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ABSTRACT

Optimum Partitioning of Globally Asynchronous Locally Synchronous Processor Arrays

Adhir Upadhyay

Globally Asynchronous Locally Synchronous design style has evolved as a solution to increasing
problems of distributing clocks at high frequency and with lower power consumption in DSM
technologies. In GALS designs, partitioning a system into more locally synchronous sub-blocks
reduces the size of each sub-block and allows higher clock frequency. Also, smaller sub-blocks
reduce the capacitance in the clock networks because they need less H-tree levels. However, this
implies a large number of sub-blocks, which increases the asynchronous power overhead. The
thesis considers a 16x16 array of identical processors to evaluate GALS tradeoffs with different
partitioning scenarios. Three different configurations of the array have been studied. This is, to
our knowledge, the first work to propose closed form models for the optimum number of sub-
blocks that accomplish minimum power for GALS design with passive clock distribution
networks. Experimental results verify the effectiveness of the models. The potential increase in
the clock frequency with partitioning and its effect on total power consumption has also been

investigated for one of the array configurations.

For large VLSI designs, inserting repeaters in the clock network is an alternative to boost the
clock frequency that often is limited by the interconnect bandwidth. The thesis also investigates
the GALS tradeoffs for an array with active clock networks. An algorithm has been proposed to

evaluate the optimum partitioning in this case.

The Delay-Insensitive (DI) asynchronous protocols offer a promising solution to the timing
closure problem with long global interconnects in synchronous designs. A novel asynchronous
wrapper using 1-of-4 DI protocol has been introduced. Simulation results show that the scheme

achieves 66% higher throughput than previous designs.
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CHAPTER 1

Introduction

Most digital designs today use the clock signal to define a time reference for correct movement of
data within the system. These synchronous designs are now facing challenges because with each
technology generation, the number of devices per chip is increasing by reducing the minimum
feature size and enlarging the chip area. Designing clock distribution networks for such large
chips with frequency in the GigaHertz range is a daunting task. The problems with synchronous
designs will require some radical changes in design styles and significant improvements in

process technology.

The following section reviews some of the issues with synchronous designs for future large
System-on-Chip (SOC) Designs. Section 1.2 evaluates asynchronous design as a possible
solution. Section 1.3 discusses advantages and disadvantages of Globally Asynchronous Locally
Synchronous (GALS) design style. Section 1.4 is related work and thesis overview. Section 1.5

summaries the chapter.

1.1  Issues with Synchronous Designs

1.1.1 Clock skew

Clock skew, defined as difference in arrival times of clock signal at different clock nets in
synchronous designs, can severely limit the performance and may create race conditions. The

clock skew is usually composed of the following parts; mismatch in RC delays along the various



paths of distributed clock wires, disparity in the clock repeater delays along the path, difference in
capacitive load, and mismatch due to process parameter variations. The trend in VLSI is that the
chips get larger, the clock gets faster and everything gets more complicated. As the clock cycle
shrinks, we see a corresponding drop in allowable clock skew. However, larger die sizes mean
that a larger overall clock distribution network must be provided. These two points will make
clock distribution a most difficult aspect of computer design. Also, the process variations are not
scaling with feature size or clock speed [27]. If clock skew becomes large part of clock cycle
time, it decreases the time available for computation. To manage global clock skew will become a
major challenge in chip design due to large die sizes expected in future designs. Clock skew and

its components are further analyzed in section 3.1.

1.1.2 Interconnect delay and bandwidth

The foremost problem posed to the synchronous designs in Deep Sub-Micron (DSM)
technologies is the reverse scaling properties of global wiring like the clock networks and the
power distribution lines. The function of the interconnects or wiring system is to distribute clock
and other signals and to provide power/ground to and among the various circuits/systems
functions on a chip. The fundamental development requirement for the interconnects is to meet
the high-speed transmission needs of chips despite further scaling of feature sizes. Distribution of
the clock and signal functions is accomplished on three types of wiring (local, intermediate, and
global). Local wiring, consisting of very thin lines, connects gates and transistors within an
execution unit or a functional block (such as embedded logic, cache memory, address adder) on
the chip. Local wires usually span a few gates and occupy first and sometimes second metal
layers in a multi-level system. The lengths of these wires tend to scale down with technology.

Intermediate wiring provides clock and signal distribution within a functional block. Intermediate



wires are wider and taller than local wires to provide lower resistance signal/clock paths. Global
wiring provides clock and signal distribution between the functional blocks, and delivers
power/ground to all functions on a chip. Global wires, which occupy the top one or two layers,

are longer than 4 mm and can be as long as half of the chip perimeter.

Figure 1.1 shows relative gate and wire delays for DSM technologies as outlined in the 2001

International Technology Roadmap for Semiconductors (ITRS) [27]. It shows that the RC delay
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Figure 1.1. Relative delay for local and global wiring versus feature Size [27]

through fixed-length wire increases as the base fabrication technology scales to a smaller
dimension. Since gate delays decrease under scaling, we see an ever-increasing disparity between
wire and gate delays. With transistor switching speeds becoming faster while propagation delays

along the interconnects are becoming slower, the system performance bottleneck is no longer the



delays within the logic blocks. Instead, communication among blocks has become a primary
design challenge. It is no longer sufficient to simply wire two blocks together and expect them to
communicate properly and efficiently. It may even be necessary to allocate multiple clock cycles
to a signal’s journey across the chip. So defining an optimal clock period of a common single
clock for a large system is a difficult task, as this clock has to serve for everything from memory

access to clocking pipelined datapaths.

Increasing resistance is the main reason behind the increased RC constant of interconnects in
DSM. Resistance is inversely proportional to the cross-sectional area of the wire. Due to rising
need for higher densities On-Chip, wiring pitches are dropping rapidly at about the same rate as
gate length. Wiring capacitance is also increasing in scaled processes due to the higher densities
needed to route modern chips. For instance, line-to-line spacing and insulator thickness are both
shrinking, resulting in an overall increase in line capacitance. Also, one of the methods to reduce
resistance has been to slowly scale line thickness, resulting in taller, thinner wires. These wires
with high aspect ratio (AR = height/width) tend to have more parallel plate capacitance to
neighboring lines resulting into higher overall capacitance despite smaller line widths. The
increase in the RC constant limits the bandwidth of the clock distribution networks in DSM. In
the simplest case, an interconnect can be modeled as an RC low-pass filter. The clock signal is
degraded as it passes through the interconnect because of its limited bandwidth. If the
interconnections have large RC constants, the waveform will have long rise times, and a high
frequency clock signal will not be possible. Increasing a wire’s width will monotonically increase
that wire’s bandwidth, since it decreases the wire RC product. However, making wires
excessively fat will reduce the number of wires available, and hence potentially reduce bandwidth

over that area.



Repeaters can be incorporated to increase the bandwidth of the clock networks. However,
utilizing active repeaters in the global clock distribution networks introduce additional clock skew
because of the device parameter variations. The process variations are not scaling with feature

size or clock speed. Also, repeaters consume large area and power.

Local, intermediate, and global wiring pitches/aspect ratios are differentiated to highlight a
hierarchical scaling methodology that has been broadly adopted. Implementation of copper and
low k materials allows scaling of the intermediate wiring levels and minimizes the impact on
wiring delay. Local wiring levels are relatively unaffected by traditional scaling. RC constant,
however, is dominated by global interconnect and the benefit of materials changes alone is

insufficient to meet overall performance requirements {27].

1.1.3 Timing closure

The increase in wire delays in DSM technologies is also causing the so-called timing closure
problem, which is a challenging task of estimating and accounting for wire delays. The timing
assumptions both within and across synchronous blocks must be verified pre and post layout in
custom designs. The increase in coupling capacitance in DSM technologies is a potential timing
hazard in that delay becomes a function of neighboring signal activity, making static timing
analysis difficult [5]. Iterations of design and verification required after each change, waste time
and engineering resources and increase time to market. The issue is further elaborated in section

2.5.



1.1.4 Power consumption

With ongoing advances of semiconductor technology, the power dissipation has been moving
higher on the list of VLSI design constraints. Today it is at or near the top of this list, notably for
ICs in portable equipment where battery lifetime is of major concern. In most high-performance
synchronous VLSI designs, the distribution of low-skew global clock signals approaching the
GigaHertz range is the single largest source of power consumption as confirmed by a study
shown in Figure 1.2 [28]. In another study of Alpha 21064 processor, the global clock consumed
40% of the 30W power at 200MHz [29]. The reason for clock nets being the largest contributor in
total power is that they have very large fanout and they span the entire chip. The interconnect
capacitance of clock distribution network has significant contribution in clock power. Thus, it can
be concluded that improvements in clock distribution techniques, especially local clock

distribution, have the potential to lead to major power saving overall.

Figure 1.2. Power breakdown in a high-performance CPU [28]



1.1.5 Heterogeneous timing

We are also entering the SOC era where circuit building blocks from a number of design houses
(intellectual property blocks or IP-blocks) are purchased by a systems builder and integrated onto
a single chip. In some ways, this is similar to building systems by purchasing off the shelf ICs
and integrating them via a PCB. However, SOC results in lower cost mass-market products with
much lower power requirements. Communication between building blocks of a SOC is a complex
problem particularly when a range of clocking strategies have to be tailored to each building

block in order to obtain the required performance within a power budget [20].

1.2 Is Asynchronous the Solution?

Asynchronous circuits are fundamentally different from synchronous designs in a sense that there
is no common and discrete time. The timing is managed locally by handshaking signals (Request
and Acknowledge) between components in order to perform the necessary synchronization,
communication and sequencing of operation as shown in Figurel.3. Data transactions are
controlled by handshake protocols via channels. These channels are a bundle of wires upon which
a protocol controls the communication of data, also called a “token”. The handshaking protocol
guarantees that the input tokens are processed only when valid data exists and output tokens are
sent only when the output channels have reset. Numerous forms of channels have been developed
that trade off robustness to timing variations and power/performance [30]. The channels have

been further discussed in Section 2.3.
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Figure 1.3. An asynchronous circuit [21]

The following sub-sections discuss some merits and demerits of the asynchronous designs.

1.2.1 Avoidance of clock skew

As mentioned before, in synchronous designs, managing clock skew is vital for the design to
function correctly. Through careful engineering of the clock distribution networks, it is possible
to mitigate the clock-skew problem, but solutions such as balanced clock trees are expensive in

silicon area and power consumption and require extensive delay modeling and simulation [22].

The absence of a global clock in an asynchronous circuit avoids the problem of clock skew and

the complexity and design efforts of the clock distribution network.

1.2.2 Robustness towards process variations

Asynchronous designs can serve to improve the process variation problem. Usually, in a

synchronous design, a balanced clock tree (like H-tree) is used to globally distribute a clock



throughout the chip. In the case of long communication channel, the problem lies in the fact that
the clock must travel a completely different path to the register inputs than the data must travel. If
the data is on a critical path, this difference could result in a timing failure. However, in the case
of an asynchronous design, all data and control bits travel a similar path. As a result, any process
variation they experience should be more localized hence correlated, thereby reducing the

potential timing variations and errors.

The asynchronous circuits with bundled data protocol that rely on matched delay suffer from the
same timing closure problem as synchronous designs. However, delay insensitive asynchronous
circuits (circuits insensitive to logic and wire delays) offer a solution to this problem at the cost of

area and power consumption. The issue is discussed in detail in section 2.5.

1.2.3 Low power consumption

Asynchronous designs can reduce power consumption by avoiding two of the problems of the

synchronous designs [22]:

e All parts of a synchronous design are clocked, even if they perform no useful function. A
quiescent circuit only consumes a leakage current. For most CMOS circuits this leakage
current is negligible compared to the dynamic current for that circuit in an active mode. A
synchronous circuit is either quiescent (i.e. the clock is turned “off”) or active entirely
(i.e. clock is “on”). An asynchronous circuit, in contrast, only consumes energy when and
where active. Any sub-circuit is quiescent until activated. After completion of its task, it

returns to a quiescent, almost non-dissipating state until a next activation [31].



e The clock line itself, as discussed before, is a heavy load, requiring large drivers, and a
significant amount of power is wasted in driving the clock line. Asynchronous circuits

save power in clock distribution.

There are synchronous solutions to these problems, such as clock-gating, but the solutions are
complex and the problems can often be avoided with no extra effort or complexity when using

asynchronous design [22].

However, the asynchronous control logic that implements the handshaking consumes additional

power.

1.2.4 Average case performance

In synchronous designs, the worst-case delay in combinational logic, plus some margin for flip-
flop delays and clock skew, is the lower bound for the clock period. Thus, the actual delay is
always less (and sometimes much less) than the clock period. Therefore, during a typical clock
cycle, the circuit may in fact become quiescent well before the next clock signal. In an
asynchronous circuit the next computation step can start immediately after the previous step has
completed; there is no need to wait for a transition of the clock signal. This leads, potentially, to a
fundamental performance advantage for asynchronous circuits, an advantage that increases with
the variability in delays associated with these computation steps. However, part of this advantage
is canceled by the overhead required to detect the completion of a step. Furthermore, it may be

difficult to translate local timing variability into a global system performance advantage [31].

10



1.2.5 Modularity and heterogeneous timing

The performance of an asynchronous design can be improved by modifying only the most active
parts of the circuit, the only constraint being that the communication protocol used on the
interface to the module must still be obeyed.v In contrast, for a synchronous design, improved
performance can often only be achieved by increasing the global clock frequency, which will

usually require most of the design to be reimplemented [22].

With SOC designs that use IP blocks designed by different vendors and optimized to run at
different clock speeds, heterogeneous system timing will offer enormous design challenge.
Asynchrony makes it easier to deal with interconnecting variety of different operating frequencies
and timings, without worrying about synchronization failures, difference in clock phase and

frequencies, and clock skew [31].

1.2.6 Disadvantages of asynchronous designs

Asynchronous has numerous disadvantages as compared to synchronous designs that make
switching to completely asynchronous designs impractical in near future. The following are some

of the demerits of asynchronous design.

e Complexity
The clocked design paradigm has one simple fundamental rule; every processing stage
must complete its activity in less than the duration of the clock period. Since there is no

global clock to tell when outputs are stable, asynchronous circuits must prevent any

11



hazards, or glitches, on their outputs. A false transition on an output from one circuit can
cause the next circuit to prematurely operate on meaningless results. Additional circuitry
is used to prevent hazards. This circuitry can increase the area and delay of the
asynchronous circuit. In order to achieve average-case performance, asynchronous
circuits require additional circuitry to start each computation and detect the completion of
operations. The additional circuitry required for asynchronous design can, in some cases,
make the average-case delay of an asynchronous circuit become larger than the worst-
case delay for the comparable synchronous circuit. Also, this added complexity results in

larger circuits and a more difficult design process.

Testability

A synchronous circuit two features that simplify testing dramatically; it can be stopped
during each clock cycle, and it is both simple and cheap to include a scan-chain through
all flip-flops. Asynchronous circuits exhibit more autonomy, and given the large variety
of isolated latch elements it is harder and more costly to connect them into scan chains.
The extensive use of state-holding elements (such as Muller C-element), together with
the self-timed behavior, makes it difficult to test the feedback circuitry that implements
the state-holding behavior. Accordingly, testing asynchronous circuits is harder, and the
cost overhead for design-for-testability measures is higher [31]. The non-deterministic

behavior of arbiter element is a major obstacle in testing of fabrication faults [22].

Deadlock

Control logic designed using an asynchronous design technique is likely to deadlock if an
event is either lost or incorrectly introduced, for example as a result of noise or ionizing
radiation. Synchronous control circuits offer better tolerance of such problems where, for

example, the extra event may cause an incorrect output, but will not normally cause a

12



complete system deadlock. Of course in some systems neither alternative can be tolerated

[22].

e Verification
Verification of synchronous designs requires the checking of the static timing constraint
imposed by the clock and of the logical functionality of each module. For an
asynchronous design, verification is difficult due to the non-deterministic behavior of
arbiter elements, and deadlock is not easy to detect without exhaustive state space

exploration [22].

o Lack of inertia
Most commercial Computer-Aided-Design (CAD) tools are specialized for use in
synchronous designs. The asynchronous design methodology is far from being mature.
The academic research community has been very active in developing CAD tools, and
many tools that support the design of asynchronous circuits are available on the Internet.
So far, CAD tool vendors have monitored these developments, but they have not yet
included such tools in their product portfolios [31]. Also, the design engineers in industry
are not familiar with asynchronous designs and the benefits they offer. They are more

skilled in pushing the limits of proven design methodologies that adapting new ones.

Even once efficient asynchronous design tools become available, a paradigm shift from a long

tradition of synchronous design is not likely to happen in near future. A more gradual transition is
already underway - the move toward Globally Asynchronous Locally Synchronous (GALS)

designs, first suggested by Chapiro [4].
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1.3 GALS Designs

Locally synchronous Asynchronous
Sub-block Wrapper

L
i

Figure 1.4. GALS system

GALS designs offer the best of both synchronous and asynchronous design styles while avoiding
some of their disadvantages. The system is divided into locally synchronous sub-blocks and
communication among sub-blocks is through asynchronous channels as shown in Figure 1.4. A

GALS scheme combines the following features [9]:

All major modules are designed in accordance to proven synchronous clocking

disciplines.

e Data exchange between any two modules strictly follows an asynchronous handshake
protocol.

e Each module is allowed to run from its own local clock.

e All asynchronous circuitry necessary for coordinating the clock-driven with the self-

timed operation is confined to “asynchronous wrappers” arranged around each clock

domain.
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An anticipated advantage of GALS is that issues with asynchronous designs are limited to
communication channels only. The sub-blocks can be designed using conventional CAD tools
and design methodology. Smaller sub-blocks have relaxed design constraints and localized clock
skew problem, as there is no global clock signal to distribute throughout the chip. Thus, GALS
systems eliminate the need for careful design and fine-tuning of a global clock distribution
network, The design efficiency achieved by divide-and-conquer is probably the most important
benefit of GALS designs. Also, smaller skew allows each sub-block to be run at higher
frequency. The absence of the global clock results in considerable power saving. GALS designs
also offer possibility of power saving by allowing different speed/voltages for different sub-
blocks. It is particularly suitable for SOC design methodology using predesigned functional
blocks or IP blocks. An asynchronous wrapper allows locally synchronous IP blocks to

communicate despite vast differences in internal clock frequencies and design styles.

The primary performance penalty for GALS systems is the delay due to signal arbitration and any
metastability resolving time. The delay of the handshaking protocol can significantly affect the
throughput of the system. Also, GALS systems require extra hardware for asynchronous wrappers
and local clock generation that consumes area and power. Estimating optimum Partitioning for
GALS systems to maximize benefits is the question designers face in an initial design stage.
Smaller locally synchronous sub-blocks will allow higher clock frequency. It also saves power in
global clock distribution but increases asynchronous overhead because increased number of
partitions. This goal of this work is to study these GALS trade-offs and suggest an optimum

partitioning strategy for a regular structure like an array of identical processors.
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1.4 Related Work and Thesis Overview

The issue of optimum partitioning of GALS system was addressed by Hemani et al. [1] with the
power as an objective. The suggested a design methodology for GALS systems but did not
provide any models to evaluate optimum partitioning. Iyer et al. [2] studied effect on both power
and performance on a hypothetical superscalar processor architecture. Optimum partitioning was
not a criterion of their work. Our work investigates the GALS tradeoffs with different partitioning
scenario. A hypothetical design of 16x16 array with 256 identical processors and 3.2 c¢m size has
been considered. The example of processor arrays is a generic one, where we can easily illustrate
the issue in question. We studied three configurations of the design; (1) an array with linear
communication links among processors, (2) an array with unidirectional links among neighboring
processors, and (3) an array with bidirectional links among neighboring processors. In this work,
for the sake of simplicity, we considered a GALS array with identical processors, a uniform

partitioning and identical local clock frequencies.

For the array with linear communication links, the clock frequencies for each partition has been
calculated taking into account the interconnect bandwidth, the process parameter variations and
the delay of the handshaking protocol. With change in frequency, the behavior of the power
consumption was studied and the optimum number of sub-blocks (i.e. the number of partitions)
that offers the maximum clock frequency at the lowest possible power consumption was

evaluated.

We have also proposed closed form models for the optimum number of sub-blocks that achieves

the least power at a constant frequency and with the passive clock distribution networks for all the

three array configurations mentioned above.
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The effect of inserting repeaters in clock network on clock frequency and power was also
considered. An algorithm has been proposed to estimate optimum number of sub-blocks for an

array with the active clock networks.

The remainder of this thesis is organized as follows; Chapter 2 describes tradeoffs of different
asynchronous wrapper architectures and introduces a novel asynchronous wrapper architecture.
Chapter 3 is estimation of system frequency with each partition for linear array of processors.
Chapter 4 reviews power calculations and suggests optimum partitioning methodologies, and

finally chapter 5 describes experimental setup and results.

1.5 Summary

The scaling of CMOS technology increases the RC delays and hampers long distance
communication as well as the distribution of high-speed clock signal. Also, the wire delays are
becoming harder to predict due to the process parameter variations, the DSM effects, and the
dynamic effects such as cross talk. Another problem is the large power consumption in the clock
distribution networks. In this chapter, these issues with the synchronous designs for Giga-scale
integration have been discussed. Asynchronous and GALS design styles have been evaluated as

an alternative to the synchronous designs.
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CHAPTER 2

Asynchronous Wrappers

One of the principles of binary digital design is that the signals must only be sampled or observed
when in one of the two distinct states. The digital circuit is really an analogue circuit
approximating digital behavior. The approximation breaks down at the point when circuit
switches from 0 to 1 or from 1 to 0, which takes a significant time as the signal passes through the
analogue space between two digital threshold voltages. If the value is sampled during this time,
which appears as a delay in digital model, its value is unpredictable and may give unexpected
behavior [22]. Metastability, as defined in [7], is the state of a flip-flop in which neither binary
state (a ‘0’ or a ‘1’) appears at the output within a time period consistent with the normal
operation of the flip-flop. The primary concern with GALS is to avoid metastability while
crossing clock domains at sub-block boundaries. When two synchronous systems are run from
independent clocks and have to communicate with each other, they need to take special care in
handling the signals received from each other. The reason is that since they do not share common
time reference, the receiver may sample what sender sent precisely when the corresponding signal
is changing. The receiver may get an intermediate value, which is digitally undefined. If it were
to use that value without further ado, different components of the receiver might make

inconsistent interpretations of the value, with the possible consequent failure of the receiver. [4].
The next section assesses the synchronization failure problem, section 2.2 explains different

methods to avoid synchronization failures, section 2.3 is classification of asynchronous wrappers

based on handshaking protocol, section 2.4 is survey of different asynchronous wrappers with
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bundled data protocols, section 2.5 discusses the problems with bundled data protocols and
compares various delay insensitive asynchronous architectures, section 2.6 justifies the choice of

asynchronous wrapper for this work, and section 2.7 summaries the chapter.

2.1 Assessment of Synchronization Failures

In the late 1960’s, designers of synchronous systems that engaged in high-speed communication
between independent clock domains found a new class of problem related to accepting an
unsynchronized signal into a clock domain. A device that can reliably and with bounded delay
order two events in time cannot be constructed under the assumption of classical physics. The
basic reason for this is that such a device would have to make a discrete decision — which event
happened first — based on a continuous-valued input — time. Given an input that may change
asynchronously, if we attempt to design a device that samples its value and returns it as a digital
signal, we must accept that the device either may take unbounded time to make its decision or
that it may sometimes produce values that are not legal ones or zeros but rather something in-
between [14]. For example, a metastable flip-flop will remain in this tenuous state of equilibrium
until some circuit parameter varies sufficiently so as to drive the state of the flip-flop into one of
the two binary states. Therefore, theoretically, the time it takes a flip-flop to exit from the
metastable region is unbounded. For conventional systems with fixed clocks, if the flip-flop is
still metastable when the time allotted for synchronization is exhausted, we say there has been a

synchronization failure.

Mean Time Between synchronization Failures is given by {4],
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where, 1, is the probability of exit per unit time, ¢, is time allotted to resolve metastability, f; is
the sampling clock frequency, f; is the expected number of data transitions per unit time, and W is
the window of time around a clock edge where a data transition would trigger a metastable
condition. As can be observed from (2.1), with increase in the clock speeds and integration, this

failure problem becomes more relevant.

2.2 Methods to Avoid Synchronization Failures

A simpler method to alleviate the synchronization failures is the well-known Double-latching or

an extension of double-latching called pipeline synchronization as shown in Figure 2.1.

e el Q=i D Q [rp{ D Q (==~ D Q [

Data In Data

Clock

Figure 2.1. Pipeline synchronization

These methods reduce the probability of synchronization failure to an acceptable level by

repeatedly synchronizing signals with back-to-back latches. They are inexpensive to implement

but a major drawback is the latency of communication.
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The methods in second category rely on stopping or stretching each synchronous module’s local
clock to guarantee that communication signal never violate setup and hold time constraints with
respect to local clock. The idea of pausing the clock to avoid metastability issues was first
proposed by Chapiro [4]. Such clocking systems manage asynchronous communication between
two clock domains by stretching off-phase of both the clocks while the handshaking and data
transfer takes place. This is typically done using a Mutual Exclusion (ME) element inside the

loop of a ring oscillator as shown in Figure 2.2. The ME forces temporal separation of the

Figure 2.2. Pausible clock generator

sampling edges of the clock and external requests. Because MEs require that requests competing
for shared resources must be persistent, the clock input to the ME must be “stretched” when it
loses the arbitration. In the case where the rising edge of the clock and the request to stop the
clock arrive simultaneously, the ME “tosses a coin” and grants one of the rising edge of the clock

or the request to pause the clock. A ring oscillator, which is typically an odd number of inverters
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in a chain, is used instead of a crystal in order to be able to adjust the duration of off-phase of the
clock. The clock from ME normally has 50% duty cycle, except when it looses the arbitration, in

which case the off-phase of the clock is stretched.

This scheme completely eliminates the synchronization failure problem. Furthermore, the
asynchronously controlled stoppable clocks make the automatic power down operation of
currently idle blocks. However, the stopping of clock may significantly affect the throughput of
the system. The loss of long-term timing predictability is another consequence of stretching the
clock. After pausing a clock, the first edge through ring oscillator and clock buffer will propagate

slower than subsequent events [32].

2.3 Classification of Asynchronous Wrappers Based on Handshaking

Protocols

To adapt synchronous blocks to an asynchronous environment they are equipped with an
asynchronous wrapper. These wrappers manage all data transfers into and out of the respective

blocks and deliver a locally generated clock using clock generator explained in section 2.2.

The asynchronous wrappers follow a handshaking protocol to exchange data safely. The

handshake protocols can be classified as follows:
e 2-phase or non-return-to-zero (NRZ) or transition signaling

) 4-phase or return-to-zero (RTZ) or level signaling

3) Single Track (ST) or 2—phase, return-to-zero handshaking
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Figure 2.3 shows the difference in 2-phase and 4-phase protocols. The term 4-phase refers to the

number of communication actions:
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Figure 2.3. 2-phase and 4-phase handshake protocols [21]

the sender issues the data and sets request high,

the receiver absorbs the data and sets acknowledge high,

the sender responds by taking request low, and

the receiver acknowledges this by taking acknowledge low.

The disadvantage of superfluous return-to-zero transition in 4-phase protocol is that it costs

unnecessary time and energy. The 2-phase protocol shown in Figure 2.3(a) avoids this. The

information on request and acknowledge wires is now encoded in signal transitions on the wires

and there is no difference in 0-to-1 or 1-to-0 transition, they both represent a “signal event” [21].

Because only two transitions are required per handshake, 2—phase protocols are more time and

energy efficient than 4-phase protocols. However, on the other hand, the absence of return-to-zero

transitions of the 2-phase protocols incur event-driven logic, which frequently amount to more

complex custom design than those implementing the various 4-phase protocols. Transition
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signaling, which tends to result in large, slow circuits may be a good alternative to 4-phase RTZ
signaling for long interconnects because each communication across the link only requires two

link propagation delays, as opposed to four.

The Single Track (ST) handshake protocol shown in Figure 2.4 needs just one wire to signal both
request and acknowledgement. The sender pulls the ST line high to indicate a request. The

receiver pulls the ST line low to signal an acknowledgement.

Data
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> / \
S TS S

Figure 2.4. Single-track handshaking protocol

Since after an REQ transmission, the ACK signal returns the wire to its initial electrical state, the
single-track signaling essentially combines the common 2-phase and 4-phase protocols to become
a 2-phase, return-to-zero handshaking scheme. However, since it relies on momentarily high
impedance states, the implemented circuit will run correctly only if it is neither exposed to heavy

ambient noise nor through long wires without repeaters.

Asynchronous protocols can also be categorized based on the delay assumption in circuit and

wires as follows:

) Bundled data protocols, and

) Delay insensitive (DI) protocols.
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Both these protocols can employ either NRZ, or RTZ or ST protocols described before. A

detailed classification of asynchronous circuits can be found in [21].

The following sections contain brief description of bundled data and DI protocols and some

wrapper architectures that utilize these protocols with pausible clocking schemes.

2.4 Asynchronous Wrappers with Bundled Data Protocols

The term “bundled data” refers to a situation where the data signals use normal Boolean levels to
encode information, and where separate request and acknowledge wires are bundled with the data
signals as shown in Figure 2.5. The delay between Reg In and Req_Out has to be matched with

the delay of combinational logic for the circuit to function properly.

»| Delay > »| Delay > »| Delay [
Control| Rea-In Req_Out |~ontroll Rea-In Req_Out |controll RE4-IN
Ak Ak Ak
Y Y ‘
Data Combinational Combinational Combinational
Latch juie omLogic N ] Latch Logic puesnl-| Latch el Logic

Figure 2.5. Bundled data protocol
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The protocol is also referred to as “single rail “ protocol. The term bundled data hints at the
timing relationship between the data signals and the handshake signals, whereas the term single-

rail hints at the use of one wire to carry one bit of data [21].

2.4.1 Asynchronous wrapper by Yun ef al.
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Figure 2.6. Yun’s asynchronous wrapper [11]
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The bundled data scheme suggested in [11] uses an asynchronous FIFO channel to communicate
between every pair of locally synchronous sub-blocks. The communication between a sub-block
and the FIFO is done using a request/acknowledge handshaking. Synchronization of handshaking
signals to the local sub-block clock is done with pausible clocking control (PCC). Figure 2.6(a)
shows a receiver PCC circuit for one-way communication with all control signals and clock

generator. The timing diagram of signals is illustrated in Figure 2.6(b).

A request event from FIFO on R, is forwarded to ME via the Asynchronous Finite State Machine
(AFSM). If rclk is low when R, rises, then ME immediately raises G,, which prompts AFSM to
generate an even on SR,. This event is effectively synchronized to sysclk, i.c., guaranteed not to
introduce a synchronization failure when sampled by the finite state machine (FSM) under a
reasonable timing assumption described in [11]. Note that rc/k may rise before the ME lowers G,
but the ME will not allow sysclk to rise until G, becomes low. In order to prevent sysclk from
stalling indefinitely (until the next toggling of the request, R,), the AFSM lowers R; immediately

after G, rises, which in turn causes G; to fall allowing sysclk to rise.

The PCC does not differentiate rising edges of R, from falling edges-both edges enable R, to be
asserted and G, to be asserted as a result. In fact, the AFSM effectively performs a 2-phase to 4-

phase conversion from R, to R; and a 4-phase to 2-phase conversion from G1 to SR,.

The scheme was tested on a MOSIS 1.2um CMOS technology with two synchronous modules

including the pausible clocking control and an asynchronous FIFO. The resulting system worked
reliably up to the local clock frequency of 220MHz - the maximum clock rate is limited by the
ring oscillator, not the pausible clocking control. The power consumption of the scheme was not

mentioned.
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The scheme requires at least two clock cycles to transfer data and at most one port per module
can be active at a time because of the arbiter. Moreover, possible applications are confined to
circular data flows, as increasing fan-ins and fan-outs make their arbiter block large and

impractical [9].

2.4.2 Asynchronous wrapper by Muttersbach et al.

Muttersbach et al. [9] used the similar pausible clock generation scheme as shown in Figure 2.2
to prevent metastability. The 4-phase bundled data handshake protocol has been used to signal

validity of the data.

Two types of port controllers were used in the work: demand-ports (D-ports) and poll-ports (P-
ports). The AND-OR combinational circuit of D-port shown in Figure 2.7 is result of synthesis

from Extended-burst-mode specifications [9].
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Figure 2.7. D-type input controller [9]
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Upon activation by a switching event on Den it issues a request for a clock stretch R+, which
gets acknowledged by 4,+. The (+) and (-) signs represent rising and falling edge of the signal
respectively. When the clock is ensured to be and remain low, the external handshake cycle on

R,/4, gets processed and subsequently the clock may resume again.

Poll-type (P-type) controllers differ from their demand-type counterparts in the way they
influence the clock generation. After being activated by a transition on the Pen signal (Figure
2.8), a P-port polls the handshake lines it is attached to. If its communication partner reacts, R; is
set only during the processing of the handshake cycle. Thus, in many cases, the local clock is not

affected at all.

Pen

clk2

Figure 2.8, Configuration of a data exchange channe] and corresponding waveforms [9]

Figure 2.8 shows two locally synchronous modules communicating via an asynchronous channel
and the drawn waveforms of a data transfer. The sending module (LS!) is equipped with a D-type
output, while the receiver (LS2) is a P-input. The cycle is started by Den+, whereupon clock
generation 1 is stopped (4,/+). In this situation the receiver has not been enabled so far.
Immediately after this has happened the receiving P-port detects the pending transfer, ensures that

clock 2 is stable low (4,2+) and sets the acknowledge signal (4,+). As soon as R, has gone low
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clock 2 may start again, while clk1 has to be kept stable low, until the handshake on R,/4, has
completely finished. In a multi-port wrapper some other ports might keep the clock stretched for
an unknown amount of time. Using 4, for latch control makes sure that the receiving port got

enabled before the latch gets transparent and that clock 1 is paused during the transparency phase.

An AND-OR combinational circuit with delay elements is used to handle multiple requests from
many ports of a sub-block. This resolves the disadvantage of Yun’s scheme where increasing fan-
ins and fan-outs from a sub-block make its arbiter block large and impractical. In 0.25 um CMOS
process, the scheme achieves data rates exceeding 300MHz on the channel. The disadvantage of
4-phase protocol used in this scheme is that the return-to-zero transition costs unnecessary time
and energy. The four transitions required per handshake could result in significant performance

penalty. The power consumption of the scheme was not mentioned in [9].

2.4.3 Asynchronous wrapper by De Clercq et al.

De Clercq et al. [12] invented a high-speed GALS communication structure using bundled data
single-track (ST) handshaking described in section 2.3 and pausible clocking. They suggested two
versions for send and receive ports. The WAIT version of the ports blocks the sender/receiver
from the moment the transfer a request to send/receive data is issued till the moment the transfer
is complete. The sample version of the ports allows the sender/receiver to keep on running till the

transfer is to take place, at which time, their clock is stopped for the duration of the transfer.

Figure 2.9 shows a data communication channel with WAIT send and receive ports. Figure 2.10

illustrates corresponding waveforms for transmitting one data with WAIT send and receive ports.
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Figure 2.9. Data communication channel with WAIT send and receive ports [12]
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Figure 2.10. Waveforms for communication channel with WAIT send and receive ports [12]

Upon receiving Req! from sender, the ME in the clock generator pauses the Lcl_Clkl and raises
Ackl. Ackl pulls down ST line with the help of Predecessor Pulse block. When Dt_Req is
received from the receiver, Ack2 goes high. Ack2 has three functions: (1) to pull the ST line back
high, (2) to latch the data from the sender, and (3) to reset Dt Req. When ST line goes high, it

generates a pulse on Async Rst through Request Pulse block. Async Rst resets Reql and



Lel Clkl starts again. A keeper, a positive feedback loop of weak back-to-back inverters,
represented by a box marked K, maintains the voltage of the ST line constant when it’s not being

driven.

Predecessor
Pulse

Figure 2.11. Data communication channel with GasP stage pipeline and WAIT ports [12]

A GasP pipeline stage [8] can be inserted between sender and receiver (Figure 2.11) to break the
request-to-acknowledge delay in scheme of Figure 2.10. It increases the throughput of the system
at the expense of increased latency. A GasP pipeline stage latches data when its predecessor is
FULL (predecessor ST line is low) and its successor is EMPTY (successor ST line is high). A
GasP stage is self-resetting and has an operation cycle equivalent to a three-inverter loop. Thus
when Lcl_Clkl is stopped, the Predecessor Pulse block pulls the GasP stage’s predecessor ST
line low. The GasP stage then latches the data and pulls its successor ST line high. The latching
signal of the GasP stage is also used to asynchronously reset Reql. Once the successor ST line of

the GasP stage is low, the remainder of the circuit behaves as in ST adapter discussed before.
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With 0.18 wm CMOS process, the scheme in Figure 2.12 achieves a throughput of 1.1 Giga-Data-
Items per Second (GDI/S) with power consumption of 3.67 mW. Comparing the throughput using
a full scaling model (to justify the difference in simulation technology), the scheme of
Muttersbach et al in [9] gives a throughput of 300 Mega-Data-Items per Second (MDI/S).
However, since the scheme in Figure 2.12 relies on momentarily high impedance states on the ST

lines, the implemented circuit will run correctly only if it is not exposed to heavy ambient noise.

2.5 Asynchronous Wrappers with Delay Insensitive Protocols

All the bundled data protocols rely on delay matching (Figure 2.5), such that the order of signal
events at the sender’s end is preserved at receiver’s end. On a push channel (where sender is the
active party that initiates the data transfer on the channel), data is valid before request is set high.
This order should also be valid at the receiver’s end. Usually, the request signal is driven by a
matched delay line that is larger than sander’s computation delay plus some margin. Therefore,
the bundled data protocols involve timing margins and assumptions, both in interconnects and
logic, when physically implementing such circuits. As CMOS manufacturing technology scales
into deep and ultra-deep sub-micron designs, for high-speed on-chip communication, the bundled

data protocols will suffer the same drawbacks as the synchronous designs.

Timing closure is a challenging issue for GALS with bundled data protocols and synchronous
designs with long global interconnects. This rise in coupling capacitance produces noise, which,
for DSM interconnects, comes in two distinct forms: delay deterioration and crosstalk. Here, we
concentrate on delay deterioration, which means that the total capacitance that a gate is subjected
to, is no longer a constant value. The rising contribution of coupling capacitance to total load

capacitance means that the Miller effect can significantly affect on-chip delays. The Miller effect
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Figure 2.12. Signal propagation delay (transit time) for a close-packed wire [23]

- states that the simultaneous switching of both terminals of a capacitor will modify the effective-
capacitance between the terminals. For instance, if wire 4 switches from 0 to Vpp while adjacent
wire B switches from Vpp to 0, the effective voltage swing between the two terminals is 2Vpp.
From Q equal CV, the charge Q needed to switch wire 4 is now double that of the case where
wire B is static. Alternatively, we can interpret this change as a doubling of “effective”
capacitance C. The increase in coupling capacitance is a potential timing hazard in that delay
varies with neighboring signal activity, making static timing analysis difficult [6]. Iterations of
design and verification required after each change, waste time and engineering resources and
increase time to market. The severity of the problem can be observed in Figure 2.12. Bainbridge
et al. [23] performed crosstalk analysis with group of wires with minimum dimension and
spacing in 0.35 pm technology. In the worst case, neighboring signal activity can produce few
neno-seconds difference in delay of a wire with lengths in mili-meters. Possible variations in

delays in long wires, caused by crosstalk make bundled data systems difficult to design, requiring
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the inclusion of large margins, which seriously affect the performance of the system.
Synchronous designs face a similar timing closure problem since the clock frequency must be

chosen such that the receiver is told that data is stable at the correct moment.

An alternative to bundled data protocol is a more sophisticated protocol that is robust to wire
delays, called Delay Insensitive (DI) protocol. The DI protocols encode request on data lines and
therefore avoids the need for timing analysis, giving designs that operate correctly whatever the
delay in the interconnecting wires. The most common DI channel protocols are; dual rail channel

and 1-of-N channel (or 1 hot channel).
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Figure 2.13. A delay insensitive channel using 4-phase dual rail protocol [21]

The dual rail protocol uses two wires per bit (as opposed to one wire per bit in bundled data and
synchronous designs) of information that has to be communicated as shown in Figure 2.13. In
essence it is a 4-phase protocol using two request wires per bit of information d; one wire d.¢ is
used for signaling logic 1, and another wire d.f is used for signaling logic 0. As evident form

Figure 2.13, no separate request wire is required. If the request signal is required for control
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circuits, like in pausible clocking schemes to stop the clock, can be generated by OR-ing the data

lines.

For 1-of-N channels, the data is encoded in such a way that only one out of N data wire changes
its state. It uses N data wires to send log,N bits of data. Since only one wire changes its state, it
yields lower power than conventional dual-rail channels.

The bundled data and delay insensitive protocols trade off robustness to timing variations and

area/power/performance. In the following sub-sections, we discuss tradeoffs of the DI scheme

suggested by Bainbridge et al. and our DI design using single-track handshaking.

2.5.1 1-of-4 Delay insensitive interconnects by Bainbridge et al.

Table 2.1. 1-of-4 data encoding [23]

d3 wire d2 wire d1 wire d0 wire Information
Transferred

1 0 0 0 Two-bit 1dlata value

0 1 0 0 Two-bit 1d(;lta value

0 0 i 0 Two-bit (;11ata value

0 0 0 1 Two-bit (;i(';lta value

The scheme by Bainbridge et al. [23] uses 1-of-4 encoding with 4-phase protocol. It uses four
wires to send two bit data. Table 2.1 shows this 1-of-4 data encoding where only one wire in a

group is allowed to signal data at any time. Since it is possible to detect the arrival of each

36



symbol at the receiver (with RTZ signaling, the wires are all low when no symbol is being

transmitted) a 1-of-4 encoding is delay insensitive, as are all the other 1-of-N codes.

Further advantages of 1-of-4 RTZ signaling are: (1) the likelihood that two adjacent wires will
switch at the same time is much less; (2) any crosstalk that does occur will be between wires
switching their signals in the same direction (3) Since only one wire changes its state, it yields
lower power than conventional dual-rail channels. However, beyond 1-of-4, one-hot 1-of-n codes
are significantly more expensive than a dual-rail encoding, e.g. the 3-bits of data that can be
carried in a 1-of-8 code requires only 6 wires in dual-rail, 4-bits requires a 1-of-16 code, but only

8 wires in dual-rail [25].

Figure 2.14. Bainbridge’s 1-of-4 latch with sender and receiver

They invented different 1-of-4 modules like latch, merge element, select block, and switch, which
can be used to build complete asynchronous multi-point interconnects. This work was confined to

asynchronous designs and did not provide any GALS-specific asynchronous wrapper scheme.
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In brief, the operation of the scheme in Figure 2.14 is that: (1) initially the input group is low; (2)
an input symbol is presented by raising one of the inputs, in/1] say; (3) since xa is low at reset,
in[1] passes to nx[1] causing an acknowledge on nina; (4) inf1] may then fall at any time, but
this will not be passed to nx//] until xa has risen, indicating that the next stage has accepted the
value encoded on the nx lines; (5) after nx/1] rises, so does nina, returning the latch to its original

idle state.

A link in Network-on-Chip (NOC) environment was designed using the above-mentioned
modules in authors’ other work [24]. On 0.35-micron technology, simulations show a throughput
of around 700 megabits per second (Mbps) per link, with more than 1 Gbps per link projected for
0.18-um CMOS technology—using suitable link lengths to minimize end-to-end latency. This
corresponds to 120 Mbps per wire on 0.35-um CMOS technology and 160 Mbps per wire on

0.18-micron CMOS technology.

2.5.2 A novel asynchronous wrapper using 1-of-4 encoding and ST

handshaking

The delay insensitive scheme in Figure 2.15 uses a “HI means FULL” form of GasP templates
and ST handshaking. The GasP family of asynchronous circuits were invented by Sutherland et

al. [8] and used in a bundled data wrapper scheme by De-Clercq et al in [12].

The operation of the scheme in Fig. 4 can be briefly explained as follows: (1) initially all IV lines
and ST lines are low and signals 4 and B are high, (2) the rising edge of Clk_Send makes one of
the input line, say IN/1], “17; (3) rising of IN/1] sends a request to the sender clock generator by

raising Req_Send and the clock will be paused until Req_Send is reset; (4) Gasp[1] drives ST[1]
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high, thereby driving the signal 4 low and generating a pulse on Rst_Send through Pis_Genl; (5)

Rst Send will make IN[1] “0” and remove Req_Send, thereby restarting Clk_Send. Any other

input line can become “1” now but the “0” on signal 4 will stop it from propagating further; (6)

when the receiver is ready to accept data, Req Recv will go high on the rising edge of Clk_Recv;,

(7) After Clk_Recv going low, Ack_Recv will rise, generating a pulse on Pull_Zero through

Rst_Send

|

GasP[1]
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Figure 2.15. 1-0f-4 delay insensitive scheme using ST handshake



Pls_Gen2, which drives all OUT lines low; (8) GasP/[5] will now trigger driving S7/1] low and
OUTY/1] high, which makes signal B low; (9) ST/I] will reset signal 4 low and any other input,
blocked by signal A4 before, can propagate through GasPs of stage-1 but will now be blocked by
signal B; (10) OUT/1] going high will generate a pulse on Rst_Recv with the help of Pls_Gen3,

that will reset Req_Recv and restart Clk_Recv.

A keeper, a positive feedback loop of weak back-to-back inverters, represented by a box marked

K, maintains the voltage of the ST line constant when it’s not being driven [12].

The Pls_Gen block in the scheme is shown in Figure 2.16. It produces a high pulse on Output

when the Input rises. The width of the pulse is equivalent to the delay of three inverters.

Figure 2.16. Pulse generator block of Figure 2.16

This scheme saves one wire as compared to the design in [23]. Moreover, because of ST
handshaking, it requires just two transitions per handshake as opposed to four in [23]. The
scheme was simulated in 0.18 um CMOS technology. The result of simulation are shown in
Figure 2.17 for five consecutive transfers on IN/I] and IN [2]. The simulations show a
throughput of 1.66 Gbps per link, which is 66% higher than the projected throughput in the
scheme by Bainbridge et al with the same technology. This corresponds to 415 Mbps per wire,

which is approximately 2.6 times the throughput per wire predicted in [9]. The power
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consumption was measured 3.8 mw per data transaction (excluding the encoder and decoder
required at the sender’s end and receiver’s end respectively). Also, the susceptibility of ST

handshaking to the ambient noise warrants a careful design.
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Figure 2.17. Simulation results of 1-of-4 delay insensitive scheme using ST handshake
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The Single-Track Full-Buffer STFB suggested in [13] may be used in place of GasP in the
proposed architecture. However, STFB has some tight timing constraints that, if violated, could
result in significant short circuit current during the transitioning of the IN, ST, and OUT lines. Fig.

2.18 shows the schematic and State Transition Graph (STG) of the STFB.

(a) Schematic (b) State Transition Graph

Figure 2.18. 1-of-N STFB buffer [13]

The notation “+”, “1* and “-”, “\” represent the rising and falling of the signals respectively. In
Fig. 6, the timing margin between the tri-stating of an output wire and the earliest time the
environment can reset the wire (R-) is zero [13]. In the proposed scheme, due to the self-resetting
property of GasPs in stage-2, it stops driving the OUT lines after a delay of approximately three
inverters. The delay between OUT+ and Pull Zero+ is much greater than the delay in self-

resetting the GasPs. This avoids short-circuit currents on OUT lines.

Another timing constraint in STFB is that the timing margin between tri-stating of an input wire
and the earliest time the left environment can drive the wire (L+) is also zero. In the proposed
scheme, the IN lines are driven low by resetting the sender to avoid short-circuit currents on IN
lines. The ST lines between two consecutive stages have a similar timing restriction. The GasPs

in stage-1 drives the ST lines high to indicate a request and the GasPs in stage-2 drives it low to
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indicate an acknowledgement. Therefore, to avoid short circuit currents, GasPs in stage 1 must
stop driving the ST lines before stage 2 starts driving it low. However, this one sided constraint
can be easily satisfied by appropriate sizing of the AND gates of GasPs in stage 2. Moreover,
after a transaction, signal B should close stage-2 before the following transaction appears on the
ST lines. This can be achieved by appropriate sizing of the NOR gates driving the signals 4 and

B.

2.6 Choice of Asynchronous Wrapper for This Work

Our work concentrates on GALS designs with array of identical processors. The incentive to use
delay insensitive scheme is absent in this case as the communication among blocks is confined to
its immediate neighbors. From all the bundled data schemes studied in this chapter, the scheme
by De Clercq et al. described in section 2.3.1 (C) seems more appropriate because it offers the

highest throughput.

2.7 Summary

In this chapter, the problem of synchronization failure with GALS systems is analyzed and
methods to avoid it are discussed. Different asynchronous protocols are discussed and
asynchronous wrappers were classified based on the handshaking protocol they use. Advantages
and disadvantages of bundled data protocol and delay insensitive protocol are discussed. A novel
asynchronous wrapper scheme using 1-of-4 delay insensitive based on single-track handshaking

in also introduced and simulation results are presented.
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CHAPTER 3

Clock Frequency Estimation in GALS

Synchronous digital designs use a clock signal to define a time reference for correct movement of
data within the system. In processors, the clock frequency determines the rate of data processing.
In /O and memory buses, the clock frequency determines the rate of data transmission.
Consequently digital systems designers strive to maximize the clock frequency in order to
achieve high system performance [3]. There are three main parameters that affect the clock
frequency in a GALS system: clock skew, clock signal degradation and delay in asynchronous

handshaking.

We studied a simplified GALS system, which is essentially an array of identical, pre-designed
processors with linear communication links as shown in Figure 3.1. The effects of each of the
above mentioned parameters that affect the clock frequency have been elaborated in the following

sections.
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Figure 3.1. GALS array of processors with linear communication links
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3.1 Clock Skew

Clock skew can severely limit the performance and may create race conditions in synchronous

digital systems. Figure 3.2 shows two sequentially adjacent registers separated by combinational

logic. Clock skew is defined as difference in clock signal arrival times between two sequentially

adjacent registers as illustrated in Figure 3.3.

DataIn

%1

Clock

Combinational
Logic Data

A

Delay

Figure 3.2. Sequentially adjacent clocked registers in a synchronous system

— kew
CLK2 > {
CLK1 — {
Clock Source >

Figure 3.3. Clock skew between the two points, CLK1 and CLK2, in Fig. 3.1 [17]

Due to variations of the arrival times of the clock signal, one needs to add the worst case skew to

the path delays and consequently to the machine cycle time in order to guarantee that the circuit
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will function properly. Controlling the skew becomes harder as the circuits get faster, the chips
become larger, and the minimum feature size is scaled down. For high-speed systems, a large
amount of design effort is spent to minimize the clock skew and prevent it from becoming a

significant portion of the cycle time [3].

The clock skew is usually composed of the following parts; mismatch in RC delays along the
various paths of distributed clock wires, disparity in the clock buffer delays along the path,

difference in capacitive load, and mismatch due to process parameter variations.

3.1.1 Skew due to mismatch in RC delays:

The interconnects used for clock signal distribution have intrinsic resistances and capacitances.
Clock skew is caused by difference in RC time constants of different clock paths (such as the

lines connecting point clock driver to pointsl and 2 in Figure 3.4).

—— AN

Clock Driver
- YA

1
AAAY
1

kK

Figure 3.4. Clock distribution tree with RC delays [3]

The clock skew can be minimized by distributing the clock signal in such a way that the
interconnections carrying the clock signal to the functional sub-blocks are of equal length. This

can be achieved with hierarchy of planar symmetric H-tree as shown in Figure 3.1.



The H-tree delays the clock signal equally before arriving at the sub-block and therefore they are
perfectly synchronous. The conductor widths in H-tree structure are designed to decrease
progressively as the signal propagates to lower levels of hierarchy (also called binary H-tree).

This strategy minimizes reflections of the high-speed clock signals at the branching points.

If the sub-blocks in the system are identical, as is the case in an array of processors, skew due to
mismatch in RC delays can be effectively minimized with H-tree clock distribution scheme. Sub-
blocks with large differences in size and capacitive load require a clock routing algorithm to
achieve zero skew. However, clock skew due to process parameter variations as explained in next

sub-section can still not be avoided.

3.1.2 Skew due to process parameters variations

The delay of each of the elements of a clock path is highly sensitive to geometric, material, and
environmental variations that exist in the implementation technology [7]. With clock speed now
approaching multi-GigaHertz, a skew of few Pico-seconds can significantly affect performance.
Zarkesh-Ha [17] characterized the clock skew components resulting from process parameter
variations and provided closed-form model for each clock skew component, which consists of

both process and circuit parameter fluctuations. His work has been used as a basis to

analyze the effect of clock skew components in GALS in the following sub-sections.
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(A) Device parameter variations

Active devices in the clock paths are the primary source of clock skew in a well-balanced clock
network because the active device characteristics vary much more greatly than the passive device
characteristics. Variations in transistor parameters such as threshold voltage (4V7), gate oxide
thickness (4¢,,), and effective channel length (AL.,) can produce significant skew. The

expressions for these clock skew components, as mentioned in [17] are summarized in Table 3.1.

Table 3.1. Skew components of device parameter variations

|4 AV,
Threshold Voltage Fluctuation y (VT )= 0.7R,C, ( L J( L J (3.1
VDD_ VT VT
(L) =
Transistor Channel Length Tolerance Tesk\Ley )=0.7 R, C 7 (3.2)
T
Aat,,
Gate Oxide Thickness Tolerance Tesk (6, )=0.7R, C; ; (3.3)

Where R,, is the output resistance of clock driver within each processor, C, is the total wiring and
register input capacitance within the processor, and Vpp and V7 are supply and transistor

threshold voltage, respectively.

Skew due to device parameter variations does not change with partitioning because the variations
in transistor parameters are technology dependent and do not scale with the sub-block size. If the
system consists of predesigned and identical processors, each processor will have equal C; and
will require identical clock drivers. So, R, and C;, are also not affected by varying number of

processors in each sub-block in this case.
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(B) Interconnect parameter variations

Variations in interconnect width (AW,,), thickness (AH,,) and interlevel dielectric (/LD)
thickness (ATyp) cause skew by changing RC time constants of different clock paths. With
shrinking geometries of interconnects, these variations become much more important. The

expressions for important clock skew components are summarized in Table 3.2.

Table 3.2. Skew components of interconnect parameter variations

1 AT,
ILD Thickness Variation Trsk (TILD):0'4 (Rint Cint)DS2 1 _7 (_[L_DJ 3.4)
/2 Tup
1 AH.
Wire Thickness Variations Tesk (H int):0'4 (Rint Cint)DS2 [1 —T/] (—ﬂ) (3.5
2 2 Hint

where R,,, and C,, are the distributed resistance and capacitance per unit length of interconnects,
D, is the die size of each sub-block, and # is the number of H-tree levels. The skew due to these
components changes with number of partitions because it is proportional to the square of the size

of each sub-block.

(C) System parameter variations

System-level variations such as power-supply voltage fluctuation (/R drop, AVpp), temperature
variations (AT), and non-uniform distribution of clocked registers (clock driver load mismatch,
AC;) may create significant clock skew. The expressions for these clock skew components are

summarized in Table 3.3.
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Table 3.3. Skew components of system parameter variations

v, A4V,
IRD T Vpp)=0.7R, C L 2L 1 3.6
rop CSK( DD) r L (VDD— v, j[ V., (3.6)
. . N aC,
Non-uniform Register Distribution y (C . )=0. 7R, C, ol (3.7
L
E% +V,
. q AT
Temperature Gradient Trg (T)=0. 7R, C, | F——— (———j (3.8)
Vo=V N T

Where, Eg/g=1.12 V is the energy gap of Si in volts and T is the temperature in degrees Kelvin.

IR drop will not change much with partitioning the system into more number of sub-blocks
because the power distribution still requires global wires. In a system of identical processors as
shown in Figure 3.1, non-uniform register distribution has insignificant contribution since all the
processors present the same load. Temperature gradient will be less steep for smaller size of the

sub-block.

(D) Internal clock skew

The internal clock skew is basically the internal wire delay within the processor from the clock

driver to the registers. The wiring delay inside the processor is computed using Equation 3.9,

Trg (Internal )=0.4 (R,, C.. )12 + Fox |} (3.9)
CLight
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where, goy is the relative dielectric constant of the /LD material, Cg is the speed of light in free
space, and length of wire, /, is the distance from center to the corner of the processor as shown in

Figure 3.5.

[

K d

Proc

W

Figure 3.5. Longest clock path within a processor [17]

3.2 Clock Signal Degradation

In the simplest case, an interconnect can be modeled as an RC low-pass filter. The clock signal is
degraded as it passes through the interconnect because of its limited bandwidth. If the
interconnections have large RC constants, the waveform will have long rise times, and a high
frequency clock signal will not be possible. Equation 3.10 gives the lumped model of

interconnect bandwidth of an H-tree based clock distribution network,

1

2
1
277'-(Rint Ct'nt ) Dsz'(l— 2n/2)

Sozap = (3.10)
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Where R, and C,, are the distributed resistance and capacitance per unit length, D, is die size of

each sub-block, and » is number of H-tree levels.

The lumped RC model of Equation 3.10 underestimates the actual bandwidth of a distributed RC
line. However, in the most typical cases, it gives a good first-order approximation for the

interconnect bandwidth.
3.2.1 Effect of inserting repeaters

If the RC constant of the clock tree is not small enough, high-speed repeaters may be employed to
increase the interconnect bandwidth. These distributed repeaters serve the double function of
amplifying the clock signal degraded by the distributed interconnect impedances and isolating the
local clock nets from upstream load impedances. We can estimate the bandwidth of un-repeated
wire by asking how long we must wait between successive transitions on a wire. Repeated wires
offer substantially increased bandwidth because after sending one signal down a wire, we only
need wait until that signal fully transitions on the first repeater segment before we send the next
signal. Repeater insertion also decreases the propagation delay of the wire, which is given by

Equation 3.11.
L 2
t,=0.38 R,y Cy (7’) M+ (M =1)g,, (3.11)

where, L, is length of interconnect, M is number of repeated segments, and ¢z, is the propagation

delay of each repeater.
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However, repeaters used in a clock distribution network may introduce considerable clock skew
within a well-balanced clock network since the active device characteristics vary much more
greatly than the passive device characteristics. This undesirable effect of inserting active repeaters
is, however, very well offset by improvements gained in bandwidth if the interconnect has large
RC constant. Therefore, although passive H-tree structures provide significantly less variation in

clock skew, this advantage must be weighed against the increased signal degradation.

Usually, ideal repeater placement is a complicated issue involving many parameters that one
needs to take into consideration in large VLSI designs. In a simplified case, for a clock tree with
equal widths, source-end-terminated repeaters between H-tree hierarchy levels, as illustrated in
Figure 3.6, can be used for matching at the branching points to avoid reflections. If binary H-tree
is used to avoid reflections, repeaters can be inserted at equal distances as shown in Figure 3.7

because the resulting network is equivalent to a uniformly distributed RC line.

Figure 3.6. Repeaters between H-Tree Figure 3.7. Repeaters with binary H-
hierarchy levels tree
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3.3 Delay in Asynchronous Handshaking

As mentioned in section 2.2, in GALS systems, the interfacing between a functional sub-block
and its self-timed environment is handled by the asynchronous wrappers to avoid the
synchronization failures. These Asynchronous wrappers may introduce significant performance
penalty. With pausible clock scheme, the clock is stretched whenever a clock-data conflict is
detected. The probability of conflict increases with the frequency. At high frequencies, the clock
may be stretched on every data transaction if the delay in handshaking in the asynchronous
wrappers is larger than the low phase of clock period. Also, if there is large difference in clock
frequencies of two communicating blocks, the faster clock will be paused for the time it is
waiting the slower block to respond. The effective clock frequency also depends on the rate of
communication among locally synchronous sub-blocks. The stretching of the clock beyond

normal clock period brings down effective frequency of sub-blocks.

The duration of clock stretching is also very sensitive to the type of communication mechanism
used, like multiplexed buses, star networks, rings, or dedicated point-to-point links. For example,
shared bus architecture with central arbiter will be highly congested if there is large number of
communicating sub-blocks. In this case, a sender’s clock will be paused for long time waiting for
a receiver to respond and gaining access to the shared communication resources. Predicting
average period of clock stretching becomes probabilistic in this situation. However, for the
simplified system with linear array of identical processors as shown in Figure 3.1, period of clock

stretching is deterministic and can be easily computed.
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3.4 Estimation of Effective Sub-block Clock Frequency

In GALS systems, the clock.frequency can be evaluated by considering the clock skew, the
interconnect bandwidth, and the clock stretching with partitioning. If clock skew is the factor that
puts a limit on maximum frequency, clock frequency can be estimated assuming the skew to be 5

to 10 percent of total clock period.

The stretching of the clock beyond normal clock period brings down effective frequency of sub-

blocks. The effective frequency is given by Equation 3.12,

for = !
& (0-5 Ty )+ T

(3.12)

where, T¢y is total clock period without stretching and T, is stretched total negative half period

of the clock cycle as shown in Figure 3.8.
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Figure 3.8. Clock period definitions
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3.5 Summary

In this chapter, different parameters that affect the clock frequency of a GALS system have been
elaborated. Section 3.1 explains various components of the clock skew such as mismatch in the
RC delays, process parameter variations, and the internal clock skew. The closed form models of
clock skew introduced by process parameter variations, as provided in [17], have also been
summarized. It includes device, interconnect, and system parameter variations. Section 3.2
explains clock signal degradation due to limited bandwidth of interconnects. The effect of
inserting repeaters in clock network has also been investigated. Section 3.3 discusses the delay in
asynchronous wrappers and pausing of clock. Section 3.4 gives an equation to evaluate effective

clock frequency considering all the parameters.

56



CHAPTER 4

Power Estimation and Optimum Partitioning in GALS

Power consumption in large high-performance synchronous VLSI designs has become designer’s
primary concern with increasing demand for portable electronic devices. Distribution of low-
skew global clock signals, now approaching GigaHertz range, is often the single largest source of
power consumption. Therefore elimination of the clock networks may result in substantial power
savings. GALS designs offers an opportunity of considerable power saving by eliminating the
global clock distribution networks. However, the GALS systems require extra hardware in terms

of the asynchronous wrappers and the local clock generation that consumes additional power.

The power consumption in GALS has three main components:

(1) Power due to the clock networks within the synchronous sub-blocks,
(2) Power due to the asynchronous wrapper, and

(3) Power due to the local clock generation.

In this chapter, we provide power estimation models for GALS array of processors with three
different configurations. We also provide models for evaluating optimum number of sub-blocks
that leads to the least power consumption at a constant frequency. The power consumption of the

computational logic of a GALS system is assumed to be identical for different partitions and thus

irrelevant for the comparison purpose.
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4.1 Power in Passive Clock Distribution Networks

There are three main components that affect power consumption in a passive clock network; the
interconnect capacitance, the capacitive load of clocked flip-flops, and the clock drivers within
each processor. Based on the model in [17], the power in an H-tree type clock network can be

approximated by Equation 4.1.

Pow = fo V20 (Croy D (2" + N £ 2" Coper + NgpCrp ) @)

where, f- is the effective clock frequency that includes the probable clock stretching, Ci.qis the
interconnect capacitance per unit length of clock network assuming the network has uniform
width equal to the width of the leaf of H-tree, # is the number of H-tree levels, D is the die size,
Npr is the number of clocked flip-flops, Crr is the input capacitance of flip-flops, and Cpyiver is
the input capacitance of clock driver, and Vp,, is the supply voltage.

Figure 4.1 shows a GALS system as an array of 64 identical processors divided into 4 locally

synchronous sub-blocks.
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Figure 4.1. GALS array of processors (S=4 and P = 64)
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For the design of Figure 4.1, the relation between the number of H-tree levels », the number of

sub-blocks S, and the number of processors P, is given by Equation 4.2.
2" = (4.2)

where, S is an integer that results in a symmetrical H-tree within the sub-blocks.

Therefore, Equation 4.1 can be modified as shown in Equation 4.3, to express the clock power in

terms of the number of sub-blocks with each partitioning of the GALS array shown in Figure 4.1.

P P ’P
PClkz |: (CLeaf‘/gdProc] [ZE-'- _S'FF;’racJ S:| + [PCDriver] + [P FF;’rocCFF] fC VZDD (43)

Where, FFp,.. is the number of clocked flip-flops within each processor. The first term, which
represents total wiring capacitance, varies with the number of partitions. Varying the number of

partitions does not affect the power due to the clock driver and the clocked flip-flops.

4.2 Power in Asynchronous Wrappers

Asynchronous wrappers add extra logic and wires. There are four major factors that contribute to

the power consumption asynchronous wrappers [{1]:

€] The number of logic gates required to implement the handshaking protocol.
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2) The frequency with which sub-blocks communicate with other sub-blocks, the worst
case being that they communicate in every clock cycle.

3) Number of sub-blocks that participate in communication, the worst case being every sub-
block communicates with every other.

@) The length and number of wires for control signals.

The power consumed in wrappers is given by Equation 4.4 [1],

B X,
PAsync = Z Z (nSig Cwlb,i + nReg CReg ) fb,i VZDD (4-4)
b

i

where, B is the set of communicating sub-block pairs, X} is the set of communication instances
for a particular pair, b, of communicating sub-blocks, ng, is the number of signals in the
communication protocol, C, is the wire capacitance per unit length, /,; is the wire length for a
communication signal for a particular pair 5, on communication instances i, 1. is the number of
registers driven by the control signals and Ckg,, is the register capacitance, f;, is the frequency at

which a sub-blocks pair b communicates on instance 7.

In the following sub-sections, we adapt Equation 4.4 to different configurations of arrays of

identical processors.
4.2.1 Case of a linear array of processors

Figure 3.1 shows a GALS system with linear arrays of identical processors. For this system, the

number of asynchronous wrappers required with each partition is given by Equation 4.5.
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NAsync :(S - 1) (45)

Therefore, assuming the worst case where the sub-blocks communicate every clock cycle and all
the sub-blocks have equal clock frequency, Equation 4.4 can be modified as shown in Equation

4.6, to express the power consumed in the asynchronous wrappers for GALS array of Figure 3.1.

PAsync = (S - ])(nSig Cwlw + nReg CReg )fC VzDD (4.6)

where, /, is the wire length for communication signals implementing the handshake protocol.

With increase in the number of partitions, S will increase and so will P4y

4.2.2 Case of an array with unidirectional links

Asynchronous
3 Wrappers ooy =

Unidirectional data links

Figure 4.2. Square arrays of processors with unidirectional communication links
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Figure 4.2 shows a GALS array of identical processors with unidirectional communication links
among them. For this configuration, the number of asynchronous wrappers required with each

partitioning is given by Equation 4.7.

N

=P2'—K‘[“ST —2JP 4.7

Async

where, K is a constant that depends on the size of the array such that,
P =2+ (4.8)

Assuming the worst case where the sub-blocks communicate every clock cycle and all the sub-
blocks have equal clock frequencies, the power consumed in the asynchronous wrappers is given

by Equation 4.9.
P.AS

Equation 4.9 does not apply for S=I because a fully synchronous system does not require any

asynchronous wrapper.
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4.2.3 Case of an arrays with bidirectional links

Asynchronous
II( D )ll Wr, ppers dec_* k-

A e . % | {\,‘, » - :

Bi-directional data links

Figure 4.3. Square arrays of processors with bidirectional communication links

Figure 4.2 shows a GALS array of identical processors with bidirectional communication links
among them. For this configuration, the number of asynchronous wrappers required with each

partitioning is given by Equation 4.10.

_2PANS L, F

Async
2 K

N (4.10)

Assuming the worst case where the sub-blocks communicate every clock cycle and all the sub-
blocks have equal clock frequencies, the power consumed in the asynchronous wrappers is given

by Equation 4.11.
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2.P.AS
PAS)’”C ={ 2K - 4ﬁ}(nSigcwlw +nReg CReg )fC VZDD (411)

Equation 4.11 does not apply for S=1 because a fully synchronous system does not require any

asynchronous wrappers.

4.3 Power in Local Clock Generation

» Clock

<} —

Figure 4.4. Ring oscillator

In the GALS architectures, the local clock generators are required for the sub-blocks. The
simplest form of On-Chip oscillator is an odd number of inverters connected in a circular chain as
shown in Figure 4.4. Such a circuit has no stable operation point and will therefore oscillate. The

ring oscillator frequency is determined by the propagation time through the chain of inverters.

This scheme is particularly suitable for asynchronous wrappers with plausible clocking because
such a clock is simple to stop by gating the clock pulse. Inevitably the performance of a ring
oscillator is dependent on manufacturing tolerance and environmental conditions. However, On-
Chip ring oscillator has an advantage that its frequency drift due to changing temperature or
supply voltage closely tracks the delay of logic components. More precise schemes for On-Chip

clock generation have been proposed in [26] and [19] but are more expensive in terms of power
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consumption and area. Ring oscillators are low cost solutions and their power consumption for a

GALS architecture can be estimated by Equation 4.12,
3 2
POsc = ZNInvb 'Clnv fbV DD (4-12)
b

where, B is the set of sub-blocks, Cj,, is the capacitive load due to one inverter, N, is the
number of inverters used by the ring oscillator in sub-block number b and f; is its frequency of

operation.

For all three configurations of the array discussed in section 4.2, each sub-block requires its own
clock generator irrespective of the scheme of communication adapted among the sub-blocks.
Since all sub-blocks are identical in size, if we assume all the sub-blocks have equal clock
frequency, they will have identical clock generators. The power consumed in the clock generators

is given by Equation 4.13 in this case.
POSC :S'Nlnv 'CInV'fC'VzDD (4.13)

where, N, is the number of inverters required in each ring oscillator. Equation 4.12 is not valid
for S = ] because it means a fully synchronous system which does not require any local clock

generator.
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44 Optimum Partitioning Methodology for GALS Array with Passive

Clock Networks

Total power consumption in GALS (Pgqss), given by Equation 4.14, is composed of the power
due to the clock distribution networks, the power due to the asynchronous wrappers, and the

power due to the local clock generation.

Pours = Pep + Pygne + Posc (4.14)

With the partitioning of a GALS designs, Pgazs is a tradeoff between the power saved in global
clock and the power overhead in the asynchronous wrappers and the clock generation. Sections
4.1, 4.2, and 4.3 show all the components of Pg,s as functions of number sub-blocks (i.e. number
of partitions) for different array configurations. To evaluate the optimum number of sub-blocks
that gives the least power consumption for a constant frequency, we can take the derivative of

Pg 45 With respect to S and equate it to zero.
Since the equations for Pcy and Po,. are the same for all three array configurations, we will
evaluate dPcy /dS and dPy, / dS first and later apply it to evaluate the optimum partitioning for

different configurations.

The derivative of the power consumption in the clock networks with respect to S is computed

from (4.3) as,
&i;ik_) = (chf dpy 2.P7 fo .V ipp )(- éS "-5) (4.15)
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Since the parameters in the first term do not vary with the partitioning, we can replace them by a

constant to simplify Equation 4.15 as,

d (Pey ) = —4,.8 13 (4.16)
das
where, 4, is,
_ 1.5 2
4, = Cwa N N fe .V bp 4.17)

The derivative of the power in clock generation with respect to S is computed from (4.13) as,

d Py,
=Ny Cop fe V0 (4.18)

All the terms in this derivative are independent of the number of sub-blocks S and they represent
the power consumed in one ring oscillator. Therefore, these terms can be replaced by a constant

as shown in Equation 4.19.
T e POsc 1 4.19)

where, Po,. ; is a constant that represents the power consumed in one ring oscillator.

The number of wrappers required for each partition changes with the scheme of communication
among processors. The following sub-sections give the optimum sub-blocks for different array

configurations of section 4.2.
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4.4.1 Case of an Array with Linear Communication links

For the GALS array with linear communication links shown in Figure 3.1, dPyyn / dS is

computed from (4.6) as,
2
wlw + nReg CReg )fC 14 DD (4-20)

All the terms in this derivative are independent of the number of sub-blocks S and they represent
the power consumed in one asynchronous wrapper. Therefore these terms can be replaced by a

constant as shown in Equation 4.21.

dpr Async

75 = PAsync 1 .20

where, P4y, 1 is a constant that represents the power consumed in one asynchronous wrapper.

Therefore, the derivative of the total power with respect to S can be evaluated from (4.14) as,

d (Pouss ) = —4,.8 4P

s Async 1 + POsc _1 =0 (4'22)

As a consequence, the optimum number of sub-blocks for the array with linear communication

links is given by,
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A 1.5
S e = ! 4.23)
Ot Linea |: P Async 1 + P Osc _ 1 :| (

Sopt Linear g1Ves the least Pgyys for a constant clock frequency.

4.4.2 Case of a Square Array with Unidirectional Links

For the GALS array shown in Figure 4.2, dP yn. / dS is computed from (4.9) as,

dP P.P
- Agme 1 ¢ -0.5 (4.24)

dSs 2K+1

Async

Evaluating dPg4.s / dS gives the polynomial shown in (4.25).
P.P
(Pose 1)-8 15+ (—A-Sy””——’js — 4, =0 (4.25)

Substituting the values of the constants and solving Equation 4.25 for S will give the optimum
number of sub-blocks (Sgp, um) that leads to the minimum power at a constant frequency for the

GALS array shown in Figure 4.2 with any size.

4.4.3 Case of a Square Array with Bidirectional Links

For the GALS array shown in Figure 4.3, dP 45/ dS is computed from (4.11) as,
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dPpP Async P.P Async 1

= .5 70’ 4.26
ds 2k (420)
Evaluating dPg,.s/ dS gives the polynomial shown in (4.27).
pP.P
1.5 44 1
(Pose ;)8 17+ [———2‘%—)8 — 4, =0 4.27)

Substituting the values of the constants and solving Equation 4.27 for S gives the optimum
number of sub-blocks (So,, 5) that leads to the minimum power at a constant frequency for the

GALS array shown in Figure 4.3 with any size.

4.5 Power in Clock Repeaters

If the RC constant of the clock tree is not small enough, high-speed repeaters may be employed to
increase interconnect bandwidth as explained in section in 3.2.1. These active repeaters in clock

network tend to be area- and power-hungry.

Figure 4.5 shows clock path from root to leaf in a binary H-tree. The numbers in the circles
represent the H-tree levels. Since the clock network is equivalent to uniformly distributed RC
line, we can insert identical repeaters at equal distances dividing the line into sections with equal

RC constants for each section. The optimal number of sections in this case is given by (4.28).
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Figure 4.5. Clock path from root to leaf in a binary H-Tree

038 R, C
M = [ P _ IJ.d roc - Leof = Leof (4.28)
tRep

where, Rr.,r and Cp.sare the interconnect capacitance and resistances per unit length of clock
network assuming the network has uniform width equal to the width of the leaf of H-tree, and #z,,
is the propagation delay of a repeater. If M is a fractional number, it is rounded off to the next

higher integer.

Neglecting the clock drivers at the source and within each processor, total number of repeaters in

each clock path is given by Equation 4.29.

NRep /Path = M -1 (4.29)
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Depending on the driving capability of each repeater and the length of the H-tree levels, we may
need one or more repeaters in a particular H-tree level. If repeaters are large and the length of the
H-tree level is small, we may not need repeaters at all in that H-tree level. Considering this, the

number of repeaters in each sub-block is given by (4.30).
n .
Npp,s= 2, K;. 2 (4.30)
i

where, # is the number of H-tree levels in a sub-block and K; is the number of repeaters in i" H-

tree level.

Therefore, the power consumed in the repeaters in a GALS design is given by equation 4.31.

2
where, Cr,p is input capacitance of a repeater.

4.6 Optimum Partitioning Methodology for GALS with Active Clock

Networks

Clock repeaters occupy large are and consume significant power in synchronous system. With
increasing partitions in GALS system, each locally synchronous sub-block requires fewer
repeaters. If the size of sub-block (Ds) is reduced significantly, we may not need repeaters. Since
Nieps (and hence Pg,,) is not a continuous function of S, we suggest algorithm in Figure 4.6 for

evaluating optimum partition for user-defined frequency.
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For (S=1to P);
Evaluate M;
fFM=>1)
Pars (S) = Pci + Prep + Pasyne + Posc s
End if;
fmM<1)
Piars (S) = Pcu + Pagne + Pose s
End if;
End for;
Pop = min {Pgars (1), Poas (2)... Poars (P)}

Sop = S corresponding to Pop,

Figure 4.6. Algorithm for optimum partitioning of GALS with clock repeaters

The same algorithm applies to all configurations of processor arrays since change the
communication scheme among processors does not affect number or size of repeaters in each sub-

block.

4.7 Summary

In this chapter, different components of the power consumption in the GALS processor array

have been investigated. Three different components of the clock power have been considered and
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models for evaluating optimum partitioning have been proposed. Section 4.1 explains the power
consumed in the passive clock distribution networks. Section 4.2 discusses the power consumed
in the asynchronous wrappers and provides models for three different array configurations.
Section 4.3 details the power consumed in local clock generation. Section 4.4 provides the
models used to predict the optimum number of sub-blocks. Section 4.5 discusses the power
consumed in the clock repeaters. Section 4.6 introduces an algorithm to evaluate the optimum
number of sub-blocks that give least power consumption at a constant frequency and with active

clock networks.
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CHAPTER 5

Experimental Setup and Results

To verify the concepts introduced in the previous sections, we studied a hypothetical 16x16 array
of identical processors. The size of each processor was set to 0.2 cm resulting into a 3.2 cm die.
The number of clocked flip-flops within each processor was set to 200. The H-tree based clock
network was assumed to be routed by the fifth metal level shielded with the fourth and sixth
metal levels of 0.18um CMOS technology. Three different communication schemes were
considered for the array: (1) linear communication links among processors (Figure 3.1), (2)
unidirectional links among neighboring processors (Figure 4.2), and (3) bidirectional links among
neighboring processors (Figure 4.3). To evaluate the GALS trade-offs, the designe was

partitioned in different number of sub-blocks, starting with a fully synchronous system, as shown

in Table 5.1.
Table 5.1. Partitioning of the GALS processor array
Number of Sub- Processors/Sub-block H-Tree levels within
Blocks each Sub-block
S PSS n
1 256 8
2 128 7
4 64 6
8 32 5
16 16 4
32 8 3
64 4 2
126 2 1
256 1 0
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Table 5.2 summarizes the technology parameters and Table 5.3 shows all the process and the

design parameters.

Table 5.2. Technology parameters

Technology 0.18 um
Supply voltage, Vpp 1.8V
Threshold voltage, Vr 045V
Gate oxide thickness, tox 40.8 °A4
Thickness of ILD, Typ 2000 °4
Dielectric constant for oxide, gy 0.35 pF/cm
Sheet resistance for metal layer, Ry, 0.078 L2

Table 5.3. Process and design parameters

Die size, D 32cm
Number of processors, P 256

Size of a processor, dpyc 0.2cm
Number of F/F in a processor, FFp,. 200

Input capacitance of a F/F, Cgr 10 /F

Width of the leaf of H-tree, Wi.qr 0.72 pm
Interconnect capacitance of leaf per unit length, Cjeqr 1050 fF / cm
Interconnect resistance of leaf per unit length, R;.,r 1130 .2/ cm
Clock driver input capacitance, Cpyiver 500 fF
Clock driver output resistance, R, 12.0Q
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The interconnect resistance per unit length was calculated using Equation 5.1.

(Lint B ALint (5.1)

R .
. (Wint - AW

int = R
int
where, R, is the sheet resistance for the metal layer used, 4L, is variation in the interconnect

length, and AW,, is variation in the interconnect width. The interconnect dimensions are

illustrated in Figure 5.1.

cengens

w, >

W, 1::Hint -i- T
IiLD

Figure 5.1. Interconnect dimensions [3]
The capacitance of interconnect per unit length can be approximated by Equation 5.2 [3].
0222 0222 1.34
ﬁt_:] ]s(pllintj+28{HintJ + OO{Vth)_,r_] 66(I{intj_01{Hint) TILD
Eox Tup Tup Tup Tip Tiup Wsp

(5.2)

where, gy is dielectric constant for ILD material.
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5.1 Estimation of Effective Clock Frequency

The frequency for each sub-block was calculated considering the clock network bandwidth, the

clock skew, and the clock stretching as described in chapter 3.

Data_ln Data_Out
| D Q [—tp- plipe-| D Q» = Q i
A Rst | »> A Rst < »{ Async_Rst
Syne_ Async_ SYne_Rs Async_ ynere
Wrapper1 Wrapper3
Sub-block1 Sub-block2 Sub-block3
A Clk1 A Cik2 4 CIk3
Req1 Ack1  Ack2 Req2 Req3 Ack3  Ack4 Req4

Clk_Gen1 1 Clk_Gen2 ] Clk_Gen3

Figure 5.2. Scheme for simulation

To evaluate the average duration of clock stretching, we simulated the scheme shown in Figure
5.2. Three locally synchronous sub-blocks were connected with linear communication links. The
asynchronous wrapper used was the data communication channel with GasP pipeline stage and
WAIT ports as suggested by De Clercq ef al. and described in section 2.4.3. The scheme was
simulated 0.18 gm CMOS technology from TSMC (Taiwan Semiconductor Manufacturing
Company). The simulations were carried out using the electrical simulator HSPICE under
Cadence tool set. The design was optimized and tested for wide range of frequencies resulting
from different partitioning scenarios to estimate average duration of clock stretching. The
simulations showed that there was no stretching of the clock for the frequencies below 700 MHz.
For higher frequencies, the average duration of the “off” phase of a stretched clock (Tsn) for
Clk3 was measured 650 pS. The maximum effective clock frequency (fzy) achieved was 1.2 GHz

with both the sender and the receiver running at 2.3 GHZ.
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Two cases were considered for three array configurations: (1) Clock network without repeaters,

and (2) Clock network with repeaters.

5.1.1 Frequency estimation for passive clock networks

The methodology adopted is explained below:

The bandwidth of the clock network was evaluated from Equation 3.10 for the calculated

values of C.qrand Ry.qr shown in Table 5.3.

The clock skew resulting from the variations in each process parameter, as described in
section 3.1.2, were evaluated for both, the interconnects and the clock drivers. The
percentage variations in the process parameters were assumed the same as mentioned in
[17]. The contributions of different process parameter were added together to find the
total skew. The skew due to RC mismatch and clock driver load mismatch was not
included because all the processors in the array are identical. The clock frequency limited

by the process parameter variations was evaluated assuming that clock skew is 10% of

the clock period.

For each partitioning, the frequencies resulting from the bandwidth limitations and the
process parameter limitations were compared and the smaller frequency was selected as

the clock frequency of the sub-blocks.

The effective clock frequency was computed from Equation 3.12 by incorporating the

average duration of clock stretching as available from the simulations.
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5.1.2 Frequency estimation for active clock networks

The additional skew resulting from inserting active devices into the clock network was taken into
consideration to evaluate the effective clock frequency. The repeaters were sized according to the

capacitive load offered by the clock network as described below.
(A) Sizing of repeaters

As described in [3], to get an optimal propagation time of a repeated wire, the W/L ratio of the

repeater-transistors is increased by a factor 4 given by Equation 5.3,

h = ’EO_CCW_ (5.3)
int 0

where C, and R, are the input capacitance and the output resistance of a minimum sized inverter.

Table 5.4. Repeater parameters

Resistance of minimum sized inverter, R 7790 Q2
Capacitance of minimum sized inverter, Cy 2 fF
W/L ratio for PMOS, App05 60
Mobility ratio 4

Width of PMOS, Wpos 10 wm
Length of PMOS, Lpaos 0.18 um
Width of NMOS, Waos 2.5 um
Length of NMOS, Lyyos 0.18 tom
Resistance of repeater, Rg,, 70 2
Capacitance of repeater, Cg, 96 fF
Repeater propagation delay, #z., 60 pS
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The PMOS of the repeater was sized using Equation 5.3 and the NMOS size was determined
taking into account the mobility ratio, to get equal rise and fall times. Table 5.4 summaries

various repeater parameters.

(B) Estimation of effective clock frequency

The repeater was simulated in 0.18 gon CMOS technology to measure the propagation delay
(trep)- The number of repeaters required in the design was estimated using Equation 4.29. The
capacitive load on each repeater was evaluated as the sum of the interconnect capacitance
between two successive repeaters and the gate capacitance of a repeater. To evaluate the
additional skew resulting from the repeaters, the skew from the device and interconnect parameter
variations was computed for each repeated segment and added together. The same methodology

as outlined in section 5.1.1 was adapted to calculated effective clock frequency.

5.1.3 Limitation

The frequency estimation was restricted to array with linear communication links among
processors. More complex schemes like unidirectional links among neighboring processors
(Figure 4.2), and bidirectional links among neighboring processors (Figure 4.3) will have
multiple requests coming in the ME of the clock generator. For these configurations, the
estimation of average duration of clock stretching requires the knowledge of the probability of

each request being present at given time and the time before it is acknowledged.
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5.2

Power Estimation and Optimum Number of Sub-blocks

The methodology adapted for power estimation is summarized below:

For each partitioning scenario, the power consumption in the clock network was

calculated using Equation 4.3 with parameters listed in Table 5.2 and Table 5.3.

The power consumption in the asynchronous wrappers, the ring oscillators, and the
repeaters, as described in Sections 4.2, 4.3, and 4.5 respectively, was evaluated from
simulations at different frequencies using a 0.18 zzn CMOS technology from TSMC. The
simulations were carried out using the electrical simulator HSPICE under Cadence tool

set.

For the array with linear communication links, the behavior of total power (PgaLs) was
studied in four cases; (1) with increasing clock frequency and passive clock network, (2)
with increasing clock frequency and active clock network, (3) Constant clock frequency

and passive clock network, and (4) Constant clock frequency active clock network.

For the arrays with unidirectional and bidirectional links as discussed in Section 4.2.2 and
4.2.3 respectively, the behavior of total power (P;4Ls) was studied in two cases; (1)
Constant clock frequency and passive clock network, and (2) Constant clock frequency

and active clock network.
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¢ The optimum number of sub-blocks as established from the manual calculations
mentioned above were compared with the results from the equations in Section 4.4 to

verify the validity of the equations.

5.3 Experimental Results for an Array with Linear Communication

Links

An array of processors with linear communication links is shown in Figure 3.1. The following

sub-sections present the results for four cases discussed in Section 5.2 for this configuration.

5.3.1 Power with increasing frequency and passive clock networks

8
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Figure 5.3. Power with increasing frequency and passive clock network for the linear array
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As illustrated in Figure 5.3, the clock frequency of the fully synchronous system is lower
bounded due to the interconnect bandwidth. The exponential increase in the frequency with the
number of partitioning comes from an improved bandwidth due to smaller sizes of the sub-
blocks. The simulation results showed that there was no stretching of the clock for frequencies
below 700 MHz. Beyond this point, the skew due to the process parameter variations and the
clock stretching have significant influence on the effective clock frequency. The average duration
of clock stretching (Tsyer) for Clk3 was measured 650 pS. The maximum effective clock
frequency (fz) achieved was 1.2 GHz with both the sender and the receiver running at 2.3 GHz.
The maximum attainable frequency is constrained by the delay in asynchronous wrapper and the

ring oscillator.

Keeping the supply voltage (Vpp) constant, there are two factors that affect the power
consumption: (1) the capacitance, and (2) the frequency. With increasing number of sub-blocks,
the capacitance of the clock network decreases. However, the exponential rise in frequency
dominates the effect of decrease capacitance and the power increases. The frequency saturates
with 64 number of sub-blocks and onwards. For 256 sub-blocks, complete elimination H-tree
saves more power than increase in asynchronous power overhead at the same frequency.
Therefore, the power curve takes a plunge after 128 sub-blocks. However, this power is still more
that the power for 64 sub-blocks. Therefore, the optimum number of sub-blocks, in this case, is

64 that give the maximum frequency with least power consumption.

5.3.2 Power at constant frequency and passive clock networks

In Figure 5.4, the clock frequency is kept constant at 15 MHz, which is the clock frequency of

fully synchronous system in Figure 5.3. The power decreases up to 32 sub-blocks due to
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decreasing H-Tree capacitance. The power consumption in the asynchronous wrappers is

negligible up to this point. Increasing the number of sub-blocks further raises power due to the

asynchronous overhead.
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Figure 5.4. Power at constant frequency and passive clock network for the linear array

Table 5.5 shows various computed and simulated values of the constants required in evaluating

the optimum number of sub-blocks from Equation 4.23.

Table 5.5. Values of the constants in Equation 4.23 at 15 MHz

Constant for clock power, 4, 0.0418
Power consumed in each wrapper, P gsyne 1 0.117 mWw
Power consumed in each oscillator, Po,. ; 0.143 mWw

Substituting all the constant values in Equation 4.23 gives the following result.

S, Opt_Linear =30
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This value of optimum number of sub-blocks is close to 32 sub-blocks as predicted in Figure 5.4.

The optimum partitioning, in this case results in 37% of power saving as compared to fully

synchronous designs.

5.3.3 Power with increasing frequency and active clock networks

Effective Frequency

Total Power Pg,;5(W)

- - & - - Frequency

500 1 —&— Power - 4.5

400 1 — et s 4

1 10 100 1000
Number of Sub-blocks

Figure 5.5. Power with increasing frequency and active clock network for the linear array

Inserting repeaters in the clock network removes the bandwidth constraints on the clock
frequency. As can be observed form Figure 5.5, the undesirable effect (skew due to process
variations) of inserting active repeaters is very well offset by improvements gained in the
bandwidth. The clock frequency of a fully synchronous system, which was limited to 15MHz, is
now close to 700MHz. Since the frequency is already high, the stretching of clock occurs right
from the first partitioning and therefore the gains in frequency are not as steep as Figure 5.3. The

frequency finally levels at 1.2 GHz that is limited by the asynchronous wrappers.
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The major difference in Figure 5.3 and Figure 5.5 is the behavior of power. In Figure 5.5, the
power decreases despite the rise in frequency and there are two reasons that can be attributed to
this behavior; (1) the difference in the clock frequencies is not as large as Figure 5.3 for two
successive partitions, and (2) the decrease in the capacitance now comes from two sources; the
reduction in H-tree levels, and the diminishing number of large clock repeaters.

Table 5.6 gives the total number of repeaters required with each partitioning as evaluated from

the methodology described in section 4.5.

Table 5.6. Number of repeaters required for different number of sub-blocks

Number of Sub- Number of Repeaters
Blocks Required
S Niep

106

2 96
4 88
8 80
16 64
32 64
64 0
126 0
256 0

The power decreases up to 64 sub-blocks in Figure 5.5. As no repeaters are required after this
point, the power consumed in the asynchronous wrappers now takes over and total power starts
rising. The optimum number of sub-blocks is 64 in this case because it gives the maximum

frequency for the least power consumption.
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5.3.4 Power at constant frequency and active clock networks

For constant frequency as well, the power decrease up to 64 sub-blocks due to diminishing
repeaters and decreasing H-tree capacitance. Since no repeaters have been used after this point,
the power in asynchronous wrapper governs the total power and it starts rising. The manual

methodology to evaluate the optimum number of sub-blocks for the active clock networks is

expressed in from of an algorithm in Figure 4.6.
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Figure 5.6. Power at constant frequency and active clock network for the linear array

5.4 Experimental Results for Array With Unidirectional Links
A GALS array of processors with unidirectional communication links is shown in Figure 4.2. The

following sections present the power trade-offs for active and passive clock networks at a

constant frequency.
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5.4.1 Power at constant frequency and passive clock networks

In Figure 5.7, the clock frequency is kept constant at 15 MHz. The power decreases up to 16 sub-
blocks due to decreasing H-Tree capacitance. The power consumption in the asynchronous
wrappers is negligible up to this point. Increasing the number of sub-blocks further raises the total

power due to increased contribution of the asynchronous overhead.
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Figure 5.7. Power at constant frequency and with passive clock network for the array with
unidirectional links

For this configuration, each partitioning requires significantly more number of asynchronous

wrappers as compared to the linear array configuration of section 5.4.2. Therefore the optimum

number of sub-blocks is smaller in this case compared to the case of linear array.

The polynomial in Equation 4.25 can be used to evaluate optimum number of sub-blocks for this
configuration. The value of constant K is 3 for an array of size 16x16. The values of other
constants will be the same as shown in Table 5.5 because the frequency is the same. Substituting

all the constant values in Equation 4.25 and solving it with Xmaple gives the following result:
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SOpt_Uni =16.98

This value of is close to 16 sub-blocks as predicted in Figure 5.7 and it results in 31% of power

saving as compared to fully synchronous designs.

5.4.2 Power at constant frequency and active clock networks
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Figure 5.8. Power at constant frequency and with active clock network for the array with
unidirectional links

In Figure 5.8, the clock frequency is kept constant at 736 MHz, which is the clock frequency of a
fully synchronous system with repeaters. The total power decreases up to 16 sub-blocks due to
the diminishing number of repeaters and decreasing H-tree capacitance. For this configuration,

since each partitioning requires significantly larger number of wrappers as compared to the linear
array, power consumption in wrappers starts dominating sooner in this case. The algorithm in

Figure 4.6 can be used to evaluate the optimum sub-blocks for this configuration as well.
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5.5 Experimental Results for Array with Bidirectional Links

This configuration requires twice the number of asynchronous wrappers as compared to the array

with unidirectional links because all the processors communicate to neighbors in both directions

as shown in Figure 4.3.

55.1 Power at constant frequency and passive clock networks

16 0.25
! P Y S Y ST Ty
o 14 )
o - 0.
§ 12 g
=5 s
- 0.15
i3 é 10 1 A
S 5 S
£ S 8] o1 &
: :
=IAS g
4 - - ¢~ - - Frequency 0.05 et
—— Power
2 " e} R ‘ o et ()
1 10 100 1000

Number of Sub-blocks

Figure 5.9. Power at constant frequency and with passive clock network for the array with
bidirectional links

As illustrated in Figure 5.9, by keeping the clock frequency constant at 15 MHz, the total power
decreases up to 8 sub-blocks due to decreasing H-Tree capacitance. The contribution of the power
consumed in the asynchronous wrappers is comparatively smaller up to this point. Increasing the
number of partitions further raises the total power due to increased contribution of the

asynchronous overhead. The optimum number of sub-blocks is smaller in this case as compared
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to the case of array with unidirectional links because each partitioning requires twice the number

of asynchronous wrappers as compared to the case of array with unidirectional links.

The polynomial in Equation 4.27 can be used to evaluate the optimum number of sub-blocks for
this configuration. The value of the constant X is 3 for an array of size 16x16. Other constants
values will be the same as shown in Table 5.5 because the frequency is the same. Substituting all

values in Equation 4.25 and solving it with Xmaple gives the following result:

Sopt 5i=9.96

This value of is close to 8 sub-blocks as predicted in Figure 5.9. It results in 23% of power saving

as compared to fully synchronous designs.

5.5.2 Power at constant frequency and active clock networks
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Figure 5.10. Power at constant frequency and with active clock network for the array with
bidirectional links
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The number of sub-blocks that gives least power consumption at 736 MHz clock frequency is 8 in
this case. The reason for the optimum number of sub-blocks being such small is that each
partitioning requires a large number of asynchronous wrappers. Such an increase in the power
consumed in the asynchronous wrappers overrides the effect of decrease in the clock network

capacitance and the number of the repeaters required.
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CHAPTER 6

Conclusion and Future Work

The GALS design methodology is a potential solution to the growing problems of distributing a
high frequency clock signal at low power in large VLSI designs. GALS designs offer a solution
to these problems by reducing the clock network capacitance and localizing the clock skew within
the boundaries of smaller, locally synchronous sub-blocks. An asynchronous wrapper with
pausible clocking is used at the boundaries of two communicating blocks to avoid

synchronization failures.

6.1 Does GALS Boost the Effective Clock Frequency of a System?

The answer to this question is both “yes” and “no” depending on the architecture. GALS does
increase the frequency of individual, locally synchronous sub-blocks by containing the skew and
the bandwidth problems. However, overall effective clock frequency (or throughput) of the
system may degrade for some architectures. The investigation of an array with linear
communication links reveals that the clock frequency increases from 15 MHz for a fully

synchronous system to 1.2 GHz with GALS. However, the skew due to mismatch in RC delays of

various clock paths and the skew due to clock load mismatch were absent in this study because of
the type of architecture used. The maximum frequency was limited by the asynchronous wrapper
and the ring oscillator. The frequency estimation was restricted the case of an array with linear
communication links among processors. More complex schemes like unidirectional links among
neighboring processors (Figure 4.2), and bidirectional links among neighboring processors

(Figure 4.3), will have multiple requests coming in the asynchronous wrappers. Each request can
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pause the clock for unbounded time until it is acknowledged. Therefore, for these configurations,
estimation of the average duration of clock stretching requires the knowledge of the probability of
each request being present in the asynchronous wrapper at any instance and the time before it is

acknowledged.

Finding an optimum partitioning to achieve highest throughput is also very sensitive to the type
of communication mechanism used for architectures with multiple links among all of its sub-
blocks. For example, in shared-bus architecture with central arbiter, large number of partitions
will increase the number of requests in the arbiter at any given time. The bus will be highly
congested in this case. Therefore, a sender’s clock will be paused for a long time waiting for a
receiver to respond and gaining access to the shared communication resources. Predicting the
average period of clock stretching becomes probabilistic in this situation. Large number of
partitions may degrade the system throughput by lengthening the wait period of the sub-block
clocks. A general solution to evaluate optimum GALS partitioning with clock frequency as an
objective is not possible in this situation. However, an architecture-specific study will be

addressed in a future work.

For large VLSI designs, inserting the repeaters in clock network is an alternative to boost the
clock frequency otherwise limited by the interconnect bandwidth. As shown in chapter 5, for the
fully synchronous design, inserting the repeaters increases the frequency form 15 MHz to 700
MHz. The undesirable effect of inserting active repeaters is very well offset by the improvements
gained in the bandwidth. Therefore for the GALS architectures where increasing partitioning is
not a feasible solution, a combined strategy of partitioning and repeater insertion may be adapted

to achieve desired effective system throughput.
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6.2 Does GALS Save Clock Power?

The answer to this question is “yes”. In most high-performance VLSI designs, the distribution of
low-skew global clock signals approaching GigaHertz range is the single largest source of power
consumption. One of the motivations behind switching to GALS designs is to save power in the
clock networks. In GALS designs, partitioning a system into more locally synchronous sub-
blocks reduces the size of each sub-block, which diminishes the capacitance in the clock
networks because they need less H-tree levels. However, this implies a large number of sub-
blocks, which increases the asynchronous power overhead. These power tradeoffs have been

studied for a GALS array of identical processors.

The thesis enriched previous works on GALS power consumption and partitioning in multiple
dimensions. The model of GALS power components were adapted to suite GALS array of
processors with three different configurations. We also proposed closed form models to predict
optimum number of sub-blocks that gives the least power consumption. The validity of the
models has been verified with experimental results. The models can provide a useful firsthand

guideline for the designers in the initial design stages.

Inserting repeaters in the clock network adds one more aspect in the GALS power tradeoffs. The
GALS power benefits are more evident in this case because the repeaters are often area and
power hungry. Smaller sub-blocks require fewer repeaters but more wrappers. The proposed

algorithm is a useful tool to estimate optimum number of sub-blocks in this case.

The behavior of total power consumption with increasing clock frequencies was also studied for

each partitioning scenario and for active as well as passive clock networks. The results show that,
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for the GALS array with passive clock networks, the total power increases with partitioning
because the exponential rise in frequency dominates the effect of decrease in global clock
capacitance. However, for the GALS array with active clock networks, the GALS power
decreases with partitioning because of the decrease in the clock network capacitance and

reduction in the number of repeaters required.

6.3 Does GALS Resolve the Timing Closure Problem?

The answer to this question is “yes”, but at the cost of area and, in some cases, power. Timing
closure is a challenging issue for the designs with bundled data protocols and the synchronous
designs with long global interconnects as described in Chapter 2. The DI asynchronous protocols
encode request on data lines and therefore avoids the need for timing analysis, giving designs that
operate correctly whatever the delay in the interconnecting wires. A novel asynchronous wrapper
architecture based on DI protocol and ST handshaking has been proposed in this work. In order to
prove its feasibility, we simulated the design shown of Fig.4 with 0.18 pm TSMC CMOS
technology. The perceived advantage of ST handshaking over 4-phase handshaking is visible in
improved throughput. It achieves 66% higher throughput as compared to the DI templates
proposed in [23]. Moreover, the scheme saves the fifth 4CK wire in the scheme by Bainbridge ef

al. It avoids the timing constraints described in [13] by appropriate sizing of transistors.

Finally, since only one wire changes its state for each data transaction, the power consumption is

comparable to the bundled data scheme in [12].
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