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ABSTRACT

Data Storage for Cluster Analysis of Microarray Gene Expression Data

Yan Yang

Microarray technology has now becoming a systematical way to study the expression
Jevel of thousands of genes over thousands of conditions, The large-scale, high-
throughput experimental methods require analysis and information processing to match.,
Cluster analysis of gene expression data is one of the most important analysis steps in
microarray technology. By using statistical algorithms, the purpose of cluster analysis is
to group genes or samples together according to their similarities in gene expression
profiles. In this thesis, we study the cluster analysis of microarray gene expression data,

and analyze the data required for the clustering process.

By realizing the MicroArray Gene Expression (MAGE) data standard, we design an
object data model for cluster analysis of gene expression data, and construct a relational
database schema. Furthermore, we integrate the database design to an existing open
source microarray application --- BASE (BioArray Software Environment). To validate
the database, we modify a Java-based open source cluster analysis application --- MeV
(MultiExperiment Viewer). Therefore, we are able to take the gene expression data from
BASE, to run the cluster application on MeV, and to store the generated clustering data

back to the modified BASE database.
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1 Introduction

In recent years there has been an explosion in the rate of acquisition of biomedical data.
Advances in molecular genetics technologies, such as DNA microarrays allow us for the
first time to obtain a "global” view of the cell. We can now routinely investigate the
biological molecular state of a cell by measuring the simultaneous expression of tens of

thousands of genes using DNA microarrays.

All organisms on Earth, except for viruses, consist of cells. Yeast, for example, has one
cell, while bumans have trillions of cells. All cells have a nucleus, and inside the nucleus
there is DNA, which encodes the “program” for making future organisms. DNA has
coding and non-coding segments, and coding segments, called “genes”, specify the
structure of proteins. Proteins are large molecules, like hemoglobin, that do the essential
work in every organism. Genes make proteins in two steps: DNA is transcribed into
messenger RNA (mRNA), which in turn is translated into proteins. Practically all cells in
the same organism have the same genes, but these genes can be expressed differently at
different times and under different conditions, such as tissue type, developmental stage,
environment, and treatment. The different patterns of gene expression carefully tunc
biological programs. Virtually all major differences in cell state or type are correlated

with changes in the expression level of many genes.

Microarrays have opened the possibility of creating gene expression profiles to represent
many biological systems, processes or clinical interests. Such data sets of molecular

information can be used as inputs to perform large-scale data analysis, in which various



statistical and data mining techniques are applied to identify co-regulated genes, to
distinguish normal and disease cell states, to explore biological pathways, and much

more.,

Gene expression data analysis can be viewed in two broad categories: (1) pattern
recognition, which can be unsupervised (cluster analysis, class discovery) or supervised
(discriminant analysis, class prediction); (2) detection of differential expression on a
probe-by-probe basis. The most commonly used data analysis is cluster analysis, The
goal of cluster analysis is to identify genes that show similar behaviors across a range of
conditions or samples. The motivation to find such genes is driven by the assumption that
genes that demonstrate similar patterns of expression share common characteristics, such
as common regulatory elements, common functions, or common cellular origin. By
grouping the genes into clusters that behave similarly, cluster analysis allows the
investigator to browse the data in a less intimidating and chaotic atmosphere. In addition,
many of the clustering methods are relatively easy to visualize, thus improving the
accessibility of the biologically meaningful information that is in the data. Several
statistical clustering algorithms have been applied to gene expression data, such as
hierarchical clustering, k-means clustering, self-organizing maps, and principal
component analysis, cte. In general, more than one clustering algorithm can be applied to
a dataset, where the results of several methods are compared before the true result in this
dataset is discovered [17]. Many times the decision will lie on the reproducibility of the

cluster using various methods. This process allows us to gain confidence that the patterns
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we observe not only represent the statistical meaning of data, but also represent true

biological phenomena, which are independent of the analysis method.

Because of the complexity of gene expression data, it is crucial for researchers to publish
the data and scientific findings to public microarray database, where others are allowed to
share the data, verify and possibly extend the experiment. However, the same increase or
decrease of gene expression data observed by two different laboratories might actually be
different, especially when they are using different experimental protocols and data-
analysis methods. Without a standard, it is almost impossible to judge the validity of a
result just by inspecting the expression changes or even the raw data. In view of this
problem, the Microarray Gene Expression Data (MGED) Society (http://www.mged.org),
an international non-profit organization to develop standards for microarray data, has
recently proposed a standard checklist, called Minimum Information About a Microarray

Experiment (MIAME) (hitp.//www.mged.ore/Workeroups/MIAME/miame.html) [5], and

a standard MicroArray Gene Expression Markup Language (MAGE-ML)

(htip:/fwww. mged.org/Workgroups/MAGE/mage.html) [30] for data exchange. The

tesearch community has embraced it and many major journals now require compliance
with MIAME for any new submission. It is therefore advisable to ensure that the
experimental design, implementation and data analysis comply with the MIAME

standard.

To cope with large and f{requent additions of data, both the laboratory IT system

architecture and the database management system must be up-to-date for collecting,



storing and managing the data in a safe and easily retrievable manner, Data analysis and
gene annotation through the database reference are so crucial to the interpretation of the
experiments. Although current microarray data management systems store the data sets
required for data analysis, the results of the analysis, e.g. cluster of interested genes, are
manually saved to a flat text file and usually interpreted one gene at-a-time using public
genome databases or manual literature searches. Recent gene annotation tools have been
developed to discover the biological themes within gene lists derived from microarray
data [16]. By automatically updating the annotation from a complete list of genomic,
literature and functional databases, the interested gene lists resulted from gene expression
data can be kept in a systematically way. Therefore, keeping track of the lists of
interested genes is crucial for interpreting the biological meaning of gene expression

profiles.

In this thesis, we analyze the data requirements for cluster analysis of microarray data. By
realizing the microarray standard MAGE-OM (MicroArray Gene Expression Object
Model), we develop an object model and relational database schema to store the cluster
structure and results, as well as related clustering software and algorithm data. With the
integration of our design to an existing web-based microarray data management system —
BASE (BioArray Software Environment), and the implementation of a Java-based
clustering software application - MeV (Multiexperiment Viewer), we are able to store the

complete lists of the clusters into the database for further comparison and annotation,



2 Background

2.1 DNA Microarray

With the rapid growth of biotechnology, thousands of genes have been discovered
everyday by sequencing the genomes of model organisms. It is widely believed that
genes and their products (RNA and proteins) function in a complicated way, and
orchestrate the mystery of life. However, traditional methods in molecular biology
generally work on a “one gene in one experiment” basis, which means that the
throughput is very limited and the “whole picture” of gene function is hard to obtain. In
the past decade, the emerge of the new technology, called DNA microarray, has totally
changed this concept. By discovering the expression of thousands of genes under
thousands of conditions, DNA microarray technology provides the systematic way to
explore the genome. It performs very rapid analysis for the purposes of gene discovery,

mapping, expression profiling, and polymorphism detection.

2.1.1 What is DNA microarray?
DNA microarrays are microscope slides that contain an ordered series of DNA samples.
The number of ordered DNA saraples can be hundred of thousands. Since the samples are
arranged in an ordered way, data obtained from the microarray can be traced back to any
of the samples. The typical DNA microarray contains several thousands of addressable

genes [36].



There are two variants of the DNA microarray technology, in terms of the property of
arrayed DNA sequence:

1. ¢cDNA probes (500-5,000 bases long), which are enzymatically generated PCR
(Polymerase Chain Reaction) products. It can be obtained directly from
genomic DNA or gene databases including GeneBank and dbEST. After clone
selection, amplification and purification, the probes are loaded in microtiter
plates into an arraying robot and are mechanically spotted onto chemically
modified glass slides. The robotic arrayers provide a reproducible and precise
mathematical map from spots on the arrays to wells in the microtiter plates, and

therefore to the ¢cDNA clones and the genes that they represent.

2

Oligonucleotide (20-80-mer oligos) or peptide nucleic acid (PNA) probes,
which are chemically synthesized in situ (on-chip) or by conventional synthesis
followed by on-chip immobilization. This method, also called DNA chips, is
developed at Affymetrix Inc (http://www.affymetrix.com), which uses
photolithography and solid-phase chemistry to produce arrays containing
hundreds of thousands of oligonucleotide probes packed at extremely high

densities,

2.1.2 DNA microarray technology
DNA microarray technology is an extension of traditional Southern and Northern blots,
colony hybridizations, and dot blots methods. Although the principles are all based on
hybridization [Figure 1], which is also called base-pairing (i.e., A-T and C-G in DNA),

DNA microarray uses thousands of addressable DNAs instead of only one gene at a time.



The ultimate goal of DNA microarray technology is to identify and quantify gene
expression levels in different biological samples. Samples of interest (targets) are labeled
and allowed to hybridize to the array (probe); after sufficient time for hybridization and
following appropriate washing steps, an image of the array is acquired. The
representation of gene expression Jevel in the sample is reflected by the amount of
hybridization to complementary DNAs, which are immobilized in known positions on the

array.
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Figure 1: Process of creating a hybrid strand of DNA/RNA [21]

The two strands of a DNA molecule are denatured by heating to about 100°C = 212°F (a to b). At this
temperature, the complementary base pairs are disrupted and the helix rapidly dissociates into two single
strands. The DNA denaturation is reversible by keeping the two single stands of DNA for a profonged
period at 653°C = 149°F (b 10 &). This process is called DNA renatoration or hybridization.

Similar hybridization reactions can oceur between any single stranded nucleic acid chain: DNA/DNA,
RINA/RNA, DNA/RNA. If an RNA transcript is introduced during the renaturation process, the RNA
competes with the coding DNA strand and forms double-siranded DNA/RNA hybrid molecule (¢ to d).
These hybridization reactions can bhe used to detect and characterize nucleotide sequences using a
particular nucleotide sequence us a probe.



The step-by-step illustration of making up a comparative cDNA hybridization experiment
[6] is shown on Figure 2.
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Figure 2: A comparative cDNA hybridization experiment [6]

1. Design experiment and choose cell populations

To discover how the genes play different roles at different conditions, we have to
know how genes are expressed at these conditions. However, the design issue
may vary depending on individual research purposes. Typically there are four

kinds of research interests at a comparative cDNA hybridization experiment:



Tissue specified.

Genes may express differently in liver cell and brain cell. Therefore the
behaviors of the cell type are distinguished. In order to identify these

genes, different tissue type cells are chosen to perform the experiment.

Cancer related.

Cancer can be caused by the malfunction of some regulatory genes, which
normally control the growth of the cell. Cells from cancer patients and

non-cancer patients are chosen for identifying these regulatory genes.

Cellular response to the environment.

Environment changes, for example, changes of temperature or pH,
changes of nutrient availability, and the presence of environment toxins,
etc, can turn some gene expressions up or down, so that the cell can
respond appropriately. Choosing the cells before the change and after the
change can reveal the difference of the gene expression level between

them.

Cell cycle variation.

The cell cycle is an ordered sct of events, from DNA synthesis, to mitosis
(stage of producing two daughter cells), eventually to death. Many genes
are involved in these activitics. Experiments on cells at different cell cycle

stages can help to distinguish these genes and their roles.
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2. Extract mRNA and reverse transcript to cDNA

To understand how genes are expressed, Figure 3 illustrates the Central Dogma of
molecular biology. DNAs are transcribed to mRNAs, which in turn are translated

into proteins, which are involved in almost biological activities, structural or

enzymatic.
DNA
Replication
*lm‘ormatia m’ LA, duplicates
APPSR RN SERNTDARS
SRR CPNURIPNERSRRS
DNA mfnrgnaiixm
Transeription
BIA synthesis
BINA
e, RHUCIRUS
{nfarmation M
‘ ) eytaplasm
nuclear enveloge "f
Translation
Protein synthesis

Protein

Figure 3: The Central Dogma of Molecular Biology [35]

Trapseription of DNA to RNA to protein: This dogtma forms the backbone of molecular biology and is represented by
four major stages,

L The DNA replicates its information in a process that jnvolves many enzymes: replication.

2. The DNA codes for the production of messenger RNA (mRNA) doring transceiption.

3. In cucaryotic cells, the mRNA is processed (essentially by splicing) sod migrates from the suclens to the cytoplasm.
4. Messenger RNA canties coded information to ribosomes. The ribosomes “read thiis information and use it for protein
synthesis. This provess is called transtation,
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Since proteins are technically difficult and expensive to isolate and analyze, the

genes, which are measured by the amount of mRNAs, are

Ly

transcription levels of
used to represent the gene expression level. Those mRNAs are extracted from the
cell and purified by capturing them using complementary oligodeoxythymidine
(oligo(dT)) molecules bound to a solid support, such as a chromatographic
column or a collection of magnetic beads. To prevent the mRNAs being destroyed
by the enzymes, they are reverse transcribed into more stable DNA form, called
complementary DNA (¢cDNA), in which there sequences are the complement to

original mRNA sequences.

Fluorescent label of ¢cDNA's

In order to measure the amount of cDNAs that hybridized to microarrays, cDNAs
have to be labeled by fluorescent dyes. These dyes show colors under a specific
frequency of light emitted by a laser. Commonly used dyes are rhodamine (Cy3)
and fluorescein (Cy5), which show color red and green depending on their
emission wavelength. The labeled cDNA samples are called probes because they

are used to probe the collection of spots on the array.

Hybridize cDNA samples to a DNA microarray

Two cDNA samples are mixed and hybridized to a DNA microarray. If the
sequence of a cCDNA in a probe is complement to the DNA on a given spot, that
cIDNA will hybridize to the spot, where it will be detectable by its fluorescence.

On each spot, there are enough DNAs that both probes can hybridize to it at once

11



without interference. Therefore, every spot on aun array is an independent assay for

the presence of a different cDNA.
5. Scan the hybridized array

After sufficient incubation, the hybridized array is washed to get rid of the
unbounded probes. Then a laser scanner scans the array slide, and a detector,
either a charge-coupled device (CCD) or a confocal microscope, captured the
emitted light of each spot and recorded its intensity. Spots with more bound

probes will fluoresce more intensely.
6. Interpret the scanned image

The scanned array image is the final product of the experiment. The image color
was based on the measured intensity of the spot. A spot with DNA binds
predominantly to the cDNA in one cell population or the other show up as green
or red, while a spot with DNA bind roughly equal amount of ¢cDNA from ecach

cell population show up as yellow (red + green = yellow).

2.1.3 Analyze microarray gene expression data

2.1.3.1 Types of microarray application
In recent years, microarray technology has become a standard technique used in research
laboratories all over the world. Microarray application is used to monitor the expression

level of genes under certain conditions, therefore to determine whether a gene is present



and whether it goes up or down. With the rapid profiling of the expression levels of tens
of thousands of genes at the same time, microarrays have been successfully applied to

almost every aspect of biomedical research [36].

Gene expression profiling can be used to determine the function of particular genes
during a particular state, such as nutrition, temperature, chemical environment, or
different time point of a cell cycle. Such results could be observed as up- or down-
regulation, or unchanged during particular conditions. For example, a group of genes
could be up-regulated during heat shock, and as a group, these genes could be assigned as
heat shock responsive genes. Some genes in this group may have already been identified
as heat shock responsive, but other genes in the group may not have been assigned any
function. Based on a similar response to heat shock, new functions are then assigned to
the genes. Therefore, extrapolation of function based on common changes in expression
remains one of the most widespread applications of microarray research. By assumption,

genes that share common regulatory patterns also share the same function.

On a basic scientific level, microarrays have been used to map the cellular, regional, or
tissue-specific localization of genes and their respectively encoded proteins. Microarrays
have been used: at the subcellular level to map genes that encode membrane or cytosolic
proteins; at the cellular level to map genes that distinguish between different types of
immune cells; at the tissue region level to distinguish genes which encode hippocampus
or cortex brain region specific proteins; and at the tissue level to identify genes which are

expressed in muscle, liver, or heart tissues,



In Pharmacological studies, microarrays have been used to identify the genes that are
regulated by a certain drug and therefore help to develop new drug targets. The guiding
principle in this endeavor is that genes regulated by therapeutic agents result from the

actions of the drug.

In clinical studies, microarray application is used to diagnose clinically relevant diseases.
The oncology field has been especially active and to an extent successful in using
microarrays to differentiate between cancer cell types. The ability to identify cancer cells
based on gene expression represents a novel methodology that has real benefits. In
difficult cases where a morphological or an antigen marker is not available or reliable
enough to distinguish cancer cell types, gene expression profiling using microarrays can

be extremely valuable [28].

A very recent application of microarrays has been to perform comparative genomic
analysis. Genome projects are producing sequences on a massive level, yet there still
does not exist sufficient resources to sequence every organism that seems interesting or
worthy of the effort. Therefore, microarrays have been used as a shortcut to characterize
the genes within an organism (structural genomics) and also to determine whether those

genes are expressed in a similar way to a reference organism (functional genomics).
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2.1.3.2 Microarray workflow
Microarray technology with large-scale, high-throughput experimental methods, require
material and information processing systems to match. Despite the excitement generated
by these technologies, exploring the massive amounts of data and interpreting them into
the context of biological knowledge could be a huge challenge. Figure 4 illustrates the

basic workflow of microarray technology.

> L Bivlogical question J

[ Microarray experiment J

Image analysis

' fixmméammﬁfim
, 4
Yesting | o+*+* | Clustaring | | Prediction | |~
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and interpretation
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.. . =

Figure 4: Microarray Workflow [22]

To solve or prove a biological question, a good experimental design is the most important
part of a successful microatray experiment. In fact, the importance of pre-planning will
provide with the great satisfaction and least frustration in executing a microarray project,
The goal of experimental design is to remove the technical variance and to make the

experiment more reliable. It may involve choosing and using appropriate controls,



replicates, platforms, and statistical issues [37]. There are two main types of experimental

design: the universal reference design and the dye-swap design.

Universal reference design is the most widely used experimental design for microarray.
In this design, all the direct comparisons of the samples are made to a reference sample
using the same orientation of dye labeling. An appropriate reference sample is the most
important issue, and should be plentiful, homogenous, and stable over time. Using this
design, the comparison of any two samples takes only two steps (e.g. sample A ->
reference and sample B -> reference), and every new sample in the experiment is handled
in the same way. This reduces the possibility of laboratory error and increases the
efficiency of sample handing in large projects, which may involve large numbers of
samples. However, half of the measurements in such designed experiment are made on
the reference sample, and technical variation is inflated four times relative to the level

that can be archived by direct comparisons [8].

Dye-swap design is a simple and effective design for the direct comparison of two
samples. In this design, hybridizations on two arrays are used to compare two samples.
On array 1, the control sample is assigned to the ted dye, and the treatment sample is
assigned to the green dye. While on assay 2, the dye assignments are reversed. The dye-
swap replications can be repeated and are useful for reducing systematic bias in the red
and green intensities, which require correction at the normalization step {37]. With more
replicates, it is possible to obtain both an estimate of the dye effect, and a measurement of

variance. Therefore, using two arrays in a dye-swap configuration to compare each

16



sample provides technical replication and avoids confounding of effects [8]. This design

is recommended for comparing a small number of sample types.

After performing a set of microarray experiments, which include microarray production,
sample preparation, target labeling, hybridization and image acquisition, thousands of
raw gene expression data are retrieved and produced from the microarray image, The
next steps (including image analysis, expression quantification and normalization) are
preprocessing steps for the raw data to produce a set of reliable gene expression data.
Statistical methods and tools are needed for performing these analyses. The basic goal is
to reduce an image of spots of varying intensities into a table with a measure of the
intensity (or, for multi-colored fluorescence images, the ratio of intensities of each spot).
Using the flags and controls, the variations due to systematic errors are removed, and data

from different chips is made comparable.

Gene expression data produced by these preprocessing steps are qualified data, which
have both statistically proved and quality checked values. The next step is to analyze and
explore the biological meaning of the expression data. According to the knowledge of the
data, analyses can include estimating, testing, clustering, classification, and prediction,
etc. Statistical methods and tools played major roles in these steps. Cluster analysis is the
most commonly used method to analyze the gene expression data, The goal is to identify
genes that show similar patterns of expression. More details about cluster analysis will be

covered in the next section,
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Once the meaningful patterns and rules of Jarge quantities of gene expression data have
been discovered, we need to link the observation to the biological data, to regulation of

genes, and to annotation of functions and biological processes.

2.2 Cluster Analysis

2.2.1 Overview of clustering and cluster
Clustering is the process of grouping data objects into a set of disjoint classes, called
clusters, 50 that objects within a class have a high similarity to each other, while objects
in separate classes are more dissimilar [15]. Clustering refers to an unsupervised learning
method. Unsupervised means that there are no predefined classes or training examples
while assigning data objects to a set of classes. Thus, clustering is distinguished from
discriminant analysis (or supervised learning), which seeks to find rules for classifying

objects given a set of pre-classified objects. [29]

The definition of “cluster” is not precisely defined. In many different applications, the

best definition depends on the type of data and the desired results. Several working
definitions of clusters are commonly used [3]:

*  Well-separated cluster definition: A cluster is a set of points such that any point in

a cluster is closer (or more similar) to every other point in the cluster than to any

point not in the cluster.
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e Center-based cluster definition: A cluster is a set of objects such that an object in
a cluster is closer to the “center” (centroid) of a cluster, than to the center of any
other cluster.

e Contiguous cluster definition: A cluster is a set of points such that a point in a
cluster is closer to one ore more other points in the cluster than (o any point not in
the cluster.

o Density-based cluster definition: A cluster is a dense region of points, which is
separated by low-density regions, from other regions of high density.

¢ Similarity-based cluster definition: A cluster is a set of objects that are “similar”

and objects in other clusters are not “similar”.

2.2.2 Cluster analysis of gene expression data

Preprocessed gene expression data are ready to be analyzed. The analytical goal is to find
clusters of genes or clusters of samples that show similar expression patterns. Expression
data are typically presented in a matrix form with each row representing a gene and each

column representing a sample or chip. The matrix entry X;; cotresponds to the expression

level of gene i in sample j.
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The gene expression data matrix is then subjected to cluster analysis. The basic steps to

the clustering process can be summarized as follows:

First, a suitable distance (similarity) between objects (based on the features) must be
defined. Gene expression data objects, no matter genes or samples, can be formalized as
numerical vectors Of = {0i |15 < p}, where oyis the value of the jth feature for the ith
data object and p is the number of features. The proximity between two objects O, and 0y
is measured by a proximity function of cortesponding vectors Oi and O J . Euclidean
distance is one of the most commonly-used methods to measure the distance between two

data objects. The distance between objects O; and O, in p-dimensional space is defined as:

i
y

|
i
Wi

P DI SRR W .
Euclidean{(,,0;) =
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Other distance measurements include Pearson’s correlation coefficient, Manhattan

distance and Spearman’s rank-order correlation coefficient, etc [9].

Second, a clustering algorithm must be selected and applied to the observed data.
Generally, a clustering algorithm defines a proximity measure and a search method to
find the optimal or sub-optimal partition in the data object space according to some
clustering criterion. Clustering criterion is the expression of our goal of clusteting which
is based on a working definition of a cluster and/or an expected distribution of underlying
data in the specific application domain. In the next section, we will introduce several

clustering algorithms, such as Hierarchical clustering, K-means clustering, PCA, etc.
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Third, cluster data results should be validated and visualized. Cluster validation is the
assessment of a clustering scheme. Typically, validation indices are defined to assess the
quality of clusters or to estimate the degree to which a clustering scheme fits a specific
data set. Visualization of the data set is an important part of cluster analysis and is a
crucial verification of the clustering results. Hierarchical clustering algorithms
graphically present the results as a dendrogram (Figure 3) and the data set can be ordered
s0 that the branches of the corresponding dendrogram do not cross and thus arranges the

‘similar’ data to be placed near each other.
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Figure 5: Dendrogram visualize the cluster data results
From Nature Genetics 2000, Brown” s Lab, Stanford University

Gene expression patterns related to the tissue of origin of the cell lines. Two-
dimensional hierarchical clustering was applied to expression data from a set of
1,161 cDNAs measured across 64 cell lines. 64 cell lines are from red,
leukaemia; green, colon; pink, breast; purple, prostate; light blue, lung; orange,
ovarian; yellow, renal; grey, CNS; brown, melanoma; black, unknown
(NCYADR-RES)).
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Cluster analysis can apply 1o either genes, or samples, or both. In gene-based clustering,
genes are treated as objects, while samples are considered as features. Co-related genes
can be grouped together with similar expression patterns, In sample-based clustering,
samples serve as data objects to be clustered, while genes play the role of features.
Samples can be grouped together with some macroscopic phenotypes, such as clinical
syndromes or cancer types. Both the gene-based and sample-based clustering approaches
search exclusive and exhaustive partitions of objects that share the same feature space.
However, another approach called “biclustering” is to capture clusters formed by a subset
of genes across a subset of samples [7]. Biclustering (or subspace clustering) treats genes
and samples symmetrically such that either genes or samples can be regarded as objects
or features. By automatically discovering similarity based on a subset of attributes, it can
simultaneous cluster genes and samples, and overlapped grouping that provides a better

representation for genes with multiple functions or regulated by many factors.

2.2.3 Clustering algorithms

Hierarchical clustering

Hierarchical clustering has become one of the most widely used techniques for the
analysis of gene-expression data. The advantage is that it is simple and the result can be
easily visualized. Hierarchical clustering is an agglomerative approach in which single
expression profiles are joined to form groups, which are further joined until the process
has been carried to completion, forming a single hierarchical tree. The process of
hierarchical clustering proceeds in a simple manner. First, the pairwise distance matrix is

calculated for all of the genes to be clustered. Second, the distance matrix is searched for

|
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the two most similar genes or clusters; initially each cluster consists of a single gene.
Third, the two selected clusters are merged o produce a new cluster that now contains at
least two objects. Fourth, the distances are calculated between this new cluster and all
other clusters. There is no need to calculate all distances as only those involving the new

cluster have changed. Last, steps 2-4 are repeated until all objects are in one cluster [12].

One potential problem with many hierarchical clustering methods is that, as clusters grow
in size, the expression vector that represents the cluster might no longer represent any of
the genes in the cluster. Consequently, as clustering progresses, the actual expression
patterns of the genes themselves become less relevant. Furthermore, if a bad assignment

is made early in the process, it cannot be corrected.

k-means clustering

In k-means clustering, objects are partitioned into a fixed number (k) of clusters, such
that the clusters are internally similar but externally dissimilar. The process is the
following: First, all initial objects are randomly assigned to one of k clusters (where £ is
specified by the user). Second, an average expression vector is then calculated for each
cluster and this is used to compute the distances between clusters. Third, using an
iterative method, objects are moved between clusters and intra- and inter-cluster distances
are measured with each move. Objects are allowed to remain in the new cluster only if
they are closer to it than to their previous cluster. Fourth, after each move, the expression

vectors for each cluster are recalculated. Last, the shuffling proceeds until moving any

b
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more objects would make the clusters more variable, increasing intra-cluster distances

and decreasing inter-cluster dissimilarity [32].

Some implementations of k-means clustering allow not only the number of clusters, but
also seed cases (or genes) for each cluster, to be specified. This has the potential to allow,

for example, use of previous knowledge of the system to help define the cluster output.

Self-organizing maps

A self-organizing map (SOM) is a neural-network-based divisive clustering approach. A
SOM assigns genes to a series of partitions on the basis of the similarity of their
expression vectors to reference vectors that are defined for each partition. It is the process
of defining these reference vectors that distinguishes SOM from A-means clustering.
Before initiating the analysis, the user defines a geometric configuration for the
partitions, typically a two-dimensional rectangular or hexagonal grid. Random vectors are
generated for each partition, but before genes can be assigned to partitions, the vectors
are first ‘trained’ using an iterative process that continues until convergence so that the
data are most effectively separated. First, random vectors are constructed and assigned to
each partition. Second, a gene i’s picked at random and, using a selected distance metric,
the reference vector that is closest to the gene is identified. Third, the reference vector is
then adjusted so that it is more similar to the vector of the assigned gene. The reference
vectors that are nearby on the two-dimensional grid are also adjusted so that they are
more similar to the vector of the assigned gene. Fourth, steps 2 and 3 are iterated several

thousand times, decreasing the amount by which the reference vectors are adjusted and



increasing the stringency used to define closeness in each step. As the process continues,
the reference vectors converge to fixed values. Last, the genes are mapped to the relevant

partitions depending on the reference vector to which they are most similar [18].

Principal Components Analysis

PCA is a statistical technique for determining the key variables in a multidimensional
data set that explain the differences in the observations, and can be used to simplify the
analysis and visualization of multidimensional data sets. It is a mathematical way that
exploits the genes that have similar correlated patterns of expression, while reducing the
elfective dimensionality of gene-expression space without significant loss of information.
Given m observations on n variables, the goal of PCA is to reduce the dimensionality of
the data matrix by finding r new variables, where r is less than n. The DNA microarray
data can consider the genes as variables or the experiments as variables or both. When
genes are variables, the analysis creates a set of “principal gene components” that
indicate the features of genes that best explain the experimental responses they produce.
When experiments are the variables, the analysis creates a set of “principal experiment
components” that indicate the features of the experimental conditions that best explain
the gene behaviors they elicit. When both experiments and genes are analyzed together,
there is a combination of these affects, the utility of which remains to be explored.
Raychaudhuri er al [23], applied PCA to the publicly released yeast sporulation data set,
confirmed that PCA can find a reduced set of variables that are useful for understanding

the experiments.
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Percolation clustering

Sasik et al [27) introduced a novel approach to the clustering of gene expression patterns
in Dictyostelium development. Percolation clustering reveals the natural tendency of the
data to cluster, in analogy to the physical phenomenon of percolation. The basic idea is to
use a probe to reveal the mutual connectivity among a large number of points, with the
highly-connected regions identified as clusters. Bach gene expression pattern which
contains m measurements, is expressed by a point in an m-dimensional space. Connecting
every pair of points that are within a certain threshold distance, each connected graph that
results can be regarded as a cluster. With the increase of the distance between pair of
points, the points from the regions of highest density wounld get interconnected first to
form tight clusters, next, the more dilute clusters will form. Later as connections are
made between existing clusters, they merge into even larger clusters, until eventually at
some large d (typically much smaller than the maximum of distance between pairs of

points), all points will be interconnected.

Plaid Models

Lazzeroni et al [19] introduced plaid models, which allow a gene to be in more than one
cluster, or in none at all. It also allows a cluster of genes to be defined with respect to
only a subset of samples, not necessarily with respect to all of them. The plaid mode] is a
form of overlapping two-sided clustering, with an embedded ANOVA in each layer.
First, reorder the rows and columns in order to group together similar rows and similar
columns, thus would produce an image with some number K or rectangular blocks on the

diagonal. Each block would be nearly uniformly colored, and the part of the image



outside of these diagonal blocks would be of a neutral background color. Second, define a
layer, which describes a response that is shared by all genes in it for all samples in it. It
would also be biologically interesting to identify a set of genes that had an identical
response to a set of samples. Third, obtain a model that represents the data as a sum of
possibly overlapping constant layers that do not have to cover the whole array. Using

these models they have found interpretable structure in genetics data, foreign exchange

data, and nutrition data. These structures are clearly not noise artifacts.



3 Data Analysis

In this chapter, we will analyze the data requirements for cluster analysis of microarray
gene expression data, and introduce the microarray data standard MAGE-OM. An object
model for cluster analysis is created using UML (Unified Modeling Language), and a

relational database schema 13 generated accordingly.
3.1 Data requirements

3.1.1 Purpose

With the sophisticated experimental methods, and large complex data flow, microarray
technology has become a cross-disciplinary endeavor requiring the collaboration of
biologists, engineers, software and database designers, physicists and mathematicians,
Techniques used in storing and managing the data sets can be extremely valuable to solve
the biological problems [4]. Cluster analysis of gene expression data is typically the first
step in data mining and knowledge discovery. The purpose of clustering gene expression
data is to reveal the natural structure of the data and gain some initial insights regarding

data distribution. These are following reasons to store the clustering related data:

First, cluster analysis can involve different clustering algorithms. Each algorithm may
have different search criteria. Therefore, for a set of gene expression data, there are many
different cluster results that may be revealed. It is important for statisticians and
biologists to choose a good algorithin and suitable results from the mass quantities of

data. Moreover, it is easy to explore the data and manipulate the cluster results (e.g. find
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the intersection of different clustering algorithms) from the database than from the flat

file.

Second, interesting clusters need to be further analyzed and annotated. Data used to
perform the cluster analysis are pre-processed data, which may have gone through several
transformations from the raw data set. Clustering results should have connections with
the original information of the genes or samples. Therefore, certain annotations (e.g. link
to annotated sequence database) could be performed automatically on the clusters to

reveal the biological meanings.

Third, with the development of powerful data visualization methods and tools, clustering
results can produce snapshots or overviews of large expression data sets, With the
clustering process information stored in the database, it is easy for researchers to review

the cluster structures and images without performing clustering from the data sets.

In order to explore the large quantities of data and perform better statistical analysis, to
integrate with other databases, and to visualize the clustering, it is necessary to store the

data that is involved in the cluster analysis of gene expression data into the database.

3.1.2 Required data
The process of cluster analysis includes taking the pre-processed gene expression data,
applying the clustering tool, and producing clustering results. Figure 6 shows the data

tequired for cluster analysis, and details are explained below:
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Figure 6: Data required for cluster analysis of gene expression data

Input gene expression data:
Raw gene expression data undergo several pre-processing steps, such as filtering,
normalization, to generate qualified gene expression data, which typically is a data

matrix containing the qualified measurement of gene expression on certain genes over

desired samples.

Output cluster structure and results:

Cluster structure represents the relationship of the clusters. For different
clustering of gene expression data, each cluster may contain information on either genes
or samples or measurements (indicates with dashed arvow in Figure 6). Clustering results
derived from most of the clustering algorithms can be represented with a tree structure. In

a typical hierarchical clustering structure, the leaf node is an individual gene or sample,
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the internal node containg a group of genes or samples, and the root is the whole set of

genes or samples.

Cluster analysis tools:
Software is the application used to perform cluster analysis. Different clustering
algorithms can be used by different software, and parameters are clustering criteria

used by clustering algorithms,

3.2 Microarray gene expression (MAGE) data standard

3.2.1 Standard of microarray data

Before moving on to further data analysis and data modeling, we will discuss the MAGE

standard of microarray data.

Microarray data are highly context-dependent. To make sense of the data, experimental
information must be provided, including what transcripts are represented, the details of
the sample and any treatments, and information on other factors that may have influenced
the results. Therefore, the process of publishing a microarray experiment [Figure 7]
should be considered to include the steps taken to generate the data, to annotate and store
the data in a local database and to transfer the data to a public repository, such as
ArrayExpress of EBI (European Bioinformatics Institute) and Gene Expression Omnibus
(GEO) of NCBI (National Center for Biotechnology Information) at the National

Institutes of Health [31].
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Figure 7: Information storage and transfer of data for a microarray experiment [31]

If data from every microarray research project were stored in the same type of database
with exactly the same structure, transferring data from one database to another would be
a relatively straightforward proposition. But because different projects have very
different needs, restrictions and resources, this is not likely to be possible. Therefore,
standards for data representation and minimum information will enhance the value of an
experiment, and enable researches to make comparison, as well as to understand,

reanalyze and replicate microarray data.

To develop such a standard for microarray data, a group called MGED (the Microarray
Gene Expression Data) society was officially founded in June 2002, MGED is an
international organization of biologists, computer scientists, and data analysts that aims to
facilitate the sharing of microarray data generated by functional genomics and proteomics

experiments. This group established the standard for microarray data annotation and
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exchange, facilitating the creation of microarray databases and related software
implementing these standards, and promoting the sharing of high quality, well annotated
data within the life sciences community. There are three major projects developed by this
group:

MIAME (Minimum Information About a Microarray Experiment) describes the
information that researchers should provide to explain the procedures and biological
purpose of their microarray data in adequate detail. It aims to outhine the minimum
information required to unambiguously interpret microarray data and to subsequently
allow independent verification of this data at a later stage if required. [5]

MAGE (MicroArray Gene Expression) aims to provide a standard for the representation
of microarray expression data that would facilitate the exchange of microarray
information between different data systems. It has been established a data exchange
model (MAGE-OM: Microarray Gene Expression — Object Model) and data exchage
format (MAGE-ML: Microarray Gene Expression — Markup Language) for microarray
expression experiments, MAGE-OM bhas been modeled using the Unified Modeling
language (UML) and MAGE-ML has been implemented using XML (eXtensible Markup
Language). [30]

OWG (Ontology Working Group) is assembling a large set of controlled vocabularies

and ontologies that can be used to describe biological samples and their manipulations.

As of October 2002, several major scientific journals, including the Nature group, The
Lancet, Cell and EMBO journal adopted MIAME recommendations as a requireroent for

publication of microarray experiments. That means all articles with microartay gene
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expression data should be MIAME compliant. At the same time, MAGE became the

'Available Specification for Gene Expression’ at the OMG (Object Management Group).

The adoption of standards for microarray experiments will change the way of recording,
storing and transporting data. As the data are generated, information that are described in
the MIAME guidelines will be recorded, and be stored in a MIAME-compliant local
research database. On publication, associated data will be exported through internet-
based forms and/or MAGE-ML documents to one of the public microarray repositories.
If data from outside sources are needed to complete the analysts, the researcher will
download the MAGE-ML document that describes the outside the data and import it into

the local research database.

Since many microarray projects started before the publication of MIAME and MAGE, in
order to publish the experiments and share the data, either local databases need to be
modified to meet the MIAME guideline or additional software need to be developed to
map different databases to MAGE-OM. For our recent study that aims at data analysis
and storage of cluster analysis of gene expression data, MAGE-OM would certainly be

the first guideline for the development,

3.2.2 MAGE Object Model
MAGE-OM was developed with the purpose of capturing the objects relevant for

microarray experiments, specifically for capturing the data and annotation of gene

expression experiments. MAGE-OM is a framework for describing experiments done on
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all types of DNA microarrays, including spotted and synthesized arrays, and oligo-
nucleotide and ¢cDNA arrays. It is independent of the particular image analysis and data
normalization methods, and allows representation of both raw and processed microarray
data. Above the representation of expression measurements, it allows for comprehensive
annotation of experimental results. The decision was made, however, to make the model
general enough so that other technologies, such as proteomics, could potentially reuse

this model [1].

MAGE-OM is a data-centric model that contains 132 classes grouped into 17 packages
containing, in total, 123 attributes and 223 associations between classes. Classes in the
model represent distinet things or events, and each class may have attributes as well as
associations to other classes. The packages are used to organize classes that share a
common purpose, for example the Array package contains classes that describe
individual arrays, including detailed information on relevant manufacturing processes.
The key components of MAGE-OM reflect many of the core requirements of MIAME,
specifically: experiment goals and design (Experiment package); biological materials
used and description of their creation (BioMaterial package); array design and purpose
(ArrayDesign, BioSequence packages); array manufacture (Array package);
hybridization, wash, and scan information (BioAssay package); gene-expression data
(BioAssayData package). Besides, analysis on the result of an experiment is also included
in HigherLevelAnalysis package. Figure 8 shows the component view of the main

packages. Other utility packages support requirements shared by the above components,



specifically information on people and organizations, protocols used, simple annotations,

free-text descriptions, and the ability to specify links to predefined ontology [30].
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Figure 8: Component View of Main Packages of MAGE-OM

According to our data requirements for cluster analysis of gene expression data (Section
3.1), we need to explore how MAGE-OM models these requirements, in particular:
cluster analysis structure and results (HigherLevelAnalysis), gene expression data

(BioAssayData package), and cluster analysis tools (Protocol package).
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Figure 9 shows the HigherLevelAnalysis Package from MAGE-OM. This package
describes the results of performing analysis on the result of the BioAssayData from an
Experiment. Typical examples include clustered results (from hierarchical or k-means
clustering) or results from self-organizing maps. The model contains the framework
supporting node- and tree-based clusters. Each clustering has an association to the data
(BioAssayData) from which the results were generated, as well as one or more nodes.
Each node can contain other nodes to create a tree or it can contain one or more

dimensions (explained next in BioAssayData package), allowing the node to identify
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Class BioAgsayDataCluster represents a mathematical wethod of higher level analysis
(typically referrs to cluster analysis) whereby BioAssayData are grouped together into
nodes. Class Node is an individual component of a clustering and may contain other
nodes. Class NodeContents is the contents of a node for any or all of the three
Dimensions. If a node only contains genes, then just the DesignElementDimension would
be defined. Class NodeValue is a value associated with the Node that can rank it in
relation to the other nodes produced by the clustering algorithm, for example, distance
between parent node and child node. It has an association to OntologyEntry from which
the scale (linear, logl0Q, In, etc), data type and the type (of value, distance, ete) are

defined.

Figure 10 shows the class diagram of BioAssayData package. The classes defined in this
package provide data and information, as well as annotation on the derivation of that
data. BioAssayData is the entry point to the values of the dataset. While the actual values
are represented by BioDataValues, BioAssayData is the source of which
Transformation event uses to produce the DerivedBioAssayData. Recall that the data
recorded from the image scanner are raw data (in MAGE-OM, denoted as
MeasuredBioAssayData), it must be pre-processed through many steps, such as filtering,
normalization, etc, and the data are reformatted to be DerivedBioAssayData. The process
by which derivedBioAssays are created from measuredBioAssays or derivedBioAssays is

called Transformation. It uses mappings to indicate the input and output dimension.
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Figure 10: Class Diagram of BioAssayData Package from MAGE-OM

In MAGE-OM, the gene expression data are viewed as a three-dimensional matrix (or

cube) of values [Figure 11] whose axes are labeled by DesignElements (the ‘genes’),

BioAssays (‘experimental samples’), and QuantitationTypes (parameters from the

scanning software) [30]. Therefore, BioAssayData consists of these three-dimensional

data, where each dimension is an ordered list.
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Figure 11: The BioDataCube [30]

BioDataCubes are composed of a matrix of values. (8) A two-dimensional slice of a BioDataCube for a
single Bioassay. Hach combination of DesignElements and QuantitationTypes is allowed a value. CHI
is channel [Foreground and Background, CH2 is channet 2 Foreground and Background, Ratio is the
ratio between the background subtracted intensitics of Channel 2 over Chaneel 1, RError is the ratio
error. (b} The cube of values is a set of slices, in this view one stice for each BioAssay.

To summarize, BioAssayData used by cluster analysis is DerivedBioAssayData, which is
from MeasuredBioAssayData through the process of Transformation. BioAssayData is
annotated by a three-dimensional cube data, where DesignElementDimension represents
a list of genes, BioAssayDimension is a list of samples, and QuantitationDimension is a

list of measurements.

In Figure 12, Protocol package describes a generic laboratory procedure or analysis
algorithm, and an instance class --- ProtocolApplication, which can describe the actual
application of a protocol. The ProtocolApplication is the use of a protocol with the
requisite Parameters and ParameterValues. For example, cluster analysis application is an
instance of ProtocolApplication. It is performed by a Person, and uses a
Software A pplication to execute a clustering algorithm (an instance of Protocol), with the

ParameterValues of any Parameters.
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3.3 Modeling of cluster analysis of microarray gene

expression

data

3.3.1 Object model

By analyzing the MAGE-OM, we design our own data model for the cluster analysis of

gene expression data. Figure 13 lists the modified data model to meet our data

requirements,
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Since MAGE-OM has modeled most of the scenarios for cluster structure, cluster results,
and more importantly, their relationship with BioAssayData, we adopt the concepts in the
HigherLevelAnalysis package and part of the BioAssayData package. However, the
original BioAssayDataCluster class in HigherLevelAnalysis of MAGE-OM has no
relation with the Protocol package, therefore, it is impossible to trace the clustering
software application, and the clustering algorithm, as well as parameters used to perform
cluster analysis. Qur approach to this problem is to add an association from
BioAssayDataCluster to ProtocolApplication of Protocol package, as well as related
classes SoftwareApplication, Protocol, Parameter, ParameterValue, Person, and their

relations to Protocol Application.

This conceptual model well answers our data requirements for cluster analysis of gene
expression data. BioAssayData used for cluster analysis represents the qualified gene
expression data, which consists of three-dimensional data. BioAssayDataCluster
represents  the output cluster structure Node and cluster results NodeValue and
NodeContents. ProtocolApplication is used to process BioAssayDataCluster, where

Protocol, SoftwareApplication and Parameter are used by Protocol Application.

3.3.2 Relational database schema
Based on the above object conceptual model, we built an Entity-Relation-Attribute
(ERA) model of the relational database with its entire table schema described in Fi gure
14. The diagram was drawn by ERwin software (ERwin 4.1 by Computer Associates).

The following table contains the explanation of the diagram:;
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Entity

D Relationship

Identifying relationship

Non-identifying relationship
— One to Zero, one or many
e ) Zero or one 1o Zero, one or many

I)
® One to one or many

The mapping from the object model to the relational model is not straightforward. Tt
requires adding tables and attributes. The major difference is that classes in the Protocol
package are changed to a cluster-specific name, e.g. ClusterApplication instead of
Protocol Application, and the Person class used to record the person who executes the
Protocol Application is merged as an attribute of the ClusterApplication table. In addition,
NodeValueType table maps the OntologyEntry class in the object model, with the

attributes of type, datatype and scale. More details are explained below:
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According to the data requirements, there are three parts of data involved in the database:

Part I Cluster algorithm, software, application, and parameter

1.

b3

Part 1I:

ClusterApplication is used to perform a cluster analysis on gene expression data.
It uses one of the ClusterAlgorithm in one of the ClusterSoftware. For example,
a user selects a hierarchical clustering algorithm from Eisen lab’s Cluster
software, or K-means clustering algorithm from the same software, or from
TM4’s MeV software (TIGR).

ClusterParameter contains  all the parameters used to define the
ClusterApplication, which performs cluster analysis on either gene or assay.
Parameters may include the parameters for distance measurement, and the
parameters for different clustering algorithms, such as different linkage methods,

similarity metric, number of clusters, and maximum cycles.

Output cluster structure and cluster results

BioAssayDataCluster uses one ClusterApplication to perform clustering
analysis on one BioAssayData.

A BioAssayDataCluster can have one or many Nodes. Each Node in a tree can
have only one parent Node (except root Node’s parent is NULL).

Hach Nede may contain some NodeValues, which represent the relations to other
Nodes, such as distance. NodeValue is defined by NodeValueType. For
example, node value can be the distance to the parent of the Node, or the distance

to the root of the tree, etc.
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4. Each Node may contain NodeContents, which can be cither a set of BioAssay

(BioAssayDimension), or a set of DesignElement (DesignElementDimension),

or a set of QuantitationType (QuatitationTypeDimension).

Part III; Input gene expression data

I.

b2

BioAssayData identifies the three-dimensional data used for cluster analysis. The
three dimensions are BioAssayDimension, DesignElementDimension and
QuantitationTypeDimension.

BioAssayDimension identifies a set of BioAssays. One BioAssayDimension can
have many BioAssays and one BioAssay can be in many BioAssayDimensions. A
relation table BioAssayDimensionList represents such many-to-many relations.
The same relations are applied to the other two dimensions.

BioDataValues contains a set of values (usually the intensity value) in a
BioAssayData. The value is recorded according t6 BioAssay, DesignElement, and

QuantitationType.

3.3.3 Standard versus practical

Our design for cluster analysis is based on the microarray standard MAGE-OM, which is

designed to accommodate MIAME compliant microarray experiments as complete and

flexible as possible. Since MAGE object model encompasses many different types of

information about microarray experiments, it is not expected that every user of MAGE

will use all the classes, attributes or associations of the model. Instead, a given project

needs only report or encode the MAGE elements that are appropriate for the data being

47



managed. Moreover, steps involved in creating qualified gene expression data are beyond
our concem. In order to get a complete picture of how the data are managed., we have to
choose a microarray project to practice our design and verify its feasibility. In next
chapter we will introduce microarray databases and systems, and integrate our design to

an open-source microarray database and system.
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4 Data Storage

In this chapter, we will introduce the current public microarray databases and
applications. Upon analyzing the existing open-source systems, we apply our relational

data schema of cluster analysis to the BASE (BioArray Software Environment) system,

4.1 Microarray databases and applications

4.1.1 Public microarray databases
The core function of a microarray data management system is to store, process, visualize,
and compare global gene expression data. Since using a simple flat file system makes it
difficult to maintain and link biological annotations that are essential for the
mterpretation of the data, the storage and archival capability of a microarray system

should build on a relational database.

A microarray laboratory is usually run with several people participating in the common
experimental workflow of array hybridization, scanning, data processing, and analysis.
All members of the team will eventually need to visualize the data. Saving flat files at
different locations after each step of the workflow breaks the information stream.
Therefore, such a database management system should centralize the data, with an
administration system that allows different users to act upon the data at different levels.
Most existing microarray data management systems are designed using a three-tier

architecture. The three-tiered architecture involves a database server (also known as the
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back-end), an application layer (the middle layer), and a graphical user interface (the
front-end or GUI). The main feature of this system architecture is the centralization of the

data and of the computing intensive tasks into a central machine, the server.

In addition, the inference power of high-throughput expression data systems relies on
comparing as many expression profiles as possible with each other and with other sources
of information. Therefore, data should be stored in a compatible format that allows such
comparisons, ’I"hi:; capability is critical to import data from different sources, to quickly
add gene annotation data, and to allow complex queries of the data using standard
language or controlled vocabulary. This conceptual framework has been formalized by
the MIAME (Minimum Information About Microarray Experiment) definition by the
MGED (Microarray Gene Expression Data) group and has currently been adopted by
prominent journals, such as Nature, Science, etc. Another standard to emerge is MAGE-
ML (Microarray Gene Expression Markup Language), which is a descriptive language
widely adopted by several microarary database systems and applications. Both
ArrayExpress from EBI (European Bioinformatics Institute) and the Gene-Expression
Omnibus (GEO) from NCBI (National Center of Biotechnology Institute), which are two
of the most prominent microarray data repositories, intend to support the MIAME and

MAGE-ML standards. Many other data repositories are expected to follow soon,

Finally, a system that implements different protocols of data treatment, should give the

investigators maximum flexibility to analyze data from different experimental designs.



The final choice of which application to adopt may rely on the current system

architecture of the laboratory [2] [ 14].

Some of the current microarray data management systems are listed in the table below:

Name Organization URL
ArrayDB National Haman httpe//genome.nhgri.nih. goviarraydb/

Genome Research
Institute (NHGRI)

BASE Lund University http:ffbase.thep. lu.se/
GeneDirector | BioDiscovery http://www.biodiscovery com/genedirector.asp
GeNet Silicon Genetics hup:/fwww silicongenetics.com/egi/SiG.cgi/Products

/GeNetfindex.smf

GeneX National Center of http://www.negr.org/genex/

Genome Research
(NCGR)

maxdSQIL. University of http://bicinf.man.ac.uk/microarray/maxd/maxdSQLJ
Manchester

NOMAD UCSE, UCLA, Lawrence | hitp//ucsf-nomad.sourceforge. net/help/
Berkeley National
Laboratory

SMD Stanford University http://genome-

wwwi.Stanford EDU/MicroArray/ SMD/

4.1.2 Open source microarray applications

Although several microarray data management systems exist to perform collecting,
managing and analyzing the gene expression data, there are potential needs to develop
affordable, state-of-the-art open source software with the availability of both the program
source code and well-defined standards for adding functionalities and integrating them

into the system.
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Here we introduce three of the most widely used and comprehensive open source

microarray systems [10]:

Bioconductor  project:  the  statistical  analysis  tools  written in R
(http:/fwww bioconductor.org).

The main focus of Bioconductor project is to deliver high-quality infrastructure and end-
user tools for expression analysis. The primary delivery vehicle is R and the R package
system. The R base package and packages from the Contributed R Archive Network
(CRAN; http://cran.r-project.org) provide implementations for a broad range of state-of-
the-art statistical and graphical techniques, including linear and nonlinear modeling,
cluster analysis, prediction, resampling, survival analysis, and time-series analysis.
Additionally, R has several mechanisms that allow it to interact directly with software
that has been written in many different languages (e.g., intersystem interfaces provided at
http://www.omegahat.org) and allow users to incorporate additional analysis modules.
Although initial efforts focused primarily on DNA microarray data analysis, many of the
software tools are general and can be used broadly for the analysis of genomic and
expression data. Bioconductor has adopted object-oriented programming as its primary
programming paradigm. Current release of Bioconductor v. 1.3 has 51 packages grouped
as General tools, Analysis, Annotation, Database interaction, Graphics & User Interface,

Graphs and Pre-processing.

in
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Bioconductor is an open development initiative. Users are encouraged to become
developers, either by supplying Bioconductor-compliant packages, by adding to or
improving existing packages, or by producing Bioconductor-compliant documentation. In
addition to providing genomic data analysis tools, Bioconductor has a commitment to
reproducible research and integrated, dynamic documentation. Each Bioconductor
package contains at least one vignette, which is a document that provides a textual, task-
oriented description of the package’s functionality and can be used interactively. These
executable documents are generated using the function Sweave from the R tools package.
Additional supporting software for vignettes is being developed to aid users with
obtaining data and sample code, step through specific analyses, and apply these analyses

to their own data using Bioconductor’s DynDoc package [10].

TM4: A Java-based system for microarray expression analysis available from The
Institute for Genomic Research (TIGR; Rockville, MD, USA)
(http:/fwww tigr.org/software) [26].
The TM4 microarray analysis suite of tools was developed to provide the microarray
community with a comprehensive set of tools to handle all aspects of the microarray
process. The TM4 suite of tools consist of four major applications:
e  Microarray Data Manager (MADAM): a Java-based application designed to load
and retrieve microarray data to and from a MIAME-compliant MySQL. database

(also supplied with the software). MADAM provides data entry forms, data report

N
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forms and additional applications necessary to maintain microarray data for
further analysis.

e TIGR_Spotfinder: a software tool designed for Microarray image processing
using the TIFF image files generated by most microarray scanners. TIGR
Spotfinder was written in C/Ca+ for PCs running Windows NT/2000/ME/XP.

¢  Microarray Data Analysis System (MIDAS): a Java-based microarray data quality
filtering and normalization tool that allows raw experimental data to be processed
through various data normalizations, (ilters, and transformations via a user-
designed analysis pipeline. Currently implemented normalization and data
analysis  algorithms include total-intensity normalization, Lowess (Locfit)
normalization, flip-dye consistency checking, replicates analysis, intensity-
dependent z-score filtering (slice analysis), etc.

e  Multiexperiment Viewer (MeV): a Java application designed to allow the analysis
of microarray data to identify patterns of gene expression and differentially
expressed genes. Numerous normalization, clustering and distance algorithms
have been implemented, along with a variety of graphical displays to best present
the results. MeV was written to be flexible and expandable, and supports a variety

of input and output formats.

TM4 13 freely available to the research community and may be obtained with source code
at hup://www.tigroorg/software. Although these software tools were developed for
spotted two-color arrays, many of the components can be easily adapted to work with

single-color formats such as filter arrays and GeneChips™(Affymetrix). Three of the



TM4 applications, MADAM, MIDAS, and MeV, were developed in Java and can be num
on Microsoft® Windows™, Linux®, Unix®, and MacOS X® platforms; TIGR
Spotfinder was written in C/C++ and runs only on Windows systems. The TM4 software
system represents a comprehensive, extensible, open-source, and freely available
collection of tools that can be applied to a wide range of laboratories conducting

microarray experiments.

BASE: the web-based BioArray Software Environment developed at Lund University
(http://base.thep.lu.se) [25].

BASE was designed with the goal of supporting a variety of microarray platforms.
Underlying the complete system is a MIAME-supportive, customizable database
implemented in MySQL that tracks the elements used to construct the arrays and their
annotations, the layout and design of the array itself, the biological samples used in each
hybridization assay, and both the raw and transformed data; users have the option of
including other LIMS components for tracking samples and reagents in the laboratory.
The software that interacts with this database was developed under the Linux operating
system in PHP and uses a freely available Apache Web server (http:/httpdf.apache.org)
to provide Web access to its functionality. The interface uses Java, JavaScript, and
HTML to provide added utility, and some of the more computationally intensive analysis
methods that are carried out on the server have been implemented in C++. Because of its

flexible design, BASE can be used for the analysis of one- and two-color systems on a



variety of substrates, cDNA and oligonucleotide arrays, Affymetrix GeneChips, and both

expression analysis and comparative genomic hybridization analysis.

These three open-source microarray applications both have advantages and disadvantages
[10]. Bioconductor builds on the existing power of the R statistical analysis tool
development community and allows for the rapid development and dissemination of new
methods. However, the R command-line environment and language complexity can be
discouraging to first-time users. Several efforts are underway to simplify and enhance the
user interface. TM4 gives users a graphical interface that is easy to navigate and the
architecture provides great flexibility for development. However, implementation of new
statistical tools requires the creation of new analysis libraries and users have to install
new software releases. BASE minimizes the software update problem by using a Web-
based approach and, as such, could easily integrate the Bioconductor utilities, but it loses

a good deal of the graphical functionality that local applications can provide.

Among these software applications, the Fungal Genomics Project based at the Centre for
Structural and Functional Genomics at Concordia University adopt BASE as the
microarray software platform. In the next section, we will introduce BASE in depth, and

integrate our cluster analysis data model into BASE database.
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4.2 BioArray Software Environment (BASE)

4.2.1 Overview of BASE
BASE (http://base.thep.lu.se/) is a comprehensive database server to manage the massive
amounts of data gencrated by microarray analysis. In short, it manages biomateral
information, raw data and images, and provides integrated and "plug-in"-able
normalization, data viewing and analysis tools. Additionally, for labs that make their own
in-house arrays or for labs that wish to track probe information, the system also has array
production LIMS features, which can be integrated with the data analysis. The
organization and interface of BASE was designed to closely follow the natural workflow
of the microarray biologist, and is compatible with most types of array platforms and
datatypes (e.g. cDNA/oligos spotted on any substrate, Affymetrix, CGH on arrays, etc)

[24].

BASE is installed on a local server in a microarray laboratory. The server is accessed via
any web browser using personal login accounts with administrated access levels. With his
or her own account, a user can enter data into the database, group experiments together
into projects, and in a uniform and streamlined fashion, apply filters, normalizations, and
run analyses. Users can choose to share almost any database item (e.g. samples, data,

experiments, files, etc) with other users to facilitate online collaboration.

BASE starts the data analysis with ‘Raw data set’, which contains selected data from a
results file. The results file is acquired when extracting numeric data {rom a microarray

tiff image (e.g. using GenePix from Axon or ScanAlyze from Eisen’s lab) and is typically
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a tab-delimited text file (e.g. a GenePix GPR file). Most of the data analysis in BASE is
performed in the ‘Experiments’. An ‘Experiment’ is merely a collection of ‘Raw data
sets” and any associated analysis steps that have been performed on these raw data sets.
Raw data sets can be sorted into any number of ‘Experiments’ and a user can create any
number of ‘Experiments’. However, when analyzing data in BASE, ‘BioAssays’ are used
as expression data rather than 'Raw data sets’. A ‘BioAssay’ consists of intensity values
only (e.g. Intl and int2 for a two-channel Raw data set). A “BioAssaySet’ is a collection
of one or more BioAssays. ‘BioAssays’ are created when the *BioAssaySet’ is created.
When creating a ‘BioAssaySet’, the quantitation of ‘BioAssay’ intensities should be
decided, e.g. whether the intensities should be background corrected or not, how
background correction should be performed and whether Mean or Median pixel values
should be used for the intensities. At the same time when the “BioAssaySet’ is created,
BASE will process one ‘Raw data set’ at the time and calculate the intensities according
to the selected quantitation preferences. Each selected ‘Raw data set’ will be transformed
into a ‘BioAssay’ and the corresponding ‘BioAssays’ will all be included in the same

‘BioAssaySet’ [24].

After a ‘BioAssaySet’ is created, a set of analysis steps include filter, normalization and
cluster, as well as potential new plugins, can be performed on it. From the ‘Hierarchical
overview of BioAssaySet analysis’ under the ‘Analysis Steps’ tab [Figure 15], each
analysis step is clearly listed, with the link to the details of the analysis and the
visualization of the data. There are four analysis functions that can be applied on

‘BioAssaySet’. The ‘Filter’ function allows user to filter either spot or gene, and



generates the ‘Child BioAssaySet’. The ‘Run App’ function will take users to the
Transformation:job' page where a plugin application can be selected to run, Current
plugins in BASE version 1.2.10 include Multi-dimensional scaling (MDS), Standard
Deviation, Normalization (Global median ratio, Lowess, pin-based Lowess), Hierarchical
clustering (per sample, per reporter) and Principal Component Analysis (PCA). The
‘Experiment Explorer’ function is a visualization tool in which user can browse data,
reporter by reporter, across all BioAssays in a BioAssaySet, including a selection of links
to external databases. Users can choose to view ‘LIMS info’ and sample ‘Annotation’.
The ‘Export’ function faciliates the user to export the transformed data to the specific file
formats used for other analysis applications, such as Eisen’s Cluster software, TMEV

stanford file and GeneClustering Online, as well as customized BASEfile format.
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Figure 15: Screenshot of Data Analysis Steps in BASE
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4.2.2 BASE database schema
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Figure 16: BASE database schema

BASE implements a relational database schema [Figure 16] with both MySQL and
PostgreSQL. Although BASE does not provide a complete documentation to explain the
schema, we can still trace the data through the tables and relations. Among the 76 tables
in the BASE MySQL. implementation, BioAssaySet, Transformation and Experiment

tables are the starting points of the data analysis steps. Their relations are explained as the

following:

e The Bioassaysets of an Experiment form a forest of bipartite trees, with a
Transformation separating a non-root Bioassayset from its parent Bioassayset.

e A Bioassayset associated with a set of Bioassays. A Bioassay always exists as part

of a single Bioassayset.
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e A Bioassay consists of a number of spots. BioassayData records the intensity
value of each spot, which has a unique position number in a Bioassay and a
Reporter 1D.

e A Transformation represents either a filtering of the data in a Bioassayset (in
which case it has a single child Bioassayset), or an arbitrary transformation (in
which case there may be zero or more child Bioassaysets),

e A Job is the process of Transformation. It records the execution time, status,

duration, CPU time and the program name of a Transformation.

Upon analyzing the BASE schema, we find that BASE does not provide the storage for
cluster analysis data, especially for cluster structure and cluster results. According to our
cluster analysis database design (see Section 3.3.2), we modified BASE database schema.

The next section explains the BASE-cluster database schema.

4.2.3 BASE-cluster database schema
The BASE-cluster database schema [Figure 17] is the integration of our conceptual
model derived from MAGE [see Section 3.3.2] with the BASE data schema. In the
diagram, the original BASE tables are shown in white, while tables shaded dark gray are

added tables and shaded light gray are modified BASE tables.
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Differences from the conceptual model are explained as the following:

1.

Transformation stores the parent BioAssaySet. The root BioAssaySet is derived
from the intensity calculation of an Experiment; it stores the Experiment and
intensity measurement. A non-root BioAssaySet is derived by transformation of
its parent BioAssaySet, so it records the Transformation number,

The original Job table is a weak-entity, which is inherited from Transformation.
It stores the detailed process of a transformation, The modified Job table adds a
discriminator attribute “clusterApplication” as an individual identity to identify
the cluster jobs; therefore, the combined key is “transformation,
clusterApplication™. Also the “clusterAlgorithm” attribute is added to store the
algorithm identifier used for the cluster application. Since in BASE only one
algorithm is associated with a program, algorithm details are stored as the
description of a program. We separated the algorithm from the program, in order
to meet the situation when a program is associated with several algorithms, and
one algorithm is used by many programs.

BASE has a ReporterList table to store a list of reporters (genes). Therefore, we
use ReporterList as a DesignElementDimension of the conceptual model to store
the result of gene clusters. ReporterListRow is the relation table that stores the
reporter identifiers in a reporter list. Similarly, BioAssayList and
BioAssayListRow tables are added to store the sample clusters.

Since the ReporterList table can store not only the cluster results, but also other

interested lists from any files, we add a relation to BioAssayDataCluster and use
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it to identify the cluster results from the others. This is also applied to the
BioAssayList table.

5. We do not consider storing the QuantitationTypeDirension as part of cluster
results. The reason is that BASE has its hierarchical view of data analysis, the
QuantitationType (the method for calculating a single datura of a matrix) is

described with the BioAssaySet and Transformation.

4.2.4 MySQL implementation
We use the BASE MySQL definition to implement the BASE-cluster database. Each
entity table has the following attributes:
id: an integer of some size and the primary key of the table, has auto_increment
name: varchar of some size, possibly with a UNIQUE KEY
descr: description, text type with room for at least 64kB
owner: in? referencing UserAccount.
addedDate: date or datetime describing when a record was created

removed: rinyint in [0, 3]

The size of int as an id is usually assigned to 11 bits. Flags and other numbers with a very
limited range have been modelled as smallint or tinyint. All the tables are MyISAM types
with no support on foreign key constraint. It is assumed that a column can not be NULL,
and foreign keys are valid unless something else is explicitly mentioned. Name of the

foreign key uses the same name as the referenced table.
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5 Apply database to cluster analysis application

In this chapter, we will introduce three open source cluster analysis applications, and
adopt MeV (Multiexperiment Viewer of TM4, TIGR) to perform cluster analysis on
BASE gene expression files, while the cluster structures and results are stored at our

BASE-cluster database for further comparison and annotation.

5.1 Cluster analysis application generates cluster data

For large-scale gene expression data, various statistical techniques and data mining
software are used to identify significantly differentially expressed gene, understand the
(dis)similarities of gene expression levels among all the samples, class prediction, and
pathway analysis [20]. Cluster analysis, known as unsupervised data analysis is
essentially a grouping technique that aims to find genes with similar expression profiles.
Cluster analysis application can be part of a microarray system, which may includes
server software, database, client software and statistics software, such as BASE (see
Section 4.2); or a comprehensive software that incorporates many different analyses at
different stages like data preprocessing, dimensionality reduction, normalization,
clustering and visualization in a single package, but does not have any accompanied

database, such as Cluster (Eisen’s lab).
Cluster results usually can be visualized, and clusters of interests can be manually saved
as a flat text file for further annotation. In order to automatically save the cluster results

into our database when clustering is performed, we have to modify the cluster analysis
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application. A good cluster analysis application should include many available clustering
algorithms, be well designed, have good visualization tools, and be consistent and
reliable. In the following, we will introduce three open source cluster analysis

applications, and select MeV as our cluster application to be modified.

5.1.1 Open source cluster analysis applications

BASE cluster analysis plug-ins:

Since methods for expression analysis tools are evolving rapidly, BASE has a plug-in
architecture that allows new modules to be casily added for data transformation, analysis,
or visualization. Any executable program that runs on Linux and can read and write a
standard data format (currently their “BASEfile” format) can be adapted as a plug-in. In
BASE current release 1.2.10, there are two cluster analysis plug-ins: hierarchical

clustering and PCA (Principal Component Analysis).

A PhD student, Cecilia Ritz, at BASE group developed hierarchical a clustering plug-in.
The hierarchy structure is built from bottom-up with two closest points are merged and
the new cluster is represented by an unweighted (median) or weighted (center of mass)
average of the two points in gene expression space. This algorithm takes the transformed
data set in BASEfile format, and generates the text files for the cluster results. The
interactive cluster tree view can be visualized through the web browser, though the

picture loading time can be slow [Figure 18].
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The PCA program is developed by Gregory O. Voronin and Ronald P. Hart in
Neuroscience Gene Expression Laboratory at Rutgers University, Piscataway, NJ

(http://www.ngelab.org/). This program calculates the PCA of the sample variance-

covariance matrix of the data set, which is parsed from a lowess transformed data set in

serial BASE file format. The variance-covariance matrix and the eigensystem (which is
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stored in a linked list) are used to generate the output files, currently: covariance.html,

eigensystem.html, Scree.png and CoefficticentPlot.png.

Since BASE is a web-based system, users do not need to install the program locally. In
data analysis, user simply takes the pre-processed expression file and chooses a clustering
plug-in, the program will be executed at the server side, with the visualization images
being displayed in the client web browser and the output files are ready to download or
view through the browser. However, the visualization image size can be very big, and
will take some time to be loaded to the browser. The quality of the image is not good
enough and the clusters of interest are not easy to be saved. Both hierarchical clustering
and PCA were written in the C language. However, they were developed by different

people at different institution, with no common structures to share.

With the underlying BASE database, it is straightforward to use its own programs to
populate the cluster structure and results into the database for further annotation.
However, there are only two separated developed clustering programs, which are not
object-oriented with no further compatible clustering methods can be added in.
Therefore, we do not consider implementing these applications to store the cluster related

data into the database.

Cluster and TreeView:

Cluster and TreeView are developed by Michael Eisen's lab at the Lawrence Berkeley

National L.ab (LBNL) and the University of California at Berkeley (UCB) [13]. The
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programs provide a computational and graphical environment for analyzing data from
DNA microarray experiments, or other genomic datasets, The Cluster program performs
a variety of types of cluster analysis, including hierarchical clustering, self-organizing
maps (SOMs), k-means clustering and principal component analysis. TreeView allows

the organized data to be visualized and browsed [11].

Cluster reads tab-delimited text files in a particular format, and also provides a number of
options for adjusting and filtering the data. For the cluster results, Cluster writes up to
three output files for each hierarchical clustering run. The three output files are

JobName.cdt, JobName.gtr, JobName. atr,

The .cdt (for clustered data table) file containg the original data with the rows and
columns reordered based on the clustering result. The .gtr (gene tree) and .atr (array tree)
files are tab-delimited text files that report on the history of node joining in the gene or
array clustering (note that these files are produced only when clustering is performed on
the corresponding axis). When clustering begins each item to be clustered is assigned a
unique identifier (e.g. GENEIX or ARRY42X). These identifiers are added to the .cdt
file. As each node is generated, it receives a unique identifier as well; statting is
NODEILX, NODE2X, etc... Each joining event is stored in the .gtr or .atr file as a row
with the node identifier, the identifiers of the two joined elements, and the similarity

score for the two joined elements. These files look like:

NODELX GENE1X GENE4X 0.98
NODE2X GENESX GENE2X 0.80
NODE3X NODEIX GENE3X 0.72
NODE4X NODE2X NODE3X 0.60
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TreeView visualization program simply reads the above files, and generates an
interactive graphic analysis diagram. Upon selecting a tree node, user can view the node
content, e.g. gene IDs and names, as well as save the data and image. Unfortunately, only
the result from hierarchical clustering can be viewed through TreeView, it does not

support the visualization of other clustering, such as K-means, PCA and SOM.

Cluster and TreeView are developed by Michael Eisen at 1998, current Cluster version is
2.20 (updated at December 2002) and TreeView version is 1.6 (updated at November
2002). The programs are relatively small (about SM each) and can be easily installed,
however, it only runs on Windows environment (see Figure 19). It was written in Borland
C++  with  source code be freely downloaded from  Eisen’s lab

(http://rana Ibl.aov/EisenSoftware.him).
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Figure 19: Screenshot of Eisen lab's Cluster software

Since their simplicities and full functionalities, Eisen lab’s Cluster and TreeView
software are widely spread through many microarray laboratories. However, with the
emerging of many new clustering algorithms, it lacks the flexibility to add new modules
to perform analysis and visualization. Moreover, the input files are restricted to a certain

format, with no support for other files, such as Affymetrix file. Most importantly, it runs
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only on Windows, while most of the genomics projects are running at Linux or Unix.
Therefore, we have to move on to search for another cluster analysis application to meet

our requirernents.

MeV:

TIGR MultiExperiment Viewer (MeV) is one member of a suite of microarray data
management and analysis applications developed at The Iustitute for Genomic Research
(TIGR). Within the suite, known as TM4, there are four programs: MADAM, Spotfinder,
MIDAS and MeV (see section 4,1.2). Together, they provide functions for managing
microarray experimental conditions and data, converting scanned slide images into
numerical data, normalizing the data and finally analyzing that normalized data. MeV is
an application that allows the viewing of processed microarray slide representations and
the identification of genes and expression patterns of interest. Slides can be viewed one at
a time in detail or in groups for comparison purposes. A variety of normalization
algorithms and clustering analyses allow the user flexibility in creating meaningful views

of the expression data.

MeV can interpret files of several types, including the MultiBxperiment Viewer format
(.mev), the TIGR ArrayViewer format (.tav), the Stanford file format, the Affymetrix file
format, and GenePix file format (.gpr). Prior to starting an analysis, certain data
adjustments include normalization for experiments (where the experiments are
normalized with each other), log transformations, and various filters, can be performed

[33].



There are 14 clustering modules included in current release of MeV version 2.2

(http://fwww tigr.org/software/tm4/mev.html):

Module Reference

1 Hierarchical Eisen, M.B., P.'T. Spellman, P.O. Brown, and D, Botstein. 1998. Cluster analysis

clustering and display of genome-wide expression patierns. Prog. Natl, Acad. Sci. USA
95:14863- 14868,

2 | k-means clustering | Soukas, A., P. Coben, N.I). Socet, and J M. Friedman. 2000, Leptin-specific

patterns of gene expression in white adipose tissue. Cenes Dev, 14:963-980.

3 | Self-organizing Kohonen, T. 1992. Sclf-organized formation of topologically corvect feature
maps maps. Biol. Cybernetics 43:59-69.

Tamayo, P., I). Slonim, J. Masirov, Q. Zhu, &, Kitareewan, E. Dmitrovsky, E.S.
Lander, and T.R. Golub 1999, Interpreting patterns of gene expression with self-
organizing maps: Methods and application to hematopoietic differentiation.
Proceedings of the National Academy of Sciences USA 96:2907-2912.

4 | Principal Raychaudhuori, 8., IM. Stuart, and R.B. Altman. 2000. Principal components
components analysis to summarize microarray experiments: application to sporulation time
analysis series, Pac. Symp. Biocomput. 455-460.

5 | Cluster affinity Ben-Dor, A, R. Shamir, and 7. Yakhini. 1999. Clustering gene expression
search technique patterns. J. Comput. Biol. 6:281-297.

6 Template matching | Pavlidis, P., and W.S. Noble 2001. Analysis of strain and regional variation in

gene expression in mouse brain. Genome Biology 2:research0042.1-0042.15.

7 T-test Pan, W, 2002. A comparative review of statistical methods for discovering

differentially expressed genes in replicated microarray experiments.
Bioinformatics 18: 546-554.

Dudoit, 8., Y.H. Yang, M.J. Callow, and T. Speed 2000. Statistical methods for
identifying differentially expressed genes in replicated cDNA microarray
experiments. Techuical Report 2000, Statistics Dept., Univ. of California,
Berkeley.

8 | Significance Tusher, V.G., R. Tibshirani and G. Chu. 2001. Significance analysis of
Analysis of microarrays applied to the ionizing radiation response. Proceedings of the
Microarrays (SAM) | National Academy of Sciences USA 98: 5116-5121.

9 | QT _Clust Heyer, L.J., S. Kruglyak, and S. Yooseph. 1999. Exploring expression data:

identification and analysis of coexpressed genes. Genome Res. 9:1106-1115.
10 | Support Vector Brown, M.P., W.N. Grundy, D. Lin, N. Cristiamnd, C.W. Sugnet, T.S. Furey, M.
machines Ares, Jr., and 1. Haussler. 2000, Knowledge-based analysis of microarray gene
expression data by using support vector machines. Proc. Natl. Acad. Sci. USA
97:262-267.
11 | Gene shaving Hastie, T., R. Tibshirani, M.B. Eisen, A. Alizadeh, R. Levy, L. Staudt, W.C.

Chan, D. Botstein, and P. Brown. 2000. ‘Gene shaving?as a method for
identifying distinct sets of genes with similar expression patterns, Genome Biol.




LRESEARCHO003.

12 | Relevance Butte, AJ., P. Tamayo, D, Slonim, TR, Golub, and 1.5, Kohane. 2000,
networks Discovering functional relationships between RNA expression and
chemotherapeutic susceptibility using relevance networks. Proc. Natl, Acad. Sai.
USA 97:12182-12186.

13 | Self Organizing Dopazo 1., 1. M. Carazo 1997, Phylogenetic reconstruction using an
Trees (SOTA) unsupervised growing neural network that adopts the topology of a phylogenetic

tree. J. Mol. Bvol. 4:4:226-233.

Herrero, 1., A, Valencia, and J. Dopazo 2001, A hicrarchical unsupervised
growing neural network for clustering gene expression patterns, Bioinformatics
17(2):126-136.

14 | Figures of Merit Yeung, K.Y., D.R. Haynor, and W.L. Ruzzo 2001, Validating clostering for
(FOM) gene expression dala, Bioioformatics 17:309-318,

Each module has its own graphic display to present the results of the module calculation
(see Figure 20). Under the main navigation tree, each module has its result tree, where
user can navigate through the cluster results and can even load a new session to perform
sub-clustering on the cluster of interest. Clusters of interest can be stored to a repository
that is managed by Cluster Manager under the main navigation tree. Gene clusters and
experiment clusters are maintained in separate spreadsheets, which are viewable from the
Cluster Manager node. When storing a cluster, the cluster name and a description of the
algorithm or interesting features of the cluster, along with a user defined color, are stored
for reference and further operation, which include launch new session for sub-clustering,
and perform Union, Intersection and XOR on two or more selected clusters. Cluster data
can be saved to a tab-delimited text file with the original row/column data, log ratio
expression values, and (optionally) Cy3 and Cy5 values of each gene in the cluster are
recorded. The expression matrix also can be saved as a tab-delimited text file, which
reflects any data adjustments that are currently imposed on the data set such as

percentage cutoffs or low intensity cutoffs [33].
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(http:/fwww tigr.org/software/tmd/mevScreenshots.html)

The latest version of MeV 2.2 was released at July 2003. The source code and complete

documentation can he obtained at T™M4 online



(http:/fwww tigr.org/software/tmd/download.html). The program is object-oriented and
written in Java language, which is platform independent and can run on Windows, Linux
and Unix with Java Runtime Environment (JRE) 1.3 or later installed. As newly
developed software, MeV contains 14 clustering algorithms with well-defined modules to
be visualized and compared. The program is consistent and flexible. Therefore, we

consider adding more functionality to it, such as store the cluster results to our database.

5.1.2 Choose MeV for implementation
After running and testing three open source cluster analysis applications, we decided to
connect our BASE-cluster database to MeV. The main purpose is to validate the databage

and to populate sample cluster structure and cluster results to the database.

The MeV framework has three layers (see Figure 21): the bottom layer — Algorithms
implementation layer provides the statistical calculations and the infrastructure of the
Algorithms data, the middle layer — Cluster View implementation layer constructs the
sophisticated Graphic User Interface (GUI) views which are used to visualize the results
of the cluster calculation, and the top layer — TIGR Multiple View layer serves as the
gateway to load data and display the window’s interface. There are two main APIs
(Application Program Interface) [34] to connect these three layers. Algorithm API is a
hierarchy of Java classes, which serve as the interface to a sophisticated calculation
algorithm. This API is designed with the flexibility to create an algorithm that can use all
the standard Java types and some helpful types to store arrays of float values. Each

algorithm must implement these interfaces to create a concrete algorithm. Upon
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calculation, results are stored for cluster view to display. Cluster view API serves as the
interface to GUI views, which are used to enter algorithm parameters, to execute the
program, and to display progress and result of the calculation. For each algorithm, there
is a corresponding GUI implementation to display the cluster result, either dendrogram or

the lists of clusters, or network, 3-D structure, etc.

Algorithms Implementation

H ——Algorithms APl

Cluster Views implementation

ﬁ»‘—mtuﬁer View API)

TIGR Multiple Array Viewer

Figure 21: Application Layer of MeV

MeV has built a complete infrastructure for executing and visualizing the cluster
algorithm. It well separates the graphic view from the algorithm model. The cluster
results are well handled by AlgorithmData class, and can be stored in matrix, cluster, or
the integer array. Other utility classes, such as ClusterRepository and ExperimentUtility,
are used to save the cluster and perform cluster operations. A sequence diagram of cluster

algorithm execution is shown on Figure 22.
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Figure 22: Sequence diagram of cluster algorithm execution

5.2 Steps to generate cluster data

Since our purpose is to verify the BASE-cluster database, after understanding the

structure of MeV implementation, we choose the most commonly used algorithm ---

Hierarchical clustering algorithm to generate cluster data and store to the database. The

following sections explain the steps involved in the testing process.

5.2.1 Load gene expression data

At data analysis steps of BASE, gene expression data are called BioAssaySet. After

several transformations, the qualified BioAssaySet data are ready for cluster analysis. At
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this moment, we use the “Export data” function o export the data in MeV Stanford file
format showed on the table below. The file is a tab-delimited plain text file. It contains

the reporter D, reporter name, and the intensity value for each sample.

YORF NAME GWEIGHT 27K_VR1.1 27K_VR1.2 27K_VR2.1 27K_VR2.2
EWEIGHT 1 1 1 1
zine finger
protein, X-
753234  linked 1 0155709 0.346859 -0.15546  -0.45347
Multiple
unigene's :
Hs.183291 &
71626  Hs.425991 1 0578823 -0.05514 0.546282 -0.08058

zine finger
protein 133

50794  (clone pHZ-13) 1 0330502 0.718671 0.226952 0.410886
POM (POM121
homolog, rat)

768644  and ZP3 fusion 1 -0.63735 0.005571 -0.77386  -0.0951

At the multiple array viewer window of MeV, this Stanford formatted file can be casily

loaded and the data can be passed to the different algorithms.

5.2.2 Choose clustering algorithm
Upon clicking the HCL (Hierarchy clustering) icon on the algorithm bar, a HCL
parameter window will be displayed for user to select the linkage method, e.g. average,
complete or single, and choose either genes or experiments, or both to clustering [Figure

23]
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Figure 23: Screenshot of choosing a cluster algorithm in MeV

5.2.3 Generate and store the cluster structure and data
The dendrogram is generated by MeV after the hierarchical clustering algorithm has been
performed on the original gene expression data [Figure 241,
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Figure 24: Screenshot of hierarchical cluster tree view in MeV

At the same time, the cluster tree structure is stored to the Node table of our BASE-

cluster database. For each node, an auto-incremented identification number is assigned,
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and its parent identification number is stored and pointed to the same table, along with a
bioAssayCluster number which identifies this particular tree. In the original
implementation of MeV, the node and tree structure are stored in three integer arrays:
child_I_array, child_2_array and node_order. Each node points to its two children, and
node order decides the index of the node. This design is easy for displaying the tree;
however, it is different from our database design in which the node is pointed to its
parent. We modified the structure of MeV and successfully stored the designed data

structure 1o the database,

5.2.4 Link to original microarray data

The next step is to store the node contents and link to the original microarray data. In
BASE, the original tables are Reporter and BioAssay. We use recursive programming to
get the lists of genes or samples and store to the ReporterListRow table and
BioAssayListRow table. The identification number of the reporter or bioassay can be
linked to the original Reporter or BioAssay tables. Therefore, a complete annotation of

the Tist of genes or bioassays can be casily obtained.

From the above steps, we successfully populate the cluster structure and data to the
BASE-cluster database. However, these steps are only for testing purpose, for complete
implementation, we need to modify every algorithms in MeV, By understanding the class
structure and how the algorithm data are stored and manipulated, it is not difficult to

finish the whole implementation in the near future.
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6 Conclusion and future work

6.1 Conclusion

Microarray data analysis is developing rapidly with new and more complex methods and
systems appearing everyday. The ability to store, query and compare gene expression
data has become crucial to the progress of scientific research in the life sciences. Cluster
analysis is an important step in gene expression data analysis. It involves many statistical
strategies and biological data concepts. The goal of this thesis is to build a data storage
structure to store the cluster analysis related data. Our approach to this problem can be

summarized as follows:

First, we studied the workflow of microarray technology and reviewed the cluster
analysis concept. Based on the workflow, we identified a number of data requirements

for our cluster analysis data storage.

Second, upon realizing the complexity of microarray data standard MAGE-OM, we
designed our own conceptual data model for cluster analysis of gene expression data. In

addition, a relational database schema was designed based on the object model.

Third, in order to integrate our design into a real microarray system, we reviewed public
microarray databases and systems. Among three open source microarray systems, we
chose a web-based microarray system — BASE, and designed a BASE-cluster relational

database schema with a MySQL implementation to store the cluster analysis related data.
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Finally, to validate our database and to populate the cluster structure and cluster results
into the database, we reviewed three open source cluster analysis applications, and
selected a Java-based clustering program MeV to implement. By loading a BASE-
exported gene expression file, we are able to store the cluster structure and cluster results

into the BASE-cluster database while hierarchical clustering is performed by MeV.

There are several advantages for storing the results of a cluster analysis to database
compares to a text file. First, cluster results from different clustering methods can be
casily compared and the results from a set of cluster operations can be also stored.
Second, one cluster result can have different views by loading the data to different
visualization tools, without performing a clustering algorithm again. Third, clusters of

interests can be linked to the outside database or annotation tools.

6.2 Future work

Data analysis on gene expression data could become an exhausting work, since there are
too many ways and too many tools for us to select. Of course there is no single “best”
way for analysis. The proper and efficient data storage could allow investigators to query
and mine the data by using different tools. Our cluster analysis database is built for such
reasons. However, new statistical methods are emerging everyday. The data storage
requirements for future cluster analysis are beyond our perspective. Although MeV has
already included 14 clustering modules, we only implemented the hierarchical clustering

module. Therefore, future work should include the following:
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o

Refine our database by adding more data attributes required for the new statistical
methods,

Implement all the clustering modules in MeV to populate cluster data to the
database.

Build a bridge to connect BASE and MeV, cither by plugging MeV into BASE, or
invoking MeV locally through BASE and populating the desired data back to
database server.

Build the interface to query the stored cluster data for future data comparison,

visualization and annotation.
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