NOTE TO USERS

This reproduction is the best copy available.

®

UMI

3D Visualization of Design Patterns for Large Program Comprehension

Sheng hua Shi

A Thesis
in
the Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

April 2004

© Sheng hua Shi, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91113-6
Our file Notre référence
ISBN: 0-612-91113-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i

Abstract

3D Visualization of Design Patterns for Large Program Comprehension

Sheng hua Shi

The advantages of object-oriented (OO) and other modern software engineering
techniques are offset by the continuing increase in the size and complexity of software
systems. Projects involving millions of lines of code are no longer exceptional. Such
systems are generally extremely difficult to comprehend. Software Visualization (SV)
techniques can play a significant role in the process of comprehending such systems.
Numerous SV tools have been developed to support program comprehension during the
past two decades; most of them produce two dimensional visuals. For large programs, the
number of entities and their inter-relationships may be far too many for the tools to
automatically produce a comprehensible 2D visual. With rapid advances in processing
power and computer graphics techniques, three-dimensional visualization is gaining
increasing attention in this domain. 3D graphics provides the extra 3™ dimension and
increases the virtual space available for visual depiction of software entities and

relationships.

Our research explores a new category of Software Visualization tools that enable
users to visualize program analysis results in a three-dimensional virtual environment.
We combine program analysis and software visualization techniques using a cityscape
metaphor to present views of structures in software thus enhancing program
understanding during software maintenance. We have developed and implemented the
Java3D Virtual City (JVC) extensible framework to facilitate such exploration. Use of
JVC in experiments on visualization of automatically discovered design patterns
illustrates that the proposed methodology does indeed provide additional insights into
complex relationships among data without having to analyze the underlying source code
in detail. The framework includes substantial built-in functionality to automatically
generate scene graph for easing understanding, and can be extended with other

understanding-promoting techniques.

11

Acknowledgements

It would be impossible to have this thesis without support from my family and
friends, my supervisors, and my colleagues. My thanks go to all those who have helped

me during the time I work on the thesis research.
My wife, Han Li, provided me full support throughout the duration of my studies.

My thanks also go to Dr. Juergen Rilling, who has been a very nice supervisor.

His guidance to this research is invaluable, and I have learnt a lot from him.

I wish to thank my co-supervisor, Dr. Sudhir Pandurang Mudur, who has been
always being counted on when I encountered difficulties during the research. I have a lot

of respect for him.

Thanks must also go to Man Li for her support over different things at different

times during my studies and David Lu for his proof reading this document.

Many other members of the CONCEPT research team have provided me
discussion, help, and friendships. I wish to express my special thanks to Wenjun Meng

and Yonggang Zhang among these team members.

v

Table of Contents

LSt OF FIGUIES ..ottt ettt ettt et e etaesabae et asasaesataesasaeenseesasaensneeans X
LISt OF TADIES ...ecuvieiieriiiiiiit ettt et a e s eta e st e beeave e xiil
Chapter 1 INtrOdUCHONcc.eeiieiirieic ettt see et sreereeare e 1
1.1 Resarch QUESTIONc.evverieriiiiieieeiesiceee et e steeieeresteete e e e ssbeseaeesteereestaesreesaeanreans 4
1.2 CONIIDULIONS.ceeviiiitiietei ettt sttt b ettt b e b e ese ettt e e ere e 5
1.3 Thesis OrganiZationccevuivvivriereeeeieeteereeteeteeeieeteeeeereesecaeeseersereesesteerseneeseenseas 6
Chapter 2 Program Comprehensionc.cceeveieieiieeeiiieicceceee et 7
2.1 Program COmMPIENENSIONcccvvevieeieiriirieetieie e creeeteeteeteeereeeteesreeereeeseenteeteonseseeesns 7
2.2 Program Analysis TEChNIQUESccoccvirieriiiiieiiciectiie ettt 12
2.2.1. LoW Level ANALYSIS ..cccoiiiiiiiieriiiieniesieeieeieeee st e aeste et st eeresvserneennen 13
2.2.2. High Level ANALYSIS .o.oocereieeeiieiieiecie ettt cee et sne e senon 16

2.3 Program Understanding TOOIScccvireieririninienenreieresee st 21
2.3.1. Commercial ProduCtS.........ccovuiriirieiieie et 24
2.3.2. ReSCarCh ProtOtyPeS.....cocvieiiirieiieiieiesieetteeiesetie st e et sve e earesnseeaes 27
Chapter 3 Software VisualiZation............c.eccveiieiieiieniiiieieceese et ere e 31

3.2 Software VISUAlIZAtIONc..ceriiiiieiieiiiieeteite ettt et st st 32
3.3 3D Software VisualiZation..........coeererriieieiienienienieeteie st eresteeseesresieesieeneeens 35
3.3.1. 3D versus 2D ViSualiZationccccevueriierienieniinieeiienirenieeseeeeeseeseesaeseesaeens 35
3.3.2. IMPOTTANt ISSUESoouieniiiiiiiiieieetcetc ettt et st saee e eaaeas 37
3.3.3. Advantages of 3D Visualization...........cccueeivieeriiiniiecreeecreeeeeeree e 41
3.3.4. Challenges of 3D VisualiZationccceeveveeriiriecionieeie e 42
3.3.5. 3D Visualization TeChNIQUESc.cccveviriirieiireeniiiieese et 43
3.3.6. VR and 3D ViSualiZationccouiieieeiiiieirieeieee et senas 51
3.4 Potential 3D Graphic ENgines..........cccocveviiieniinieieiesreicrecece et 52
341 OPEIGL....iitiiieiteee ettt re e bt ereaaeene s 53
342 . DITECI3D ..o ittt et ettt eae e steeaae s 56
3.4.3.JAVABD i ettt 57
344, VRML .ottt ettt a et ettt et aeeas e eraeenseneen 61
3.5 XML in the Visualization PIpelineccccceeeiiiriiienieieiieiieeecce e 63
3.6 Selecting the Appropriate Graphic ENgineccccocoovvviieiiiiiiiecie e 65

vi

3.7 Related Work in 3D Software VISUALIZATION ...uvvveeeereireereeeeeeeeeeesereerereresesesnsnnnnnnens 66

3.7.1. Software WOrld.......cococciiriiiiniiiiiiciene ettt 66
37,20 SV3D et a et e e ate e teeneerreeraans 67
3.7.3. VIZZANALYZET ...ooviiiiiiieiceie ettt ettt ene et 69
374 MELAVIZ...c..cviiiiiiiiiiieee sttt sttt e te e te ettt er et erteaea s 71
375, UML3D .ottt sttt ettt et et 72
Chapter 4 The Java3D Virtual City (JVC) ccocovviveieiiieieieteeeeeeee s 74
4.1 The Metaphor: the VIrtual City.......ccovereieiiiiiiiieieiieeeeete e 74
4.1.1. Why VIITUAL CItY7 .ovioieieie ettt ettt 74
4.1.2. The Virtual World Metaphorc.covoiiiiiiceicieieeiceceeeeeeveeeeeeeer e, 75
4.1.3. The OO Program ATtifactS.......c.ccoeveeiiiininierieieeeeeee e 80
4.1.4. Mapping the Virtual City Metaphor to OO Artifacts..............coccocevvvvvernnene.. 82
4.2 SYSTEIM OVEIVIEW ...c.iitiriiiiieieitesiieie ettt te et er et eteess e e sesetsetesaeseeeeeeeeseneneeees 83
4.2.1. Proposed Approachi.........cccccoveeiereniiiiniieecsieeeee ettt 84
4.2.2. The CONCEPT PIOJECT....cccuirieriieiieieeresteee ettt evs e 86
4.2.3. The VisualiZation ProCESS........cccvevieierieieieiicie ettt ea 87

Vit

4.2.4. The GUIMOMEL.....c.oooiiiriiniiineiieeeee ettt 88

4.2.5. The 3D Graphics Model.........ccociriiiiiiiieieiieeeee et 90
4.2.6. The Visualization MOdEL..........ccceeevriieriinieniiniieniiiniesit e eee e 93
4.3 Implementation ISSUESccccieeieiririieieiiie ettt ettt r et 96
4.3.1. The System Structure of JVCcooviiiiniiiieiiicceeceeeee v, 96
4.3.2. Layout and GrOUPINGcccerieerieiieienieeeti et eteecae et et etesereseteeseeeaeaneea 98
4.3.3. Navigation Methods...........ccoviieiiiiioiicciceceece e 103
4.3.4. MEMOTY USAZE...c..eevuieiiiieiieiieie ettt ettt ere et e ere et ereseseseserassaeeseen 108
Chapter 5 Application of JVC: Visualizing Design Pattern............c..cocovvvvveeviennnnee. 109
5.1 Introduction to Design Patternscc.ocueiieiiiiiiiiiceececee et 110
5.2 Design Pattern RECOVETY....coviiiiitiiiiieiceeeieee et 112
5.2.1. LIterature REVIEW.......ccccoiiiiiieiiiitiieceeeteet ettt 112
5.2.2. Design Pattern Recovery in CONCEPTcccccoeverieeieieceeieeecs e 114
5.3 Visualizing Design Patternsccvrveviivieirieeieeeiece ettt eieenea 116
5.3.1. TArGEt SYSLEIM ..couviiririiirieeit ettt et ettt et 116
5.3.2. The Input XML File......ccoiiiiiiiiieiiieiecieiee ettt 116

Vviil

5.3.3. e RESUILS. e veieiieeee et ettt e e e e e e s e s er e et aaaaneeseesaraesseeetraneaseenes

5.3.4. Discussions and LIMItationsooeeeeneeeeeeeeeeeeeeee et e e eetieee s e s et eanae e

Chapter 6

References

Conclusions and FULUIE WOTKSuuuuuurereeeeeeeeeee et aeeeeneneeeeneneaes

X

List of Figures

Figure 1: Main window of ImagixX 4Dccooviiiiiiiiceieecenereceeeen e e 25
Figure 2: Cross Referencer in SNiFF+ VErsion 4ccccevirenniniiiniiiienicnceseeceene e 26
Figure 3: Multiple views in S€eS0ftcccooiriiiiiiiniiiiiciececrcencee e 27
Figure 4: An Example of Hierarchical View in SHIIMP..........cccoceviiiniiniiieniciniee 29
FIUIE 51 A RIZE VIEW .eoiiiiiiiieeiee ettt sttt ssa e s e st e ss e aavaentaenseeneas 30
Figure 6: Mapping 2D sequence diagram notation into 3D space........cc.ccceerevvreenvrnenanne. 37
Figure 7: 3D surface plots using Java 3Dcccooveviieiieiiciiiecec et 44
Figure 8: Cityscape for software visualizationccceeveeerieieieeeececeeeeeece e 45
Figure 9: A class schedule on perspective Walls........ccoeeeuieieeiieiiiciiiieceecrieceececee e 47
Figure 10: View of a file structure using Cam treesocevvuereruecieeieiinienieeeesresresnennes 48
Figure 11: A user immersed inthe VR ..ot 52
Figure 12: Block diagram of the OpenGL pipelineccoeeveeiiievriivicinieiriee e 54
Figure 13: Direct3D Graphics Pipeline.........cccoociviviriireiiiiceeeceseseeeee e 57
Figure 14: Java 3D application SCENe Sraph.cccceevverreeierieeireecreeeeeresreeeeeeeeseeene e 59
Figure 16: A VRML Virtual City in Cortona Browser...........cccceevvvevueeievveneeeecsveeeneene 62

Figure 17: A VRML Campus Browsed with Cortona VRML Client.............cccceernrenenn., 62

Figure 18: An overview of a district in Software Worldcoccocevvivririicieiiiie, 66
Figure 19: Overview of a system in SV3Dccccecvviviiieiiiriiereeeceee s 68
Figure 20: View of one file in SV3Dooviiiiiiiiiiiciccceceeceteceeeeeee e st er e 68
Figure 21: A package hierarchy using the fully qualified class names............ccc.ccoo......... 69
Figure 22 Top view of a 3D city with business informationc.cococeevevvveveeenennene.. 70
Figure 23: A view of CBO i MEtaViZ.......ccocooveveriivecieeieieiceeeeee e 71
Figure 24: A class diagram of a system with over 200 Classes...........ccoeveerreeerererrerereenne. 72
Figure 25: An example of @ VArtual Cityccocooveieveioiiieeececceeeeeeeeeee e, 85
Figure 26: The Architecture 0f CONCEPTccccooviurieuievereieieteeeeeeeeeee e, 86
Figure 27: The Visualization Process in JVCcoooviuiivouiiieiieiiceeeeeeeeeeeseeeseeeessea 87
Figure 28: The main Window of JVCccoooiiiiiiiiiceceeeeeeeeee e, 88
Figure 29: Class diagram for a typical scene graph in JVC.......cocoieveoioveiereveeeeeeeesenn. 92
Figure 30: The detailed dataflow within the CONCEPT...........ccceeveverereriiiiirererrenen, 93
Figure 31: JVC Visualization MOdelc.ccooiiiiuiiiiiiieieiceicecececeeee e 94
Figure 32: The XML pipeline in JVC......cccoiririniiiioieiciieeeeree e 95

xi

Figure 33 : The class diagram of JVC data model..........cccccouvviiviinininninnnniinnnn 96
Figure 34 Class diagram for JVC system StruCtureccooveceerivcreeeiccninennerecneecrenne 97
Figure 35: Control flow of Hill Climbing in JVC........cccceovniiiiiiiieiiiiciccirneiceieeeees 101
Figure 36: Group and split cells in @ gridcccoveverieiriieniniiceer e 103
Figure 37: A global VIEWcoceeiiiiiiiriiiirieciciee sttt st r e 104
Figure 38: A detailed VIEW.......ccceiiiiiiiiiiicieescreee sttt enens 105
Figure 39: Navigate in JVC using data glovec.coooeeieviriiccieicecrececcereeeeee e, 108
Figure 40: Sample XML data in JVCccoooieiiiiiiiiiieeeeeeeeeeeeee e 117
Figure 41: Design pattern visualization in JVC.........cccooviiieiiiiieiice e, 118
Figure 42: Close view of @ design Patternccvveveveereeiiecieecreeeeeeree et 119
Figure 43: Java DOC O0f @ ClaSS ..cuvvcieiieiiiiciceeeee e 119
Figure 44: Detailed view of a design pattermi...........c.cceevviveiveeiiiiicieeeeeeees e 120
Figure 45: The ComboBox for selecting options..........cceeveeeviesieeecieeieeereereeeeeveeeenn. 121

Figure 46: A virtual city shows pattern classes only (top) or classes without the pattern

ClasSES (DOTIOM)eveiiiiiiiiiiieiei ettt sttt et ereens 122

Xii

List of Tables

Table 1 Low level analysis resulting information categorization.............cceccueeveevvrennenne.. 13
Table 2 List of program understanding t001S..........cecevuerririirienieieiecre e 23
Table 3: Comparison 0f 3D APIS....c.ccccriiiiiiiiiriienieiers e 65
Table 4 Language 1ssues 0f OO ProgramisS........c.cceeviveeveviesioiesriereeeeeceeeeeeeeeeereereensennenns 81
Table 5 MaAPPINGSc.ooveiirieiiieiirniitetetre sttt s sttt er ettt benssbene e 83
Table 6 Design PAEIN SPACEeeveeeeeeeieiieteete st eee et eere et ere v ete b eesereeenessesesasonreeans 112

Xiii

Chapter 1

Introduction

Software visualization has been used for various purposes during the past two decades
[STAS92, PRIC93, GOME 01, RILLO3]. Some visualization tools show animations of
algorithms and data structures [STOR97], often for educational purposes. Others show
the run-time behavior of a program to aid debugging, testing, or performance

optimization tasks [STOR97].

For large, complex software systems, the comprehension of such diagrammatic
depictions is restricted by the resolution limits of the visual medium (2D computer screen)
and the limits of user’s cognitive and perceptual capacities. One approach to overcome or
reduce the limitations of the visual medium is to make use of a third dimension by
mapping source code structures and program executions to a 3D space [CHARO2].
Mapping these program artifacts into the 3D space allows users to identify common
shapes or common configurations that may become apparent, and which could then be

related directly to design features in the code.

Program comprehension can be described as the process of analyzing a subject
system (a) to identify the system’s components and their interrelationships, (b) to be able
to create representations of the system in other forms at higher levels of abstraction and
(c) to understand the program execution and the sequence in which it occurred. Software

visualization techniques can assist considerably in this process by creating visual

1

representations that bring out complex relationships and make it easier to comprehend
them in comparison to textual representations. It would be ideal to be able to
simultaneously view and understand detailed information about a specific activity in a
global context at all times for any size of program. As Ben Shneiderman explains in
[SHNE 94], the main goal of every visualization technique is: “Overview first, zoom and
filter, then details on demand”. This means that visualization should first provide an
overview of the whole data set then let the user restrict the set of data on which the
visualization is applied, and finally provide more details on the part the user is interested
in. Software visualization of source code can be further categorized in static views and
dynamic views. The static views are based on a static analysis of the source code and its
associated information and provide a more generic high-level view of the system and its
source code. The dynamic view is based on information from the analysis of recorded or
monitored program execution. Based on their available run-time information, dynamic
views can provide a more detailed and insightful view of the system with respect to a
particular program execution. As Mayrhauser [MAYR97] illustrated, dynamic and static

views should be regarded as complementary views rather than being mutually exclusive.

This thesis explores a new category of Software Visualization tools that enable a
user to graphically visualize program analysis results in a three-dimensional virtual
environment. We combine program analysis and software visualization techniques within
a virtual city environment to present views of structures in software thus enhancing

program understanding during software maintenance.

The objective of this research is to develop and explore the use of a cityscape
metaphor for visualizing a system’s structural information obtained through program
analysis techniques. Towards this objective we have developed and implemented the
Java3D Virtual City (JVC) framework that can facilitate this exploration. The framework
includes substantial built-in functionality to automatically generate Java 3D scene graphs
that can be easily rendered for easing understanding. JVC architectural design is such that

it can be easily extended with other techniques for promoting program understanding.

Using this JVC framework we have carried out a number of experiments in
visualizing the results of automatic design pattern analysis of large programs. These
experiments illustrate that the methodology proposed in this research and provide
additional insights into complex relationships among data without having to analyze the
underlying source code in detail. Most importantly, it enables maintainers to better
understand software design decisions, which are usually not explicit in the software

documentation or source code.

In summary, our research focuses on the area of particular interest determined by

the following parameters:

e Visualization of object-oriented systems

e Utilization of 3D space to take advantage of additional navigation and

visualization techniques.

e Support for visualization of both static and dynamic analysis information.

1.1 Research Question

The goal of a person who comprehends a software system is to build
progressively refined mental models of the system [STOR99]. The mental models
proposed by various researchers in the field of program comprehension have a
commonality in that they all are composed from semantic constructs. These constructs
are typically abstractions, at various levels, of program features. The network formed
from these constructs constitutes the maintainers understanding and representation of the
program. Software visualization attempts to provide a mapping from the program code to
a visual representation that matches the maintainer's mental model as closely as possible.
Software, despite many software engineering advances in requirements, design, and
implementation techniques, continues to be large and complex, providing additional
challenges with respect to scalability, navigation and applicability for various

comprehension tasks. These lead to our research question:

How to visualize source code structures?

We argue that the necessary information resides in a software system at various
levels of abstraction. In this thesis, we identify three levels of abstraction: system /
architecture level (information about the whole system and its overall structure), class
level (information about the structure of classes and class hierarchies), and source level
(information about the target code itself and related documentation). This approach is
closely related to the survey result by Rainer Koschke [KOSCO03], which concludes that
multiple views are needed in according to information at different levels of granularity:

source level, middle level, architecture level. Introducing these different levels of

4

granularity allows us to break down the research question in several more distinct aspects,

such as:

e How are these multiple views organized and connected?

e How can one navigate within and between views?

e How can the visualization maintain the context during navigation?

e Can the visualization answer these questions intuitively:

How big is the software system and how is it structured?

— What is the architecture of the system and what are the subsystems?

— Where are the most important classes and class hierarchies that represent

the problem domain and make the whole software work?

— Where have design patterns been used and which ones?

1.2 Contributions

The contributions of this thesis can be summarized as:

1. An exploratory study of advantages of 3D techniques and displaying

information in a new and different form for large program comprehension.

2. Definition of a virtual city metaphor and the required mappings and
representations for the purpose of visualizing software as an aid to program

comprehension.

3. An implementation that combines Java, Java3D, XML, VRML, and other
visualization techniques resulting in the Java3D Virtual City (JVC) extensible

framework.

4. Experiments on design pattern visualization that illustrate the possibility of

providing additional insight of a system using JVC.

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 introduces background information
relevant to program comprehension, program analysis techniques, and program
understanding tools. Chapter 3 discusses software visualization and related issues, with a
focus on 3D visualization techniques, and related work in 3D software visualization.
Chapter 4 introduces the Java3D Virtual City project and describes its system structure
and some of the major design and implantation issues. Chapter 5 provides a case study,
applying the JVC project to visualize design patterns that were recovered from existing
source code. Chapter 6 concludes with a summary of the contributions of this research

and discusses future work.

Chapter 2

Program Comprehension

This chapter gives an overview of Program Comprehension, Program Analysis
techniques, and some selected program understanding tools in order to establish the

background context for the visualization work carried out in this thesis.

2.1 Program Comprehension

System design and its comprehension are two of the most important tasks in the
software development and maintenance cycle, defining how the different system parts are
organized and communicate with each other. Large software systems place an enormous
cognitive load on users [RILLO2]. They have often a large number of components along
with complex interactions amongst them. In traditional debugging and programming
environments the primary technique for visualizing programs is by displaying source
code lines associated with a particular program, providing very limited support of visual
abstractions or guidance during program comprehension. On the other hand, modern
program environments attempt to enhance the functionality of traditional debuggers by
providing information about class names (and their associated member functions and data
members) that were either declared or included within the program context. In spite of
this, a programmer will still have to observe large amounts of data without having any
global view of the system. Advances in hardware and software, particularly high-density
bit-mapped monitors and window-based user interfaces, have led to a renewed interest in

7

graphical representation of software [BALL96, MALEO1, RILLO3]. Visualization
facilitates discovery by revealing hidden structures and behaviors in model output. It is in
the areas of insight and understanding that visualization plays a central role [SHNE92,
WALK98]. Graphical representations have been recognized as having an important

impact in communication from the perspective of both writers and readers [MAYR98].

Program comprehension is a crucial part of system development and software
maintenance. It is expected a major share of system development effort goes into
modifying and extending existing systems. However, comprehending software systems,
especially large legacy systems, is technically difficult, because they typically suffer from
several problems, such as developers no longer available, outdated development methods
that have been used to write the software, outdated or completely missing documentation,
and, in general, a progressive degradation of design and quality. Rugaber summarized

that there exists five gaps in program comprehension [RUGA96]:

e The gap between application domain and programming languages. A
programming language is just a model environment to solve some real problem.
While tools exist to assist in understanding what the code is doing from a code
perspective, there 1s little to assist the reverse engineer in determining, from a

domain perspective, what is occurring with the code.

e The gap between the physical code and the abstract of high level design. Abstract

concepts quickly become lost in the minutia detail of programming.

e The gap between originally structured system and the actual system with structure
disintegrated. Even when good documentation is available for a system,

maintenance over time causes the structure to drift from the original specification.

e The gap between the hierarchical world of programs and the associational nature
of human cognition. Computer programs are formal, hierarchical expressions.
Humans think in associative “chunks” of data. A reverse engineer must be able to
build up correct high level chunks from the low level details evident in the

program.

e The gap between the bottom-up source code analysis and the top-down
application analysis. Code analysis is by its nature a bottom-up exercise. It
requires, simultaneously, higher level meaning to be extracted from code

fragments, and higher level concepts to be mapped to lower level implementations.

Moreover, the increasing size and complexity of software systems introduce new
challenges in comprehending the overall program structure, their artifacts, and the

behavioral relationships among these artifacts.

Numerous theories have been formulated and empirical studies have been
conducted to achieve different comprehension strategies and methods [STOR97b].
Though different programmer might adopt different strategy in program comprehension
due to their characteristics, differences among programs, and aspects of the task at hand,
program understanding tools should facilitate the comprehension strategies used by
programmers to achieve specific maintenance tasks. For this reason, we give a brief

description to several cognitive models.

Bottom-up

Shneiderman [SHNE80] proposed that programs are understood bottom-up, by
reading source code and then mentally chunking low-level software artifacts into
meaningful, higher-levél abstractions. These abstractions are further grouped until a high-

level understanding of the program is formed.

Pennington [PENN87] also observed programmers using a bottom-up strategy
initially gathering statement and control- flow information. These micro-structures were
chunked and cross-referenced by macro-structures to form a program model. A
subsequent situation model was formed, also bottom-up, using application-domain

knowledge to produce a hierarchy of functional abstractions.

Top-down

Brooks [BROOS83] suggested that programs are understood top-down, by
reconstructing knowledge about the application domain and mapping that to the source
code. This strategy begins with a global hypothesis about the program. This initial
hypothesis is refined into a hierarchy of secondary hypotheses. Verifying or rejecting a
hypothesis depends heavily on the presence or absence of beacons (cues). Soloway and
Ehrlich [SOLO84] observed that a top-down strategy is used when the program or type of
program is familiar. They also observed that expert programmers recognized program

plans and exploited programming conventions during comprehension.

Knowledge-based
Letovsky [LETO86] theorized that programmers are opportunistic processors
capable of exploiting either bottom-up or top-down cues. This theory has three

10

components: a knowledge base that encodes the programmer’s application and
programming expertise; a mental model that represents the programmer’s current
understanding of the program; and an assimilation process that describes how the mental
model evolves using the programmer’s knowledge base and program information.
Inquiry episodes are a key part of the assimilation process. Such an episode consists of a
programmer asking a question, conjecturing an answer, and then searching through the

code and documentation to verify or reject the conjecture.

Systematic and as-needed

Littman et al. [LITT86] observed that programmers use either a systematic
approach, reading the code in detail and tracing through control and data flow, or an as-
needed approach, focusing only on the code related to the task at hand. Soloway et al.
combined these two theories as macro-strategies aimed to understand the software at a
more global level. In the systematic macro-strategy, the programmer traces the flow of
the whole program and performs simulations as all of the code and documentation is read.
However, this strategy is less feasible for larger programs. In the more commonly used
as-needed macro-strategy, programmers look at only what they think is relevant.

However, more mistakes could occur since important interactions might be overlooked.

Integrated approaches

Von Mayrhauser and Vans [MAYRO95] combined the top-down, bottom-up, and
knowledge-based approaches into a single metamodel. They proposed that understanding
1s built concurrently at several levels of abstractions by freely switching between the

three comprehension strategies. Von Mayrhauser and Vans [MAYR95] combined

11

Soloway’s top-down model with Pennington’s program and situation models. In their
experiments, they observed that some programmers frequently switched between all three
of these models. They formulated an integrated metamodel where understanding is built
concurrently at several levels of abstractions by freely switching between the three

comprehension strategies.

2.2 Program Analysis Techniques

Software visualization allows for the transformation of a large amount of data to a
higher level of abstraction that improves the comprehension of the overall program
structure. However, even with higher levels of visual abstractions, a user might still have
to deal with a large amount of data without having any meaningful insights about the
relationships and the dependencies within a given scenario. Filtering and interpreting
enormous quantities of information is a problem for humans. From a mass of data they
need to extract knowledge that will allow them to make informed decisions. The

algorithmic support addresses these limitations of the general visualization techniques.

Program analysis denotes the initial step towards program understanding. The use
of reverse engineering and analyzing existing program executions allows us to derive
data and control dependencies that can be used for various algorithmic approaches to
provide users with additional insight in dependencies and relationship among program
artifacts that exist in a program and its executions. Typically, a program performs a large
set of functions/outputs. Rather than trying to comprehend all of a system's functionalities,
programmers tend to focus on selected functions (outputs) and those parts of a program

that are directly related to that function. There exist numerous analysis techniques that

12

retrieve program information reliably from source code and establish appropriate models
for further investigation and modification [NIEL99]. Welf et al. suggested distinguish

these techniques between two kinds: low and high levels [WELF02].

2.2.1. Low Level Analysis

The low level analyses can be grouped into the following two categories: static
and dynamic analysis with the static analysis to focus on structural and dynamic

analysis on behavioral aspects (see Table 1).

Table 1 Low level analysis resulting information categorization

Structural Behavioral

Static | Syntactic and type information. | Information such as the actual types, call graphs,

and control flow graphs associated with the system

Dynamic | Information based on program | Information assembled during single or multiple

executions. program executions.

In what follows, we present a general overview of different analysis techniques,

their correlation with other high-level analyses, and their representations.

Lexical Analysis

The objective of the lexical analyzer, frequently referred to in the literature as a
scanner, lexer, tokenizer or linear analyzer [WAIT84], is to look for patterns in a
source program in order to convert them to a sequence of symbols, so-called tokens.
The lexical analyzer provides structural program information as results. For example,
Agrep is a UNIX utility that allows for approximate matching between a regular-like

pattern and text in source code or plain text files [WU92].

13

Syntax Analysis

The syntactical analyzer, also known as a parser, structural or hierarchical
analysis, checks the order of the tokens provided by the scanner against some
syntactical rules. The hierarchical analysis usually results in a parse tree, Abstract
Syntax Tree (AST), Directed Acyclic Graph (DAG) or any other syntactical structure
[WAIT84, TOGEO1, LUDWO1]. The syntactical analyzer provides static structural

program information as results.

Semantic Analysis

The semantic analysis is a context-sensitive analysis. It is performed in order to
check the semantics of a source program [WAIT84, TOGEO1, LUDWO1]. To ensure
the correct semantics of a program, semantic rules are attached to the lexical and
syntactical productions. The semantic analyzer is therefore mostly implemented as a
part of the syntactical analyzer. The semantic analyzer outputs static structural

program information.

Dataflow Analysis

Data flow analysis (DFA) is a process for collecting problem specific behavioral
information about programs, such as the use, definition, and dependencies of data,
without actually executing the program [NIEL99]. It is impossible to determine the
exact output of a program since it cannot be determined which execution path in the
control flow graph is actually taken. This means that all possible paths are considered
to be actual execution paths. The result of this assumption is that one can only obtain

approximate solutions for certain data flow problems [MARL90].

14

Program Slicing

Weiser’s original research [WEIS84] on program slicing was motivated by the
need to help students understand and debug their programs. Weiser discovered that
the mental process used by programmers when debugging their code was slicing and

tried to formally define this process and the output by introducing his first algorithm.

Weiser [WEIS84] defined a static program slice as those parts of a program P that
potentially could affect the value of a variable v at a point of interest. A large number
of extensions to the original slicing algorithms have been presented in the literature,

e.g. [AGRA90, AGRA93, HARM98, HARMO1, HORW90, HORW92, LARS96].

Korel and Laski [KORE97] introduced the notion of dynamic slicing that can be
seen as a refinement of the static approach by utilizing additional information derived
from program executions on some specific program input. The dynamic slice
preserves the program behavior for a specific input, in contrast to the static approach,
which preserves the program behavior for the set of all inputs for which a program
terminates. Later extensions of the dynamic slicing algorithms include hybrid
algorithms [GOPA91, KAMK95, KREU99, ZHAOQO98] that combine static and
dynamic information for the slice computation were introduced in [GUPT97,

RILLO1].

The reason for this diversity of slicing techniques and criteria is that different
applications require different properties of slices. Program slicing is not only used in
software debugging [AGRA93, GUPT97, KORE97, LYLE86, RILL02, TIPF95], but
also in software maintenance and testing [MART94, HORW90, RILLO1]. There are

15

two major approaches to locating places of low design quality in an existing design.
The first one is a systematic approach that requires a complete understanding of the
program behavior before any code modification. The second one is an “as needed”
approach that can be adopted as it requires only a partial understanding of the
program to locate as quickly as possible certain code segments that need to be

changed, tested, or maintained for desired enhancement or bug-fixing.

2.2.2. High Level Analysis

Low-level analyses usually result in representations that are much too complex to
provide the engineer with any architectural insight. To achieve an architectural
understanding, we must therefore reduce the complexity of the low-level
representation by means of high level analyses. High-level analysis uses different
techniques to focus on higher level abstracts. Typical examples for such higher-level
analysis approaches are the identification of design patterns, individual components,
connectors, or architectural styles. In what follows, we describe some of these

techniques.

Software Metrics
The term software metrics [COTES88] is not uniquely defined. In literature,
software measure, software measurement, and software metrics are often used

interchangeably.

While the use of metrics is commonplace in the traditional engineering world, it
has yet to become fully established in the software domain, even though it has been

shown that software metrics can provide software engineers and maintainers with

16

guidance in analyzing the quality of their design and code and its future
maintainability [BASI95, BASI96, FENT91, LIBO1, LIW93, MART94]. Software
metrics could address many aspects of the software life cycle - process, product,
people, quality, design maintenance etc. Li and Henry [LIW93] concluded after using
their metrics to evaluate two software systems that there “is a strong relationship
between metrics and maintenance effort in object-oriented systems” and that
“Maintenance effort can be predicted from combinations of metrics collected from

source code”.

Software design metrics

Several design metrics are presented in the literature [FENT91, HITZ96, LIBO1,
MART94] to evaluate the design and quality of software systems, enabling the early
identification of maintenance and reuse issues in existing systems. Two major
categories of design metrics can be distinguished: cohesion (internal aspects) and
coupling (structural aspects) design metrics. Metrics measure certain properties of a
software project by mapping them to numbers, according to well-defined, objective
measurement rules. The measurement rules are then used to describe, judge, or
predict characteristics of the software project with respect to the property that has
been measured. Usually, measurements are made to provide information with which

better decisions about software engineering tasks can be planned and carried out.

Variants of metrics are e.g. complexity metrics, which measure the complexity of
an entity of a system; coupling metrics, which measure the coupling between classes;

cohesion metrics, which measure the closeness of entities of a class and inheritance;

17

and tree metrics, which try to retrieve the program’s OO concept to depict

relationships between objects.

Component and Communication Detection

Large systems are divided into subsystems. These subsystems, also known as
components, and the dependencies that exist among the components form the
different layers within software architecture. Different techniques based on metrics,
dominance analysis or concept analysis, as well as design pattern detection can be
found in [KOSSO00]. This includes automatic techniques, such as connection-based,

metric-based, slicing-based, graph-based, concept-based, and DFA-based approaches.

Design Pattern Detection

Design patterns [GAMMO94] are high-level design elements that address recurring
problems in object oriented design. A design pattern not only provides a solution to a
recurring problem, but also conveys the rationale behind the solution, i.e., not only
“what”, but also “why” [BECK94]. During forward engineering, design patterns are
used as good standard solutions for implementing software with certain properties.
Inversely, during reverse engineering, one can try to detect the patterns in the code in
order to understand the intended high-level design. This is the approach most relevant
for program comprehension. Design patterns are medium-scale patterns. They are
smaller in scale than architectural patterns, but tend to be independent of a particular
programming language or programming paradigm. Design pattern detection is needed
for design recovery, comprehension, and documentation. Through the detection of

design patterns, a system can be depicted on a higher level of abstraction. Further,

18

design patterns are potentially useful both in developing new designs and in
comprehending existing OO designs. However, too often documentation shows
endless detail about features, but fails to show how everything fits together, the

fundamental architectural concepts.

Reverse engineering focuses on creating “representations of a system in another
form at a higher level of abstraction” [CAMP97]. Many researchers have presented
their efforts on automatic recovery of design patterns in large object oriented
programs. As we shall discuss below, most of these adopt the approach of describing
patterns at some level of formalism and then match the descriptions with the facts

extracted from source code.

The Pat [KRAMO96] system is a Reverse Engineering tool that searches for design
pattern instances in existing software. Within Pat, design information is “extracted
directly from C++ header files and stored in a repository” [KRAM96], “the patterns
are expressed as PROLOG rules and the design information is then used to search for
all patterns” [KRAMO96]. In [ANTO98], Antoniol et al. present a more conservative
approach to recover design patterns from design and source code. Their approach is
mainly based on “a multi-stage reduction strategy using software metrics and
structural properties to extract structural patterns for OO design or code” [ANTO98].
Similar to the Pat system, this approach also focuses on the same five structural
patterns mentioned in [KRAMO96]. In [FEREO1], Ferenc et al. state that Columbus
and Maisa pairs, two reverse engineering tools, can be used to document and analyze

software implemented in C++ and to verify the architectural design decisions during

19

the software implementation phase as well. In [HEUZ03], Dirk Heuzeroth et al. argue
that static analyses are not sufficient for pattern recovery, and they therefore
introduce dynamic analysis techniques to detect design patterns in legacy code.
Through their approach, a set of potential patterns are firstly detected by a static

semantic analysis tool.

Dominance Analysis

Dominance Analysis [GIRA97] is a graph theoretic method that often has been
applied to call graphs in imperative languages to identify so called dominant nodes
(i.e. nodes that are the only entry point to a subsection of the graph). The dominant
node and the subsection they dominate are then suitable module candidates since they
represent a set of procedﬁres with a low external coupling. This idea can easily be
transferred to an object oriented setting by applying it to a graph of classes interacting

with methods.

Concept Analysis

This general technique is often applied to software re-engineering. The concept
lattice is computed on a relation of (abstract) objects and attributes. In the context of
software understanding, this could be algorithm classes and data structure classes
respectively. In feature analysis, e.g., these are use cases and classes, respectively.
The analysis computes maximum sets of objects using the same set of attributes.

There is an order relation defined on the maximum sets forming the concept lattice.

20

Architecture Style Detection

There is no unique definition of software architectures. Architectural patterns,
which represent the highest-level patterns, are templates for concrete software
architectures. They specify the system-wide structural properties of an application,
and have an impact on the architecture of its subsystems. Reversing software
architecture aims to: recover lost architectural information, update architecture
documentation, support maintenance (comprehension) activities, provide different

views on architecture, prepare for another platform and facilitate impact analysis.

No matter whether it is low or high level analysis, static or dynamic analysis,
these analyses are not standalone by nature. System engineers have to be involved to
accept or reject certain results proposed by the automatic analyses. The results of such
analyses ought to be presented in a form that is intuitive to them. Therefore, program
analysis must go hand in hand with tool support and interactive Sofiware Visualization.
Before we discuss software visualization in details, we give a brief review of existing

tools.

2.3 Program Understanding Tools

Much effort has been put to develop tools aiming to aid the job of program
understanding and maintenance. In order to examine the current status of the tool
development, we briefly list some of them in Table 2 [SOUR 04]. It is impossible to
provide a complete list because there are too many tools and it is beyond the purpose of

this thesis to do so. More details can be found in [SOURO04].

21

We note that none of these tools is popularly used in industrial or academic
environments. Most of them are basically code browsers with little advanced

visualization technique support, and rarely have high-level program analysis functionality.

22

Table 2 List of program understanding tools

Tool License OS and Features
Languages
CC-Rider Commercial | OS/2/Windows, | ® Source browsing and documentation
C/IC++ generating
e API for customized software [WEST04]
Cflow Commercial | Unix, e Analyzes source/object files and writes a chart
C/C++/Lex/Yac of their external function references as a text-
c only diagram [CFLOW04]
CIAO Evaluation Solaris/Sun4/S | e A graphical navigator for software and
GI C/C++/Java document repositories [ATT04]
CodeSurfer Commercial | Solaris, C e Program analysis and comprehension software
e Has a dependence analyzer [GRAMO04]
CodeWalker | Commercial | Solaris/Sun4/S | e Graphical navigation tool to explore source
GI C/C++/Java code [GLOB04]
Cscope Commercial | Unix, e Quick search for definitions, declarations,
C/Lex/Yacc usages of functions, variables and other
symbols [CSCO04]
Ctags Commercial | Unix, C ¢ Generates a tag file for the sources for quickly
locating objects [CTAGO04]
CXref: Free Unix, C, e Generates documentation and cross-references
from the source [CXRE04]
Source Free Windows, C ¢ Simple program that displays the function call
Browser relationships in C programs [MORA04]
Source Commercial | Windows, e A source code editor enhanced for C/C++ and
Insight C/C++/Java Java support
e Multiple windows
e Quick jump to the locations of defines,
symbols, and functions etc. [DYNAO04]
Source Commercial | Unix/Windows, | » Enhanced source browsing, showing
Navigator C/C++/Java/Tcl relationships
/Fortran/Cobol/ (call/callby/include/includeby/etc.) between
Assembly the various parts of the program [CYGNO04]
Understand Commercial | Unix/Windows, | ® A source code comprehension and
for C++ C/C++ documentation tool [SCIE04]

23

However, many existing tools are currently enriching their comprehension
techniques by taking integrating the advances in software visualization, as necessary
hardware and technology advances. As a result, software visualization tools, a subset of
program understanding tool, are emerging to a more main stream technology to support
the software comprehension process. Consequently, software visualization tools should
adapt to and facilitate these different requirements. When the size of software becomes
large, software visualization faces new challenges. In [MICHO1], several reasons for
these difficulties are mentioned: “(1) the diagram complexity is increased because of the
large amount of information to be displayed, (2) the awkward layout techniques provided
by the visualization approach, (3) their non-intuitive navigation, and (4) often their very
specialized scope in depicting only certain program artifacts and their relationships.” In
what follows we selected two industrial strength and four research prototypes to illustrate
on the one hand the state-of-the art software visualization tool support, as well as to
provide an overview of the diversity among the tools and their supported visualization

techniques.

2.3.1.Commercial Products

Imagix 4D

Imagix 4D [IMAGO4] is a comprehensive program understanding tool, which
enables the user to rapidly check or systematically study target software on any level -
- from its high level architecture to the details of its build, class, and function
dependencies. User can visually explore a wide range of aspects about the software -

control structures, data usage, and inheritance. The user can review the software

24

metrics and source checks to identify and eliminate problem areas in the software. It
can create design documentation automatically, further leveraging the information
that Imagix 4D collects about the software. Figure 1 shows its main window. Its

major features are:

e Data Collection and Visualization

e UML Diagrams and Other High Level Abstractions
e Flow Charts and Control Flow Analysis

e Software Metrics and Source Checks

¢ Automated Documentation

®
AR ITIPERE,

Tl SreateIntery

2 Trang Faniout

":F wArray
| Coverage

: Giverdeal |
relnfo: - Campagt |-

Figure 1: Main window of Imagix 4D

25

SNiFF+

SNiFF+ [SNIF04] is one of the better known commercial offerings, an integrated
source code analysis and development environment for C, C++, Java, FORTRAN and
CORBA IDL with large amounts of application code. SNiFF+ supports not only
reverse engineering, but also configuration management, workspaces and build
management. It provides the most comprehensive set of browsers and parsers. The
SNiFF+ tool promotes engineering productivity and code quality by providing a
comprehensive set of code visualization and navigation tools that enable development
teams to organize and manage code at maximum efficiency. Figure 2 illustrates an

example of displaying cross reference information in the tool.

Regular expressian filter

BrowserVisw

. g7
drop rmezxmcu Burcon
down . LN onusng
N o~ HenoryWanhlert #ytedrray ~— Symbal List
reny e, cachetgpe (5%
oo PeInspectrlleRDIatog cocheiype (5]
e T R . % SpaRe tadFi1TEEDIaag CellATTEADUTES (88)
ralationship prassres ’v PregDialey CellZdstFicla
1\ \previawll slog felliekectar
fromigft o ‘A CRYPEEnT. {eliSetecrorl
right Vrrintislor <27 T o L eTypetuncher
PO Hehsngeridioy
. “Prwccssmamc : »m.,.._,.‘...‘.k . =
inheritance s l{l T ;
Geraph view iﬁ'; " t it 'rl
B) T
| nenE ‘:'“'%Peisaxx:t:esmmex £ilsbrorser, supplie
Vrasiaiog €13, shared
1 sunkag, shared

3
£rdand ShellManpipsy ¢
Brosase¥iow *brosserView, *hwy /7 wiow on top of window
Wopimat throwser?

Code Display

t+ Project of selected class

Figure 2: Cross Referencer in SNiFF+ version 4

26

2.3.2.Research Prototypes

SeeSoft

SeeSoft [EICK92] is a tool for visualizing software statistics from a variety of
sources, including: version control systems, static analysis (call sites), dynamic
analysis (profiling). The statistics are displayed using a color coded reduced
representation, intended to allow patterns to be spotted easily. The visual
representation allows the side-by-side comparison of a number of source files. Users
could browse code in different levels of abstraction in SeeSoft and thus obtain
overview and detailed information of source code. In Figure 3, for example, the color
is used to represent the age of the code, e.g. blue represents old code and red

represents the new.

intf (prr_abroam, M\032

Figure 3: Multiple views in SeeSoft

27

SHriMP

The SHriMP [STORO1] (Simple Hierarchical Multi-Perspective) visualization
technique was originally designed to enhance how programmers understand programs.
This research tool presents a nested graph view of software architecture. Program
source code and documentation are presented by embedding marked up text
fragments within the nodes of the nested graph. Finer connections among these
fragments are represented by a network that is navigated using a hypertext link-
following metaphor. SHriMP combines this hypertext metaphor with animated
panning and zooming motions over the nested graph to provide continuous

orientation and contextual cues for the user. Its features include:

e Hierarchical view, overview of entire dataset (See example in Figure 4)
e Searching metrics

e Thumbnail view, a way of maintaining context while navigating

e Filmstrip for saving several different states of a project

e Tool tip

e Label

e Filtering

e Multiple layouts: Grid, Spring, and Tree

e Fisheye Zooming

28

Figure 4: An Example of Hierarchical View in SHriMP

Rigi

Rigi [MULL94] is a system for understanding large information spaces such as
software programs, documentation, and the World Wide Web. This is done through a
reverse engineering approach that models the system by extracting artifacts from the
information space, organizing them into higher level abstractions, and presenting the

model graphically. A Rigi view is shown in Figure 5.

29

Elzrcm-DT

Figure 5: A Rigi view

These tools described above use many 2D visualization techniques such as
coloring, highlighting, and layout algorithms etc. Some have started to transform 2D
diagram to 3D representations. For example, Imagix4D can generate 3D diagram similar

to the 2D ones, using boxes and cones instead of rectangles and lines.

30

Chapter 3

Software Visualization

Software visualization can be seen as a specialized subset of information visualization.
This is because information visualization is the process of creating a graphical
representation of abstract. This is exactly what is required when trying to visualize

software.

3.1 Visualization

Visualization is an old term which has received a large amount of interest in the
Computer Science community. Visualization has previously been defined as the
"formation of visual images; the act or process of interpreting in visual terms or of
putting into visual form" More recently a new definition has been added: "A tool or
method for interpreting image data fed into a computer and for generating images from

complex multi-dimensional data sets" [MCCO87]. The main goals of visualization are:

e Maximize human understanding, communication and collaboration without
huge effort

e Make evident the meaning of abstract entities

e Reduce the complexity of the phenomena

e Enhance understanding of concepts and processes

e (Gain new insight

31

Visualization is classified as information visualization, which hinges on finding a
spatial mapping of data that is not inherently spatial, and scientific visualization, which
uses a spatial layout that is implicit in the data. Both have many applications in areas of
automobile industry, flow-dynamics of airplanes, chemical experiments, galaxy

simulations, biology and chemistry, and many more.

3.2 Software Visualization

Software visualization is visualization in Computer Science. It has a long history
starting with the development of “Flow Charts” in the 60’s. In the 70’s, ‘“Pretty-Printing”
was another major step, followed by “Algorithm Animation” in the 80’s. The 90’s
symbolize the revolution area with the introduction of CASE tools. Finally, in the last
several years, the focus is on dynamic data and software processes. Software

visualization is currently a hot research area.

There are many definitions of the term software visualization. One that seems to

encompass them all is stated by [KNIG99]:

“Software visualization is a discipline that makes use of various forms of imagery
to provide insight and understanding and to reduce complexity of the existing software

system under consideration”

Software visualization is difficult since software is an abstract element with no
spatial representation like a chair or a table. It is somehow hard to project a clear view of
what it is and how it actually works in our mind. That’s why software visualization is

often referred to as the process of “making the invisible visible” [BOEC85]. Gomez

32

[GOME 01] put it best when he wrote: “In software visualization, there are only two
‘touchable’ realities: the source code and the resulting visualization...the ‘missing-link’
is establishing a ‘cause-effect’ relation between the two entities” [GOMEO1]. The main

challenges of software visualization listed by Young [YOUN96] are:

Metaphor (representation): how to represent the entities of the software

Abstraction: what to present and in how much detail

e Navigation: how to move through the sets of visual objects that represent the

system

Correlation: how to link visual abstractions to source code and documentation

Our research focuses on software visualization systems toward supporting large-
scale software maintenance. In order to accomplish this task, these systems must focus on
the five dimensions of software visualization defined by Maletic et al [MALEO02]. These
dimensions reflect the why, who, what, where and, how of the software visualization. The

dimensions are as follows:

e Tasks — why is the visualization needed?

e Audience — who will use the visualization?

e Target — what is the data source to represent?

e Representation — how to represent it?

e Medium — where to represent the visualization?
33

These dimensions define a framework capable of accommodating a large
spectrum of software visualization systems. Our work on 3D techniques is along the

representation dimension, while program analysis is along the targer dimension.

Before moving on to the 3D software visualization, we discuss the limitations of
current 2D graph based visualization approaches. In particular, we discuss visualization
in the form of reverse engineered 2D diagrams (e.g., collaboration diagrams, call-graphs,
sequence diagrams, etc.) and models (UML class models), which have been suggested in
the literature [BOOC99] to provide users with higher abstraction views of the software
under investigation. The principal aim of visualization is to ease program comprehension
by enabling a person to comprehend complex internal structure and entity relationships
through appropriate visual mappings. For large software systems, however, it becomes

increasingly difficult to comprehend these diagrams for several reasons:

(1) The visualization technique does not scale up causing increased clutter in the
diagram because of the large amount of information (entities and entity
relationships) to be displayed, essentially resulting in information overload
problems. Often, 2D inheritance trees or call graphs of several thousands of

entities create space filling and incomprehensible visuals.

(2) The awkward layout techniques provided by the chosen visualization mapping
tend to obscure important patterns and relationships in the software from the

user.

(3) The navigation tools are non-intuitive; pan-zoom and overlapping multiple

windows are typically the kinds of navigation tools supported causing
34

cognitive discontinuity problems. There are some visualization mappings such
as fisheye-views [FURNS86], perspective information walls [MACK91],
hyperbolic trees [LAMP95] etc., which offer some solutions for focus versus
detail. They assist the user in not getting lost in the visual space, but even these

do not easily scale to very large software.

(4) Often their scope is rather specialized to depict only certain program artifacts

and their relationships.

3.3 3D Software Visualization

3D visualization utilizes advanced visualization and hardware technologies, with
the goal to match closely the human cognitive and perceptual views. However, 3D
visualization not only introduces an additional dimension, but at the same time also many
new challenges. In what follows, we discuss some of the advantages and challenges of

3D visualization.

3.3.1. 3D versus 2D Visualization

As mentioned earlier, over the last decade, programs have become larger and
more complex, creating new challenges to the programmer in visualizing these
complex and large source code structures. Providing different views might not be
sufficient as users are still dealing with a large amount of information and data. Also,
not every visualization technique is equally adept in displaying a particular aspect of
software structure [NIEL98]. The visualization technique might lack an appropriate
navigation support or may not allow the effective reduction of the amount of

information displayed through a choice of distinct views. The disadvantages of most
35

of the commonly used high-level abstractions such as call-graph, UML class models,

collaboration diagrams, etc. have been discussed by other authors [RILLO1].

Software visualization of source code structures and execution behaviors could
consists of both static views and dynamic views [PIRO01, SHNE92, WALK98].
Dynamic views are based on information from the analysis of recorded or monitored
program executions. During the recording of a program execution, a large amount of
data may be collected. Although this is not a new problem, the rapid increases in the
quantity of information available and a growing need for more highly optimized
solutions have both added to the pressure to make good and effective use of this

information [MALEO1].

Three-dimensional visual representations are often suggested and presented as a
solution to provide just this required extra space and resulting ease of use in
navigation and abstraction level. While the advantages of adding a third dimension
are initially obvious, these are realizable only if truly distinct and effective use is
made of the added dimension. However, most of the current approaches are just
transforming established 2D visualizing techniques into a 3D space [REIS94]. 3D
software structure visualizations are still centered on creating standard call graphs
within a 3D space. For example, the usage of 3D call-graphs does offer a greater
working volume for the graphs thereby increasing the capacity for readability.
However, at the same time, they introduce undesirable effects that significantly affect
the gain from the added dimension. Problems that might be introduced by 3D

visualization techniques include significant objects being obscured, disorientation,

36

and spatial complexity. To some limited extent, these issues can be resolved by 3D
interaction techniques where the viewpoint of the 3D graph is actually within the
graph structure; otherwise, the 3D visualization is limited to merely a 2D picture of a

3D structure (See Figure 6) [RILL02].

MOUSE

h‘!ouan.|<..|sel-"ara.:dler

Frame Ratg
ThraacTeslt COU
Nter

Speci‘ic WauseProg

3(‘% y .\Z

Wlatinn

TrreadTest2

G
"3Dhig
Scwiccpro\/ide§ Ser\/‘
'CES

Clignl OX k)

1 S0 __ondodthisi

nltehd s sanctnessage

tzanDu | { igrle)

2 Launcinl oxik i

aavideServica()

stariTine;)

[y G TCEs

hit g to exit

Figure 6: Mapping 2D sequence diagram notation into 3D space

3.3.2. Important Issues
Metaphor
Identifying and selecting an appropriate and intuitive metaphor in visualizing

software systems is a major challenge. A metaphor describes a concept in terms of

37

another concept, where the metaphor should have some similarity or correlation to the
concept that will be modeled by the metaphor. With the introduction of 3D software
visualization techniques, many new metaphors are being investigated to help in the
understanding of large programs. Metaphor creates mapping from software entities to
graphic elements. Good and meaningful metaphors ease the complexity of the system
and fast the process of building mental model. Shapes, colors, shading, lightning,
brightness, shininess and so on can be used to represent some features of the software
entities. Positions can be used to indicate the relationships between them.

Transparency of objects reveals the notion of “inside”.

Mapping program artifacts into the 3D space allows users to identify common
shapes or common configurations that may become apparent, and which could then
be related directly to design features in the code. Soft City [KNIG00], Cone Tree
[ROBE93], hyperbolic tree [LAMP9S5], and Information Cube [REKI93] are some
examples of software visualization techniques that are based on different 3D
metaphors. Additional examples for 3D metaphors can be found in [BALL96]. Each
of these metaphors has its own pros and cons, and is often only suitable for a specific
comprehension purpose. Moreover, a metaphor that is easily understood by one
programmer may be confusing to another programmer. Therefore, one of the

challenges of current research is to investigate and explore new metaphors.

Orientation and Navigation

One of the most important criteria for a successful 3D system is to provide
effective and useful navigation. However, the challenges are to provide an intuitive

38

navigation without loosing the orientation. In particular one has to address questions,
like “Where am 1?77, “Where is the target I am looking for?”” [HERMO00] Changing the
user’s viewpoint might provide one possible solution to this problem. The provision
of both, a focus and context sensitive view, might help the user to avoid the problem

of disorientation and/or to gain re-orientation.

Filtering and Clustering

Although 3D systems can handle in theory a larger amount of information than
2D, they still face challenges in visualizing very large-scale software systems. One
has to consider the ability to view, discern information to improve the usability of the
representation techniques. To solve the problem, filtering and clustering are used for
information hiding and graph simplification. Grouping can be described as a process
of program analysis prior to the layout management. The layout algorithms are
constrained by the amount of information to be displayed and the limited screen
spaces. Even, if one manages to create a layout, the resulting visual might have far
too much information, causing an information overload. Therefore, limiting the
number of entities to be displayed to the user is one of the key challenges in software
visualization. For the visualization of large software systems, it is essential to provide
some type of grouping to create a decomposition of the system. It has been shown
that grouping can improve readability [MANC99], by supporting a representation that
is closely related to the mental model a programmer forms of a system [TZERO1]

during typical comprehension tasks. Grouping or clustering can be applied to generate

39

suitable abstraction levels and therefore allow for a reduction of the amount of

information to be displayed on the screen.

Automation and Integration

Visualization tools have to address issues related to the automatic extraction
information and the resulting visual representations. Furthermore, this will require
that visualization tools are tightly integrated with other analysis and extraction tools
to be accepted by users. Ideally, visualization tools should be tightly integrated within
existing software development a comprehension environments and allow for a

seaming less data exchange among the existing tools.

Decomposition and Abstraction

Abstraction of systems should be made at different levels and details. Ideally, the
visualization techniques should support the traceability among the low level and
higher level abstractions (e.g. between source code and design documents). The
visualization approaches also should provide an effective way of switching the

perspectives among the different levels of abstractions (views).

User Centered

Over the last several years, user interface design and usability aspects have gained
on importance in the software engineering domain. Since the visualization tools are
developed to support users in an intuitive fashion during the comprehension of
software systems, the usability aspect becomes a major design issue for the adoption

of both the visualization techniques and the tools implementing these techniques.
40

3.3.3. Advantages of 3D Visualization

In what follows, we summarize the major benefits of 3D visualization techniques

in comparison to 2D visualization techniques:

e 3D has one extra dimension that can be used to encode some knowledge. 3D

graphics have more flexibility to represent and organize the information.

e In 3D environment, users have much greater working volume than in 2D

views. Hence it can handle much larger systems.

e Comparing to 2D navigation (on the ground), 3D environments usually
provide useful and effective navigation (in the air). It is much like the
human’s real world experience. Human experience in interacting and

exploring within 3D environments is exploited.

e 2D systems usually work in read-only mode. 3D environments provide useful

interactions for users.

e 2D representation is usually static while 3D provides not only static

information but also dynamic information.

e Overview and context. Being able to display a large amount of information in

one view and thus provide an overview.

41

3.3.4.Challenges of 3D Visualization

“A badly designed three-dimensional visualization is worse than none at all. The

extra dimension can open a whole new world of possibilities but at the same time also

new challenges.”[KNIGOO]

While the benefits of adding a third dimension seem to be obvious, these benefits
will become distinct only if the visualization techniques explicitly take advantage of
the added dimension. However, as we have seen earlier, most of the current
approaches simply transform established 2D visualizing techniques into a 3D space
[HERMOO]. Simply extending “nodes and arc” technique into the 3D space does not

necessarily harness the power of 3D software visualization.

Some of the challenges in 3D visualization are:

e Easier to disorientation. While 3D system provides convenient navigation
and interaction, it also has the problem of disorientation. The user should have
a good mental concept of spatial issues like up and down. Spatial awareness is
needed for a user to navigate any 3D environment. Notions like “up” and
“down” do not conform to our preconceptions of 3D environment and
experience and cause confusion. After getting the details of interests,

reorientation should be taken into consideration.

e More complex interface and interaction. 3D environment has much more

complex interface for the user to interact or navigate the system.

42

e Layout. Layout is a headache for visualization. 3D layout algorithm is much
more complex and difficult in comparison to 2D layout algorithm. There are
many 2D layout techniques like tree map, etc. However, none of them is
perfect. Even 2D layout is so difficult and complex, not to mention 3D layout.
This is an ongoing research. Progress has been made and we expect to see

more and overwhelming improvements in this field.

e Suitable metaphor. Software systems are not real world objects. “Software is
intangible, having no thSiC{;ll shape or size. After it is written, code
disappears into files kept on disks” [KNIG00]. A mapping metaphor creates
transformation from intangible software elements to tangible graphic elements.

But how to get suitable metaphors is somehow difficult.

e Information overloading. It intends to present as much information as

possible. It suffers from overloading.

e More expensive. 3D views require 3D graphics hardware. Compared to 2D, it

is much more expensive because of memory needs etc.

3.3.5. 3D Visualization Techniques

Peter Young [YOUNY96] summarized a variety of 3D visualization techniques that
are used in many visualization systems. These techniques can be roughly classified

three categories: mappings, representations, and dynamic visualization techniques.

43

Mapping from the data domain to the visualization space

Surface Plots

It is one of the most familiar extensions from standard 2D graphs. Surface
plots are constructed by plotting data triples onto the three co-ordinate axes X, Y
and Z. Typically the data will consist of two standard sets which have a regular
structure, e.g. days of the week and time of the day and one actual data value, for
example, wind strength (see Figure 7). The two regular sets are normally plotted
on the horizontal axes X and Z with the variable data being plotted as height in
the Y axis. The set of points thus formed are netted into a mesh or surface which
is often color coded to indicate height variations. The resulting visualization
resembles a landscape which can be easily interpreted to identify features such as

patterns or irregularities.

Figure 7: 3D surface plots using Java 3D

44

Cityscapes

Cityscapes [WALK93] are basically an extension to 3D bar charts and a
variation to surface plots. Cityscapes are created in a similar fashion to the surface
plots by mapping scalar data values onto the height of 3D vertical bars or blocks,
the blocks being placed on a uniform 2D horizontal plane. The resulting
visualization is a more granular representation of the surface plot. Figure 8 shows

an example of using Cityscape in creating a software landscape [YOUN96].

Figure 8: Cityscape for software visualization

Benediktine space

Benediktine space [BENE91] is a term which arose from Michael

Benediktine research into the structure of Cyberspace. It maps the objects to
45

extrinsic dimensions, which specify a point within space and the intrinsic
dimensions which specify object attributes such as color, shape, etc. An example
of a Benediktine space could be to map an attribute such as student names to the
x-axis and their exam marks to the y-axis. The degree which a student received

could then be mapped onto an intrinsic dimension such as shape [YOUN96].

Spatial arrangement of data

A key problem is in creating a useful mapping from the data itself to a
corresponding representation and location within the virtual environment
[BENF94, COLE94]. The requirement of this process is to create a spatial
configuration from which the properties of data items within the information
terrain and the relationships between them can be readily interpreted simply from

their position and presentation.

Information representation techniques

Perspective walls

Perspective walls [MACK91] were used to view and navigate large
linearly structured information. This technique employs the space strategy aiming
at presenting as much information as possible, and the time strategy that breaks
the information structure into several separate views with a switch between the
views. Figure 9 shows a class schedule. The front side of the wall shows all the

details of the two selected months, while the others are shown on the side walls,

46

but the user can still get some general information about the months not in front

of him.

Figure 9: A class schedule on perspective walls

Cone tree and cam tree

Cone tree [ROBE93] 1s one of the best-known 3D graph layout techniques
in visualization. It is a way of displaying hierarchical data (such as org charts or
directory structures) in three dimensions. Nodes are placed at the apex of a cone
with its children placed evenly along its base. This allows a denser layout than
traditional 2-dimensional diagrams. Cam trees are identical to cone trees except
they grow horizontally. Cam trees [BALL96] are identical to cone trees except
they grow horizontally as opposed to vertically. Figure 10 is a view of a file

structure using cam trees [ROBE93].

47

Figure 10: View of a file structure using Cam trees

3D-Rooms

The “3D-Rooms” metaphor is a three dimensional counterpart to the
desktop metaphor commonly encountered in computing today. 3D-Rooms are a
3D extension to the original concept of 2D rooms. 2D Rooms [CARDS7,
HENDS86] built upon the notion of a multiple desktop workspace by adding
features such as the ability to share the same objects between different
workspaces, overview the workspaces and also to load and save workspaces. 3D-
Rooms allow the user to structure and organize their work by allocating certain
tasks to certain rooms with doors connecting them and floor plans available in

another window.

48

Using this technique, a single result will be displayed as a virtual object in
a room. When the result set contains more than one element, several rooms will
be used, each with a result in it. These rooms would organize themselves in
different structures. The drawback of this approach is that to navigate through the
result set, the program needs to choose a property common to each element in this
set and use it as the index. This index is then used to arrange the rooms in space
and sort the results. This doesn't work very well if the results have only a property.
For example if the result set is composed of numbers, it would not mean much to

sort these values using themselves as index.

If the properties of the results are more than one, then this kind of
visualization becomes useful. For example if the result set is composed of a
picture and a number, the latter representing the year in which the picture was
drawn, it becomes clear that this approach would build a very nice museum, in

which the pictures are ordered by year of their creation.

Information cubes

Information cubes [REKI93] are nested translucent cubes that can be used
to denote hierarchical information like packaging. It partitions the available
display space into rectangles according to the tree structure. The subdivision

represents the relationship of parent and children.

49

Dynamic Information Visualization Techniques

Fish-eye views

The name given to this particular type of view is taken from the similar
effect produced by a very wide angle “fish-eye” lens. Fish-eye views [FURNS6,
SAKA92] enlarge the focus node with other nodes in lesser detail without losing
the whole context when visualizing large graphs. In the limited computer screen,
focus + context techniques make it possible to display much information and

details which overwhelm the user.

Emotional icons

Emotional icons [WALK95] help to provide a living data environment. It
responds to the users’ activity, hence making the data world more interactive and

dynamic.

Self-organizing graphs

Self organizing graphs typically refer to the techniques used in
automatically laying out graphs. Conventional layout techniques involve a
function or routine which attempts to perform a suitable layout on a given graph
while attempting to satisfy a number of aesthetic criteria or heuristics. Self
organizing graphs allow the graph itself to perform the layout by modeling it as an
initially unstable physical system and allowing the system to settle into a stable

equilibrium according to efficiency, speed, accuracy and aesthetics.

50

3.3.6. VR and 3D Visualization

Virtual reality (VR) is the simulation of a real or imagined environment that can
be visually experienced in 3D and provides a visually interactive experience in full
real-time motion with sound, tactile, and so on. VR can produce objects not only from
the real world but also objects that do not exist in the real world. The simplest form of
virtual reality is a 3D image that can be explored interactively at a personal computer,
usually by manipulating keys or the mouse so that the content of the image moves in
some direction or zooms in or out. The goal of Virtual Reality is that of creating the
illusion of submersion in a computer generated environment. Virtual reality and 3D
graphical environment has become commonplace nowadays. Both representations
offer the perception of depth. The use of them in computer games is a successful
example. The human’s perceptual, cognitive and institutive skills can be used in VR.
The success of 3D techniques in Virtual Reality gave new life to software

visualization.

The distinction between 3D and VR is that a user immersed in a VR environment
can always access external information (e.g., the actual source code) without leaving

the environment and the context of the representation (e.g., using a palmtop or laptop).

While both representations offer the perception of depth, only VRs allow the user
to immerse oneself into the representation. Also, this immersion allows the user to
take advantage of their stereoscopic vision. It also helps the viewer to judge relative

size of objects and distances between objects. For example, in Figure 11 [MALEO1b],

51

a user immersed in the VR is investigating a visualization of a system. However, VR

1s not a cure-all. We should not misconceive and exaggerate its power.

Figure 11: A user immersed in the VR

3.4 Potential 3D Graphic Engines

This thesis also describes a Java implementation of the Virtual City. In order to
choose an implementation environment, most importantly, the graphic engine, we first
list our considerations: the ability to integrate to CONCEPT, portability, code reuse,
performance, the ability of going web browser, coding efforts, and other tradeoffs. And

then we examine some potential ready-to-use code libraries, SDKs or APIs, among which

52

OpenGL, Direct3D, Java3D, and VRML are the most used 3D APIs. We give below a

brief description to each of them as well as a comparison among them.

3.4.1.0penGL

OpenGL, originally designed by Silicon Graphics (SGI) [OPEN 04], now is an
open industry standard API for 3D graphics. OpenGL is the successor to the Silicon
Graphics IRIS GL library [Si190] which made SGI workstations so popular. IRIS GL
was an API specially designed for SGI workstations. But SGI realized the importance
of open standards. Several software and hardware makers took part in specifying an
open version of IRIS GL. The Architectural Review Board (ARB) oversees the

OpenGL specification, accepts or rejects changes, and proposes conformance tests.

In contrast to the IRIS GL, the OpenGL library is platform and operating system
independent. To achieve this independence, all functions for windowing tasks as well
as functions for user input were excluded. Special care was taken to easily combine
OpenGL with other, platform-dependent, programming libraries, which handle

windowing and user input.

Furthermore, the OpenGL library is designed as a streamlined, high performance
graphics rendering library. The design is also very hardware near to achieve a
reasonable performance. OpenGL is in fact a rendering pipeline, so parts of the
pipeline can be implemented either in software or hardware. Many OpenGL
primitives can be easily implemented at the hardware level, which of course improves
the display speed. Therefore, OpenGL also defines only very primitive geometric

objects (points, lines, and polygons). OpenGL library includes functions to specify

53

most of the scene essentials such a scene camera, geometric primitives, lights,

textures, etc.

OpenGL is designed as a state machine, which draws primitives to a frame buffer
according to the state of the machine. More than 150 selectable modes can change the
state of the machine. Each mode is set independently; setting one does not affect
others, although modes interact to determine what is drawn into the frame buffer.
Almost all state of the art rendering parameters can be set by different modes. This
includes the options for the virtual camera, the light sources, and anti-aliasing. A
primitive is a point, line segment, polygon, pixel rectangle, or bitmap, which are the
input to the OpenGL machine as shown in Figure 12. Of course there are some
functions to perform other OpenGL operations, which do not change the machine
state. The output of the OpenGL machine is stored in a frame buffer, which is a
memory area to be displayed on the screen. OpenGL supports double buffering, for
smooth animations: while OpenGL draws in one frame buffer a second one is

displayed, when the drawing process ends the buffers are switched.

Per-Vertex
Operations
= Evaluator e —

Data o L
Primitive
Assembly
- Per-
- Display

Vertex

: = Rasterisation || Fragment | gm| Framebuffer
(-D- Ligt - + Operations

Pixel o Pixel ——‘ Texnue
Data o ----c-cremmee e Operations |y - Memory

Figure 12: Block diagram of the OpenGL pipeline

54

There are some OpenGL related APIs which support methods to describe higher-

level graphical objects, such as:

GLX & GLU Libraries

The OpenGL Utility Library (GLU) [OPEN 04] contains several routines that
use lower-level OpenGL commands to perform tasks such as setting up matrices for
specific viewing orientations and projections, performing polygon tessellation, and
rendering surfaces. The OpenGL Extension to the X Window System (GLX)
[OPEN 04] provides a means of creating an OpenGL context and associating it with a

draw-able window on a machine that uses the X Window System.

GLUT

The OpenGL Utility Toolkit (GLUT) [GLUT 04], originally written by Mark
Kilgard and ported to Win32 by Nate Robins, is a programming interface for writing
window system independent OpenGL programs. The toolkit supports the following
functionality: multiple windows for OpenGL rendering, callback driven event
processing, sophisticated input devices, a "idle" routine and timers, a simple,
cascading pop-up menu facility, utility routines to generate various solid and wire
frame objects, support for bitmap and stroke fonts, and miscellaneous window

management functions, including managing overlays.

Since Java became a popular programming language, bindings between the
platform-independent Java programming language and the platform-dependent

OpenGL library emerged. An example of such a binding between Java and OpenGL

55

is JOGL. OpenGL bindings for Java try to provide a complete set of Java bindings to

the OpenGL graphics library.

Open Inventor

Open Inventor [OPEN 04] is an object-oriented toolkit built on the top of
OpenGL that provides objects and methods for creating interactive three-dimensional
graphics applications. Open Inventor provides pre-built objects and a built-in event
model for user interaction, high-level application components for creating and editing
three-dimensional scenes, and the ability to print objects and exchange data in other

graphics formats.

Mesa

Mesa [MESA 04] is a free implementation of the OpenGL API, designed and
written by Brian Paul, with contributions from many others. Its performance is
competitive, and while it is not officially certified, it is an almost fully compliant

OpenGL implementation conforming to the ARB specifications.

3.4.2.Direct3D

Direct3D [DIREO4], Developed by Microsoft, is an API for manipulating and
displaying three-dimensional objects. Direct3D provides programmers with a way to
develop 3D programs that can utilize whatever graphics acceleration device is
installed in the machine. Direct3D Graphics Pipeline is shown in Figure 13. The
advantage of Direct3D is that it is faster than OpenGL. Because of this, virtually all

3D accelerator cards for PCs support Direct3D. Thus it is more used in game

56

development. However, it has drawbacks: (1) Platform dependent (PC Windows
platform); (2) Very difficult to use (steep learning curve) with large code overhead

compared to OpenGL and Java3D.

Clipning.
. Pingl
Shader B

Alpha Test
5t

Ranterivation

 Toghpre
Surface

Toztiere
Sample

Figure 13: Direct3D Graphics Pipeline

34.3. Java3D

As a part of the Java Media product family, the Java3D API [JAVA 04] is an
application programming interface used for writing stand-alone three-dimensional
graphics applications or Web-based 3D applets. It gives developers high level
constructs for creating and manipulating 3D geometry and tools for constructing the
structures used in rendering that geometry. With Java 3D API constructs, application
developers can describe very large virtual worlds, which, in turn, are efficiently
rendered by the Java 3D API. Java3D uses either DirectX or the OpenGL low level

API to take advantage of 3D hardware acceleration.

The Java 3D API provides three different modes to render the given virtual
universe: immediate mode, retained mode, and compiled-retained mode. The

difference between these modes is the possibility to optimize the execution of the

57

rendering of the actual scene. Each successive mode provides more freedom for

optimizations. In more detail, the three modes are:

Immediate mode

Immediate mode provides the lowest level for optimizations. The application does
not build a scene graph but provides a Java 3D draw method with all points, lines, and
triangles which should be displayed in the selected scene. These graphical objects are

then rendered by the Java 3D render.

Retained Mode

Within retained mode the application has to build a scene graph which describes
the complete scene. To optimize the execution of the rendering the application has to

specify which elements of the scene may change during runtime.

Compiled-Retained Mode

Compiled-retained mode provides the highest level for optimizations at the scene
graph level. Like retained mode, the application has to build a scene graph and has to
specify which elements of the scene may change. To optimize the execution of the
rendering process some parts of the scene graph can be compiled into a Java 3D

internal format.

It i1s recommended to use the retained and compiled retained modes to take
advantage of the convenience and the performance benefits these modes provide. A

typical Java3D scene graph structure is shown in Figure 14.

58

Behaviour Node

User Code
and Data

View

ViewPlatform Object

Other Objects

Figure 14: Java 3D application scene graph.

A scene graph is a simple and flexible way to represent and render complex 3D
environments. It contains a complete description of the virtual 3D universe. As can be
seen in Figure 14, the scene graph is a directed acyclic graph, whose root node is a
VirtualUniverse object. It is possible to create multiple universes, but most
applications will use only one. This node provides the base of the scene graph. Every
scene graph must be connected to a VirtualUniverse. The children of a
VirtualUniverse are Locale objects. These objects define the origin of the attached
sub graphs in high resolution coordinates. A VirtualUniverse can hold as many
Locale objects as needed. The scene graphs itself start with Group nodes. Group
nodes have a variable number of child nodes including other Group nodes, but

59

exactly one parent node. Many operations on Group nodes are possible, such as
adding, removing and enumerating the children of the node. Many different Group
nodes for special purposes are available, like the BranchGroup node. The
BranchGroup node is the root of a sub-graph of a scene, attached to a Locale or
another Group node. Another Group node is the LOD node, which contains an
ordered list of children and a level-of-detail value for every child. At the end of every
branch there are Leaf nodes attached. These nodes are simply nodes which have no
children. Leaf nodes specify things like lights, geometry, sound, and a view platform
for positioning and orienting a view in the virtual world. Very important Leaf nodes
include the Behavior nodes, which provide the means for animating objects,
processing keyboard and mouse inputs, reacting to movement, and enabling and
processing pick events. These nodes contain Java code to interact with Java objects;
values within a Java3D scene graph can be changed, and other computations

performed.

Despite its major disadvantage of being too slow for PC-resident simulation
application (Java Byte code is interpreted by the Java Virtual Machine, which then
talks to Lower Level OpenGL Layer), Java3D has many advantages:

— Platform Independent

— Ability to distribute over the web (3D Applets)
— Small Code size (similar to OpenGL overhead)
— Also-Magician is a front-end to OpenGL

— Java Language: NO Pointers (No Headaches)

60

3.4.4. VRML

The Virtual Reality Modeling Language (VRML) [VRMLO04] is a data format to
describe interactive, three-dimensional objects and scenes which are interconnected
via the World Wide Web. Figure 15 shows a short code example which creates a box.

It defines a Shape node for the box in a Transform node to locate it.

...

#VRML V2.0 utfs

Hxxx WORLD ****kkxhkwkx

Viewpoint
position 50 10 150
}
Transform {
translation 50 0 50
children [
Shape {
appearance Appearance {
material Material ({
diffuseColor .1 .2 .3}}
geometry Box {
size 20 40 20
}
}
}

Figure 15: VRML code for creating a Box

VRML is capable of representing static and animated objects and it can have
hyperlinks to other media such as sound, video, and image. Interpreters (browsers) for
VRML are widely available for many different platforms as well as authoring tools
for creating VRML files. The VRML worlds can also be viewed through a
conventional web browser with the aid of a plug-in, for instance, Cortona VRML
Client [CORTO04]. These VRML browsers have various navigational tools to let the
user interact with the virtual environment. For example, Figure 16 shows a virtual

city environment, while Figure 17 is a model of a real university campus.

61

Figure 16: A VRML Virtual City in Cortona Browser

Figure 17: A VRML Campus Browsed with Cortona VRML Client

62

VRML supports an extensibility model that allows new objects to be defined and
a registration process to allow application communities to develop interoperable
extensions to the base standard. The most exciting feature of VRML is that it allows
the creation of dynamic worlds and sensory-rich virtual environments. This enables

its potential abilities of visualizing the history of software.

3.5 XML in the Visualization Pipeline

Extensible Markup Language (XML), a simple and flexible text format, is playing
an increasingly important role in the exchange of a wide variety of data on the Web and
elsewhere. The visualization pipeline is a convenient metaphor for the representation,
transformation, and presentation of data. The pipeline is constructed by connecting data

objects and visual objects.

There are various reasons to the use of XML. One of the most obvious reasons is
that XML tells what kind the data is, not how to display it. Because the tags identify the
information and break up the data into parts, a variety of applications, services, and so
forth, can process it. Because the different parts of the information have been identified,
they can be used in different ways by different services as necessary. It is also a benefit
when it comes to generating information that a service then makes available to other

services.

An additional benefit is that XSLT can be used to automate to some degree the
transformation of the raw XML into only those tags that it wishes to deal with. Another
strong advantage of using XML rather than byte streams or text files is that the content

can be validated by using DTDs.
63

In one word, the main benefit of working with XML is that it is emerging as the
standard for information and data exchange between (distributed) application and
services. Through the utilization of XML, the transfer of data to the visualization then
just becomes another of the data consumers in the wider system. The XML pipeline

makes the visualization seamlessly integrate with other parts of the CONCEPT project.

64

3.6 Selecting the Appropriate Graphic Engine

The Java languages are chosen for its cross-platform appeal and the possibility to
convert the application into a Java applet running in a web browser in the future. After
comparing the 3D APIs (see Table 3), the Java3D API is used because it is platform
independent and supports a wide range of geometry file formats. The VRML language
provides an ‘External Authoring Interface’ (EAI) that can be used to control complex

behavior in the VRML world through JavaScript. This feature enables the application

potential future extension to World Wide Web.

Table 3: Comparison of 3D APIs

in a Window

OpenGL Direct3D Java3D
1. PC Driver | Poor Good Very Poor. It is designed to run on
Support for graphic top of the other APIs, so should be a
accelerator cards superset of them when all are
supported in a PC environment
2. Speed Excellent Good Poor. Interpreted
3.Ease of Coding Good Poor Fair
4. Multi-Platform | Good Very Poor (PC | Excellent
support only)
5. Java support Poor Very Poor Excellent
6. Documentation Fair - Fair Fair
7. Ease of Drawing | Poor in base standard - | Good Fair
Text you have to use bitmaps.
Good if you use GLUT.
8. Ease of Running | Poor Excellent Not really applicable

65

3.7 Related Work in 3D Software Visualization

3.7.1. Software World

The Software World [KNIGOO] is a visualization targeted at Java code that
encompasses real world items based on city and urban development and cartography
in an attempt to deal with visualizing software systems of different sizes in a coherent
manner. It maps the “Software World” as the whole software system where countries
stand for the packages in Java, a city represents a file from the software system, a
district symbolizes a class, a building portrays a method, and a monument depicts a
class variable. The streets, which connect the districts, illustrate the relationships
between classes. In Figure 18, a district shows many small methods and three larger

ones represented by buildings.

Figure 18: An overview of a district in Software World

66

It has a prototype implemented using Java and MAVERIK [MAVE 04].
MAVERIK is a publicly available virtual reality (VR) system and has been under
development by the Advanced Interfaces Group since 1995. More information about

MAVERIK can be found in [MAVE 04].

3.7.2.sv3D

Source Viewer 3D (sv3D) [MALEO3] is a software visualization framework that
builds on the SeeSoft [EICK92] metaphor. It brings a number of enhancements and
extensions over SeeSoft-type representations. In particular it creates 3D renderings of
the raw data and various artifacts of the software system and their attributes can be
mapped to the 3D metaphors at different abstraction levels. It implements improved,
object-based user interactions, while it is independent of the analysis tool accepting a
simple and flexible input in XML format. The output of numerous analysis tools can
be easily translated to sv3D input format. The sv3D is implemented in C++ and uses

Qt [TROLO04] for the user interfaces and Open Inventor [OPEN04] for 3D rendering.

Figure 19 shows a 3D overview of a small system with 30 C++ source code files
and approximately 4000 lines of code using sv3D. Each file is mapped to one
container. Each container is made up of a number of poly cylinders. Each poly

cylinder represents a line of source code.

67

PR

S

Fid e Frant st et T i sameead Dot mad] s vt v mad Taoes Dhamae s

A A s g

Figure 19: Overview of a system in sv3D

While Figure 20 shows only one file. The container represents the file; each
cylinder represents a function; the color represents the hit count for each function; the

height of the cylinder represents execution time of the function. A handle box

manipulator is active on the container.

Figure 20: View of one file in sv3D

68

3.7.3. VizzAnalyzer

The VizzAnalyzer [WELFO03] is a framework allowing the combined use of
analysis methods and metaphors to efficiently identify architectural entities. The
advantage is the decoupling of analysis and visualization, supporting specific tools
and processes for each. Analysis and visualization techniques fit well together and
accomplish each other through well-defined interfaces. These interfaces allow the
individual development, and enhancement, of visualization and analysis techniques,

in the way that they can be just exchanged or plugged into the framework.

Some parts of the implementation of the VizzAnalyzer prototype use Java3D as
the graphic engine. It maps the graph representations of the low level and high level
analysis results to a Java3D SceneGraph. The example in Figure 21 shows a view of a

package hierarchy using cube and sphere metaphor.

vis.visad, Cl14#

Figure 21: A package hierarchy using the fully qualified class names.

69

The VizzAnalyzer tries to provide the user with some choices of different
metaphors and layout algorithms [PANAO3], whereas the 3D City metaphor can be
one of the choices. For example, In [PANAO3], Thomas Panas et al. suggest that
Figure 22 illustrates both static and dynamic information about a program. From a
static point of view, the size of the buildings gives the user an idea about the amount
of lines of code of the different components. The density of buildings in a certain area
shows the amount of coupling between components, where the information is
retrieved from metric analysis. The quality of the systems implementation within the
various components is visualized through the buildings structures, i.e. old and
collapsed buildings indicate source code that needs to be refactored. However, this
3D city implementation is based on 3D Studio Max [DISCO04], which is a widely used
3D tool by professional artists and designers to create visual effects, games, and

designs. So it is still far away from automatically generating a 3D city scene.

Figure 22 Top view of a 3D city with business information

70

3.7.4. MetaViz

MetaViz (Metaball Visualization) [WANGO3], a plug-in of the CONCEPT
project [RILLO02], is a software visualization system that uses Metaballs. Meatball is a
3D modeling technique, which has already found extensive use representing complex
organic shapes and structural relationships in biology and chemistry, to provide
suitable 3D visual representations for software systems. CBO (Coupling Between
Objects) is the measurement of internal relationships among software artifacts. It is
used to measure design and code quality by investigating the coupling among classes.
MetaViz is useful for showing the couplings of software artifacts. Figure 23 shows

the coupling relations in a system.

Figure 23: A view of CBO in MetaViz

71

3.7.5. UML3D

UML3D [XTANO3], also included in the CONCEPT project [RILL02], applies 3D
visualization techniques to UML by taking the advantages of 3D space. It integrates a
self-organizing layout algorithm for both traditional 2D UML and 3D UML diagrams.
The use of layout algorithms can reduce the complexity of a graph and facilitate the
task of program comprehension. Moreover, UML3D addresses some other
shortcomings of UML by providing intuitive navigation and interactions with the

diagrams. Figure 24 shows a system with over 200 classes.

Figure 24: A class diagram of a system with over 200 classes

In summary, these related researches illustrated different approaches of using

three dimensional visualization techniques. Software World is the first implementation
72

using the real world metaphor. The sv3D is highlighted by flexibly displaying different
levels of abstraction. VizzAnalyzer is characterized of the claim to combine program
analysis and visualization together. Both MetaViz and UML3D show the ability of

automatically generating appropriate pictures, while MetaViz examined a novel metaphor.

73

Chapter 4

The Java3D Virtual City

This chapter introduces first some of the reasoning in selecting the Virtual City metaphor
for the visualization of the software structures. We then describe the JAVA 3D
implementation of the Virtual City referred to as JVC, and its integration within the

CONCEPT environment.
4.1 The Metaphor: the Virtual City

4.1.1.Why Virtual City?

Metaphors, when depicting real world and establishing social interaction
[RUSSO00], especially in virtual reality, become very important in developing
successful visualization tools. The major challenge lies in selecting a metaphor that
will improve the usability of the visualizations created. One fundamental problem
with many visual representations is that they have no intuitive interpretation, and the
user must be trained in order to understand them. Metaphors found in nature or in the
real world [KNIGOO] avoid this by providing a representation that the user is already

familiar with.

The selection and use of metaphors [KNIG0O, RILL02, WELF03, PANAO3,
XIANO3] is not without controversy, because identifying the suitability of a metaphor

is a very subjective matter [KNIGOOb]. For this research we selected the Virtual City

74

metaphor because it is based on a metaphor (city representation) most users are
familiar with from their daily life. Further, this metaphor provides some new
approaches to address the challenges of software visualization such as scalability,

navigation, visual complexity and so on.

4.1.2. The Virtual World Metaphor

In what follows, we first introduce and discuss some cognitive aspects related to

the structural understanding, using a city landscape metaphor.

In his book "The image of the city” [LYNC60], Kevin Lynch describes a study
that looked at how people build a mental representation of a city they live in. Lynch
isolates five distinct elements of the mental representation of the city, which he calls
the "environmental image". The five elements of the environmental image are paths,

edges, districts, nodes, and landmarks. More detail is given as follows.

A "node" is a distinct location in the environment. This may be a place, a piece
of a forest, a room or whatever - it is a strategic spot in an environment the user can

enter.

A "path" is a channel along which the observer moves. For many people paths
are the dominant environmental elements as people often remember spatial concepts

in terms of paths. Paths connect nodes or lead to nodes.

"Edges" are borders perceived in the environment. The perception of a linear
element as border or path depends mainly on the perspective of the observer - what is
a path for the one person may well be seen as edge by another person. For instance

75

what is seen as path by a car driver is seen as edge by a pedestrian trying to cross the

street.

"Districts" are sections of cities perceived as one area because the objects
(buildings) show common character. That common character can be functionality
provided in the area, like in a harbor area, or the age of houses, like in the center of

old cities. Districts often are surrounded by paths or edges.

“Landmarks” are strong points of reference often to be seen from far away.

The discussion above reflects the psychological perspective of how people learn
and comprehend a city image. Learning a city image is a long and complicated
process. The design of a city has a significant influence on the travelers’ ability to
navigate and comprehend the layout and representation of the city. Is there a certain
set of guidelines that can provide guidance on how paths shall be designed and cities
laid out to give the observer a sense of the whole structure - to help building a visual

abstraction of the city?

Indeed there exists such a set of "guidelines". The most important rule is to
heighten the visual identity of city elements and to structure the environment in a
clear way. Paths among buildings have to act as key lines that should show a singular

quality. A visual hierarchy of paths and edges has to be provided. Paths and edges
should exhibit a sense of directionality. Lynch summarizes these and other rules in a

set of 10 guidelines [LYNC60]:

76

"Singularity or figure-background clarity and sharpness of boundaries".
This guideline aims at the qualities of city elements which make them

identifiable.

"Form simplicity". City elements should strive for clarity and simplicity of
visible form in the geometrical sense as these forms are more easily

incorporated into city image.

"Continuity" in edges or surfaces, nearness of parts, repetition of rhythmic

intervals.

"Dominance of one element in an ensemble" translates to a cluster of
elements grouped around one major element. Lynch calls this process

"abstraction".
"Clarity of joint" means high visibility of joints and seams.

"Directional differentiation" means that city elements should exhibit
directional qualities. These qualities differentiate one end from the other

and are very useful in structuring on a larger scale.

"Visual scope" is quality of the environment which influence the range of
vision - be it actually or symbolically. Examples are transparencies,

overlaps, vistas, panoramas and several others.

"Motion awareness" argues that actual and potential motion shall be made

explicit to the observer.

77

9. "Time series", for instance sequences of landmarks, are series of elements

which are sensed over time.

10. "Names and meanings" are non-physical characteristics which may
enhance the elements more imaginable. They sometimes give clues about
the location (like in "North Station") or trigger historical, functional or

economical associations.

Adherence to only one or two of these guidelines will not make an environment
easy to learn - instead it is the total orchestration of these units which can knit
together a dense and vivid image and can help maintain this image over areas even of
metropolitan scale. If environments feature a strong visible framework and highly
characteristic parts the exploration of new sectors is easier and more inviting. Going

back to the already known areas then will communicate a feeling of "home".

The environment acts as the information carrier. Objects in space give
information about their usage. Many objects are formed in a way that it is evident
what they are meant for. In order to establish a meaningful mapping, we have to

examine the real word properties and structures that can be modeled.

From the view point we adopted in this research, the world can be represented at

different levels of abstraction, which can be briefly described as

World, flattened, overview picture, atlas style, not showing necessarily all the

countries as it would be known in standard geography. The world view would show

78

however the major participants (continents) at a very high level and the

relationships between those elements.

Continent, a continent is a group of countries. At this level of abstraction, the

user will be able to see all the countries associated with the particular continent.

Country, Each continent consists of one or many countries. The view provides a
way of splitting the items in the world down one level without the detail that is

provided by the next level down.

City, are the next level of detail. Each country consist of or more cities. These
cities are composed of sub-areas but to ease the navigation and complexity of the

visual, only the larger districts might be shown in this view.

Districts, there can be several of these in a city, the number depends on the level
of information detail to be presented. Districts group together related aspects of the
city and provide groupings to be used when moving from a higher level of

abstraction to a more detailed level,

Streets/Buildings/Gardens/Monuments, these show the detail of the
visualization and provide the next level of abstraction down from the districts. They

also act as legibility features and landmarks of the city,

Inside Buildings/Gardens, this is the finest level of detail, where detailed direct

mappings from the code to the visualization can be made.

79

4.1.3.The OO Program Artifacts

An Object-Oriented program is a collection of Classes and Objects of those
classes. Objects are instantiated from classes during the execution of a program. So
they are components of a dynamic system. In a program, there will have variant

numbers of classes. Four types of relationships between classes are:

Association: it is a bi-directional connection between classes.

Aggregation: it is a relationship between a whole and its parts.

Dependency: it is a relationship between a client and a supplier where the client

does not have semantic knowledge of the supplier.

Inheritance: it is a relationship between a super class and its subclass.

These visualizations can theoretically be used to visualize any modern object-
oriented although in practice this does not work due to differences in the structure of
languages such as C and C++. Our work currently focuses on the visualization of Java

code. The items of interest in this language are listed in Table 4.

80

Table 4 Language issues of OO programs

Item

Properties

Files

Name
Size
Location

Packages

Name
Files

Classes

Name

Extends from and implements (inheritance information)
Package contained in

File contained in

Accessibility (which modifiers are used)
Imported packages

Is inner class

Properties can be expressed numerically:
Number of constructors

Number of methods

Number of attributes

Number of children

Number of parents

Lines of code

Age of code

Methods

Name

Parameter names and types

Return type

Exceptions thrown

Usage

Accessibility (which modifiers are used)
Number of arguments

Number of lines of code

Is Static

Attributes of a class

Type

Value at declaration (if any)
Accessibility / Protection

Is Static

Is Array

Usage (?)

Is constant

Method / Function
(local) variables

Name

Type

Value at declaration (if any)

Usage

Accessibility (which modifiers are used)
Is array

Is constant

Scope within the method/function

81

These items form the basis of the artifacts that will be visualized. There is also a
hierarchy implicitly imposed on the information because of the design of the Java
language. Each piece of code must be in a package and a class, so complete ordering
information exists. Packages contain classes and classes contain methods, attributes,

etc.

All of the items of interest can be obtained from a static analysis of the source ode.
Further analysis on the result can abstract higher level information. The aim is to set a

coherent visualization system to visualize these items and higher level abstractions.

4.1.4. Mapping the Virtual City Metaphor to OO Artifacts

The OO languages elements can be mapped to different visualization levels as

shown in Table 5.

82

Table S Mappings

Visual objects | Program artifacts Description

World A system as whole Shows the different systems the current system
is interacting with.

Continent Group of countries A system and its major subsystems (overall
architectural view)

Country Group of cities A subsystem view

City A subsystem A particular program/subsystem

Block /| A group of classes Classes with Inherence relationship can be

District grouped into a block or adjacent blocks

Building Class. Each building has orientation.

Floors Methods (and constructors). | Use colors to identify Private, Public
Use transparence to indicate Virtual

Entrance Return type and name Return type and method name can be shown on
the entrance door.

Windows Arguments list Windows spread on walls represent parameters.
The number of windows directly correlates the
number of the arguments.

Path/Road Relationship between | Association etc

classes

Height of a | Number of lines of code in a

floor method

4.2 System Overview

In this thesis we combine 3D visualization and navigation techniques as suggested

83

in [BALL96] with different types of program analysis [RILL02b]. The combination of
program analysis [RILL0O2b, WELF02] and software visualization techniques is crucial to
succeed in comprehending larger systems and their architectures. Program analysis not

only provides additional insights, interpretation, and filtering techniques for the

information to be displayed, but also provides additional challenges with respect to

visualization and graphical represent this additional information in an intuitive form.

4.2.1. Proposed Approach

We propose the use of 3D visualization techniques and program analysis
techniques to enhance the expressiveness of the software visualization representation

to guide programmers during the comprehension process of larger systems.

Software visualization has been widely used by the reverse engineering research
community during the past two decades [STOR97b, STOR98, STOR01]. Many of
them provide ways to uncover and navigate information about software systems as we
discussed in the previous chapters. Our visualization approach differs from existing

software visualization techniques in two aspects:

e Adding an additional dimension comparing to the majority of two dimensional

tools.

e Enriching the visualization with program analysis while reducing visual

complexity due to information filtering and grouping.

For example, in Figure 25, we see JVC showing an example of a virtual city. It
visualizes classes as buildings. The layout correlates with the coupling relationships
among classes. This view permits us to answer questions about the size of the system,

about the location (relative to other classes) and the size of classes.

84

Figure 25: An example of a Virtual City

The visualization approach is part of the CONCEPT (Comprehension Of Net-
CEntered Programs and Techniques) [RILLO2b] research project. The CONCEPT
project is a reverse engineering environment that integrates software visualization and
program analyses techniques, such as program slicing, design recovery [ZHANO3],
and software metrics [WENGO3]. Figure 26 [WENGO03] shows an architectural
overview of the CONCEPT project. In the following sections we discuss some of the

implementation details including the integration of the JVC tool within the

CONCEPT project.

85

Extractor

Figure 26: The Architecture of CONCEPT

4.2.2. The CONCEPT Project

The CONCEPT [RILLO2b] is a lightweight reverse engineering environment in
which we utilize to investigate novel program comprehension techniques and
approaches to assist programmers during the creation of mental models while
comprehending software systems. Within our CONCEPT project, we are exploring
new program slicing algorithms and their application in different software
engineering sub-domain, e.g. software measurement, design pattern recovery,

software visualization, feature analysis, and architectural recovery, etc.

The CONCEPT framework is built as a layered architecture as shown in Figure
26. The meta-model stores both static and dynamic source code information derived
from the parsing and monitoring layer. The database API layer decouples the analysis
layer (slicing, measurement, and feature extraction, etc) from the repository. The

visualization and application layer are created on top of the analysis layer.

86

4.2.3. The Visualization Process

Our visualization process to illustrate our program representations is depicted in
Figure 27. Source code is being read in during the Low-level analysis phase and
stored as a source and class representation. While the source representation holds
basically only an abstract syntax tree for syntactical program check, the class
representation can be of different forms. Subsequently, high level analysis is
conducted on the class representation in order to detect aspects, design, connectors
and components, etc. The final information is stored within the aspect and the

architecture representation.

Metaphor
7y
v

Architecture Representation |g —

High
Level

p

Class Representation —_— .
P Rl > — — — »| Pictures

SM AT A

Source Representation — — — p

Source Code

Figure 27: The Visualization Process in JVC

There are essentially three distinct conceptual parts to our JVC design. The first is

the GUI model, which is an abstract model for the interface system. The second is the

87

3D graphics model, which is an abstract model for computing the 3D graphics. The

final one is the visualization model, which is a data-flow model of the visualization

Process.

4.2.4.The GUI Model

The GUI model takes advantages of JFC/Swing’s capabilities to realize multiple-

view, user control etc functionalities. In Figure 28, the main window of JVC

illustrates these concepts in a concrete form.

s Windowing Controls |

Detailed / Middls Level View Window

T Loral Controls ;

; mosite, Patiom Source View Window

ARt H
Tsnomiorpoies: H
i Gundiar i

% it i Compisite
s
s

e

; extoan o1 b Soonon Desye P

Tntent

Cornpase abjects into tree strictires to represent part-whole hisrarchiss. Composite I
clents treat individual objects and compositions of cbjects uniformly:

iLocal Controls

| plicabibity

Figure 28: The main window of JVC

88

The GUI model contains some key objects as labeled in Figure 28:
Multiple Windows

The multiple-window design realizes the idea of program information residing in
deferent levels as we stated earlier. Thus we implement three windows in the main
interface: overview window, middle level view widow, and source view window. The
overview window gives the user an overview about the target system; the middle
level window displays information that the user is interested in. This is the major
window where the user manipulates the scene; finally, the source window links to
source code or its documentation, e.g. Java Doc. This window is powerful since it can
display not only plain text file but also HTML file with the ability to trigger

hyperlinks.
Tabbed Panels

The tabbed panel design is filtering technique that allows several components to
share the same space. The user chooses which component to view by selecting the tab
corresponding to the desired component. The system can automatically generate

certain number of tabbed panels with tab titles according to the underline data.
Global and Local Controls

Both controls give users flexibility to manipulate the scene thus aid to establish
their mental model of their interests. As the name suggested, global controls are

functions being in charge of the whole system. We provide the graphic options such

89

as anti-aliasing, background changing, lighting etc. as well as some monitoring

functions, for example, real time memory usage monitor.

Menu Bar

Menu bar is necessary to every application. In our system, the menu bar is an
alternative way of some global controls and windowing functions. Further

enhancement should be made to provide more functionality to the user.

Windowing Controls

Same as the most of windows applications, these controls allow the user to

minimize, restore, change size of, and close the main window.

4.2.5. The 3D Graphics Model

The graphics model used for our JVC tool is based on Java3D scene graph, which
is an acyclic, directed graph of nodes, where nodes correspond to such objects as
primitive shapes, lights, cameras, viewpoints, transform groups, and branch groups.
This model closely follows the state-machine based, graphics engine that is
implemented in OpenGL. The rendering process is a traversal of the graph, where
each node affects the current state of the rendering process. Thus, the order of the
nodes in the graph has significant impact on the final image. Although the state-based
traversal is powerful and efficient, it does violate a fundamental principle of object-
oriented design. That is, the behavior of every object is completely determined from
its inputs and local instance variables. In a scene graph, changes to a node in the

graph can affect objects downstream of the graph traversal. Also, the Java3D scene

90

graph model is not intuitive to programmers who are attached to OO programming,
like us. These are some of the reasons why it took us pretty efforts to master Java3D

at the beginning.

Figure 29 gives an example of a typical scene graph to construct a virtual city
scene in JVC. The VirtualCityPanel is a JPanel container which contains a Simple
VirtualUniverse, which represents all the virtual objects that can exist within the
particular 3D environment; a Canvas3D, which provides a drawing canvas for 3D
rendering; a ViewPlatform; which controls the position, orientation, and scale of the
viewer; and the city BranchGroup, which serves as the only pointer to the root of the
whole scene graph by being attached to the Local object in the Simple

VirtualUniverse.

91

VirtualCityPanel
-
T
‘/,///‘ ///
.~ CityMap
KeyBehavior N
) e k #%getlocation()
g Clty ®getXSize()
/ (BrachGroup) = 4getYSize()
N pattachNeighbors()
L e / NN ®randomize()
PickDoubleClic - N $Ci
oubleC = / \\ \ C|tyMa;?()
ehavio - / N &preadObject()
\
\\ .
Light Py \\ \\
TransformGrou fuciure \ N
(p) (BackGround) (BranchGroup) \ \\
A\
\ \
\
\
\
\ N
\\
AN
\ \
\\ AN
AN
Road | PolygonBu| | CylinderBuilding | | ©omplexBuilding | | LandMark | ™ g e
ilding (BranchGroup)
~ : | e
\‘ AN \ Ve / ST
N\, \ / / //
\; \\ N 4 v e
AN N\ Textured TextureBox //
N AN Cylind ///
. \ 7
\ / s
AN N] // -
SN | / 7
\\ 1 / e
O\ ‘\ /’/ .
WY
QuadPlain (TranformGroup)
Appearacelib
L N T~ | <<Interface>>
> GeoConstants
- (from geometry)
v T
TextureLib [~

Figure 29: Class diagram for a typical scene graph in JVC

92

4.2.6. The Visualization Model

The visualization model captures the essential of the visualization tool. It is based
on the data-flow paradigm adopted by many commercial systems. Figure 30 gives a
detailed view of dataflow within the whole CONCEPT environment, where our

visualization model corresponds to the Visualization Processing segment.

= < GUI
v g Z
Source ||| B Postgres : XML B,
Coe 12 Databases = le S
= B =
5 3
7 Structure -
Recovery 3 Represe
8 n-tations
Metries 2
AST Desi =y
(Abstract :tstleg:ns h
Syntax Tree) P

Figure 30: The detailed dataflow within the CONCEPT

In the dataflow paradigm, modules in the visualization model are connected
together into a chain. The modules perform algorithmic operations on data as it flows
through the chain. The execution of visualization chain is controlled in response to
demands for data (demand-driven) or in response to user input (event driven). The
appeal of this model is that it is flexible, and can be quickly adapted to different data

types or new algorithmic implementations.

Our visualization model (see Figure 31) consists of two basic types of objects:

process objects and data objects. Process objects are the modules, or algorithmic

93

portions of the visualization chain. Data objects, also referred to as datasets, represent

and enable operations on the data that flows through the chain.

Process Objects

i Sources '7 —>| Mappings l

| Data Objects
A 4 E

XML file

Memory data Memory data
structure g structure

v

Figure 31: JVC Visualization Model

Process objects may be further classified into one of three types: source, filter,
and mapping objects (see Figure 31). Source objects initiate the chain by reading an
XML data file, generate one or more output datasets, and write or update the data file.
(Figure 32 is the XML pipeline in JVC). Filters take one or more inputs and generate

one or more outputs. Mappings, which require one or more inputs, terminate the chain.

94

Visualization
(XML file Q IVC

CONCEPT
Analyzer

Figure 32: The XML pipeline in JVC

In order to represent the map of a virtual city, we choose a structured Grid,
composed by Cell and Line, as the major data type in JVC. The class diagram for this
data model is shown in Figure 33. An important feature of this data model is the
concept of cells. A grid consists of one or more cells according to size of objects to be
visualized. Each cell is considered to be atomic visualization primitive. Cells
represent topological relationships between the points that compose the dataset. The
primary function of cells is to locally interpolate data or compute derivatives of data.
Further, a cell can be a divided in to a sub-grid. This feature enables the visualization
model can deal with any number of objects. Lines represent relationships between
cells. We use HillClimb algorithm to minimize line crossing in the map as shown in

Figure 33. We introduce the grid layout and grouping algorithm in section 4.3.2.

95

Citviiap

%getlocation()
Eet}{ Size()
etY Size()
2

l

Grid
Lbom Izou)

BuxBound :int
Bound :int

FeprojectCross: int = Integer....

“Heak

H Qiwb
gram Hildimbirg)

nVALUE

-cells “,
: N
Call LineZd Poirt2i
{abom lzpoul oM Hidimbing) hom o
%'" @... -p .;&_D
2

$TO PEAK :int = nte..,

SEVEREST :int=0

Climb Strateg 2
(rantilidimbirg)

%0imb Strateg 20
TogetMext State()

Figure 33 : The class diagram of JVC data model

4.3 Implementation Issues

4.3.1. The System Structure of JVC

The system structure of JVC is shown in Figure 34. There are many challenges in
implementing this structure. One of the most is mixing the lightweight Java Swing
and the heavyweight Java3D components. A heavyweight component is one that is
associated with its own native screen resource (commonly known as a peer). A

lightweight component is one that "borrows" the screen resource of an ancestor

(which means it has no native resource of its own -- so it's "lighter").

96

“.‘stateChanged() e
®getPreferredSize() |-

_ MtemStateChanged() B
------- ‘actlonPerformed() T
Cn %maing) RS

S Ul"uﬂﬂemoryMomtor

\rgp
GIobaIPanel
Q}ih’d’ex int

- *GlebaIPanel()
.| %stateChanged()

Java 3D

Figure 34 Class diagram for JVC system structure

To integrate Java3D and Swing, The basic trick is to add a Canvas3D to a JPanel
so that a scene can be put in a GUI as needed. This means that a Canvas3D will draw

on top of Swing objects no matter what order Swing thinks it should draw in, thus

97

causes some problems, for example, the Swing pop-up menus do not work properly
with Java3D, if the menus were not forced to change to heavyweight from its default
lightweight. The integration between Swing and Java3D is not perfect. There are
overdraw issues and texture management issues. With careful design, most of these

problems can be worked around.

4.3.2. Layout and Grouping

The graph layout problem is an ongoing research area within the information
visualization domain for the last decades. One of the reasons is that many layout
algorithms are not scalable. “Few systems can claim to deal effectively with
thousands of nodes, although graphs with this order of magnitude appear in a wide
variety of applications (HERM00).” A layout algorithm working well for a small
system could become completely useless when the size of the system increases.
Another reason is that many algorithms are lack of full automation. In this context,
Eades and Xeumin [EADES9] suggest three general criteria that constitute "good"

drawing of directed graphs:

1) Avoid upward pointing arcs;

2) Distribute nodes evenly across the screen;

3) Minimize arc crossings.

98

Grid Layout

The Grid Layout algorithm implemented in JVC is scalable and automatic while
trying to meet the three criteria. The automatic layout algorithm contains three basic

steps.

Step 1: Determine the number of nodes and the size of the grid. The grid size is
corresponding to the number of nodes to be put. Later the initial position

of the viewpoint is determined by the size of the grid.

Step 2: Construct the grid and randomly lay out each node. This is accomplished

in two stages:

a) Construct the “neighborhood” relationships of each cell in the grid. This

1s a must for the Hill Climbing algorithm in JVC.

b) Assign nodes to cells based on a random mechanism.

Step 3: Optimize the layout to minimize line crossing by using the Hill Climbing

algorithm.

The third step is optional. When discarding this step, the computational
complexity of the grid layout algorithm is O(n) where n is the number of the nodes to
be displayed. In what follows, we discuss the Hill Climbing algorithm used for the

optimization in step 3.

99

Hill Climbing Algorithm for Cross Minimizing

The basic idea of Hill Climbing is to always head towards a state which is better

than the current one. The general steps of this algorithm can be described as follows:
1. Pick a random point in the search space
2. Consider all the neighbors of the current state
3. Choose the neighbor with the best quality and move to that state
4. Repeat 2 thru 4 until all the neighboring states are of lower quality
5. Return the current state as the solution state

More details about the algorithm can be found in many Artificial Intelligence

literatures.

In this thesis research, we reuse an implementation [WANGO3] developed by
Wang within the CONCEPT research. In this implementation, Hill climbing discards
the states which is worst than the current one, thus its space complexity is O(1). The
computation terminates when there are no successors of the current state which are
better than the current state itself. In this implementation, its time complexity is O(n?)

where n is the number of the entities in the grid.

In what follows we explain how this algorithm can minimize line crossing by

taking coupling relations as parameters.

100

A coupling data can be described as: C(xy, x3, ¢), which can be drawn as a line X
from the position of x; to the position of x, with weight c. Let the optimization
decision variable be X = f (X;, Xy, ..., Xp), where f is the function summing the
values of line crossing among the lines X;, Xy, ..., Xn. So we apply the Hill Climbing
algorithm in steps as shown in Figure 35. The basic idea is that continuously swap
position a random x; with one of its neighbors until it gets a lowest value of the

decision variable or reaches the peak.

Start
Current X value: X,

A

Swap X;
New X value: X

If X1<X,

lYes

Save Grid
XO = Xl

No
Is Peak

Yes

Figure 35: Control flow of Hill Climbing in JVC

101

Grouping

It is clear that layout algorithms on their own often do not provide enough insights
and details to be useful for comprehension tasks. The layout algorithms are
constrained by the amount of information to be displayed and the limited screen space.
Even, if one manages to create a layout, the resulting visual might have far too much
information, causing an information overload. Furthermore, layout algorithms are in
general only concerned with minimizing the crossings among entities. However, it
.has to be noted that minimizing the crossings, might not necessarily correspond to the
logical view a programmer had. Therefore, limiting the number of entities to be
displayed and their logical organization to match the user’s mental model of the
system is one of the key challenges in software visualization. For the visualization of
large software systems, it is essential to provide some type of grouping to create a
decomposition of the system. The grouping can improve readability by supporting a

representation that is closely related to the mental model.

As shown in Figure 36, we can reserve an area of cells easily by setting their
Boolean property: is empty or not. Or we can group some nodes together by putting

them in a split cell as also shown in Figure 36.

102

Figure 36: Group and split cells in a grid

4.3.3. Navigation Methods

The main purpose of visualizations is to facilitate the exploration of information.
Visualizations therefore have to provide navigation tools. Associated with

navigation, two concepts, global context and local focus, are very important.
Global Context

It is very important for the users to quickly gain a rough overview of the
structure of the system. This helps users to build a representation of this structure in
their mind. Such a generated global context gives users a feeling for the structure

(see example in Figure 37), so users know approximately where to find some

103

specific information. Or which parts of the components are very large and therefore
contain much information. This contextual information obviously speeds up
navigation through the information space. The 3D representation of the Virtual City
provides the user with multiple views: overview with highlighting focus, related

source view, and detailed view about the focus.

Navigating through the visualization helps also to build contextual information,
but it must always be apparent to the users where they move. That means moving
from one position to another should be smoothly animated. This is usual in
interactive navigation modes, where the users determine which direction and which

speed they want.

Figure 37: A global view

104

The left top window provides a global overview. Looking down on the
landscape from a position right above the Virtual City, results in a top view of the
city. This view is very meaningful, because it easily can be seen how the classes are

structured and distributed

Local Focus

It 1s not only important to get a feeling for the overall structure of the system.
Usually, users want to quickly find the specific interests. After that they usually
want to focus on the specific components to do some work. Thus only a fraction of
the system is displayed and therefore the frame rate will be easier to maintain at

interactive rates (see example in Figure 38).

lava 3D Virtual City (I¥E 1.0)

Figure 38: A detailed view
105

Corresponding to these concepts, many different navigation methods are
implemented in the JVC. However, the input devices of an average PC are not
designed for use with a three-dimensional interface. So we have to put great efforts
in design a user interface and mouse and keyboard behaviors for the 3D

visualization. Such navigation aids should include:

e A navigation mode to move freely through the 3D space. Such a navigation

mode ensures the user gains an overview over the hierarchic structure.

e The user should be able to easily navigate to the interesting information. This
means providing mechanisms to move easily to child nodes or to the parent

node, so the user navigates rapidly to the desired level of the hierarchy.

o Special views of the cityscape such as a top view should be reachable quickly.
A top view displays the ground plan of a plateau. This should not only work

for the root plateau, but also for every other plateau.

e Often used views of the hierarchy should be reached without much navigation.
A simple mouse click or a key shortcut should be enough to move to such
viewpoints of the system. Also, facilities to define and mange such viewpoints

should be provided.

e Search functionality can be used to navigate quickly through the information
space. The search results could be highlighted and some easy to use facility

should move the user between these objects.

106

e A navigation history which tracks the navigation through the 3D space. It

would be useful to be able to undo or redo navigational actions.

We provide users traditional mouse and keyboard method to zoom in/out, rotate,
and fly/walk through the scene as well as buttons to realize the same functions. As

the input device technology advances, we introduce a new device: data glove.

Data Glove

The data glove is an input device for virtual reality in the form of a glove that
measures the movements of the wearer's fingers and transmits them to the computer.
Sophisticated data gloves also measure movement of the wrist and elbow. A data
glove may also contain control buttons or act as an output device, e.g. vibrating
under control of the computer. The user usually sees a virtual image of the data

glove and can point or grip and push objects.

The data glove provides an intuitive “grab-and-drag” metaphor. In Figure 39,
the user wears a wireless data glove. When the user bends all fingers into a fist, the
entire world can be moved by moving the hand. As long the hand is not in a fist, the
user can manipulate other types of interactions with the virtual world. The data
glove navigation plug-in is currently developed by other members of the
CONCEPT project group. Once the plug-in is available we will integrate this

navigation technique in our JVC tool.

107

Figure 39: Navigate in JVC using data glove

4.3.4. Memory Usage

This issue is important because of some reasons stated as following. First, the
data-flow form consumes a lot memory. Second, Java is a high memory
consumption language, especially for textures. Java3D will make internal copies of
the data so that it is not affected by application code making changes to it. We can
skip this intermediate copy by using the BY REFERENCE capabilities. But this is
still not enough to deal with the memory problem. As mentioned before, the
textures consume huge amount of memory even using BY REFERENCE. We

solve this problem by building a static texture “bank” in memory.

108

Chapter 5

Application of JVC: Visualizing Design Pattern

In this section, we provide a case study showing the application of our JVC environment
for the comprehension of software systems. The essence of program comprehension is in
identifying program artifacts and understanding their relationships. This process is
essentially pattern matching at various abstraction levels via mental pattern recognition
by the software engineer and the aggregation of these artifacts to form more abstract
system representations. In this context, the comprehension of source code plays a
predominant role in ensuring quality during software maintenance and evolution. One
approach to improve the comprehension of software systems through reverse engineering
is by providing higher level of abstraction through visualizing the data that has to be

observed and inspected.

Design patterns are typically modeled in UML. However, the application and
implementation of design patterns and the role of the design pattern might get lost. This is
a major compromise on the benefits of design patterns, because the domain knowledge
and design decisions associated with the original patterns are no longer available. In this
context, tools that enable the developer and maintainer to recognize and visualize
abstractions at a higher level than the code provide an excellent vehicle for understanding

the higher level design and design intents.

109

In this section, we describe the experiment of using the JVC tool to visualize
design patterns recovered from the CONCEPT design pattern recovery process

[ZHANO3].

5.1 Introduction to Design Patterns

Design patterns have become increasingly popular among software developers
since the early 1990s. The culmination of early technical discussions was the publication,
Design Patterns -- Elements of Reusable Software, by Gamma, Helm, Johnson and
Vlissides (1994) [GAMM 94]. This book, commonly referred to as the Gang of Four or
“GoF” book, has had a powerful impact on those seeking to understand how to use design
patterns. Some useful definitions of design patterns have emerged as the literature in this

field has expanded:

o “Design patterns are recurring solutions to design problems you see over” [ALPE

98].

e “Design patterns constitute a set of rules describing how to accomplish certain

tasks in the realm of software development.” [PREE 94]

e “Design patterns focus more on reuse of recurring architectural design themes,

while frameworks focus on detailed design... and implementation.” [COPL 95]

e “A pattern addresses a recurring design problem that arises in specific design

situations and presents a solution to it” [BUSH 96]

110

e “Patterns identify and specify abstractions that are above the level of single

classes and instances, or of components.” [GAMM 93]

From these definitions, we can see that design patterns are not only about the

design of objects, but also about the communication between objects.

Design patterns can exist at many levels from very low level specific solutions to broadly
generalized system issues. There are now in fact hundreds of patterns in the literature.

They have been discussed in articles and at conferences of all levels of granularity.

Table 6 shows the 23 design patterns selected for inclusion in the original “GoF”
book. They are on a middle level of generality, where they could easily cross application
areas and encompass several objects. The authors divided these patterns into three types

creational, structural and behavioral.

e Creational patterns concern the process of object creation. This gives programs

more flexibility in deciding which objects need to be created for a given case.

e Structural patterns deal with the composition of classes or objects. This helps to
compose groups of objects into larger structures, such as complex user interfaces

or accounting data.

e Behavioral patterns characterize the ways in which classes or objects interact
and distribute responsibility. This helps to define the communication between

objects in a system and how the flow is controlled in a complex program.

111

Table 6 Design pattern space

Purpose
Creational Structural Behavioral
Scope | Class Factory Method Adapter Interpreter
Template Method
Object Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command
Prototype Composite Tterator
Singleton Decorator Mediator
Facade Memento
Proxy Flyweight
Observer
State
Strategy
Visitor

5.2 Design Pattern Recovery

Design patterns [GAMM 94] are high-level design elements that address recurring
problems in object oriented design. A design pattern not only provides a solution to a
recurring problem, but also conveys the rationale behind the solution, i.e., not only
“what”, but also “why”. Reverse engineering focuses on creating “representations of a

system in another form at a higher level of abstraction” [CAMP 97].

5.2.1. Literature Review

Many researchers have presented their efforts on automatic recovery of design
patterns in large object oriented programs. As we shall discuss below, most of these
adopt the approach of describing patterns at some level of formalism and then

match the descriptions with the facts extracted from source code.

112

The Pat [KRAM 96] system is a Reverse Engineering tool that searches for
design pattern instances in existing software. Within Pat, design information is
“extracted directly from C++ header files and stored in a repository” [KRAM 96];
“the patterns are expressed as PROLOG rules and the design information is then
used to search for all patterns” [KRAM 96]. Since the Pat system is designed to
collect information just from C++ header files without semantic analysis of the
method body, the authors limit the considered patterns to five structural patterns
introduced in [GAMM 94]: Adapter, Bridge, Composite, Decorator, and Proxy. The
authors of the Pat system state that in the 4 benchmark applications, the precision
ranges from 14 to 50 percent, and will be “much higher if Pat could also check for

correct method call delegations” [KRAM96].

In [ANTO98], Antoniol et al. present a more conservative approach to recover
design patterns from design and source code. Their approach is mainly based on “a
multi-stage reduction strategy using software metrics and structural properties to
extract structural patterns for OO design or code” [ANTO98]. Similar to the Pat
system, this approach also focuses on the same five structural patterns mentioned in
[KRAMO96]. However, in addition to Pat, method delegation a method delegates its
responsibilities by calling another method of associated class is used as a design
pattern constraint to reduce the reported false candidates. The authors conclude that
in public domain code case studies the average precision is 55 %, and that there is
“an increase of about 35% using also the delegation constraint with respect to the

use of structural constraints alone” [ANTO9E].

113

In [FEREO1], Ferenc et al. state that Columbus and Maisa pairs, two reverse
engineering tools, can be used to document and analyze software implemented in
C++ and to verify the architectural design decisions during the software
implementation phase as well. The authors conclude that some patterns, like Iterator
and Observer, cannot be recognized with the current method because the definitions
of these patterns contain generated facts, i.e., “structural facts that are dynamically
pushed to the input by Maisa when it recognizes a particular kind of pattern or a
special kind of a common class relation”. As well as this limitation, they also report

that the performance degrades with large software systems [FEREO1].

In [HEUZ03], Dirk Heuzeroth et al. argue that static analyses are not sufficient
for pattern recovery, and they therefore introduce dynamic analysis techniques to
detect design patterns in legacy code. Through their approach, a set of potential
patterns are firstly detected by a static semantic analysis tool. These candidates are
then examined by dynamic analysis, which are performed by tracing program
executions. The authors report a tremendous improvement in the recovery quality —
the number of false positive cases is very small and “in most experiments even

zero” [HEUZO03].

5.2.2. Design Pattern Recovery in CONCEPT

In this section, we briefly introduce our approach to the recovery [ZHANO3] of
the 23 patterns introduced in [GAMM94] from Java source code. The presented

approach is based on the theoretical foundations of LePUS [EDENO02], a formal

114

specification language dedicated to the general OO design and architecture and has

been implemented by [ZHANO3] within the CONCEPT project.

In the LePUS language, the solution part of design pattern can be described as a
set of participants, i.e. classes and methods, and their collaborations. In order to
formalize the participants of a design pattern, LePUS defines Class and Method as
ground entities, and further, uniform sets and higher order sets as a set of
participants. Clan and Hierarchies are also introduced in order to represent the
dynamic binding and inheritance mechanisms of OO programming respectively. In
order to formalize the collaborations of participants, LePUS identifies a small set of
relations between ground entities, like Deﬁneln, ReturnType, etc., as ground

relations. Set relations and function can also be applied.

In our implementation, we use a simplified version of LePUS to formalize
design patterns, which eliminates some high-order concepts to reduce the
complexity of the formalism. At the same time, we introduce additional relations to
extend the expressiveness of the language. As a result, each pattern is formalized in

several formulae that can be easily implemented.

The recovery process starts from static analysis of Java source code. A source
code analysis tool is adopted to semantically identify ground entities and relations
from source code. Our pattern recovery tool matches the definition of pattern and

the extracted information to identify design patterns in the program.

The approach has been fully implemented and can be used to identify several

design patterns listed in [GAMMO94]. We consider our approach as conservative —
115

that is, all segments of source code which match the definition of pattern will be
reported. However, some false positive pattern recognitions still occur. This occurs
in situations when a source code artifact has the same structure of that of the pattern
definition, but a human with the necessary design pattern domain knowledge will be
able to recognize that this particular design was not intended to be a design pattern

in that particular context.

5.3 Visualizing Design patterns

5.3.1.Target System

Our test is performed to a medium size system written in Java, which has 201
classes. After performing some our CONCEPT program analysis techniques, we got
higher level information. Through software metric measurement [MENGO3], we
got 599 coupling relations among these classes. Through design pattern recovery
[ZHANO3], we discovered 67 “GoF” design patterns in 8 kinds with 1205

participants (classes, methods, and attributes).

5.3.2. The Input XML File

All these information are written into one XML file. Figure 40 lists a short part
of this data file as an example. The file contains three separate kinds of information:
Class information, Coupling relations, and Design patterns. As we can see in the
sample file, class information includes class ID number, name, number of lines of
code, number of method, etc. The coupling relationships are obtained by the
CONCEPT metrics analysis [WENGO3]. Each relationship contains a source class,

a destination class, and a weight measurement of this relationship. Design patterns
116

are recovered by design pattern recovery techniques stated in 5.2.2. We numerate
each design pattern as its unique ID (patternID). Each pattern data contains the
pattern type name, participate entity ID (componentID), name (componentName),

and hierarchy level (componentType), and its description.

] <?xml version="1.0" encoding="UTF-8" 7>
i - <entity_relation>
i <!—the following is class information -->
- <entities> i
- <entity id="200" name="conceptjava.tree.VarDeclarationStatement" numofline=98”, i
numofmethod="5"> <coordinator x="0" y="0" z="0" /> {
</entity>
</entities>
<! — the following is coupling relationship data -->
- <relationships>
<relationship from="200" to="24" weight="1" />
<relationship from="200" to="83" weight="1" />

</relationships>
<! —the following is design pattern data -->
- <patterns> {
- <pattern patternID="11" patternName="Singleton"> <component componentID="0" :
componentName="concept.java.FileClassLoader" componentType="100" |
description="singleton class in Singleton pattern" /> :
</pattern>
</patterns>

</entity relation>

Figure 40: Sample XML data in JVC

5.3.3. The Results

Using the city landscape to represent design patterns has shown to be a
promising approach to visualize the structure of these patterns for several reasons.
Using the city landscape provides a mental model that closely corresponds to the

visualizations used by city planners to model and design city layouts

117

The height of the buildings maps to the size of the classes (relative to the source
code). Color (texture) is used to indicate hotspots and to visually distinguish classes
and their participation in design patterns. Figure 41 shows a screen capture view
created by JVC. The left top window shows a global system view providing the
user with a general overview of the system and its structure. The main window
provides a detailed view which is dependant on the selected view. The user can
select among several views and filtering techniques to reduce the information
complexity. Within the Virtual City, we provide the user with the ability to focus
either on the structure of a particular instance of a design pattern in the program
(shown in Figure 42), while Figure 43 shows a screen shot of the Java Doc of the
system. The left bottom window provides a description of the “GoF” description of
the design pattern, including information about the intent and usage of the specific

design pattern.

Composite Pattern

I S
e

iprote DesiprEveon:

Intent

Cormpose objects into tres structures to represent part-whols hisrarchiss,
Corposite lsts clients treat individual abjacts and compositions of cbjects
anifbrraly.

Figure 41: Design pattern visualization in JVC

118

Figure 42: Close view of a design pattern

RETURN
Al Classes Overview: Package [[HEITN Tree Deprecated index Help

EREVCLASY NEXT.CLASS FRAMES NO FRAMES
Packages SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHQD

<unnamed package>
alnorithm Jayout
alnorithm.layout:astar
algorithm layout:hilcli

Class City

java. lang. Object
L.city

All Classes

AStar

public class City

AStarTest
Animate T exturesBehavioi
i extends java. lang:Object

AQQQEFBI’IQEL,I 3
BolckPlane
Building
BuildingEntity
CAppearance
oxml

ClimbStrategy2
CalorCongtant

ColouredTiles
ComplexBuilding
CylinderBuiiding

drawRelationLines ()

getBlockSixe ()

Figure 43: Java Doc of a class

119

Figure 44 shows two zoomed and rotated views of the design pattern providing

detailed visuals on the different participants in the pattern and their roles.

Figure 44: Detailed view of a design pattern

120

Other filtering options include the visualization of design patterns of a specific
size (depending on the number of participating classes) or by selecting only design
patterns of a specific type (see Figure 45). Figure 46 illustrates two views using
filtering techniques to show only pattern classes or the other classes without pattern

classes.

{5elect & Pattern select Number of Classes In‘vnlvedﬂf"é

.

Figure 45: The ComboBox for selecting options

121

rtual City (J¥€ 1.0)

Figure 46: A virtual city shows pattern classes only (top) or classes without the pattern classes
(bottom)

122

5.3.4.Discussions and Limitations

In our case study of visualizing design pattern, we illustrate the importance of
providing visual abstractions that provide an intuitive representation of information
derived from source code analysis. The presented case study presents the
applicability of the presented visualization approach for a small-medium size
system. The use of different abstraction levels improves the navigation through the
virtual city representation. Filtering techniques provide an essential mechanism to
reduce the amount of information and therefore the cognitive load for the user.
However, our current approach is limited by several major factors. (1) Providing an
intuitive and to the user meaningful visualization, it will require that the design
pattern visualization closely matches the expected representation of the pattern (e.g.
as documented in the “GoF” book). Achieving such a close representation however
will require the provision of layout algorithms that are specialized in visualizing a
particular design pattern. (2) We have not yet addressed the issue of crosscutting of
design patterns. This situation commonly occurs when a class (or its components)
participates more then in one design pattern. (3) The design pattern recovery
process and its precision will have to further be optimized to reduce the number of
false positive detections. This corresponds to situations, and then the algorithm

wrongly detects patterns in the source code.

123

Chapter 6

Conclusions and Future Works

Numerous techniques to visualize software systems are available today. Several of these
techniques go beyond the traditional approach of 2D representations and utilize the 3D
space. In this research, we explored the Virtual City metaphor for the visualization of
software systems and presented different techniques to improve the comprehension and

scalability by providing different levels of abstractions.

We introduced the Virtual City metaphor as a basic notation for our software
visualizations. The mapping we introduced is based on the following view: A virtual
world is a flattened overview of the system; a city is detailed view highlighting functional
group; Districts are Classes that are clustered based on their associations; and a building
represents a single class as the smallest entity. The size of a city is proportional to the
number of the buildings it contains. The height of the buildings maps to the size of the
classes (relative to the source code). Some attributes of the 3D objects are used to
represent the properties of classes. For instance, color and texture are used to indicate
hotspots and to visually distinguish classes and their participation in design patterns. The

city is constructed based on grid layout and grouping algorithms. This technique also

scales well to size of a city.

Program analysis can provide additional insights and guidance in filtering and

visualizing the information. Our grid layout technique improves the readability of 3D

124

visuals on screen. For example, buildings’ locations are computed by taking the coupling
relations among classes as parameters. Thus, their adjacency represents the coupling

measurement.

We also presented a pure Java implementation and a case study on visualizing
design patterns. One of the immediate results of our prototype implementation was that
3D visualization techniques can enhance and benefit the comprehension process by

enhanced utilization of screen space and additional visualization effects.

However, several main challenges remain that go beyond just moving to 3D space
or applying some layout or clustering techniques. Remaining key challenges are the re-
creation of a mental model that closely corresponds to the mental model
designers/programmers developed during the originally forward engineering process. No
matter what layout, clustering or grouping algorithm one applies to identification and
analysis of logical relationships among different software entities, they always will be
limited by the quality of the algorithm and the lack of domain knowledge modeling.
Overcoming these limitations requires additional information sources (other than source

code) and domain knowledge.

With more and more applications moving into distributed and network centered
environments; software visualization, analysis techniques, as well as grouping and layout
approaches have to keep up with these changing requirements. Visualizing dynamic and
behavioral aspects has additional challenges in the form of filtering large amount of

information.

125

Since the JVC is the first implementation, numerous improvements and

extensions are possible. In what follows, we summarize some of them.

Navigation History. It is important to “remember” the navigation history for the
user so that user can trace his understanding track. This can be done by either

saving the screen as a picture, or writing the scene to a VRML file.

Client - Server Visualization. Visualization result in VRML format can be
transmitted over networks. Therefore, the user can submit source code at the
client side. The sever side performs the automatic analysis and visualization
process, and then send the result VRML file to the client side. The user can freely

browse the scene via any VRML browser.

126

References

[AGRA 90]

[AGRA 93]

[ALPE 98]

[ANTO 98]

[ATT 04]

[BALL 96]

[BASI 95]

Agrawal H. and Horgan, J, “Dynamic program slicing”, In Proceedings
of the ACM SIGPLAN’90 Conference on Programming Language Design

and Implementation, SIGPLAN Notices, 25(6) , pp. 246-256, 1990.

Agrawal H., DeMillo, R., and Spafford, E., “Debugging with dynamic
slicing and backtracking”, Software — Practice and Experience, 23(6),

pp. 589-616, 1993.

Alpert, S., Brown, K. and Woolf, B., The Design Patterns Smalltalk

Companion, Addison-Wesley, 1998.

G. Antoniol, R. Fiutem and L. Cristoforetti, “Design Pattern Recovery in
Object-Oriented Software”, In Proceedings of the 6th Workshop on

Program Comprehension (WPC), pages 153-160, Ischia, Italy, June, 1998.

ATT Research, CIAO, http://www.research.att.comy/, March 28, 2004.

Ball T., Eick Stephen G., “Software Visualization in the Large”, [EEE

Computer 29(4): 33-43 (1996).

Basili V., Briand L., Melo W., “Measuring the Impact of Reuse on

Quality and Productivity in Object-Oriented systems”, Technical
M

127

[BASI 96]

[BASS 02]

[BARR 81]

[BECK 94]

[BENE 91]

[BENF 94]

[BOEC 85]

Report, University of Maryland, Department of Computer Science, CS-

TR-3395, 1995.

Basili V.R., Briand L.C., Melow W.L., “A Validation of Object-
Oriented Design Metrics as Quality Indicators”, /[EEE Transactions on

Software Engineering, 22 (10), 751-761, 1996.

Bassil S., Keller R.K., “Software Visualization Tools: Survey and
Analysis”, Proc. I[EEE 9th Intenat. Workshop on program Comprehension

(IWPC’01), 2002, pp 7-17.

Barry W. Boehm. Software Engineering Economics, Prentice Hall, 1981.

K. Beck, R. Johnson, “Patterns generate architectures”, In proceedings
of the 13th European Conference on Object-Oriented Programming,

Lecture Notes in Computer Science Nr. 821. 1994,

M. Benedikt, “Cyberspace: Some Proposals”, In Cyberspace: First

Steps, MIT Press, pp. 273-302, 1991

S. Benford et al, “Experience of using 3D graphics in database

visualisation”, Computing Department, Lancaster University, October

1994.

Boecker, H. and H. Nieper, “Making the Invisible Visible: Tools for

Exploratory Programming”, Proceedings of the First Pan Pacific

128

[BOOC 99]

[BROO 83]

[BUSH 96]

[CAMP 97]

[CARD 87]

[CFLO 04]

Computer Conference, The Australian Computer Society, Melbourne,

Australia. 1985.

Booch, G., Rumbaugh J., Jacobson 1. The Unified Modeling Language

User Guide, Addison-Wesley 1999

R. Brooks, “Towards a theory of the comprehension of computer
programs”, International Journal of Man-Machine Studies, 18:543-554,

1983.

Buschman, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., 4

System of Patterns, John Wiley and Sons, New York, 1996.

Campo M, Marcos C., and Ortigosa A, “Framework Comprehension
and Design Patterns: A Reverse Engineering Approach”, In
Proceedings of the 9th International Conference on Software Engineering

and Knowledge Engineering, 1997.

S.K. Card and A.H. Henderson Jr., “A multiple virtual workspace
interface to support user task switching”, Proceedings of the CHI+GI

1987 (Toronto, April 5-7), ACM, New York, pp. 53-59, 1987.

CFLOW,

http://www.gnu.org/directory/All Packages in Directory/Cflow.html,

March 28, 2004.

129

[CHAR 02]

[CHIK 90]

[COLE 94]

[COPL 95]

[CORT04]

[COTESS]

[CSCO 04]

[CTAG 04]

Charters S. M., Knight C., Thomas N., Munro M, “Visualisation for
informed decision making; from code to components”, in the

Proceedings of the 14th international conference on Software engineering

and knowledge engineering 2002, Ischia, Italy 2002, pp. Pages: 765 — 772.

E. J. Chikofsky and J. H. Cross, “Reverse Engineering and Design
Recovery: A Taxonomy”, /EEE Software, pages 13-17, January 1990.

(pp 1, 8, 10, 13)

A. Colebourne et al, “Populated Information Terrains: supporting the
cooperative browsing of on-line information”, Research report
CSCW/13/1994, Centre for Research in CSCW, Lancaster University,

1994.

Coplien, James O. and Schmidt, Douglas C., Pattern Languages of

Program Design, Addison-Wesley, 1995.

Cortona VRML Client, http://www.parallelgraphics.com/products/cortona/,

March 28, 2004.

Cote, Bourque, Oligny, Rivard, “Software Metrics: An Overview of
Recent Results”, The Journal of Systems and Sofiware, 8 (1988), pp. 121-

131.

CSCORPE, http://cscope.sourceforge.net/, March 28, 2004.

CTAGS, http://ctags.sourceforge.net/, March 28, 2004.

130

[CXRE 04]

[CYGN 04]

[DIRE 04]

[DISC 04]

[DYNA 04]

[EADE 89]

[EDEN 02]

[EICK 92]

[FENT 91]

CXREF, http://www.gedanken.demon.co.uk/cxref/, March 28, 2004.

Cygnus Solutions, Source Navigator, http://www.cygnus.com/, March 28,

2004.

DirectX, http://msdn.microsoft.com/msdnmag/issues/03/07/directx90/, 18

March, 2004.

Discreet, 3D Studio Max 6, http://www.discreet.com/3dsmax/, March 28

2004.

Source Dynamics, Source Insight, http://www.sourcedyn.com/index.html,

March 28, 2004.

P. Eades and Y. Xuemin, “How to draw a directed graph”, In /[EEE

Workshop on Visual Languages, 13-17, (1989).

A. H. Eden, “A Theory of Object-Oriented Design”, Information System
Frontiers (Journal of), Vol. 4, No. 4 (November — December 2002).

Kluwer Academic Publishers, 2002.

Eick, S., Steffen, J. L., and Summer, E. E., “Seesoft - A Tool For
Visualizing Line Oriented Software Statistics”, /[EFEE TSE, vol. 18, no.

11, November 1992, pp. 957-968.

Fenton N., Software Metrics: A Rigorous Approach, Chapman and Hall,

1991.

131

[FERE 01]

[FURN 86]

[GAMM 93]

[GAMM 94]

[GIRA97]

[GLOB 04]

[GLUT 04]

[GOME 01]

R. Ferenc, J. Gustafsson, L. Muller, J. Paakki, “Recognizing Design
Patterns in C++ programs with the integration of Columbus and
Maisa”, In Proceedings of the 7th Symposium on Programming
Languages and Software Tools (SPLST 2001), Szeged, Hungary, June 15-

16, 2001. pp 58-70.

Furnas G, “Ggeneralized Fisheye Views”, Proceedings SIGCHI Human

Factor in Computing, 1986, pp 18-23.

Gamma, E., Helm, T., Johnson, R. and Vlissides, J., “Design Patterns:
Abstraction and Reuse of Object Oriented Design”, Proceedings of

ECOOP 93, 405-431.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns — Elements

of Reusable Object-Oriented Software, Addison-Wesley, 1994

Jean-Francois Girard and Rainer Koschke, “Finding components in a
hierarchy of modules: a step towards architectural understanding,” in

Proc. of the International Conference on Software Maintenance -

ICSM °97.,1997.

Global Technologies Ltd, CODEWALKER, http:/www.gtlinc.com/,

March 28, 2004.

GLUT, http://www.xmission.com/~nate/glut.html, 2004.

Luis M., Gomez Henriquez, Software Visualization: an overview, 2001.

132

[GOPA 91]

[GRAM 04]

[GUPT 97]

[HARM 98]

[HARM 01]

[HEND 86]

[HERM 00]

Gopal R., “Dynamic program slicing based on dependence relations”,
In Proceedings of the Conference on Software Maintenance, pp. 191-200,

1991.

GrammaTech, CodeSurfer,

http://www.codesurfer.com/products/codesurfer/index.html, March 28,

2004.

Gupta R., Soffa M. and Howard J., “Hybrid Slicing: Integrating
Dynamic Information with Static Analysis”, ACM Transactions on

Software Engineering and Methodology, 6(4), pp 370-397, October 1997.

Harman M. and Danicic S., “A New Algorithm for Slicing Unstructured
Programs”, Journal of Software Maintenance, 10(6):415-441,

Nov/December 1998.

Harman M., Hierons R. M., Danicic S., Laurence M., Howroyd J. and Fox
C, 2001, “Pre/Post Conditioned Slicing”, /EEE International Conference

on Software Maintenance (ICSM'2001), Florence, Italy.

D.A. Henderson and S.K. Card, “Rooms: The use of multiple virtual
workspaces to reduce spatial contention in a window-based graphical

user interface”, ACM Transactions on Graphics 5, 3 July, 1986.

Ivan Herman, Guy Melangon, and M. Scott Marshall, “Graph

visualization and Navigation in Information Visualization: a Survey”,

133

[HEUZ 03]

[HORW 90]

[HORW 92]

[HITZ 96]

[IMAG 04]

[JAVA 04]

[JOSE 99]

IEEE Transactions on Visualization and Computer Graphics, 6(1):24-43,

2000

Dirk Heuzeroth, Thomas Holl, Gustav Hogstrom, and Welf Lowe,
“Automatic Design Pattern Detection”, Proceedings of the 11th IEEE

International Workshop on Program Comprehension, 2003

Horwitz S., Reps, T., and Binkley, D., “Interprocedural slicing using
dependence graphs”, ACM Transactions on Progr. Languages and

Systems, 12(1), pp. 26-61, 1990.

Horwitz ,S. and Reps, T., “The use of program dependence graphs in
software engineering”, In Proceedings of the 14th Int. Conference on

Software Engineering, pp. 392-411, Melbourne,Australia, 1992.

Hitz M., Montazeri B., “Chidamber & Kemerer’s Metrics Suite: A
Measurement Theory Perspective”, IEEE Trans. on Software

Engineering, 22 (4), 276-270, 1996.

Imagix 4D, http:/www.imagix.com/products/products.html, 18 March

2004.

Java3D, http://java.sun.com/products/java-media/3D/, 2004

Joseph B. Wyatt, “Software visualization and Program understanding”,

University of Pittsburgh, 1999

134

[KAMK 95]

[KNIG 99]

[KORE 97]

[KORE 88]

[KOSC 00]

[KOSC 03]

[KRAM 96]

Kamkar M and Krajina P, “Dynamic slicing of distributed programs”,
In International Conference on Software Maintenance, pages 222--229,

Oct. 1995.

C. Knight and M. Munro, “Comprehension with[in] Virtual
Environment Visualizations”, Proceedings of the IEEE 7* International

Workshop on Program Comprehension, pp4-11, May 5-7, 1999.

Korel, B., “Computation of dynamic slices for wunstructured
programs”, IEEE Transactions on Software Engineering, 23(1), pp. 17-

34, 1997.

Korel, B., and Laski, J., “Dynamic program slicing”, In. Process. Letters,

29(3), pp. 155-163, Oct. 1988.

R. Koschke, “Atomic Architectural Component Recovery for Program
Understanding and Evolution”, PhD thesis, Institute for Computer

Science, University of Stuttgart, 2000.

Rainer Koschke, “Software Visualization in Software Maintenance,
Reverse Engineering, and Reengineering: A Research Survey”,
Journal on Software Maintenance and Evolution, John Wiley & Sons, Ltd.,

Vol. 15, No. 2, March/April 2003, pages 87-109.

C. Kramer and L. Prechelt, “Design recovery by automated search for

structural design patterns in object oriented software”, in Third

135

[KREU 99]

[LAMP 95]

[LARS 96]

[LIBO1]

[LITT 86]

[LIW93]

Working Conference on Reverse Engineering, Amsterdam, The

Netherlands, March 1996. pp. 208-21.

Kreuseler, M. and Schuman, H., “Information visualization using a new
Focus + Context Technique in combination with dynamic clustering of
information space”, Proc. of the ACM Workshop on New Paradigms in

Information Visualization and Manipulation, Kansas city, 1999, pp. 1-5.

Lamping, J., Rao, R., and Pirolli, P, “A focus + context technique based
on hyperbolic geometry for visualizing large hierarchies”, Proceedings

SIGCHI Human Factors in Computing Systems, 1995, pp 401-408.

Larsen L. D. and Harrold M.J., “Slicing Object oriented software”, In

Proceeding of the 18th International conference on Software engineering,

March, 1996.

Li B., “A Hierarchical Slice-Based Framework for Object-Oriented
Coupling Measurement”, TUCS Technical Report No 415. Turku Centre

for Computer Science, Turku, Finland, July 2001.

D. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models and
software maintenance”, In Empirical Studies of Programmers, pages 80—

98. Ablex Publishing Corporation, 1986.

Li W. and Henry S., “Object-oriented metrics that predict
maintainability”, Journal of systems and software, 23(2), pp. 111-122,

1993.
136

[LETO 86]

[LUDWO1]

[LYLE 86]

[LYNC 60]

[MACK 91]

[MALE 01]

[MALE 01b]

S. Letovsky, “Cognitive processes in program comprehension”, In
Empirical Studies of Programmers, pages 58-79. Ablex Publishing

Corporation, 1986.

Andreas Ludwig, RECODER Homepage, http://recoder.sf.net, 2001.

Lyle, J. and Weiser, M., “Experiments on slicing-based debugging
tools”, Proceedings of the Ist Conference on Empirical Studies of

Programming”, pp. 187-197, 1986.

Kevin Lynch, The Image of the City, MIT Press, June 15, 1960.

Mackinlay J, Robertson G, Card S, “The Perspective Wall: Detail and
Context Smoothly Integrated”, Proceedings SIGCHI Human Factors in

Computing, 1991, pp 173-179.

Maletic, J.I., Marcus, A., “Supporting Program Comprehension Using
Semantic and Structural Information”, in Proceedings of the 23rd
International Conference on Software Engineering (ICSE 2001), Toronto,

Ontario, Canada, May 12-19, 2001, pp. 103-112

Maletic, J.I., Leigh, J., Marcus, A., Dunlap, G., "Visualizing Object-
Oriented Software in Virtual Reality", Proceedings of the 9th
International Workshop on Program Comprehension (IWPC 2001),

Toronto, Canada, May 12-13, 2001, pp. 26-35.

137

[MALE 02]

[MALE 02]

[MANC99]

[MARL 90]

[MART 94]

[MAVE 04]

Maletic, J.I., Marcus, A., Collard, M.L., “A Task Oriented View of
Software Visualization”, in Proceeding of the IEEE Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT 2002),

Paris France, June 26, 2002, pp. 32-40.

Maletic, J.I., Marcus, A., Feng, L. "Source Viewer 3D (sviD) - A
Framework for Software Visualization", Formal Research
Demonstration in Proceedings of the 25th IEEE/ACM International
Conference on Software Engineering (ICSE 2003), Portland, OR, May 3-

10,2003, pp. 812-813

S. Mancorids. B. S. Mitchell, Y. Chen, E. R. Gansner “Bunch: A
clustering tool for the recovery and maintenance of software
structures”, In Proc; IEEE Inter. Conference on Software Maintenance,

IEEE Computer Society Press, 1999, pp 50-59.

Marlowe and Ryder, “Properties of data flow frameworks. A unified

model,” Acta Informatica, vol. 28, pp. 121-163, 1990

Martin R., “OO Design Quality Metrics - An Analysis of
Dependencies”, Position Paper, Workshop on Pragmatic and Theoretical
Directions in Object-Oriented Software Metrics, OOPSLA’94, October

1994.

MAVERIK, http://aig.cs.man.ac.uk/maverik/, March 18, 2004.

138

[MAYR 95]

[MAYR 97]

[MAYR 98]

[MENGO3]

[MCCO87]

[MICHO1]

[MICR 04]

A. von Mayrhauser and A. Vans, “Program comprehension during
softwaremaintenance and evolutionn”, [EEE Computer, pages 4455,

August 1995.

A. Von Mayrhauser and A. Vans, “Program Understanding Processes
During Corrective Maintenance of Large Scale Software”, Procs.
International Conference on Software Maintenance "97, Sept. 1997, Bari,

Italy, pp 12-30

Mayrhauser A., A. M. Vans, “Program Understanding Behavior
During Adaptation of Large Scale Software”, Proceedings of the 6th
Intl. Workshop on Program Comprehension, IWPC ‘98, Ischia, Italy,

June 1998. pp. 164-172

W. J. Meng, “Slicing-Based Coupling Metrics”, Master thesis,

Concordia University, 2003.

McCormick, B.H., T.A. DeFanti, M.D. Brown (ed), “Visualization in
Scientific Computing”, Computer Graphics Vol. 21, No. 6, November

1987

Michaud J., Storey M.-A.D. and Muller H.A., “Programs, Integrating

Information Sources for Visualizing Java”, Proc. of the Inter.

Conference of Software Maintenance (ICSM'2002), Italy, 2001.

Direct3D, http://www.microsoft.com/windows/directx/, 2004.

139

[MESA 04]

[MORA 04]

[MULL 94]

[NIEL 98]

[NIEL 99]

[OPEN 04]

[PANAO3]

[PARN 94]

[REKI93]

Mesa, http://www.mesa3d.org/, 18 March 19, 2004.

Adam Moravanszky, Source Browser,

http://swix.ch/clan/admiral/TheSource/ProBrowser.htm, March 28, 2004.

H. A. Miiller, K. Wong, and S. R. Tilley. "Understanding software
systems using reverse engineering technology." The 62nd Congress of

L'Association Canadienne Francaise pour ['Avancement des Sciences

Proceedings (ACFAS 1994).

Nielsen, T, “2D is Better Than 3D”, AlertBox,

http://useit.com/alerbox/981115.html, 1998.

F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis,

Springer, ISBN 3-540-65410-0, 1999.

OpenGL, http://www.opengl.org, 2004.

Thomas Panas, Rebecca Berrigan and John Grundy, “A 3D Metaphor for
Software Production Visualization”, 7th International Conference on

Information Visualization (IV03), London, England, July 2003.

D. L. Parnas, “Software Aging”, In Proceedings of International

Conference on Software Engineering, 1994. (pp 1, 7, 9)

J. Rekimoto and M. Green, “The Information Cube: Using

Transparencty in 3D Information Visualization”, Proceedings of the

140

[PENN 87]

[PREE 94]

[PRIC 93]

[RILL 01]

[RILL 01b]

[RILL 01c]

Third Annual Workshop on Information Technologies & Systems

(WITS'93), pp. 125-132, 1993

N. Pennington, “Stimulus structures and mental representations in
expert comprehension of computer programs”, Cognitive Psychology,

19:295-341, 1987.

Pree, Wolfgang, Design Patterns for Object Oriented Software

Development, Addison-Wesley, 1994.

B.A. Price, RM. Baeker and LS. Small, “A Principled Taxonomy of
Software Visualisation”, Journal of Visual Languages and Computing,

No. 4, pp. 211-266, 1993

Rilling J., “Maximizing Functional Cohesion of Comprehension
Environments by Integrating User and Task Knowledge”, 8th IEEE
Working Conference on Reverse Engineering (WCRE 2001), Stuttgart,

Germany, October 2001, pp. 157-165.

Rilling J., Seffah A., “Enhancing the Usability and Learnability of
Software Visualization Techniques through Task Wizards and

Software Agents”, Proc. of Intern. Conference on Imaging Science,

Systems, and Technology (CISST’2001), Las Vegas, June 2001.

Rilling J., Karanth B. “A Hybrid Program Slicing Framework”, /EEE
International Workshop on Source Code Analysis and Manipulation

SCAM 2001, Florence, Italy, November 2001.
141

[RILL 02]

[RILL 02b]

[RILL 03]

[ROBE93]

[ROMA 92]

[RUGA 96]

Rilling J, Seffah A., Bouthier C., “The CONCEPT Project - Applying
Source Code Analysis to Reduce Information Complexity of Static
and Dynamic Visualization Techniques”, /st International Workshop on
Visualizing Software for Understanding and Analysis, June 26 - 26,

2002 ,Paris, France , pp.90-100

J. Rilling and S.P. Mudur, “On the use of metaballs to visually map
source code structures and analysis results onto 3D space”, In Ninth
Working Conference on Reverse Engineering (WCRE’02). IEEE, October

2002.

Rilling J., Wang Q and Mudur S.P., “MetaViz - Issues in Software
Visualization Beyond 3D”, Position paper VISSOFT 2003, Amsterdam,

Netherlands, 2003, pp. 87-92.

George G. Robertson, Stuart K. Card, and Jock D. Mackinlay,'Information
“Visualization Using 3D Interactive Animation”, CACM, Vol. 36, No. 4,

April 1993.

G Ruia-Catalin Roman and Kenneth C Cox, “Program visualization:
The art of mapping programs to pictures”, In Proceedings of the 14th

International Conference on Softeware Engineering, May 1992.

S. Rugaber, Program Understanding, In A. Kent and J. G. Williams (Eds.),

Encyclopedia of Computer Science and Technology, pp. 341-368, 1996.

142

[RUSS 00]

[SAKA 92]

[SCIE 04]

[SHNE 80]

[SHNE 92]

[SHNE 94]

[SILI 90]

C. Russo dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud, and J.P.
Paris, “Metaphor-aware 3d navigation”, In [EEE Symposium on
Information Visualization, pages 155-65. Los Alamitos, CA, USA, IEEE

Comput. Soc., 2000.

M. Sakar and M.H. Brown, “Graphical fisheye views of graphs”, In

proceedings of the ACM CHI ‘92, pp. 83 - 91, May 3-7, 1992

Scientific Toolworks, Inc, Understand for C++,

http://www.scitools.com/ucpp.html, March 28, 2004.

B. Shneiderman, Software Psychology: Human Factors in Computer and

Information Systems, Winthrop Publishers, Inc., 1980.

Shneiderman, B., “Tree visualization with tree-maps: A 2-dimensional
space filling approach”, ACM Transactions on Graphics 11, 1 (January

1992), pp.92-99.

Shneiderman, B., “Dynamic queries for visual information seeking”,
IEEE Software 11, 6 (1994), 70-77. Reprinted in Card, S., Mackinlay, J,
and Shneiderman, B. (Editors), Readings in Information Visualization:
Using Vision to Think, Morgan Kaufmann Publishers, San Francisco, CA

(1999), 236-243.

Silicon Graphics Inc., “Graphics Library Programming Guide”,
Document Version 2.0. Silicon Graphics, Inc., Mountain View, California,

May 1990.
143

[SNIF04]

[SOLO 84]

[SOUR 04]

[STAS92]

[STOR 97]

[STOR 97b]

[STOR 99]

Wind River SNiFF+, http://www.windriver.com/products/sniff plus/, 18

March 2004.

E. Soloway and K. Ehrlich, “Empirical studies of programming
knowledge”, IEEE Transactions on Software Engineering, SE-10(5):595—

609, September, 1984.

“Survey of Source Code Comprehension Tools”,

http://grok?2.tripod.com/code comprehension.html, March 22, 2004.

J.T. Stasko, “Three-Dimensional Computation Visualisation”, GVU
Center, College of Computing, Georgia Institute of Technology, Technical

Report GIT-GVU-92-20, 1992

M.-A.D. Storey, K. Wong, F.D. Fracchia and H. A. Miiller, “On
Integrating Visualization Techniques for Effective Software
Exploration”, Proceedings of IEEE Symposium on Information
Visualization (InfoVis'97), Phoenix, Arizona, U.S.A., pages 38-45,

October 20-21, 1997.

M.-A. D. Storey, K. Wong, and H. A. M"uller, “How Do Program
Understanding Tools Affect How Programmers Understand
Programs?”, In Proceedings Fourth Working Conference on Reverse

Engineering, pages 12-21. IEEE Computer Society, 1997.

M.-A. D. Storey, F. D. Fracchia, and H. A. M"uller, “Cognitive Design

Elements to Support the Construction of a Mental Model during
144

[STOR 01]

[TIPF 95]

[TOGEO1]

[TROL 04]

[TZERO1]

[VRML 04]

[WAIT 84]

[WALK 93]

Software Exploration”, Journal of Software Systems, vol. 44, pages 171

185, 1999. (pp 1, 8, 22, 55, 118, 123)

C. B. M.-A. D. Storey and J. Michaud, “SHriMP Views: An Interactive
and Customizable Environment for Software Exploration”, In

Proceedings of International Workshop on Program Comprehension

(IWPC °2001), 2001.

Tip F., “A survey of program slicing techniques”, Journal of

Programming Languages, 3(3), pp. 121-189, 9/1995.

[13] Together, TogetherSoft, http://http://oi.com, 2001.

TrollTech, Qt, http://www.trolltech.com/, March 18, 2004.

V. Tzerpos, R.C Holt. “ACDC: An algorithm for comprehension-
driven clustering”, Int. Working Conference on Reverse Engineering,

2001

VRMLY97, http://www.web3d.org/x3d/spec/vrml/ISO_IEC 14772-All/,

March 19, 2004.

12] W. M. Waite and G. Goos, Compiler Construction, Springer, New

York, 1984.

GR. Walker, P.A. Rea, S. Whalley, M. Hinds and N.J. Kings,
“Visualisation of telecommunications network data”, BT Technology

Journal, Vol. 11, No. 4, October 1993, pp. 54 - 63.
145

[WALK 95]

[WALK 98]

[WANGO3]

[WEIS 84]

[WELF 02]

[WELF 03]

[WEST 04]

G. Walker, “Challenges in Information Visualisation”, British

Telecommunications Engineering Journal, Vol. 14, pp. 17-25, April 1995.

Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright, D., Swanson,
D., Isaak, J., “Visualizing Dynamic Software System Information
through High-level Models”, Proceedings of OOPSLA'98, SIGPLAN

Notices 33(10), October 1998, pp. 271-283

J. Q. Wang, “Metaviz — Issues in Software Visualizing Beyond 3D”,

Master thesis, Concordia University, 2003.

M. Weiser. “Program slicing”, [EEE Transactions on Software

Engineering, 10(4), July 1984.

W. Loéwe, M. Ericsson, J. Lundberg, Th. Panas, “Software
Comprehension - Integrating Program Analysis and Software
Visualization”, Software Engineering Research and Practice (SERPS),

2002.

Welf Léwe, Morgan Ericsson, Jonas Lundberg, Thomas Panas and Niklas
Pettersson, “VizzAnalyzer - A Software Comprehension Framework”,
3rd Conference on Software Engineering Research and Practise in

Sweden, pages 127-136. Lund University, Sweden, October 2003.

Western Wares, CC-RIDER, http://www.westernwares.com/, March 28,

2004.

146

[WU92]

[XIANO3]

[YOUN 96]

[ZHANO3]

[ZHAO 98]

S. Wu and U. Manber. “Agrep - a fast approximate pattern matching
tool”, In Usenix Winter 92 Technical Conference, pages 153—162, January

1992.

X. H. Xian, ‘“2D & 3D UML-Based Software Visualization for Object-

Oriented Programs”, Master thesis, Concordia University, 2003.

Peter Young, “Software Visualization”, Visualization Research Group
Centre for Software Maintenance, University of Durham, 1996.

http://vrg.dur.ac.uk/misc/PeterY oung/pages/work/documents/index.html

Y. G. Zhang, “Automatic Design pattern Recovery”, Master thesis,

Concordia University, 2003.

Zhao J., “Dynamic Slicing of Object-Oriented Programs”, Technical-
Report SE-98-119, Information Processing Society of Japan, May 1998,

pp.17-23.

147

