (64TriB) + 6,1
witht =0, 1, 2, 3 ; 75 = 6 = 0. In the parametrization, A;, W;, H; and D, are
individual time-invariant covariates for subject ¢, respectively age, weight, height and
duration. TrtA and T'rtB are treatment dummy variables taking the value 1 for those
patients assigned to treatment A and to treatment B respectively. Because treatment
effects are cumulative over time, different coeflicients were attributed to each time
period for each treatment allowing the estimation of the trend treatment effects over
time. T is the trend variable, which is assumed to be linear. For the initial counts

(e.g. t = 0; no treatment), the treatment coefficients v,, and ;0 were set equal to
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zero as well as the coeflicient of the trend 6;.

The likelihood for the Quadrivariate Negative Binomial probability distribution
defined in equation (24) has a simple form that is tractable which when applied to
our clinical trial involving 116 patients and four repeated measurements is given by:

N=116 | InT{a+Z3 sy — InT{a) — 22 (lnys!) +
o, B)= ) (113)
=0 B o {ye In e} — (o + Toyi) In(1+ B 0))
Estimation is performed by maximizing equation (114) with respect to 3, the vec-

tor of parameters and a, the coefficient of overdispersion, using the Newton-Raphson

algorithm.

4.4.2 Results

Parameter Estimates Column 2 of Table 22 presents the maximum likelihood
parameter estimates with their corresponding standard errors for the Quadrivariate

Negative Binomial model defined by equation (114).

The results of the Quadrivariate Negative Binomial model indicate that the con-
stant and the covariates are not significant in explaining the number of counts. At
each time period, both treatments are highly significant in reducing the number of
events as well as the trend. As expected, these coefficients are negative and the trend
effect is lower than the treatment effects as indicated by the small absolute value of
the estimate of the trend. The coefficient of overdispersion («) is significant reflecting

unobserved heterogeneity in the population.
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Table 22: Maximum Likelihood Parameter Estimates: QNB Model.

Maximum Likelihood Quadrivariate Negative
Estimation Binomial Model
Number of cbservations: 116
Convergence achieved after: 12 iterations
Log of Likelihood: -1,705.924

Variable Parameter | Estimate | Std. Error
Coustant B, 1.903 1.410
Age B, 0.003 0.006
Height B 0.003 0.008
Weight B -0.002 0.003
Duration B4 -0.002 0.001
Baseline Count = - -
Efficacy Trt A

at 2 weeks T -0.502* 0.056

at 4 weeks To -0.954* 0.083

at 6 weeks T3 -0.987* 0.105
Efficacy Trt B

at 2 weeks o1 -0.623* 0.084

at 4 weeks 02 -1.254% 0.126

at 6 weeks b3 -1.526* 0.167
Trend ) -0.148* 6.012
Overdisp. Coeff. s 1.415% 0.092
* indicates significant at the 5 % level.
** indicates significant at the 10 % level.

138



Treatment B is superior to treatment A at each time period in reducing the mimber
of events as indicated by larger estimates in absclute value than treatment A. Based
on a likelihood test ratio, this difference is significant. The value of the log of the
likelihood is -1,713.12 when both treatments are set equal at each time period (7; = §;
and t =1, 2 and 3) versus -1,705.92 for the unrestricted model. Twice the difference
of the likelihood functions is 14.39 which is superior to 7.82, the 95% critical value
for the x* with 3 degrees of freedom. The null hypothesis of equality of the two
treatments is therefore rejected since twice the difference exceeds the critical value of
the x2.

Additionally, the values of the estimates indicate that while the efficacy of treat-
ment B increases between 4 and 6 weeks ( from -1.25 t0 -1.53), the efficacy of treatment
A is stable during the same period (-0.95 and -0.99, respectively). This assumption
was accepted based on a likelihood ratio rest. The value of the log-likelihood of the
restricted model was -1,705.98 when the efficacy of treatment A at 4 and 6 weeks
was set equal (79 = 73), all other coefficients being different, versus -1,705.92 for the
 unrestricted model. Twice the difference is less than 3.84, the 95% critical value for
the x2. Therefore, the reduction in counts observed between 4 and 6 weeks among
patients assigned to treatment A seems to be caused by a natural trend effect rather
than by treatment A. In fact, a Quadrivariate Negative Binomial model without a
trend variable in the mean function is unable to detect that treatment A reaches
its maximum efficacy after 4 weeks of treatment. When the data is estimated by a

Quadrivariate Negative Binomial model with no trend as regressor, the value of the
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coefficients associated with treatment A increases between 4 and 6 weeks from -1.53
to -1.86 and this difference is significant according to a Likelihood Ratio Test. Ex-
cluding a trend in the analysis presumes that the reduction in the number of events
is only due to the treatment, which may not be true as seen in our example.

In summary, based on these Likelihood Ratio Tests, both treatments are significant
in reducing the number of events. Treatment B is statistically superior to treatment
A at each time period and its therapeutic action lasts longer than treatment A.
Maximum efficacy of treatment A is reached after 4 weeks. None of the covariates
are significant in explaining the reduction in the number of events.

This was not the case when the analysis concentrated on the endpoint and consid-
ers the baseline value as regressor as indicated by the results given in Section 4.3.2.
In the univariate analysis, a Likelihood Ratio Test failed to reject the equality of the
treatments. Finally, while there are no significant differences in the parameter esti-
mates for treatment effects at 6 weeks between the two Negative Binomial models,
the standard errors were larger in the univariate model indicating less accuracy with
this model.

In conclusion, based on our example, caution should be taken when generalizing re-
sults from univariate models when the baseline value is treated as exogenous. Because
univariate models do not exploit the richness of the data, they cannot provide accu-
rate information on the treatment efficacy and time shape eflicacy parameters. For
example, the univariate model was also unable to detect that treatment A reached its

maximum efficacy at 4 weeks as indicated by the results of the Quadrivariate Negative
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Binomial model. Similarly, the GenMod procedure given in SAS for the Generalized
Estimating Equations model does not allow us to estimate the time shape of the

efficacy of the treatments and results are unclear.

Predictions Once the parameters of the Quadrivariate Negative Binomial model
were estimated, the predicted mean counts at each time period t, were derived from
equations (38). As can be seen in columns 3 and 4 of Table 23, the Quadrivariate Neg-
ative Binomial model performs well in predicting the mean counts and their evolution
over time.

For each treatment group, the Quadrivariate Negative Binornial model predicts
exactly the mean percentage reduction of episodes from baseline to endpoint (85%
for treatment A, 91% for treatment B and 59% for placebo). The absolute difference
in the predicted mean counts and the actual means is less than 5% for the full sample
and ranges from 11% to 12% for treatment A, from 22% to 25% for treatment B
and from 2% to 9% for the placebo group, depending on the time period. Table 24
presents the observed and predicted coefficients of correlation as defined by equation
(31). The predicted coeflicients of correlation between two consecutive observations
are similar to the observed correlation. However, the model tends to overpredict the
correlation for non-successive observations. For example, the observed coefficient of
correlation of the efficacy variable between 0 and 4 weeks is 0.28 while the model

predicts a value of 0.80.

Finally, it is important to determine the predicted number of zeros by the Quadri-
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Table 23: Observed and Predicted Mean Counts. QNB Model.

Treatment Group | Actual Data | Quadrivariate Negative % Difference
Time Period Binomial Model
Means Predicted Means {Predicted versus
Treatment A
Baseline 22.26 19.67 -12%
2 weeks 9.91 8.85 -11%
4 weeks 4.69 4.19 -11%
6 weeks 3.37 3.01 -11%
Treatment B ‘
Baseline 16.09 20.10 25%
2 weeks 6.56 8.02 22%
4 weeks 2.59 3.17 22%
6 weeks 1.47 1.79 23%
Placebo
Baseline 20.03 19.70 2%
2 weeks 13.40 14.65 9%
4 weeks 10.73 10.89 1%
6 weeks 8.30 8.09 -3%

Table 24; Actual and Predicted Correlations

Actusl QNB Predicted
Correlation Correlation
p(0,1) 0.63 0.87
0(0,2) 0.27 0.80
p{0,3) 0.26 0.74
o(1,2) | 058 0.76
o(1,3) | 063 0.71
p(2,3) 0.83 0.66
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variate Negative Binomial model in order to have an appreciation of the model in
determining how many patients have zero episodes. In this calculation, the predicted
number of zeros at t was determined jointly when the count at time t was set equal
to 0. The results indicate that the Quadrivariate Negative Binomial model, as the
Generalized Estimating Equations model, is unable to predict any zeros at all, offer-
ing a very poor fit of the data. In this sense the Univariate Negative Binomial model
presented in Table 20 is superior. For the full sample, the Univariate Negative Bino-
mial model predicts that 38 percent of the subjects will be cured at 6 weeks versus
an observed percentage of 41%. The predicted mean count by the univariate model is
4.33 at 6 weeks which compares with an observed 4.12. However, as shown previously,
the Univariate Negative Binomial model was unable to detect any difference between
treatments A and B or that treatment A reaches its maximum efficacy at 4 weeks.
Furthermore, the correlation arising from the repeated nature of the clinical trial is
not taken intc account in univariate models. Therefore other alternatives have to be
investigated to obtain a better fit of the data and to draw final conclusions on the

assessment of the treatments.

4.5

Quadrivariate Negative Binomial Zero-Inflated (QNB

7)
Model

A Quadrivariate Negative Binomial Zero-Inflated (QNB?) model is presented to an-
alyze the data presented in section 4.2, which is characterized by a high proportion

of zeros. In Zero-Inflated models, zeros are generated in two regimes. In regime 1
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the probability of generating a zerc is always one. In regime 2, the 0Os but also the
positive counts, are generated according to a different probability fﬁnction.

This Multivariate Zero-Inflated specification allows for a systematic difference in
the statistical process governing two regimes of zeros at each time period following
initiation of treatment while accounting for the repeated aspect of the longitudinal
count data. The idea is siraple and is analogous to the definition of the multivariate

negative binomial distribution.

4.5.1 Model Specification

The Quadrivariate Negative Binomial Zero-Inflated (QNB?) distribution was defined
as the product of three Zero-Inflated conditional Negative Binomial distributions (¢
=1, 2 and 3) and the Univariate Negative Binomial distribution for the initial value
(t = 0). Since some patients with zero counts at t have positive counts at t +1 (t
=1 and 2), it was assumed that the allocation of the subjects in each regime was
independent across the three time periods. Where unknown parameters and strictly
exogenous variables are suppressed, the joint density function of the four repeated

counts Y = (¥, Y1, Yiz, Yis) was therefore defined as:
3
QNB*(Yy) = NBo(yn) HlNBf(yz't | Yie-1)- (114)
t:

In this equation NB? (t = 1, 2 and 3) represents Negative Binomial Zero-Inflated
distribution at period t for the counts y;, conditional on the vector of previous re-

sponses Y;_;. The term N By is the Univariate Negative Binomial density function
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for the initial count, which is considered endogenous. A Zero-Inflated specification
was not deemed appropriate for the initial value since the subjects are treatment
naive at initiation of the trial. The following equation gives in its abbreviated form
the associated log-likelihood function when applied to our data set of four repeated

observations on 116 patients:

N=116
(¢,B;) = Y _ (ImLNBy+InLNB; +InLNB; + In LN Bj). (115)

i=1

Estimation is conducted by maximizing this log-likelihood function with respect
to the vector of parameters ¢, associated with the distribution governing the zeros
in Regime 1 and with respect to (3; the vector of parameters associated with the
distribution governing the zeros and the positive counts in Regime 2.

In this formulation, InLLN By represents the addition to the likelihood for the Uni-
variate Negative Binomial density for the baseline count. Each InLNB} (t =1, 2
and 3) is the likelihood function of the conditional Negative Binomial Zero-Inflated
distribution at time t defined as:

L=y In{ @ + (1 — ®:(yis) )N By{yiz = 0| Yie—1))

InLNB] = | (116)

+ Loy (1 — @o(yis) ) N Be(yis | Yie-1))

In this equation lgy,,—0) = 1 if y; = 0, 0 otherwise; and t = 1, 2 and 3. The term
Yi:—1 is the vector of counts observed in the preceding time periods.
The distribution, ®; is the cumulative univariate normal distribution governing

the zeros in regime 1 (cured with probability 1) at time t. Here ®; was assumed to
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depend only on treatment dumimies and a given constant ¢. Because treatment effects
are cumulative, different treatment coefficients were attributed to each time period

as shown below.
@u(ys) = C(wuyxTrtA+n,xTrtB-c) t=1,2and 3 (117)

In regime 2, the probability of a particular subject being cured or not depends
on thé number of counts that have already been observed. In particular, in equation
(117), NB; (t=1, 2 and 3), was defined by the (¢ + 1)-variate Negative Binomial dis-
tribution of y;; conditional on the vector of previous responses Y;; ;. For example,
for t¥3, NBs(yis | yi2, vi1, vio) was defined as the ratio of the Quadrivariate Negative
Binomial density function of the vector (yio, ¥i1, %2, ¥ia) and the trivariate Negative
Binomial density of (%, yi1, ¥i2). In this regime, the mean is a function of individ-
ual covariates, treatment dummies and a trend effect as defined by equation (113).
After this parametrization, estimation is performed by maximizing the log-likelihood
function given in equation (116) with respect to (3, the vector of parameters associ-
ated with the distribution of regime 2, & the coefficient of overdispersion, and to the
treatment parameters of regime 1 (the w’s and #’s). It should be noted that in this
Zero-Inflated model, the probability of being in a particular regime depends only on
the treatment group to which the subject was assigned and not any other observable
subject characteristic. Therefore, an additional source of unobservable heterogeneity

is introduced in the Zero-Inflated specification.
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4.5.2 Results

The likelihood functions of the Quadrivariate Negative Binomial and QQuadrivariate
Negative Binomial Zero-Inflated distributions were used to test nested hypotheses
since the two distributions are equal if ®; = ®; = &3 = (. Diflerences among

treatments were assessed by carrying out a series of Likelihood Ratio Tests.

Parameter Estimates The results of the maximization of the natural logarithm of
the likelihood of the Quadrivariate Negative Binomial Zero-Inflated distribution de-
fined in equation (116) are displayed in Table 25. When compared to the Quadrivari-
ate Negative Binomial model, there is a significant increase in the likelihood function
(from -1,705.92 to -1,593.99 ) since twice the difference in the log-likelihood function
is 223.68, which is greater than 12.59, the 95% critical value for the x2. Additionally
all coefficients associated with the treatment effects in regime 1, that is to be cured
with probability 1, ( the w’s and 7’s) are highly significant. Clearly the data presents
a significant excess of zeros caused by treatments. Ignoring this feature by estimating
the mean independently of the structure governing the zeros would be incorrect and
will result in inconsistent estimates in our case. In particular, in the Quadrivariate
Negative Binomial Zero-Inflated model, an additional source of zeros is generated
which is parametrized by the w’s and 7’s, all statistically different from 0 in our
example. Consequently, the treatment coefficients associated with regime 2 (the 7’s
and the §’s) have changed with respect to the non-inflated model.

As found in the Quadrivariate Negative Binomial model, the results indicate that

the constant and the covariates are not significant. The coefficients of the covariates
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in the Quadrivariate Negative Binomial Zero-Inflated model differ slightly but are
of the same magnitude and sign as in the Quadrivariate Negative Binomial model
except for the constant and the covariate height. The value of the constant is smaller
in the Zero-Inflated specification and the covariate “height” now has a positive effect.
But again, they are not significant. The trend and the coefficient of overdispersion
are significant with similar valueé. When the excess of zeros is accounted for, both
treatments are highly significant regardless of the regimes defining the Quadrivariate
Negative Binomial Zero-Inflated model and treatment B is still superior to treatment

A as found in the previous model.

The values of the estimates of the parameters given in column 2 of Table 25 suggest
that for the process governing regime 1, (i.e. cured with probability 1), treatment
B generates almost the same number of zeros as does treatment A at week 2 and
week 4, with more zeros than treatment A after 6 weeks following treatment. In
this regime, the treatment effects increase over time for treatment B and are almost
similar between 4 and 6 weeks for treatment A. In contrast, in regime 2, treatment
B is superior to treatment A for the first two time periods and almost similar to
treatment A at 6 weeks. Under this regime, both treatments reached their maximum
efficacy after four weeks following treatment and the efficacy of treatment A was
almost similar at 4 and 6 weeks after initiation of treatment.

Likelihood ratio tests were carried out to test these differences among treatment.
The first restricted model was built by imposing on regime 1 the equality of each

treatment for the first two periods (1, = w; and 1, = wy) and a similar effect of
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Table 25: Maximum Likelihood Parameter Estimates - QNBZ Model.

Maximum Likelihood Quadrivariate Negative Binomial
Estimation Zero-Inflated Model
Number of observations: 116
Convergence achieved after: 14 iterations
Log of Likelihood: -1,593.988

Variable Parameter | Estimate Std. Error
Constant B 2.518 1.321
Age By 0.003 0.006
Height B -0.002 0.008
Weight Bs -0.002 0.003
Duration B4 -0.001 0.001
Regime 1
Efficacy Trt A

at 2 weeks 7 3.761* 0.231

at 4 weeks N 4.346* 0.194

at 6 weeks 73 4.584* 0.187
Efficacy Trt B

at 2 weeks feoll 3.616* 0.339

at 4 weeks Wy 4.403* 0.270

at 6 weeks w3 5.376* 0.248
Regime 2
Efficacy Trt A

at 2 weeks Ty -0.449* 0.057

at 4 weeks To -0.746* 0.084

at 6 weeks T3 -0.732% 0.104
Efficacy Trt B

at 2 weeks 1 -0.597* 0.085

at 4 weeks b2 -1.040% 0.128

at 6 weeks O3 -0.820% 0.169
Trend g -0.135%* 0.012
Overdisp. Coefl. o 1.480% 0.100
* indicates significant at the 5 % level.
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treatment A at 4 and 6 weeks in regime 2 (73 = 73). The value of the likelihood of the
restricted model was -1,584.08 versus -1,593.99 for the unrestricted quadrivariate Zero-
Inflated model. Twice the difference in the log-likelihood function is less than 7.82, the
95% critical value of x2, therefore these assumptions were not rejected. Additionally,
another Likelihood Ratic Test could not reject the two additional hypotheses that
treatment A and B had similar efficacy at 6 weeks in regime 2 (73 = §3) and that
the efficacy of treatment A was similar between 4 and 6 weeks in regime 1 (17, = 13).
The value of the likelihood of this new restricted model was 1,594.47 and twice the
difference was less than 11.07, the 95% critical value of x2.

In conclusion, as found in the Quadrivariate Negative Binomial model, both treat-
ments were significant in reducing the counts and in curing the patients. Treatment
B is statistically superior to treatment A at each time period. This is true at week 2
and 4 in which treatment B is superior to treatment A in regime 2 while in regime 1,
both treatments have a similar efficacy. At week 6, treatment B is superior to treat-
ment A in regime 1 and equal to B in regime 2. In addition, treatment A reached
its maximum efficacy at week 4 in the two regimes, meaning that the reduction ob-
served in this treatment group between 4 and 6 weeks was due to a natural trend
and/or unobserved heterogeneity that predisposed patiénts to be cured following one
month of treatment. By allowing for two regimes, the Zero-Inflated specification de-
fines a more refined mechanism than the Quadrivariate Negative Binomial model and

provides additional information on how treatments are effective.
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Table 26: Observed and Predicted Means. QNBZ Model.)

Treatment Group | Actual Data | Quadrivariate Zero-Inflated | % Difference
Time Period Negative Binomial Model
Means Predicted Means Actual versus
Treatment A
Baseline 22.26 19.70 -12%
2 weeks 9.91 8.57 -14%
4 weeks 4.69 4.05 -14%
6 weeks 3.37 2.79 -17%
Treatment B
Baseline 16.09 20.15 25%
2 weeks 6.56 7.77 18%
4 weeks 2.59 3.01 16%
6 weeks 1.47 1.40 -4%
Placebo
Baseline 20.03 19.46 -3%
2 weeks 13.40 14.86 11%
4 weeks 10.73 11.35 6%
6 weeks 8.30 8.66 4%

Predictions Once the parameters of the Quadrivariate Negative Binomial Zero-
Inflated model were estimated, the predicted mean counts at each time period t were
derived. As seen in Table 26, which presents these predictions for the three treatment
groups, the Quadrivariate Negative Binomial Zero-Inflated model gives a good fit of
the data. The mean percentage reduction in the number of episodes from baseline to
endpoint model is 86% for treatment A, 93% for treatment B and 55% for the placebo
group versus actual reductions of 85%, 91% and 59%, respectively. The difference in
the predicted and the actual means was less than 4% for the full sample and ranged
from 12% to 17% for treatment A, from 4% to 25% for treatment B and from 3% to

11% for the placebo group, depending on the time period.

The predicted mean number of zeros generated by the Quadrivariate Negative
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Binomial Zero-Inflated model was computed as the sum of the two probabilities of
generating zeros associated with each of the two regimes. In regime 1, the predicted
number of zeros at period t was deﬁned by the cumulative normal distribution as
@, (w? « TrtA + ot « TrtB — ¢), the subscript p referring to the N B parameter
estimates given in Table 26. In regime 2, the number of zeros at each time period t was
defined conditionally on previous responses as exp( -of In(¢f | ¢f_1)— Zig—1(In(q] |
¢_,)) ) in which ¢f = 1+ Z{AL.

By generating two ways of zeros, the Quadrivariate Negative Binomial Zero-
Inflated model offers a good description of the data. Not only were the mean counts
correctly predicted, but also the number of patients who had zero episodes at each
time period. For the full sample, the predicted percentage of cured patients (i.e. 0
episodes) was 8.8% at week 2, 22.9% at week 4 and 39.5% at week 6, comparing favor-
ably to the actual percentages of 9.5%, 23.2% and 41.3%, respectively. An analysis
per treatment group indicates that the model is very accurate in predicting the per-
centage of patients cured due to treatment A but less accurate for treatment B and
placebo. For example, it was predicted that after 6 weeks of therapy with treatment
B, 78% of the patients would be cured versus an observed percentage of 69%. In the
placebo group, the number of zeros at week 6 was underpredicted by the model (4.1%
versus 20%). Figure 7 presents the actual and predicted percentage of zeros per time
period and per regime for treatment A and treatment B.

As expected, this graph illustrates that in a Zero-Inflated specification the zeros

are mainly generated in regime 1, governed by cumulative univariate normal distri-
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bution, in a proportion superior to 70%. An analysis per treatment group indicates
that the proportion of zeros generated in regime 1 was higher for treatment A than
treatment B within one month following treatment and equal thereafter. In partic-
ular, 96% and 90% of the zeros due to treatment A were generated in regime 1 at 2
weeks and 4 weeks respectively, versus 71% and 72% for treatment B. After 6 weeks
of treatment, a similar proportion of 83% and 84% of the zercs were generated in
regime 1 for treatment A and B, respectively. However, it is impossible to know
if these differences in the allocation of the subjects in each regime are due to the
treatments, or if they reflect unobserved heterogeneity that pre-disposes sub-groups

of patients to be cured.

Figare 7: Observed and Predicted Percentage of Subjects with
Zero Counts. QNBZ Model.
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4.6

As also shown in Chapter 3, the analysis of longitudinal {clinical trial) count data
characterized by an excess of zeros and correlation over time should be carefully
undertaken. The contributions of this chapter are:

1. To have identified important weaknesses in the literature on the analysis of
longitudinal clinical trials when the health outcome is a count and the treatments are
very effective in reducing the number of episodes.

2. To have illustrated through a fictive cost-effectiveness example why economists
should be more concerned about the method used to determine treatment efficacy.

3. To have proposed a new alternative to deal with an excess of zeros in the
analysis of longitudinal clinical trial count data by developing a Multivariate Zero-
Inflated Negative Binomial model nested with the Multivariate Negative Binomial
model.

4. To have provided evidence that a) important differences result from the estima-
tion of the data by a Univariate Negative Binomial model, a Quadrivariate Negative
Binomial model and a Generalized Estimating Equations model; b) the presence of
excess zeros in the longitudinal context can be tested and accounted for by Multivari-
ate Negative Binomial Zero-Inflated models and ¢) analyses relying in Generalized
Estimating Equations models as recommended by the SAS Institute and several au-
thors (Diggle, 1993; Albert, 1999) could be misleading in the case of an excess of
zeros in the data. In our example, the Generalized Estimating Equations model pre-

dicted no zero counts at all. In comparison, the Quadrivariate Negative Binomial
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Zero-Inflated model was able to predict the mean number of zero counts at each time
period as well as the mean number of counts.

In this chapter, a Multivariate Zero-Inflated framework was presented to analyze
longitudinal count data in the presence of covariates, overdispersion, correlated counts
and an excess of zeros. In accordance with time series literature, the baseline value
was counsidered as a random variable rather than as a regressor.

This methodology is preferable to univariate methods for analyzing longitudinal
clinical trial count data because it exploits all the information available yielding more
efficient and reliable estimates. In our particular example, the Univariate Negative Bi-
nomial model was unable to detect any treatment differences when in fact treatments
were different. Moreover, analysis concentrating on the endpoint of the clinical trial
could not determine the time shape of the treatment effects nor treat the correlation
among the efficacy variables yielding inconsistent estimates.

The methodology presented in this chapter offers a perspective that is comple-
mentary to Generalized Estimating Equations models by abandoning the structure
used thus far consisting of a given mean function and a variance function defining the
dispersion of the data. Because the probability mass function is never specified in
a Generalized Estimating Equations model, Generalized Estimating Equations mod-
els cannot be inflated to deal with the problem of excessive zeros due to eflective
medications. If the excess of zeros is significant, the mean function in Generalized
Estimating Equations models is not correctly specified resulting in inconsistent es-

timates as well as a poor fit of the data. Results from a Generalized Estimating
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Equations model based on a specification of Diggle (1993) and Albert (1999) indi-
cated that the treatments were significant in reducing the number of outcomes but
these results were attenuated by the fact that the change from baseline to endpoint
was not significant. In addition, the time shape of the efficacy was not determined by
Generalized Estimating Equations models (as estimated by the GenMod procedure,
SAS Institute) and the model failed to predict the proportion of subjects cured.

In contrast, by specifying a Multivariate Negative Binomial distribution for all
the efficacy variables, the proposed methodology allows to treat for excessive zeros in
the multivariate case throughout the development of Multivariate Negative Binomial
Zero-Inflated distributions.

The Multivariate Negative Binomial model is especially appropriate for longitudi-
nal count data in which there is a small proportion of zeros. For example, this is the
case for clinical trials with stage IV cancer subjects where a few percentage of patients
go into remission (e.g., 0 tumors). The Multivariate Negative Binomial model incor-
porates the longitudinal aspect of the discrete data and the presence of covariates
and unobserved random effects. It accounts for correlation among efficacy variables
and treats the baseline efficacy variable as a random variable. By identifying trend
and treatment effects, Multivariate Negative Binomial models allows us to evaluate
the shape of the efficacy of the treatments over time rather than relying on a single
endpoint measure. However, this model assumes that only one process generates the
data which may not be true especially if the treatments are very effective in reducing

the events.
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In our data set, an excess of zeros was found to be significant and the Quadrivariate
Negative Binomial Zero-Inflated specification defined a more refined mechanism to
assess how and whether treatments are effective than the non-inflated model. In
addition, to correctly predict the mean number of counts, the Multivariate Zero-
Inflated model was able to forecast the number of zeros, offering a good fit of the
data. In accordance with previous empirical work in the univariate case, the Zero-
Inflated multivariate model for count data is preferred to its parental model in the
presence of excessive zeros due to effective treatments.

The main implication of this chapter is to have demonstrated that great care
should be taken when analyzing drug treatment effects in longitudinal count clinical
trials characterized by very effective treatments. Health economists should be aware
of the limitations associated with standard procedures to analyze longitudinal clinical
trial count data. If treatments are very effective, a large proportion of zeros will be
present in the data and ignoring this feature will result in biased estimates. As a
consequence, the economic evaluation of this trial will be erroneous. Failing to detect
treatment differences comes at a high price from a societal perspective as indicated by
our example in section 4.1.3. This corresponds to the scenario where a drug marketed
at a premium versus standard treatment would not be accepted for reimbursement
because the statistical analysis wasn’t able to prove its superior clinical profile versus
usual care. The financial implications of this scenario for the developer of the drug
would be catastrophic.

The methodology presented in this chapter has several practical implications. Lon-
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gitudinal count data models should require a smaller sample size to detect a treatment
difference than univariate models using the baseline and the endpoint value. In our
example, the univariate model didn’t detect any differences between treatments A and
B. This is an interesting area for future research because the sample size in clinical
trials is traditionally determined based on mean endpoint differences using two-pair
side tests. Enrolling fewer subjects in clinical trials will represent considerable savings
to pharmaceutical companies and overall less subjects at risk. In addition, being able
to evaluate the efficacy of the treatments at each of the time periods is an important
feature for two reasons. Economic results will be more precise if the reported efficacy
is time-related rather than represented by a single efficacy endpoint. This will also
help the physician to schedule a follow-up visit to assess his patient when the efficacy
is at its maximum.

The findings and implications of this research support the development of inter-
national or national guidelines for the conduct analysis of clinical trial data. Health
economists and econometricians should be involved in this process due to their grow-

ing involvement in health care policies.
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The ‘main contribution of this thesis is to have identified and addressed the issues as-
sociated with an excess of zeros in longitudinal count data. A review of the literature
has outlined the need for general models to analyze longitudinal count data charac-
terized by a high proportion of zeros. Because the distribution is not specified in
non-parametric models, non-parametric models cannot be inflated or hurdled to test
and treat an excess of zeros. Among parametric models, the Multivariate Negative
Binomial distribution is an ideal candidate to be inflated due to its simple form.
New methods to inflate or hurdle Multivariate Negative Binomials in the longi-
tudinal framework have been proposed using a conditional approach which allows to
model correlation over time of the dependent count variable, unobserved heterogene-
ity in the data and an excess of zeros. Since the estimation is based on a likelihood
approach, it is possible to compare different models if they are nested. This is the case
with the Multivariate Negative Binomial Zero-Inflated and the Multivariate Negative

Binomial Hurdle models which are each nested to the Multivariate Negative Binomial

. model. Two applications in health economics suggest that Multivariate Negative Bi-

nomial Zero-Inflated or Hurdle models are preferred against traditional parametric or
non-parametric models.

The analysis of the number of physician visits generated by a panel of German
households provided new evidence in this type of analysis. The first important result
is that conclusions based on models applying a Univariate Negative Binomial distri-

bution to the pooled data could be misleading because the longitudinal aspect of the
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data is ignored. Pooling the data was done in the preliminary work of Winkelman
(2001) in the analysis of doctor visits and by Geil et al. (1997) in modelling the
number of hospital visits in Germany. Contrary to Geil et al.’s results (1997) in their
analysis of the number of hospital visits, univariate and longitudinal count data mod-
els have different interpretations because the number of doctor visits is correlated
over time which is not the case for the number of hospital visits. Not taking into
account this correlation by using cross-section data or by pooling the data may lead
to erroneous conclusions as shown in our example by the different interpretations of
univariate and longitudinal models for count data when the analysis is conducted by
gender.

However, standard multivariate distributions for longitudinal count data are gen-
erally unable to predict correctly the number of zeros at each time period which
is a weakness of the generalization of these models in the presence of an excess of
zeros. Instead, the method of analysis should take into account the problem of ex-
cessive zeros in longitudinal count data while addressing the issues of unobserved
heterogeneity and correlation over time due to the repeated nature of the data. A
Multivariate Negative Binomial Hurdle model was developed and preferred over the
Quadrivariate Negative Binomial model based on specification tests. This result has
important practical implications in measuring the impact of an insurance scheme re-
form, for example, since the longitudinal Hurdle and Non-Hurdle approaches yielded
opposite findings with respect to the impact of having private insurance on the num-

ber of visits. to General Practitioners. These results confirmed in the longitudinal
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context that a different view of the demand for medical care should be considered as
in Pohlmeier and Ulrich (1995). It has also been shown that men and women differ in
their behaviors to consult physician as a suggested by Geil et al. (1997) in the anal-
ysis of the determinants for hospitalization. Consequently, models which ignore this
feature and report that gender is a significant variable miscapture the information as
shown by our results. Instead, a separate analysis by gender is preferable and the
demand for general practitioners and specialists should also be modelled separately
as demonstrated in our analyses.

The Multivariate Negative Binomial Zero-Inflated model presented in Chapter 4
to analyze longitudinal clinical trial count data offers several advantages over the cur-
rent models use to analyze this type of data. The data was characterized by an excess
of zeros making incorrect the estimation of the data by any model based on the linear
exponential family distribution such as Pseudo Maximum Likelihood or Generalized
Estimating Equations models. Instead, a Multivariate Zero-Inflated model allows the
zeros to be generated by two different processes at each time period. The results
have also shown that important differences exist when the baseline value is treated
as exogenous or endogenous. The problem of the treatment of the initial value is
also solved by the Quadrivariate Negative Binomial Zero-Inflated and Quadrivariate
Negative Binomial Hurdle models because a distribution is assigned to the initial
value. Other methodological contributions of this chapter are to have presented a
comprehensible way of dealing with trends and treatment effect that differ over time.

This last issue is very important for two reasons. From a practitioner point of view,
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knowing the shape of the treatment effect over time allows the doctor o know when
to assess the treatment. Its also allows the economist to design a most accurate cost
effectiveness model. Assuming in a decision tree analysis that the efficacy of a specific
treatment is constant over time is a strong assumption. As economic evaluations of
drug treatments are now mandatory in various health care settings, economists should
be careful in using efficacy data derived from Generalized Estimating Equations esti-
mates or univariate models. Special issues arise when the health outcome is a count
observed at several point of times as reported in Chapter 4.

This research has identified several areas of research in the analysis of longitu-
dinal count data. The treatment of the initial value in longitudinal count data is
an important area of future research. The Quadrivariate Negative Binomial Hurdle
and Quadrivariate Negative Binomial Zero-Inflated models are conditional models
and treat the baseline value as an endogenous variable by assigning a distribution to
the initial value. Another approach to treat the correlation is the Generalized Auto-
Regressive model developed by Cameron and Trivedi (1998). It was argued in section
2.4.5 that the treatment of the initial value was not clear in Auto-Regressive 1 count
data models when a limited number of repeated measurements were observed for the
dependent count variable.

In order to appreciate this statement, the data was analyzed based on the following
formulation of the mean function: E(y:;) = exp(zuf + pyi—1). While Cameron and
Trivedi (1998) denounced that this specification was explosive for p > 0, there is no

reason why a-priori this model should not converge for values of |p| < 1. In Cameron
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and Trivedi’s model, the initial value (here t=1984) is treated as exogenous. If the
conditional density is Univariate Negative Binomial distributed as UNB(y; | z:, ¥:—1),

estimation can be done by maximizing the following likelihood function given by:

3
o, B,) =Y UNB(y; | 21, y-1) with t=1985, 1986 and 1987. (118)

t=1

This model is referred to an Auto-Regressive (1) Univariate Negative Binomial
model (Cameron and ’Iﬁvecii, 1998). Likelihood ratio tests indicated that estimations
should be conducted by gender. The estimations of the this model are given in Table
A2 in Appendix. According to the results, men and women differ with respect to
having children, being married and income. Being married significantly increases the
number of GP visits for men but marital status is not significant for women. For
them, having children is associated with a significant increase in the number of visits
. which is not true for men. All the other variables are significant with the expected
signs and are similar for both genders. The coefficients of correlation are positive and
significant in all cases confirming that the correlation present in the data has to be
treated.

However, results based on this model may be erroneous if the model supports
an excess of zeros as discussed previously. In order to develop an Auto-Regressive
(1) Univariate Negative Binomial Hurdle model, each Univariate Negative Binomial
density function of equation (119) was hurdled. In each stage, the count observed
at the precedent period is introduced in the mean function. According to Likelihood

Ratio Tests, the excess of zeros is significant. Results are presented in Table A3 of
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the Appendix and indicated again that men and women differ in terms of having
children, being married and income.

If we compare the Auto-Regressive (1) Univariate Negative Binomial Hurdle and
the conditional Quadrivariate Negative Binomial Hurdle models, the results indicate
different interpretations for several variables and at different stages of the process
(contact and frequency). For women, private insurance is associated with a significant
reduction in the probability of contacting a doctor in the Auto-Regressive Hurdle
model which was not observed in the Quadrivariate Negative Binomial Hurdle model.
It is the contrary for education which is significant in the Quadrivariate Negative
Binomial Hurdle model for the contact decision but not in the Auto-Regressive(1)
Hurdle model. Working is positively associated with an increase in the number of GP
visits for women in both specifications. While this is also true for men according to
the Auto-Regressive Hurdle model, the working status was not significant according
to the Quadrivariate Negative Binomial Hurdle model. It is interesting to note that
the two models outline the non importance of income which is only significant in
explaining the frequency of men in the Auto-Regressive (1) model. Finally, in both
cases, health and chronic conditions are important variables in explaining the demand
for doctor visits.

In light of all these results, correlation must be taken into account by either a
conditional or an auto-regressive approach. The Quadrivariate Negative Binomial
Hurdle and Quadrivariate Negative Binomial Zero-Inflated models take a conditional

approach in which a distribution is assigned to the initial count value consistently with
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the definition of a multivariate distribution. It is not currently known how to treat
the initial value in Generalized Auto-Regressive models when T is small and a trend
effect is present. Treating the initial value as exogenous may be problematic since
the initial count value may contain a lot of information for analysis. This represents
a promising area for future research. In the same avenue of research, the coefficient
of correlation of the multivariate Hurdle or Zero-Inflated models are not known at
the present time. Attempts to derive them were not successful. This is left for future
research.

The review of the literature has also revealed a need for longitudinal count data
tests for non-nested longitudinal count data models allowing to test for an excess of
zeros. The development of longitudinal non-parametric Hurdle models is a promising
avenue for future research if tests are available to compare them with their parental
models to test for an excess of zeros. This would also allow us to extend Winkelman’s
Probit model (2001) to the longitudinal case.

Nonetheless, this doctoral thesis has contributed to the advancement of the anal-
ysis of longitudinal count data in the presence of correlation and an excess of zeros
by offering simple solutions to important issues generally ignored in the econometric

literature on the analysis of longitudinal count data.
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Appendix

Table Al: Predictions Generalized Estimating Equations Model.

' The. SAS System
The GENMOD Procedure

GEE Observation Statistics

Observation C Y Pred Xbeta Std
i5 3 2.2785681 0.8235472 0.8016495
18 0 0.0030567 -4.,704248 1.0538473
17 8 0.0669206 -2.704248 1.0538473
18 5 0.4944801 -0.704248 1.0538473
18 1 0.0445364 -3.111448 0.460567
20 3 0.329082 -1.111448 0. 460567
21 0 2.4316056 0.8885518 0.460567
22 4 0.0076503 -4.873016 1.0684428
23 2 0.0565282 -2.873016 1.0684428 .
24 3 0.41768%98 -0.873016 1.0684428
25 10 0.1213038 -2.109457 - 0.218789
26 5 0.8963205 -0.109457 0.218789
27 4 6.6229624 1.8905428 0.218789
28 1 0.0285762 -3.65518 0.4464474
29 2 0.2111818 -1.55518 0.4464474
30 1 1.5602092 0.4448199 0.4484474
31 i 0.0810129 -2.513147 0.511328
32 0 0.5986088 -0.513147 0.511328
33 1 4.4231541 1.486853 0.511328
34 1 0.0718888 -2.632662 0.4796825
35 D 0.8311738 -{.832662 0.47968258
38 1 3.9248882 1.3673378 0.4786825
37 g 0.0271929 -3.604801  1.0080783
33 2 0.2009296  -1.604801 1.0080783
39 0 1.4846798 0.3981992 1.0080783
40 18 0.0332486 -3.403714 0.463362
41 8 0.2456828 -1.403714 0.463362
42 2 1.8153644 0.5962862 0.483362
43 19 0.0474921 -3.047192 0.8815957
44 16 0.3509217 -1.047192 0.8815957
45 22 2.5929801 0.9528078 0.8815957
48 20 0.0505878 -2.984044 0.3502257
47 7 0.3737962 -0.984044 0.3502257
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Appendix:
Table A2: Maximum Likelihood Estimates.
Auto-Regressive (1) Negative Binomial Model. Gender Analysis

Meaximum Likelihood AR(1)NB | AR(1)NB
Estimation Female Male
Number of observations: 2,376 4342
Log of Likelihood: -11.203.35 | -10,265.310
Variable Parameter
Constant Bo -0.622* -0.577*
(0.121) | (0.135)
Age*10™1 B 0.182% 0.140%
(0.026) | (0.029)
Private Insuyrance B4 -0.431% -0.490*
(0.075) | (0.074)
Education Bs 0.056* -0.049*
(0.007) | (0.007)
Working B 0.170* 0.383*
(0.040) | (0.062)
Children B~ 0.110* -0.028
(0.043) | (0.048)
Income B -0.146 -0.438*
(0.110) | (0.136)
Married B 0.202 0.425%
(0.048) | (0.059)
Health Bio -0.103* -0.118*
(0.008) | (0.009)
Chronic conditions By 0.546* 0.808*
, (0.418) (0.647)
Non West German | . f;, 0.338* 0.430%*
(0.044) | (0.046)
Overdispersion a -0.784* 0.708*
| | (0.012) | (0.011)
Auto-correlation o 0.128%* 0.100*
(0.007) (0.07)
* indicates significant at the 5 % level.
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Appendix:

Table A3: Maximum Likelihood Estimates.

Auto-Regressive (1) Negative Binomial Hurdle Model. Gender Analysis

Maximum Likelihood AR(1)UNBH AR(1)UNBH
Estirnation 1984 exogenous 1984 exogenus
GPs visits Female Male
Number of observations: 2376 2159
Log of Likelihood: -11,081.524 -10,162.339

Variable Parameter | 1st step | 2nd step | 1st step | 2nd step
Constant By -0.436 | 0.654* | -0.500* | -0.609*
(0.232) | (0.176) | (0.228) | (0.183)

Age*1071 By 0.150* 0.171* | -0.131* | 0.131%*
; (0.054) | (0.037) | (0.050) | (0.038)

Private Insurance By -0.336* | -0.384* | -0.345% | -0.529%
(0.107) | (0.107) | (0.109) | (0.111)

Education Bs -0.002 0.081 -0.008 0.095
(0.015) | (0.009) | (0.014) | (0.011)

Working Bs 0.148% 0.135% 0.611* 0.211%*
(0.066) | (0.053) | (0.133) | (0.081)

Children il 0.028 0.147% | -0.047 | -0.022
(0.072) | (0.058) | (0.072) | (0.065)

Income*10™* Bs -0.142 | -0.131 | -0.548*% | -0.240
(0.47) | (0.190) | (0.187) | (0.203)

Married B 0.143 0.192* | 0.499* | -0.273*
A (0.083) | (0.062) | (0.101) | (0.080)

Health Bio -0.083* | -0.113* | -0.108* | -0.123*
(0.012) | (0.010) | (0.014) | (0.012)

Chronic conditions B 0.543* | 0.453* | 0.747* | 0.754*
: (0.085) | (0.052) | {0.110) | (0.064)

Non West German Bis -0.134 | 0.396* | -0.581* | 0.571%*
(0.074) | (0.085) | (0.063) | (0.063)

Overdispersion o 0.876* | 0.810*% | 0.750* | 0.631*
(0.084) | (0.037) | (0.068) | (0.041)

Auto-regression P 0.290* | 0.085* | 0.273* | 0.061%
(0.007) | (0.007) | (0.050) | (0.007)

* indicates significant at the 5 % level.
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