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ABSTRACT

A Real-Time Software Implementation of an OFDM Modem
Suitable for Software Defined Radios

Antonio Lucio Cinquino

This thesis describes a real-time, DSP implementation of a baseband OFDM
system, which includes interleaving and forward error correction algorithms. Software
modules representing discrete system blocks are created and sequentially called upon as
needed. The software reconfigurable system is developed on a Texas Instruments
TMS320C6201 Evaluation Module, which is based on a fixed-point processor. Different
combinations of arithmetic precision and speed for the fixed-point operations were
explored. The decisive combination was used to evaluate the accuracy of the system by
plotting bit-error curves against an equivalent floating-point model.

System efficiency is employed from the design stage through the use of Look-Up
tables as well as cyclic shift registers. Upon implementation, the system is built using
settings optimized for speed. In addition, memory management is used to ensure that
critical instructions are kept on the fast on-chip memory while different access times for
retrieving data on external memory were evaluated for best results. Finally, each software
module is profiled to investigate and remove unnecessary latency issues.

Processing efficiency is monitored by recording throughput results, which are
used to calculate maximum bit-rates. Using these results, estimations are made for bit-
rates achievable by higher performance processors. These estimations demonstrate that a
highly flexible DSP platform can ultimately meet speed and flexibility requirements for

Software Defined Radios.
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1 Introduction

In recent years there has been explosive growth in the mobile communications
industry. According to the International Telecommunication Union (ITU), the last 10
years has seen an increase from 34 million to 1.3 billion in mobile phone subscribers [1].
Research firm In-Stat/MDR predicts that by 2007, the subscription rate will reach 2
billion [2]. These statistics show that consumer and business demand for mobility has

risen sharply, which indicates our growing dependency on wireless technology.

1.1 Brief Overview of Mobile Industry

In the early days of the mobile communications industry, first generation cellular
systems were primarily used for voice communication [3]. The convenience of reaching
anyone, anywhere, quickly increased the popularity of cellular telephones. As capacity
limits drew near, the switch from analog to digital systems allowed for a considerable
increase in capacity and cheaper service. This, in turn, gave rise to a massive jump in the
number of mobile subscribers and therefore the ubiquity of the cellular telephone. Today,
mobile phones are used for voice as well as data communication. Local wireless service
providers offer messaging services, email and a connection to the Internet with limited
browsing capabilities [3]. Data services are becoming increasingly important as
businesses are starting to incorporate wireless technologies into their workforce in order
to work more efficiently and have mobile access to important information. However
given the inadequate processing capabilities of mobile devices as well as insufficient
available bandwidth, the wireless data experience through a cellular communication

system has not reached its full potential.



A threshold on capacity is drawing near for present day, second generation (2G
and 2.5G) networks. The increase in subscription rate coupled with new data applications
is causing the network crunch. This dilemma will become more pressing given the
predicted subscriber growth rate as well as the need for higher bandwidth data services.
Third generation (3G) networks promise to resolve the capacity issue while providing
much faster transmission rates [3]. However, the slowdown in the technology industry
has caused a major delay in the deployment of 3G networks. In addition data
communications capabilities, although an improvement over previous networks, are still
insufficient thus limiting once again the potential of mobile, wireless data
communications. With the arrival of wireless Internet and videoconferencing, as well as
multimedia mobile telephony, mobile communication systems have been given a lot of

focus and R&D to deliver these bandwidth hungry applications.

1.2 Multipath Fading

A fundamental problem exists in building wireless networks that offer higher and
higher bit-rates. The characteristics of the wireless channel are such that it adversely
affects the transmitted signal because of multipath fading. Multipath fading is caused by
reflections in the wireless environment such that a signal will interfere with a delayed
version of itself [4]. A relationship exists such that, the higher the data rate the greater
the deterioration of the signal due to multipath. A solution is needed such that wireless
networks are able to lessen the effect of multipath fading in order to provide sufficiently

high transmission rates to evoke the deployment of future wireless data applications.



1.3 Incompatibility of Wireless Networks

In addition to the problem of multipath fading, another factor limiting the
development of high bandwidth wireless networks, is the interoperability of mobile
devices across different networks either employing different platforms or different
standards. Present day systems are primarily suited for one specific application. In the
example above, cellular networks were designed to provide voice communications and
have only recently been upgraded to handle slow-rate data services. Also, wireless local
area networks (WLANSs) were designed specifically to deliver short range, high-speed
wireless data for applications such as the Internet. Therefore, the uniquely designed radio
hardware makes it impossible for a mobile device conceived specifically for one cellular
standard to work on another.

Today, a multi-mode cellular telephone needs specific hardware built into the
phone in order to be used across the different air interface standards. For example a
mobile phone built for a GSM network in North America, which uses 1900Mhz would
not work on a European GSM network, which uses either 900Mhz or 1800Mhz unless the
hardware to demodulate both frequency bands was built into the phone [5]. It goes
without saying that the same GSM phone would not work on any CDMA network either.
In the case of different wireless platforms a mobile phone would need additional
hardware (either built in or as an add-on module) to take advantage of existing personal
wireless networks such as Bluetooth or Wi-Fi (a.k.a. IEEE 802.11x).

These days, a typical scenario for a person wanting to satisfy all their
communication needs may be to have a cellular telephone for mobile voice

communication as well as slow speed data services, a personal digital assistant (PDA)



with Wi-Fi built in for short range, high speed, wireless Internet, and a separate wireless
handheld for instant corporate email access. The amount of hardware needed reveals a
cumbersome and bulky solution to stay connected. As modern society becomes more
data-centric the need will be for reconfigurable and highly flexible networks as well as
mobile devices that work across a number of standards, interfaces, as well as execute
many applications [6].

To recap the technical issues mentioned above: In the near future the mobile
industry will be faced with delivering high speed wireless networks that provide faithful
signal reception in a multipath environment in order to accommodate future high
bandwidth data applications. In addition, a society growing increasingly dependant on
wireless technology will create the need for an “all-in-one” device that can cater to the

number of competing air-interface standards and different wireless platforms that exist.

1.4 OFDM as a solution to Multipath Fading

A possible solution to the multipath fading problem would be to investigate at the
physical layer of a communication system. Within the physical layer, the type of
modulation used has great bearing on the reliability of a wireless communication link.
OFDM, which stands for Orthogonal Frequency Division Multiplexing, makes a suitable
candidate as a modulation technique.

OFDM works by dividing a high rate datastream into several parallel datastreams
and transmitting them on separate, orthogonal subcarriers [3]. By keeping orthogonality
between subcarriers, they can be squeezed closer together than other multi-carrier
systems without interference, thus making efficient use of the available frequency

spectrum. Given that the data is sent in parallel, at a lower rate, it is less prone to
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multipath effects in the channel. In addition, when compared to a single-carrier system, a
multi-carrier OFDM system involves less complexity to implement because it does not
require equalization to combat delay spreads caused by multipath [4].

Its robustness to delay spreads, efficient use of the frequency spectrum, and
relatively low implementation complexity compared to single carrier systems are all
favourable properties [4]. Because of this, wireless technologies that are using OFDM
are able to achieve very high speed at relatively lower costs. A perfect example would be
IEEE 802.11x, WLAN standards that are being deployed as a solution for indoor mobile
wireless networks. Airports, restaurants, and cafés have begun installing ‘hotspots’ to
offer wireless services to their clientele.

Given the successful deployment of OFDM in other wireless networks, the mobile
industry is seriously considering using OFDM as a standard in the fourth generation (4G)
networks [7]. 4G networks are expected to deliver 10 to 100 Mbit/s transmission rates
[8]. Networks such as 3G, which were primarily originated for circuit-voice and then
adapted for data cannot as easily provide for applications needing high bandwidth.
Instead, it is much more cost effective to provide OFDM based, 4G networks that can
increase transmission speeds over 3G networks at lower prices. This makes OFDM well
suited for high bandwidth applications such as the Internet or video conferencing in

cellular networks [9].

1.5 Implementation of OFDM with digital signal processing

The principal of OFDM has been known for over 35 years. It was Bell Labs who
patented the idea in 1966 [4]. However, implementation of parallel data streams relied on

the use of multiple, analog modulators to generate the subcarriers. Using bulky and
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power hungry analog devices in such a technique would be impossible to realize in a
small form factor like a mobile phone. It is only recently that processing power has
become fast enough to implement OFDM systems both efficiently and practically.
Implementation of OFDM systems today range from using application specific integrated
circuits (ASICs), to field programmable arrays (FPGAs), to digital signal processors
(DSPs) or a combination there of. Each digital signal processing technology listed above
has its own benefits and disadvantages.

ASICs and FPGAs have the advantage of custom hardware designs that can
greatly increase processing performance [10]. However, given the high cost of producing
ASICs relative to other generic processors, the choice is increasingly unattractive in a
mobile phone market where the cost of devices is dropping considerably. In addition,
ASICs offer little or no programmability therefore it is much harder to design for
expandability or upgrades in a particular product. FPGAs also perform very well, but
overall, systems designed entirely of FPGAs may take up more board space than
necessary given that specific hardware may need to be synthesized for certain processing
tasks [11]. Also, although FPGAs are highly reconfigurable, the time it may take to
synthesize hardware for a new algorithm may take an unacceptably long wait period.

DSPs are the most flexible of all present day processing technologies [12]. DSPs
perform tasks by executing specifically coded software. High-level languége code such as
C or C++ representing different functions and applications can be easily compiled and
run which makes the DSP platform highly scalable and modifiable [10]. This gives DSPs
the advantage of catering to dynamic applications and different standards. A particular

design is not bound to a unique hardware configuration therefore its capabilities are



extended. Although resources are limited in a DSP architecture requiring many tasks to
be completed in sequence, DSPs are being developed at ever increasing clock speeds
[12]. With transistor technology becoming smaller and microprocessor computing
becoming more efficient, DSPs can process increasingly complex tasks. In addition some
DSP designs are including more and more parallelism in the form of on-chip accelerators,
which can operate independently from the CPU to handle other tasks [13]. This makes

DSPs a promising choice for use in future wireless applications.

1.6 Software Defined Radio

The issues involving the lack of interoperability between different radio types
hinder the deployment of all-in-one devices that work equally well on any air interface
standard [14]. As mentioned, present day, multi-mode devices need devoted hardware in
order to work across different platforms. This increases the size of the device while also
raising its cost, which counteracts the trend in the mobile industry of producing smaller
and cheaper products. A true solution to bridge the divide amongst all radio types would
be a highly scalable and reconfigurable wireless system.

Software Defined Radios (SDRs) are being researched as a solution to the
aforementioned interoperability issues. SDR is expected by many to emerge as the
dominant design in the commercial wireless marketplace [15]. Basically an SDR is
defined as a device that can alter its performance characteristics by replacing its
embedded software [16]. In other words, the platform is based on using generic hardware
on both the transmitter and receiver end and the executing software determines radio
functions. In this manner, low-level functions such as modulation type and frequency

band selection can be determined via software. This allows for a highly expandable and
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reconfigurable architecture. A user can move across different wireless platforms and

standards by simply downloading and installing the appropriate software module.

1.7 Literature Survey

The implementation of an OFDM system using commercially available DSPs has
been explored in the past. In [17] the authors developed a wireless LAN system using the
TI C6x platform. Using a flexible DSP based platform the project could be easily
modified to comply with all three of the worlds’ wireless LAN standards (HiperLAN/2,
IEEE 802.11a and MMA HiSWANa) given their physical layer commonality. The paper
describes a real-time DSP implementation for a software coded OFDM based system. A
video based communication application is also developed to operate over the system.
The DSP performance is evaluated and compared to a C++ simulation. The setup uses
two personal computers, each containing a TMS320C6201 EVM (including a
TMS320C6201 processor). Daughterboards were designed to perform transmit and
receive tasks via a cable linking the two PC’s. To evaluate system performance, a radio
channel was modeled in the transmitter software however results were worse than
expected therefore a simulated AWGN channel was used instead. The results show a
sustained data rate of 1.7 Mb/s. A performance increase was estimated with the use of
hardware acceleration in order to achieve a duty cycle better than 7%. The system bit
error rate (BER) performance was fairly close the floating point simulation at lower
signal-to-noise ratio values (e.g. 10 — 22 dB). However given dynamic range limitation of
the DSP hardware the two curves diverge to a difference of as much as 2.5 dB at BER of

2 x 107 (i.e. 2 errors occurring in 1000 transmitted bits).



In [18], a coded OFDM system was developed also using the TMS3206201
processor for telemetry applications in the racing, automotive environment. Telemetry is
basically the transmission of data containing instrument or sensor readings from a remote
location. The automotive market, both racing and commercial, is seeing increasingly
important uses for telemetry applications. The commercial market can use telemetry for
remote diagnostics on a stalled vehicle whereas in the racing market, racecars can relay
important statistics to their teammates to gain strategic advantages. The authors note the
advantages of using DSPs related to size, weight and cost for telemetry applications in
the racing environment.  They also add that using DSPs reduce hardware complexity
and easily manage possible reconfigurations. For example, tradeoffs such as BER
performance, power consumption can easily be adjusted instantly with software. The
amount of data that needs to be transmitted grows with the number of sensors on
racecars. When communicating with a racecar wirelessly, a system has not only to
contend with multipath propagation but Doppler shift effects as well. Coded OFDM was
chosen as the modulation technique because of its greater resistance to these effects as
well as its relatively high bandwidth that caters to the increasingly large data demands of
telemetry. The numerical results gave a transmission rate of 256Kbit/s for baseband
transmission. This was achieved while using less than half the CPU capacity. Field tests
were performed on a commercial car as well as a fast sports car with good BER and no
loss of data. The paper concluded that the performance obtained with a flexible, low cost
and lightweight DSP platform can be an effective solution for telemetry applications.

In [8] an SDR prototype based on a multiprocessor architecture (MPA) was

developed for a Japanese standard 2G mobile system called PHS, as well as the IEEE



802.11 Wireless LAN standard. The system is composed of a CPU (400MHz PowerPC),
which handles higher layer protocols, four TMS3206201 DSPs, which handle all physical
layer functions such as modulation and flexible-rate pre-/post processors for filtering
tasks. The prototype, which consisted of two PC terminals communicating through a
wireless link, was shown to successfully switch between these two standards using an
over-the-air (OTA) download function. System reconfiguration was executed with a
reconfiguration time of 10 seconds (8 seconds of which belong to rerouting in the
FPGA). The paper demonstrates that SDR can be a viable solution to deliver cross

platform systems for future mobile and private networks.

1.8 Motivation and Objectives

The motivation behind this research comes from the increasing popularity of SDR
as a design platform for a reconfigurable and highly flexible architecture for wireless
technologies. Studies have been made over a possible framework for reconfiguration of
SDR equipment [16]. In addition a prototype SDR showing the successful switch
between a WLAN and 2G architecture was implemented [8].

In order for these systems (including 4G mobile networks) to deliver reliable,
high transmission rates it is predicted that they will incorporate OFDM as the modulation
technique [9]. Standards bodies in America, Europe and abroad have helped turn OFDM
into a world wide standard in the 5-Ghz band. OFDM is also widely used in other
frequency bands for WLAN, Digital Video Broadcast (DVB), and Bluetooth, which
demonstrate its wide acceptance thus far [4].

It was shown that OFDM has already been implemented using a DSP for

applications such as telemetry [18] and wireless LANs [17]. The increase in processing
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power, and the benefit of a highly flexible platform creates an opportunity for DSPs to
play a critical role within the implementation of OFDM in the development of these
future systems.

Given the above statements this thesis will seek to establish the importance of a
DSP platform in the design of future mobile networks based on Software Defined Radios
[19]. It will stress the advantages of DSPs as a most likely solution to the high
reconfigurability and flexibility requirements of SDRs. It will demonstrate the increased
productivity achieved with DSPs through cost-effective development tools, code reuse,
and a host of algorithm libraries. Performance issues will be addressed through
maximizing the use of Look up Tables and cyclic registers to relieve the CPU of wasted
cycles, software pipelining to maximize iﬁstruction parallelism, and memory
management. The goal will be to measure the performance of an OFDM system

implemented with a DSP and analyze its suitability for an SDR platform [19].

1.9 Organization of Thesis

This thesis will be divided into four main parts. Chapter 2 will detail the basics of
OFDM and describe the theory of operation. Chapter 3 will begin with an introduction to
the concept of a Software Defined Radio. This will be followed by a brief description of
different signal processing technologies used to implement OFDM systems and evaluate
their design suitability for Software Defined Radios. Chapter 4 will detail an OFDM
system implemented with a Texas Instrument C6201 DSP processor. A description of
each software module used to make up the system will be given. Chapter 5 will provide
an analysis of the OFDM system based on the DSP platform. It will start with the

optimization techniques used to maximize performance. System accuracy and
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performance results will also be presented. Performance increases using a more powerful

processor are estimated. Finally, a summary and analysis of the results will be given.
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2 OFDM Basics

OFDM is a multicarrier transmission technique that divides a single datastream
into multiple lower rate datastreams to be sent off, in parallel, on a number of sub-carriers
[20]. An interesting and fundamental feature of OFDM is that the sub-carriers are
orthogonal. This avoids the use of a guard band and allows for the carriers to be placed
very close together without them interfering with one another while still conserving
bandwidth [4].

The use of lower rate streams increases the signal’s tolerance against high delay
spread values. In addition, dividing the datastream onto multiple sub-carriers with
different frequencies augments its robustness to selective fading in the wireless channel.
Single frequency systems may have the entire link lost due to narrowband interference
however OFDM will have only part of the signal affected. The use of channel coding can
help recover errors occurring on the affected sub-carriers.

OFDM has gained increasing popularity over the years and has been adopted as
the transmission standard for indoor wireless systems using IEEE 802.11x and Europe’s
HiperLAN/2 [21]. Digital Audio and Video broadcast systems also use OFDM. The
popularity of OFDM comes from certain key advantages summarized below [4]:

e OFDM is an efficient way to deal with multipath; for a given delay

spread, the implementation complexity is significantly lower than that
of a single carrier system with an equalizer.

¢ In relatively slow time-varying channels, it is possible to significantly

enhance the capacity by adapting the data rate per subcarrier according

to the signal-to-noise-ratio of that particular subcarrier.
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e OFDM is robust against narrowband interference, because such
interference affects only a small percentage of the subcarriers
The following sections will detail the concepts behind OFDM, which will explain
why it has become the modulation format of choice for many wireless applications. The
general concept will be described first, highlighting the major parts of a block diagram
representing a basic OFDM transceiver. Subsequent sections of this chapter will detail

certain blocks emphasizing key ideas and giving a more in-depth explanation.

2.1 Concept

The basic idea behind OFDM is to take a high rate datastream and to split it into a
number of parallel, lower rate datastreams. The lower rate datastreams are transmitted
simultaneously over separate subcarriers. If for example the original stream contains 32-
bits transmitted in T seconds then every 4 bits would be transmitted in 7/8 seconds.
However, in an OFDM system, if the datastream is divided into 8 parallel datastreams of
4-bits each (see Figure 1), then each parallel datastream would still take T seconds long.
Therefore the duration of each bit has been extended. This extension in time is one of the

principle properties against dispersion caused by multipath delay spread.

4 bits transmitted in T/8 seconds
(extended to T seconds)

4
B Sub 2 4'bits /
Original T seconds
Sequence T

A L0 =

s2bts/ . e . Tseconas
s
Sub8
1
0

Figure 1: High Rate data stream divided into multiple low rate data streams

4’bits /
T seconds
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In using multiple sub-carriers, it is easy to think that more of the frequency
spectrum is used to transmit the same amount of data as a single-carrier system. In fact,
traditional multi-carrier systems (known as FDM systems) used adjacent sub-carriers that
needed enough channel spacing (use of a guard band) to prevent overlap and hence avoid
intercarrier interference (ICI) [4]. OFDM solves this problem by choosing adjacent
subcarriers that are orthogonal. That is to say that the sub-carriers are related through a
mathematical relationship. During demodulation of the OFDM signal, orthogonality of
the subcarriers allows for the information encoded on each subcarrier to be extracted
without interference from the adjacent subcarriers.

A basic OFDM system is shown in Figure 2. The system will take a stream of
data bits (1’s and 0’s), channel code and interleave them to make the data more error
resistant within the wireless channel. The bits are then mapped into complex signals
using binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), or
quadrature amplitude modulation (QAM). Each complex signal now consists of a real
and imaginary part. Pilots are also added to help the receiver synchronize the received
data, which will have timing, and frequency offsets. The next step is to take a complex
IFFT on the QAM input data. The IFFT operation is equivalent to modulating the
complex data onto orthogonally generated subcarriers. The introduction of a guard time
added before the final OFDM symbol helps to almost completely eliminate intersymbol
interference (ISI). The baseband signal is then turned into an analog signal via a digital to
analog converter (DAC). It is then upconverted to the desired transmitting frequency and

sent off.
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Figure 2: Block Diagram of an OFDM transceiver [4]

2.2 OFDM Symbol Generation

An OFDM symbol is the culmination of many operations performed in sequence
as shown in the block diagram of Figure 2. Most operations prepare the data to combat
against impairments caused by either the channel or system equipment and will be
described shortly. However the main operation, considered the heart of an OFDM
transmitter, is the generation of orthogonal subcarriers and modulation, which will be
described first.

The generation of orthogonal carriers and modulation is performed through a
mathematical operation called the Inverse Discrete Fourier Transform (IDFT) [22]. The
Discrete Fourier Transform is performed on the receiver end to reverse the process. Most
relate to the IDFT when considering that a complex sinusoid is formed through the
summation of all its frequency components. By the same principal each OFDM signal is
composed of the sum of subcarriers, which carry the QAM data. Eq. (2.1) mathematically
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describes an OFDM signal where d; are the complex QAM symbols, N; is the number of

subcarriers, 7 is the symbol duration and f; the carrier frequency [4].

Ns

AL

5 .
s(t)=Re Z d,,nen €XP(J27(f. - ! +79'5)(t—ts)) , 1, <tZt +T
ol 2.1

2
s®)=0, t<t, ANt>t +T

Eq. (2.1) shows that the OFDM signal s(?) is a time varying signal that is the
result of the multiplication of complex QAM symbol with a complex exponential and
summed over all subcarriers. The real and imaginary parts of the QAM symbol
correspond to the in-phase and quadrature components respectively. This operation
essentially describes the inverse Fourier transform of the QAM symbols, which act as the
input frequency components. For implementation purposes with digital electronics, the
variable ¢ is replaced with a sample value »n giving rise to time discrete equivalent

expression in Eq. (2.2). This equation represents the Inverse Discrete Fourier Transform

(IDFT) [4].

(2.2)
fn

N,-1
s(m)=" d exp(j2x A’;’) n=01,..N-1

k=0

If the signal d; is complex (i.e. consisting of real and imaginary parts),
implementing Eq. (2.2), as is, would require N complex multiplications for an N-point
IDFT [23]. The value N is equivalent to the number of elements in the s(n) sequence.
When N becomes large, the complexity grows exponentially. The resulting operation

would require an unacceptably long processing time for modern day applications. A
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practical algorithm titled, the Inverse Fast Fourier Transform (IFFT), efficiently
implements Eq. (2.2) creating an enormous savings in computation time. The reduction
comes from the realization that redundancy exists in the general IDFT equation.
Specifically, the exponential portion shows complex conjugate symmetry as well as
periodicity in k£ and »n [24]. For practical systems the IFFT is used to generate the OFDM
symbol and the FFT is used to recover the QAM data. The section below describes the

IFFT/FFT algorithm in more detail.

2.2.1 IFFT and FFT Algorithm

The basic principal behind the Inverse Fast Fourier Transform (IFFT) and Fast
Fourier Transform (FFT) algorithms is finding a method to more efficiently compute Eq.

(2.3) and Eq. (2.4).

x[n] —%ZX[k]WN"", n=0,1,.,N-1 (2.3)
n=0
N-1
X[k]=Y x[m), k=0,1,.,N-1 (2.4)
n=0

where Wy = ¢?®™V_ The reader should note that Eq. (2.3) and Eq. (2.2) are essentially
equivalent. Since the IDFT and DFT equations differ in only the sign of the exponential
portion and a scaling factor, the ideas presented in obtaining an algorithm for the FFT can
be easily modified to fit the IFFT. Therefore, only the FFT algorithm will be described
using Eq. (2.4).

A dramatic efficiency results from dividing the original time sequence x/n/, on
the right-hand-side of Eq. (2.4) into successively smaller x/n/’s or reducing the frequency

sequence X/k/, on the left-hand-side of Eq. (2.4) into successively smaller sequences and
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performing the DFT on either smaller sequence instead of the original [24]. Dividing the
time sequence x/n/ derives the Decimation in Time (DIT) FFT algorithm whereas
dividing the frequency sequence X/k/ derives the Decimation in Frequency (DIF) FFT
algorithm. A DFT of each, smaller, sequence can still be taken because of the periodic
properties of the exponential factor Wy. A simple substitution with a shorter index is all
that is needed. Only the DIT algorithm will be explained further.

One essential criteria of the DIT algorithm is that the N-point sequence be a
power of 2 (e.g. 2' = 8-point sequence, where v = 3) [25]. The reason for this is so we can
successively divide the sequence, x/n/ in half and have an equal number of elements for
each part. To summarize, if we had a sequence with 8 values and divided once, we
would have two sequences of 4 values. Each 4-value sequence can be further divided
into two 2-value sequences and so on. The more divisions we perform, the smaller the
DFT’s will be and hence fewer computations are required. However, this division
operation cannot be done indefinitely as the sequence ultimately becomes an elementary

operation and no longer a DFT (technically it is a 2-point DFT). Graphically this is

x[0]

termed a “butterfly” operation and is simply a 2-

point transform where each of the two outputs is
x4

dependent on some combination operation of the Woml
=

inputs [23]. A butterfly flow graph is shown in Figure 3: Flow graph ofa 2-point DFT [24]

Figure 3.
Using an 8-point DFT example (N=8) will help explain where the computational

savings occur. We recall that an N-point DFT requires N’ complex multiplications;
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therefore 64 complex multiplications would be needed for our example. Figure 4 unrolls

Eq. (2.4) for an 8-point DFT to demonstrate this.

1 complex multiplication

subtotal

Total: 64 complex multiplications

Figure 4: Unrolling 8-point DFT [26]

The DIT algorithm starts by dividing the x/n] sequence into two sequences; one
containing the even elements and the other with odd numbered points [24]. After the first
division we will have an even-point N/2 sequence with {x/0]x[2]x[4]x[6]} as its
elements and {x/1],x{3],x[5],x[7]} as the elements of the odd-point N/2 sequence. This
same step is repeated over and over until each sequence will only have two elements per
sequence. The pattern showing how the sequences are divided for an 8-point FFT are

shown in Table 1.

Table 1: Input sequence x[n] after division into

Original Sequence After Dividing into After Dividing into four
two N/2 sequences N/4 sequences
x[0]
x[1]
x[2] x[0] x[1]
x[3] x[2] x[3] x[01 x[211 x[11Y x[3
x[4] x[4] x[5] x[4] x[6]J x[5)) x[7
x[5] x[6] x[7]
x[6]
x[7]
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We can demonstrate a reduction in

computation even after the first division into  xjo) —

) . (2] —— N/2-point
two N/2 sequences simply by noting the number «4] —— DFT
of computations needed for the DFT of each el =

. X[1] —3—
sequence. Our N-point DFT becomes two N/2-

X381 = N/2-point
. . . DFT
point DFT’s as shown in Figure 5. o =
X7 =

Each DFT now requires (N/2)" = 16 Figure 5: Flow graph for 8-point DFT [24]

complex multiplications. Since there are two

DFT’s to compute, a total of 32 complex multiplications are needed which is half the
original 64 complex multiplications. However an extra N multiplications are needed
because of the extra multiplication by Wy in the last stage of the flow graph bringing the
total number of complex multiplications up to N + 2(N/2)’ or 40 for this example. This
represents a savings of 37.5% over the original DFT after the first division. Further
savings can be achieved by dividing the sequences again. If we continue until we are left

only with butterfly operations, the number of complex multiplications reduces to N/log:N

[25]. Table 2 compares the savings for a number of values of N.

Table 2: Comparison of DFT and FFT multiplication complexity [26]

N DFT FFT
32 | 1024 160

1024 | 1048576 | 10240
32768 | ~1x10° | ~0.5x 10°

The repeated transformation that takes place reduces all DFTs to a flow graph that
requires only elementary operations as shown in Figure 6. The FFT algorithm simply

looks at this flow graph and finds patterns to be replicated. In other words, the algorithm
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does not itself breakdown the sequence into smaller sequences. This was done once, by

hand, and now we simply look at the final result and replicate that with an algorithm.

x[0]
x[4]
x[2]

x[6]

x[1]
xi5]
x[3]

x[7]

Figure 6: Reduced signal flow graph [24]

2.2.2 Bit Reversing

A basic relationship exists between the positions of the input and output

sequences of the DIT and DIF algorithm. For the DIT, in order for the positions of each

output element follow a linear order

X[0] 2120 gf rmemio) memio) 22 X[0]
. X[4] 22 ] memy) memp] R e X[1]
(top to bottom) then the positions of |y x010 3], eng ez 221 g X 2]

X[6] XL memia] inPlace memia |01 X[3]
. . Di t
the inputs must have a corresponding | X[1] XL p] memia;  Transiom  momia) X% g X[4]

X[5]w—> mem[5] mem[5] —XLM-DX[5]
bit reverse order as shown in Figure | X[3]-==—lam memis) memis)| =1L X([6]
X[7] 281 ] memry mem(7) XL g x[7]

7. The opposite is true for a DIF
Figure 7: Bit Reversal of 8-Point DFT using DIT

algorithm. algorithm [27]
To explain bit reversing, it is convenient to represent the position number of the
input and output sequences with binary digits. For example, for an 8-point FFT, x/1] can

be represented as x/001] and x/4] as x[{100]. Figure 7 shows that if memory location,
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mem/[1] contains data in position x/4] at the input, then the output would have memory
location mem[1] populated with data from memory location x//]. Note that x/4] =
x/100] has a binary value that is the reverse order of x//] = x[001]. In general x/b,b;by]
has become x/b0b1b2]. The same applies to all input positions when compared to the

output.

2.2.3 Orthogonality

As mentioned, the strength of an OFDM system lies in transforming a high rate
datastream into multiple lower rate datastreams in order to achieve greater robustness to a
multipath wireless channel. Spectral efficiency is maintained through the omission of a
guard band between subcarriers. In order to transmit multiple datastreams and still
conserve bandwidth, the subcarriers carrying each datastream need to be orthogonal to
each other [4]. This allows subcarriers to lie close to one another within a given spectrum
without interfering with one
another (i.e. cause ICI). Figure 8
shows the spectrum of OFDM

sub carriers. Note that the max

of each sub carrier occurs at the

Figure 8: Spectrum of Orthogonal subcarriers [28]

zeroes of all other sub carriers.

The complex IDFT, by definition produces a complex time signal that is the
summation of multiple sine and cosine carriers, which are orthogonal to each other,
which is why the IDFT is used to modulate the complex QAM data. The IDFT operation

creates sub carriers, which have an integer number of cycles within the OFDM symbol
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duration and are spaced out by exactly one integer cycle between adjacent sub carriers,

which defines orthogonality [4].

2.3 Error Coding and Decoding

The first block in our basic OFDM system involves error coding. Error coding is
used to improve communication performance within a communication system by
reducing the effects of channel impairments such as noise, interference and fading [28].
This is accomplished by transforming the transmitted signal to give it certain properties
that allow for the receiver to more easily distinguish it from other intended and non-
intended signals.

At the baseband level, coding is achieved by developing structured sequences
from the original, inputted, binary data. The structured sequence contains extra bits
providing some redundancy to the original sequence [29]. The resulting datastream has
better “distance properties”. In other words, when comparing two sequences before and
after coding is applied, the coded sequences look more “unalike” or have more differing
bits than the unencoded sequence. The decoder in the receiver is then able to detect
and/or correct a certain number of errors to retrieve the original data correctly.

The price paid for channel coding is bandwidth because of the added, redundant
bits. However, the increase in bandwidth is a desirable tradeoff to either improved error
performance or improved power efficiency depending on system criteria. So, in fact,
channel coding can provide better system performance at less cost when compared to
other methods such as higher power transmitters or the use of additional antennas [28].

Within an OFDM link, ISI is avoided by separating the datastream into a number

of parallel streams transmitted on different carriers. However another problem is
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presented in that each of these subcarriers may arrive at different times and with different
amplitudes caused by multipath fading. Some subcarriers may be more adversely
affected than others, perhaps lost completely by deep fades. Therefore, these “weak”
subcarriers largely determine the system error performance. To counteract this, channel

coding is used across the carriers to correct some of the errors [4].

2.3.1 Convolutional Encoder.

A number of forward error correction (FEC) coding schemes exist, each having
their own performance characteristics, implementation complexity, and coding gain.
Convolutional codes are often chosen for many applications because they offer better
performance for the same complexity implementation of other schemes [30].

Convolutional coding can be described in a number of ways. A convenient

convolutional encoder representation is the connection representation shown in [28].

The encoder works {/-i-\ 1010

Moduio-2

by passing a continuous lodulo-

...1010101

Input
(Binary Digits)

Output

stream of input bits, n, (Coded Binary Digits)

Storage Register
through a memory device

such as a storage register Figure 9: Connection representation of convolutional encoder [28]

[30]. The register length, referred to, as the constraint length is an important parameter as
it has bearing on the distance properties of the resulting coded sequence. The constraint
length of the register in the figure is K = 3. The number of output bits, £, for every input
bit is determined by the amount of modulo-2 adders. In this example there are two thus
making the code rate, &/n, equal to 2. Each modulo-2 adder is connected to specific cells

of the shift register, which define the connection vector. Connection vectors of many
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codes have been tested to find those, which produce the best distance properties. The
output bits are produced by the modulo-2 addition of only the cells selected by the
connection vector.

Once the modulo-2 addition of the selected cells is completed, two output bits
(one output from each modulo-2 adder) are produced. The shift register then inputs a new
bit from the left-hand side and the right most bit is discarded. Therefore, each output bit

is not only dependent on the present & input bits, but the past K-/ input bits as well [30].

2.3.2 Viterbi Decoder

A Viterbi decoding algorithm is used on the receiver end to decode the encoded
bits from the convolutional encoder. The Viterbi decoding algorithm was discovered and
analyzed by Viterbi in 1967 [28]. It is essentially based on the principal of maximum
likelihood decoding. That is to say that the decoder will make a decision about the input
sequence based on statistical knowledge of all possible input sequences. For example,
for a convolutional encoder which has memory (i.e. the received bits are related to prior
and present bits) the decoder will choose the most likely sequence that has the same
pattern as the received sequence. Decision theory is described in greater detail in
Appendix B of [28].

What makes the Viterbi algorithm attractive is that it performs the decision
process with less computational complexity than a brute force approach. This is done by
calculating a measure of distance or similarity, called a metric, between the received
sequence and all other sequences at time ¢ and eliminating all those that couldn’t possibly
be candidates. The process is then repeated from bit to bit until only the most likely

candidate is left. Since only the “surviving” sequences are used, this removes the need
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for the received sequence to be compared with all other possible sequences saving
unnecessary computations [31].

The trellis diagram is a manageable way to display the decoding procedure for a
convolutional encoder. It provides the dimension of time to show all possible paths taken
for each subsequently inputted bit. In addition, by exploiting the repetitive nature of the
convolutional encoder after time ¢ equal to the constraint length K, the number of
branches that need to be drawn is kept relatively low. The number of rows in the trellis
diagram is equal to the number of states taken from the last K-/ shift register elements.

For K= 3, the number of states would be represented by 2°/

= 4 states. Figure 10 shows
a trellis diagram of the received sequence U=I11 01 01 which was encoded using the

specifications of the encoder in Figure 9. The trellis assumes that the convolutional

encoder starts with zeroes in the storage register.

uU: 11 01 01

2

“00”& z

“10”.

ll01”.
——Input=0
—=-=Ilnput=1 “117®

Figure 10: Trellis diagram of received sequence U =11 01 01 [28]

As mentioned the Viterbi algorithm saves computation time by eliminating paths
that are not likely candidates. This is performed at a node where two paths merge. The

algorithm then tallies up all metric values accumulated at that merged point and discards
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the path with the higher metric value as shown by the red lines in Figure 10. Once the
trellis grows large enough (usually several times the size of K), we can begin the
traceback by choosing which of the four states has the lowest accumulated error. If we
follow the path of the “survivor” back though the trellis we decode the most likely

sequence, which can correct some errors that may have occurred in the channel [28].

2.3.3 Soft Decision Decoding

When a demodulator makes a decision between a binary “1” or “0”, this is often
called a hard-decision. However, quantizing the distance between these two values into
higher levels is also possible and adds to system performance. Therefore, converting the
received value to a quantized soft-value provides the decoder with more information.
Instead of feeding the decoder a final decision, it gives a measure of confidence based on
the quantized value. Figure 11 compares an 8-level soft decision and a 2-level hard
decision using maximum likelihood probability distribution function plots. Note that a

“000” is strong indication of a “0” and a “111” is a strong indication of “1”.

Likelihood of s Likelihood of sq
plzlsy) plzlsy)

2(T)

5 p oy it N N g N ot M pd eimpnd Yo w08
000 001 010 011 100 101 110 111 8-level soft decision

A

1 2-ievel hard decision

(== 48

Figure 11: Hard and soft decoding decisions [28]
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2.4 Interleaver and De-Interleaver

The second block in the transmitter portion of our OFDM system involves
interleaving. An interleaver is a simple way of randomizing bits in a predetermined
manner to help the recovery of information in the presence of burst errors. Some radio
channels create deep fades in signal amplitudes at distinct frequencies resulting in
frequency selective fading [4]. As a result certain subcarriers are more adversely affected
than others, which cause groups of adjacent bits to be corrupted instead of errors
occurring in a random fashion.

An interleaver spaces out adjacent bits so that when deep fades occur during
transmission, errors actually occur at different symbols as shown in Figure 12. Therefore
instead of, for example, four errors occurring in a row within a symbol, the errors might
be dispersed amongst four symbols with one error in each. Most forward error correction
(FEC) codes can handle one or two errors per symbol so the dispersion of errors by the

interleaver aids in the recovery of data.

DEEP FADE
(error on bit 4,5,6,7)

Symbol #1 Symbol #2 Symbol #3 Symbol #4

A A
I N N
sloJiolnnJrliz]14]1s]

Original Bit Sequence
(Non-Interleaved)

Bit number DEEP FADE

J \
Symbol #1 Symbol #2 Symbol #3 Symbol #4

Figure 12: Affect of burst error on Non-Interleaved and Interleaved Data

A block interleaver is a common way of implementing interleaving. A block

interleaver consists of a square matrix having dimensions equal to the length of the
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symbol or frame. The matrix acts as a sort of buffer where input symbols populate the
columns of the matrix and once it is full, the data is read out row by row [4]. The reverse
operation takes place on the receiver end to place the bits back in the original sequence

before the decoder is applied. Figure 13 graphically describes block interleaving.

Original Bit Sequence

otz a 4 sle7s[oJwo[unJ2]13[14]15]

Interleaved Bit Sequence

olafslinal1[s]o]3j2lef10]14{3][7]14]15]
N —,

Figure 13: Block Interleaver

2.5 Quadrature Amplitude Modulation (QAM)

The block following the Interleaver block on the transmitter portion of our
diagram has been titled “QAM” which stands for Quadrature Amplitude Modulation.
The purpose of this block is to characterize the digital data into a format that will help
decrease the bandwidth requirements [32]. QAM works well with OFDM and is most
often chosen as the modulation format. The complex QAM signals, which represent
frequency components act as inputs to the complex IFFT function. In practice, many
OFDM systems normally choose between BPSK, QPSK, or QAM [33]. QAM has the
advantage of offering the highest bit rate whereas the other formats would be used for
fallback bit rates in noisier channels because of better distance properties. QAM can be

considered as an extension of BPSK and QPSK therefore it will be the only one

described.
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2.5.1 Mapping

The concept of QAM is easily understood as a combination of amplitude shift
keying (ASK) and phase shift keying (PSK) [34]. Within a QAM system, two
independent values are created from the binary data such that one is amplitude modulated
with the cosine of the carrier frequency and other with sine. Therefore QAM can be best
described as two-dimensional signaling [32]. A constellation can be formed on a
Cartesian plane where the x-axis represents the in-phase value and the y-axis represents
the quadrature value. Figure 14 shows an example of a 16-QAM constellation used in the
IEEE 802.11 standard.

Often, the QAM symbols making up the  16-QAM
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in only one position. Consequently, if a symbol

Figure 14: Constellation for 16-QAM [33
error should occur whereby the demodulator & M3

selects an adjacent symbol to that of the intended symbol, only one bit error will have
occurred [32]. The constellation for the 16-QAM plot in Figure 14 shows Gray coding.
Note how each group of 4 bits differs in only one bit location from the adjacent groups
The advantage of QAM over simply amplitude modulating the binary data is that
it represents a method of reducing the bandwidth needed for data transmission. QAM
bélongs to the family of M-ary signaling whereby each symbol represents more than one

bit. In this manner each symbol can transmit k = log,M bits. As an example each 16-
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QAM (M =16) symbol represents four (k = 4) bits. The incoming bitstream is divided
into groups of bits, in this case four bits for 16-QAM, and is mapped to the corresponding
16-QAM value taken from the constellation.

Higher QAM formats such as 64-QAM and 256-QAM represent further
bandwidth decreases. However, under a fixed power constraint, the system would suffer
from having QAM symbols spaced too close together [4]. This results in a larger signal
to noise ratio (SNR) to achieve the same bit error rate (BER) for higher M-QAM values.
Figure 15 below shows theoretical BER curves for various M-QAM values for an
AWGN channel [35]. Note that a horizontal line drawn at a BER of 10 would show an

SNR loss of about 4.5 dB between 16-QAM and 64-QAM.

16-0AM ¥

Figure 15: Various QAM BER curves
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2.5.2 Demapping

Demapping of the QAM symbols takes place on the receiver end after the OFDM
symbol recovers the QAM data from the FFT operation. Demapping is not as straight

forward as the mapping operation because of

impairments in the wireless channel that will AN SOV
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waveform, the QAM symbols are not

discrete values as shown in Figure 14. Instead,
Figure 16: Scatter plot of 16-QAM constellation
the existence of noise causes the constellation
points to be spread as in Figure 16.
Therefore the demapping procedure must establish “decision regions” in order to
associate the received values with an actual QAM value. However errors may occur,
such that the received value spread so far as to fall into an adjacent region. The error

correction scheme used in the OFDM system is then responsible for correcting these

CITOTrS.

2.6 Pilot Symbols

Before the QAM symbols are inputted to the IFFT block, an extra step is taken to
ensure proper demodulation on the receiver end. Transmitting information on orthogonal
carriers creates a strong point for OFDM by conserving bandwidth. However this same

principal also creates a problem for OFDM transmission. OFDM is particularly sensitive
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to any frequency or timing offsets, which cause orthogonality to be lost [36]. For
example, a frequency offset of any subcarrier would then cause the maximums of every
other subcarrier to occur at a point which does not correspond to the zeros of other
subcarrier thus increasing the chance of ICI. Frequency and timing offsets occur simply
because there is no way of guaranteeing that the transmitter and receiver clocks are
completely in sync.

Pilot insertion is performed on the transmitter side in order for synchronization with
the transmitted signal to be performed at the receiver. Pilots are symbols or subcarriers
containing “extra” information, which the receiver has a priori knowledge of and can be
used as a training sequence. They are used to correct timing and frequency offsets of the
transmitted signal. These offsets introduce ISI and ICI in the signal, which would
ultimately cause irrecoverable errors [36]. An OFDM symbol can have certain
subcarriers reserved for use as pilots. On the receiver end, this information is extracted

and used to determine symbol boundaries and optimal timing for demodulation.

2.7 Guard Time and Cyclic Extension

OFDM’s robustness to multipath delay is one of its main advantages over other
modulation formats. However, wireless channels still introduce multipath delays, which
cause certain parts of the OFDM symbol to arrive later than others. When multipath
components of one symbol arrive at the same time as another symbol, the energy of each
can overlap and add together to introduce intersymbol interference (ISI). ISI can be
almost completely eliminated with the proper use of a guard time [37]. Therefore, after
the OFDM symbol is generated, a guard time is used to extend the duration of an OFDM

symbol. This ensures that any subcarrier that arrives with delay will not interfere with
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those of another symbol. If the guard time is larger than the expected delay then IST will
not occur due to the delay spread [38]. The reason for this is to give enough time for all
the multipath components to “die out” before demodulation of the adjacent symbol is
started. The demodulation period is time over which the FFT interval is taken in order to
retrieve the QAM symbols.

The format and value for the guard time cannot be arbitrarily chosen. For example
extending the symbol duration with no signal would cause ICI because the FFT interval
of certain delayed components of a symbol would then not contain an integer number of

cycles as shown in Figure 17.

|
Part of Sub#2
icausing:ICl on:Sub)
#1
< > < s >
Guard Time FFT Integration Time
< >

OFDM Symbol Time

Figure 17: Effect of multipath with zero signal in the guard time [4]

During the FFT integration time, “Subcarrier 1” would be demodulated properly,
as there is no delay, however intercarrier interference would be caused by “Subcarrier 2”
because the OFDM symbol does not contain an integer number of cycles within the FFT
integration time. To avoid ICL, the guard time should be composed of a cyclic extension

of the OFDM symbol. In other words the guard time simply consists of a continuation of
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the signal. In this manner, orthogonality is maintained which is essential for the FFT to
properly retrieve the QAM symbols on each subcarrier. As long as the delayed signal
arrives within the length of the guard time, the FFT integration time will always consist
of an integer number of cycles. This would eliminate ICI from “Subcarrier 1” onto

“Subcarrier 2 and vice versa [4].
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3 Signal Processing Technologies used in Software
Defined Radios

With advancements in computing power, the trend in transceiver design has been
to perform more and more tasks using digital signal processing technologies [14].
Certain radio modules traditionally reserved for analog devices are now being processed
digitally. A perfect example was described in Chapter 2 where the IFFT operation
replaces a bank of analog modulators to generate the subcarriers for an OFDM system.
With this continuing trend, the term Software Defined Radio (SDR) has been coined in
the wireless telecommunications industry [39]. SDRs offer multiple advantages in
building networks that are very flexible and reduce the expense of bulky analog
equipment that consumes more power. An ideal SDR architecture consists of a simple
analog subsystem and a complex digital subsystem [40]. Specifically, within an SDR
architecture, the baseband processing portion of the digital subsystem has most to gain
from advancements in digital signal processing technology.

Many digital signal-processing technologies exist today to implement the
baseband processing portion of digital subsystem in SDRs. However each solution may
have certain advantages and disadvantages over others. The choices available run from
custom hardware such as application specific integrated -circuits (ASICs), to
reconfigurable hardware such as field programmable gate arrays (FPGAs) to
reprogrammable platforms such as digital signal processors (DSPs) and general-purpose

processors (GPPs) [10].
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Given the choices and the respective advantages that each hold makes it harder
for a designer to pick the right technology. A designer may not only have performance
issues to contend with. Time to market, scalability and adaptability are all other factors to
consider. The general criteria that need to be addressed are outlined below [41]:

e Programmability: the ability to reconfigure a device to perform the

desired functions for all of the target standards

e Level of integration: the ability to integrate several functions into a

single device, thus reducing the size and hardware complexity of the
system

e Development cycle: the time it takes to develop, implement, and test a

function with a specific device

e Performance: the ability of a device to perform the function within

the required time
e Power: the power utilization of the device when performing the
required function
As mentioned in Chapter 1 the need for future networks that can reliably deliver
high data transmission rates as well as offer interoperability and seamless switching
between different wireless networks using different protocols and standards will become
increasingly important. This makes the use of OFDM as a modulation format and the idea

of an SDR concept ideal for future networks. The emergence of a single platform that can
cater to all the criteria listed is still out of reach for present day designs. However, it is

believed that programmable DSPs offer advantages over other signal processing
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technologies that create an opportunity to be a key technology in the development of
future wireless networks that require a great amount of flexibility such as SDRs.

This chapter will begin by introducing the concept of Software Defined Radio
(SDR) including a description of the proposed architecture and key components. Later
sections will detail the different digital signal processing technologies that can be
potentially used to help implement SDRs. Advantages and disadvantages of each will be

given with special attention on the use of programmable DSPs.

3.1 Software Defined Radio

Historically, radio design in early cellular systems such as the first generation
(1G) networks traded bandwidth for system complexity resulting in relatively low system
capacity. As the industry moved to second generation (2G), digital networks, more
baseband processing was performed in order to increase the number of users on a single
carrier. For example, both TDMA and CDMA multiplex a number of users in the digital
part of the system at baseband prior to the modulator [40]. Third generation (3G) and
fourth generation (4G) networks, require even more processing power to provide
increased system capacity. With more processing taking place in the digital part of the
system, less equipment is needed in the analog subsystem. This is one aspect in forming
the concept of an SDR however easy reconfiguration of the digital subsystem is another.
The SDR Forum, a non-profit organization created to help develop and promote SDR

technologies uses the following definition [39].

“Software Defined Radio (SDR) is a collection of hardware and software

technologies that enable reconfigurable system architectures for wireless
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networks and user terminals. SDR provides an efficient and comparatively
inexpensive solution to the problem of building multi-mode, multi-band,
multi-functional wireless devices that can be enhanced using software
upgrades. As such, SDR can really be considered an enabling technology
that is applicable across a wide range of areas within the wireless

industry.*

The general idea is to design devices such as handhelds, and radio equipment
included in the wireless network infrastructure that can be dynamically programmed and
reprogrammed with software. The hardware goes unchanged yet it has the ability to be
reconfigured to perform different functions at different times. For example, a software
download could upgrade the deployed members from a simple air interface based on,
QPSK, to an improved air interface with a new high data rate 16-QAM mode [10]. This
provides a huge advantage over existing architectures and the benefits extend from
consumers to wireless service providers. Examples are [15]:

e For subscribers- easier international roaming, improved and more

flexible services, increased personalization and choice.

e For mobile network operators — the potential to rapidly develop and
introduce new, personalized, and customized services; a tool for
increased customer retention and added value services.

e For handset and base station manufacturers — the promise of new scale
economies, increased production flexibility, and improved products .

The wireless industry has been increasing effort into developing SDR

technologies and turning the idea into reality. The motivation comes from being able to
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deploy cost effective networks that are easily upgradeable with the possibility of little or

no hardware redesign effort.

3.1.1 Basic Architecture

An ideal software radio architecture consists of a complex digital subsystem and a
simple analog system. The goal is to limit the analog functions to those that can only be
performed with analog components such as the antenna, RF filtering, RF combination,
receive and transmit amplification. The digital subsystem has two major responsibilities
[40]: 1) carrier separation and up/down frequency conversion to baseband and 2) all

baseband processing such as error control coding and modulation functions. It should
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Figure 18: Ideal Software Radio Architecture [40]
application software.
Software for the ideal architecture is layered so that it is detached from the

hardware level. It is the task of the middleware layer (e.g. operating system, resource

management) to interface the application software and hardware layer. This removes
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low-level programming from application development and allows software designers to
develop more complex and powerful applications [40].

As can be seen from Figure 18 the architecture of a software defined radio is
composed of many components, however, only the hardware resources in the digital

subsystem will be discussed further.

3.1.2 Digital Subsystem Hardware

The greatest advancements in technology have to take place in the digital
subsystem side in order to make the concept of a cost effective SDR solution viable. We
would ideally like to choose a technology that is powerful enough to interface with
minimal analog equipment as well as be programmable enough to easily interface with
high-level application software [40].

As mentioned above, the software defined radio digital subsystem consists of
digital frequency conversion and baseband processing. The idea behind digital frequency
conversion is to directly sample the operating frequency of the carrier. The challenge of
interfacing with the analog portion is to be able to sample higher and higher frequencies
therefore eliminating several down and up converters for intermediate frequency (IF)
conversions [10]. However given that even a good wideband front-end receiver can take
a 3G system carrier signal of 900MHz and convert it to a digital IF of 70 MHz, it would
still take about 4300 MIPS (millions of instructions per second) to digitally sample and
process. This requires a dedicated, high end DSP alone for just the task of frequency
sampling and conversion to baseband. Therefore fundamental limitations prevent the use
of digital processors to tackle the task of frequency conversion. It would be better left to

digital up converters (DUCs) and digital down converters (DDCs) to perform frequency

42



conversion much more efficiently and still have enough programming capability to be
considered for SDR platform [40].

Of equal importance in system design within an SDR is the baseband processing
portion of the digital subsystem. The design is directly dependant on the air interface
standard it must cater to whether it is for the mobile industry or any other wireless
communication system application. For example, different standards may implement
different modulation schemes or error correction code techniques. An SDR platform will
be able to use software in the application layer to dynamically change functions.
Therefore the need will be for digital processing to be powerful enough to handle the
higher transmission rates as well as provide the flexibility needed to quickly switch to
different air-standards and applications [10].

Many digital signal-processing technologies exist today to implement this portion

of an SDR platform. The following section details the most likely candidates.

3.2 Comparison of Signal Processing Technologies for
Baseband Processing

Signal processing technologies that are candidates for SDR baseband processing
range from application specific integrated circuits (ASIC’s), to reconfigurable hardware
such as field programmable gate arrays (FPGA’s) to reprogrammable platforms such as
digital signal processors (DSP’s) and general-purpose processors (GPP’s). There are
trade offs with the digital processor solutions that are available. The following section
will detail the different signal processing technologies available to implement the

baseband digital subsystem portion of an SDR platform.
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3.2.1 ASIC and GPP Solutions

We can place ASICs and GPPs on opposite ends of the selection spectrum [14].
GPPs are designed once and are produced in mass volume to offer cheap processing
power. General-purpose processors such as those found in personal computers (PCs) are
designed to run many different types of applications such as image processing, math
intensive software, or recreational arcade games. Therefore the design is not intended to
run any application extremely well as each type of application would have special
requirements for efficiency. This results in GPP’s consuming many more cycles than
competing technologies to implement functions needed in an SDR. ASICs on the other
hand are designed to run a particular application with great efficiency in both cycle and
power consumption. However, ASICs are fixed designs that cannot be altered to perform
anything other than the originally intended application. This directly contradicts the idea
of an SDR that must be designed with the capability to be configured to run many
different applications. The design time needed for producing an ASIC chip used for a
single application raises the cost per unit giving ASICs a price disadvantage as well.
Therefore these two technologies are not generally suited as a baseband processing

design solution for an SDR platform.

3.2.2 FPGA Solutions

The benefit of using an FPGA solution over GPPs and DSPs is its potential for
much greater performance. Hardware can be specifically synthesized to execute
processing tasks within an application therefore performing them in parallel. However
the number of hardware resources used as well as the maximum clock frequency is

dependent on the efficiency of the synthesis tools used in the design. Therefore, actual
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clock frequency may be significantly less than the theoretical maximum [40]. Also, if
hardware needs to be synthesized for each application, a disadvantage might result in
having a system with an unnecessarily large amount of resources. This may increase
power consumption from one hardware profile to the next making the power
requirements for a battery powered handheld unreliable [14].

FPGAs are not as easily and efficiently programmable as DSPs. The same library
of algorithms that exist for C programmed code is not available for code written in
VHDL for FPGAs therefore making a product’s time to market lengthier. When
compared to DSPs this can decrease the cost effectiveness of using FPGAs over the
design cycle [40].

A fundamental difference between DSPs and FPGA for use in SDRs is
reconfiguration time. A DSP simply needs to run new code to change the function of the
hardware, however FPGAs are not dynamically reconfigurable. A mobile device using
an FPGA may need to come off-line in order for the FPGA to be reconfigured to change
its function. This can take up to fractions of a second, which can contribute to many lost
frames in a communication link resulting in unacceptable quality of service [40].

Given the above, FPGAs have still found their way into SDR designs because of
their advantageous processing power over DSPs. However, their use will be limited to
processing tasks that require intensive computational loads that need not dynamically

change during a link call such as filtering and waveform shaping of the IF.

3.2.3 DSP solutions

The advantage of DSPs over GPPs is that they are designed to carry out specific

instructions very efficiently [12]. One of the most common examples is that most DSPs
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can perform a multiply and accumulate (MAC) operation in one cycle time whereas
GPPs normally require several cycles for the same task. This proves to be advantages in
communications related signal processing where MACs are frequently and repetitively
used in algorithm development. In addition, the hardware architecture of most recent
DSPs is tailored to handle other communication-related processing more efficiently.

The advantage of DSPs over FPGAs is that they are easily and efficiently
programmable [14]. Early DSPs required the knowledge of a different assembly
language for each processor type. However today’s DSPs allow programmers to code in
a high level language such as C or C++ and have the compiler produce executable code.
This allows for the production of high quality code that can be reused in other system
design. It also helps to reduce the amount of development time needed in system design
using a DSP. Another advantage to programmable DSPs is that they fully comply with
the software requirement of the SDR concept making the design completely flexible [40].
Therefore, DSPs could easily handle changes to baseband processing tasks as the changes
could simply be programmed in a high level language and executed when needed.

DSPs have a performance disadvantage when compared to FPGAs as the amount
of operations needed for some of the processing tasks can outnumber the available
resources therefore delaying the overall system. However, higher performance DSPs are
widely available in the market today. The performance of DSPs has been increasing at a
rate similar to Moore’s Law, which predicts the doubling of computing power every 18
months [40]. For communication related processing a good measure of DSP performance
is to consider how many million multiply and accumulate per second (MMACS) it can

perform. Figure 19 shows a plot of MMAC:s over time for Texas Instrument processors.
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Therefore, although DSPs

may not compete with the
processing power of FPGAs in
certain applications, it has shown
exponential increase over the
years. It is this rate of increase that
has pushed the concept of an SDR

from paper to implementation. It
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Figure 19: DSP performance increase. [40]

can be predicted that this trend will continue for the next ten years thus potentially

reaching a performance level high enough to handle the demanding baseband processing

tasks of future SDR designs.

Performance disadvantages may be also addressed in other ways. The trend for

some present day DSPs has been to include application specific coprocessors that handle

computationally intensive tasks such as error correction coding, which would normally

have been processed by the DSP core [13]. These coprocessors are designed with enough

programmability to be used with different standards therefore keeping with the advantage

of a flexible and programmable platform. In addition designers can place multiple DSPs

on a board and use a divide and conquer approach to handle very computationally intense

tasks. In summary the advantages of using DSPs are [42]:

e Reduced development time and quick prototyping. Quick time to

market.

e Flexibility. It can quickly adapt to changing or different standards as it

needs only a software change.
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o Ideal for multi-mode Basebands where multiple standards are

supported by the same device.

The above advantages make DSPs very attractive for future, mobile wireless
systems where each system may need to cater to a multitude of standards and interfaces.
Therefore, DSPs might be best suited to areas that need to be easily programmable to
ensure high adaptability and make a prime candidate for use within an SDR platform.

The DSP platform chosen for the implementation presented in this thesis is
provided by Texas Instruments. The development tools consist of a complete software
suite with debugging capabilities as well as a fully functional evaluation module
containing a high performance DSP and external memory. Further details are provided in

the subsequent chapters.
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4 Software Implementation of an OFDM System

The advantages of using DSP processors over other signal processing
technologies were given in the previous chapter. What follows is a description of an
OFDM, baseband system implemented using a Texas Instruments (TT) DSP platform. A
brief introduction to the software suite and hardware used will be given. The software
structure will be described while detailing the modular, code blocks that implement the

system.

4.1 Software Platform

A host of DSP platforms exist on the commercial market. Companies such as
Motorola, Analog Devices and Texas Instruments offer design kits, which include
evaluation boards and accompanying design software.  Of these, Texas Instruments (TI)
offers the fastest and most powerful DSP processors under the C6000 platform [43]. In
March of 2003 they announced the introduction of a 720MHz processor and two months
later they unveiled an updated roadmap of the C6000 platform, which includes a 1.1GHz

processor for mid-2004. Table 3 demonstrates a performance summary of competing

platforms.

Table 3: Performance Comparison of DSP industry leaders [40]

Company Texas Instruments | Texas Instruments | Analog Devices | MSC8102
Processor C6416 C6416 TigerSHARC, MSC8102
600 MHz 1100 MHz 180 MHz 300 MHz
8-bit MMACS 4800 8800 2880 -
16-bit MMACS 2400 4400 1440 4800
MIPS 4800 8800 1080 7200
Coprocessors | TCP (12604 MIPS)+ TCP (23107 MIPS)+ None EFCOP
VCP (2581 MIPS) VCP (4732 MIPS) (1200 MMACS)
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TI offers a software suite titled Code Composer Studio which facilitates the
design process by offering compile, testing and debugging features all under the same
software tool. In addition, a DSP library containing many algorithms commonly used in
industry are available for designers to use and include in custom designs [44].

The following describes the TI hardware and software used for the

implementation of the OFDM system in greater detail.

4.1.1 Tl Code Composer Studio

Code composer studio (CCS) conveniently ties the DSP hardware with the design
of any project. It includes all the software tools needed to take a design project from

beginning to end. It supports all phases of the development cycle shown in Figure 20.

Design Code & build Debug Analyze
conceplual greate project, > syntax che‘ckmg, » real-tlrpe
) wrile source code, probe paints, debugging,
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configuration file logging, ete. statistics, tracing

3 4

Figure 20: Phases of development cycle [45]

Once the conceptual planning of the design is finalized, the code generation tools
included in the suite allow the designer to efficiently code and build the project. CCS
provides the convenience of programming in a high level language such as C or C++ to
ease the design flow. A typical software development flow using the code generation
tools is shown in Figure 21. Path “A” defines a design flow using C code whereas Path

“B” is typical of those using assembly code.
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| Debugging
tools

Figure 21: Software development flow [45]

The C compiler accepts C source code and produces assembly language source
code. To reduce overall execution time, the compiler can operate in one of four
optimization modes. For example the compiler can unravel loops to reduce the overall
number of branches to speed code execution. A great amount of engineering has gone
into producing a compiler that can rival the performance of assembly code, which has
traditionally been far superior [40]. Table 4 demonstrates the efficiency of some

algorithms compiled with CCS when compared to assembly.
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Table 4: Comparison of CCS compiler assembly language programming [40]

Algorithm Use Assembly cycles | C Cycles | Percent Efficiency
Codebook Search | CSELP vocoder 977 976 102
10-Tap FIR Filter | VSELP vocoder 238 280 85
16-Tap FIR Filter | Filter 43 38 113

The assembler then translates assembly language source files into machine
language object files. The machine language is based on common object file format
(COFF). In Path “B”, the assembly optimizer allows you to write linear assembly code
without the need to focus on the pipeline structure or register assignment. The linker
combines object files into a single executable object module. While creating the
executable module, it performs relocation and resolves external references. The linker
accepts relocatable COFF object files and object libraries as input. The run-time-support
libraries contain ANSI standard run-time-support functions, compiler-utility functions,
floating-point arithmetic functions, and /0 functions that are supported by the C
compiler. As an option, the designer can use the library-build utility to build his/her own
customized run-time-support library. Finally, the executable COFF file is downloaded to
the DSP target for execution or loaded on the CCS simulator for debugging [45].

The integrated design environment (IDE) includes a compiler and debugger,
which help to run and test programs without having to jump between applications [44].
Debugging is accomplished through the addition of probe points or break points as well
as recording logs of outputs.

Within the analysis portion of the design cycle, CCS offers profiling options to
evaluate the speed of an application and target the code that has been programmed
inefficiently. In addition, with the use of DSP/BIOS an application can be debugged in

real-time to make sure it meets real-time deadlines. With DSP/BIOS a designer can
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monitor a system’s performance without affecting the target DSP. In addition,
DSP/BIOS offers a graphical interface to implement projects using multi-threading. In
addition it can plot the CPU load graph, for scheduling functions and monitoring CPU

usage respectively. Both tools can help to maximize DSP resource usage [46].

4.1.2 Ti Evaluation Module

The hardware chosen for implementing the OFDM system is a TI Evaluation
Module (EVM), model number TMS320C6201. The full-sized EVM board measures
approximately 4.2 inches wide by 12.28 inches long and is designed to be used in a PC’s

PCI expansion slot. A diagram of the EVM board is shown in Figure 22.
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Figure 22: TMS320C6201 EVM diagram [47]

Functionally, the board allows high-speed verification of C6000 code with the
included EVM specific Code Composer debugger. The EVM board features a PCI

interface, SBSRAM and SDRAM. Connectors on the EVM board provide a DSP external
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memory interface (EMIF) and peripheral signals that enable it to be expanded with
custom or third-party daughterboards [47].

The board includes a C6201 processor, which is a fixed-point processor. It is
capable of 1600 MIPS at 200MHz using a 5ns cycle time, however only a maximum
clock rate of 160 MHz is possible with the EVM. 1t is able to execute up to eight 32-bit
instructions every cycle. The core CPU consists of 32 general-purpose registers of 32-bit
word length and eight functional units, which are 6 multipliers and 2 ALUs. The CPU
contains TI’s own VelociTI architecture which makes the C6000 DSPs the first off-the-
shelf DSPs to use an enhancement of traditional VLIW (Very Long Instruction Word) to
achieve high performance through increased instruction-level parallelism. A traditional
VLIW architecture consists of multiple execution units running in parallel that perform
multiple instructions during a single clock cycle [47]. Other on board features such as

memory and peripherals are summarized in Table 5.

Table 5: Features of TMS320C6201 EVM board [47]

Memory and Peripheral features

Glueless external memory interface to synchronous memories such as
SBSRAM and SDRAM

Glueless external memory interface to asynchronous memories such as
SRAM and EPROM

4-channel direct memory access (DMA)

Host port interface (HPI) with dedicated auxiliary DMA channel providing
access to entire processor memory space

Two multichannel buffered serial ports (McBSPs) for direct interfacing to
telecommunication, audio, and other serial devices

Two general-purpose timers

Multiply-by-4 phase locked loop (PLL) and multiply-by-1 PLL-bypass
options

1M-bit on-chip memory (2K x 256 bits of program memory/64K bytes of
data memory)
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4.2 Fixed Point Processing

Designs based on fixed point processing offer the advantage of greater speed in
computation, lower power consumption, and lower production cost over floating-point
based designs. This is mainly because of the lower number of bits per word representing
each data type. For example, some computers reserve 1 byte of memory for an integer in
a fixed-point architecture whereas 2 to 4 bytes of memory can be reserved for a floating-
point constant in a floating-point architecture [48]. However, the trade-off is a lack of
precision in results obtained from fixed-point processors.

Most system designs start off as floating-point models but then go through a
longer design procedure to convert to fixed-point design. The extra time spent in the
design stage pays off with the savings in the production stage [49]. This is due partly to
the extra on chip memory needed for representing floating point values.

Any system using fixed-point processors must consider the limitations of fixed-
point arithmetic. The consequences can be significant precision losses otherwise. The
main points to consider when designing such a system are: quantization error and

saturation error.

4.2.1 Quantization Error

A fixed-point processor has a dynamic range that is far less than that of a floating-
point processor. Given the limited range of fixed-point processors, they mostly perform
mathematical operations on numbers representing positive or negative integers.
Therefore, the precision is limited to whole, integer numbers because no bits are allocated
to representing a decimal value as in floating point numbers. This leads to rounding error

otherwise known as quantization error. Quantization error occurs when values lying
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within a given range are all assigned the same value [49]. Therefore, the system is unable
to distinguish between these values and so precision suffers.

Some DSPs offer a method for fixed, fractional number representation where
parts of the bits are used to assign a decimal value. This is known as Q15 or Q31
representation depending on how many bits are used to represent the decimal part [50].
However this is done at the expense of a further loss in dynamic range. This method may
be better suited for signal representation of low voltage values. Otherwise a designer
may use scaling to make use of the entire dynamic range. If the values used in operations
all lie in close proximity to each other scaling allows for a small number to be
represented by a large number thus spacing the number of values between the original
two values. This scaled representation of the original numbers puts precision back into
the operation. However scaling should be used cautiously as it can lead to the second

main source of error, which is discussed next.

4.2.2 Saturation Error

Saturation errors are the outcome of computations that give results exceeding the
dynamic range of the hardware. For example if two integer numbers, represented by 16
bits each, are multiplied and the result exceeds the maximum value that can be
represented by 16 bits then overflow will occur. Once the maximum value is reached the
hardware simply cycles over from the start therefore the resulting value can be
completely different from the actual value.

To avoid overflow, some algorithms include special conditions that will always
give the maximum value regardless of by how much it is exceeded. This is called

saturation and is analogous to “clipping” of analog signals in an RF transmitter. If
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saturation is not acceptable then the algorithm has to avoid overflow altogether by scaling
the two values to a lower value prior to the operation thereby ensuring the result will not

exceed the maximum value.

4.2.3 Effects of error on system performance

It is clear that a system design with fixed-point processors has to balance the
effects of quantization error and saturation error to obtain acceptable system
performance. The solution of scaling values upward to minimize quantization error may
cause excessive saturation errors and vice versa. The OFDM system designed in this
chapter makes sure to take these factors into account in order to yield acceptable results.
The methods used to minimize errors due to finite word lengths of a fixed-point processor
are further described in later sections. However, even with good design practice, a
system based on a fixed-point processor can never be as accurate as its floating-point
equivalent. In [51] the effects of quantization on an OFDM system was investigated. It
was found that the fixed-point model had a BER plot that was higher than its fixed-point

equivalent model. Figure 23 shows the results.
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Figure 23: BER Comparison of a fixed-point and floating-point model [51]
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4.3 Software Structure

The following section will detail the software structure of the OFDM system
implemented on the TI EVM board. It will start with a general overview of the
implementation, noting the tools used and the methodology. Later sections will detail
each software module that represents the different blocks of the OFDM block diagram.
A description of the functions will be given as well as methodology to implement the

mathematical models.

4.3.1 Overview

The OFDM system is constructed with modularity such that each module in the
system represents a particular block of the diagram in Figure 2. The module consists of
one or more functions to implement it. The entire block diagram was implemented in C
code. As mentioned, the compiler in the Code Composer Suite is used to convert the C
code to assembly language. The build options were chosen to compile for increased
speed at the expense of code size. Once the executable COFF file is created, it is
downloaded to EVM hardware for execution [45]. The modules of the system are
executed sequentially such that the data is completely processed by one module before
moving to the next. Each function is listed in the main() function in the order in which it
is executed.

The block diagram implemented is shown in Figure 24. Under the name of each
block, in bullet format, are the functions that make up each particular block. What

follows is a description of each module in the OFDM system.
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Decoding lg—| Deinterleaving [ g | QAM Demapping | |

Figure 24: Block Diagram of implemented OFDM system

4.3.2 Coding

Error control coding was performed with the use of a convolutional encoder. The
convolutional encoder is executed by calling the function conv_code from main(). The
module takes in as input, the 128 elements of an array titled data []. The generation of
data [] is further described in section 5.1.1. The elements of data [] are stepped into an

array shift_reg[], which represents a shift register of constraint length K = 3 as shown in

Figure 25.
p = {1(AND)1} XOR {1(AND)0} XOR {1{AND)0}
p=1
Oco=11 1 1]

O bit “1” is shifted into shiftreg[]
G() determines which cells of the
shift_reg[] array are selected

1010101

the final value of p and q are the
result of the “exclusive OR” of the
selected cells of shift reg

@acm=11 0 1]

q = {1(AND)1} XOR {O(AND)0} XOR {1(AND)0}
(Pa=1

Figure 25: Implementation of convolutional encoder
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There are two connection vectors making the code rate 2. The connection vectors
are defined by a two dimensional array, g/m/[K], where m = 2. The two-dimensional
array contains the connection vector G(0) = {1,1,1} in the first row and connection vector
G(1) = {1,0,1} in the second as taken from [28]. The algorithm loops the data into the
shift reg[] array one bit at a time. After the first shift, two coded bits are created for the
single inputted bit. To create the output bits, the algorithm performs a modulo-two
addition of only the contents of the shift reg/] selected by each connection vector. The
result for one of the coded, output bits is stored in integer variable p and the second in
integer variable g.

The “selection” operation is performed by the logical “AND’ing” of each
shift reg[] array element with the corresponding connection vector element. The result
is then stored in p for the first output bit and g for the second. The process is repeated for
each element of the shifi reg/[] array. With each iteration, the present value of p and ¢ is
exclusive OR’ed with the past value of p and g respectively. The “exclusive OR”

operation is equivalent to modulo-2 addition as show in Table 6.

Table 6: Equivalence of “Exclusive OR” and Modulo-2 truth tables [48]

Bit Number 1 (b1) | Bit Number 2 (b2) | Exclusive OR | Modulo-2 Addition
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

The algorithm loops until all X elements of the shift reg/] array have been
operated upon. The final values of p and ¢ make up the two coded bits for the bit that

was input at the beginning of the cycle. The algorithm then inputs a new bit and the
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operations described above are repeated. The new, coded data stream is contained in an
array titled coded data [], which has grown from 128 to 256 bits.

The shift register is operated upon as a cyclic shift register to speed up the
algorithm. Instead of feeding a new bit in from the left and right shifting all other bits to
discard the rightmost bit, a pointer value keeps track of the bit positions. In this manner,
only the bit that is no longer needed is over written with the newest, inputted bit. The
pointer keeps track of the other bit positions so that they are operated on by the

appropriate connection vector. This saves the task of copying or reallocating data.
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4.3.3 Interleaving

The interleaver is implemented using the block matrix method. The interleaver
module is executed by calling the interlvr function from main(). A two-dimensional,
square array, interlv[nn], is declared where the row and column dimensions are

equivalent to the size of the square root of the coded data array as shown in Figure 26.

Filling Interleaver 16 elements
q N
1
coded-data[ ] f ?
D o e L j 0
- J -

'
16 of 256 elements

[;:,cs_._‘. |

0
interiv[]
Emptying Interleaver
— =\ | QAM-
o Mapping
0 Module
- 01 00
o 0 1 0 o
;':gi; ‘1‘“‘;3, ? 1
n 1 0
‘ o

Figure 26: Graphical representation of Interleaver module
The interleaver works by reading the coded data bit stream into the interlvn,n]
array in a vertical manner until all the columns are filled. Once this task is complete, the
first row and then subsequent rows are read out as the new, interleaved bitstream, which

is sent on to the QAM-mapping module for processing.
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4.3.4 QAM Mapping

The QAM mapping module is executed by  46.qam

Q)
) . . ) 0100 1100 T 1000 0000
calling the gam_map function from main(). It takes in i *q ® i
as input, the interleaved, coded bit sequence and maps %90 9L Qe
=1 7t = w3t al

the bits to a complex QAM symbol. Each QAM o1 51&‘ 1 o1gt ogn

symbol will consist of two values representing the in- oo 1191 | 1091 oopt

phase and quadrature magnitudes. The gray encoded,
Figure 27: 16-QAM constellation used
16-QAM constellation chosen for this system is in OFDM system
shown in Figure 27.
The QAM symbols are stored in a look up table (LUT) therefore no calculation to
determine the value is needed. An efficient method to implement QAM mapping is to use

the decimal equivalent value of the bit group as an index to the location of the QAM

values in the LUT. Figure 28 graphically demonstrates the QAM mapping procedure.

4-bit group

—

0110
bs b by bo

Decimal Value:

Look Up Table
- ! . LUT address
(using index
QAI\\II/ aslzr: bol value) New Array

x[0]

LUT[12] x[1]

UT[12 + 1]

Figure 28: Implementation of QAM mapping using an LUT
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The first step is to divide the incoming sequence into groups of bits. Using a 16-
QAM constellation requires that each group consists of 4 bits. The 4-bit group is then
converted to its decimal equivalent by multiplying each bit value by 2%, where “a” is the
bit position number. The decimal value is used in determining the “address” to locate the
proper QAM symbol in the LUT. Since there are two values that make up each QAM
symbol, the decimal value is multiplied by 2 to get the starting index value corresponding
to the in-phase QAM value. The quadrature value is found simply by adding one to the
index value. For example the 16-QAM constellation from Figure 27 has values (-3,1),
corresponding to the 4-bit group “0110”. The decimal value was found to be 6 and the
index value 12, therefore -3 and 1 would be in the 12" and 13™ memory location in the
LUT array. The LUT array is formed by simply organizing the Gray encoded
constellation of Figure 27 and storing the decimal equivalent of the 4-bit values in an
array titled, gam_Iut [], in linear order starting from decimal value 0 to decimal value /5.

For each bit-group that is mapped, the complex QAM values are placed in a new
array, x [/ /, which will bring the element count back to 128 down from 256 in the original
coded_data [] bit stream.

The entire QAM constellation can be defined as a combination of values taken
from the following group of numbers: {-3, -1, 1, 3}. These values are relatively close
when compared to the entire dynamic range associated with a 16-bit word length. In fact,
using such low values would cause large quantization errors to occur in the IFFT module
that follows. Therefore a scaling factor to “spread out” the QAM values should be used.
Ideally, we would like to choose the largest integer values possible. For a 16-bit

processor we can represent values between —32768 and 32768 so that our QAM values
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would be {-32766, -10922, 10922, 32766}. Note that 10922 is exactly one third of 32766
to keep the same proportions as 1 and 3. However this would cause saturation errors in
the IFFT module. The actual values chosen to represent the QAM symbols are {-510,
-170, 170, 510}. These values are approximately 1/64™ the maximum integer value to
prevent overflow. A scaling by 64 was used which directly relates to the number complex
pairs in the x/] array processed by the IFFT and FFT modules. System performance and

accuracy is described further in Chapter 5.

4.3.5 Inverse Fast Fourier Transform

The IFFT module [50] is composed of five functions. They are titled, in the order
in which they are called from main(), coeff, index, ifft [ft, bitrev, scaling. The first
function, coeff, generates the twiddle factors, Wy, used by the ifff fft and the second
function, index, generates the index values used by the complex bitrev function. These
two functions (coeff and index) are executed at compile time and do not use up any cycle
time while the OFDM system is running. The ifff fit performs a 64-point complex IFFT
on the 128 element x [] array, using the DIF algorithm. It is then followed by bitrev to
bit reverse the output values and place them in linear (normal) order. The following
describes each function in further detail.
4.3.5.1 Twiddle Factor Generation
As mentioned this program calculates the twiddle factors to be used in the ifft fft
function. Since the size of the IFFT is known beforehand (nx = 64 for this system) we
know exactly how many twiddle factors must be computed. These are stored in an array
w/] until needed by the IFFT/FFT function. The program computes the operation shown
in Eq. (4.1).
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Wk = e N cos(2amk | N+ sin(2mk / N) “*.1)

The program separates the calculation of the exponential, e, into its cosine and
sine constituents. Therefore it should be noted that two memory locations (e.g. w/0] and
w[1]) are needed to make up any Wy value. The even w/]’s will contain the cosine values
while the odd w[]’s will contain the sine values.

The program contains two separate “for” loops, which calculate a different set of
twiddle factors for the ifft ffi function depending on which is needed. Only one loop is
active at during the function call and is chosen by evaluating the “inverse” expression. If
“inverse” is set to true (i.e. = 1) then twiddle factors for the IFFT are computed otherwise
twiddle factors for the FFT are computed.

Within the computation of the twiddle factors, a call to the cosine and sine
functions is made. This is a time consuming and inefficient operation. However, a call to
the coeff function is only needed once so that the sine and cosine values are calculated
before the OFDM system needs to be run. It is irrelevant to the timing and performance
of the system therefore a reduction in the complexity of calculating the cosine sand sine
values is not needed.

In addition, given that this is a fixed-point processor, each w/] value is scaled (i.e.
multiplied by 2'%). The reason for this is precision related as discussed in section 4.2.
Without the scaling factor, the result of the sine or cosine function would be a relatively
small number and would have all the precision lying in the decimal value. Given that the

decimal value is lost in fixed-point processing gives rise to unacceptable rounding errors.
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4.3.5.2 IFFT/FFT

Executing the ifft ffi function performs the complex IFFT. The algorithm was
coded and implemented as decimation in frequency (DIF). It takes in as inputs, 128
complex data points stored in array x in the form x [reall, imgnryl, real2, imgnry2 ...].
It then calls on the corresponding twiddle factor values stored in array w/] depending on

the value of inverse as shown in Figure 29.

Produce twiddle factors
for IFFT operation
wi0] index{0]
inverse=1 | | wi1] index[1]
. [
H :

X[0], X[1] X[0], X[1]
— > -
X[2}, X[3] X[2], X[3]
e > ————
[ ] ® L]

o IFFT/FFT g bitrev .

* function ® | function *
X[61], X[62] X[61], X[62]
e > —
X[63], X[64] X[63], X[64]
e ] > —

Figure 29: IFFT/FFT Module

The algorithm essentially replicates a flow graph similar to that of Figure 6 in
section 2.2.1 except there would be logy(64) = 6 stages instead of 3. From the value of n,
it determines the number of stages and simply performs the elementary operations at each
node. When multiplying by the twiddle factors at each node, a bit wise shift with the
value 15 is performed. This is equivalent to dividing by 2" to remove the scaling added
by the twiddle factors and return the result to its proper value.

The main points to note in creating the algorithm are {24]:

e the input sequence is in numerical order
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e the output sequence is not in numerical order, they are in bit reversed
order thus requiring random access memory to more efficiently
implement the algorithm

o the branches and nodes consist of elementary operations such as adds,
subtracts and multiplication by twiddle factors (i.e. Wy)

e the twiddle factors can be calculated in advance to save processing
time

e performing the algorithm while following the flow graph order results
in “in-place computation” where the results from stage “m” replace
those of the previous stage “m-1" thus requiring less memory capacity.

4.3.5.3 Bit Reversal

Two functions are called upon to execute the task of bit reversal: index and bitrev.
Bit reversal of the output of the ifff fff function is necessary because it performs either the
IFFT or FFT using the DIF algorithm. Note that bit reversal of the input would have
been necessary if the algorithm was DIT. The method used in our algorithm is to create a
lookup table that holds the normal order position for every bit-reverse position value
entered. The tree diagram shown in Figure 30 on the next page helps to explain the

iterative approach.
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Given the binary value of any array n3 n2 n1 no
m0 m1 m2 m3

position that is bit-reversed (e.g. x/1,0,1,0] = v v +,+\
;7N AN
x[m3,m2,ml,m0]), the value is sorted by first [ Y _10_ \
\\ /
looking at the least significant bit, m0. If it is 'I o VN
s
“0”, it is placed in the top half otherwise it is : L x[0101]
1 /
. . | ~L
placed in the bottom half [27]. The process is X[1010] =] I/()@_\
repeated for each bit, thus adding new levels (or l‘ 0 \ _;_ ,\
1
N 17
branches) to the tree. Once the tree is formed \\ ! | / o~
1y L
we can feed in an entire bit-reversed data \\ A l\1 0 )
</ s

sequence and the path through the tree
determines the normal order position, (e.g. Figure 30: Implementation of index

algorithm for bit reversal [27]
x[0,1,0,1] = x[n2,nl,n0]). This is repeated for
every data element in sequence until the entire array is sorted. The tree can be formed
once, in advance, so that 1t can act as an index look up table.

This is essentially the task of our index program. It begins by taking in as an
input, the number of elements in an array, and tallies how many binary bits are needed to
represent each number. For example, the array in Figure 30 has 4 binary bits (= log,16)
representing a total of 16 possible elements. This also determines the number of levels in
the tree (i.e. 4 in this case). This routine requires N cycles for an N-point FFT to
complete. This is faster than a routine that would swap values, which would require
Nlog:N cycles. However, the same amount of memory used to store the data array is

needed for the array in the index look up table, which can be significant for large N

values [27]. A solution can be achieved by noting that large tree diagrams are essentially
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made up of smaller tree diagrams that repeat such as in Figure 30. Note that the entire
tree is made up of a combination of smaller, identical trees, which are circled. Therefore
only an index lookup table for the small tree need be made and called on more times to
form a sorting routine for large N values. The same N cycles are needed, however, the
memory requirements are far less because the maximum size for the lookup table is
x*sqrt(N) (where x is the square root of the FFT radix value). Calls to the index routine
are made as needed by the bitrev function to perform the bit-reversing task.

4.3.5.4 Scaling

Executing the scale function performs scaling of the output data. It is performed
after bit reversing. The scaling operation simply divides each element of the output

sequence by the value of variable n as shown in the coefficient of Eq. (2.3) in section

2.2.1.

4.3.6 Fast Fourier Transform

The FFT module is the first module executed on receiver side of the OFDM block
diagram. It reverses the IFFT operation performed just before transmission. It is
essentially the same as the IFFT module as almost all the functions in the IFFT are called
upon to perform the FFT. The difference being that.the variable inverse is set to “0”
before the call to the coeff function in order to generate the correct twiddle factors. In

addition, scaling is not needed; therefore the scale function is not called.

4.3.7 QAM Demapping

The QAM demapping module is executed by calling the gam _demap function

from main(). Two QAM demapping modules were tested. One was programmed for
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hard decision and the other for

soft-decision. Either of the two . \ L e
\ 10 0 00

. : . 1 vrosioy | e
functions takes in as input the ! .

complex QAM values contained in

(#70470) ©

the x /] array that were recovered

from executing the FFT module. » f1 10'31 =

(170-170) | (510-170)

However, because of impairments S
caused by the simulated Gaussian SRR R
‘ ’ (170.:510) | (51051

channel, the amplitudes of the
QAM data have been affected and Figure 31: Division Cartesian plane into QAM regions

do not equate to the discrete values derived from the QAM mapping module. Therefore,
decision regions are used to represent the discrete QAM values. The decision regions are
created by dividing the original Cartesian plane of Figure 14 into 16 hard decision
regions as shown in Figure 31. Note that the regions lying on the perimeter extend to
infinity.

A received QAM value is evaluated to see what region it falls into and is then
assigned the 4-bit group associated with that region. For example, any value falling
within region 7 would be assigned QAM value 170,170. The corresponding four bit
binary group “1010” then replaces the QAM value. This process would be sufficient for a
hard decision receiver, however, the Viterbi decoder used in this system takes 3-bit soft-
values as inputs, therefore each of the 16 regions need to be represented by the soft
decision equivalent value. Recall from section 2.3.3 that a 3-bit value of “111” indicates

“177

a strong possibility of having received a binary and a 3-bit value of “000” indicates a
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strong possibility of having received a binary “0”. Since each region has a 4-bit group,
all binary values can be converted to their 3-bit equivalent values. For example, region 7
from Figure 31 which was originally “1-0-1-0” would become “111-000-111-000". For
simplicity we will use octal equivalent values to represent each 3-bit group giving us “7-
0-7-0”. Note however that since we are still only using a unique bit sequence to represent
each of the 16 regions, therefore the system still works using hard decisions in this case.
To achieve a signal to noise ratio gain from using the soft decision capabilities of
the Viterbi decoder, each region should be further divided into soft decision regions. We

can use the uniform quantizer of Figure 32, as a basis for our QAM regions.

A

output

input

Figure 32: Uniform quantizer

The uniform quantizer shown in Figure 32 is created for a binary system. We
divide the regions on opposite sides of the threshold line into equal distances “D” and
assign a 3-bit value for each soft decision region. For example, a value falling within “D”
and “2D” would be assigned the 3-bit value “1-0-1”. Note, however, that the region

starting at —3D extends to negative infinity and the region starting at 3D extends to
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positive infinity. This idea can be extended for use in the 16-QAM constellation used in
the OFDM system. However, a 16-QAM constellation works in two dimensions and
multiple regions lie next to one another in one dimension. Regions 5,6, 7, and 8 from

Figure 31 would be divided as shown in Figure 33.

Figure 33: Soft Decision regions between Regions 5,6,7, and §

Since the QAM symbols are Gray encoded, we know that as we move in one
direction from one region to the next, only one bit in the 4-bit group will change. For
example, moving from region 7 to region 8 in Figure 31 causes only the first bit of the 4-
bit group to change from “1” to “0”. Therefore, even though 4 bits are used for every
region, we are only concerned with the one that is changing from one region to the next.
If we place soft decision regions between regions 7 and 8 we will see a more gradual
transition from value “7-0-7-0” to “0-0-7-0” as shown in Figure 33. Therefore a lower
measure of confidence is given for values at the border between two regions (indicated by

a lighter blue color) compared to values falling close to the center of the region.
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Extending this idea into two-
dimensions gives us the Cartesian
plane 34.

represented in Figure

Because each region can be
surrounded by at most four other
regions, each region must be divided
into soft decision regions for each of
its four sides. Figure 34 shows the

layout of the soft decision regions for

Figure 34: Example of soft decision region assignment for

Region 11

all regions within the 16-QAM constellation. The blow out portion of region 11 shows

the soft decision regions numbered 1 through 13.

A matter of consideration should be given to the distance “D” used to divide the

regions into soft decision regions.

A uniform distance “D” as used in the uniform

quantizer of Figure 32 would not translate to a uniform area for each soft decision region

as shown in Figure 35.

A = 6*D?

A = 4*D?

Figure 35: Effect of uniform distance “D” on area
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Note that soft decision region 13 is six times as big as soft decision region 1. To

divide the regions so that all soft decision regions are equal in area, we must vary the

value of D as shown in Table 7.

Table 7: Varying value of “D” for uniform area

Soft Decision region Old distance New distance New Area
1 D d d’
2,3,4,5 D i d 2 5
6,7,8,9 D d iy
10,11,12,13 D d dY )
I 6| —=| =d
V6 3

Both uniform distance and uniform area were tested in Chapter 5 to see its effects
on BER performance. All hard and soft decision regions are defined within the
qgam_demap function. The algorithm is programmed to search for the soft decision
region containing the received value. The first step in the soft-decision QAM demapper
module is to locate which region the received symbols lie in much like the hard decision
module. Since each region has equal chance of receiving a symbol, the regions can be
searched in any order. Once the hard region is found, the algorithm then tests to see
which soft decision region contains the received symbol. The algorithm searches if the
value lies in the middle soft region and works its way outward in a circular fashion as
shown by the numerical order of Figure 34.

In a situation where the signal to noise ratio is high, there is a high probability of
finding the QAM symbols to lie in the first soft decision region ending the search and
moving on to the next received value. However the time to find the correct soft decision
region will be extended if the value lies closer to the borders between regions, which
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would happen more frequently with a lower signal to noise ratio. Therefore there may be
a throughput speed difference at different signal to noise ratios. The two extremes were
tested and the bit rate was measured in Chapter 5.

Once the correct soft decision region is found, the soft-decision bit sequence that
is contained in that region (such as those shown in Figure 33) is read and copied into an
array titled outstrm []. The outstrm [] array will contain 256 elements when all the

elements of the FFT module are processed.

4.3.8 De-Interleaving

The de-interleaver is implemented using the block matrix method as well. The
de-interleaver module is executed by calling the deinterlvr function from main(). A two-
dimensional, square array, deinterlv[n,n], is declared where the row and column
dimensions are equal to the square root of the size of the outstrm array as shown in

Figure 36.
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Figure 36: Graphical representation of De-Interleaver module

The de-interleaver works by reading the outstrm bit stream into the
de_interlv[n,n] array in a horizontal manner until all the rows are filled. Once this task is
complete, the first column and then subsequent columns are read out as the new

deinterleaved bitstream, which is sent through the next Viterbi module for decoding.

4.3.9 Decoding

The Viterbi decoder is implemented by calling on the viterbi decode function
[52] from main ().  The convolutional encoder described in section 4.3.2 was set up to
encode with a constraint length of K=3 and a code rate of n=1/2. Therefore this

knowledge can save processing time storing comparison data for the decoder in LUTs.
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Three matrices are formulated and stored in two-dimensional arrays that will be

used as LUTs for the decoding algorithm.

They are: input[] [], nextstate[] [], and

Output
branch word

output[] [] . The matrices are filled in with

data representing the encoder as a state L e Encoder

state
diagram where the K-7 rightmost stages of the

tegend

shift register determine the state. Therefore — Inputbit0

A
{ 4 === Input bit 1

every state will be made up of two binary 10
values. The state diagram is reproduced in Figure 37: State Diagram for K=3 [28]
Figure 37.

The contents of each matrix are shown in Figure 38. With the exception of the
Input matrix, all contents are represented in the decimal equivalent of the binary value.
For example, with respect to the Next State matrix, a Next State value of 2 (i.e. binary
value of “10”) is placed in the first row (represented by a Current State value of “0” or
binary value “00) and the second column (represented by an Input value of binary “17).

The other matrices are filled in with the same rules for the rows and columns using the

state diagram of Figure 37.

Input Next State Output
col: Next State col: Input col: Input

row; Current
State

row: Current
State

Wil

State

W=
- O —

&8

Figure 38: LUTs, Input, Next State and Output for Viterbi Decoder Algorithm
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The first step in the decoding process is to take in as input, the soft-decision
values stored in the de-interleaver. The viterbi decode function then implements the
Viterbi decoder algorithm by comparing the received, encoded bits with all possible
transmitted combinations and choosing the most likely candidates through the lowest
branch metric value calculations. It then stores the lowest branch metric values in the
accum_err_metric[] array. The algorithm keeps track of the most likely paths by
building a trellis represented by the array called state history []. Once the trellis grows
to a predetermined value of K*3, the first bit can be decoded. The trace back portion of
the algorithm consists of forming a state sequence [] array from the information
contained in state history [] and using the earliest two values to determine the most
likely transmitted bit. Both the state history and state sequence array are operated on as
a cyclic buffer much like the shift register in section 4.3.2. In the same manner, pointers
are used to overwrite the oldest values with the newest values instead of wasting cycles to
shift all elements of the arrays to the right in order to input the newest value from the left.

Let us take an example of the decoding algorithm using an arbitrary received
value of “7-0” at some time (¢ = i) and fill in the accum err metric and state history
array using information from the trellis diagram. The algorithm will perform an

operation equivalent to the leftmost trellis diagram of Figure 39.
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Input=0 7 + accum
———Input=1 3="11" @ 5mm=s ‘e "S- 0 +accum

Figure 39: Translation from Trellis Diagram to arrays in Viterbi algorithm

It will use the information of the Output array to compare each element (eight in
all) with the received encoded bit “7-0”. The branch metric is computed by performing
an absolute value subtraction between the received value and each Output array element.
The final results are stored in the accum_err metric array in the row corresponding to the
next state value. For example “7-0”” compared to “7-7" would yield a branch metric of
“7”. When two different current states arrive at the same next state (at ¢ = i+17), only the
path with the lowest branch metric is kept as shown in the second trellis diagram of
Figure 39. Note that in the above example, the next state value “00” has two paths
arriving with the same branch metric value (i.e. 7). We assume the branch with the lowest
“accum” value is chosen. In the case of a tie, an arbitrary rule is used to select any of the
two paths. This information is represented in the accum_err metric array where “accum”
is the value of the accumulated error from all times prior to ¢ = i. The state_history array
contains the value of the current state in the row corresponding to the next state (the next
state value is extracted from the next state array). Therefore one column of the state
history array holds all the information to describe the trellis diagram transitioning from

(t=ito(t=1i+1).
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The algorithm then moves on to the next received value and performs the same
operations. Once the state history has been filled, the state sequence array can also be
filled in by using the row value of the lowest accumulated error in the accum_err_metric

array as shown Figure 40.

State History

accum_err_metric

01 1t 11110
2 3 3 3 @ 3 (2) pick starting 112
0 0 1 @ 0D ngrow | o
qoo ol dh =2
create state_sequence error 14
31000023331212] in Decoded

State Sequence

u
1% 6\ Ba

1
: 1

Figure 40: Implementation of decoder algorithm

This is the starting point of the state_history array. The state sequence array is filled in
with the path taken while working backwards through the state history array. The last
two values of state sequence (i.e. 3,3) are used as the current (row) and next state
(column) values respectively to decode the first bit using the Input matrix.

Once the first bit is decoded, the algorithm loops again to evaluate the next
encoded bit and repeats the decoding procedure. The decoded sequence is stored in

decoder output_matrix [] for comparison with the original inputted sequence.
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5 Test Results and Analysis

The following sections will give details on the techniques used to test the system
for accuracy and throughput. In addition estimates are made for increased performance
with a faster processor. Finally an analysis will be given on the use of DSPs as a basis for

implementing baseband processing of SDRs.

5.1 Testing

The OFDM system was tested for accuracy and performance. In order to
conclude the system has sufficient accuracy, the outputs of each function module were
monitored for correctness using a known input bit pattern. Once each module was
functioning correctly the system was left to run with a random input pattern of one
million bits. The output was compared with a delayed version of the input for any errors.
Once it was determined the system functioned without error in a noiseless system, an
AWGN channel was added to obtain a bit error rate plot. A fading channel was not
chosen because the performance of OFDM in a fading channel is well known. Therefore
an AWGN channel was chosen simply to demonstrate the system’s correctness and

accuracy.

OFDM
Transmitter

OFDM
Receiver

Figure 41: OFDM system with testing modules added
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The following sections give a description of the three added software modules
(bitgen, addnoise, and err_chk) responsible for testing the OFDM system. The modules

are shown in Figure 41.

5.1.1 Bit generation

The EVM is supplied with a number of interfacing options as shown in section
4.1.2 to provide input data. However, a more straightforward and practical approach to
test the functionality and accuracy of the system is to program a random bit generator on
board as this provides greater control for debugging. The random bit generator is
executed by calling the function bitgen from main().

The function bitgen contains the C function rand(), which is used to generate a
random sequence. When called upon, rand() will generate a random integer number that
is uniformly distributed between O and 32767 [48]. Note that 32767 is the maximum
integer value that can be represented in a 16-bit fixed point processor. In order to create a

“1”

bit generator with values “0” or a simple integer division by 16384 is used. Integer
division will always truncate the result therefore any random number generated by
rand( ) that falls between 0 and 16384 will have an integer division result truncated to
“0” and any number between 16384 and 32767 will have an integer division result
truncated to “1”. Given that rand( ) produces numbers that are uniformly distributed
between the entire dynamic range ( 0 to 32767), “0” and “1” have an equal probability of
occurrence [48].

A matter of consideration is the “seed” value of the rand( ) function. The seed

value is a number on which the random number sequence is based. Therefore, if the seed

value remains the same (the default value is 0) then a random sequence generated on two
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separate program runs will be identical. In this case, a “pseudorandom” sequence is a
more appropriate name. The advantage of this might be for debugging purposes. In order
to truly randomize the bits a seed change should be initiated at the beginning of each
program run. This can be done with the function srand(4) where “4” is the seed value.
Using the command line “srand(time(NULL))” returns an integer number representation
of the present time within the dynamic range. Given that the time is always varying, this
will give a different seed value each time, resulting in a more realistic random sequence.
When executed, the bitgen function produces sixteen values to be stored in an
array called data [ ] which represents the initial bit stream. With the same function call,
the data [ ] values are copied to another array called buffer [ ] which is twice the size of
data [ ]. Copying to buffer [] alternates between the first and second half of the array
with each function call while overwriting the previous values. The buffer [ ] array is
needed as a delay to compare transmitted and received sequences for the error count.

Error counting is further explained in the errchk/ ] function in section.

5.1.2 Noise Generation in Simulated Channel

A noise generator was programmed using code to simulate an Additive White
Gaussian Noise channel (AWGN). The purpose was to evaluate the system’s
performance in a noisy channel with and without forward error correction.

The noise generator is executed by calling on the addnoise function from main().
The C language cannot generate Gaussian random variables (RVs), only uniform RV’s,

therefore a work around is needed.
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In order to generate a Gaussian RV, we must first realize that a mathematical
formula exists between Uniform, Rayleigh, and Gaussian RVs. Eq. (5.1) and Eq. (5.2)

demonstrates the mathematical relationships

1
R=0c%*_[2.0*In
° \/ (I”UJ G-D

G=p+R*cos(2*m*U,) (52)

where R is the Rayleigh RV, U, and U; are uniform RVs, G is a Gaussian RV, ois the
variance, and u is the mean. Using these formulas, we can now write a program to
generate an AWGN channel. First, two uniform, floating point, random variables, U; and
U, are generated between decimal value 0 and (1 — 1x10°~ 0.999999). This is performed
using rand( ) function and then dividing the resulting RV by 32768. The first uniform
random variable is used to generate the Rayleigh random variable and the second uniform
random variable along with the recently generated Rayleigh RV is used to generate the
Gaussian RV as in Eq. (5.2) [52].

The Gaussian RV is stored in variable “scalegauss™ and is simply added to the
first element of array x [/ after it has been IFFT’d (i.e. after calling on the IFFT module).
The procedure is repeated N=128 times to generate one Gaussian RV for each element of
array x [] until all the elements have had “noise” added to them.

A note should be given as to how the Gaussian RV is scaled in proportion to the
value of the elements in the array x /]. Recall that the QAM values were scaled in section
4.3.4 in order to avoid loss in precision by having values to close together. Since our

QAM values have been scaled higher, our noise values need to be scaled as well.
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Before addnoise is called a program called avg nrg is called in order to calculate
the average energy of array x [/ which contains the IFFT’d QAM data. The average
energy, which is the same as the variance o, is calculated by taking the square of each
element in array x // and then summing them over all “N” elements. The sum is then
divided by “N” and is then further divided by 2 because x [/ / is made up of real and
imaginary values, therefore we are finding the average energy of each complex pair.

Once the average energy is found it is stored in the variable sig _es. The addnoise
function uses this value to properly scale the variance in proportion to the received signal
value. The scaling is performed through “c™ in Eq. (5.1) which is found through Eq.
(5.3) and stored in scalesigma. It is then used to find the scaled, Rayleigh random
variable and finally the Gaussian random variable, which is then added to the x /] array.

In Eq. (5.3) sig_es is the variance, sn_ratio is the linearized signal to noise ratio.

. sig _es
scalesigma = | —=———
2*sn_ratio (5.3)

5.1.3 Error Count

Error counting is executed by calling the err_chk function from main(). The last
step before a new set of data is passed through the OFDM system is to compare the
output of the Viterbi decoder with the input that is stored in the buffer array. Because 15
bits must pass through the state history array before the first bit can be decoded, a buffer
array is needed at the input to serve as a system delay for bit comparison purposes.

A variable called count is assigned the task of keeping an error count for each of
the 128 data points processed for every program run. The value of the variable is then
passed on to main() and added to the variable fotal, which keeps a total error count for the
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programmed number of loops. The value of total is kept and divided by the total number

of processed bits to obtain an error plot as described in the next section.

5.2 Error Performance Results

Error performance results were obtained with and without forward error correction. In
order to test the system, the value for the variable es ovr n0 which represents signal to

noise ratio in decibels (dB) was varied from 0 to 14 dB for the system without FEC and 0
to 9 dB for the system with FEC as shown in Figure 42. The system was run long enough
to generate approximately 100 errors at each SNR value. For example a BER of 107
would require approximately 10* or 10 000 generated bits to pass through the system in

order generate about 100 errors.

2{ = 16-QAM (floating)
wip OF DM wiout FEC

wtpr OF DM wif FEC -hard-

~g—~ OFDM w/ FEC -soft-

____________ R S,

SNR|Loss: ~1.8 dB | i SNR Loss:'r~0.3 dB

Figure 42: BER Plot of OFDM system
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The rightmost curves of the BER plot of Figure 42 shows a comparison between a
floating-point 16-QAM system (blue) and the OFDM system tested in this section
without FEC (green) [28]. A direct comparison can be made between a 16-QAM system
and this OFDM system because the only difference between systems lies in performing
the IFFT, which is immediately followed by the FFT. The FFT reverses the IFFT
operation therefore the BER will not be affected by these added operations. However,
given that the OFDM system was created with fixed-point calculations to perform the
FFT and IFFT operations, there will be a loss in signal to noise ratio. Figure 42 shows an
SNR loss of about 0.3 dB at a BER of 1x10°. This concludes that the proper use of
scaling exhibits an adequate amount of system accuracy.

The system was also tested with the addition of the convolutional encoder (K=3)
and both hard and soft-decision Viterbi decoding. The hard-decision plot is shown in
magenta and shows a 4.9 dB gain over the floating-point 16-QAM system. The leftmost
curve represents the BER of the system working with the soft decision regions. We

observe an SNR gain of approximately 1.8 dB over the hard decision plot.
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—#— OFDM w/ FEC -uni dist-
- OFDM wf FEC -uni area-

Figure 43: BER comparison of uniform area and uniform distance

Recall from section 4.3.7 that the soft decision regions were divided with uniform
distance “D” (red) and then by uniform area (cyan). Figure 43 shows that there was no
significant difference between using either of the methods to define the soft decision

regions of the QAM constellation.

5.3 Optimization

The following section will describe optimization techniques used throughout the

design process in order to help maximize overall throughput in the system.
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5.3.1 Data Types

Careful consideration of data types should be given when dealing with the
performance of the system. Specifically the “inf” and “shorf” data types can have an
impact on the system.

Whenever possible, the “short” data type should be used for multiplications
because it makes the most efficient use of the 16-bit multiplier. A “short * short”
multiplications would use one cycle versus five for “int * inf”. On the other hand the
“int” should be used for loop counters instead of “short” in order to avoid unnecessary
sign-extension instructions [54].

Both of the above guidelines were followed in the tested system and were found

to improve performance.

5.3.2 Compiler Options

The CCS compiler allows the designer to invoke different optimization
combinations that help to reduce code size and/or speed up code execution. Table 4 from
section 4.1.1 demonstrates how efficient DSP compiler tools have become for some
algorithms. Allowing the compiler build the assembly code for the designer proves
advantageous because it reduces the workload and is less prone to errors compared to
hand optimization. Hand optimization, if necessary, should only be used a last step in the
design cycle.

Eliminating unused code and loop unrolling are some examples of optimization
techniques used. A dramatic increase in speed was noted with the use of software
pipelining. Software pipelining makes maximum use of the DSPs hardware resources by

executing instructions in parallel [54].
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5.3.3 Memory Management

Optimization from a memory management point of view comes from making
maximum use of the fastest memories first. As described in 4.1.2, the EVM is designed
with on-chip memory as well two types of external memory. The on-chip memory is
divided into two individual 64 KB sections commonly titled “IPRAM” for program
memory and “IDRAM” for data memory. A designer would ideally store all executable
code on IPRAM and all variables and data on IDRAM. However, for larger programs
there is the possibility of using the larger but slower external 256Kb SBSRAM module
that runs at the full clock rate when the CPU is running at 133MHz or half the clock rate
when the CPU is running at 160MHz. Finally there are two, separate 4 MB SDRAM
modules that run at 100MHz [47].

The software suite allows the designer to manipulate the use of the available
memory through the linker command file. The linker command file can be used for
various other features to customize an application such as specifying object files or
archive libraries. However, by properly defining the “MEMORY” and “SECTIONS”
directives, the designer has the capability to “fine tune” the use of memory by assigning
different parts of a program to different memory regions [55]. There is a choice of two
memory maps, which define the starting address (in hexadecimal values) of each of the
different memory types. The memory map is chosen by setting the correct DIP switches
on the EVM [47]. These address values must be respected when programming the linker
command file. When building the project, a .map file is created containing the memory
usage. This file can be reviewed to select and optimum memory configuration. Once the

designer is satisfied with the memory layout, the project can be compiled and run.
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Specifically, for this project,  ooooo000 B
the code size is approximately 79 KB,
which takes up more than the available 00010000
memory for IPRAM. The second — 0040000gg
choice can be to assign all of the
application’s code as well as the
supporting library objects to the
external SBSRAM. However, given
that accessing external memory can use
up more clock cycles, this option may

prove unsatisfactory from a ,
80010000 (8

performance point of view. A more

attractive, and efficient implementation LEGEND
L] E"ﬁﬁe‘g’%n””’y
i
would be to fit as much user code as Memory Type
. Memory
possible on the IPRAM and place any Contents

supporting library objects that are used

Figure 44: Graphical representation of memory layout
less frequently on the SBSRAM. In
this manner all of the executable code is contained on the fast on-chip memory to
maximize the instruction pipelining. All data, in the form of variables was subsequently
stored on the fast on-chip IDRAM. A graphical representation of the memory layout is
shown in Figure 44.

As mentioned previously, memory access speed to the SBSRAM will differ with

the clock speed used. The SBSRAM device can be clocked at the CPU clock speed when
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operating at 133 MHz, or one-half the clock speed when operating at 160 MHz. Both

combination were tested for best throughput results.

5.3.4 Code Profiling

Use of the Profile Clock allows the designer to acquire execution statistics of the
code. Profiling basically gives an instruction cycle count of the profiled area, which can
be as small as a couple of instruction lines or as large as an entire system [44].

A profile analysis can report how many cycles a particular function takes to
execute and how often it is called. This functionality helps to pinpoint areas of code that
take the most time to execute and can ultimately help eliminate performance bottlenecks.

The above strategy was used to remove latencies from the system such as
unnecessary calls to C-library functions. Instead, it was found that better performance
results could be obtained by performing all known calculations beforehand and storing

results in Look-Up Tables or variables.

5.4 System Bit Rate Measurements

Another important criterion for the OFDM system is its real time throughput. The
real time bit rate can be measured in bits per second (bits/s) to offer an analogy of

transmission rates for a communications system.

5.4.1 Profile Results

In order to measure the amount of bits that can be processed in a given time, the
Profile Clock was used on the final system configuration. Figure 45 shows the profiler
window taken from Code Composer Studio. The functions coeff and index were

purposely left out, as these were only needed once at compile time. In addition bitgen,
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addnoise, variance and err chk were also excluded, as these were only needed for

assessing the system accuracy through BER plots.
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Figure 45: Profile window from Code Composer Studio [44]

In order to calculate the maximum bit rate we use the total cycle count and an
instruction cycle time of 6.25 ns when running at 160Mhz (or 7.52 ns when running at
133 MHz) to find the total time to run through the entire system. We then divide the
number of bits processed by the total time to find the number of bits per second. Table 8
shows the total cycle count and time for the OFDM system run using a frame size of 256
Note that forward error correction was not used therefore all data and code is

bits.

located on the on-chip memory.

Table 8: Profile results for OFDM system with and without optimization (no FEC)

Function Instruction Cycles Instruction Cycles
without Optimization with Optimization
interivr 15597 1328
gam_map 5027 510
fft_ifft (x2) 29074 (x2 = 58148) 4416 (x2 = 8832)
bitrev (x2) 6700 (x2 =13400) 1332 (x2 = 2664)
scale 4257 398
gam_dmap 12358 4065
deintrivr 15597 1328
Total cycles = 124384 | Total cycles = 19125
Total Cycles * 6.25 ns. | Total Time = 777us. | Total Time = 119 us.
256 +Total Time Bit Rate = 330 Kb/s | Bit Rate = 2.15 Mb/s
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Table 8 shows a significant improvement in speed using the optimization
techniques described in section 5.3.2. An increase of approximately 550% (from 330
Kb/s to 2.15 Mb/s) is achieved when using software pipelining in the build options. As
mentioned, the FFT and IFFT operation are highly similar; therefore the same code can
be used to implement each function. The ff_ifft and bitrev functions were called twice as
shown in the table. The fft ifft function, which is the most computationally intense
function, was found to take the most cycles to complete and has least efficiency increase
of all the functions.

A further increase can be estimated by removing the cycle count for the “bitrev”
function. As noted in section 2.2.2, bit reversal is needed at the output of a DIF
algorithm and at the input of a DIT algorithm. As stated in [24] there is no difference in
complexity between the two algorithms only the order in which the input data should be
fed, therefore the cycle count would be the same regardless of which algorithm is used to
implement the “ifft fft” function. If we used a DIF algorithm to perform the IFFT then
output data would be in the proper order for an FFT function based on the DIT algorithm.
In this case bit reversal is not needed and can be subtracted from the equation. This could
potentially increase our bit rate to 2.49 Mb/s.

Using a code rate of 2 to implement the OFDM system with forward error
correction causes the frame size to drop from 256 to 128 bits. The use of a soft-decision
Viterbi decoder greatly increases the code size of the “gam dmap” function, which
consequently causes the system to outgrow the memory space available in IPRAM.
Therefore the use of the SBSRAM device is needed to implement the larger system.

Table 9 shows profile results for the OFDM system using the SBSRAM to contain all of

95



the program code. The optimization settings are the same as in Table 8. The different

clock rates and SBSRAM access times are compared.

Table 9: Profile results for OFDM system using different clock rates (with FEC)

Function Instruction Cycles Instruction Cycles
using 133 MHz clock using 160 MHz clock
and full rate SBSRAM access | and half rate SBSRAM access

conv_code 32802 40807

interlvr 13738 18567

gam_map 11191 14514

fft_ifft (x2) 35522 (x2 = 71044) 56452 (x2 = 136115)

bitrev (x2) X X

scale 7853 11872

gam_dmap 50192 65207

deintrivr 13738 18567

Viterbi_decode 499273 692134

Total cycles = 699831

Total cycles = 997783

Total Cycles * 1/clock ns.

Total Time = 5262 ms

Total Time = 6236 ms

128 =Total Time

Bit Rate = 24.3 Kb/s

Bit Rate = 20.5 Kb/s

Table 9 shows a considerable drop in throughput by placing all the code in
external memory. As a comparison, a single fff iffi operation increases from 4416 cycles
in Table 8 to 56452 cycles in Table 9. The system throughput is further taxed by the
addition of the conv code and viterbi decode functions. The viterbi decode function
takes up by far the most time to execute, proving that it is the most cycle intensive task of
the system.

Table 9 shows that although the CPU is running at a lower clock rate, it performs
better than a faster clock rate and slower SBSRAM rate. However, we can conclude that
placing all of the code on the external SBSRAM slows the throughput to an unacceptable
bit rate as shown by either column.

Using the technique described in 5.3.3, we can place certain, less used library

objects on the SBSRAM while keeping all of the program code as well as the rest of the
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library objects on the IPRAM. This will allow us to use the faster clock rate of 160Mhz to
perform all critical instructions. Only library objects related to the testing modules such

as bitgen and addnoise, whose profile results are not counted, will be placed on the

SBSRAM. Table 10 provides the profile results.

Table 10: Profile results of OFDM system using memory management

Function Instruction Cycles Instruction Cycles
using 160 MHz clock using 160 MHz clock
and half rate SBSRAM access | and half rate SBSRAM access

(no noise) (SNR of 0 dB)

conv_code 2182 2182

interlvr 1328 1328

gam_map 510 510

fft_ifft (x2) 4416 (x2 8832) 4416 (x2 8832)

bitrev (x2) X X

scale 398 398

gam_dmap 9720 13027

deintrivr 1328 1328

viterbi_decode 64387 64387

Total cycles = 88685

Total cycles = 91992

Total Cycles * 1/clock ns.

Total Time = 554 us

Total Time = 575 ps

128 -Total Time

Bit Rate = 231 Kb/s

Bit Rate = 223 Kb/s

A significant increase in the bit rate is noted by keeping the code on the fast on-

chip memory and moving less important library objects to the external memory. In fact,
all of functions, with the exception of gam_dmap return to the original values found in
Table 8. The gam dmap function has a higher cycle count in the full OFDM system
when compared to the system without FEC because of the division into soft-decision
regions, which extends the search time for the correct soft decision region. In addition,
given the increased cycle count of the added FEC modules, the bit rate drops to 231 Kb/s
as shown in the first column of Table 10. This profile result was taken without the added
Gaussian channel to give a best-case scenario. The second column uses a very low signal

to noise ratio for reasons in section 4.3.7. The extra processing time is demonstrated in
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the extra cycles used in the gam dmap function. A signal to noise ratio representative of

real world application would give a profile result somewhere between these two numbers.

5.5 Estimates

The following sections will detail estimates on modifications to system

parameters and resources.

5.5.1 Modifications to System Parameters

Many practical systems using convolutional encoders as a means of forward error
correction operate with a constraint length higher than K=3 used in the system tested
here. The reason is that a higher constraint length can offer improved bit error rates than
lower ones. An SNR gain of about 2 dB can be gained by increasing the constraint length
from K=3 to K=8 [28]. However the cost for a better BER is increased memory
consumption as well as increased cycle count for data processing. Both increases can be
adequately estimated for an OFDM system performing with a constraint length of K=7.

The memory requirements are largely determined by the two-dimensional arrays
used in the system, which are directly dependant on the number of states. As the number
of states grow exponentially from 25/ = 4 to 25/ = 64 for a constraint length of K = 8 so
do all the arrays that are dependant on this number. Table 11 gives a summary of the
memory consumption in bytes assuming that all arrays are declared as “short” so that

each array element occupies 16 bits. We also assume that the code rate remains 1/2.
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Table 11: Memory requirements for different constraint lengths

K=3 K=7
Number of States 4 64
Encoder | 9lli] 12 bytes 28 bytes
shift_reg]] 6 bytes 14 bytes
Decoder | input [I[} 32 bytes 8192 bytes
output [][1 16 bytes 256 bytes
next_state [][] 16 bytes 256 bytes
accum_err_metric [][] 16 bytes 256 bytes
state_history [][] 128 bytes 4608 bytes
state_sequence [] 32 bytes 72 bytes
TOTAL 258 bytes | 13 682 bytes

From Table 11 we can deduce that the memory requirements increase by a factor
of 53 to implement the system with constraint length K=7.

Cycle time can be estimated by calculating the amount of time spent in the
function calls conv_code( ) and viterb decode (). However, since the time to encode is
negligible with respect to the time to decode, only the increase in cycle time for
viterb decode( ) will be considered.

The increase in cycle time can once again be accounted to the additional states
created for a constraint length K=7. The time spent in the Viterbi decoder algorithm can
be broken down into three major loops titled: 1) Metric Calculation (MC) 2) Minimum
Accumulated Error Search (MAES) and 3) TraceBack (TB). Loops MC and MAES, grow
exponentially as a function of the constraint length K, whereas TB grows by a linear

factor of K. Table 12 summarizes the increase in loop number from K=3 to K=7.
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Table 12 Comparison of loop values for constraint lengths, K=3 and K=7

Loop Equation to find Number of loops for Number of loops for
Name number of loops K=3 K=7

MC 2% 8 128

MAES %2 2 32

B 5K 15 35

The factor of 2 added to the equation for the MC loop calculation comes from the
fact that loop is entered twice for each state, once for each binary input (i.e. “0” and “17).
A factor of 2 is added to the equation for the MAES loop calculation because the
minimum accumulated error is found by comparing two state values at a time in each
loop.

From Table 12 we see an increase by a factor of 8x for the MC and MAES loops
and a factor of about 2.3x for the TB loop. Applying this estimation to the present

OFDM system further reduces the bit rate. A solution is offered in the next section.

5.5.2 Faster Processor

The C6201 chip used in this project belongs to the C6000 performance line of TI’s
DSP chips. However, it is not fastest of the group. The C64xx line of chips offers much
more performance in many respects. The fastest chip operates at 1.1 GHz allowing for 8
800 MIPS, which is a 5.5 factor increase over the C6201 chip operating at 200Mhz.
Other benefits of the C64 architecture over the C62 are wider data paths, larger register
file, and new instructions that support packed data processing. Because of these
improvements, more work can be done in a clock cycle and fewer instructions are needed
to perform the same operations thus increasing performance and reducing code size [56].
Ratios for cycle count improvements between the two architectures are shown in Table

13 for some commonly used algorithms.
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Table 13: Cycle count ratio between C64 and C62 architectures [56]

Algorithm Cycle Performance Improvement Ratio
C64x:C62x
FFT- Radix 4 Complex 2.1x
Reed Solomon Decode (Forney) 3.2x
Viterbi Decode 2.7x

Using the 1.1 GHz C64 processor to execute all of the functions of the OFDM system
as shown in the first column of Table 10, we can safely estimate bit rate of 1.59 Mb/s.
However given the architectural improvements as described in the preceding paragraphs
the actual bit rate should be greater.

In addition to the above, the C64 chip can use a Viterbi Coprocessor (VCP) to
perform Viterbi decoding without using any of the CPU’s resources therefore the
decoding function can be performed in parallel with the rest of the system. Since the
decoding algorithm would be handled by the VCP it will run in parallel with all other
functions. Therefore we can separate the calculation of clock cycles. Once we have
estimated the number of instructions cycles for both the Viterbi function and all other
functions we simply take the larger of the two to estimate the systems overall cycle count.

An estimation for performing the Viterbi decoder function using the VCP alone
can be achieved through the benchmarks given by TI’s application notes and Eq. (5.4)

[57].

for K=1: [726+2}<(F+K—1) (5.4)

Eq. (5.4) calculates the number of cycles needed for the Viterbi coprocessor to

perform the decoding for a constraint length K, and frame size F. Choosing a constraint
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length of K=7 and a frame size of F= 256 encoded bits we get a cycle count of 3231. A
VCP cycle is equivalent to four CPU cycles; therefore the final number must be
multiplied by four in order to compare to operations processed by the CPU [56]. Our
CPU cycle count thus becomes 12924 cycles.

Table 14 summarizes the increase in performance by separating the functions
handled by the CPU and the Viterbi decoder, which is handled by the Viterbi
coprocessor. Note that the conv_code function was also profiled for a constraint length

of K=17.

Table 14: Estimated profile results for system using C64 processor (with FEC)

Function Simulated C64x cycle count | Estimated C64 cycle count
CPU Core VCP

conv_code 6327 X

interlvr 1328 X
gam_map 510 X

fft_ifft (x2) 4416 (x2 8832) X

bitrev (x2) X X

scale 398 X
gam_dmap 9720 X

deintrivr 1328 X
viterbi_decoder X 12924

Total cycles: 28443 Total cycles: 12924

Total Cycles * 1/clock ns. Total Time: 25.9 us

128 +Total Time Bit Rate: 4.94 Mb/s

More cycles are consumed by the CPU compared to the VCP therefore, the
system timing would depend on the length of the greater latency. Using a 1.1 GHz

processor, the bit rate would increase substantially to 4.94 Mb/s.
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5.6 DSP Performance Analysis

The bit rate in the OFDM system without FEC was found to be 2.59 Mb/s. This
was a dramatic increase over the same system profiled without optimization proving that
the compiler can make very efficient use of software pipelining without having to resort
to low level assembly language programming. However, when FEC is added the system
bit rate drops considerably to 231 Kb/s in the best case scenario. This result is
comparable to the results obtained from a similar OFDM system used for telemetry
applications in [18]. However the throughput demonstrated by the DSP baseband modem
in this thesis would prove to be too slow for mobile communications using systems based
on 3G. Such systems in operation is Japan deliver typical data rates of approximately
384kb/s to the user and are expected to deliver data rates as high as 2Mb/s [58].

A performance estimate of 1.59 Mb/s can be achieved using TI’s most powerful
processor under the C64 architecture. However given that the C64 architecture is
designed to be more efficient than that of the C62 in both processing speed and code size,
the actual bit rate would be higher. Another feature of the C64 line of processors is the
addition of a Viterbi coprocessor which is designed with enough flexibility to provide
decoding capabilities using hard or soft decisions and in a number of constraint lengths
and code rates. Allowing the VCP to take up the task of decoding, the bit rate can
theoretically reach 4.94 Mb/s. This proves that an OFDM modem based on a DSP
platform can meet the flexibility and performance needs of a Software Defined Radio
used for mobile communications.

However, certain other issues should be taken into consideration. The C62 and

C64 chips are the most performing chips and therefore the most power consuming. These
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chips would be ideally suited to perform tasks in base stations where power consumption
is not as important as in mobile devices. The processors would prove to be too power
consuming for mobile handhelds, which require more power efficiency.

The system tested above did not include a synchronizer. A real world application
would require synchronization with the transmitter to ensure proper demodulation. This
would require the addition of software modules to include pilot symbols on the
transmitter portion and a synchronizer on the receiver portion. Synchronizers are known
to be very cycle consuming. For example, certain algorithms implementing synchronizes
are estimated to need approximately 2000 MIPS. However, this is more than is available

in a dedicated C62 processor operating at 200 MHz [59].
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6 Conclusion

The growth in the mobile communications industry demonstrates society’s
growing dependence on accessing information and communicating wirelessly. In order
for this growth to continue, technology must be able to deliver cost effective networks
that provide high performance transmission at high data rates. In addition, compatibility
amongst different air interface standards is needed for seamless roaming amongst various
types of networks. This thesis has presented a real-time implementation of an OFDM
modem suitable for Software Defined Radios, which is thought to be an answer to the
problem.

It was demonstrated that various research has been taking place in Software
Defined Radios because it is believed that it can fulfill the need for building powerful and
highly reconfigurable communication systems. A DSP platform was chosen to
implement the OFDM modem. It was shown that a DSP platform provides an advantage
over other competing technologies because of the ease through which systems based on
such a platform can be designed and reconfigured. This coupled with numerous
programming resources such as reusable, high quality code and very efficient compilers
helps make the DSP platform a very interesting choice.

An industry leading company like TI provides a DSP platform with development
tools such as a software suite and accompanying hardware, which greatly increase
development time by coding in C or C++. In the implementation portion we were able to
present an OFDM modem coded entirely in C and leave the compiler to convert the code
into a format ready for downloading to the DSP target. We were able to discretize all

software modules into blocks of code with specific tasks. These modules are highly
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modifiable given the nature of the C programming environment. All optimization
techniques were implemented at the C code level through proper use of data types, as
well as the implementation of cyclic shift registers and look up tables. It was
demonstrated that a software design flow for DSP development removes the need for
tedious and error prone assembly language coding.

Traditionally, DSPs have lagged in performance compared with competing
technologies. However a staggering increase in throughput was found with proper
coding techniques as well as a very efficient compiler when compared to program builds
not using build optimizations. In one comparison, the compiler was able to increase
throughput by 550% with the use of software pipelining which allows for much more
instruction execution in parallel. This, along with the exponential increase in DSP
performance over the last few years shows that DSPs are capable of more and more
computationally intensive tasks.

In addition, a new trend in DSP design is to include the use of high performance
coprocessors. This leads DSP designs to include dedicated hardware to perform tasks
commonly used in telecommunications with great efficiency while leaving the CPU core
to perform other tasks. It also increases performance of a DSP platform by further
increasing the parallelism of specific processes in a system. The coprocessors are
designed with enough programmability that they can still carry the advantage of a highly
flexible platform. We were able to estimate a bit rate of 1.59 Mb/s using a faster
processor and a further increase to 4.94 Mb/s when including a Viterbi coprocessor to
handle the lengthy task of decoding. The above together with the predicted continuing

trend of DSP speed results in a platform well suited for use in Software Defined Radios.
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However, as mentioned, the DSP processors considered in this thesis are designed
primarily for performance at the expense of power efficiency. Therefore their use would
be limited to wireless infrastructure applications, such as in base stations, where power
consumption is not generally an issue. The DSP processors considered in this thesis
would prove to be too power consuming for mobile applications and products where
power efficiency is a major factor.

As a direction for future works, development using newer processors with
significant speed enhancements and better architectures should be attempted to see the
actual throughput increases. In addition software modules performing cyclic extension,

pilot insertion, and synchronization to complete the OFDM system should be added.
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