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ABSTRACT

Low Power Modulo Reduction Technique and
Its Application in Residue-to-binary Converters

Shaogiang Bi

In this thesis, novel modulo reduction algorithms are proposed that considerably
simplify a large modulo operation to the sum of a number of small modulo operations. By
applying the proposed modulo reduction algorithms to the modified Chinese Remainder
Theorem (CRT), the complexity of modulo operation in the modified CRT is reduced
significantly. The modulo reduction technique and the modulo reduced modified CRT are
applied to derive R/B algorithms for two existing three-moduli sets and four newly found
three-moduli sets. A novel R/B converter for Ny = {27, 2" +1, 2" —1} with reduced
modulo operations is proposed to show the efficiency of the proposed modulo reduction
technique. Novel MUX-based designs of some components needed for constructing the
new converter are developed. New unsigned and signed-2’s complement
incrementer/decrementer are designed to implement the operation of Z = 1. The new
modulo incrementer and decrementer are developed to implement the operations of

|Z +1

o and|Z -1

,»,+ Furthermore, a new modulo subtractor is proposed to conduct the

modulo (2" +1) subtraction. The complete architecture of the new converter is presented
along with implementation. Based on the FPGA implementation results, a comparison
study between the proposed R/B converter and the corresponding ones in the literature is

carried out.
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concatenate operation such as <a><b>= ax2" +b

the largest integer less than or equal to x



CHAPTER 1

INTRODUCTION

1.1 General

The advance of very large-scale integration (VLSI) process technologies has made
“system on a chip” feasible for very complex systems. This is partly responsible for the
market demand for much shorter design cycles even though design complexity has
continued to increase. VLSI finds many applications in the fields such as digital signal
processing, computers, multimedia and wireless communication, video compression and
so on [1], [2]. The layout of such VLSI digital systems can be performed with VLSI
techniques such as Field Programmable Gate Array (FPGA) or Application Specific
Integrated Circuits (ASIC) [2], [3].

In the past, the major concerns of the VLSI designer were area, speed, and cost.
Power consideration was typically of secondary importance. In recent years, however,
this has begun to change and, increasingly, power is being given comparable weight to
other design considerations. Several factors have contributed to this trend, including the
remarkable success and growth of the class of battery-powered, personal computing

devices and wireless communications systems that demand high-speed computation and



complex functionality with low power consumption. In these applications, extending the
battery service life is a critical design concern. There also exists a significant pressure for
producers of high-end products to reduce their power consumption. The main driving
factors for lower power dissipation in these products are the cost associated with
packaging and cooling as well as the circuit reliability.

System designers have started to respond to the requirement of power-constrained
system designs by a combination of architectural improvements and advanced design
automation methodologies and techniques for low power [4], [5]. In parallel, researchers
and CAD tool developers have introduced a variety of models, algorithms, and
techniques for reducing the power dissipation in VLSI circuits and systems in support of
the low power optimization and synthesis techniques. A major low power technique at
high-level abstraction is to introduce parallelism in the system and trade off the high
speed to gain the low power consumption. The residue number system (RNS) is such a
low power parallel system. It is known that the conventional weighted number system
such as the binary number system and the decimal number system have a carry chain that
often limits the speed. The RNS abates the carry chain problem by reducing the
arithmetic operations from L-bit to log (L)-bit due to the reason that the digits in the RNS
have no ordering significance, nor is there a requirement to manage carry information
from digit to digit [6]-[8]. Thus, the RNS can result in a high-speed implementation. By
trading off part of the speed gained by employing parallelism, power reduction can be
achieved for VLSI digital design [9]-[12]. The RNS-based design has a promising future

in the low-power FPGA and ASIC implementation of VLSI digital systems.



1.2 Low Power Scheme of RNS

The RNS system can reduce the power consumption by decreasing the speed but
keeping the throughput [9]-[12]. This is to say that the intrinsic properties of RNS such as
carry-free operations, parallelism and modularity are traded off for less power
consumption.

What's more, the RNS structure reduces the switching activity of the system, which
translates into a reduction in the power consumption [9]. Other benefits of using the RNS
system are the significant reduction in the peak current and the increase in the design
locality. The peak currents drawn in the RNS are sometimes five to six times lower than
those in the conventional architectures [12]. Also, splitting a single data path into several

residue subsystems increases the locality [9].

1.3 Objective of the Thesis

As shown in Fig.1.1, a general structure of an RNS consists of three parts: n binary-
to-residue (B/R) converters, n parallel subsystems and a residue-to-binary converter.
Given the moduli set {F,F,,...,P,}, the binary system is partitioned into n subsystems,

each corresponding to one modulus P,. Each B/R converter consists of a modulo adder,

while the R/B converter involves a lot of modulo operations. Thus, the residue-to-binary

converter (R/B) is the most complicated part of a RNS system.
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Figure 1.1. The Residue Number System

The R/B converter design is mainly based on the Chinese Remainder Theorem (CRT)
that requires a large modulo inner product operation. In the literature, there exist
extensive studies on the R/B conversion algorithms and R/B converter designs. Almost
all of the R/B converters reported in the literature are based on the CRT directly [13]-[23]
or indirectly [24]-[29]. In the critical path of the CRT-based R/B converter, the modulo
part consumes a large portion of hardware and causes large delay and power
consumption. Recently, new algorithms called modified Chinese Remainder Theorems
(modified CRT) have been proposed to reduce the size of the modulo operation required

by the CRT [24], [26]. For a moduli set {£, P,,..., P,}, the CRT R/B conversion requires a
modulo operation of B, B,,..., P,, while the modified CRT requires a modulo operation of
P,,...,P,. The modified CRT is specifically useful for the design of the R/B converters for

a number of three moduli sets, such as {2° +1, 2", 2" -1} [25], [26], {2", 2" -1, 2™ -

1}[27], {27°+1, 2" +1, 2" -1}[28]. These three-moduli sets have received considerable



attention, due to the fact that the numbers in such systems can be efficiently scaled by
any one of the moduli [29]. For these sets, based on the modified CRT, efficient R/B
converter designs and implementations can be obtained [25]. However, the modified

CRT only reduces the modulo operation by £. It is important to develop new algorithms

and techniques to further reduce the modulo operation.

1.4 Contribution of the Thesis

In this thesis, novel modulo reduction algorithms are proposed to significantly
simplify the large modulo operation to the sum of a number of small modulo operations.

Based on the proposed algorithms, a modulo operation based on the product of FF,---P,

can be divided to » individual modulo operations where each operation is based on one of
the positive integers B,P,,---,P, respectively. By applying the proposed modulo
reduction algorithms to the modified CRT, the complexity of modulo operation in the
modified CRT is reduced to a great scale by partitioning the modulo operation with a
large base to several individual modulo operations of small bases in parallel. The
parallelism provides high concurrent operation and decreases delay. Then, the modulo
reduction technique and the modulo reduced modified CRT are applied to derive R/B
algorithms for the two existing three-moduli sets and four newly found three-moduli sets.
The modulo operations required by these sets are efficiently reduced to one small modulo
operation.

A novel multiplexer (MUX)-based algorithm for increment and decrement operations
is proposed. The algorithm makes use of the mechanism of information transferring

between the input Z and the output ¥, resulting in a high-performance MUX-based binary



incrementer/decrementer. Based on this algorithm, new designs are introduced to
improve both the unsigned and signed-2’s complement incrementer/decrementer.

Based on the proposed MUX-based binary decrement technique, new modulo

incrementer/decrementer that implements the operations of |Z +1| ,»,and |Z -1, ,, are

presented. Furthermore, the proposed MUX-based binary decrement technique is
extended to derive modulo 2" +1 subtractor. For the purpose of performance evaluation,
the proposed binary and modulo MUX-based incrementer/decrementer are implemented
using FPGA technology.

Based on the proposed modulo reduced R/B algorithm and the MUX-based modulo
decrement technique, the design and FPGA implementation of the low-power R/B
converter for the most popular three-moduli set N; is carried out. Based on the FPGA
implementation results, a comparison study between the proposed R/B converter and the
corresponding ones in the literature is carried out.

Most of the known solutions for modulo operations rely on end-around-carry (EAC)
modulo addition. In this thesis, the unwanted race condition of the EAC modulo adders is

also considered.

1.5 Organization of the Thesis

This thesis contains eight chapters. The rest of this thesis is organized as follows. In
Chapter 2, we present the necessary background materials for completeness. The concept
of RNS is given here. And the CRT and the modified CRT are also introduced.

In Chapter 3, we propose novel modulo reduction algorithms that reduce the base of

modulo operation for two-moduli sets and general-moduli sets.



In Chapter 4, we apply the modulo reduction algorithms to improve the modified
CRT and derive efficient modulo-reduced R/B algorithms for the two existing three-
moduli sets and four newly found three-moduli sets. All these six new R/B algorithms
reduce the modulo size compared to the modified CRT and provide new options to design
high-speed R/B converters.

In Chapter 5, we present new algorithms and designs to implement novel MUX-based
binary incrementer/decrementers for constructing the new R/B converter in Chapter 7. By
extending the proposed MUX-based increment/decrement to FPGA design, we get an
area-speed efficient FPGA implementation. Further, we carry out a comparison study
between the proposed designs and the conventional adder-based
incrementer/decrementer. Based on the study, we find that the proposed MUX-based
designs are more efficient in terms of speed and hardware complexity compared to the
adder-based ones for both unsigned and signed cases.

In Chapter 6, based on the proposed MUX-based binary decrement technique, new

modulo incrementer/decrementer that implement the operations of |Z+1|, and

1Z-1

| presented. The modulo decrementer is used to construct the new R/B

converter in Chapter 7. For the purpose of performance evaluation, the proposed modulo
MUX-based incrementer/decrementer are implemented using FPGA technology.

In Chapter 7, the proposed MUX-based binary decrement technique is extended to
derive modulo 2" +1 subtractor that is a building block of the proposed converter. Based
on the proposed modulo reduced R/B algorithm, the design and FPGA implementation of
the low-power R/B converter for the most popular three-moduli set Ny = {2", 2" +1, 2" -1}

1s carried out.



Finally, in Chapter 8, we conclude with the highlights of the contributions of this

thesis and suggest some possible further work.



CHAPTER 2

RESIDUE NUMBER SYSTEM

In this chapter, we present the necessary background materials for completeness. The

concept of RNS is given here. The CRT and the modified CRT are also introduced.

2.1 Residue Number System

For any two numbers X and P, x,= Xmod F, is defined as X =x;+ bP for some

i

integer b such that 0 < x, < B. For convenience, we denote X mod P by |X] -

Residue Number System: Assuming n>1, a residue number system is defined
in terms of a relatively prime moduli set {F}, B, ..., B}, that is, GCD(B,PJ.) =1fori#j.
A binary number X can be represented as X =(x,,x,,...,x,), where x;, = IXIPE ,0<x,<P.

Such a representation is unique for any integer X € [0,M —1], where M= RE,...P, is the
dynamic range of the moduli set {£,, B, ..., P} [25].

The RNS is a carry-free system for addition, subtraction, and multiplication
operations. We use the following example to illustrate the carry-free characteristic of the
RNS.

Example 2.1: Given the moduli set {3, 7, 8, 11}, the residue format of the integer 18 is

(0, 4, 2, 7) and that of the integer 20 is (2, 6, 4, 9). When the sum of (18 + 20) is



calculated in RNS, the corresponding residues are added in parallel. Without long carry

chain, we have (2, 3, 6, 5), which is the RNS representation of the result 38.

0 4 2 7
+) 2 6 4

2 10 6 16

2 3 6 5

The RNS provides, in a sense, carry-free arithmetic and thus the possibility of faster
implementation. Hence, a large dynamic range binary system can be partitioned into
several small wordlength channels in parallel. Thus, the RNS can result in a parallel and

high-speed operation.

2.2 Chinese Remainder Theorem

In order to convert from binary to residue numbers and vice-versa, a B/R converter is
required at the front-end of the system and a R/B converter at the back-end. The B/R
converter consists of several modulo adders, while the R/B converter involves a lot of
modulo operations. Thus, the R/B converter is a crucial part of the RNS system. To
perform the R/B conversion, that is, to convert the residue number (x,;,x,,...,x,) into the
binary number X, the CRT and mixed radix conversion (MRC) are widely used.

Chinese Remainder Theorem: The binary number X is computed by

x=[> NV = @.1)
i=1 P,

M

M - T .
where n>1, N, = B and IN, 1I P is the multiplicative inverse of lN,l P> and is defined by

i

the relationship[9]

10



“N{IL; N| =1 2.2)

|

Mixed Radix Conversion: The number X can be computed by the formula

X= iviai (2.3)

computed by the formulas: ¥, =X, ¥ =(¥_, —a,, jE_l_lL_ , 4, = |Y,| » -The MRC approach

is a sequential algorithm and is not as “parallel” as the CRT method. Thus, in order to
solve the R/B conversion problem, the CRT schemes are preferred for efficient VLSI
implementations. However, the CRT requires a binary inner product operation followed
by amodulo M operation that is not very efficient. So we need to use a new formulation

of the CRT that reduces the size of the modulo operation [26].

2.3 Modified Chinese Remainder Theorem

Modified Chinese Remainder Theorem [26]: Given the moduli set { P, P,,---,P, },

m

the residue number ( x,,x,,*-+,x,, ) is converted into the binary number X by

X=x+P (2.4)

n
1
Z WX,

i=1

P,..P,

where m>1,

N1|N1'1|P1 -1
w, =—PI—,

11



w, = & , fori=2,3,...,m,

4 —
Xy =Xy,
' -1 [
x; =|Ni inP ,fori=2,3,....,m

Comparing (2.1) and (2.4), we can see the modified CRT reduces the modulo base

from M=RF,...P, to P,..P,. It is possible then to implement a converter with less

n

hardware. However, if the modulo base can be reduced further, for example, from P,...P,
to P,...P,, the converter will be simplified further. In the case of Ny = {2°, 2" +1, 2" -1},

the modulo base is 2"x(2" +1)x(2" —1) for CRT, while (2" +1)x(2° -1) for the modified
CRT. It would be even better if the base can be reduced to 2" +1 or 2" —1. Being in the
critical path of the converters, the modulo operation consumes a large portion of
hardware and results in large delay. Thus, such a study is of importance.

In Chapter 3, we will propose a new theorem that reduces the base of the modulo

operation. We need the following properties:

Lemma 1 [A + B|P = "A|P +|B|P|P for all integers 4, B and P

Lemma 2 ]KP]|RP2 =P]|K|P2 for all integers K,F, and P,

Lemma 3 “K | R

=|K| , forallintegers K, F, and P,
132 1

A
Lemma4 2" -1-X = ;n: . x_o for any non-zero n-bit binary number X
Lemma 5 |— X | oy = a . ;c:,- for any non-zero n-bit binary number X

Lemma 6 IX x 2%

n_q = xn—no—l :

" XoX,y ' X,_, for n-bit binary number X

.o
n—1 n-n

12



CHAPTER 33

PROPOSED MODULO REDUCTION
ALGORITHMS

3.1 Introduction

In this chapter, we propose novel modulo reduction algorithms to design small area,
fast and low-power modulo circuits for the R/B converter design, B/R converters and
RNS subsystems. Also, other modulo algorithms such as modulo division, modulo
comparison and modulo encryption algorithm might benefit too. It is expected that the

proposed modulo reduction algorithms have many applications in RNS study.

3.2 Proposed Modulo Reduction Algorithm for Two-Moduli

Proposition 3.1 Given any positive integers K, F, and P,, we have

{%J +|K], (3.1

Vg

Kl =B

il

where [—K;} is the floor of %

1 1

Proof:

1Kl

K
it

AP,

13



K
=P 7 +||K|P1

- " -IRp

by Lemma 1
RP,
RP,

=\B, % +|K|P by Lemma 2 and Lemma 3
1

i

it

Since F, +|K]|, |<BP,. Thus

5

7

<B(P -1) and |K|Pl <F, we have [Pl

il

The interesting part of Proposition 3.1 is that the modulo operation based on PP, is

5]

=B

Kz,

+|K],

B

divided to two modulo operations. One is based on F,. The other is based on Z,. What’s

more, the modulo operator is also decreased from K to [EJ When P, =2",
1

|K l R = |K ,» 18 just a truncation operation, namely [K ,» 18 the n-bit least significant bits
. K K |. ..
(LSBs) of K, whereas the floor operation 7 = o is the remaining part after the
1

truncation. Then, these two operations will not require any hardware resource in the
VLSI implementation. Thus, in Proposition 3.1, the modulo base is reduced from AF, to
P, without introducing any extra hardware.

We can see this point more clearly with the following collorary.

Collorary 3.1 For any positive integers n, K and P, we have

>

=2n +|Kl2" (3.2)

P

K.

14



where lﬁJ is the floor of £
2" 2"
Proof:

Based on Proposition 3.1, we assume P, =2" and P, = P without loss of generality.

We have

Kl =27\ | KL,

P

2p

]

In Collorary 3.1, with a m-bit integer K, {f—nJ is the (m—n)-bit most signinficant bits

(MSBs) of K, while |K|2, is the n-bit LSBs of K. It can be seen from Collorary 3.1 that

the size of the modulo operation is reduced by 2", that is, from 2" P to P. Also, the size

of the modulo operator is reduced from m-bit K to (m—n)-bit [-ZIL"J What’s more, the

multiplication by 2" and the subsequent binary addition of |K|,, is a simple

concatenation, that is, the modulo operation of base P produces the result, which forms

the MSBs of [K|,, ,, whereas || ,» forms the LSBs of K| - The reduction in the size of

2"p’
the modulo operation and that of the modulo operator will result in a saving of the
hardware resource for a VLSI implementation. It is noticeable that the concatenation and
the calculation of |K| ,»do not consume any hardware resources. Thus, Collorary 3.1 is

useful for the VLSI implementation of R/B converters to reduce the size of the modulo

operation.

15



3.3 Proposed Modulo Reduction Algorithm for General-Moduli

Proposition 3.2 Given integers X, B, P,,--+, P,, where n >1, we have

n—1 K m
Klpr, = 2| = [1# |+, (3.3)
m= P i=
]';1[ l Pon

Proof: (Proved by mathematical induction)

(1) Base step:

Since n>1, let n = 2. According to Proposition 3.1, we have

K
A R
When n = 3, we have
K
IKIPIPZPJ =hh _PlP2 I +IKIPIP2
K K
I Y I [FJ e,
- ~p B
2 K m
= m H‘Pi + II('IPl
m=1 HE i=1
. i=1

F, m+1

Thus, Proposition 3.2 holds for n =2 and n =3.

(2) Induction step:

16



Assumption: Proposition 3.2 is true when n = W, where W is a positive integer and

W > 1. That is,

w-1 K m
Klna, = 2| | = 115 |l
m=1 R i=1
=1

i
Fun

We need to show that Proposition 3.2 holds for n = W+1. That is,

W K m
Kl sy, =35 | 2| 112 |+IKI,
m= P i=
li:l[ I Pt
Proof for induction step:
K
Klanr,., =B Fr [WJ Py e
w w1 m
= K HR + mK I)l -'-II(IPl

IZ[R i=1 ' m=1 HP i=1

PW+] =l Pm+l

il
M=
=
fav

+|K],
L)

m

Thus, we have shown that Proposition 3.2 holds for n = W + 1 under the assumption

that Proposition 3.2 holds forn=W.
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In conclusion, from the base step and induction step, Proposition 3.2 holds for any
positive integer that is greater than 1.

[

Proposition 3.2 is the general case of Proposition 3.1. The modulo base in Proposition

3.2 is a product of » positive integers instead of a product of only two positive integers as

in Proposition 3.1.With Proposition 3.2, it is seen that a modulo operation based on the

product of n positive integers P, P,,---,P, can be divided to » individual modulo

operations where each operation is based on one of the positive integers A, F,, -, P,.
The method considerably simplifies the modulo operation based on the product of n
positive integers F,,P,,---, P,. What’s more, using Proposition 3.2, a modulo operation
with large base can be partitioned into several small wordlength channels in parallel.

Thus, Proposition 3.2 can result in a parallel and high-speed operation.

We give the following example to illustrate how Proposition 3.2 works.
Example 3.1: For a modulo operation [1099| ~ and four small integers
2x3x4x5=120, we have

[1099] ,, =19

Using Proposition 3.2, we have

[ 1099 J
2x3x4

=0+18+0+1=19

[1099] =2x3x4x

2x3x4x5

+2x3x

5

+1099,

3

[1099J [1099J
+2x| —=
2x3 . 2

With Proposition 3.2, we use four parallel small size modulo operations to replace

one big size modulo operation. Proposition 3.2 provides us with a very high concurrent

operation, thus resulting in very high-speed and low-power VLSI implementation.

18



The proposed modulo reduction algorithms, namely, Propositions 3.1 and 3.2,
provide a novel way to design size-reduced, fast and low-power modulo circuits for the
R/B converter design, B/R converters and RNS subsystems. Also, other modulo
algorithms such as modulo division, modulo comparison and modulo encryption
algorithm might benefit too. It is expected that the proposed modulo reduction

algorithms have many applications in RNS study.

3.4 Summary

In this chapter, we have proposed novel modulo reduction algorithms that reduce the
base of modulo operation for two-moduli sets and general-moduli sets. The proposed
algorithms significantly simplify the large modulo operation to the sum of a number of
small modulo operations. Based on the proposed algorithms, a modulo operation based

on the product of AP, P, can be divided to n individual modulo operations where each

operation is based on one of the positive integers F,, P,,---, P, respectively.
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CHAPTER 4

MODULO REDUCTION IN R/B CONVERSION

4.1 Introduction

In this chapter, we first apply the proposed modulo reduction technique of Chapter 3
to simplify the modulo operation with large base in the modified CRT. Then, based on

the proposed modulo reduced modified CRT, we derive new and efficient R/B

conversion algorithms for six three-moduli sets in form of {P,, 2", Ps}.

4.2 Application of Modulo Reduction to Modified CRT

Theorem 4.1 Given the moduli set { B, P,,---, P, }, the residue number ( x,,x,,":-,x,)

is converted into the binary number X by

n
n=2 ZWI-X; m+l
X=x+2 15— TIB|+R

m=1 i=1
[~
i=2 P

m+2

n

4.1)

’
W, X;
1

i=

B

where n>1,

R |N1‘1|P] -1

w 5

B
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w,=—% fori =23,...n
A

’_
Xp =Xy,

' -1 s _
X, = |Ni x,.'P ,fori=23,...n

Proof:

Based on the modified CRT [26], we have

n
f
X=x+h Zwixi

i=1

1-72}’3...P

where n >1

AT A I

A
w, =

!
Xp =X

! -1 i
xl=lNi xil ,fori=2,3,...n

B

Using Proposition 3.2, we have

n
r
w| | 2%

m+l n
_ i=1 I I
X - xl + E Z m+l B +
m=1 I I -P, i=2 i=1
i=2 Pm+2
n
n=2 Z WX m+1 n
i=1 '
=x+ ) o [17 |+ B wx
m=1 P i=1 i=1 P
i
=2 Pm+2

Z Wi x;

A
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Collorary 4.1: Given the moduli set {A,P,,P,---,P, }, where P, = 2% the residue

number ( x,,x,, -, X, ) is converted into the binary number X by

n
[
Z WiX;
i=1

n
!
2 W]

n-2 m+1 p n
— =1 ’
X=x+ 245 [1% |+B|2 2k 2w,
m=2 i=1 i=1 2k
11~
=2 Pm+2 P]
where n>1,
-1
A A I
_ A
1~ ’
R
w, =—=,fori =23,...,n
1
4 —
X; =Xy
' -1 T
X, = !Ni xilp ,fori=23,...n
Proof:

Based on Theorem 4.1, let P, =2*, we have

n
'
n=2 m+l Z WiX;
— i=1
X=x+2 [R5
m=2 =1 I I })l
L =2 .
n
’
n=2 m+l Z WX,
— i=1
- xl + I_IP’ m+1
m=2 i=1 HR
L i=2 i

Pm+2

Fpi2

n
!
Z wiX;

n
i=1 ’
+AF, +h Z W X;

2 in]

By
n
!
Z WiX; n

| = ,
1B R )

i=1

B

(4.2)

1

2k
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Theorem 4.1 and Collorary 4.1 can be considered as the further development of the
modified CRT by using the proposed modulo reduction algorithms. The complexity of
modulo operation in CRT and the modified CRT is reduced significantly by partitioning
the modulo operation with a large base to several individual modulo operations of small
bases in parallel. Based on Theorem 4.1, R/B converters can be obtained with higher
performance in terms of area and delay than CRT and the modified CRT due to its
parallelism and modularity. The parallelism provides high concurrent operation and
decreases delay. And by choosing the bases of several individual modulo operations with

similar magnitude, we can increase the modularity and further reduce area.

We use the following example to compare the CRT, Modified CRT and Theorem 4.1
and Collorary 4.1.
Example 4.1: Given the moduli set {9, 8, 7, 5}, the residue number (7, 4, 3, 2) is

converted to the binary number format X.

Using the CRT, we get N, =280, N, =315, N, =360, N, =504, [N'| =10,
|N2‘1|8 =3, [N;’|7 =5, and |N4“|5 = 4. The modulo base is 9x8x7x 5 =2520.

X=|280><10><x1 +315x3xx, +360x5x% x, +504><4><x4|

2520

=[280x10%x 7 +315x3x 4+360x 5x 3+ 504x 4x 2|

2520

=[32812],, =52
Using the modified CRT, we get w, =311, w, =35, w, =40, w, =56, [N"| =10,
V7|, =3, |N3'), =5, and |[NV;?|, = 4. The modulo base is 8x 7x 5 = 280.

X =x +9><|311><x1+35x3><x2 +40x5x% x4 +56x4xx4|

280

=7+9x|311x7+35x3><4+40><5x3+56><4x2|

280

23



=7+9x[3645|,, =7 +9x5=52
Using Theorem 4.1 and Collorary 4.1, we get w, =311, w, =35, w, =40, w, =56,

N'| =10, [N;'| =3,|N;'|. =5,and N,'| =4. Thus,
9 8 7 5

D wx; =311x7+35x3x4+40x5x3+56x 4x 2 = 3645

i=1

Zwix,'. Zw,.x; n
X =x, +RPP| = +B| 2" E——1| +]D wax,
1 17273 ])2P_; 1 2 ; i 12"
ip, - B
=7+9x8x7x[3645 +9x8x ﬁJ +[3645|, =52
8><7—5 L 7 ;

The above R/B conversion requires one modulo-2520 operation by using the CRT
and one modulo-280 operation if using the modified CRT. By using Theorem 4.1 and
Collorary 4.1, the same R/B conversion requires only three small size operations:
modulo-5, modulo-7 and modulo-8. Compared to the CRT, the proposed modulo-reduced
modified CRT decreases the size of modulo operation from 12-bit to 4-bit. Compared to
the modified CRT, the modulo reduced modified CRT decreases the modulo size from 9-

bit to 4-bit.

4.3 Application of Modulo Reduction to R/B Conversion for Three-

Moduli Sets

We now apply the modulo reduction technique and the modulo reduced modified
CRT to derive R/B algorithms for the two existing three-moduli sets {2" +1, 2", 2"-1},

{2"~1,2", 2" -1} and four newly found three-moduli sets: {2°"+1, 2", 2"+1},
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{2741, 27, 2"~1}, {2%"+1, 2", 22"—1} and {2™'+1, 2", 2"'-1}. All these three-
moduli sets are chosen in form of {P,, 2", P;} due to two reasons. First, according to the
proposed modulo reduction technique, we know that the R/B conversion in form of {P,,

2", P3} can be reduced to one simple modulo operation based on F,. Secondly, in the
above three-moduli sets, P, has the form of 2”1 or 2"+1. The moduli of the forms of

2" -1 or 2"+1 are referred to as the low-cost moduli [26]. The modulo operations based
on these moduli can be simply implemented with EAC adders.

Before deriving the R/B algorithms for the six cases, we now present Corallary 4.2

for the three-moduli set {P,, 2", P;}, which is the three-moduli case of Corallary 4.1.
Collorary 4.2: Given the moduli set { B, P,, P, }, where P, = 2% the residue number
(x,,x,,x;) is converted into the binary number X by
3

!
Z WiX; 3

X =x+R[2"| = +

2k

(4.3)

B

where n>1,
-1
NIIN, |ﬁ -1

Wl =—P_,
1

w,=—t fori =23,...,n

1
!
xi =x1’

] -1 s
X, = IN,. x,.lp ,fori=23,...n
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Proof:

Based on Collarary 4.1, let n =3, we have

n n
! !
-2 m+l Z WiX; 2 W, X;

X=xl+ZHP‘ S + P 2% | +

i m+1 k
m=2 =1 P 2

t

n

1
Z WiX;

i=1

2k

=2 Pm+2 B

B
||

The following R/B algorithms for six three-moduli sets are derived based on
Collorary 4.2 in a unified manner. The modulo operation of the R/B algorithms are
simplified to modulo P,.

Proposition 4.1: For N\={2" +1,2",2"—1}, we have

X =x +(2" +1)Y

.

-1
K=" =1, +(2" -1 x, + 22",

where n>1, and

Yy=2"

+IK]

on

Proof:
Based on Collorary 4.2, we have
z W,X;

X=4+RZ”E?7— +>

i=1

W, X,

[ i)

b

B
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n

!
Z Wi X;

=x1+(2"+1 27| e +

2n

n

!

Z WiX;
i=1

2"

It is easy to see that K = ) w,x] = (22"‘I —l)x1 + (2" —1)2 x, +2* ' x, [26]. Then, we

i=1

have
X=x+(2 +1)r

where n>1, and

+KL.,

We use the following example to illustrate the improvement that the proposed method

provides over the modified CRT for this three-moduli set.

Example 4.2: For a R/B converter with 8-bit dynamic range based on the moduli set
Ni= {2" +1,2", 2"-1}, the specific moduli set {9,8,7} is chosen when n=3, since
9x8x7=504>28=256. Randomly choose a number from 0 to 255, for example, X=169. Its
RNS representation X=( x,, x, , x,) is (7,1,1).

Based on the modified CRT, we have

Y =22 <), +(2" -1 x, + 22" x,

27(2"-1)

=|@* =X T+ (20 -1 x14+27°7 ]|
=[298|, =18

22 (2% -1

X=x+2"+)xY =7+9x18=169

Based on Proposition 4.1, we have
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K=("" -1y, + (2" -1) x, + 22",

=% -DxT+(2P -1 x1+27" x1=298
Y=2" +|K|,.

B

2" 2n-]
298

g i

=2 x[37], +|298],

=2’ +[298],

7

The binary representation of 298 is (100101010),, thus298x2~= (100101.010),.

And (100101), is equal to 37, while (010), is the binary representation of |298| o+ Lhen,

we have
Y =2° x|(100101), |, +(010),
=2*x(010), +(010),
=(010010), =18
X=x+Q2"+D)xY=T7+9%x18=169
When using the modified CRT, the above R/B conversion needs a modulo 56
operation. By using Proposition 4.1 which is derived from Theorem 4.1, the modulo size
is reduced from 56 to 7. That is to say, the length of modulo operation is reduced from 6-
bit to 3-bit. Also, the modulo operator is decreased from 298 to 37, reduced by 3-bit. The
3-bit L.SBs of Y are just the same 3-bit LSBs of 298. And the operations of multiplication

by 2* and addition to (010), correspond to a simple concatenation operation.
Proposition 4.2: For No={2°"+1,2",2"+1}, we have
X =x +(@7 1)y

where n>1, and
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Yy=2"

+IK]

&
2n 2" +1

K =0 1) + (2" +1)x, +27'x,

2m

Proof:
Based on Collorary 4.2, we have

n
’
Z Wi X;

X=x+PB|2"| E—| +

n

A

n
!
Z W, X;

=x +7 41 2r | =—] 4

n

’
Z Wi X;

i=1 2"

2"+1
It is easy to see that K = ZWix,f = (22"”1 -1)x1 + (2" +1)>c2 +2% " x, [26]. Then, we
i=1

have

X =x+027 +1)

1

We use the following example to illustrate the improvement that the proposed method

where n>1, and

+|K],

2" +1

provides over the modified CRT for this three-moduli set.

Example 4.3: For a R/B converter with 8-bit dynamic range based on the moduli set

Ny={2?"+1,2",2"+1}, the specific moduli set {17,4,5} is chosen when n=2, since
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17x5x4=340>28=256. Randomly choose a number from 0 to 255, for example, X=38. Its
RNS representation X=( x,, x, , x, ) is (4,2,3).
Based on the modified CRT, we have
Y =[(22 ~ 1y, + (27 + 1), + 27 %2 oo

=[@>*" — x4+ 27 +1)x2+27" x3

22(22+1)
=62, =2
X=x+2" +1)xY =4+17x2=38
Based on Proposition 4.2, we have
K =01k, + 2" + 1), +27"'x,

=27 - Dx4+ 2 +1)x2+2%*"'x3 =62
+|K],.

..
B

=27 x[15], +|62],

Yy=2"

=2%x +|62|

5

4

The binary representation of 62 is (111110),, thus62x 2= (1111.10),. And (1111), is
equal to 15, while (10), is the binary representation of |62| ,+ Then, we have
Y =27 x|(1111),|, +(10),
= 2% x (000), +(10),

= (00010), =2
X=x,+2" +)xY =4+17x2=38

When using the modified CRT, the above R/B conversion needs a modulo 20

operation. By using Proposition 4.2 which is derived from Theorem 4.1, the modulo size
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is reduced from 20 to 5. That is, the length of modulo operation is reduced from 5-bit to
3-bit. Also, the modulo operator is decreased from 62 to 15, reduced by 2-bit. The 2-bit

LSBs of Y are just the same 2-bit LSBs of 62. Thus, the operations of multiplication by 2°

and addition to (10), correspond to a simple concatenation operation.

Proposition 4.3: For N3={2"~1, 2”,2"" —1}, we have
X=x+(2" -1

>

K= (22n—1 _oml 1)x1 + (22n—2 _ l)xz 42 X

where n>1, and

Yy=2"

+IK]

271

2

Proof:

Based on Collorary 4.2, we have

X =ux +B|2"| & +

B

> wx
=x +(27-1) 2" e

n

[

Z Wi X;
i=1

27

271y

It is easy to see that K = Z":wixlf = (22""l -2 +1)’c1 +(22"'2 —l)x2 +27 2 x, [26].

i=l
Then, we have
X =x+0"-1)

where n>1, and
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We use the following example to illustrate the improvement that the proposed method

provides over the modified CRT for this three-moduli set.

Example 4.4: For a R/B converter with 8-bit dynamic range based on the moduli set
N3={2"-1, 2", 2" —1}, the specific moduli set {15,16,7} is chosen when n=4, since
7x16x15=1680>2%=256. Randomly choose a number from 0 to 255, for example, X=38.
Its RNS representation X=( x,, x, , x, ) is (8,6,3).

Based on the modified CRT, we have

Y = |(22n—1 g l)xl + (22n—2 _ 1)x2 422 x3l

27 (2n—1_1)

=[@*4 2" 4 1) x84+ (24 ~1)x 6+ 274 x3

24 2%y

=[1346] , =2
X=x+(Q2"-1)xY =8+15x2 =38
Based on Proposition 4.3, we have

K= (22n—1 _onH l)xl + (22n—2 —1)x2 4022 X,

= (22X4—1 ) AL x8+ (22X4_2 -Dx6+ 2242 % 3=1346
Yy=2" +|K|z"

=

2" 2771
1346
24

=2%x |84|7 +]1346]16

:24x

+[1346]

7

The binary representation of 1346 is (10101000010),, thus1346x27*=
(1010100.0010),. And (1010100), is equal to 84, while (0010), is the binary

representation of |1346| ¢+ Then, we have
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Y =2%x |(1010100)2|7 +(0010),
=2*x(000), +(0010),
= (00000010), =2
X=x+Q"-1)xY=8+15x2=38
When using the modified CRT, the above R/B conversion needs a modulo 112
operation. By using Proposition 4.3 which is derived from Theorem 4.1, the modulo size
is reduced from 112 to 7. That is, the length of modulo operation is reduced from 7-bit to
3-bit. Also, the modulo operator is decreased from 1346 to 84, reduced by 4-bit. The 4-
bit LSBs of Y are just the same 4-bit LSBs of 1346. Thus, the operations of multiplication

by 2* and addition to (0010) , correspond to a simple concatenation operation.
Proposition 4.4: For N.={2%"+1, 2",2"~1}, we have

X =x+02% +1)y

B

K=0"" 1), +(2" =1f x, + 274,

where n>1, and

y=2" +K|

2"-1

on

Proof:

Based on Collorary 4.2, we have

n
!
Z WiX;

X=x+B|2" ’=‘2—n +

n

Z W, x;
i=1

o

B
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n

ZWix,f
=x +7 1) 2| —|  + >

n
i=1

’

W. X,

[ e 4

27

2"-1

It is easy to see that K =) w,x] = (22”‘1 —l)x1 + (2" —1)2 x, +2%"'x, [26]. Then, we

i=1
have
X =x +(2 1)y

where n>1, and

We use the following example to illustrate the improvement that the proposed method

provides over the modified CRT for this three-moduli set.

Example 4.5: For a R/B converter with 8-bit dynamic range based on the moduli set
Ng={2"+1,2", 2"-1}, the specific moduli set {65,8,7} is chosen when n=3, since
65x8x7=3640>28=256. Randomly choose a number from 0 to 255, for example, X=38.
Its RNS representation X=( x,, x, , x; ) is (38,6,3).

Based on the modified CRT, we have

Y =2 ~1)y, + (27 -1f x, +27"'x,

27 (2" 1)

=[@>*" ~Dx38+(2° —1)* x6+27*" x3

232%-p

=[1568|,, =0
X=x+Q” +1)xY =38+65x0=38

Based on Proposition 4.4, we have
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k=0 =1, + (2" -1f x, + 22",

=277 —Dx38+(2* ~1)? x6+27*" x3=1568
Y=2" +|K|..

B
2" 2"-1
1568
23

=2’ x[196|, +[1568],

=23X

+[1568,

7

The binary representation of 1568 is (11000100000),, thusl568x27=
(11000100.000),. And (11000100), is equal to 196, while (000), is the binary

representation of |1 568| o+ Then, we have

Y =2’ x|(11000100), |, +(000),
=23 x (000), + (000),
= (000000), =0
X =x+Q" +1)xY =38+65x0=38

When using the modified CRT, the above R/B conversion needs a modulo 56
operation. By using Proposition 4.4 which is derived from Theorem 4.1, the modulo size
is reduced from 56 to 7. That is, the length of modulo operation is reduced from 6-bit to
3-bit. Also, the modulo operator is decreased from 1568 to 196, reduced by 3-bit. The 3-
bit LSBs of Y are just the same 3-bit LSBs of 1568. Thus, the operations of multiplication
by 2* and addition to (000) , correspond to a simple concatenation operation.

Proposition 4.5: For Ns={2?"+1,2",2°"~1}, we have

X=x+(2"+1)y

where n>1, and
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Y=2" +|K'2"

>
2" |

K =0 =1 + 27 —1)22 —1)x, + 2" x,

Proof:
Based on Collorary 4.2, we have
Z w,X;

X=x+B|2" ‘=’2—n +

n

Z WX,
i=1

on

B

n
!
pRTES

=x +(> +1) 27| E— +

3w
n

171
i=1

2"

22"}

It is easy to see that K = wyx! = (22 — 1), + (2" ~1f2? ~1)x, +2*x, [26].
i=1

Then, we have

X =x +(” 1)y

>

We use the following example to illustrate the improvement that the proposed method

where n>1, and

Y=2" +K],,

2271

provides over the modified CRT for this three-moduli set.
Example 4.6: For a R/B converter with 8-bit dynamic range based on the moduli set
Ns={2"+1, 2",2°"-1}, the specific moduli set {17,4,15} is chosen when n=2, since

17x4x15=1020>2%=256.
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Randomly choose a number from 0 to 255, for example, X=38. Its RNS representation
X=(x,,x,,x,) is (4,2,8).

Based on the modified CRT, we have

Y =|(2> -1y, + (2" - 12> ~ 1), + 27 x3|2"(22"_1)
=|@¥ -~ x4+ - (222 —1)x2+27*" x8
182, =2

X=x+Q2" +)xY=4+17x2=38

22222y

Based on Proposition 4.5, we have
K =0 -1k + (27 -1)22 -1, + 27",
= (22 D) x4+ (22 =272 = 1)x2+27% x8 =182
K
) A,
227
182
PY3

=27 x|45]  +[182],

Yy=2"

=22X

+1 82]4

15

The binary representation of 182 is (10110110),, thus182x27%= (101101.10),. And

(101101), is equal to 45, while (10), is the binary representation of ll 82| ,+ Then, we

have

Y =27 x|(10110110),| , +(10),

|15
= 2% x(0000), +(10),
=(000010), =2
X=x,+Q2"+1)xY =4+17x2=38
When using the modified CRT, the above R/B conversion needs a modulo 60

operation. By using Proposition 4.5 which is derived from Theorem 4.1, the modulo size

is reduced from 60 to 15. That is, the length of modulo operation is reduced from 6-bit to
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4-bit. Also, the modulo operator is decreased from 182 to 45, reduced by 2-bit. The 2-bit
LSBs of Y are just the same 2-bit LSBs of 182. Thus, the operations of multiplication by

2% and addition to (1 0), correspond to a simple concatenation operation.

Proposition 4.6: For Ng={2""'+1,2" 2™ -1}, we have

where n>1, and

X =x +2" 1)y
Y=2" +|K],,

]
2" |,

K =(2" -1}, + (2" —1)2" <1}, +2"x,

Proof:

Based on Collorary 4.2, we have

n

!
Z WiX;

X=x+P|2"| Z&—| +

n

n

I
Z Wi X;

i=1

2"

B

iw,.x;
=x +(2m +1) 2" o >
i=1

W. X,

7

o

oy
It is easy to see that K = wax' =(2" — 1), +(2" ~1)2" ~1)x, +2"x, [26]. Then,
i=l

we have
X =x+{+1)y

where n>1, and
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y=2"

>

We use the following example to illustrate the improvement that the proposed method

+|Kl.,

2n+l -1

provides over the modified CRT for this three-moduli set.

Example 4.7: For a R/B converter with 8-bit dynamic range based on the moduli set
Ne={2""+1, 2" ,2™' -1}, the specific moduli set {17,8,15} is chosen when n=3, since
17x8x15=2040>2°=256.

Randomly choose a number from 0 to 255, for example, X=38. Its RNS representation
X=(x,,x,,x;) is (4,6,8).

Based on the modified CRT, we have
Y =|2" - 1h, + (27 ~1)2" - Uy, +27x,|

=|@* -nx4+@ -D(2* -1)x6+2° x8|2,(

2" (2n+1_1)

23+l -1)

=2

120

=[722|
X=x+Q"+D)xY =4+17x2=38

Based on Proposition 4.6, we have

K=0" 1) +2" =12 -1}, +2"x,

= (2 —D)x4+(@2° —1)2*" ~1)x6+2° x8 =722
+[K],,

=]

2" |
722

L

=2° x 90| . +|722],

y=2"

=2’ +|722),

15
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The binary representation of 722 is (1111010010),, thus722x27= (1111010.010),.

And (1111010), is equal to 90, while (010), is the binary representation of |722| o+ Then,

we have
Y =2° x|(1111010),| , +(010),
= 2% x(0000), +(010),
=(0000010), =2
X=x+Q™ +D)xY =4+17x2=38
When using the modified CRT, the above R/B conversion needs a modulo 120
operation. By using Proposition 4.6 which is derived from Theorem 4.1, the modulo size
is reduced from 120 to 15. That is, the length of modulo operation is reduced from 7-bit
to 4-bit. Also, the modulo operator is decreased from 722 to 90, reduced by 3-bit. The 3-
bit LSBs of Y are just the same 3-bit LSBs of 722. Thus, the operations of multiplication

by 2* and addition to (010), correspond to a simple concatenation operation.

4.4 Comprehensive Study on the Proposed R/B Algorithms for Three-

Moduli Sets

We summarize the comparison of the modulo operations required by the six three-
moduli sets in Table 4.1. It is seen in Table 4.1 that all these six new R/B algorithms
reduce the modulo size compared to the modified CRT and provide new options to design
high-speed R/B converters. The modulo part is the critical path of the R/B converter.
The proposed method significantly reduces the critical path. Thus, the speed of the R/B

converter will be very much improved.

40



In [26], a comprehensive study of R/B converters for three-moduli sets has been
carried out based on the modified CRT. It has been shown that the moduli set N; can
offer the fastest R/B converter while requiring the least hardware resources for a given
dynamic range. However, based on the proposed modulo reduction method, the R/B
converter designs are different from those based on the modified CRT. Thus, the
conclusion of [26] might not hold for these new designs. For example, it is seen in Table
4.1 that the modulo operation required by N is the smallest compared to other three-

moduli sets. Hence, the N>-based converter might be the fastest.

Table 4.1 Modulo comparison of six three-moduli sets

8-bit . .
mseonises | Dy | MOESer e | Mot ot e
Ni={2" +1, 2", 2"-1} {9,8,7} 6-bit 3-bit
Np={2%"+1, 2",2"+1} {17,4,5} 5-bit 3-bit
N;={2"-1,2", 2 —1y | {15,16,7} 7-bit 3-bit
N={2?"+1, 2",2"-1} {65,8,7} 6-bit 3-bit
Ns={22"+1, 2" 2?1} {17,4,15} 6-bit 4-bit
Ne={2"™'+1, 2", 2™ 1} {17,8,15} 7-bit 4-bit

4.5 Summary

In this chapter, we have applied the modulo reduction algorithms to improve the
modified CRT and derive efficient modulo-reduced R/B algorithms for six three-moduli
sets. By applying the proposed modulo reduction algorithms to the modified CRT, the
complexity of modulo operation in the modified CRT is reduced considerably by
partitioning the modulo operation with a large base to several individual modulo
operations of small bases in parallel. The parallelism provides high concurrent operation

and decreases delay. We then apply the modulo reduction technique and the modulo
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reduced modified CRT to derive R/B algorithms for the two existing three-moduli sets

and four newly found three-moduli sets, all in form of {P,, 2", P,}.
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CHAPTER S

NEW DESIGNS OF BINARY
INCREMENTER/DECREMENTER

5.1 Introduction

An incrementer/decrementer is a common building block in many digital systems like
microcontrollers, microprocessors and frequency divider [30], [31]. It is also used as part
of the proposed R/B converter in this thesis. The binary incrementer/decrementer
implements the function of Y=Z+1 where Z is the input integer number. The current
implementations of incrementer/decrementers are mainly adder-based or counter-based
[32], [33]. For the adder-based incrementer/decrementers, the operating speed limitation
comes from the inherent carry propagation of adders. The counter-based
incrementer/decrementers usually implemented as Finite Machines have a similar speed
limitation problem. This is because the up/down counter is also designed based on the

concept of addition, although it uses half-adder rather than full-adder [34].
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Inc/Dec > . + l %

A<n-1, o> B<n—1, 1> B<0>

C.. n-bit carry ripple adder C,,

v

Y

Fig. 5.1. The CPA-based incrementer/decrementer

A carry propagate adder (CPA)-based m-bit signed-2’s complement

incrementer/decrementer [33] is shown in Fig. 5.1. When the operand A is to be

incremented by 1, Inc/Dec =0, thus B receives 000...01 and the carry input is set to 0.

If the operand A is to be decremented by 1, Inc/Dec =1 , thus B receives 111...10 and

the carry input is set to 1 to achieve signed-2’s complement operation. To implement

increment and decrement by the same circuit, the operand B and the carry input can be

tied directly to the mode-selection signal Inc/ Dec or its complement, as shown in Fig.
5.1. With this configuration, there is a carry propagation effect from Cj, to Cgy through a
series of full adders that makes this circuit slow.

In this chapter, a novel MUX-based algorithm for increment and decrement
operations is proposed. The algorithm makes use of the mechanism of information
transferring between the input Z and the output ¥, resulting in a high-performance MUX-
based binary incrementer/decrementer. Based on this algorithm, new designs are
introduced to improve both the unsigned and signed-2’s complement
incrementer/decrementer. Furthermore, for the purpose of performance evaluation, the
proposed unsigned MUX-based incrementer/decrementer is implemented using FPGA

technology.

44



5.2 Proposed Unsigned Binary Incrementer/Decrementer

In this section, we propose a new unsigned MUX-based incrementer/decrementer
avoiding the delay introduced by the inherent ripple carry of the adder-based design. The
decrementer of Z-1 is the most important part of the critical path of the proposed
incrementer/decrementer. Thus, we first present a new decrement algorithm, and then,

apply it to design a MUX-based incrementer/decrementer.

5.2.1 New MUX-Based Unsigned Decrement Algorithm

The truth table of the unsigned decrement operation is shown in Table 5.1. Let the
input be Z = Z,1....Z1 Zy . To find the output, start from the LSB Z; and search to the
MSB Z,.1 for the first occurrence of bit ‘1°. Let the first bit ‘1 to be Z;. Then the output
is obtained as follows:

1) Complement all data bits Z; for I=1J....0.

2) Leave all other bits of Z;'s for I > J as they are.

3) Complement all bits if Z = 0.

We denote Z; as the Least Significant One Bit (LSOB). Thus, for n-bit input Z, we
derive the algorithm shown in Fig. 5.2 to get the n-bit output Y. Proposition 5.1 can also
describe the proposed algorithm.

Proposition 5.1 Given any n-bit binary input Z, we get its decrement result Y = Z-1 as

follows.

Y=Z-1 yvj=i®(20+zl+'”+zj_l): ISan—l
Y, =Z,, i=0

Proof:

According to the proposed algorithm in Fig. 5.2, we have
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Y, =2,

Y,=2,2,+2,2,=2,®Z,

Y, =Z,(Zy+Z,)+ Z,Zy + Z, = Z, D(Z, + Z,)

Y =2, ,®Z,+Z, ++Z,,)
[
The following example is used to demonstrate the operation of the proposed
algorithm.
Example 5.1: Find the decrement result of the 8-bit number (10110100),.
We carry out the operation by searching from the LSB to the MSB to find the first ‘1’
bit. This LSOB is the 3™ bit from the LSB. Thus, the first 3 LSBs 100 will be inverted to
011 in the output and the rest of the bits will keep their values as 10110 in the output.

Then, the final output will be 10110011, which is exactly the desired result.

Table 5.1. Unsigned decrement truth table

Z Y=2-1
0---000 1.--111
0---001 0---000
0---010 0---001
0---011 0---010

0---010---0 0---001---1
1---111 1---110
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If Z, =1, then {¥,=0, Y\= Z;, -+, Yn:1= Zn1}
Else Y;=1,
If Z, =1, then {Y,=0, Y= Z,, - -+, Yp.= Zn1}
Else Y, =1
If Z, =1, then {Y,=0, Y;=Z;, -+, Yp.1= Zn}
Else ¥,,=1
IfZ., =1, then ¥,,=0
Flse Y,.,=1
End if
End if

Fig. 5.2. The proposed decrement algorithm

5.2.2 New MUX-based Unsigned Decrementer

Based on the proposed algorithm, a new n-bit MUX-based decrementer is designed as
shown in Fig. 5.3. It is composed of a data-out MUX array and a decision module (DM)
used to find the LSOB. The output of DM is Dy ... Dy Do. When D = 0

(J =0,...,n—1), the input bits from Z; to Z, are 0. From Proposition 5.1, it can be noted

that each bit of the decrement result Y except Yo can be derived by a MUX operation. For

example, by equation (5.1), we have Y, =ZZ, +Z Z,=Z,®Z, that can be

implemented by a MUX whose inputs are Z, and Z, with a select signal connected to

Z,.
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In the case of Z = 0---000, the decrement output should be Y = 1---111, and there is a
carry-out (Cout = 0). In other cases, there is no carry-out (Cout = 1). Thus, we have
Cu=0, when D, =Z,+Z, +---+Z, _,=0
C,=1 when D, =Z,+Z +--+Z =1
Combining the above two equations, we can then obtain
Couwu=D, . =2y+Z,+-+Z, (5.2)

Based on (5.2), the implementation of the carry-out is just a direct connection to Dy ; as

shown in Fig. 5.3.

Dy Zy >0- )
8 P T
Dy "o 0 | h
7z, — Tl—
Z;
D, LDc [0 | "
Z 4 I
Z, -
Zy 2/ D l Lo :‘j You
Cout
Decision Module Data-Out MUX Array

Fig. 5.3. The proposed MUX-based unsigned decrementer
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5.2.3 New MUX-based Unsigned Incrementer/Decrementer

The proposed MUX-based decrementer can be used to build an unsigned
incrementer/decrementer. The increment function will require that all the input bits be
inverted in advance and then sent to the proposed decrement circuit. Then, the inverted
output of the decrementer will give the desired increment result. This feature can be
summarized as Proposition 5.2. We rewrite Lemma 4 which is needed for the proof of
Proposition 5.2 as follows.

Lemma4 2" -1-X=X,_,X, ,"*X, (5.2)

for any non-zero n-bit binary number X =x,_x, ,---x,

Proposition 5.2 Given any »-bit binary number Z, we have

Z+1=Z -1 (5.3)
Proof:

According to Lemma 4, we have Z =2" —1—Z . Thus

Z-1=2"-1-(Z-1)

=2"-Z
=2"-(2"-1-2)
=7Z+1

The following example is used to demonstrate the operation of increment based on
Proposition 5.2.

Example 5.2: Find the increment result of the 8-bit number (10110100),.
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The inverted input is 01001011. Then, after the proposed decrementer, the output will be

01001010. By inverting this output, we will have the correct increment result as

10110101.
By applying Proposition 5.2 to Proposition 5.1, we can derive a new binary increment

algorithm as follows.
Proposition 5.3 Given any »-bit binary input Z, we get its binary increment result ¥ =

Z +1 as follows.

e 7 <ji<pn—
+Z,), 1jSn=1 (5

Proof:
1) Inthecaseof 1< j<n-1, according to Proposition 5.1 and 5.2, we have

Y, =Z,®(Zy+Z,++Z,,)

=Z(Zy+Z\++Z, )+ Z,Zy+Z, ++Z,,

=Z,0(Zy+Z,+-+Z,,)

2) In the case of j =0, according to Proposition 5.1 and 5.2, we have

J J
|
Comparing equation (5.1) and (5.4), it can be observed that they are both ¥, = Z_o in

the case of j = 0. In the case of 1 < j <n -1, equation (5.1) is

Y, =Z,9(Z,+Z,+--+Z, ) and equation (5.2)is ¥, =Z, @(Z+Z+-~+Z).

Since the logic OR of all input bits: Z, + Z, +---+Z, , is implemented by the DM in Fig.
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5.3, we can implement _Z—0—+ Z+ +Z by inverting the input of the DM in Fig. 5.3.

The proposed MUX-based binary incrementer is shown in Fig. 5.4.

Z Do Yo
A m
_ s
zZy ]
Z 1 Y:
2 LDC 2—_ 2
7 — |
— b.\ 1 |
Zn—l Zn-l LDC 0 Yn~1
Con

Decision Module Data-Out MUX array

Fig. 5.4. The proposed MUX-based unsigned incrementer

In the case of Z=1---111, the increment output should be ¥ = 0---000, and there is a

carry-out (Cout = 0). In other cases, there is no carry-out (Cout = 1). Thus, we have

N =Zy+Z e HZ_ =0

n

C,.=0, when D

Cu=\ When D, =Z,+Z +---+Z, =1

out
Combining the above two equations, we can then obtain

Coo=D, =Z,+Z,++Z (5.5)
Based on (5.5), the implementation of the carry-out is just a direct connection to D,y as

shown in Fig. 5.4.

The proposed n-bit MUX-based incrementer/decrementer is shown in Fig. 5.5. It is
composed of a data-in MUX array, a data-out MUX array and a DM used to find the

LSOB. The data-in MUX array is used to select between the input Z and its complement.
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The output of DM is D,,.; ... D; Dy. When D;=0 (J =0,...,n—1), the input bits from Z;
to Zy are O for the case of decrement and 1 for the case of increment. To implement the

function of increment and decrement by the same circuit, we use the mode-selection
signalEE/ Dec . When the operand Z is to be incremented by 1, the signal Inc/ Decis set
to 0. If the operand Z is to be decremented by 1, the signal Inc/ Decis set to 1.

In both cases of increment and decrement, when the signal Cout is 0, it means that
there is a carry-out from the MSB. This Cout = 0 happens in two cases. One is Z =0---000

and the function to be implemented is decrement. The other is Z = 1---111 and the
function to be implemented is increment. In both cases, D,.; is zero. In other cases,

D_, =1 and there is no carry-out (Cout = 1). Thus, the carry-out circuit here is the same

as Fig. 5.4.
Inc/Dec
% T!_ Do % o (3
Lo -
9 z 1 .
I D, Lo 0| 1
Z] (l) d 'Tl—
V/
T e
D2 —
G e 7 |
1 j
Zy 1 Zn 1 Yo
rewm A FH>o——o '
Cout
Data-In MUX Array  Decision Module Data-Out MUX Array

Fig. 5.5. The proposed MUX-based unsigned incrementer/decrementer
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5.2.4 A Comparison among the Incrementer/Decrementers

Compared to the existing adder-based incrementer/decrementer in Fig. 5.1, the
proposed incrementer/decrementer has higher speed and requires less hardware resources
as shown in Table 5.2. The reason is that the proposed design here uses MUX instead of
full adder as basic arithmetic unit. This reduces the hardware complexity since a MUX is
much simpler than a FA. Furthermore, the information of lower significance bits is
transferred to higher significance bits by a series of OR gates. That is, the critical path of
the output Y of the proposed decrementer consists of one inverter, (n-2) OR gates and two
MUXSs. This structure reduces the delay introduced by the inherent ripple carry of CPA in
the CPA-based incrementer/decrementer and reduces the complexity of the CPA-based

incrementer/decrementer to a great scale.

Table 5.2. Complexity and delay of the unsigned incrementer/decrementer

based on CPA and MUX
Incrementer/
Complexity Delay
Decrementer
CPA-based nFAs + nlnvs ntp, +t,,
Proposed MUX-based | (2rn~1D)MUXs +nlnvs +(n—1)ORs | ¢t,, +(n—2)top + 2t

5.3 Proposed Signed-2’s Complement Incrementer/Decrementer

In this section, we extend the proposed unsigned increment/decrement method to the
design of signed incrementer/decrementers. The 2’s complement number representation

is used for this study.
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Table 5.3. Truth table of signed and unsigned increment/decrement

. Signed-2’s complement . Unsigned
Decimal Zg Y=Z-1p y=z+1 | Decimal — Y=§-1 Y=7+1
+7 0111 0110 1000 7 0111 0110 1000
+6 0110 0101 0111 6 0110 0101 0111
+5 0101 0100 0110 5 0101 0100 0110
+4 0100 0011 0101 4 0100 0011 0101
+3 0011 0010 0100 3 0011 0010 0100
+2 0010 0001 0011 2 0010 0001 0011
+1 0001 0000 0010 1 0001 0000 0010
+0 0000 1111 0001 0 0000 1111 0001
-0 — _ _ _ _ _ _
-1 1111 1110 0000 15 1111 1110 0000
-2 1110 1101 1111 14 1110 1101 1111
-3 1101 1100 1110 13 1101 1100 1110
-4 1100 1011 1101 12 1100 1011 1101
-5 1011 1010 1100 11 1011 1010 1100
-6 1010 1001 1011 10 1010 1001 1011
-7 1001 1000 1010 9 1001 1000 1010
-8 1000 0111 1001 8 1000 0111 1001

Table 5.3 lists all possible 4-bit signed binary numbers in signed-2’s complement
representation as well as their increment/decrement results. Note that the positive
numbers in signed-2’s complement representation have a 0 in the leftmost position. All
negative numbers have a 1 in the leftmost bit position to be distinguished from positive

numbers.

The corresponding unsigned number, are also shown in Table 5.3 for the purpose of
comparison. It is seen from Table 5.3 that the increment and decrement of the signed-2’s
complement representation of the 4-bit numbers from 0 to 7 are the same as the
increment and decrement of the unsigned representations. And the increment and
decrement of the signed-2’s complement representation of the 4-bit numbers from -1 to —

8 are the same as the increment and decrement of the unsigned representation of the 4-bit
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numbers from 15 to 8. For example, the signed-2’s complement decrement result of 1001
( the signed-2’s complement of —7) is 1000 (the signed-2’s complement of —8), while the
unsigned decrement result of 1001 ( the unsigned representation of 9) is also 1000 (the
unsigned representation of 8). Thus, we can use the n-bit unsigned
incrementer/decrementer to  implement the #n-bit signed-2’s  complement

incrementer/decrementer as shown in Fig. 5.6.

The proposed signed design implements overflow mechanism as follows. In the
signed design, overflow (Cout = 0) occurs in the following two cases. If the function to
be implemented is decrement, in the case of Z = 1000 (-8), the output is Y = 0111 (7).
This is not a legal operation. Thus, there is overflow (Cout = 0). If the function to be
implemented is increment, in the case of Z= 0111 (7), the output is ¥ = 1000 (-8). This is

not a legal operation. Thus, there is overflow (Cout = 0). In these two cases, we have

Inc/Dec=1 AND D,,=0 AND Z,, =1
C,.=0, when §_— " g
Inc/Dec=0 AND D, ,=0 AND Z, , =0

C,. =1, when others

Combining the above two equations, we can then obtain

C,, =Inc/Dec-D, , Z, , -Inc/Dec-D, , -Z

n-1

-t/ Dec+ D, , +Z, ) {tnc/ Dec+ D, , + 2,

=Inc/Dec-D, , +Inc/Dec-Z, ,+D, ,+D,_,-Z,_ +D,_, -Inc/Dec

n

+Inc/Dec-Z,_,+D, , Z,

n—

=D, , -‘Hc/Dec+1+Zn_l +}7Z'/Dec+—Zn__1)+ﬁc/Dec-Z,‘_1 +%/Dec~Z_"_l—
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=D, , +Inc/Dec® Z (5.6)

Tnc/Dec
2 TL Dy Z {>o Yo
b>o——o , nm
T b oo "
1 : —
Z
S IS z 2 .
T Bt [T
Dz RS
Z; 1
P oo Z I
i
- ] l_) Duz
Lo——o z T
— -1 L-Dc 0 — yn-l
Data-In MUX Array  Decision Module Data-Out MUX Array
Tne/Dec
y Cout
Dn-2

Fig. 5.6. The proposed signed-2’s complement incrementer/decrementer

Based on (5.6), the implementation of the overflow flag C , consists of one XOR gate

and one OR gate as shown in Fig. 5.6. The mode-selection signal Inc/ Decis used to
select the function to be implemented. D, , is the MSB of the output of the DM. When D,

=0 (J=0,...,n—2), the input bits from Z; to Zy are 0 for the case of decrement and 1

for the case of increment.

The performance of the proposed 2’s complement n-bit incrementer/decrementer is
similar to that of the unsigned design in Section 5.2, with a minor modification of the
carry-out circuit. Thus, the comparison between the proposed design and the CPA-based
design is similar to that shown in Table 5.2. The proposed MUX-based design has higher

speed and requires less hardware resources in the signed-2’s complement case.
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5.4 FPGA Implementation Results

To get a practical performance measure, both the traditional and the proposed unsigned
MUX-based incrementer/decrementers are implemented using Xilinx FPGA technology
for the 32-bit and 64-bit cases. The synthesis and implementation tools are Synopsys’s
Design Compiler Version 3.4b and Xillinx Alliance M1.3 software. The target
technology is a Xillinx 4010e-3 FPGA. The performance evaluation in terms of power,
area and delay is carried out. The results are compared in Table 5.4. The results of the
FPGA implementation show that the proposed design consumes 40% less hardware than
those based on CPA. The delay is also reduced close to 50%. The power consumed by the
MUX-based design is almost 30% less than that of the CPA-based design. The reason for
this improvement is that the arithmetic operation of the CPA-based
incrementer/decrementer is based on addition with ripple carry, while the proposed
incrementer/decrementer takes MUX as its arithmetic base. To reduce delay, the
traditional incrementer/decrementers based on high-speed adders such as carry select
adders or carry look ahead adders could have been used. However, these come at higher

cost of power and area.

Table 5.4. Implementation results of the unsigned incrementer/decrementers
32-bit 64-bit

Incrementer/Decrementer | £ower | Cell | Delay | Power | Cell | Delay
(mw) | Area | (ns) (mw) | Area | (ns)

C, : CPA-based 13.4495 | 161 |225.39 255791 | 321 |443.95

C, :MUX-based | 98508 | 95 |12038|18.1628 | 191 |238.14

G =% 00%
c

1

26.69 | 4099 | 46.59 | 28.99 |40.50 | 46.36

57



5.5 Summary

In this chapter, new algorithms and designs have been proposed for the signed and
unsigned incrementer/decrementers. The proposed MUX-based incrementer/decrementer
is more efficient in terms of speed and hardware complexity compared to the adder-based
incrementer/decrementer for both signed and unsigned cases. An FPGA based
comparison of the proposed incrementer/decrementer with the traditional one shows that
the proposed design requires 40% less hardware while the delay is reduced close to 50%.
The power consumed by the MUX-based design is almost 30% less than that of the CPA-

based design.
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CHAPTER 6

NEW DESIGNS OF MODULO 2"-1
INCREMENTER/DECREMENTER

6.1 Introduction

The modulo increment/decrement operations of |Z - 1| »,and |Z + 1| o, Where Zis a

n-bit integer, are useful building blocks. They find applications in different circuits such
as frequency dividers, memory management units and microcontrollers (circulating
buffer pointer increment/decrement). They are also very important for implementation of
an area-time efficient and power-saving R/B converter which is the most complicated
part of a RNS system. For example, in [27], the author suggests to use a modulo 2"-1
adder to implement the variable C which is defined by equation (20) in [27] as

|r2 +1| If we assume Z =r, and n = k-1, then we have the modulo increment

P A
operation as |Z + 1| ,»_y- In [35], the implementation of the variable Y which is given by
equation (7c) in [6] employs the modulo 2"-1 decrement operation. By replacing the

variables in equation (7c) with equations (5a) — (5f) in [35], we can have the equation of

Y as follows.
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k-2 k=2
. {IZ X=X, +277x; iy Jor x, 2x

k-2 k-2
|2 X —x, +2"" x, —1,2"-‘—1 Jor x, <x

If we assume Z =2*7x, —x, +2*?x, and n = k-1, then we have the modulo decrement

operation as follows.

_ for x, 2x,

2.
Y =
|z -1

To further reduce the delay compared to [27], the author of [35] uses two modulo adders

- Jor x,<x

of the

2"-1

working in parallel to implement the modulo operations |Z| o and |Z -1
variable Y.
The standard implementation of a modulo 2"-1 adder uses a conventional binary

adder with the carry output connected to the carry input to achieve the EAC. The CPA-

based modulo incrementer/decrementer is shown in Fig. 6.1 (a) and (b). Fig. 6.1 (a)

shows a modulo incrementer that conducts a 1’s complement addition of |Z +1],,_, . Fig.

6.1 (b) is a modulo decrementer that conducts a 1’s complement subtraction of IZ =1,. -

In Fig. 6.1(b), the subtrahend “000...01” is reverted to “111...10”, and is added with
EAC. This conventional design introduces delay and consumes hardware and power to a
degree that is not acceptable for a constant modulo plus/minus one operation in RNS
system. If we use this standard design, the delay, area and power dissipation introduced
by the modulo incrementer/decrementer will trade off the merit of RNS. The savings on
delay, area and power gained by RNS due to its intrinsic properties such as carry-free
operations, parallelism and modularity will be counteracted to some extent. This is also

one reason why the author of [35] uses the parallel adder structure in Module Y to
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and |Z -1

implement [Z [ ) ,»_- The parallel adder structure in [35] can reduce the delay

"1

compared to the serial adder structure where |Z is implemented by a CSA tree and a

2"-1
modulo 2°-1 adder that are followed by another modulo 2°~1 adder to implement

|Z —1| ,»_,- However, as compensation, the circuit becomes more complicated. Thus, it is

important to develop new techniques to improve the performance of the modulo

incrementer/decrementers that implement the operations of lZ -1

2 'y “} 'y

»,and |Z +1

271"

A<n-1, 0> B<n-1, 0> A<n-1, 0> B<n-l. o>
ICin n-bit ripple carry adder C, IC.. n-bit ripple carry adder C,,
‘ Y AI ‘ Y
(a) |Z+ 1|2"—1 (b) |Z _1|2" -1

Fig. 6.1. The CPA-based modulo incrementer/decrementer

In this chapter, we use the new MUX-based algorithm proposed in Chapter 5 to

design new modulo incrementer/decrementer that implement the operations of

1z-1

»_,and |z +1

oy The design and FPGA implementation of the MUX-based

modulo incrementer/decrementer is carried out. The implementation results show that the
proposed design has better performance than those based on adders in terms of area,

delay and power dissipation.
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6.2 Proposed Modulo Decrementer

Table 6.1. Truth table of binary/modulo decrement

4 Y=2-1 Y=|z-1,
0---000 1..-111 1---110
0---001 0---000 0---000
0---010 0---001 0---001
0---011 0---010 0---010
1---111 1---110 1..-110

The comparison of the binary and modulo decrement operations is given in Table 6.1.

It is seen that the only difference of their truth table is in the case of Z=0---000. When

Z=0---000, the result of binary decrement is 1---111, whereas it is 1---110 for modulo

decrement. These two decrement results differ from each other at their LSB. The LSB of
the binary decrement is ‘1°, whereas it is ‘0’ for the modulo decrement. Based on this
feature, we can have the modulo decrement algorithm as Proposition 6.1.

Proposition 6.1 Given any »-bit binary input Z, we get its modulo decrement result Y

= |Z - l] - follows.

Y, =2, ®(Zy+Z,++Z,), 1<j<n-1

Y=|z-1, < _ (6.1)
Y, =2,9(Zy+Z,+--+Z,,), j=0

Proof:

1) In Table 6.1, for all inputs Z#0, namely, Z,+Z, +---+Z,_ #0, we have

Y=Z-1=|Z-1 ;- Thus, according to Proposition 5.1, we have

Y,=Z,®(Z,+Z,++Z, 1<i<n-—1
Y=IZ—1| I — S _J ( 0 1 1—1)’ Jsn
2"-1 )’j:ZO, J:O
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2) In the case of Z=0, namely, Z,+Z, +---+ Z,_, =0, the binary decrement result
and the modulo decrement result differ with each other at their LSB. The LSB of

Y= |Z —1| ;18 Yo that is the complement of Ko, the LSB of K =Z —1. Thus,

according to Proposition 5.1, we have

Y.=Z @®Z,+Z, +---+7Z ), 1<j<n-1
v=lz-1,, o =504 ) S
— )fj:ZO’ _]=O

Combining the above two cases, we have

Y, =Z,®(Z,+Z,+-+Z,,), 1<j<n-1
Y=|Z-1, &Y, =Z,Zy+Z ++Z, +Z(Zy+ Z, + -+ Z, )
=Z,®Z,+Z,+---+Z,)), j=0

Based on Proposition 6.1, we can design a new modulo decrementer using the
proposed binary decrementer in Fig 5.3. By comparing equation (5.1) and (6.1), we can

see that the modulo decrement result Y, is equal to the binary decrement result in the

case of 1< j<n-1. The only difference is ¥,. It is ¥, =Z  in equation (5.1) and
Y,=2,®(Z,+Z, +---+Z,_,)in equation (6.1). Based on this analysis, we use a MUX
to take‘.the place of the inverter corresponding to Y, in Fig. 5.3. The inputs of this MUX
are Zo, the LSB of the input Z, and its complement. From equation (5.2), we have
Cou=D, ,=2y+Z +--+Z _,then ¥, =Z, ®(Z+Z,++Z,)=2,9DC,,. Thus,

we can use the carry-out signal C

out

of the binary decrementer as the select signal of the
MUX used to derive Y,. Then, we get a new design of the modulo decrementer as shown

in Fig. 6.2. When the carry-out signal is one, it means that the input Z is non-zero
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(Z#0---000). Then the output of the proposed modulo decrementer is exactly the output
of the binary decrementer. When the carry-out signal is zero, it means that the input Z is
zero (Z=0-:-000). Then the LSB of the modulo decrementer is the complement of the
LSB of the binary decrementer, while other bits of the modulo decrementer are the same

as the output of the binary decrementer.

Y,

1

\V

l Z,

/)

Z

¥| ¥ | ¢

2
S il it of il o i

Y,

Z

Z, |A\ Zo

Lpo

Decision Module Data-Out MUX Array

Fig. 6.2. The proposed MUX-based modulo decrementer

6.3 Proposed Modulo Incrementer

We now propose a new algorithm to implement a modulo incrementer based on the
proposed MUX-based modulo decrementer. We rewrite Lemma 4 which is needed for the

proof of Proposition 6.2 as follows.

Lemma 4

2-1-X|, =X=X_X%, % (6.2)
for any non-zero n-bit binary number X =x,_,x, , - x,.

Proposition 6.2 Given any n-bit binary number Z, we have
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z-1, ., z=2"-2

Proof:

According to Lemma 4, for Z # 0, we have Z = |2" -1- ZIZ"—I )

If Z#2"-2,|Z+1|,_ #0, then we have

[2+1,, =12 +1,

2" —-1- |Z + 1|2"-1|2"-1 by Lemma 4

2" —1—Z—1|2"_1
= |Z_—-1I2n_1 by Lemma 4
IfZ=2"-2, |Z+1|2,_1 =0, then we have

|Z h 1Iz"-1 =

2" -1-Z - 1|2n_l by Lemma 4

2" —2—(2" —2)[2n_1 =0

Thus, we have IZ + 1| oy = lZ ‘1|2,_1~

Proposition 6.2 eliminates the all ones representation of zero. The typical modulo
incrementer design in Fig 6.1. (a) has the double representation of zero. Proposition 6.2
will be simplified if the double representation of zero is adopted.

Collorary 6.1 Given any n-bit binary number Z, if the double representation of zero

is adopted, we have

Z+1),, =Z-1] (6.4)
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Proof:

According to Proposition 6.2, for Z =2" -2, we have

1) lZ + 1|2"—1 = |Z_ 1'2"—1

2"-1-Z —llzn_1 by Lemma 4

2"-2-(2"-2)

=<11---1>,
2) |Z + 1|2"—-1 = IZ— 1|2”—1

2" -1-Z~ 1|2"~1 by Lemma 4

2" —2-(2" —2)|2n_1

=< 00---0>,

Since the double representation of zero, all ones and all zeroes, is allowed, both

<11---1>, and <00---0>, represent zero. Then equation |Z+1|Z,_1 =\Z_—-1|2"_]l is

covered by equation |Z + 1| oy = IZ - 1|2,_1~

By applying Proposition 6.2 to Proposition 6.1, we can derive a new modulo

increment algorithm as follows.

Proposition 6.3 Given any n-bit binary input Z, we get its modulo increment result ¥

=|z+ 1|2"_l as follows.

Y=|Z+1,, {

Proof:

Y, =2, ®(§+z+---+gz)®(§zl---Zn_l),lSan—l
Y, =Z,®(Zy+Z,++Z, )®(Z,Z,-Z,,), j=0

(6.5)
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1) In the case of Z #2" —2, namely, ZZI ---Z,, =0, according to Proposition 6.1
and 6.2, we have

Y, =Z,0(Z,+Z, +-+Z,)1<j<n-1
Y, =2,9(Zy+Z2,++Z,,), j=0

lz+1,. = |Z - 1|2"_1 = {

Since Y, =Z, ®(Zy +Z, ++Z,) 1<j<n-1

(Z_O+Z1 +---+Z)+Zj(Z+Z+---+§:)

Il
N

J

=Z,®(Zy+Z,++Z,,)

Y, =Z,®(Z,+Z,++Z,.) j=0

=2,(Zy+Z, 4+ 2, )Y Zo(Zy + 2+ 4 Z,0)

=Z,®(Zy+Z, ++Z,,)

Thus, in the case of Z # 2" —2, we have

Y, =2, ®(Zy+Z,++Z, ) 1< j<n-1

ZytZi 4t 2 (6.6)
Y,=Z,®(Zy+Z ++Z,,), j=0

|Z+1|z"-1 =|Z_1I2"—1 ={

2) In the case of Z =2" —2, namely, Z—OZ1 ---Z, , =1, according to Proposition 6.1

and 6.2, we have

Y, =2, ®(Zy+Z,+-+Z, ) 1<j<n-1

|Z+1l2"—1=lz_ll2"—l={Y —-Z_®(Z—+7+ +-Z—) =
j =4 0 p Tt 1)y J=0

Since ¥, =Z, ®(Z,+Z, +++Z,.,) 1< j<n-1

=2,y + 2+ o+ L) 2 (2 244 2,
=Zj€B(Z+Z_1+-~+Z)

Y, =Z,®(Zy+Z,++Z,,) j=0

Zy(Zy+ 2+ + 2, )+ Zy(Zy + 2, 4+ Z,)
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=Z, @(Z+Z+~-+Z,,_1)
Thus, in the case of Z =2" —2, we have

Y,=Z,©(Z,+Z,++Z, )< j<n-1
Y, =2, 9(Z,+Z,++Z,_), j=0

Z+1), , =Z-1|,_ = { 6.7)

3) Combining equations (6.6) and (6.7), we have

For1<j<n-1,

Y, =Z,®(Zy+Z,+ -+ Z, WZoZ, - Z )+ Z, ®(Zy+ Z, ++ 2, N2oZ, Z,,)

=Z,®(Zy+Z, ++Z,_ )O(ZyZ,Z,.,)

For j=0,

Y, =Zy®(Zy+Z, + -+ Zy WZoZy 2, )+ Zy @ (Zo+ 2, ++++ Z, WZoZy - Z, )

=Z,®(Zy+Z, ++Z,)O(ZyZ,Z,.,)

Thus, we have

Y, =Z,®((Zy+Z,++Z,)®(Z,Z,Z, )< j<n-1

Pz, o L1210 .
Y, =Z,®(Zy+Z,++2Z,)®(2,Z,Z,.), j=0

If the double representation of zero is allowed, Proposition 6.3 can be simplified as

follows.
Collorary 6.2 Given any n-bit binary input Z, if the double representation of zero is

allowed, we get its modulo increment result ¥ = ]Z + 1| oy 88 follows.

Y, =Z,®(Zy+Z,++Z; )< j<n-1

Lot 4y . (6.8)
Y, =2,®(Z,+Z, ++Z,,), j=0

Y=|Z+1], @{
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Proof:

According to Proposition 6.1 and Collorary 6.1, we have

Y,=Z,®(Zy+Z,++Z, )< jsn-1
Y, =Z,®Zo+ 2+ +Z,), j=0

|Z+1|2"—1 =|Z_1|2"—1 :{

Since Y, =Z, ®(Zy +Z, +-+Z,,) 1<j<n-1

=Z,(Zo+Z o+ Z, VA Z(Zo+ 2+ + Z, )

J

=Z,9(Z,+Z,++Z,,)

Y, =Zy®(Zy+Z, ++Z,,) j=0

= Zy(Zy+ 2y 4+ 2, )+ Zo(Zy + 2, ¥+ Z, )

=Z,®(Zy+Z,++Z,,)

Thus, we have

Y,=Z,®(Zy+2Z,++Z, )< j<n-1
Y, =2,9(Zy+2,++2,,), j=0

|z +1,., =|Z- 1|2n_1 = {

The proposed MUX-based modulo incrementer (single representation of zero) is
presented in Fig. 6.3. This modulo incrementer is to implement equation (6.5). It is
composed of a decision module, a data-out MUX array and a data-select MUX array
controlled by a n-input AND gate. The data-select MUX is used to select the correct

output between the two cases in equation (6.3) respectively.
Corresponding to the case of Z #2" -2 (Z,_Z1 --Z _, =0), equation (6.5) equals to

equation (6.6). By comparing equation (6.1) and (6.6), we can observe that in equation

(6.6), Z, ®(Zy+Z,++Z, )< j<n-1and Z,®(Z,+Z, +-+Z,,),j=0can be

69



implemented based on the proposed modulo decrementer in Fig. 6.2 which is to

implement Z, ®(Z,+Z, +-+Z,)1<j<n-1and Z,®(Z,+Z, +---+Z,,),j=0.
In contrast with the modulo decrementer in Fig. 6.2, the input of the DM in Fig. 6.3 is the

complement value of Z; instead of Z; itself. The output of the data-out MUX array is the
implementation of equation (6.6).

In the case of Z=2"-2 (Z_OZl ---Z,, =1), equation (6.5) equals to equation (6.7).
By comparing equation (6.6) and (6.7), we can see that the value of equation (6.7) can be
derived by inverting the result of equation (6.6), namely, by inverting the output of the
data-out MUX array.

To obtain the desired modulo increment result, we use a n-input AND gate of
Z—OZ1 ---Z,, to select either the output of the data-out MUX array or its complement
corresponding to the two cases in equation (6.3) of Z#2" -2 or Z=2"-2. This 2-
select-1 operation, corresponding to the item of XOR Z_(,Z1 --+Z,_, in equation (6.5), is
implemented by the data-select MUX array as shown in Fig. 6.3.

The proposed MUX-based modulo incrementer (double representation of zero) is
depicted in Fig. 6.4. This modulo incrementer is to implement equation (6.8). It is noted
that equation (6.8) is the same as equation (6.6). From the above discuss, we know that
the output of the data-out MUX array is the result of equation (6.6). Thus, the proposed

MUX-based modulo incrementer (double representation of zero) can be obtained by

eliminating the data-select MUX array from the circuit in Fig. 6.3.
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Fig. 6.3. The proposed modulo incrementer (simple representation of zero)
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Fig. 6.4. The proposed modulo incrementer (double representation of zero)
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6.4 Comparison Study of the Implementation Results

To get a practical performance measure of the modulo incrementer and decrementer,
both the proposed MUX-based design and the standard CPA-based design are
implemented using Xilinx FPGA technology for the 32-bit and 64-bit cases. Since the
standard CPA-based modulo incrementer uses double representation of zero, we
correspondingly implement the proposed circuit in Fig. 6.4 to facilitate the comparison of
modulo incrementers.

The synthesis and implementation tools are Synopsys’s Design Compiler Version
3.4b and Xillinx Alliance M1.3 software. The target technology is a Xillinx 4010e-3
FPGA. The performance evaluation is carried out in terms of power, area and delay. The
results of modulo 2"-1 decrementers are compared in Table 6.2. The results of the FPGA
implementation show that the proposed design consumes 50% less hardware than those
based on CPA. The delay is also reduced close to 50%. The power consumed by the
MUX-based design is almost 20% less than that of the CPA-based design. The results of
modulo 2"-1 incrementers are compared in Table 6.3. The results show that the proposed
modulo 2°-1 incrementer reduces both power and delay to the degree of about 50% than
those based on CPA. The area consumed by the proposed design is 40% less than the area
of CPA-based design. The reason for this improvement is that the arithmetic operation of
the CPA-based modulo incrementer/decrementer is based on addition with ripple carry,
while the proposed modulo incrementer/decrementer takes MUX as its arithmetic base.
To reduce delay, the traditional incrementer/decrementers based on high-speed adders
such as carry select adders or carry look ahead adders could have been used. However,

these come at higher cost of power and area.
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Table 6.2. Implementation results of the modulo decrementers

32-bit 64-bit

Decrementers Power | Cell | Delay | Power | Cell | Delay

(mw) | Area | (ns) (mw) | Area | (ns)
C, : CPA-based 204 192 229 40.9 384 | 447.6
C, : MUX-based 16 95 116.7 31.9 191 | 2345
C -C
—‘—C——Z— x100% 21.6 50.1 49 22 50.3 47.6

1

Table 6.3. Implementation results of the modulo incrementers

32-bit 64-bit
Incrementers Power | Cell | Delay | Power | Cell | Delay
emen (mw) | Area (ns) (mw) | Area (ns)
C,: CPA-based 243 160 | 225.4 48.5 320 444
C, : MUX-based 12.1 95 120.9 243 191 | 238.7
c,-C
I 4 %100% 50.2 40.6 46.4 49.9 40.3 46.2
3

6.5 Summary

In this chapter, new algorithms and designs have been proposed for the modulo 2"-1
incrementer and decrementer. The proposed MUX-based incrementer and decrementer
are more efficient in terms of power, speed and hardware complexity compared to the
adder-based designs. An FPGA based comparison of the proposed decrementer with the
traditional ones shows that the proposed design requires 50% less hardware while the
delay is reduced close to 50%. The power consumed by the MUX-based design is almost
20% less than that of the CPA-based design. The comparison also shows that the

proposed incrementer reduces both power and delay to the degree of about 50% than

73



those based on CPA. The area consumed by the proposed design is 40% less than the area

of CPA-based design.
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CHAPTER 7

DESIGN AND IMPLEMENTATION OF HIGH-
SPEED R/B CONVERTER FOR N;

7.1 Introduction

The CRT requires a binary inner product operation followed by a modulo-M (large-
valued) operation that is not very efficient. There are many converters for the three-
moduli set {2°, 2" +1, 2" —1} proposed in [36]-[45] that use special algorithms derived
from the CRT to reduce the size of the modulo operation or avoid the modulo-M
operation. These converters mostly require big modulo (2" +1)(2" —1) operation. In the
early design of [38], it is proposed to use four 2n-bit binary adders, two of them in
paraliel, to evaluate this summation. The critical delay path includes three consecutive
additions of 2n-bit numbers. The converter proposed in [39] is the reconsideration of
hardware realization of the converter from [38]. In [39], the first stage of the converter
contains two levels of 2n-bit carry-save adders (CSA) each comprising of 2# full adders
since four inputs need to be added. The second stage is a 2n-bit CPA with EAC used to
obtain the modulo 2*"-1 summation. The designs in [42], [43] and [44] reduce the four
addends to three, thus only needing one level of CSA. Different methods are presented in

these papers. In the literature, there also exist R/B converter designs that avoid modulo
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(2" +1)(2" —-1) operation by using a redundant representation of X [40]. Better
performance in terms of area has been reported with compared to the existing
nonredundant designs. However, as compensation, certain dynamic range of X is
unusable. To further reduce the area and delay of a R/B converter, it is important to

develop efficient techniques to reduce the modulo operations.

Recently, several new formulations of the CRT [the Modified Chinese Remainder
Theorem and the New Chinese Remainder Theorems (New CRT-I, II, and III)] that
reduces the size of the modulo operation have been proposed [24], [26]. For the moduli
set Ny = {2", 2° +1, 2" -1}, the direct implementation of the CRT requires a modulo base
of 2"x(2" +1)x(2" —1). By using these techniques and other special algorithms derived
from the CRT, a modulo base of (2" +1)x(2" —1) are used [36]-[45].

Proposition 7.1: For the moduli set Ny = {2°, 2" +1, 2" -1}, a binary number X can be
calculated as
X=x+2"Y
where n >1 and

Y =|(x, —x,)+ 27727 + 1), — 2x, +x, )

)

Being in the critical path of the converters, the modulo operation consumes a large
portion of hardware and results in large delay. As shown in Proposition 7.1, the modulo
2%".1 operation is required for the R/B conversion of N;. In next section, we will propose

new algorithms that reduce this modulo operation to two parallel small modulo

operations based on 2"-1 and 2"+1 respectively.
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7.2 Proposed R/B Algorithm for N;

In this section, we first apply the proposed modulo reduction technique to reduce the
modulo size of the R/B algorithm of Proposition 7.1. Then, we further simplify the
modulo reduced R/B algorithm for efficient implementation.

We have proposed a R/B algorithm for another permutation of N; in Proposition 4.1
to show that the proposed modulo reduction technique can further reduce the modulo size
of the Modified CRT. Since in the literature, most of the existing R/B converters based
on Ny = {2° 2" +1, 2" —1} rather than {2" +1, 2", 2°-1}, for the convenience of
comparison, we now apply the modulo reduction technique to reduce the modulo size of
the R/B algorithm of Proposition 7.1.

Proposition 7.2: For three-moduli set Ny = {2",2" +1,2"-1}, we have

X=x+2"Y

where n>1, and

Y =(2"+1)

_ - X —Xx
2" x, +27 X, —x + 2
2" +1

+|x, —x,
2"-1

2741
Proof:
Based on Proposition 7.1, we have

X=x+2"Y

Y= I(x1 -x,)+2"" (2” + IXx3 —2x, +x, 122"_1

=|@ - 27 -, + @2 27 -1, + 27 (27 1)y,

2271

= I— 2”x1 + 21 (2" +1)X2 — X, +2n—l(2n +1)X3

2271

Using the modulo reduction technique of Proposition 3.1, we have
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Y=(2"+1) =27 x - x)|

2"+1

2" x, +
2n—1x2 yor X — 721 x,
2" +1

2"-1

=(2"+1
( ) 2" +1

X, —X

n-1 n-1 1 2

[2 Xy +2" xy —x + Jl +|JCI—J€2|2n+l
271

|

The R/B algorithm proposed in Proposition 7.2 decomposes the big modulo base of
Proposition 7.1 from (2" + 1) (2" — 1) to two parallel small modulo operations based on 2"
+ 1 and 2" — 1 respectively. This improvement results in a high-speed and low-power
VLSI implementation. We use the following example to illustrate the improvement that
the proposed method provides over Proposition 7.1 for the R/B conversion of N.

Example 7.1: For a R/B converter with 8-bit dynamic range based on the moduli set
Ni = {2", 2" +1,2"-1}, the specific moduli set {8, 9, 7} is chosen when »n=3, since
9x8x7=504>2%=256. Randomly choose a number from 0 to 255, for example, X=169. Its
RNS representation X=( x,, x, , x,) is (1,7,1).

Based on Proposition 7.1, we have

Y= I(x1 —x2)+ 2"'1(2'l +1Xx3 —-2x, +x2j

221

_—_|(1—7)><1+22x(23+1)><(1—2+7)

(22+1)22)
=|210|, =21
X =x+2"xY =1+8x21=169

Based on Proposition 7.2, we have

Y =(2" +1)

+|x — x|
2" -1

2"+1

_ - X —Xx
2", + 2" X, — X, + —
2" +1
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=(2° +1
( ) 27+

=90x +|—6|9

7

[28+22x1—1—éJ
9

=9x 30|, +|-6|, =21

X=x+2"xY=1+8x21=169

[22x7+22x1—1+3§i1

]

+[1-7]

221

2341

When using Proposition 7.1, the above R/B conversion needs a modulo 63 operation.

By using Proposition 7.2, the modulo size is reduced from 63 to 9. That is to say, the

length of modulo operation is reduced from 6-bit to 4-bit.

The R/B algorithm proposed in Proposition 7.2 considerably reduces the size of

modulo operation. However, it can be further simplified for efficient implementation.

Proposition 7.3: Given the moduli set Nj = {2, 2" +1,

(x,,x,,x,) is converted into the binary number X by
X=x+2"Y
where n>1, and
Q"+ D+ T, + T+ =20 for
Y =@ + D+, + T =1+ —xy|,.,.  for
Q@+ +Q7 =D)L+ +D),  Sfor

where
T = l" x1|2,,_1 = 55—1,;;-1 "'J_Cl,o
T, =2"" lezn_l = X9,0%2,0-1 0" X
T, =p" x3|2,_1 = X3,0%3,1 70" X3
Proof:

2" —1}, the residue number

x, €[0,2" -1],x, 2 x,
x, €[0,2" -1}, x, < x,

__nn
x, =2
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For Ny = {2", 2" +1, 2" —1}, referred to Pro osition 7.2, we have
P
X=x+2"Y

where n>1, and

Y =(@2"+1)

2" +1

Thus

D If x, €[0,2" -1}, namely x,, =0, since x, €[0,2" —1],

havex, —x, e[—(2" -1,2" —1].

I For x, 2 x,, X, —x, €[0,2" ~1], then leT_ilz—e[o,l). Thus [
+

We calculate Y as:

Y =@ +DR" %, 427 x| xly,

2"

=(2" .|-1)|T1 +T, +T3|2,_1 +|x1 _x2l2"+1

where
T, = x|, = Fipea " Fro by Lemma 5
T, =2"" x2|2n_1 = Xy 0 Xp X2y by Lemma 6
T, =[2"" x3|2"_1 = X30%3,1 " X3y by Lemma 6
Il For x, <x,, X -, €[~(2" ~1),0), then "21;:12 e (-1,0).

We calculate Y as:

Y =@+ D" x, 427 —x 1]

="+ +T, + T, —llz"—l +|x1 —x2|2"+‘

X —X
n-1 n-1 1 2
[2 X427 Xy —x + J\ +|x1—x2|2n+]
2" -1

w¢

7.1

(7.2)
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() If x,=2", namely x,, =1, x,,, =--=x,,=0, sincex, €[0,2" ~1], we have

x, —x, €[-2",~1], thus ’;"xz e (-1,0).

+1

We calculate Y as:

Y =(2"+1)

n-lnn n-1 o _ |
2720 +2% xy - x, 1|2”_1+|xl X |on s

=@+ D@ -) 42" )y - 27

2" -

2"+1

=@ +)|L+Q@ =D+ T, +]x -2

2" 41

Since x, €[0,2" ~1], x, +1<2" +1, then |x, — 2"

- =|x, +1],.,, =x +1.
Then, we have

Y =@+ +Q7 -D+T] +(x +1) (7.3)

In conclusion, from equations (7.1), (7.2) and (7.3), Proposition 7.3 holds for any
residue number ( x,,x,, x; ).

We use the following example to illustrate how Proposition 7.3 works.

Example 7.2: For a R/B converter with 8-bit dynamic range based on the moduli set
Ny = {2%, 2" +1, 2"-1}, the specific moduli set {8, 9, 7} is chosen when »=3, since
Ox8x7=504>28=256. Randomly choose a number from 0 to 255, for example, X=169. Its
RNS representation X=( x,, x,, x,) is (1, 7, 1) =(001, 0111, 001).

Based on Proposition 7.3, the calculation for finding the binary number is as follows.

1, = XpaX11 %0 = 110

T, =%y 0% 5%, =111

Ty = x;0%;,%;, =100
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Since x, < x,, x, <2*, we have

Y=+, +T,+T; -1

o H =2y,
=(2° +D)x[110+111+100-1] +[001-111],
=9x010+011=21

X=x+2"Y
=1+2>x21=169
With the modulo reduced R/B algorithm presented in Proposition 7.3, we can
implement a fast design of the R/B converter based on Nj. It is noted that there are some

arithmetic components such as the binary increment x, +1, the modulo decrement

T, +T,+T, -1

L |Z"1

,», and the modulo subtraction ]xl - x2| in Proposition 7.3

2741
that serve as building blocks in the proposed R/B converter. The new MUX-based
designs of the binary incrementer and the modulo decrementer have been given in

Chapter 5 and Chapter 6 respectively. In the following section, we propose a novel design

for the modulo 2"+1 subtractor for constructing a complete R/B converter.

7.3 Novel Designs of Modulo 2"+1 Subtractor

In the literature, there exist many papers on the design of modulo m adders [26], [47].
Some papers particularly propose design for modulo 2°+1 adders. Although, as what
these papers declare, modulo 2"+1 subtraction can be implemented using the modulo
2™+1 adders with some modification, very few papers give directly the design of the
modulo 2"+1 subtraction. In this section, we propose a new fast design for the

determination of |x — )]

,n,, using the MUX-based decrement technique.
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The residue difference of two »-bit residue digits, (x — y) mod 2°+1, is the residue of

the difference x — y with respect to the modulus 2"+1. The operation may be defined as

follows.

a0

x—y+2"+1,x—ye(—2", 0) 74

First, we use Proposition 7.4 to simplify the calculation of |x - yl ,»,, 10 equation (7.4).

Proposition 7.4 Given any two »-bit binary input x and y, we have

D=|x“y|2"+1 ={S’ x_ye[o, Zn) (7.5)

S+1, x—ye(—Z”, O)

where S= x+y+1.

Proof:

If x-ye[0, 2"), from equation (7.4), by using 2’s complement subtraction, we have
D=|x-—y|2,+] =x—y=x+y+1=S
If x—ye(-2", 0),wehave
D=|x—-y[2,+l =x—-y+2"+1
=x+(2"-1)-y+2
=x+(y+1)+1 byLemma4

=S+1

Let the representation of x as a binary number be x,_,---,x,. Similarly let y be

represented by y, ,--,¥,. And the difference S, S = x+y+1, be represented by
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S, 1558y C, is the carry-out signal generated by the subtraction. When x > y, which

implies ¢,= 1, we have D=S5. When x—ye (— 2%, O), which implies ¢,= 0, we have
D=S+1.

Equation (7.5) provides us a way to implement area-time efficient modulo 2°+1
subtractors. The proposed modulo subtractor is depicted in Fig. 7.1 (a). Fig. 7.1 (b) shows
the block diagram of the unit. First, the circuit adds the 2’s complement of y to x. Then
the proposed MUX-based binary incrementer is used to form S +1. Coy is the carry-out

signal of the incrementer. When Coy is 0, it means that there is carry-out. If ¢, is 0,
which implies x—~y € (— 2", 0), the output d, is qand d,,,,d, is the output of

the incrementer. If ¢, is 1, which implies x > y, then d, is 0 and d,_,---,d, is

The hardware required in the new modulo 2°+1 subtractor shown in Fig. 7.1 (a) is as
following: n FAs, 2n MUXs, 2n +1 inverters and n-1 OR gates. The delay of the
proposed modulo subtractor g is the sum of the delay of a MUX t\vux, the delay of three
Inverters #ivy, the delay of a OR gate for and the delay of a CPA fcpac), 1-€., tsub = MUX

+3 v + tor HepAwm).
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'xn—l’.“’xo yn_l’...’yo

i

Cn CnbitCPA |-
Ky el S Cout I
n-12 0 S+1 X Y
Nl !
1 1 0 0
MUX cn 4+ 1X =7,
Cn | dn’dn—-l’”"do lD
(@ (b)

Fig. 7.1. The proposed modulo 2™+1 subtractor

7.4 Proposed High-speed R/B Converter for N;

In this section, based on the proposed modulo reduced R/B algorithms and the novel
MUX-based designs of the binary incrementer, the modulo decrementer and subtractor,
we present an efficient design of R/B converters for the three-moduli set Nj.

Based on Proposition 7.3, we propose a new R/B converter for N; using »-bit adders.

The formulas of Y in Proposition 7.3 can be rewritten as follows.

@ +0|2|,_ +|x x|,  Sfor  x,€[02"-1x2x,
Y=3@" +D|1Z -1, +|x - x|, for  x,€[02"-1]x, <x, (7.6)
Q" +1)|Z'],._, +(x, +D), for  x,=2"

where Z=T,+T,+T, and Z' =T, + (2" -1)+T,.
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Calculation of |Z —IIZ”_1 , |Z

or IZ 'l We use the following two steps to present

2n -1 2n-1

the n-bit 1’s complement adder unit, which is used to generate IZ - 1| oy |Z | or |Z 12"_1

2”1
in equation (7.6).

1) Zand Z' is calculated as follows. For the first two cases of (7.6), we need to calculate
Z for x, €[0,2" —1],x, 2 x, or forx, €[0,2" —1],x, < x, respectively. For the third case
x, =2", we need to compute the number Z’. Since the only difference between Z and

Z' is that the second item of Z is T, and the second item of Z' is 2" -1, we can

integrate the calculation of these two numbers Z and Z' by using MUX and CSA. If

x, €[0,2" -1], then x,, =0, we have T,=x,.x,,,'x,,. If x,=2", then
Xy, =Lx,,  =-=x,,=0, we have 2" —1= 0(1“-1)”_1 . We can use x,, to select T

or 2" —1 as input to CSA. The addition is shown in Fig. 7.2 (a) and (b). Fig. 7.2 (b)
shows the block diagram of the unit. It consists of n FAs, n MUXs, and n inverters. The
delay of this unit is the delay of a FA plus the delay of a MUX. This circuit produces two
numbers Cy g Cya... C; Cp and Sy Spa... S1.50. We denote C = Cy.1 Cpa... C; Copand S =
Sa-1.512... 31 5o, and then

Ciso ,+T,+T,, for x,,=0
T+ -D)+T,, for  x,, =1
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XZ,O! ()! Xl,n-l Xv‘}.,o XZ,n-l! 1 ! Xl,n-Z
XZ,I! X2,n

FA FA

X3,n-1 X2,1

X2,n

(A AN N R NN

(b)

Fig. 7.2. The addition unit using adders and MUXs

Xi X2 X
nFA
cl S

n-bit 1°s complement adder

IZ - 1|2"—1

(a)

Cn

X

X X

n-bit 1’s complement adder unit

h

(b)

Fig. 7.3. The n-bit 1’s complement adder unit
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2) In Fig. 7.3, we present the n-bit 1’s complement adder unit, which is used to generate

|Z —1|2n_1, |Z‘2"-1 or |Z 'lz,, in equation (7.6). The unit nFA, which is used to produce C

-1
and S, is connected to a n-bit 1’s complement adder. The output of the 1’s complement
adder is connected to a n-bit MUX-based modulo decrementer. The following MUX
array using the carry-out signal ¢, of the modulo 2"+1 subtractor as its selecting signal,

produces the value h,_,---,hy. If x; <x,, the carry-out ¢, is ‘0’, then the value
h, ., -, h, is the output of the modulo decrementer |Z —1| oy X, 2 x, or x, =2", the

carry-out ¢, is ‘1’, then the value A, ,---,h, is formed by the output of the 1’s
complement adder.

Calculation of |x1 —x2|2"+l or x;+1: As shown in Fig. 7.4, we perform the modulo

subtraction |x1 - X,

,»,, using the proposed n-bit modulo 2"+1 subtractor in Fig. 7.1. In
equation (7.6), it can be mnoted that, for x,€[0,2"-1],x,2x, or for
x, €[0,2" —1],x, <x,, we have x,, =0. Thus, we feed the modulo subtractor with

Xy 1" Xy, as the subtrahend. The n-bit modulo subtractor performs the operation of

lxl =Xy = |x1’n_l "Xy = Xyt Xl - If the carry-out signal ¢, is 0, it implies the
case of x, €[0,2" -1],x, <x,. If ¢, is 1, it means x, €[0,2" —1],x, 2 x, or x, =2".In
the case of x, =2", namely x,, =1, we have x, +1. We apply the proposed binary
incrementer in Chapter 5 to get the result of x, +1. Finally, We can use x,, to select the

correct value as the output %, ,k, -,k .

The hardware required in the modulo 2°+1 subtraction unit in Fig. 7.4 (a) is as

following: n FAs, 4n MUXs, 4n +1 inverters and 2n-2 OR gates. The delay of the
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proposed modulo subtraction unit #yeq is the sum of the delay of two MUXs tuyx, the
delay of three Inverters #ivv, the delay of a OR gate for and the delay of a CPA tcpag),

i.€., fmod = 2 tMux 13 tinv + tor Hcpa):

X1 %10 Xon-1s" "9 %2 X1 s %10
CO\lt
- xi+1
|x1 x2|2"+1 !
x, X,
0 1 x l l
2,n C . .
MIIJX " &—{ Mod subtraction unit
Cn k,, .k, k
(@) (b)

Fig. 7.4. The modulo subtraction unit

Final Addition in Calculation of (7.6) With the output 4, ,---,h, formed by the n-bit

1’s complement adder unit and the output %,,k,_, ---,k, €[0,2"] derived from the modulo
subtraction unit, now equation (7.6) can be simply rewritten as follows.
Y=Q2"+1)<h,_, - shy >+ <k, k, ks>
=20 <h, o hyg >+ <h o hy >+ <k Lk, kg > 7.7
In Fig. 7.5, we present a simple circuit to implement equation (7.7). A n-bit CPA is

usedtoadd 4,_,---,h, and k,_ ---,k, to get Y, _, ---Y, of the final binary number X. In the

n

case of k,,k, ---,k,€[0,2" —1], namely k, =0, if the carry-out signal Coy is 1,
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Y,, - Y, of Xis formed by incrementing h,_,,---,h, by one instead of 4,_,---,h,. In the
case of k,,k, ,---,k, =2", namely k, =1 and £, ---,k, = 0, the carry-out signal Coy is
0 and the value h,_,, -, h, is incremented by one to form ¥,, ,---Y, of X. In other cases,

namely, k, OR Coxt =0, Y,, ,---Y, is formed by h,_,---, k.

hn—l’”"ho kn kn—l""’ko
I hn—1" ’ho kn’ ako
B+ | ' I
I . |
\' MUX L—(_ : n-bit CPA n-bit CPA unit

Cout |

Yonio+- Yy Yo Y, Yona---Yo
(@ (b)

Fig. 7.5. The n-bit CPA unit

In Fig. 7.6 (a), we depict the entire architecture for the proposed converter. Y,,_, ---Y,

forms the 2n MSBs of X, while x, forms the n LSBs of X. The hardware required in the
new converter shown in Fig. 7.6 (a) is as follows: 4n FAs, 9n-2 MUXs, 7n+1 inverters
and 4n-3 OR gates. The delay of the proposed converter #.y is the sum of the delay of
four MUXs fyux, the delay of a FA fga, the delay of two OR gates for, the delay of n-bit

CPA fcpam) and the delay of n-bit 1’s complement adder #icam) = 2fcpam) [19], i.€., teonv =

4 tmux + tra +2 tor +3tcpam).
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X1 X2 X3

2n-bit CSA with EAC
X1 X3 X3 X1 X2
| 2
n-bit 1’s compiement adder unit [~ Mod subtraction unit 2n-bit CSA with EAC
hn—l’.“’ho kn’“.’k()
n-bit CPA unit 2n-bit 1’s complement adder
Y2n-l"')70 X an_lo--YO X1
(a) Proposed converter (b) Converter [39]

Fig. 7.6. The n-bit adder-based modulo reduced R/B converter

We tabulate the detailed comparison of the adder-based converters and the proposed
design in Table 7.1, where the data for [36], [37] and [38] is from [39]. The converter
proposed in [39] is the reconsideration of hardware realization of the converter from [38]
whose original version has the critical delay path that includes three consecutive
additions of 2n-bit numbers. Both of the two converters are based on 2n-bit CPA with
EAC. It can be noted that one of the best nonredundant converters based on 2x-bit adders
is presented in [39]. For the convenience of comparing the performance, we show the
main components used in the converter proposed in [39] as Fig. 7.6 (b). The delay in [39]
is 2#ga + tiy +2fcPan)-

In the literature, there exist R/B converter designs that avoid modulo-M operation by

using a redundant representation of X [40]. In [40], the final (CPA) stage used to generate
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the value X is implemented with a carry look-ahead (CLA) adder. To make a fair
comparison with the converters in [39], the authors of [40] implement the 2x-bit CPA
with EAC using CLA. The design of [40] is slightly faster and requires less area than the

design of [39] when n becomes large. As compensation, certain dynamic range of X is

unusable.
Table 7.1. Performance comparison of adder-based converters
Hardware Delay
Converter AND | XOR/ | CPA | CLA
FA Other
/OR | XNOR | 24 | n| n
L. 2n-bit adder-based converters
[36][37] | 6n - n 2|1 -1 - - 21tcpamyt2topacnyT22x0R
[38] 6n | 4n 2n 1 -] - - 3tcpaqnyt txor H log(2n) | tanp
[39] 4n 2n 2n 1 - - 2n inverter s + iy F2tcpa (2n)
[42] 2n n - 1 - - 2n inverter tra + tor t2tcpa @n)
[44] 2n 2 - 1 - - 2n inverter tea t tor Tty T 2tcpa (2n)
[45] 5 : ) 2n inverter 5
n _ N tra + by T tmux + 2fcPA 2o
5 1HA FA Tty T fMUX CPA (2n)
9n-2 MUX,
PI'OpOSCd 3n 4n - - 1 - . 4 tvux + tea +2 tor +3tcpa @)
In+1 inverter
1. n-bit adder-based converters
2n MUX,
[40] 2n - - - |- 4 . 2tor Tty 2 tvuxt trattcrawm)
2n inverter
[43] 6n n n - - 4 2n MUX, 2tFA+2tNAND+tMUX+tCPA(n)

7.5 Implementation of R/B Converter for N,

The proposed converter and the existing converter in [39] are implemented using
Xilinx FPGA technology for the 32-bit and 64-bit cases. The synthesis and

implementation tools are Synopsys’s Design Compiler Version 3.4b and Xillinx Alliance
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M1.3 software. The target technology is a Xillinx 4010e-3 FPGA. The performance

evaluation in terms of power, area and delay is carried out.

The FPGA implementation results of the proposed converter and that of [39] are
compared in Table 7.2. The saving provided by the proposed converter over the designs
in [39] is also shown in Table 7.2. The result of the FPGA implementation shows that, for
the dynamic range of 64-bit, the proposed design reduces the delay around 20% than
those in [39] while using a similar amount of hardware resources. The power
consumption is also improved. The reason for this improvement is that the modulo
operation of the converter in [39] is based on 2*” 1, while the proposed converter takes
2"-1 and 2"+1 as its modulo bases. Since the proposed R/B converter makes use of the
proposed modulo reduction technique and is simplified by using the MUX-based binary
incrementer, modulo decrementer and subtractor, high-speed implementation is obtained
compared to the previous work of [39].

Table 7.2. Implementation results of the R/B converters

32-bit

Power Cell Time 2
Converters (mw) Area (ns) AT AT

C, : Designs in [39] 18.9886 508 333.1 169164.8 56365449.9

C, : Proposed design | 13.8735 | 523 2713 145027.9 40216236.7
Cl B Cz

1

x100% 1 -3 16.8 11.7 28.7

64-bit

C, : Designs in [39] 37.9501 1014 633.59 642460.26 407056396.1

C,:Proposed design | 136.5445 | 1040 | 502.71 522818.4 262826037.9

C,-C,
L2 .100% 4 -3 207 18.6 354

1

93



7.6 Summary

In this chapter, we have initially applied the proposed modulo reduction technique to
derive modulo reduced R/B algorithm for the most popular three-moduli set Ny = {27, 2"
+1, 2" -1}. Then, we further simplify this R/B algorithm for efficient implementation of a
new R/B converter. Novel design of a modulo 2" +1 subtractor needed for constructing
the new R/B converter has been developed. Finally, the complete architecture of the new
R/B converter has been presented along with implementation. Based on the FPGA
implementation results, a comparison study between the proposed R/B converter and the

corresponding ones in the literature has been carried out.
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CHAPTER 8

CONCLUSION AND SUGGESTIONS FOR
FUTURE WORK

8.1 Concluding Remarks

In this thesis, several contributions have been presented. They are given below.

1. Novel modulo reduction algorithms have been proposed to significantly simplify
a large modulo operation to the sum of a number of small modulo operations. By
applying the proposed modulo reduction algorithms to the modified CRT, the
complexity of modulo operation in the modified CRT is reduced to a great scale
by partitioning the modulo operation with a large base to several individual
modulo operations of small bases in parallel. Then, the modulo reduction
technique and the modulo reduced modified CRT have been applied to derive R/B
algorithms for the two existing three-moduli sets N, N, and four newly found
three-moduli sets.

2. A novel R/B converter for N; = {2° 2° +1, 2" -1} with reduced modulo and
binary operations has been proposed. First, the proposed modulo reduction
algorithm has been applied to reduce the required modulo operation from one big

modulo (2" +1)(2" —1) operation to two small modulo operations based on 2" —1
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and 2" +1 respectively. Then, an algorithm has been proposed to simplify the
binary part of the proposed modulo reduced R/B algorithm.

. Novel MUX-based designs of some components needed for constructing the new
converter have been developed. Both of the new unsigned and signed-2’s
complement incrementer/decrementer have been designed to implement the

operation of Z + 1. New modulo incrementer and decrementer have been
developed to implement the operations of IZ + 1|2"_1 and |Z - 1| oy

. Furthermore, a new modulo subtractor has been proposed to conduct the modulo
(2" +1) subtraction.

. Finally, the complete architecture of the new converter has presented along with
implementation. Based on the FPGA implementation results, a comparison study
between the proposed R/B converter and the corresponding ones in the literature

has been carried out.

8.2 Suggestions for Further Work

In Chapter 4, we have proposed modulo reduced R/B algorithms for six three-moudli

sets. In [26], a comprehensive study of R/B converters for three-moduli sets has been

.

carried out based on the modified CRT. It has been shown that the moduli set N; can

offer the fastest R/B converter while requiring the least hardware resources for a given

dynamic range. However, based on the proposed modulo reduction method, the R/B

converter designs are different from those based on the modified CRT. Thus, the

conclusion of [26] might not hold for these new designs. For example, it is seen in Table

4.1 that the modulo operation required by N, is the smallest compared to other three-
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moduli sets. Hence, the N>-based converter might be the fastest and is worth further
study.

The proposed modulo reduction algorithm provides a novel way to design small, fast
and low-power modulo circuits for R/B converters, B/R converters and RNS subsystems.
Besides these, other modulo algorithms such as modulo division and modulo comparison
might benefit too. What’s more, the use of the proposed techniques in the design and
VLSI implementation of different cryptographic schemes and protocols based on the
residue arithmetic can be investigated. It is expected that the proposed modulo reduction

algorithms have many applications in RNS study.
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