ELEMENTS OF DESIGN OF AN OBJECT-ORIENTED
FRAMEWORK PROTOTYPE FOR WAVELET-BASED IMAGE
PROCESSING USING DESIGN PATTERNS

YVES Rovy

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2004
© YvEs Roy, 2004

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91108-X
Our file Notre référence
ISBN: 0-612-91108-X

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

Abstract

Elements of Design of an Object-Oriented Framework Prototype for Wavelet-Based

Image Processing using Design Patterns

Yves Roy

Design patterns and frameworks are increasingly popular techniques for addressing key aspects of the
design of complex software systems. Patterns support the reuse of design expertise by articulating the
aspects of successful solutions to design problems in a particular context. Frameworks are concrete
realizations of groups of patterns that enable code reuse and design reuse by capturing the common
abstractions of an application domain while leaving control of application-specific structures and
behaviors to application developers.

Application frameworks encapsulate expertise applicable to a wide range of programs and aim to
provide a full range of functionality typically needed by an application thus encompassing a horizontal
slice of functionality that can be applied across client domains. Domain frameworks encapsulate
expertise in a particular domain, thus encompassing a vertical slice of functionality for a specific
problem domain reducing the amount of work that needs to be done to implement domain-specific
applications.

Wavelets and wavelet transform concepts originated from a synthesis of ideas developed during the
last thirty years in engineering, physics, and pure mathematics. Wavelets have been very successful
in many scientific and engineering fields and they have led to many successful applications in signal
analysis and image processing.

In this thesis we are presenting design and implementation elements for the development of an
object-oriented application and domain framework prototype for wavelet-based image processing

applications using design patterns.

iii

Acknowledgments

I would like to thank my supervisor, Dr. Bui for his support during this long journey.

I would also like to thank Alessandro Pasetti, Geert Uytterhoeven, Doug Schmidt, and Micheal Stal

for taking time to answer my numerous questions about design patterns and frameworks.

It should be stressed that my professional interest in design patterns and frameworks wouldn’t have
existed without the enthusiuasm, expertise and dedication of Mr. Achint Sandhu, my manager dur-
ing my tenure at Nortel Networks. I will always remember the “bunker” time, the 80-hour weeks,

and George Carlin wake-up breaks at 2:30 in the morning...

Many thanks to my friend, dragon boat and gym partner, Andrew Postans, for his support and

late-night Linux crash recovery skills.

I am very grateful to my current employer, Dr. Julien Doyon, Scientific Director of RNQ (Réseau
Neuroimagerie Québec) and REPRIC (Regroupement Provincial de Recherche en Imagerie Cérébrale)

for his vision and understanding over the past few weeks.

I would like to sincerely thank Stan Swiercz for his help in numerous occasions during my under-

graduate and graduate studies at Concordia.

Finally, my sincere thanks to my family and my wife’s family, for their encouragements and to my
love and counterpart, my wife Libei, for her unbelievable patience and caring support. To my little
sunshines, Sophie, 27 months, and Olivier, 3 months who kept me as busy as ever, in the most

wonderful kind of way.

iv

Contents

List of Figures xi

List of Tables xiv

I Background and Domain Analysis: Object-Oriented Frameworks and

Wavelets 1
1 Introduction 2
1.1 Overview of Wavelet Research, 2
1.2 Overview of Object-Oriented Framework Research 3
1.2.1 Whatis aframework? 4

1.2.2 On Design Methodologies 00 4

1.2.3 Documenting the framework development process. 5

1.2.4 On using design patterns Lo oo 6

1.3 What is Wave ImAgE? e 6
1.3.1 Transform-based image processing applications 7

132 Goalsof WaveImAgE 7

1.3.3 Functionality 8

1.4 Design Problems L 9
1.5 Contribution of the Thesis 10

3

1.6 Organization of the Thesis 11

1.7 Notation e e e e 13
Object-Oriented Frameworks 14
2.1 Imtroduction 14
2.1.1 What are Design Patterns? oL 14
2.1.2 What are Frameworks? L 15
2.2 Object-Oriented Frameworks 0o 15
2.3 Framework of Frameworks L 17
2.4 Comparing Frameworks with Other Reuse Techniques 18
2.4.1 Compound Design Patterns 24
2.4.2 Framework Construction Principles and Patterns 24
2.5 Framelet Overview L L e e e 27
2.5.1 On the Iterative Nature of Framework Development 28
2.6 Overview of Wave ImAgE 29
2.6.1 Design Patternsin Wave ImAgE. 29
2.6.2 Frameworksin Wave ImAgE. 31
Wavelets, Wavelet Transforms and Applications 33
3.1 Wavelets and Wavelet Transforms. 33
3.1.1 Whatare Wavelets 7 33
3.1.2 Multiresolution Analysis (MRA) 34
3.1.3 The Wavelet Functions 35
3.14 The Discrete Wavelet Transform 35
3.1.5 An Example: The Haar Wavelet 35
3.1.6 Multiwavelets 36

vi

3.1.7 Complex Symmetric Daubechies Wavelets 40
3.1.8 Wavelet Transforms 41
3.1.9 Preprocessing and Sampling L 41

3.2 Wavelet-Based Image Processing Applications 44
3.2.1 Terminology of Digital Image Processing 45
3.2.2 Wavelet-Based Processing o e 45
3.23 Wavelet Denoising e 46
3.2.4 Wavelet-Based Image Compression, 52
3.2.5 3D Medical Image Fusion 54
326 3-DImageFusion. 54

3.3 Conclusion e 55
IT Frameworks Design 56
4 Data Processing Framelet 58
41 Overview e 58
4.2 Context e o8
43 Problem 39
44 Solutions e 60
44.1 The VISITOR Design Pattern 61
4.4.2 Visitorsin Frameworks L L L 62
4.4.3 The Staggered VISITOR 63
444 The Acyclic VISITOR o o oot 69
4.4.5 A STAGGERED VISITOR-Based Framework Candidate Solution 73
4.4.6 An AcycLIC VISITOR-Based Framework Candidate Solution 75

4.5 Liabilities of a VISITOR-based Approach. 76

vii

4.6 Design Notes e 79
4.6.1 Generic Programming as an Alternative to Classic Polymorphism 80
4.6.2 External Polymorphism and Processor Adapters 80
4.6.3 Even More Adaptation using the Extension Object Pattern 82
4.6.4 Mixing Paradigms: A Common Base Class for Different Parametrizations . . 85
4.6.5 Genericity of Image Processing Algorithms 93
4.6.6 Generic programmingo e e e e 94
4.6.7 Classic polymorphism 95

5 Wavelet Transform Framework 98

5.1 Overview e e e e e e e 98

5.2 Context e 98

5.3 Problem e 99

5.4 Solution e 100
5.4.1 Wavelet Transform Steps L. 100
5.4.2 Supporting Different Prefiltering Schemes 108

5.5 Data Representation e 112
551 BaseData. e 112
5.5.2 Data Subclass for Non-Transformed 1D Signals 113
5.5.3 Data Subclass for Non-Transformed 2D Signals 113
5.5.4 Templatized Data Subclasses 114
5.5.5 Concrete Letters 116
5.5.6 TIterators for Element Access. 116
5.5.7 Row and Colums Iterators for 2D Data 117
5.5.8 Transformed Data 117

viii

5.5.9 Refining the Data Processing Framework 121

5.6 Design Notes o o e 132
5.6.1 From the Ground Up: Towards More Flexibility and Extensibility. 132
5.6.2 Standard and Non-Standard Wavelet Decomposition 137
5.6.3 Basis Functions, Wavelets and Filters 139
5.6.4 Wavelet Transform Process 139
5.6.5 Wavelet Transform Data Representations 143
5.6.6 Finding an Interface for Wavelet Transforms 145

6 The Image Processing Experiment Configuration and Scheduling Framework 149

6.1 Overview L e 149
6.2 Context e 149
6.3 Problem 150
6.4 Solution e 150
6.5 Configuration and Scheduling Sequence 151
6.6 Resolved Example: From the Ground Up 153

6.6.1 Dynamically Loading Concrete Factories into Applications 155

6.6.2 The Component Configurator 158

6.6.3 Experiment Scheduling 163
6.7 The Configuration Framework: Putting It All Together 164

6.7.1 Generic Experiment and Application-Specific Experiment Lineup 166
6.8 Framelet Constructs 169
Conclusion and Future R&D Focus Areas 171
7.1 Conclusion e 171

ix

7.2.1

7.2.2

7.2.3

7.2.4

Extensions 172

Support for processors 172
Image Processing Functionality 172
Sub-Frameworks and Other Subsystems 173

List of Figures

10

11

12

13

14

15

16

17

18

Transform-Based Image Processing.. 7
Manager-driven framework. oo o 16
TEMPLATE METHOD design pattern [24]. 17

STRATEGY PATTERN in support of adaptation through composition (Separation prin-

Cple). . . 17
Framework of frameworks architecture. 18
Application versus framework design activities. 19
Class library architecture 20
Application framework architecture L. L 21
Unification principle 25
Separation principle 26
Abstract coupling. e 26
Framelets and object subsets. 28
Wave ImAgE framework architecture. 29
The main patterns used in Wave ImAgE. L. 30
The Frameworks used in Wave ImAgE., . 31
Multiwavelet analysis filter bank. 38
Prefilter and postfilter schematic illustration. 41
Single-level 2-D MWT using 1-D approximation preprocessing. 44

xi

19

20

21

22

23

24

23

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Single-level 2-D MWT using 2-D approximation preprocessing.
Transform-based image processing. o oL

Filter bank implementation of a multilevel (three-stage) multi-band (two-band) anal-

ysis tree (descrete wavelet transform) of a 1D signal.
Flowchart for a typical image denoising application.
Soft (a) and hard (b) thresholding.
Standard and non-standard decompositions. oo
Flowchart for a typical image compression application.
Flowchart for a typical image fusion application.
VISITOR design pattern [24]. o
VISITOR hierarchy in a framework context.
The STAGGERED VISITOR design pattern.,
STAGGERED VISITOR with Framework (pre-)defined Elements and Visitors
The AcYCLIC VISITOR design pattern.
STAGGERED VISITOR-based Data Processing Framework
The Wave ImAgE Acycric VISITOR-based Data Processor Framework.
The PROXY design pattern.
The STRATEGY design pattern.
The TEMPLATE METHOD design pattern.
The ITERATOR design pattern.
Design of the wavelet transform variation-point.
DECORATOR design pattern [24].

Data hierarchy in Wave ImAgE.

2D Wavelet decomposition into subbands. L.

Quadtree representation of a two-level non-standard wavelet decomposition

xii

45

46

64

75

102

102

118

43

44

45

46

47

48

49

50

51

52

93

54

55

CoMPOSITE design pattern [24]. Lo 119

Overview of a STAGGERED VISITOR-based Wavelet Transform Framework.. 121
Data class hierarchy with rich interfaces.o oL 136
Shallow and wide transform class hierarchy. 136
Data class hierarchy. 137
Wavelet class hierarchy 139
Wavelet transform recursive process yielding a recursive wavelet transform structure. 140

COMPOSITE design pattern [24]. o L 144
Wavelet transform data implemented using the COMPOSITE design pattern. 145
ABSTRACT FACTORY and PLUGGABLE FACTORY 156
Class diagram for the COMPONENT CONFIGURATOR pattern. 159
Class diagram for the experiment scheduling subsystem. 163
Class diagram for the Image Processing Experiment Configuration and Scheduling

Framework. L e 164

xiii

List of Tables

1 Use case for a multiwavelet image denoising application

2 Use case for a complex wavelet denoising application. . .

Xiv

Part 1

Background and Domain Analysis:
Object-Oriented Frameworks and
Wavelets

Chapter 1

Introduction

1.1 Overview of Wavelet Research

Wavelets and wavelet transform concepts originated from a synthesis of ideas developed during the
last twenty or thirty years in engineering, physics, and pure mathematics. Wavelets have been very
successful in many scientific and engineering fields. As a consequence of these interdisciplinary ori-
gins, wavelets appeal to scientists and engineers of many different backgrounds. On the other hands,

wavelets are a fairly simple mathematical tool with a great variety of possible applications.

The first wavelet transforms were continuous wavelet transforms (CWT). A signal is analysed by
performing inner product with basis functions. Those basis functions are generated from an oscillat-
ing function with finite support called a mother wavelet function— wavelets are localized waves. The
condition imposed on the wavelet function is that its integral be zero. By translation and dilation
of the wavelet function, different basis functions are created. Translation and dilation allow for time
and frequency customization of the window through which the analysis is done. This results in a
customizable time/frequency localization of the analysis which proves advantageous when compared

with the Fourier transform [32].

Then came the discrete wavelet transform (DWT) adapted for discrete signals. Translation is re-
stricted to multiples of the sampling distances and dilation is dyadic. This leads to the important

notion of scale (or resolution levels) and to a concept called multiresolution analysis [35].

The design of orthogonal wavelet functions with compact support [15] then leads to an efficient

implementation of the wavelet transform called the fast wavelet transform (FWT), or filter-bank

algorithm, to use the language of subband coding and filter-bank theory [63]. The wavelets made
up from translation and dilation of a single scaling function and mother wavelet are called single

wavelets.

A different kind of wavelet having important properties for image processing were also developed.
These wavelets, called multiwavelets [54], exhibit simultaneously some properties that single wavelets
can not. Multiwavelet basis uses translations and dilations of L > 2 scaling functions and L mother
wavelet functions. Because of those additional properties, multiwavelets can potentially give better
results than single ones in image processing applications [54], but their implementation is also more
intricate and complex. Since the multiwavelets coefficients are matrix coefficients, the transform
requires vector input streams. Therefore, an additional processing step called prefiltering {or pre-
processing) is necessary to provide that vector input from a scalar one.

In an effort to define a method to improve a given discrete wavelet transform, a scheme called the
lifting scheme was developed [58, 59]. The lifting scheme became an efficient algorithm to compute a
wavelet transform as a sequence of simple steps, providing a method to implement reversible integer
wavelet transform ([57, 10, 16]).

Some more information on wavelets and wavelet transforms will be given in Chapter 3 of this thesis.

Wavelets have led to applications in signal analysis and image processing, image and video com-
pression, mathematical physics, numerical analysis, communication, system theory, identification,
geometric modeling, computer graphics, theoretical physics, approximation theory, stochastic pro-
cesses, and many others. We refer to the litterature for more information [28, 38, 32, 62, 13, 15, 35].

More details on some wavelet-based processing applications will also be given in Chapter 4.

1.2 Overview of Object-Oriented Framework Research

Crucial to the success of many software systems are patterns (24, 7, 51] and frameworks [42, 34]
that document and reify the knowledge of how to develop these systems. Patterns support the reuse
of design expertise by articulating the aspects of successful solutions to software design and imple-
mentation problems that arise in a particular context. In that sense, patterns, or design patterns as
they are called, are abstract constructs. Frameworks on the other hands, are concrete realizations of
groups of patterns that enable code reuse and design reuse by capturing the common abstractions
of an application domain while leaving control of application-specific structures and behaviors to
application developers.

During the past decade, a number of research and development efforts have focussed on document-
ing patterns and developing frameworks [24, 7, 51, 34, 42, 49, 50]. Object-oriented frameworks have
emerged as a powerful technology for developing and reusing software systems possessing qualities

like affordability, extensibility and flexibility. By leveraging domain knowledge and prior efforts of

experienced developers, frameworks embody common solutions to recurring software design chal-
lenges and application requirements that need not be created and validated over and over for each

new application.

1.2.1 What is a framework?

A framework is a semi-finished system intended to be instantiated. It defines the architecture for a
family of systems (the family of applications the framework supports) and provides the basic build-
ing blocks to create them. An object-oriented framework consists of abstract and concrete classes,
and their collaborations. Instantiation of a framework consists of composing and subclassing the
existing classes.

Frameworks will be covered in greater details in Chapter 2, and the instantiation process and reuse
will be covered in Part III of the thesis.

The design of a large framework can be quite complex. The framelet concept was introduced as a
way of simplifying the design process ([44, 19]). Framelets simplify the design process by applying
the "divide and conquer" approach. At design level, a framework consists chiefly of a set of variation
points (well identified parts of the framework that are kept flexible since they are most likely to be
varying from application to application) and design patterns (design solutions of design problems
in a certain context). Framelets partition this set into smaller subsets of related variation points
and design patterns that are then handled, as far as the design is concerned and as far as possible,
separately. The term “framelet” however is also used loosely to simply refer to a small framework
and most of the time, at least in this thesis, framework and framelet are used interchangeably.

More details on framelets can be found in Chapter 2.

1.2.2 On Design Methodologies

Before undertaking the design of Wave ImAgE we have studied and reviewed a number of differ-
ent framework development approaches and methodologies. Among them are top-down oriented
approaches like hot-spot driven framework development [43], framework development from domain
knowledge [2], where applications are build all at once following an exhaustive domain analysis phase,
domain engineering-based approaches like SHERLOCK [56] and bottom-up oriented approaches like
framework development by systematic generalization [47], where an initial application is gradually
revisited (through generalization transformations) to accomodate a new application.

We also considered closer-to-implementation recipe-based approaches providing guidelines like Jones
n [31], hybrid approaches like Butler and Xu in [9], and pattern language-based approach like
Roberts and Johnson in [45]. Due to the lack of mature methodological tools targeted at framework

development and to the fact that this thesis is not about design methodologies in themselves, we

decided to adopt a lightweight methodology borrowing from many of the approaches listed above to
forge our own informal hybrid approach. We conducted an extensive litterature review of the field
of wavelet-based image processing (see bibliography) to extract the key concepts and abstractions
and to identify the commonalities accros a number of different applications. We made use of the
concepts of hot-spots (or variation-points) and framework construction principles ([42] and [19]).
We considered a single initial application and attempted generalizing it [47]. The generalization was
guided by a knowledge of the multiple hot-spots identified during domain analysis ([2] and [43]). Use

cases were useful in conducting commonality and variability analysis [56] for targetted applications.

1.2.3 Documenting the framework development process

Due to the abstract nature and complexity of the framework design process, it is of crucial importance
to provide a good framework documentation in order to reduce the learning curve of framework re-
users ([8], [21], [30]). By framework re-users we refer to two kinds of roles taken by people using the

framework:

e Application developers who want to know how to customize the framework to produce specific

applications.

e Framework maintainers and developers who are responsible for the maintenance and evolution

of the framework.

In order to achieve our goal of assisting these users, this thesis provides the following documentation

elements:

A section of Chapter 2 provides an “at a glance” overview of the framework while chapters
in Part II describing the design process and products go into more detail by presenting the
framework as a collection of smaller frameworks. The problem-domain jargon is outlined in
Chapter 3.

o Design patterns are used to document design solutions (by naming them whenever they are
used and by using UML class diagrams to show the well-known structure of some solutions)

to problems that are discussed in Part II.

e Source code samples and commented C++ code fragments are used throughout the text to
illustrate the design and give a more concrete feel whenever we felt it was appropriate to do

50.

¢ Each chapter in Part II really consists in a design notebook by providing design notes outlin-
ing some aspects of the design activity (before any candidate solution was in sight) tackling

alternative or complementary elements of solution.

1.2.4 On using design patterns

The design of Wave ImAgFE is full of design patterns. We are using design patterns for the following

three reasons:

1. Recurring design problems are well served by proven design solutions.
2. Design patterns help documenting a software system.

3. Design patterns are interesting in themselves.

Facing a well-described design problem, we always look for ways to encapsulate the concept that
varies in order to ensure that the parts that are most likely to change can be changed without
incurring a redesign. And if there is a proven solution that addresses that problem, and if that
solution is in the form of a design pattern, then we will reuse that solution by applying the design
pattern to our problem.

Our use of design patterns is also motivated by a genuine interest in patterns and a desire to get
familiar with them and truly understand them. Such a goal cannot be attained only by reading
about design patterns. It is by putting them to the test by applying them in our own designs, in
response to our own design problems, that we will come to have a good understanding of them, i.e.

their strengths and liabilities.

1.3 What is Wave ImAgE?

Wave ImAgE stands for “ Wavelet-based Imaging Adaptive Environment”, and it consists of a set of
design elements for a prototypic object-oriented framework for wavelet-based image processing. The
goal of the thesis is to illustrate the design process of this framework by providing design elements
and some prototypic implementations for the framework. The word prototype is used to emphasize
the fact that Wave ImAgE is a work in progress towards a proof of concept for a design. This means
that some areas of the implemented framework only provide minimal interfaces that are sufficient
to test the design and explore the viability of a proposed design solution.

As the name "wavelet-based image processing" implies, the framework is meant to facilitate the
development of applications featuring:

1. the processing of input images (where “images” refers to 1D, 2D or 3D data signals),

2. the transformation of data into the wavelet domain via a process called wavelet transform.

3. the processing of the transformed data (also called transform-based processing or transform-

domain processing, or in our case, wavelet-based processing).

This paradign is illustrated in Figure 1.

Input Forward Processor inverse Output
Signal Transform Transform Signal

e

e e eeo oy RVaAluation e o ___.

Figure 1: Transform-Based Image Processing.

1.3.1 Transform-based image processing applications
Examples of typical image processing applications are:

1. Real life image de-noising (white noise) using multiwavelet transform and univariate thresh-

olding (using different prefiltering schemes needed by multiwavelets).

2. Satellite Aperture Radar (SAR) image de-noising (multiplicative noise) using complex-wavelet

transform and elliptic thresholding.
3. 3D medical image fusion (using different fusion algorithms).
4. Face recognition using single wavelet approximation.
5. Image compression.
6. Image edge extraction and segmentation.

7. Geometry compression.

It is important to note that application-specific algorithms are not necessarily part of a framework per
se. Their implementation is the responsibility of application developers adapting (or customizing) a
framework and instantiating it to write applications. A framework however may or may not provide

some application-specific components as default components.

1.3.2 Goals of Wave ImAgE

The main goal of Wave ImAgE is to make the development of wavelet-based image processing
applications easier. Below is a list of some of the most important points that Wave ImAgE aims at

providing for application developers:

o Wave ImAgE should capture the design decisions common to the application domain and the
architecture of wavelet-based image processing applications. This amounts to providing the

following:

— Capture the minimal common logic of all applications which involves the processing of

an image. The idea can be illustrated as follows:

Processor processor; // A processor of some sort...
Image image; // Some input data...

image.apply(processor); // Let the processor process the data...

— Capture the finer-grained transform-based processing paradigm (see Figure 1) consist-
ing of the sequence data (acquisition), transformation of data, and transform-domain

processing?

— Support the wavelet transform flexibility and extensibility requirements: customization
and extension of a wavelet transform algorithm should be made easy for an application de-
veloper. Similarly, the development and integration of new wavelet transform algorithms

should be feasible and easy without redesign.

— Provide a programming environment that allows application developers to repeat a set of
experiments while modifying predefined parameters pertaining to each image-processing

experiment (for example, configuration of a processor or change of input data).

— Provide a programming environment that allows application developers to reuse image

processing experiments as building blocks of other experiments in a modular way.

— It should be easy and convenient for framework users to conduct comparative studies by
performing a (preferably large) number of experiments by varying some parameters of a

generic experiment.

|

Simplifying the development and testing of new wavelet-domain algorithms.

¢ Provide application developers with services external to wavelet-based image processing appli-
cations like logging facilities for example.

1.3.3 Functionality

As an integrated environment, the functionality of a mature Wave ImAgE framework 2 is grouped

in the following categories:

In this thesis, the focus is placed on the forward transform only. The inverse transform is just the same process
“in reverse”.

2We have conducted analysis and produced designs in all of these functional areas. However, due to space and
time constraints, some areas are not discussed in this thesis and are relegated to future work (see the Conclusion of
the thesis). Those areas ares: image loading/handling, the flexible design of the logging mechanism, and a viewing
functionality.

e The Image Handling Functionality covering the acquisition (loading) of digital images, manip-

ulation (changing format), and saving. Not covered in this thesis.

o The Transform Functionality covering the transformation of digital images from image-domain
to transform-domain using wavelet transforms. It thus also covers the creation of wavelets

filters and prefilters.

e The Subband (transform-domain) Processing Functionality covering the processing of trans-
formed images according to various application-specific tasks such as coefficients and subbands

access (for thresholding for example) and manipulation.

o The Logging Functionality covering logging of various messages (error, informational) for de-
bugging /reporting purposes. A logger is implemented, but the flexible logging mechanism

(framework) is not discussed in this thesis.

o The Configuration of Experiment and Scheduling Functionality covering the flexible configu-

ration and orderly execution of a set of image processing experiments (or applications).

1.4 Design Problems

This section contains a brief overview of some of the main areas of Wave ImAgE’s design where

design problems occur:

1. Data structure and representation. The choice of internal representation for the data to be
processed in Wave ImAgE affects many aspects of its design. From transforming and process-
ing the data to displaying and logging, such activities will require accessing and traversing
the representation. How does Wave ImAgE actually represents images and transforms (as a
resulting product of a transform process) of different dimensionality and of different types and

format?

2. Transforming and processing. The core of the framework consists of transforming and pro-
cessing data for different purposes (i.e. to accomplish different tasks). What objects are re-
sponsible for performing different wavelet-based transforms and carrying out processing tasks
on the transformed data? How do Wave ImAgE processors interact with the data’s internal
representation? How does the framework allows for the configuration of different transform
and processing algorithms is a convenient way for the application developer, i.e. how can we
minimize the number of classes an application developer has to write/modify in order to add

new operations?

3. Application development environment. Since a large number of applications are likely to be
designed using the framework, how can a fixed application structure ensure consistency among

the different programs. Failing to provide and enforce a common programming model may

result in developers implementing their own unique versions of an execution model for each
of the application they write. This leads to harder to understand, harder to maintain and
harder to reuse code. How can such a programming model be enforced without restricting the
flexibility of application specific classes?

Wavelet-based image processing applications are characterized by algorithms or processors
operating on data (images, transforms). It should be possible, for example, for developers
to reuse applications to operate differently on the same data, or operate (the same way) on

different data. How can this be achieve in an orderly yet flexible fashion?

4. Data acquisition and components configuration. How can the framework assist in the config-
uration of the various components through some external configuration source? How can a
configuration source be changed without impacting both the core of the framework and the
application specific code? How can application-specific objects be created by the framework
which has no knowledge of application-specific subclasses? How can application-specific ob-
jects be used (as such) by an application if they are provided by the framework? This is the

issue of type laundering and the pull versus push model discussed in [63].

5. Supporting multiple consistent logging mechanisms. The framework and the applications need
to keep trace of different steps of the processing as it is performed. How can multiple appli-
cations employ a straightforward and consistent message logging mechanism that can allow

logging to various destinations?

1.5 Contribution of the Thesis

The main contributions of this thesis are described below:

1. As the title of the thesis indicates, we are offering elements of design for an object-oriented
framework prototype using design patterns. Some areas are meant to be presented in an inte-
grated manner, while some others are clearly meant to be presented in an exploratory manner.
One of the main contribution of the thesis, and a rare quality, in our opinion, is to discuss
a variety of design problems that are worth considering in themselves, and to show that the
design process is often richer than what a crystallized finished solution can offer. However,
since a framework is a concrete construct, we provide, even sometimes in prototypical form,

working code samples.

2. A rare quality of this work is that it has “une teneur spéculative certaine”. It might not
always be evident, but the nature and inherent level of difficulty of the questioning undertaken
in this thesis makes it worthwhile to read in its own right. For example, the sections where
the problem of type versus composition is briefly discussed (design notes of Chapter 5) is of

great interest to anybody seriously interested in software design. The decision to name design

10

patterns whenever the solution discussed can be considered an application of some well known
patterns is deliberate. Very few people really take the time to study seriously design patterns.
We did. And we feel that as a result, this thesis represents a good case study for whoever
is interested in learning more about design pattern, see examples of them, and understand
the context in which they may be used. The hard task of performing domain analysis for
framework development is illustrated in great details throughout the thesis. The discussion on
the multi-paradigm aspects of object-oriented software development in C++ (with regards to

templates versus classic polymorphism) also raises some very interesting questions.

3. To our knowledge, and after a throughout review of the literature and internet search, we did
not find any equivalent endeavour or existing systems aiming at accomplishing the same thing
as what we are working towards in this thesis. Among the systems that we found that might be
comparable in intent, or design, or implementation, are WAILI (Wavelets with Integer Lifting)
[61], ImageLib (An Image Processing C++ Class Library) [29], Wavelet Image Compression
Construction Toolkit [17], POOMA (Parallel Object-Oriented Methods and Applications) [41]
or efforts like the generic image processing algorithms development conducted at the EPITA
laboratory [18]. The domain analysis that we conducted prior to laying the ground work for
the design, resulting in the identification of key domain abstractions, was time consuming
but rewarding: to be able to step back and conceptualize at a higher level of abstraction the
main elements of a domain is a good intellectual exercise. Thus, the domain analysis that
was conducted before the framework design activity was undertaken, allowed us to gain some
insights on the structure of some wavelet-based processing tasks, ranging from the wavelet

transform itself, to the higher-level description of image processing applications.

4. We offer some interesting variations and combinations of the different VISITOR pattern imple-
mentations. This, in itself, is quite interesting, especially with the not so good reputation that

the VISITOR pattern may have in a framework context.

5. We present some interesting design findings using generic programming and design patterns,
taking as an example, a generic adapter based on the ADAPTER and EXTENSION OBJECT

design patterns.

6. The different styles of different parts of the thesis (sometimes more conceptual and abstract,
sometimes right down into the details of C++ code) makes it an interesting pedagogical read-
ing. Also, our decision to include design notes sections, although these section may be harder
to read because less structured and not yet synthetized is, in our opinion, a happy one. Mostly
because, sometimes, the most interesting problem are to be found there.

1.6 Organization of the Thesis

The thesis is organized into three main parts:

11

Part I- Background Material and Domain Analysis

Part II- Framework Design and Development

Here is a detailed overview which describes the content of the thesis chapter by chapter:

Part 1

Part I of the thesis is dedicated to this introduction, the domain analysis phase, and the framework
development process. The chapters in Part I will thus be providing background information on the
problem domain, i.e. wavelets, wavelet transforms and applications.

In Chapter 2, we provide an introduction to the concepts and methods of object-oriented frame-
works.

In Chapter 3, we give a brief overview of the concepts of multi-resolution analysis, wavelets, wavelet
transforms, together with a sketch of some applications. Among them are image denoising and image
compression.

Part 11

Part II focuses on the design phase of framework development. Part II is really the heart of the
thesis and this is where the design activity is taking place. In Part II, we address the design problems
mentioned above and many others, we present alternative solutions considered together with how we
came to them. Some prototypic solutions are proposed and implemented, and numerous commented
code samples are given.

Wave ImAgE is build as a collection of framelets, or small frameworks 3. Due to the design-intensive
nature of the framework development activity, a specific chapter will be dedicated for each frame-
work. In each chapter, we will present not only the resulting design (the actual product of the design

activity), but also in some cases, the design process itself. In doing so, our goal is two-fold:

1. Allow the reader to better appreciate and understand the design problems and trade-offs
underlying the design decisions. Hence a better understanding of the design decisions and of

the complexities inherent to the development of a framework.

2. Offer a documentation corpus that better represents the effort needed to design a framework.
It might be argued that a design “speaks for itself”, but we nevertheless believe that anyone
interested in software design will be better served with a more exhaustive documentation that

reflects the design process as well as the design product.

In Chapters 4, we present the design of the general Data Processing Framework which proposes a
solution to the problem of sctting up a framework that puts application-specific processor and data
classes into motion without having any knowledge of those subclasses. It is also proposing solutions
to the problem of supporting the development of different image-processing algorithms correspond-

ing to different image-processing applications.

3 According to W. Pree, who coined the term framelet in [44], the two concepts, framelet and framework, are not
stricly equivalent, the former being more abstract (see [19]) and smaller (see [44]) than the later, but throughout the
thesis we will use the terms interchangeably when referring to a small framework. More on that distinction in Chapter
2

12

In Chapter 5, we present the design of the Wavelet Transform Framework which provides a solution
to the problem of performing a wavelet transform on data of various dimensionality while providing
support for the flexibility requirements identified in Chapter 3.

In Chapter 6, we describe the design of the Processor Configuration framework which proposes
a solution to the problem of providing a centralized configuration mechanism that allows for the
dynamic configuration of Wave ImAgE components in a flexible manner as well as a solution to the
problem of scheduling a series of image processing experiments for execution in an orderly fashion.

Finally, Chapter 7 is our conclusion together with our suggestions for future research.

1.7 Notation

o The class diagrams in this thesis will follow the UML notation [5] and OMT-based notation
([46], [24]). Some elements of the UML-F notation, a UML profile for framework architecture
[19], will be retained.

e Design patterns will be referred to using their name in small capital letters, as in STRATEGY,
for the Strategy pattern.

13

Chapter 2

Object-Oriented Frameworks

2.1 Introduction

Patterns and frameworks are increasingly popular techniques for addressing key aspects of the design
of complex software systems. While patterns support the reuse of design expertise by articulating
the aspects of successful solutions to software design and implementation problems that arise in a
particular context, frameworks are concrete realizations of groups of patterns that enable code reuse
and design reuse by capturing the common abstractions of an application domain while leaving
control of application-specific structure and behavior to application developers.

During the past decade, a number of research and development efforts have focussed on documenting
patterns and developing frameworks [24, 7, 51, 34, 42, 49, 50]. Object-oriented frameworks have
emerged as a powerful technology for developing and reusing software systems. By leveraging domain
knowledge and prior efforts of experienced developers, frameworks embody common solutions to

recurring software design challenges and application requirements.

2.1.1 What are Design Patterns?

Design patterns are abstract constructs providing design solutions to recurring design problems.

Two widely accepted definitions of design patterns are given below:

o A design pattern systematically names, motivates, and explains a general design that addresses
a recurring design problem in object-oriented systems. It describes the problem, the solution,
when to apply the solution, and its consequences. It also gives implementation hints and
examples. The solution is a general arrangement of objects and classes that solve the problem.

The solution is customized and implemented to solve the problem in a particular context [24]

14

¢ Descriptions of communicating objects and classes that are customized to solve a general design

problem in a particular context [24].

2.1.2 What are Frameworks?

Here are some common definitions of a framework:

e A semi-finished software (sub-) system intended to be instantiated. A framework defines the
architecture for a family of (sub-) systems and provides the basic building blocks to create
them. It also defincs the parts of itself that must be adapted to achieve a specific functional-
ity. In an object-oriented environment a framework consists of abstract and concrete classes.
Instantiation of such a framework consists of composing and subclassing and subclassing the

existing classes [51].

e A framework is a “semi-complete” application that programmers can customize to form com-
plete applications by extending reusable components in the framework. In particular, frame-
works help abstract the canonical How of control of applications in a domain into product-
line architectures and families of related components. At runtime, these components can
collaborate to integrate customizable application-independent reusable code with customized
application-defined code[48].

e A framework is a set of cooperating classes that makes up a reusable design for a specific
class of software. A framework provides architectural guidance by partitioning the design into
abstract classes and defining their responsibilities and collaborations. A developer customizes
the framework to a particular application by subclassing and composing instances of framework
classes.[24]

2.2 Object-Oriented Frameworks

There are many possible categorizations for frameworks. A common categorization uses the kind of
domain that a framework encompass: application functions, domain functions, or support functions:
Application frameworks. Application frameworks encapsulate expertise applicable to a wide
range of programs and aim to provide a full range of functionality typically needed by an appli-
cation. Application frameworks encompass a horizontal slice of functionality that can be applied
across client domains. Examples of application frameworks are MFC (Microsoft Foundation Classes)
used to build applications for MS Windows and JFC (Java Foundation Classes).

Domain frameworks. Domain frameworks encapsulate expertise in a particular domain. These
frameworks encompass a vertical slice of functionality for a specific problem domain and thus help
reduce the amount of work that needs to be done to implement domain-specific applications. Ex-

amples of domain frameworks are control systems, banking or alarm systcins.

15

Support frameworks. Support frameworks typically address specific system-level domains such
as memory management or file systems. These frameworks are used by application developers to
simplify program development. Support frameworks are typically used in conjunction with domain
and/or application frameworks.

Wave ImAgE extends across the first two categories. Application framework because of the ap-
plication (called experiment) scheduling and logging capabilities, and domain framework, since it

encapsulates expertise in the wavelet-based image prbcessing application domasn.

A second possible categorization for frameworks is based on the framework’s high-level structures.
For example, a common kind of framework, called manager-driven frameworks, contain a single
controlling function (in the manager) that triggers most of the framework actions. A call to the
controlling function starts the framework which then creates the objects and calls the functions

necessary to perform an application-specific task (See Figure 2).

Manager

+AbstractClassA
+AbstractClassB

~

+run() 7

AbstractClassB

+operation()

AbstractClassA

+operation (AbstractClassB)

!
1

objB->operation();

objA—>operation(objB);D]

Framework
Application
ConcreteClassA1 ConcreteClassB1
+operation (AbstractClassB) +operation ()

Figure 2: Manager-driven framework.

Another possible categorization for frameworks is based on how clients use a framework. When
client usage is used as a criteria, we then talk about architecture-driven and data-driven frameworks
[60] depending on whether clients customize the framework by subclassing (deriving new classes
and overriding member functions) or whether customization is achieved through composition. Such

frameworks are also called whitebor and blackbox frameworks respectively:

e Whitebox frameworks: In whitebox framework, customization (or adaptation, or extensi-
bility) is achieve via object-oriented language features like inheritance and dynamic binding.
Existing functionality can be adapted by inheriting from framework base classes and overrid-

ing pre-defined hook methods [19]. Design patterns such as TEMPLATE METHOD are typically

16

used for this kind of adaptation. See Figure 3.

AbstractClass

+TemplateMethod ()
#PrimitiveOperationl ()
#PrimitiveOperation2 ()

|:)— —

ConcreteClass

+PrimitiveOperationl ()
+PrimitiveOperation? ()

/o

— o

/..

/...

PrimitiveOperationl ()

PrimitiveOperation2 ()

Figure 3: TEMPLATE METHOD design pattern [24].

¢ Blackbox frameworks: In blackbox framework, extensibility is achieve by defining interfaces
that allow objects to be plugged in the framework through composition and delegation. Exist-
ing functionality can be extended by integrating into the framework new classes that comform
to the existing interface. Design patterns such as STRATEGY, BRIDGE and DECORATOR are

often used to support this kind of extensibility. See Figure 4.

Context

+Contextelnterface()

stratedgv

Strategy

+AlgorithmInterface ()

T

ConcreteStrategyA

ConcreteStrategyB

+AlgorithmInterface ()

+AlgorithmInterface ()

strategy->AlgorithmInterface () B‘

Figure 4: STRATEGY PATTERN in support of adaptation through composition (Separation principle).

2.3 Framework of Frameworks

One approach in building frameworks is to build a general, very flexible framework from which are
derived additional smaller frameworks for narrower problem domains (see Figure 5). Wave ImAgE

follows that approach, as it will be outlined in Part IT of this thesis, when will be discussed the data

processing, wavelet transform, and configuration frameworks.

17

_/Concrete subcla;s\‘

Application—specific code

Figure 5: Framework of frameworks architecture.

2.4 Comparing Frameworks with Other Reuse Techniques

In this section, we compare frameworks with other widespread reuse techniques: patterns and class

libraries. We start by comparing frameworks with the kind of reuse present in application programs
([50, 34)).

Application Programs and Frameworks

Application programs, as the name implies, are targeted towards a single application. Thus, in-
ternal reuse is a high priority. Internal reuse ensures that the application developer does not design
and implement more than he has to: code is reused as much as possible within the application itself.
A framework on the other end dictates the architecture for a family of applications. It defines
the overall structure, its partitioning into classes and objects, their responsibilities, how they col-
laborate and the thread of control. The framework captures the design decisions that are common
to all applications in the domain so that application developers can focus on the specifics of their
applications. Thus, a framework emphasizes design reuse over code reuse.

These requirements placed on frameworks explain why frameworks are so hard to design: a frame-

work designer gambles that a single architecture will work for all applications in a domain [24].

Frameworks and Design Patterns

Design patterns and frameworks have similarities but they are different in three major ways [24):

1. Design patterns are more abstract than frameworks. Frameworks are embodied in code, i.e.

18

Problem Elaboration Construction
Analysis and Design and Transition

Application

Traditional Object—Oriented Design

-

Framework
Instantiation

-~ {Ropheion |

Domain Framework
Analysis Design

Application 1

Application 2

Appliggation 3

Application n

Framework Development Process

Figure 6: Application versus framework design activities.

they are implementation artifacts written in a specific programming language and they can
be reused directly. Design patterns can be studied, but only ezamples, or instances of design
patterns can be embodied in code. Design patterns have to be re-implemented each time they

are used.

2. Design patterns are smaller architectural elements than frameworks. A framework can contain

many design patterns.

3. Design patterns are more general that frameworks. The same patterns can be found in many

different frameworks.

Patterns are particularly useful in documenting recurring micro-architectures, which are abstractions
of software components that experienced developers apply to resolve common design and implemen-
tation problems. Software abstractions documented as patterns do not yield reusable code directly.
Frameworks on the other hand help developer to avoid costly reinvention of software artifacts by
implementing common pattern languages and refactoring common implementation roles [50}].

For example, consider the TEMPLATE METHOD design pattern [24].

The Intent section of this pattern says:

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses.

19

TEMPLATE METHOD lets subclasses redefine certain steps of an algorithm without chang-

ing the algorithm’s structure.

The Applicability section gives guidelines to help determine in which context the pattern should be
used. For example, it says that the TEMPLATE METHOD pattern should be used

o toimplement the invariant parts of an algorithm once and leave it up to subclasses to implement

the behavior that can vary.

The Structure section provides a class diagram showing the class structure of the pattern (see Figure
3). This is all pretty abstract, in the sense that there is no implementation that can be directly
reused. The pattern can be applicable in many different contexts. It is up to a software designer to
determine if the solution proposed by the design pattern is applicable in the context of his system.

If its the case, then the designer has to implement a specific instance of the pattern.

Frameworks and Class Libraries

Class libraries, the most common first-generation object-oriented reuse technique, support reuse-in-
the-small do not capture the canonical flow of control, collaboration and variability among families

of related software artifacts.

/

APPLICATION INVOKES
SPECIFIC
LOGIC

Figure 7: Class library architecture

Frameworks are a second-generation reuse technique that extends and complements class libraries

in the following three ways:

20

USER INTERFACE

APPLICATION

INVOKES SPECIFIC
LOGIC

DATABASE

Figure 8: Application framework architecture

e Frameworks are semi-complete applications that embody domain-specific struc-
tures and functionality. Class libraries are often domain-independent and provide a rela-
tively small granularity of reuse. For instance, the classes in the math library in Figure 7 are
typically low level, relatively independent and general. Although they can be reused by many
unrelated applications, the application developers are responsible for writing (and re-writing)
the “glue code” that performs the biggest part of the application control flow.

In contrast, classes in the framework collaborate to provide a reusable and customizable archi-
tecture for a family of related applications. As shown in Figure 8, the amount of application-
specific code is greatly reduced since much of the domain-specific processing or logic common

to the applications in the domain is factored into the generic components of the framework.

¢ Frameworks are active and exhibit “inversion of control” at run-time Class libraries
are typically passive in the sense that they perform their processing by borrowing the thread
of control defined in the applications that invoke the class library’s methods. As a result, the
control Jogic is not reused and the application developer must re-write the glue-code needed
to drive the application.
In contrast, frameworks are active in the sense that they direct the control flow of an application
by calling back application code. The flow of control is thus inverted through a principle known
as the Hollywood Principle, in other words, “Don’t call us, we’ll call you”. A good illustration
of this principle is the TEMPLATE METHOD pattern (Figure 3) which leads to such an inversion

of control:

class FrameworkClass {
public:
// Template method defining the

// flow of control through a sequence of

21

// calls to hook, primitive (abstract), and concrete methods.
void TemplateMethod() {

// Hook method

Hook1();

// Primitive (abstract) operation

Primitive();

// Concrete operation

Concrete();

// Hook method
Hook2();
/...
}
private:
// Pure virtual, MUST be overidden by subclasses
virtual void Primitive() = 0;
virtual void Hookl1() {
// Default implementation (can be empty)
¥
virtual void Hook2() {
// Default implementation (can be empty)
}
void Concrete() {

// Abstract class implementation.

};

Framework customization is done here by subclassing a framework abstract class and overriding
hook methods Hook1() and Hook2() (here, only Hook1() is overriden):

class ApplicationConcreteClass : public FrameworkAbstractClass {
public:
void Hookl() {
// Application-specific implementation

// overiding default framework one.

};

The application-specific subclass ApplicationConcreteClass extends (or adapts, or customizes)

the parent class operation TemplateMethod by overriding the hook method Hook1(). Notice

22

also how the framework has control over how subclasses extend it: subclasses can only do so
at well-defined locations, called variation points or hot spots implemented via hook methods.
The framework is “put into motion” by a call to the framework controlling function, here

TemplateMethod, which triggers the framework actions:

int main() {

// Instantiation of application-specific subclass

FrameworkAbstractClass *obj = new ApplicationConcreteClass;

// A call to the framework class template method
// will result in ApplicationConcreteClass’s operations
// being called (‘‘Don’t call us, we’ll call you’’)
// in the sequence defined in the framework’s
// TemplateMethod (hence, controlling the flow).
obj->TemplateMethod();

¥

This is an example of a simple framework based on the TEMPLATE METHOD design pattern.
We say that this framework implements the TEMPLATE METHOD pattern.

Subclasses can extend (or reimplement) the variable parts of an algorithm (which are the
application-specific steps, whose implementation code goes into methods called “hooks™) but
they cannot alter the invariant part of the algorithm (which is the structure, or low of control
of the algorithm) captured in the template method. This is an example, in the small, of what is
meant by the control or “architectural guidance” provided by the framework, which represents

the commonality across applications.

e Frameworks provide an integrated set of domain-specific structures and functional-
ity. Frameworks capture the commonalities and model the variabilities in application domains.
By leveraging domain knowledge and prior efforts of experienced developers, frameworks em-
body common solutions to recurring software design challenges and application requirements.
Thus, the design solutions and application requirements captured by the framework need not

be recreated and revalidated everytime a new application is developed [48].

In practice, frameworks and class libraries are complementary technologies. For instance, frame-
works can utilize class libraries (like the C++ Standard Template Library) internally to ease the
development of the framework and application-specific code can use libraries to perform basic tasks,

like string processing and numerical analysis, as shown in Figure 7.

To summarize, with class libraries:
e Classes are instantiated by clients

23

Client calls the library functions

There is no predefined flow of control
e There is no predefined interaction

e There is no default behavior

while with frameworks:

e Customization is provided by subclassing or through composition

The framework calls client functions

The framework takes care of the control flow of execution

The framework defines object interaction

The framework may provide default behavior

2.4.1 Compound Design Patterns
Compound design patterns are themselves patterns in that they name and document a recurring
solution to a common problem. They are compound in nature in the sense that they express

themselves in terms of other design patterns, even other compound patterns. The goal of compound

patterns is to capture the synergy between patterns and make it explicit (See [65]).

2.4.2 Framework Construction Principles and Patterns

Wolfgang Pree (see [43, 19]) identified essential framework construction principles. These princi-
ples guide the development of frameworks extensible through the call-back style of programming.

Adapting a framework can proceed according two styles of adaptation:

o Quverriding methods of framework classes in subclasses (or implementation of interfaces).

e Assembling ready-made components (compaosition).
The construction principles that assist these two styles of adaptation are called:

e The wnification construction principle (for whitebox frameworks).

e The separation construction principle (for blackbox frameworks).

24

2.4.2.1 Template Methods and Hooks

Hook methods are placeholders that are invoked from within (often more complex) calling methods
called template methods® The idea behind hook methods is that overriding them brings changes
into the behavior of the template method from which they are called, and this, without having to
alter the code of the class to which the template method belongs (not to mention the code of the
template method itself). The classes containing the template method and the hook method are
called respectively the template class and the hook class.

The construction principles identified by Pree are derived from the possible combinations of template

and hooks with regards to the class they belong to.

2.4.2.2 Unification Principle: Adaptation by Inheritance

The Unification principle requires overriding of the hook method in a subclass in order to change
the behavior of the template method. Because the corresponding template and hook are in one class
(they are united), the behavior of the template method can only be modified by defining a subclass.

Runtime adaptations are not feasible.

«Unification-TemplateHook»

TemplateHookClass remplate)

+template () O—=m= = = = b - — hOC'ﬂ.(.() H
—hook () /...
Subclass
t+hook ()

Figure 9: Unification principle

2.4.2.3 Separation Principle: Adaptation through Composition

The Separation principle only requires an object instantiation and a redefinition of a reference that
can be done at runtime. This is possible because the template and the hook methods are in different

classes (they are separated).

INot to be confused with the C-+-+ template construct, which is a completely different thing, and with the TEM-
PLATE METHOD design pattern, which is a design pattern based on the template/hook methods concepts.

25

«Separation-Template» «Separation-Hook»
TemplateClass HookClass
-HookClass: *_hookObj +hook ()
+template () [
I
i
template() {
/

/.
_hookObj->hook () ;
/7

}

Figure 10: Separation principle

2.4.2.4 Abstract Classes and Abstract Coupling

Abstract classes and abstract coupling are fundamental concepts to understand object-oriented
frameworks. The purpose of a (pure) abstract class is to provide a signature so that other components
in the software can be implemented based only on the signature of that class. For example, if we have
an abstract class A providing a signature and that component B is implemented in terms of that
signature, then we say that B is abstractly coupled with the abstract class A. If classes A and B are
abstractly coupled classes in a framework capturing their interaction, then an adapted framework
for which an implementation for the abstract class A is provided in a subclass A1 will work properly

without change or recompilation because component B does not know of subclass Al.

AbstractClassA AbstractClassB
+operation(AbstractClassB) +operation()
Framework
Application
ConcreteClassA1 ConcreteClassB1
+operation (AbstractClassB) Toperation ()

Figure 11: Abstract coupling.

26

2.5 Framelet Overview

The term framelet was introduced by Wolfgan Pree [44, 19] to designate non-overlapping groups of
logically related design patterns and interfaces.

Some characteristics of framelets are:

e Framelets are small in size (typically less than 10 classes).
As the name suggests, framelets are small frameworks. They usually consists in 2-3 design

patterns and a few abstract interfaces.

o Framelets do not assume main control of an application.
Since framelets are intended to be integrated with each other to form a framework, they must

not have control of the application execution.

e Framelets have a clearly defined interface and are self-contained.
They address a specific design problem and they can be developed and reused in isolation from

other framelets.

2.5.0.5 Framelets = Variation Points + Design Patterns

A useful distinction is made between architecture and design. The distinction between design and
architecture corresponds to different levels of abstraction: concrete architecture versus abstract de-
sign. The difference between design and an architecture is the same as the difference between a
design pattern and its instantiation. The pattern itself represents a pure design solution to a design
problem while the instantiated design pattern into specific classes for a concrete architectural situ-

ation represents an architectural solution.

At the design level, frameworks consist mainly of a set of variation points and design patterns.
Framelets partition this set into smaller subsets of related variation points and design patterns that
are then handled independently. Framelets were introduced as a means to simplify the design process
(since the design process of frameworks can be quite complex).

The design phase is chiefly concerned with incomplete abstract interfaces, independently handled
design problems, and design patterns. During the transition to the architectural phase, the attention

is shifted to concrete classes and objects.

The Wave ImAgE framework is being designed as a set of framelets, or small frameworks. The initial
domain analysis is leading to the definition of a certain number of variation points which are being

divided into a certain (smaller) number of framelets. Figure 12 illustrates the difference.

27

Space of Objects Space of Framework Variation Points Space of Framework Design Patterns

m - =
- | g
- @= |
Yariation Poirgﬂ s T iDesign Pattérn £
' -m-. I
Object Subset Boundary. ... |- ;___E/,L-Boundar:y N_E/‘l_i-Boundarﬁ/
N gy

Figure 12: Framelets and object subsets.

2.5.1 On the Iterative Nature of Framework Development

Framework development is not an easy task. A framework is revisited often during its development.
This constant evolution seems to be in contradiction with what a framework is supposed to achieve,
i.e. to facilitate application development by providing a stable, core set of classes embedding design
experience. Hopefully, it is not, as many authors recognize the iterative nature of framework de-
velopment, even equating framework development with framework evolution [9]. Since what we are
proposing are design elements of a prototype framework, Wave ImAgE will most likely go through

many rounds of iteration before it can claim to have reached some sort of maturity.

28

2.6 Overview of Wave ImAgE

This section provides an overview of Wave ImAgE by listing and giving a brief description of the

patterns and frameworks that are assembled into the main calling framework.

Figure 13 gives a global idea of the architecture of the framework. The wrapping box represents

the core components of the framework which are calling back the application-specific components

CONFIGU- LOGGING
RATION / qcHEDULING

APPLICATION CALL

INVOKES SPECIFIC BACKS
LOGIC

™~

TRANSFORM-DOMAIN PROCESSING

represented by the wrapped box.

INJOASNVYYL
JHTIAVM

Figure 13: Wave ImAgE framework architecture.

2.6.1 Design Patterns in Wave ImAgE.
Some of the key patterns used in Wave ImAgE (see Figure 14) are described below:

e The COMPOSITE pattern [24] is used in the representation of wavelet transforms (as a recursive

composition of subbands) and for the representation of composite processors.

e The DECORATOR pattern [24] is used to allow the dynamic extension of the wavelet transform

and transform steps in terms of preprocessing and prefiltering steps.

e The VISITOR pattern [24] is used in the processing framework to ensure that processors and the
data they are operating on within an application are brought together in a type-safe manner.
Also, this pattern is used to allow the addition of new processors without requiring changing

the classes in the data hierarchy on which they operate.

e The STRATEGY pattern {24] is used throughtly to configure wavelet transforms with transform
steps for example.

29

FACTORY <<CREATES>>
METHOD

VISITOR

<<CONTAINS>> ITERATOR

<<CONTAINS>>

DECORATOR COMPOSITE

TEMPLATE
METHOD

<<CALLS>>

MEMENTO

<<CONTAINS>>
<<DECORATES>>

ADAPTER

<<ADAPTS>> SINGLETON

> | STRATEGY |=—

<<CREATES>>
<<LINKS>>

PROTOTYPE ABSTRACT COMPONENT
FACTORY

<<LINKS>> CONFIGURATOR

WRAPPER
FACADE

<<ENCAPSULATES>> 0S8 KERNEL

Figure 14: The main patterns used in Wave ImAgE.

The SINGLETON pattern [24] is used to ensure that the configurator, the logger, the scheduler,
the options have only one instance each so that they provide a global access point.

The ITERATOR pattern [24] is used to encapsulate image and transform elements access and

traversals as well as to iterate through image processing experiments lineups.

The MEMENTO pattern is used to hold the state of a traversal in the wavelet transform de-

scriptor.

The ABSTRACT FACTORY pattern [24] is used to consolidate multiple strategies into semanti-

cally compatible processors and experiments configurations.

The PLUGGABLE FACTORY pattern ([66] and [64]) is also used to consolidate multiple strategies
into semantically compatible processors and experiments configurations. Pluggable factories

are parametrized concrete factories.
The PROTOTYPE pattern [24] is used to implement the PLUGGABLE FACTORY pattern.
The FACTORY METHOD pattern [24] is use to create strategies (processors) and iterators.

The TEMPLATE METHOD pattern [24] is used to capture the structure of some image processing

algorithms (like the wavelet transform).

30

o The ADAPTER pattern [24] is used to allow objects that have different interfaces to work
together. Wave TmAgE uses this pattern’s generic form (using templates as an example of
external polymorphism) as a helper for application developers to write and reuse derived

Processors’ implementation in experiment-specific concrete strategies.

e The PROXY pattern [24] is used in the ITERATOR pattern to ensure automatic destruction of

iterators.
e The ENVELOP-LETTER idiom is used to separate a data abstraction from its implementation.

e A variant of the COMPONENT CONFIGURATOR pattern [51] which implements the MANAGER
pattern is used to centralize configuration of image processing experiments with processor

strategies.

e The WRAPPER FACADE [51] pattern is used to encapsulate low level functionality at the OS

level.

2.6.2 Frameworks in Wave ImAgE.

DATA PROCESSOR

WAVELET
TRANSFORM

117 Vi

d 7
IMAGE PROCESSING Processor

/

- Data

PROCESSOR 1. process configuration file
CONFIGURATION 2. configure components
3— perform processing
. J
exp.config

%* configuration textual information *

Figure 15: The Frameworks used in Wave ImAgE.
Wave ImAgE contains three frameworks. Below we describe each framework, outline which pat-
tern(s) it implements, and discuss how it enhances reuse.

e The Data Processing framework prototypes (see Chapter 4) implements two implementation

variants of the VISITOR pattern, the ACYCLIC VISITOR and the STAGGERED VISITOR patterns

31

to allow for the double-dispatching of processors implementation. It enhance reuse by allowing
easy addition of new image processors without modification of the stable data hierarchy and

facilitate reuse by grouping related operations together.

The Wavelet Transform framework (see Chapter 5) implements the TEMPLATE METHOD,
STRATEGY, DECORATOR, COMPOSITE, ITERATOR, and ADAPTER patterns to allow for the

adaptation and extension of image processing algorithms.

The Image Processing Experiment Configuration and Scheduling framework (see
Chapter 6) implements a variant of the the COMPONENT CONFIGURATOR and the ABSTRACT
FACTORY pattern to facilitate dynamic configuration of image processing experiments with

processors.

32

Chapter 3

Wavelets, Wavelet Transforms and

Applications

3.1 Wavelets and Wavelet Transforms

This section provides background information about the concepts and theory of wavelets and wavelet

transforms.

3.1.1 What are Wavelets ?

A wave is defined as an oscillating function of time or space, such as a sinusoid in Fourier analysis.
A wavelet is a “small wave”, i.e. a wave which has its energy concentrated in time (non zero only on
a finite interval). This “local” aspect of the wavelet makes it a nice tool for the analysis of transient,
time-varying signals.

It is known that the wavelet transform is well suited for localized frequency analysis because the
basis functions have short time resolution for high frequency (which corresponds to a narrow window
able to detect high-frequency burst) and long time resolution for low frequency (which corresponds
to a long window to analyse slowly varying low-frequency components). The main reason behind the
adoption of the wavelet representation, the most powerful aspect, is that a function is decomposed
into a multiresolution hierarchy. The mathematics and practical interpretations of wavelets are
best served using the concept of resolution, referring to the effects of changing scale. I will briefly

introduce that representation in this section, and then move to wavelet functions and transforms..

33

3.1.2 Multiresolution Analysis (MRA)

A set of scaling functions is defined in terms of integer translates of the basic scaling function by

ety =pt—k) keZ @pelf (1)

The function space L?(R) is the space of all square integrable functions f(t). The subspace of L?(R)

spanned by these functions is defined as
V= SI>”an{<Pu(U)} (2)

for all integers k, and where the over-bar denotes closure. This means that functions f(¢) can be

expressed as a linear combination of the ¢y (t)’s
f) =Y awpp(t) forany f(t) €V, 3)
k

And here comes the notion of a scale. The size of the spanned subspace can be increased by changing

the time scale of the scaling functions such that

ik(t) = 270(2t — k) ()
whose span is
V) = Spanfiy (€1L)} (5)
This means that if f(t) € V), then
FO) =3 (Pt +k) (6)
k

The basic requirement for a multiresolution analysis is a nesting of subspaces as

e CV e CV 0o TV C Vs CVe C...C LS (7
or
Vi C V4o (8)
with
V_oo =1, Voo = L€ (9)

And because of the nested subspaces
f) eV & {(eU) €V (10)

Elements in a space are scaled versions of the elements in the next space. Because of the nested
structure of the subspaces, ¢(t) can be written as a weighted sum of scaled and shifted (t) such
that

p(t) = Z h(n)V2p(2t — n), n€Z (11)

where the h(n)’s are the scaling function coefficients.

34

3.1.3 The Wavelet Functions
The orthogonal complement of V| in V|, is defined as WW,. We define the wavelet spanned subspace
W, by
Vo =V, 8 W, (12)
which yields
L=V, eW oW ... (13)

where V, is the initial space spanned by the scaling function (¢ — k). Since the wavelets as they are
defined are in the space spanned by the next narrower scaling function (W, C V), we can represent

them as

P(t) =Y mvV2p(2t—-n), neZ (14)

for some set of coefficients hj (n), the wavelet coefficients, which are related to the scaling coefficients,
for orthogonality, in the case of a finite (even) length-N signal by hi(n) = (-1)"A(N — 1 — n).
Similarly as in (4) for the scaling function, we have a family of functions generated by (14}, the

mother wavelet of the form

W k() = 27/%4(27t — k) (15)

3.1.4 The Discrete Wavelet Transform

Since we have L? expressed as in (13), using (4) and (15) we have the discrete wavelet transform
(DWT)

F@) =D cio(R)pjo it + DY di (k) a(t) (16)
k

k j=jo
where the coefficients themselves (the ¢;; (k) and d;(k)) in the above expansion are called the discrete

wavelet transform. They are calculated by inner products (convolution products):

cj(k) = (f(®), 0k (1) (17)

and

dj (k) = (f(8), ¥;.£(2)) (18)

3.1.5 An Example: The Haar Wavelet

As mentioned above, the basic constructions of wavelets using scaling functions require first a scaling

function ¢ which is essentially a function ¢(t) that can be written as a linear combination of (2t —k),

35

a 1/2 scaled and k/2 translated version of ¢(¢):
oo
o) = Y hep(2t—k). (19)
k=—o00

This is the two-scale relation for the scaling functions and the sequence {hy } is the two-scale sequence

of :

p(t) = p(2t) + p(2t — 1) (20)

which means that (11) is satisfied for the coefficients h(0) = 1/+/2 and h(1) = 1/v/2, which corre-
spond to the set of scaled and translated “box” functions i.e.

1 forO0<t<1,
o(t) = (21)
0 elsewhere

Associated with the scaling function ¢ is the wavelet function ¢ defined by

»(t) = () — (2t - 1) (22)

and thus (14) is satisfied for h; (0) = 1/+/2 and h; (1) = —1/+/2. The wavelets corresponding to the
box basis are known as the Haar wavelets and are given by
1 for0<t<1/2
Yt) =< -1 for1/2<t<1, (23)

0 elsewhere

3.1.6 Multiwavelets

Multiwavelets have recently been developed by using translates and dilates of more than one mother
wavelet functions [54]. They are known to have several advantages over scalar wavelets such as short
support, orthogonality, symmetry, and higher order of vanishing moments which make them better

suited to image processing than single wavelets.

Multiwavelet basis uses translations and dilations of L > 2 scaling functions {p%(z)}1<k<r and

L mother wavelet functions {¢x(2)}1<k<r. If we write ®(z) = (p1(z), @2(z), ..., @r(z))T and
U(z) = (Y1 (z), Ya(z), ..., Yr(z))T, then we have
2N—-1
®(z) =2) Hp®(2z— k), (24)
k=0
and
2N -1
U(z) =2 Grd(2z k). (25)
k=0

36

where {H}}o<k<an-1 and {Grlo<r<an-1 are L x L filter matrices.

The two functions. 1 (z) and 2(z) can be generated via (24). Similarly, the two mother wavelet
functions ¥4 (z) and ¥s(z) can be constructed by (25).

Let Vs be the closure of the linear span of 27/2¢;(27t — k), = 1,2;k € Z. With the above
constructions, it has been proved that ¢;(t — k),l = 1,2;k € Z form an orthonormal basis for V3,
and moreover the dilations and translations 27/ (29 — k),1 = 1,2;j,k € Z form an orthonormal

basis for L?(R). In other words, the spaces Vj,j € Z, form an orthogonal multiresolution analysis
of L?(R). Let

3

Hw) = Y Hpe*, (26)
k=0
3

Gw) = Zeriw’“. (27)
k=0

Let f € Vo, then

f(t) = Z(cl,o,kSol (t — k) + c2,0,k02(t — k))

keZ
= Z(Cl,Jo,k2J0/2901 (2J0t - k)
keZ
+ c2,70,5 270 20y (2708 — k) (28)
+ YD (dh k202 (20t — k)
Jo<j<0keZ
+ dy,j k20245 (27t — kb))
where
Cojp = / (292,21 ~ K)d (29)
diji = / F()29/2,(29t — K)d (30)

fori = 1,2;j,k € Z and Jy < 0. By the dilation equations (24) and (25), we have the following

recursive relationship between the coefficients (c1 ., ¢2,5,6)7 and (dy j .k, da j k)7

3
(Cl1,5-1,k > - ﬁZHl < C1,7,2k+1 >,],k cZ (31)
=0

C2,i—1,k €2,5,2k+1
and
3
di -1,k dij ok+1 i
=v2) G, , hkeZ (32)
da,j—1,k =0 2,,2k+
Moreover,

3
e \ 7 C1,j~12k+1 o 151,28+
(Cl>—\/§§:<H,@< ’ >+Gk<d‘)) (33)
2,9,0 k=0 C2,5—1,2k+I1 2,j—1,2k+1

37

Multiwavelets have some advantages in comparison to single wavelets like Haar and Daubechies. For
example, short support, orthogonality, symmetry, and higher order of vanishing moments, are impor-
tant properties for image processing. A single wavelet cannot exibit all these properties at the same
time. Therefore, multiwavelets can potentially give better results than single ones in image compres-
sion [54] and denoising [6], but their implementation is also more intricate and complex. Since the
multiwavelets coefficients are matrix coeflicients, the transform requires vector input streams (2 in
the case of GHM multiwavelet, see next section), and then prefiltering becomes an important issue

(discussed in the next sections).

3.1.6.1 An Example of Multiwavelets: Geronimo-Hardin-Massopust

An important multiwavelet system was constructed by J. Geronimo, D. Hardin and P. Massopust
(GHM) [26]. Their system uses translations and dilations of L = 2 scaling functions {@g(z)}r=12.
and L mother wavelet functions {1y (z)}r=12.. If we write ®(z) = (p1(z),02(z))T and ¥(z) =
(1h1(z), 2 (z))”, then we have

2N -1

®(z) =2) Hp®(2z — k), (34)

k=0

and

2N -1
() =2 Y Gid(2z—k). (35)

k=0

where {Hy}o<k<an-1 and {Gy}o<k<an—1 are 2 x 2 filter matrices.(see Fig. (16)).

H

G

Figure 16: Multiwavelet analysis filter bank.
The GHM scaling and wavelet equations have four coefficients

P(z) = [zl Ei;} = C[0]®(2z) + C[1]®(2z — 1) + C[2]®(2z — 2) + C[3]®(2z — 3). (36)

38

where

- 3/10 2v2/5 7o 3/100 0
° T =v3/40 -3/20 "7 lovz/0 12|

0 0 0 0
He = [9\/5/40 —3/20] Ho = [—\/5/40 o} '

and
U(z) = [wlimi] = D[0]®(2z) + D[1]®(2z — 1) + D[2]®(2z — 2) + D[3]®(2z — 3). (37)
2T
where
. -v/2/40 —3/20 o - 9v2/40 —1/2
71 21720 -3v2/20 "Tlepo o0 |7
_ |9v2/40 -3/20 _[-v2/40 ©
7| ~9/20 3v32/20 71120 o

then the two functions 1 (z) and ps(x) can be generated via (34). Similarly, the two mother wavelet
functions ¥ (z) and ¥ (z) can be constructed by (35).

There are four remarkable properties of the GHM scaling functions:

They have short support (on [0,1] and [0,2]).

Symmetry: The scaling functions are symmetric and the wavelets form a symmetric/antisymmetric

pair.

Orthogonality: Integer translates of the scaling functions are orthogonal.

e Approximation: The system has a second order of approximation.*

A scalar wavelet cannot possess all these properties at the same time. Therefore, multiwavelets are

expected to give better results than single ones in image compression and de-noising [54].

1The higher the approzimation order of a wavelet base is, the better we are able to approximate smooth functions
using a small number of terms. However, the higher the approximation order, the longer the support, and this is the
price to pay for high approximation order since longer support means larger coefficients generated by each singularities.
Thus, to obtain a compact representation of a function with singularities, we need to find a good balance between the
approximation order needed to efficiently approzimate smooth portion of the function, and the length of the support
that sufficiently localizes singularities. For image processing applications, a good balance is attained with two to four
order of approximation.

39

3.1.7 Complex Symmetric Daubechies Wavelets

Symmetric Daubechies (SD) wavelets and their underlying scaling functions are obtained from a
complex MRA.

p(z) =2 arp(2z ~ k) (38)
k

$(z) =2 bip(2x — k) (39)
k

where ¢(z) and 1(z) are the complex scaling and wavelet functions, with the complex-valued co-
efficients ay = azj41-k and by = (—1)’°a§J_H_k, J=0,2,4,...,k=0,...,2J + 1 where * stands
for complex conjugate. SD wavelets are known to share the same properties as the real Daubechies
wavelets (i.e. compact support, orthogonality and vanishing moments) but also features such as
symmetric wavelets and scaling functions and better interpolation capabilities (for a detailed pre-
sentation we refer to [22, 23, 33]).

From equations (38) and (39) it is clear that there is a link between scalar complex wavelets and
the multiwavelet framework as noted in [22] and [33]. Rewriting the dilation equation and equation

{(39) in matrix notation, it is obvious that SD wavelets can have a multiwavelet interpretation,

¢% (x) ¢ (2z ~ k)
2) = =23 Alk 40
p(z) Lg (x)} Ek (%] o5 (2 k)} (40)
A€ V(22 — k)
z) = =23 Bk 41
() Lﬁ(ﬂf)} Ek [] wg(%_k)] (41)

where Alk] and B[k] are the 2 x 2-matrix scaling and wavelet function coefficients.

3.1.7.1 Complex Transform as a special case of Multiwavelet Transform

It is possible to implement the complex wavelet transform as a special case of multiwavelet (for
r = 2). In order to do that, we need to translate the operations on complex-valued coefficients in

terms of operations on vectors and matrices.
For example, the product of two complex numbers a and b defined as
axb= (0,1 +j(1,2) * (b1 +jb2) = (a1b1 — azbz) +j(a1b2 + agbl) (42)

can be written in matrix notation as the product
ar —az| |bi| _ |(a1b1 — azbs) (43)
a2 a1 ba (a1 by + azbl) '

40

So, having a set of complex filter coefficients cf = csf + jc? and an input sequence of complexe

numbers z& = [z5,2F,... ,2C_|], the complex convolution product y = ¢ * = can be written as
® 3 R ®,R 3,9
viil = |€ —c | |zt | _ | Gzl —clzly) 44
[i] = S R S T (RS 3 R) (44)
G] Tk (cFeily + el ,miiy)

Thus, the complex-values filter coefficients can simply be written in matrix notation and the resulting
implementation of the complex low pass and high pass filters follow the one of the multiwavelet

transform.

3.1.8 Wavelet Transforms

In this section, we introduce the concept of wavelet transform. We will briefly look at the different

components of a wavelet transform.

3.1.9 Preprocessing and Sampling

In applications like image denoising, we are given a set of function samples to transform rather than
a set of scaling function coefficients as it is assumed by the transform. Thus, the working assumption
in the single wavelet case, is that the scaling function coeflicients are a good approximation to the

function samples.

In the multiwavelet case however, when the multiscaling functions differ significantly, this assumption
is not useful anymore since a map from image samples to scaling function coefficients introduces
high-frequency artefacts. Thus a method to approximate multiscaling function coefficients has to
be defined, i.e. a process for obtaining the coefficients “at scale 07, i.e. C’,(CO). Such a method is
called preprocessing or prefiltering and has been the object of several recent papers (see for example
[54, 55, 68, 27]). Also, realizable as matrix-valued filter banks leading to wavelets bases, multiwavelets
differ from scalar (single) wavelets in requiring two or more input streams to the multiwavelets filter
bank. Methods for obtaining such a vector input stream from a one-dimensional signal are called
preprocessing schemes and are implemented through prefilters . The aim of preprocessing is to
associate to a given scalar input signal of length N a sequence of length-2 vectors for input to the

analysis algorithm.

— Prefilter Postfilter ——

Figure 17: Prefilter and postfilter schematic illustration.

We will consider here two kinds of preprocessing schemes:

41

o Oversampled scheme: if it produces N length-2 vectors from the length-/V input signal.
o Critically sampled scheme: if it produces N/2 length-2 vectors from the length-N input

signal.

We briefly introduce the two general schemes.

3.1.9.1 Oversampling

As mentionned above, when the preprocessing produces N length-2 input vector it is said to be an
oversampling scheme. A well known such scheme called “Repeated-row preprocessing” is presented

here.

Repeated-row preprocessing An input length-2 vectors {dp } is formed from an original one-

dimensional sequence X of length N via

0 X
To = [“gv’“} - [’“} k=0,...,N—1.
Ug aXy

where « is a constant?. Representing the preprocessing by a matrix multiplication we have
PX =V,

where P is a 2N x N prefilter operator, X is a NV x 1 input sequence, and V, the 2N x 1 prefiltered

sequence. We have

—Xo— —Xo] i ugo 1

1 0 0 1

X1 OéXO Ug o

0 0 ’

P = 3 . X = | X1 = | |ug, (45)
0 X3 OéXl ’U,(l),l
0 a O .
L dNx1 L Jdanxa L YJanx:

3.1.9.2 Critical Sampling

Critical sampling produces N length-2 vectors from a input signal of length N thus preserving the

sampling rate of the input signal.

Some implementations of the multiwavelet transform create a 2-input signals by simply using 2

adjacent rows (and columns in the vertical direction) as input. Better results could be obtained by

2The choice of « is not discussed here, neither the properties that a “good” prefiltering scheme should possess.
These matters are fully discussed in [54],[55] and [68]. However, a conveniently implemented scheme for 2D GHM
repeated row preprocessing uses a = 1/\/5

42

using of the two-dimensionality of the matrix filter coefficients [54] through a better understanding
of the approximation property (and intricacies) of multiwavelets. Strela and Walden in [55] however
claimed to have obtained good results using repeated-row preprocessing. We note that no true 2-D
preprocessing scheme exists now and that the preprocessing scheme conveniently used for the GHM
multifilter bank, called “approximation preprocessing” ([54, 55, 68]) is in fact a 1-D scheme for 2-D
image signals and that further investigation towards such a 2-D scheme constitute and interesting

avenue for research.

3.1.9.3 Matrix Preprocessing

Matrix preprocessing can be represented by:

M X
VO,k=ZQm[2"”*’“)], k=0,...,N/2—1
m—0 Xo(mtk)+1
where X is an input sequence, Qo, Qo, ..., Qo are 2 x 2 matrices, and v the resulting prefiltered

vector signal.

If we represent the matrix preprocessing by a matrix multiplication,
QX = V0>

where @ is N x N, X is N x 1, and Vg is N x 1, then we have

X, g o]
Q Qi ... Qu 02 X, [ué,o}
0=102 Q Q1 ... Qu 02 X, = [{ud, (46)
' X; [ué’l}
NxN .
Lodnvsa b daa

where the Q,, matrices are 2 X 2 and 02 is an all-zeros 2 x 2 matrix.

3.1.9.4 Approximation Preprocessing

Approximation preprocessing is a special case of matrix prefiltering for which M = 1.

For example, for the GHM multifilter bank we have the interpolation prefilter:
Qo = 3/8V6 5/4v/6 3/8V6 0
? 0 0 1/V3 0

which can be applied to a 1D signal to prepare it for a transform using GHM multiwavelets [55] (see
Figure 18).

and Q = [

43

Row processing Column processing
Post-
Pre- filter
Post- filter Post-
filter filter
Pre-

fitter Post- Post-
filter Pre- filter

filter
e Post-
filter

Figure 18: Single-level 2-D MWT using 1-D approximation preprocessing.

3.1.9.5 Two-dimensional proprocessing scheme

The prefiltering schemes discussed so far are called 1D schemes, since they are applied to 1D signals,
i.e. even in the case of image processing, the scalar-vector conversion is performed on rows or
columns (1D) before the matrix filter /subsampling unit. However, there exist 2D prefilters that are
applied before the transform process to map the 2D signal to coefficient vectors suitable for direct
filtering by the matrix filters (see Figure 19) [12].

2-D preprocessing Row processing Column processing
H __: :__
")
Lowpass filtering G _Qai
| 2D
Prefilter H[(::)
=D
Highpass filtering G __@_,

Figure 19: Single-level 2-D MWT using 2-D approximation preprocessing.

3.2 Wavelet-Based Image Processing Applications

In this section, we present briefly some typical wavelet-based image processing applications. We will
identify the main processing units at work in the applications, at a high level of abstraction (i.e. at
a semantic level), together with a more detailed overview of some representative algorithms. The
main goal in our current context is simply to get a feel for the kind of algorithmic organization at

work in wavelet-based image processing applications.

44

3.2.1 Terminology of Digital Image Processing

We will restrict the general definition of an image to the following narrower definition: a digital
image is a sampled, quantized function of two (or three) dimensions, sampled in an equally spaced
grid pattern, and quantized in equal intervals of amplitude. Thus, a digital image is a two or three
dimensional array of quantized sampled values.

Processing is the act of subjecting something to a process. A process is a series of operations leading
to a desired result (see [11]).

Digital image processing can be defined as subjecting a numerical representation of an object to a

series of operations in order to obtain a desired result.

Digital image processing starts with one (or many) image(s) and produces a modified version of that

image (those images).

3.2.2 Wavelet-Based Processing

Input Forward Processor Inverse Output
Signal Transform Transform Signal

e e im e e e _._3 Bvaluation . _____ . __._.._ |

Figure 20: Transform-based image processing.

In order to describe wavelet-based (wavelet transform-based) image processing applications (see
Figure 20) it is important to agree on the language used to describe such applications.

Wavelets and wavelet transforms can be presented in at least two languages: mathematics (wavelets
and scaling functions) and signal processing (digital filters, filter banks and signals), reflecting the
multi-disciplinary origin of wavelet theory and wavelet transforms. We adopt the point of view and
language of filters since in many applications, one never has to deal directly with the scaling functions

or wavelets and only the filter coefficients are considered. [53]. Let us define some important terms:

o Transform. The transform of a signal is a new representation of that signal. For an input
z[n] the output of a transform is a set of coefficients bjx, which express the input in the wavelet
basis. The b;x can be found recursively. The coefficients b, in this wavelet expansion are called
the discrete wavelet transform (DWT) of the signal f(t). The central idea in this recursion is

multiresolution.

45

e Filter. A filter is a time-invariant operator. It acts on input vectors z. The output vector
y is the convolution of x with a fixed vector h. The vector h contains the filter coeflicients
h(0), h(1), h(2),....

e Filter bank. A filter bank is a set of filters. The analysis bank has often two filters, lowpass
and highpass. These filters separate the input signal into frequency bands. When processing is
applied to those subbands, we are talking about subband coding or processing in the transform-

domain.

o Wavelet. Wavelets are basis functions in continuous time. A basis is a set of linearly inde-
pendent functions that can be used to produce all admisissible functions f(t). Corresponding
to the lowpass filter there is a continuous time scaling function ¢(t). Corresponding to the

highpass filter, there is a wavelet w(t).

e Tree structured filter bank. tree-structured filter bank implements the discrete wavelet

transform. This is known as iterating the filter bank.

o H | ‘1’2 | o Low frequency

component
- H = |2
input = H = LZ G [—F \LQ I
signal Detail
G ™ ¢2 ™ components
G~ |2 -

Figure 21: Filter bank implementation of a multilevel (three-stage) multi-band (two-band) analysis
tree (descrete wavelet transform) of a 1D signal.

In order to adapt or instantiate a framework to create an application (activity referred to as a
framework instantiation), an application developer must have a set of requirements for the target
application. Use cases are a common technique of capturing, representing and discussing application
requirements. Tables 1 and 2 sketch examples of use cases for 2 wavelet-based image processing
applications: a multiwavelets image denoising, a complex wavelet image denoising. Other typical
applications also briefly presented are: non-linear wavelet image compression, and a 3D medical

image fusion.

3.2.3 Wavelet Denoising

Typical transform-based denoising consists in performing the three following steps:

o Transform the noisy data into the transform domain (orthogonal or non-orthogonal).

e Apply thresholding to the resulting coefficients.

46

Use case: Multiwavelet Image Denoising

Actors
Image, desired multiwavelet, transform, prefiltering scheme, thresholding scheme, performance eval-
uation routine.

Pre-conditions

1. Image available.
2. Wavelet available.

Post-conditions (objectives)

1. Image is denoised and statistics are available.
2. Intermediate and final results (sub-images, metrics) are logged to a chosen destination.

Basic flow

1. Acquire a noisy (white noise) image.
2. Configure transform.
B Create filter, a specific multiwavelet: GHM.
B Set transform type to non-standard (rectangular).
B Set the depth of the transform.
Determine the thresholding scheme to be use: univariate thresholding.
Perform a wavelet transform on the noisy image.
Threshold the transform image.
Evaluate performance.

N ot W

Log metrics and save resulting image to desired destination/format.

Table 1: Use case for a multiwavelet image denoising application

47

Use case: Complex wavelet denoising

Actors
Image, complex wavelet, transform, thresholding scheme, performance evaluation routine.

Pre-conditions

1. Image available.
2. Wavelet available.

Post-conditions (objectives)

1. Image is denoised and statistics are available.
2. Intermediate and final results (sub-images, metrics) are logged to a chosen destination.

Basic flow

1. Acquire a noisy image (with multiplicative noise).
2. Configure transform.

B Create filter, a specific complex wavelet.

W Set transform type to standard (square).

B Set the depth of the transform.

B Select translation invariance algorithm: average over diagonal shifts.
Determine the thresholding scheme to be use: elliptic thresholding.
Perform transform on noisy image.

Threshold the transform image with selected thresholding scheme.
Evaluate performance.

NS T W

Log metrics and save resulting images to desired destination/format.

Table 2: Use case for a complex wavelet denoising application.

48

Input Forward Thresholding Inverse Output
Signal Transform Transform Signal

e e eiiiceee oo o.___3| Bvaluation | _ ______ L ______._______

Figure 22: Flowchart for a typical image denoising application.

e Transform back into original domain.

3.2.3.1 Denoising by Thresholding

Once an image has been transformed, some kind of operations are performed on the coefficients in
the transformed domain. In the case of image compression as well as in the case of image denoising,
this operation consists in shrinking the coefficients. For image compression the goal is to reduce the
number of non-zero coefficients to represent the image more compactly. For image denoising, based
on the assumption that the noise predominantly lies in the wavelet coefficients at higher resolution

level, the goal is to reduce those coeflicients to remove the amount of noise.

We briefly present here two types of thresholding (or wavelet coefficient shrinkage): univariate
and multivariate. But first, we illustrate two types of “shrinking” that is performed on individual

coefficients: hard and soft thresholding.

3.2.3.2 Hard and Soft Thresholding

The most straightforward approach to denoising uses the absolute value of the wavelet coefficient as
a regularity measure: a coefficient close to zero contains little information and is relatively strongly
influenced by noise. When all wavelet coefficients having an absolute value below a certain thresh-
old d{and hence classified as “noisy”), they are replaced by zero. The coefficients with absolute
value above the threshold are kept intact. This is hard thresholding. (see Fig. (23)(b)) The co-
efficients above the same threshold § are shrunk by the value of the threshold. This is called soft
thresholding.(see Fig. (23)(a))

49

(a) (b)

Figure 23: Soft (a) and hard (b) thresholding.
3.2.3.3 Univariate Thresholding

The simplest wavelet coefficient method (Visu-Shrink) as it applies to N data points (1-D) signal

consist of 4 steps:

1. Perform a N-level forward transform on the signal

2. Estimate the noise variance by calculating the standard variation o of the wavelet coeflicients

at highest resolution level.

3. Set a threshold level T' = 1/2log(N)o and apply a soft thresholding (wfc — sgn(wi)(lwi [-T)4)
or hard thresholding (w?c - 0 for (|wi| <= TY)) on all wavelet coefficients uniformly (universal
threshold).

4. Perform an inverse wavelet transform.

3.2.3.4 Multivariate (or Vector) Thresholding: Elliptic Thresholding

The essential difference between univariate thresholding and multivariate (or vector) thresholding
is that the latter considers (multi or complex) wavelets coefficients vectors as a whole rather that

thresholding individual elements.

The algorithm presented above can also be applied to noisy images encoded with a 2-D wavelet
transform. The difference here is that the coeflicients are collected in three different spectral bands
(subbands) corresponding to the vertical, horizontal and diagonal directions (VV, WV and WW
blocks).

50

Since the noise characteristics can differ in each of these blocks, they can be processed separately.
For instance, the noise characteristics in the WV subband can be used for thresholding all the lower
resolution WV blocks (and similarly for WW and VW), given that the transform is a non-standard
(square) transform (see Figure 24).

Square
(non-standard)

Rectangular
(standard)

Figure 24: Standard and non-standard decompositions.

In the case of complex wavelet coeflicients, it has been observed that the coefficients follow a bi-
normal distribution of mean {u,, 1) with covariance matrix R which is not diagonal (meaning
that the real and imaginary parts are correlated. The term “elliptic” thresholding comes from the
fact that thresholding of the complex coefficients should be performed with respect to the principal
axes of the 2-D distribution and angle-dependent (within an area that extends in proportion to the
eccentricity of the centered dispersion ellipse (thus preserving the elliptic shape of the distribution).

The algorithm proceeds as follows [22, 23]:

¢ Perform a N-level wavelet transform.

For each subband type (VW, WV, WW) and level j (=1,2,...,N), perform the following:

Calculate the mean (u., 11,) and the independent element r171, 712 and ra; of the covariance

matrix R.

Calculate the orientation angle e of the main axis £ using

2
a = 1/2arctan iz

T11 — T22

Evaluate the standard deviations o, and o, using

Og = \/1"11 cos? o + 719 sin 2a + T22 sin2 (83

51

and

on =4/ T11 sin? @ + 719 8in 2a + 93 cos2 &

o Apply the elliptical thresholding rule Jwg| = if £2/tZ + n?/t2 <= 1.0 and |wy| — |wk| -

T(©) if £ /t7 +n”/t; > 1.0 where T(0) = N sinet)gi:(t,, T and t, = a},t, = teo,/o¢

e Perform an inverse wavelet transform.

3.2.4 Wavelet-Based Image Compression

Wavelet coders are all derived from the transform coder paradigm. According to that paradigm,
there are three basic components that underly wavelet coders:

e A decorrelating function,

e A quantization procedure,

e An entropy coding procedure

Processor
! |
I T
] I
I
Input Forward ' | Quantizer Encoder | !
I . —> !
~==71 Signal Transform : :
l 1 !
t | |
| ' '
1 b o e e e e — '
: Compressed
! Signal
' Processor 9
O
; : !
! Output Inverse ' X
i Signal Transform <) I —
: 9 ' | Dequantizer Decoder \
1 ’ '
! . ! |
1 : 1 I
I | i]
| . b e e e e e '
' i
I
'
|
r
'___»| Evaluation

Figure 25: Flowchart for a typical image compression application.

We apply thresholding only to the wavelet coeflicients (i.e. to the coefficients representing the details
in the image), since wavelets form what is called an unconditional basis, and the wavelet expansion
of a signal have coeflicients that drop off very rapidly. Thus, the signal can be represented efficiently

with only a small number of them.

92

3.2.4.1 Wavelet Basis

The success of transform coding depends on how well the basis functions of the transform represent
the features of the signal. A property of wavelets that makes them useful for image compression
is energy compaction i.e. the ability the wavelet transform has to represent an image (viewed as a
matrix of coefficient) with an acceptable level of accuracy using only a fraction of the original data.
Wavelets have better energy compaction than the Fourier transform which makes them suited for

the compression of signals with discontinuities.

3.2.4.2 Quantization

A useful view of quantizers is to see them as concatenation of two mappings. An encoder, which
takes partitions of the x—axis to the set of integers —2, ~1,0, 1, 2, and a decoder which takes integers

to a set of values Zy.

a3

3.2.5 3D Medical Image Fusion

Image fusion can be defined as the process by which several images, or some of their features, are
combined together to form a single image [40]. In many applications, such as medical imaging,
there is a growing need for 3-D image fusion algorithms capable of combining multimodality or
multisource images. An example from the 3-D medical imaging domain is the fusion of Magnetic

Resonance (MR) and Computed Tomography (CT) images or fusion of MR and ultrasound (US)

images.
2D/3D Forward Fusion Inverse Output
Image Transform Transform Image
2D/3D Forward
Image Transform
2D/3D Forward
Image Transform

Figure 26: Flowchart for a typical image fusion application.

According to [1], image fusion can be performed at different levels of the information representation:

signal, pixel, feature and symbolic levels. Here we are interested in pixel level fusion.

Pixel fusion algorithms vary from very simple to very complex. Simple schemes include image
averaging for example. More complex schemes include principal component, analysis and wavelet

transform fusion.

3.2.6 3-D Image Fusion

The general idea (the high-level algorithm) behind wavelet-based image fusion is the following:

e The wavelet transform w of N input images I1 (z,y, 2), I2(z,y,2),... , In(2,y, 2) (usually N =

2) are computed.

54

o These transforms are combined using some kind of fusion rule .

e The inverse wavelet transform w=! is computed and the fused image is reconstructed.

The process can be expressed as follows:

Iz,y,2) = w ' (pw(z,y,2)wl2(z,y,2),... 0N (z,y,2)) (47)
w_l(cp(Wl (.'17,:1/,2’))), WZ(zasz))a v ,WN(fE,y,Z))) (48)

3.3 Conclusion

This concludes our brief overview of wavelets, wavelet transforms and applications. This chapter
was meant to reflect a fraction of the domain analysis activity that was performed prior to the
development of the framework. We are now ready to embark on the design of the framework

outlined in part IT of the thesis.

95

Part 11

Frameworks Design

96

Wave ImAgh Framelets

The framelet construct was intoduced in Part I. The initial domain analysis led to the identifica-
tion of a number of variation points. These variation points were then partitioned into three main

framelets, each containing a subset of the variation points.

The adaptability and flexibility requirements intrinsic to the variation points represent design prob-

lems for which candidate design solutions were developed in each framelet.

Since, at design level, the framework is composed of design patterns and variation points, each
framelet is composed of a subset of the framework variation points and related design patterns. The
following chapters (one per framelet) contain descriptions of the design patterns and variation-points
for each framelet.

The Wave ImAgE framework is made up of the following framelets:

o The Data Processing Framework:
This framelet proposes a design solution to the problem of developing general data processing
applications.

This framelet is covered in Chapter 4.

o The Wavelet Transform Framework:
This framelet proposes a design solution to the problem of performing wavelet transforms on
data signals.

This framelet is covered in Chapter 5.

o The Configuration and Ezperiment Scheduling Framework:
This framelet proposes a design solution to the problem of flexibly configuring image processing
experiments with image processors and to schedule the execution of these experiments.

This framelet is covered in Chapter 6.

57

Chapter 4

Data Processing Framelet

4.1 Overview

This chapter describes the data processing framelet for the Wave ImAgFE framework. The framework

is described at both the framelet design level and at the framelet architectural level.

This framework (or the proposed frameworks) proposes candidate design solutions to the problem
of developing data processing applications, which are applications performing processing steps on
data signals.

In this chapter we provide outlines of candidate solutions for that category of applications featuring

processors, as building blocks or units of processing functionality, operating on data.

The idea is to offer a way to build complex image processing tasks (wavelet transforms and wavelet-
domain image processing algorithms) that can be performed in a sequential way and configured by
the user at various levels of abstraction (from the details of fine grained low-level functionality to
high level tasks).

4.2 Context

The context for the design of the framework is described in Chapter 3, Wavelets, Wavelet Transforms

and Image Processing Applications. This chapter assumes that the reader is familiar with Design

08

Patterns [24] and more specifically, with the VISITOR family of design patterns’.

4.3 Problem

The design solution proposed should be influenced by the following forces:

o The number and type of operations applied on the data will most likely proliferate as more
applications are developed. The framework should allow for the development of an open-ended
number of processing functionality without having to modify the data. Basically, a primary
challenge when designing the Data interface is to come up with a minimal set of operations that
lets clients build open-ended functionality. Performing “surgery” on Data and its subclasses
for each new capability is both invasive and error-prone. The risk is that the Data interface
evolving as a hodgepodge of operations eventually obscuring the essential properties of Data

objects. When that happens, the classes just get harder to understand, to extend and to use.
o Exchange of processing units should easily be done at run-time.

o The framework should allow for the occasional addition of new kinds of data to be treated as

they should without modification to the framework.

e The framework should allow for the composition of complex processing tasks from smaller

processing units (building blocks).

¢ The framework should be able to capture the relationships and collaborations between some

abstract processors, in order to alleviate the responsibilities of application developers.

¢ The data to be processed by different applications could be of different dimensionality (1D,
2D and 3D) and represent different types of objects (images, geometries, etc.). The framework
must instantiate classes and define the collaborations between those classes but it only knows
about abstract classes (the applications know about their application-specific classes). The

data should be represented in the framework in its most generic form.

® As the domain analysis conducted in earlier chapters revealed, the wavelet-based image pro-
cessing domain can be modeled at a high level of abstraction using two kinds of basic abstract
objects. Objects that that are processed, or operated on, and processing objects (called pro-
cessors), operating on the first kind of objects. From a user’s perspective, these more passive
objects are signals, images, transforms (as transform-domain representations of data objects
that were transformed) and geometries. We want the framework to be able to treat those

objects uniformly (i.e. without concern for their application-specific features), i.e. as objects

!The patterns in this family are: conventional VISITOR, ACYCLIC VISITOR, STAGGERED VISITOR, DECORATOR, and
EXTENSION OBJECT [37]

a9

that are processable and processed. At that level at least, it could mean that those objects
should have a common interface. It could also mean that the classes representing those ob-
jects be derived from a common (abstract) base class (or using some other means to obtain
genericity, as it is discussed later in this chapter). How can such a base class look like, and
what should its interface contain? The difficulty of this question stems from the diversity of
the objects belonging to that class. This diversity can be expressed along three main azes of

variability:

1. data type for the elements contained within the data objects (which are some sort of

containers holding data elements: integers, real, complex numbers, matrices, etc...),
2. dimensionality of the data (1D, 2D or 3D),

3. data structure represented (signal or geometry).

These issues will be discussed in the next section below.

4.4 Solutions

The candidate solutions proposed in this chapter are all based on the VISITOR family of design
patterns.

The patterns in this family are:

VISITOR

AcycLic VISITOR

STAGGERED VISITOR

DECORATOR

What those patterns have in common is that they allow new operations to be added to existing

hierarchies without modifying the hierarchies.

In this section we will thus review the VISITOR pattern (and the kinds of problems it’s good at

solving), motivate our use of this family of patterns, and finally present candidate solutions, which
are based on different implementations of the VISITOR pattern.

Our intent is not to present a definitive unique solution, but rather to articulate and appreciate the

trade-offs of the various solutions considered.

60

4.4.1 The Visitor Design Pattern

The intent section of the VISITOR design pattern says:
VISITOR

Represent an operation to be performed on the elements of an object structure. VISITOR

lets you define a new operation without changing the classes of the elements on which it

operates [24].

Visitor
+visit (ConcreteElementa)
+visit (ConcreteElementB)

7

ConcreteVisitor1 ConcreteVisitor2
+visit (ConcreteElementd) +visit (ConcreteElementA)
+visit (ConcreteElementB) +tvisit (ConcreteElementB)

Element

+accept (Visitor)

T

| |
ConcreteElementA ConcreteElementB

+accept (Visitor v) 1 +accept (Visitor v)
T

1

1

1
|v—>visit(this) |

Figure 27: VISITOR design pattern [24].

In light of the forces identified in the previous section, let us look at what VISITOR has to offer.

1. It contains two class hierarchies. One for passive (visited) elements operated on, and one for

visitor classes containing the implementations for these operations to perform.
2. It allows adding new operations to a hierarchy of class without modifying a class hierarchy.

3. It provides a way to reduce the number of classes to implement m x n behaviors (this is called
the m x n problem for m element classes and n types of behavior on those elements). For that
problem, double-dispatch probably offers the best solution. And VISITOR offers one way to

implement double-dispatch.

4. It provides a way to recover lost type information from an instance without resorting to
dynamic cast. This relies on double-dispatch to execute the correct application-specific imple-

mentation.

61

The third point is not really relevant in our case since in the context of this framework, we are not
really interested in reducing the number of classes containing an implementation: these are provided

by the applications.

This approach has the following advantages:

o Adding a new processing algorithm becomes easy. To add a new operation does not require
opening the Data hierarchy interface to perform surgery on it but it simply requires adding a

derivative in the processor hierachy.

e Related operations are gathered together while unrelated ones are separated. The set of oper-
ations implementing the same kind of processing could be grouped together in the same class
since each algorithm (visitor) has its own class. Also, algorithm-specific data structures can
be hidden in the visitor [24].

o The class defining the data are much simpler and cleaner. The data classes only have to define
an accept (Visitor&) method (or apply(Processor&) in our case), no matter how many

different transform algorithms there are.

4.4.2 Visitors in Frameworks

In the context of framework development (see Figure 28), it would be desirable if the framework-
provided abstract classes Visitorl and Visitor2 were base classes for two different kinds of al-
gorithms (1 and 2) that applications would subclass. However, for those base classes to be more
useful to application developers, there should be either some sort of collaboration between Visitor1
and Visitor2 (i.e. an abstract coupling capturing the collaboration between different algorithms)

and/or the addtion of template methods capturing common behaviors across applications. A prob-

Visitor
+visit (ElementA)
+visit (ElementB)

4

Element
A

Visitor1 Visitor2 [ElementA | [“ElementB |
+visit (Elementa) +visit (Elementa) {raccept (visitor)] {raccept (Visitor} |
+visit (ElementB) +tvisit (ElementB) ")

1
! [|
— ! B
|| _ConcreteVisitor1 [_Concretevisitor2 | [ConcreteVisitorz | 1
' !
! 1

+visit (ElementA) Tvisit (Elementd 1o
+visit (ElementB) |)] [Fvisit (Elementa) 2

Application-specific algorithms on concrete elements

Figure 28: VISITOR hierarchy in a framework context.

lem with such a VISITOR-based approach in the context of framework development is that the visitor

62

base class contains references to application-specific subclasses. In order to get rid of this problem,

we will look at two alternative implementations of the VISITOR pattern:

e The STAGGERED VISITOR (see [67] and [63])

e The AcycLic VISITOR (see [36], [37] and [3])

We will introduce those implementations in the next sections.

4.4.3 The Staggered Visitor

The problem with the VISITOR pattern as we know it is that the Visitor base class which is a

framework class, contains references to concrete (i.e. application-specific) subclasses:

class Visitor {
//. ..
virtual void visit(ConcreteElementA *);
virtual void visit(ConcreteFlementB *);
// etc. for all concrete element classes

};

A framework interface should not refer to concrete subclasses. Since application-specific subclasses
will be written long after the framework classes interfaces are defined, a framework class depending
on subclasses will need to be changed to parallel the application developments. This is just not
possible for a framework. What is needed is a place to put new Element subclasses as they arise,
without changing the Visitor interface [63]. The idea is to commit to an application-specific Visitor
interface as deeply as possible in the Visitor hierarchy. An implementation called the STAGGERED
VISITOR was proposed to achieve that ([63], see Figure 29).

63

Visitor

+visit (Element) =

se== ‘| // framework catch-all B|

Element

+accept (Visitor)

Framework

Application

AppVisitor

+visit (Element) ===
+visit (AppElementA)
+visit (AppElementB)

-==|// application catch—alllﬁ

AppElement

AN

]

ConcreteVisitor1

ConcreteVisitor2

+visit (AppElementA)
+visit {(AppElementB)

+visit (AppElementA)
+visit (AppElementB)

64

+accept (AppVisitor)

i

AppElementA

AppElementB

+accept (AppVisitor) ,

+accept (AppVisitor) ,

v.visit {this)

Figure 29: The STAGGERED VISITOR design pattern.

The two crucial things that are done to the conventional VISITOR implementation are:

1. Move the application-specific visitor operations out of the base class.

2. New AppVisitor and AppElement abstract classes bridge the gap between application-specific
VISITOR classes and the framework’s side of the pattern.

This is achieve through a clever use of catch-all methods as we will see below (see also Figure 30).

Element
+accept (Visitor)

| |

AppElement FwkElement

+accept (Visitor)
+accept (AppVisitor)

taccept (Visitor)
+accept (FwkVisitor)

l

AppElementA

AppElementB

FwkElementA

FwkElementB

taccept (AppVisitor)
T

+accept (AppVisitor)
T

taccept (FwkVisitor)
T

+taccept (FwkVisitor)
T

AN
v.visit(this)

Application Framework

ll // framework catch—alllﬁ
,

Visitor
, . +visit (Element
// application catch—allbl visit (Elem) // framework-defined
4 ? // elements catch-all
""""""]
) 1
1 1
| |
L
AppVisitor , FwkVisitor !
+visit (Element) | +visit (Element) '
+visit (AppElement) = ===cm-ccnocymrmanaeman=d +visit (FwkElement)
+visit (AppElementA) ! +visit (FwkElementA)
+visit (AppElementB) +visit (FwkElementB)

I// extension catch—allsbl

AppVisitor2 FwkVisitort

AppVisitor1 FwkVisitor2

+visit (AppElementA)
+visit (AppElementB)

+visit {AppElementa)
+visit (AppElementB)

+visit (Element)
+visit (AppElementA)
+visit {(AppElementB)

+visit (Element)
tvisit (AppElementa)
+visit (AppElementB)

Application Framework

Figure 30: STAGGERED VISITOR with Framework (pre-)defined Elements and Visitors

4.4.3.1 Staggered Visitor Commented Code Sample

We now present a simple commented implementation of the STAGGERED VISITOR. First we have
the framework core Visitor abstraction. Notice that no mention of application-specific subclasses is

made. The framework only knows about abstract Element, as it should:

65

class Visitor {
public:
virtual void visit(Element *e) { // Framework catch-all

// Empty implementation

};

Then the framework core Element abstraction defining the accept () method:

class Element {
public:
virtual void accept(Visitor &v) {

v.visit(this);

};

A base class for application-specific visitors on application-specific elements is defined.

class AppVisitor : public Visitor {

public:
virtual void visit(Element *e); // Application catch-all
virtual void visit(AppElement *appe); // Extension catch-all
// visit for new application-specific elements
virtual void visit(AppElementA *e);
virtual void visit(AppElementB *e);

protected:
void defaultVisit(AppElement *appe) ;

¥

where the application catch-all relies on a dynamic cast to “catch” the application-defined elements:

void
AppVisitor::visit(Element *e) {
AppElement *ae;
if (ae = dynamic_cast<AppElement *>(e)) {

ae->accept (*this);

The trick with this application catch-all method is to defer the commitment to an application-specific

Visitor interface until it’s really needed, i.e. in the AppElement sub-hierarchy. The catch-all achieves

66

this by checking the type of the element argument (passed as an Element *)) to see if it is suited
for its application-specific Visitor interface. If it is the case then the AppVisitor’s interface is put
into use, starting from the AppElement: :accept (AppVisitor&) operation [67]:

class AppElement : public Element {
public:
virtual void accept(Visitor &v) {
v.visit(this);
}
virtual void accept(AppVisitor &appv) {
appv.visit(this);

};

Application-specific concrete elements are defined in the usual visitor way:

class AppElementA : public AppElement {
public:
virtual void accept(AppVisitor &v) {

v.visit(this);

};

In order for new application-specific elements (not present in the visitor interface) to be handled

without the need to modify the interface of the AppVisitor, an extension catch-all is introduced:

void

AppVisitor::visit(AppElement *appe) {
defaultVisit (appe) ;

}

void

AppVisitor::defaultVisit (AppElement *appe) {
// Implementation

}

// visit operation for known application-specific elements

void

AppVisitor::visit(AppElementA *e) {
// Implementation

}

// Similarly for other known concrete elements...

67

Then newly introduced elements like:

// Application-specific concrete element
class NewlyDerivedAppElement : public AppElement {
public:
virtual void accept(AppVisitor &v) {
v.visit(this);
}
3

will be handled, at least with a general default behavior. Concrete visitors are simply overriding

their base class default visit operation:

class AppVisitorl : public AppVisitor {
public:
virtual void visit(AppElementd *e) {
// Implementation
}
virtual void visit(AppElementB *e) {
// Implementation

};

Finally, the whole thing is put into motion in the VISITOR way. In a mainline, it looks like this:

int main() {
// Framework knows only about base types
Visitor *v;

Element *e;

// Creation of application-specific visitor and element
v = new AppVisitoril;

e = new AppElementA;

// Trigger the execution
e->accept (*v);

};

Now, let us look at another approach to implement the VISITOR, which is also more suitable than

the original VISITOR in a framework context. It is called the AcycLiC VISITOR.

68

4.4.4 The Acyclic Visitor

The AcycLic VISITOR was developed to overcome the problem of cyclic dependency inherent to the
original GOF visitor pattern [36, 3]. In the context of framework however, we find it to be helpful
for three other reasons:

1. Its implementation is simpler, cleaner, shorter than the STAGGERED VISITOR.

2. Like the STAGGERED VISITOR and unlike the conventional ViSITOR, no mention of application-

specific subclasses is made in the main visitor base class (since it is degenerate).

3. It can simplify the application developer’s responsibilities by providing small visiting classes (as
we will see below) which make it clear which methods application-specific concrete subclagses

have to implement.

The AcycLIC VISITOR is similar to the STAGGERED VISITOR except that dynamic casting occurs

in the accept method rather than the visit operation?.

«degenerate» Element
Visitor
+~Visitor() A
A
«interface» «interface» l I
ElementAVisitor ElementBVisitor [Etementa | | ElementB]
+visit (Elementa} +visit (ElementB) {faccept (Visitor)] {+accept (Visitor) |
T T
T [LTttt
'
1 if (ElementAVisitor *p =
: dynamic_cast<ElementBVisjitor*>(ev}) {
H p->visit (this};
')
AppVisitor N
+visit (Elementh) if (ElementAVisitor *p =
+visit (ElementB) dynamic_cast<ElementAvVisitor*>{&v)) {
p->visit(this);
}

Figure 31: The AcycCLIC VISITOR design pattern.

4.4.4.1 Acyclic Visitor Commented Code Sample

Below is a commented example of the simplest expression of the ACYCLIC VISITOR pattern. The
example given here is based on the one on [3].

2As is pointed out in [63], there are some undesirable consequences on maintainability when putting the dynamic
casting in the accept method. The idea is that if, over time, a number of new element subclasses have been defined
and we want to update the framework and add corresponding visit operations in the Visitor base class, then both
hierarchies have to be modified: each accept in the Element hierarchy must be changed (to remove the casting)
together with the base Visitor (to add the new visit method). And avoiding modification to the Element hierarchy
was our main motivation to use VISITOR in the first place. However, this criticism applies to the location of the
dynamic casting in a “standard” visitor, but not to the AcycLic VISITOR since in this pattern, a) the visitor base
class is degenerate, and b) the dynamic casting remains in the accept methods, where it belongs

69

First, an archetypal base visitor class (a degenerate class) is declared in a class library or framework

as a carrier of type information:

class Processor {

public:
// A virtual destructor giving RTTI capabilities being virtual and
// ensuring correct polymorphic destruction.
virtual “Processor() {}

;i
The base class for the visited hierarchy (also in a library or framework) declares the accept method:

class Data {
public:
virtual void accept(Processor &v) = 0;

};
And the concrete elements implement the dispatching:

class DatalD : public Data {
public:
virtual void accept(Processor &v) {
if (DatalDProcessor *p = dynamic_cast<DatalDProcessor *>(&v)) {
p->visit(*this);
} else {
// optionally call a catch-all function
cout << "ERROR: Other processor with data 1D" << endl;

3
class Data2D : public Data {
public:
virtual void accept(Processor &v){
if (Data2DProcessor *p = dynamic_cast<Data2DProcessor *>(&v)) {
p->visit (*this);
} else {
// optionally call a catch-all function
cout << "ERROR: Other processor with data 2D" << endl;

70

A difference with the STAGGERED VISITOR is that dynamic cast occurs in the data hierarchy instead
as in the visitor hierarchy.
Also, small visiting classes for each derived class in the visited hierarchy are declaring the appropriate

visit method:

class DatailDProcessor {
public:

virtual void visit(DatalD &e)
};

class Data2DProcessor {

]
o

public:
virtual void visit(Data2D &e)
}s;

]
(o)

to be implemented in a mixin style by the concrete visitors deriviﬁg from Processor archetypal base

class and visiting classes of interest (for the ones that it wants to visit):

class ConcreteProcessorl : public Processor, // Required
public DatalDProcessor { // To visit DatalD
public:
void visit(DatalD &e) {

cout << "ConcreteProcessorl::visit(DatalD &)" << endl;

i
class ConcreteProcessor2 : public Processor, // Required
public Data2DProcessor { // To visit Data2D
public:
void visit(Data2D &e) {

cout << "ConcreteProcessor2::visit(Data2D &)" << endl;
};
Finally, the whole thing is put into motion in the usual visitor way. In a mainline, it looks like this:

int main() {
Data *e;
Processor *v;

e = new DatalD;

v new ConcreteProcessorl;

e->accept (*v);

71

o
n

new Data2D;
v = new ConcreteProcessorl;

e->accept (*v);

o
n

new DatalD;

<
i

new ConcreteProcessor?;

e->accept (xv);

e new Data2D;

v new ConcreteProcessor2;

e->accept (*v);

The output of this program is:

ConcreteProcessorl: :visit(DatalD &)
ERROR: Other processor with data 2D
ERROR: Other processor with data 1D

ConcreteProcessor2: :visit (Data2D &)

And we see double-dispatch at work!

72

4.4.5 A Staggered Visitor-Based Framework Candidate Solution

Patterns involved in this candidate solution include DECORATOR, COMPOSITE and STAGGERED
VISITOR.
(See Figure 32). The participants are®:

Data

+apply (Processor)

AppData FwkData
+apply (Processor) +apply (Processor)
+apply (AppProcessor) +apply (FwkProcessor)
Application ?
FwkData1D FwkData2D FwkData3D
+apply (FwkProcessor) +apply (FwkProcessor) +apply (FwkProcesor)
T T T

+
'
ldcacme e m - - qemmm————— 1
i

N Framework
p.process (this)

'vl // framework catch—allﬁ
,

Processor
+process (Data)
| // application catch-all ﬁ ﬁ\ // framework-defined
' // elements catch-all
I ! 1
AppProcessor ! FwkProcessor '
+process (Data) * +process (Data) ====fe==-c-=nmud '
+process (AppData) t=m====m====== +process (FwkData)

: +process (FwkDatalD)
]

+process (FwkData2D) Framework
+process (FwkData3D)
// extension catch-alls b|
Application
FwkProcessorl FwkProcessor2

+process (Data)

T
process (bata) +process (FwkData2D)

Figure 32: STAGGERED VISITOR-based Data Processing Framework

e VISITOR-Visitor (Processor)
— Declares a process operation the base data class (only).

e VISITOR-Visitor (AppProcessor, FwkProcessor)

— Declare a process operation for each class of concrete data it processes (or “operates

on”, i.e. process(DatalD &), process(Data2D &), process(Data3D &)).

3To identify participants in a (compound) pattern, we are using the following notation inspired by UML-F Profile
notation and the “pattern:role annotation” of Erich Gamma: for each design pattern a participant belongs to, there
is a pair of the form DESIGNPATTERN-Participant /Role, where the first term (in small capitals) indicates the design
patterns in which the class participates, and the second term indicates the participant itself (or role). The class name
in parenthesis following the pair is the name of the class playing the role in a specific instance of the pattern.

73

e VisiTOR-Element (Data)

— Defines an apply(Processor &) operation that takes a processor as an argument.

— Declares the interface for objects in the object structure.
e VisITorR-ConcreteElement (FwkData, AppData, DatalD, Data2D, Data3D)
— Represents a concrete data object in the object structure.

¢ VisiIToR-ConcreteVisitor (FwkProcessorl, FwkProcessor2, AppProcessorl, AppProcessor2,
ete...)

— Implements each operation declared by Visitor (Processor). Each operation implements
an algorithm defined for the corresponding class of object in the structure. ConcreteVis-

itor provides the context for the algorithm.

— Manipulates objects in the object structure (i.e. data).

Not shown here are the roles that can be played by concrete visitors (this will be described in the

next chapter) which are:

Decorator (or wrapper), implementing the DECORATOR design pattern.

Composite, implementing the COMPOSITE design pattern.

VisiToR-ConcreteVisitor, DECORATOR-Component

— Defines an interface for objects that can have responsibilities dynamically added.

VisITOR-ConcreteVisitor, CoMPOSITE-Component

— Declares an interface for objects in the composition.

U DATA PROCESSING FRAMELET

Design Patterns

STAGGERED VISITOR [24].

Framelet Interfaces and Abstract Base Classes

Abstract base classes:
Data: Abstract base class for data to be transformed and processed.

Processor: Abstract base class for data processors.

Framelet Core Components

FwkData, AppData, FwkProcessor, AppProcessor.

Framelet Default Components

FwkDatalD, FwkData2D, FwkData3D

74

4.4.6 An Acyclic Visitor-Based Framework Candidate Solution

The participants in this candidate solution are:

«degenerate» Data
Processor +apply (Processor)
+~Processor ()

«interface» «interface» i_ :
ProcessorData1D ProcessorData2D DataiD Data2D
+process (DatalD) +process (Data2iD) +apply (Processor) s +apply (Processor)

dynamic_cast<ProcessorDatalD*>{&v)) |
p->process(this);

if (ProcessorDatalD *p = ?

AppPI’OCéSSOf
+process (DatalD)
+process {Data2D)
if (ProcessorData2D *p =
dynamic_cast<ProcessorData2D*>(&v)) |
p->process (this);
i

Figure 33: The Wave ImAgE AcycLIC VISITOR-based Data Processor Framework.

e VIsITOR-Visitor (Processor, ProcessorDatalD, ProcessorData2D, ProcessorData3D)

— Declares a degenerate interface with a virtual destructor just to act as a type carrier

{(Processor).

— Declares interfaces with a process operation for each type of concrete data (ProcessorDatalD,

ProcessorData2D, etc.).
e VISITOR-Element (Data)
— Declares an apply (Processor &) operation that takes a processor as an argument.
e VisiITOR-ConcreteElement (DatalD, Data2D, Data3D)
— Represents a concrete object in the data hierarchy (DatalD, Data2D, Data3D).
¢ VisrTor-ConcreteVisitor (AppProcessor)

— Implements each operation declared by small visitor classes (ProcessorDatalD, etc.).
Each operation implements a fragment of the algorithm defined for the corresponding

class of object in the structure. ConcreteVisitor provides the context for the algorithm.

— Manipulates objects in the composition.

75

I DATA PROCESSING FRAMELET

Design Patterns

AcycLIC VISITOR.[3]

Framelet Interfaces and Abstract Base Classes
Abstract base classes:

Data: Base class for data hierarchy.

Interfaces:

ProcessorDatalD, ProcessorData2D, ProcessorData3D.

Processor: Degenerate interface.

Framelet Core Components

DatalD, DatalD, DatalD.

4.5 Liabilities of a Visitor-based Approach.

Encapsulating requests into visitor objects as prescribed by the VISITOR pattern has some drawbacks

when compared with having a design offering richer data class interfaces:

o It reduces the expressivity of applications.

o The granularity of change is at the whole algorithm level since implementations are to be found

in the visit operation of concrete visitor.

These two points will be discussed below.

4.5.0.1 Expressiveness of Applications

Consider for example the following application class:

class Application {
public:
void run(Data *data, Processor xprocessor) {

data->apply(processor);
¥

Clients of that class can use any processor on any data. If we are looking only at the Application

class to figure out what can be done to the data, we are set for major disappointment: it does not

76

tell us much on what can actually be done except for the fact that some data is accepting to apply

some processing on itself . If we compare this with the application below:

class Application {
public:
virtual void run(Data *data) {
data->add_noise();
data->forward_transform(wavelet);
data->threshold(thr);
data->inverse_transform();

data->compare(data2);

};

An application using a data class having such a rich interface is obviously more informative on
what is actually done in this aplication. At least, application developers used to procedural (or
non-frameworked application development) feel more comfortable to see such a flow of control or
sequence of steps at this place (i.e. in the Application class implementation). The price to pay
at this level is that an application is not flexible (how can we change the sequence of steps) not
easily extendable (adding a new operation on data, say compress would require modifying the data
hierarchy and recompiling the application. It is a big price to pay to feel more comfortable, especially
knowing that in the first application, processors could be configured (hypothetically), at a proper
place, like this:

processor->add(new NoiseAdder);
processor—->add(new FwdTransform(wavelet));
processor->add(new Denoising);
processor->add(new InvTransform(wavelet));

processor->add (new Evaluation);

which is as expressive as what we have in the Application: :run{) method above. This question of
evaluating the tradeoffs between settling for a narrow, less expressive but stronger interface, versus
opting for a richer, more expressive but more fragile interface becomes especially evident if we want
to implement a. suite of “applications”. What happens is that these applications will all look the
same, and in fact be the same. Only their configuration (or initialization) will differ, which defies

the purpose of defining a suite of applications in the first place.

4The implications of that lack of expressiveness are mostly that an application developer may feel not at ease to
write applications because of that lack of control over what is done is actually done. This is a common problem with
framework-based development (see Chapter 1).

77

4.5.0.2 Granularity of Change

If we compare the VISITOR pattern with the TEMPLATE METHOD pattern for example, the element
that varies has a different granularity. While fine-grained steps of an algorithm are kept flexible in

the TEMPLATE METHOD case, whole algorithms are added via new subclasses in the VISITOR case 5.

Now that we have defined the mechanism through which is determined which operation will fulfill
a request (depending on two receivers, the Processor’s and the Data’s type - via double-dispatch),
it’s time to look at the kind of support the framework is offering for the implementation of those
operations.

For example, when a request is made in the framework to a Data object by calling the apply (i.e.
accept) method,

Data *data;
Processor *processor;

data->apply(processor);
an application-specific Processor subclass’s operation is executed.

AppProcessorX: :process (AppData2 &) {

// Implementation...

Getting to that point is the framework responsibility, but from there on, what are the tools available
to an application developer to assist him in writing the implementation? The answer is: AppData?2

interface. This begs two questions:

1. Is this interface rich enough to allow algorithms to do their work, i.e. operate on the data?

2. Does the framework offer any help at that level to application developer?

These are very legitimate questions. We provide elements of answers to those questions in the section
on generic programming at the end of this chapter, where we look at the usefulness of considering
generic programming as an alternative, or complementary paradigm to classic polymorphism.

The answer to the first question is: probably not. We will see why soon. To answer the second
question, this prototypical framework, implements the following three data a.ccess and traversal

mechanisms (which will be discussed further in Chapter 5 - Wavelet Transform Framework):

5This is the case at least for the implementation of a visiting operation for a specific kind of data elements in a
visitor subclass. The STRATEGY pattern also allows for change to occur at the same whole-algorithm level.

78

o Indexing: The data interface is allowing direct access to data elements via indexing with
operations like index(int i), index(int i, int j), and index(int i, int j, int k) for
1D, 2D and 3D data respectively). Another type of indexing is also available in the form of
accessor methods for elements in the transformed data hierarchical composition consisting in

subbands containing subbands (discussed in chapter 5).

e Jterators: Iterators allowing for sequential access to raw data elements independently of the
aggregate underlying implementation (vectors, arrays, etc.) and data structure type (1D, 2D
and 3D data) as well as encapsulating different kinds of traversal and sub-data type access

(like rows and columns).

o Processors: It is possible for processors (concrete visitor classes) to rely on other processors for

their implementation. For example, a 2D algorithm might be implemented using 1D processors.

Some examples of these three mechanisms are given in the next chapter.

These mechanisms are however by no means the only possible ones. Although those are very inter-
esting questions and challenging ones, it is outside the current territory of this thesis (because of
time constraints mostly), and we have to relegate any work on that to the future. Possible avenues

that would be worth exploring are:

e Processors as internal iterators. In this approach, some processors encapsulating and driving

an iteration are used as sub-processors by other higher-level processors.
o Index manipulators {cursor-based iteration) to support different data traversal strategies.

o Class wrappers (adapters) for data coeflicients, where wrapping an object amounts to adding

new data access operations to it.
o Decorated iterators and visitors as positions for access of layered data elements in aggregate.

e Application of the EXTENSION OBJECT patterns for the addition of multiple interfaces to

operate on data.

4.6 Design Notes

In this section we present some interesting design notes related to the design of the Wave ImAgE
framework, and more specifically the data processing framework. These notes contribute to illus-
trating design problems we were involved with during the design of this prototype framework. They
contribute to show the richness of the problems and solutions framework development is involved
with. The main theme here however is the place that the generic programming paradigm can occupy

with respect to classic polymorphism in the design of data elements and processors.

79

4.6.1 Generic Programming as an Alternative to Classic Polymorphism

Consider for example a template-based framework model like the following:

template <class Data, class Processor>

void process(Data &d, Processor &p) {

p.apply(d);

Such a template-based approach offers the following benefits:

e Compile-time type checking.
e No need for Data and Processor base classes.

o Efficiency in terms of execution time.
This template-based approach however suffers from the following liabilities:

e We loose the capability of postponing the decision of which classes to instantiate until run
time: each application requires recompiling and run-time configurability is impossible (this is

assuming we are not relying on classic polymorphism at all).

There is however possibly a happier use of generic programming, which is outlined in the next

section.

4.6.2 External Polymorphism and Processor Adapters

A library of generic component can be used to facilitate the development of application components.
For example, lets consider the case of an already implemented class containing the implementation

of some kind of processor, say MyProcessor:

class MyProcessor {
public:
void doit{(Data *d) {
// Implementation

d->operation();

80

The interface of MyProcessor has only one method called doit(Data *d) in its interface. It would
be interesting to be able to reuse that class in the framework. However, the processors in the
framework have a different interface than MyProcessor. The ADAPTER design pattern provides an

element of solution to such a problem. The intent section of the pattern says:

ADAPTER

Convert the interface of a class into another interface clients expect. ADAPTER lets

classes work together that couldn’t otherwise because of incompatible interfaces. [24]

The processor interface offered by the framework looks like:

class Processor {
public:
virtual void process(Data *d) = 0;

};

How can MyProcessor be treated as a new Processor subclasses? The solution proposed in Wave
ImAgE uses a generic programming approach called external polymorphism [14]. We apply external

polymorphism to create a templatized adapter that looks like this:

template <class ADAPTEE>

class ProcessorAdapter : public Processor {

public:
ProcessorAdapter (ADAPTEE* o, void (ADAPTEE::*m) (Data *d)) {
object = o;
method = m;

}
“ProcessorAdapter() {
delete object;
}
void process(Data *d) {
(object->*method) (d) ;
}
private:
ADAPTEE* object;
void (ADAPTEE::*method) (Data *d);
};

81

The parameter type ADAPTEE can then be treated as a subclass of Processor, as if MyProcessor

had a virtual method process(Data *d). Such an adapter can then be used in the following manner:

int main() {

Data *d = new Data;

// Creation of my application-specific processor

MyProcessor *myp = new MyProcessor;

// No need to subclass (and have the same interface) to

// take benefit of polymorphism. The adapter can be reused

// to do it for us.

Processor* p = new ProcessorAdapter<MyProcessor>(myp, &MyProcessor::doit);

p->process(d);

Such a use of templates is very useful for application developers to reuse existing classes as the

implementation of some processors.

4.6.3 Even More Adaptation using the Extension Object Pattern

We present here a “smarter” adapter that we built using external polymorphism and the EXTENSION
OBIECT pattern. The participants are the same as above: processors, data and adapter. The
addition is an extension hierarchy used to augment the processor’s class interface. The intent of the
EXTENSION OBJECT pattern is:

Attach additional methods to a class. Whereas DECORATOR requires that the core class’s
interface remain fixed as successive “wrappers” are applied, EXTENSION OBJECT allow

the class’s interface to grow incrementally and dynamically.
So we start with a degenerate base class for the extensions:
class DataExtension {
public:
virtual “DataExtension() {}

};

We add operations addExt and getExt to the Data base class interface to support management of

extensions.

82

class Data {
public:
// Extension management interface
void addExt(string extName, DataExtension *ext) {
_extensions[extName] = ext;
}
DataExtension *getExt(string extName) {
return _extensions[extName];
}
// Visitor’s interface
virtual void accept(Processor *p) = 0;
protected:

map<string, DataExtension *> _extensions;

};

We provide a templatized concrete extension class with an indexed access to the data.

template <class DATA_STRUCTURE>
class Data2DIndexExt : public DataExtension {
public:
Data2DIndexExt (DATA_STRUCTURE *d):_d(d) {}
void index2d(int i, int j) {
// Use data subclass interface...
(*x_d)->index(0);
}
private:
DATA_STRUCTURE *_d;
3

A generic data subclass can also be defined for reuse, to hold data on any dimension.

template <class T>
class TData : public Data {
public:
typedef T DataType;
TData(T *t) : _d(t) {}
void accept(Processor *p) { p->visit(this); }
// Default interface
T* index(int i) { return _d; }

private:

83

We still have our base class for processors of all kinds:

class Processor {
public:
virtual void visit(Data *d) {}

};

And the heart of the matter is the templatized adapter, which has now the added responsibility to
adapt not only the interface of MyProcessor, but also the data interface used in the implementation
of the adapted method

template <class ADAPTEE, class EXTTYPE>
class ImplAdapter : public Processor {
public:
typedef EXTTYPE DSTYPE;
ImplAdapter (ADAPTEE* o, void (ADAPTEE::*m) (DSTYPE *d)) {
object = o;
method = m;
}
ImplAdapter (ADAPTEE* o, void (ADAPTEE: :xm) (DSTYPE *d),

string extName) {

object = o;
method = m;
_ext = extName;
}
~ImplAdapter () {
delete object;
}
void visit(Data *d) {
DataExtension *ext = d->getExt(_ext);
DSTYPE *dsExt;
if (dsExt = dynamic_cast<DSTYPE *>(ext)) {
(object->*method) (dsExt) ;

3

private:

ADAPTEE* object;

84

void (ADAPTEE: :*method) (DSTYPE *d);
string _ext;

};

Again, the idea is to adapt {reuse) MyProcessor which is not a subclass of Processor and it has a

quite different interface:

class MyProcessor {
public:
void myOperation(Data2DIndexExt<TData<int> > *d) {
// Use the extension’s iterface
d->index2d(1,2);

};
In a mainline, putting things to work looks like this:

int main() {
int i = 5;
TData<int> *dInt = new TData<int>(&i);
// Create extension
Data2DIndexExt<TData<int> > *extl = new Data2DIndexExt<TData<int> >(dInt);
// Register the extension with the data
dInt->addExt ("2Dindex", extl);
Data *d = dInt;
// Create processor to reuse
MyProcessor *myp = new MyProcessor;
// Configure the adapter with the extension (and the data)
Processor *p2 =
new ImplAdapter<MyProcessor, Data2DIndexExt<TData<int> > >
(myp, &MyProcessor: :myOperation, "2Dindex");
// Ask the visitor to do its visitor thing
d->accept (p2) ;
3

4.6.4 Mixing Paradigms: A Common Base Class for Different Parametriza-

tions

A common misconception is that template classes with different parameters are related by inheri-

tance. For example, the class foo<int> is not related by inheritance to foo<float> through a base

85

class called foo. If we want a base class for our template classes, we need to create one.
But why would it be useful in the first place to have such a base class? One reason could be that

we wish to dynamically create templated objects but decide the parameters at run time.

There are two problems that one may wish to solve using virtual template methods:

e We want to dispatch an overloaded virtual function to a template function because the imple-

mentation of the overloaded functions are the same.

e We do not want to make a commitment about what types are supported and we use template

as a way to dispatch any types. In other words, we want a flexible virtual function.

Let’s say we wish to use double-dispatch to solve the second problem via a variation of the VISITOR

pattern. We then have a base class:

class Data {
public:

virtual void accept(Algo &algo) = 0;
s

and templatized derived classes. For two dimensional data, for example, we might have something
like this:

template <class T>
class Data2D : public Data {
public:
void accept(Algo &algo) {
algo.visit (*this);

};

Then a visitor class may be defined using the templatized derived class as a parameter:

// Visitor
class Algorithm {
public:
/...
virtual void visit(Data2D<int> &data) {

// Default implementation

86

// Similarly for and other combinations of data
// structure and data types supported...
3

Concrete visitors can then be defined as below

class AlgolD : public Algorithm {
public:
void visit(DatalD<int> &data) {
// Implementation of 1D algorithm on 1D data of ints.
}
void visit(DataiD<float> &data) {
// Implementation of 1D algorithm on 1D data of floats.

void visit(DatalD<complex> &data) {
// Implementation of 1D algorithm on 1D data of complex.

//
};

Such a design will allow framework classes (here Framework) to rely on abstract coupling to imple-

ment a process method:

class Framework {
public:
void process(Data &data, Algo &algo) {
data.accept(algo);

Y
main() {
// Creation of a framework class
Framework f;
// Creation of application-specific data and algorithm
AlgolD algo;
DataiD<int> data;
// Rely on double dispatch to obtain proper behavior
f.process(data, algo);
I

A problem with this approach is that we have to specify all possible template parameters in many

87

places, i.e. in every visitor (algorithm) classes. Having many visit(...) methods in the visitor’s
classes is standard in the VISITOR’s design®. What is less usual is the fact that there are operations
for different data types (i.e. int, float, complex,...) in addition to the operations for each data
structure (i.e. the classes of the element structure in the VISITOR pattern: DatalD<T>, Data2D<T>
and Data3D<T>).

The data type supported is more likely to change than the dimensionality of the data supported.
This stability of the data structure type supported is what prompted us in the first place to consider
the VISITOR pattern in our solution. So this design is bad, since the addition of a new data to support
(for 1D data for example) would result in the pattern to fall down. It would require a change in
the framework, i.e. the addition of (at least) one new virtual member function, visit(DatalD<new
type> in the Visitor’s base class for the new type. This is far from ideal.

Another approach would be to make use of the base data class in the visitor classes and adopt the

brute-force approach, i.e. dynamic_cast:

// Visitor
class Algo {
public:
virtual void visit(Data &data) {

// Default implementation

I

// Concrete visitors

class AlgolD : public Algo {

public:

void visit(Data &data) {

DatalD<int> *d1Dint;
DatalD<int> *d1Dfloat;
DatalD<int> *d1Dcomplex;

if (diDint = dynamic_cast<DatalD<int>#*>(&data)) {
// int-specific implementation

} else if (d1Dfloat = dynamic_cast<DatalD<float>*>(&data)) {
generic_impl(diDfloat)

} else if (d1Dcomplex = dynamic_cast<DatalD<complex>#*>(&data)) {
generic_impl(diDcomplex) ;

} else { // 2D and 3D algos

// exception

}

SWe opted for virtual visit operations in the Visitor base class (Algo) instead of pure virtual ones in order to
simplify the client classes (AlgolD, Algo2D, and Algo3D) and to rely on proper exception mechanism in the default
base class implementation of the visit operations.

88

}
private:
template <class T>
void generic_impl(DatalD<T> &data) {

// generic implementation
};

While this approach simplifies the Algo interface, it makes the subclasses, i.e. the application specific
classes, more complicated. It also seems to defy the purpose of the VISITOR pattern in adding type

test and conditional branches which amounts to a second level of method dispatch.

In light of this diversity, we are asking the following question: is it still posible to have a common
interface for data that is expressive enough to be useful (since common tends to mean narrow and
minimal)? We will look at this problem by first considering the first point of variation above,
the type of element contained in the data.

Knowing that processors ultimately need to access and manipulate the data encapsulated within the
data objects, what kind of interface allows that? For example, consider transformed images. They
can either be represented as an array of integers or real values depending on the application-specific
transform that was performed on the original image data. The C++ Template mechanism comes to

mind as a way to provide that parametric polymorphism” we are looking for:

template <class PIXTYPE>
class Data {
public:
// Public interface
//..
private:
PIXTYPE x*data;
};

Since the pixel type is application-specific (in the sense that application-specific (sub)classes only
know about the pixel type), how can the framework create data objects, when instantiation of a
template class requires the specification of the actual type? The actual type of the contained objects

cannot (or should not...) be known at compile-time. For example, in a framework class, the following

Data<int> data;

7 Also called compile-time polymorphism as oppose to the run-time polymorphism provided by virtual functions.

89

is just not possible, since only an application knows that the data to be handled is represented using

integers®. The framework has to be able to manipulate data objects in the following manner:

void framework(Data *data) {

data->operation();

};

i.e. without having to specify a pixel type (which it does not know about). Possible solutions
include (1) using inheritance instead of templates, and (2) define a non-template abstract base class

providing an interface for template derived classes. We will briefly examine those two alternatives.

1. Defining a hierarchy of data.

class Data {

public:

//

virtual void operation() = 0;
s
class Datalnt : public Data {
public:

//

void operation() {

//

}
private:

int *data;
+;
class DataComplex : public Data {
public:

//

void operation() {

//

¥

private:

complex *data;
i

8 And similarly, only application-specific code knows how to handle such data. Our problem here is not so much
the creation of application-specific data-which can always be abstracted with some sort of factory, abstract or not,
in fact, any one of several creational pattern in [24] could do- as to how to define a base class that will allow the
framework to do its job.

90

and Data can be used like this:

main() {
Datalnt *data = new Datalnt;

framework(data) ;

2. Non-generic base class and generic derived class.’

class Data {
public:
virtual void operation() = 0;

};

template class<PIXTYPE>
class Datalmp<PIXTYPE> : public Data {

public:
void operation() {
/...
}
private:

PIXTYPE *data;
};

and Data can be used like this:

main() {
Data<int> *data = new Data<int>;

framework (data) ;

So far, so good. Both approaches seem to provide an acceptable solution to the problem of represent-
ing data containers for coefficients of verying types. We have not said anything about the behavior
of those classes represented here with the apparently quite generic member function operation().
If we assume that the type PIXTYPE does not affect the behavior of the class, then we might prefer
the template class approach for its simplicity and economy of code. Let us now look at the second

variability requirement, the dimensionality of the data.

9We are thinking about public inheritance for interface reuse and not private inheritance for code sharing (imple-
mentation reuse).

91

The framework is intended to support the development of applications dealing with 1D, 2D and
3D data processing. In light of what we said in the previous paragraph, it seems that if we want
to design classes representing data of different dimensionality, then the use of inheritance seems
indicated. In fact, we cannot write a single operation() function to handle data of differing di-
mensionality. Operations performed on 1D data are quite different, in terms of their algorithmic
structure, than operations performed on 2D or 3D data. The interface is the same, but the behavior,
the implementation differs. Thus, we can consider a class hierarchy like the one below which, by

encapsuling the concept that varies:

class Data {

public:
/7 ..
virtual void operation() = 0;
/..
};
class DatalD : public Data {
public:
/...
void operation();
/...
3
class Data2D : public Data {
public:
/...
void operation();
/...
};
class Data3D : public Data {
public:
/...
void operation();
/o
I

With such a hierarchy, the framework can manipulate the abstract base class only:

main() {
DatalD *data = new DatalD;

framework(data) ;

92

and within framework the statement
data->operation();

will invoke DatalD: :operation() as desired. In order to handle our first two variability require-
ments, 7.e. pixel type and dimensionality, we could combine inheritance and generic classes in the

following way:

class Data {
public:
virtual void operation() = 0;
}
template class<PIXTYPE>
class DatalD<PIXTYPE> : public Data {
public:
void operation() {
// Implementation of an operation on a 1D object.
}
private:
PIXTYPE *data;
3
template class<PIXTYPE>
class Data2D<PIXTYPE> : public Data {
public:
void operation() {
// Implementation of an operation on a 2D object.
¥
private:
PIXTYPE x*data;
s

This approach mixing inheritance and templates, inspired by the presentation found in chapter 11

of [4] is the one we retain to implement the multidimensional data arrays in our prototype.

4.6.5 Genericity of Image Processing Algorithms
The goal of this section two-fold. First, we want to briefly present different techniques that can

be used to obtain genericity of image processing algorithms, and second, we want to express the

fact that genericity can be usefully and successfully applied when an important condition is met:

93

commonality of algorithmic structure across data structure types. The presentation in this section

is inspired by the work found in [25].

Genericity for image processing algorithms means providing a generic writing for image processing
algorithms, i.e. independent of both data type (int, float, complex,...) and data structure type (1D
signals, 2D images, geometries, etc...). We will briefly look at three approaches used to achieve

genericity:

e Generic programming
o Classic polymorphism

e Generic polymorphism

4.6.6 Generic programming

Generic programming uses the C++ template mechanism to write data containers and algorithms

that are independent of data types. For example, consider a class for 2D images:

template <class DataType>
class Image2D {

int nRows;

int nCols;

DataType** data;

//
s

It is then possible to write algorithms that are independent of the data type in the following way:

template <class DataType>
void add(Image2D<DataTlype> &image, DataType val) {
for (int i=0; i<image.nRows; i++) {
for (int i=0; i<image.nRows; i++) {
// The algorithm is implemented using
// the public interface of Image2D.

image.datali] [j] += val;

94

Using classic polymormbhism, it is possible to write algorithms that are both data type and data

structure type independent.

4.6.7 Classic polymorphism

Data structure type independence is achieve through the use of template abstract base classes: a
data base class declaring a factory method for the creation of an iterator, and an iterator base class,
to be used by the clients of data subclasses, which are the algorithms operating on the data. the

base classes may look like this:

// Abstract Data class
template< class DataType >
class Data {
virtual Iterator<DataType> &createlterator() = O;
3

// Abstract Iterator class
template< class DataType >
class Iterator {
virtual first() = 0;
virtual void next() = 0;
virtual bool isDone() const = 0;

virtual DataType &value() =0;
¥

And the subclasses declarations, like this:

template< class DataType >
class Image2D : public Data< DataType >;

template< class DataType >
class IteratorImage2D : public Iterator< DataType >;

A generic algorithm can then be written in the following way:

template <class DataType>

void add(Data<DataType> &data, DataType val) {
Iterator<DataType> &it = data.createlterator();
for (it.first(); !it.isDone; it.next()) {

95

it.value() += val;

The important thing is that once written, this algorithm can be reused for all the newly introduced
data and iterator subclasses. When performance is important (which is often the case for some
kinds of image processing algorithms), then a more efficient implementation can be written using
templates. The thing we would like to point out though is that for the above algorithm to be truly
data type and data structure type independent, the algorithmic structure of that specific kind of
algorithm (i.e. what it semantically accomplishes) has to be also data structure independent, at least
in the sense that the commonality across data structure types can be captured by an iterator base
class while the variability should be encapsulated into an iterator subclass. This may not always be
possible.

Generic polymorphism refers to the parametrization of operations for specific types of algorithms

with a data structure type, as we will see below.

4.6.7.1 Generic polymorphism

By relying on type definitions in the data structure classes, it is possible to get rid of the need for

iterator and data structure type base classes:

template< class Data >

class IteratorImage2D;

template< class Data >

class Image2D {

public:
typedef Data DataType;
typedef IteratorImage2D<Data> Iterator;
/...

3

This approach is the generic equivalent of the previous approch. The algorithms are now parametrized

directly with the data structure type:

template<class DataStructure>

void add(DataStructure& data, typename DataStructure::DataType val) {
typename DataStructure::Iterator it(data);
for(it.first(); 'it.isDone(); it.next()) {

iter.value() += val;

96

Type deduction is done from the data structure type from type definitions in the structure classes.
Again, it is possible to write only one function per type of processing (here addition), i.e. indepen-
dently of data structure and data types, provided that the algorithmic structure (the for loop in
the above examples) is common across data structures, and that that commonality can be captured

within an iterator class.

97

Chapter 5

Wavelet Transform Framework

5.1 Overview

This chapter describes the wavelet transform framelet for the Wave ImAgE framework. The frame-

work is described at both the framelet design level and at the framelet architectural level.

This framework proposes a design solution to the problem of performing wavelet transforms on data

signals.

The framework enhances reusability mainly because of the following reasons:

o It decouples the data from the transform algorithms that are performed on it. This is achieved
by refining the Data Processing Framework presented in the previous chapter. Here, a Wavelet

Transform is a specific type of processor.

o It captures the stable part of wavelet transform algorithms and encapsulates the variable parts
into well-identified variation-points (also called “hot-spots”). The design of these variation-
points, which were identified during the domain analysis (see Chapter 3), will be described in

this chapter.

5.2 Context

The context for the design of the framework is described in Chapter 3, Wavelets, Wavelet Trans-

forms and Image Processing Applications. This chapter assumes that the reader is familiar with

98

Design Patterns [24]' and with the processing framework in Chapter 4 and the concepts that were
introduced in Chapter 1.

5.3 Problem

The design solution proposed should be influenced by the following forces:

e The use of the term transform in the literature often refers to two different things: the trans-
form process and the transform product (or representation). The transform construction pro-
cess and the resulting transform representation (or transformed data) should be kept separate
so that the two can vary independently. This allows, for example, that the same construction
process can create different representations. Such a decoupling should give us a finer control
over the transform process and let us vary the transform internal representation. The clients

should not need to know anything about the internal transform representation.

e A wavelet transform is a hierarchical structure produced by a recursive process. The product
of that process are subbands containing subbands. The data structure used to represent a
wavelet transform should capture the hierarchical structure of a transform. The question to
determine whether a flat data structure (an array for example) is expressive and convenient
enough to represent a wavelet transform or if on the other hand a recursive data structure
would be more appropriate, should be considered. The kind of structure found in a wavelet
transform is a semantic one: coefficients in different locations mean something different (for

different clients, which are algorithms operating on transformed data).

e The number and kind of wavelet transform operations will most likely proliferate as more
applications are developed. It should be possible to add new wavelet transform processing
operations without changing the classes of the elements on which they (the operations) operate,
as well as to easily extend and modify any existing operations. Basically, a primary challenge
when designing the Data interface is to come up with a minimal set of operations that lets
clients build open-ended functionality. Performing “surgery” on Data and its subclasses for
each new capability is both invasive and error-prone. The risk is that the Data interface
evolving as a hodgepodge of operations eventually obscuring the essential properties of Data

objects. When that happens, the classes just get harder to understand, to extend and to use.

e A transform (process) should be configurable by the clients. This means that a transform’s
variable elements can be composed into a transform process as interchangeable building blocks.

Parameters could also be used for that matter. Examples of configuration parameters are depth

1Particularly the VISITOR, TEMPLATE METHOD, STRATEGY, DECORATOR, COMPOSITE and PROXY

99

of transform, basis function (wavelet), prefiltering schemes, shape of the transform (rectangu-
lar or square or other combinations), translation invariance, dimensionality of the transform

algorithm (depending on the dimensionality of the input data it operates on), etc...

o A transform (process) should be extensible. It should be possible for a user to build more
complex, compound (or composite) transforms from a kernel transform by using basic trans-
form building blocks. Examples of such compound transforms are the ridgelet and curvelet
transforms. They are composed of a sequence of steps,-each step being a building block of the

whole transform. These particular transforms will not be considered here further.

5.4 Solution

The elements of solution outlined in this section will be presented as candidate solutions for the

requirements of a series of variation-points. These requirements are:

Need for the ability to support transform of data signals of different dimensions.

Need for the possibility to vary wavelet transform steps algorithm implementation.

Need to vary the prefiltering performed on data signals.

Need to vary the wavelet filters used in a transform.

In the next few sections, we will present some design elements in support of the following variation-

points:

e Transform steps in a multi-level wavelet transform.

¢ Support for multiple preprocessing and prefiltering schemes.

5.4.1 Wavelet Transform Steps

In this section, we present elements of design for a candidate implementation of the wavelet transform
step variation-point. The main requirement consists in allowing application developers to modify
the behavior of a multi-level wavelet transform by providing application-specific transform steps.
The patterns involved in this solution are, by order of importance with respect the variation-point
semantics (¢.e. what varies) are TEMPLATE METHOD, STRATECGY, DECORATOR, COMPOSITE, IT-
ERATOR, MEMENTO, FACTORY METHOD and PROXY. Their role in this specific context are briefly

described below:

100

1. TEMPLATE METHOD: The WaveletTransform: :transform() method encapsulates the stable
part of the transform algorithm, which is the recursive structure of the transform. The hooks
are the transform steps, i.e. the processing applied on a subband at each level of a multi-level

transform.

2. STRATEGY: The transform steps are concrete strategies. They implement the actual transform

performed on the data.

3. DECORATOR, COMPOSITE: The transform steps for a multi-level wavelet transform are repre-
sented by a composite transform step, which is composed of concrete transform steps. Com-
posite processors and transforms can also be supported though not discussed here (due to
space constraints). Decorators (or wrappers) are used to add responsibility to transform-step
objects, called preprocessing, which include units like prefiltering and signal extension (not

discussed here).

4. ITERATOR: An iterator is used to allow a multi-level wavelet transform to traverse the com-

posite transform steps.

5. MEMENTO: Memento is used to hold the state of the traversal during a wavelet transform.
Memento allows for a recursive descent into the transform steps so that concrete transform

steps are encountered in the order they are meant to be processed.

6. PrROXY: A proxy is used for internal purposes to allow automatic destruction of an iterator so

that a client (a wavelet transform) does not have to worry about deleting it.

7. FACTORY METHOD: The iterator is created using a factory method.

5.4.1.1 Wavelet Transform

The wavelet transform class presented here in the context of this specific variation-point has a very
simple interface (transform()) reflecting just what the users are interested in, i.e. performing a

wavelet transform on data 2:

class WaveletTransform {
public:
WaveletTransform(TransformStep *step) ;
// Template Method taking care of the recursion.
bool transform();
private:
bool transform(DescriptorHandle &it);

DescriptorHandle _transformStepDescriptor; };

2Since our focus is on the algorithmic structure of the transform, we can omit mentioning the data to unclutter
the code samples.

101

Before we go on, just a few words on DescriptorHandle. DescriptorHandle is an example of a

proxy (see Figure 34) (for the real iterator DescriptionTraverser, to be discussed below). The

wavelet transform is using this proxy (which overloaded -> and * operators) so that _transformStepDescriptor
has to be used like a pointer even if it is not really a pointer. The “real” iterator DescriptorTraverser

is allocated on the stack, therefore C++ automatically takes care of calling the destructor when it

goes out of scope (which in turn deletes the real DescriptorTraverser), so that the "client" is not
responsible for deleting it. This usage of a proxy is particularly useful in application-specific code, to

simplify the life of application developers (by taking some responsibilities out of their busy hands).

A WaveletTransformis created by passing a TransformStep as argument to the constructor. In do-

Subject

+request ()

[]
Proxy RealSubject

+request () —=>»|+request ()

IiealSubject—>request [§] IBI

Figure 34: The PROXY design pattern.

ing so we are configuring a wavelet transform with a concrete transform step strategy (see Figure 35).
We are actually modifying the behavior of the template method (see Figure 36) transform() by pro-
viding implementation to a hook method (transform()) located in a separate class (TransformStep)

(this is an example of the separation construction principle).

WaveletTransform: :WaveletTransform(TransformStep *step)

: _transformStepDescriptor(step->descriptorTraverser()) {}

Context Strategy

strategy +AlgorithmInterface()

+ContexteInterface ()
T

ConcreteStrategyA ConcreteStrategyB

+AlgorithmInterface () +AlgorithmInterface ()

strategy->AlgorithmInterface () |

Figure 35: The STRATEGY design pattern.

102

AbstractClass I
+TemplateMethod() = =] — — = 4 PrimitiveOperationl ()
#PrimitiveOperationl () /7. ..
#PrimitiveOperationZ() PrimitiveOperation2 ()

/.

ConcreteClass

+PrimitiveOperationl ()
+PrimitiveOperation2 ()

Figure 36: The TEMPLATE METHOD design pattern.

5.4.1.2 Performing a Multi-Level Transform via Iteration

In order to perform a multi-level wavelet transform, the wavelet transform transform() method has
to take care of the recursive nature of the algorithm. It does so by iterating through the elements
contained in a multi-level transform step (called a description of a multi-level transform) using
an iterator (see Figure 37) that we call DescriptionTraverser. This iterator allows for a simple,
sequential iteration through the composite structure giving access, at each level of the transform, to

the transform step to be used at that level. The public interface of this iterator is given below:

class DescriptorTraverser {
public:
DescriptorTraverser(TransformStepx first);
void firstStep();
void nextStep();
TransformStep* currentStep();

bool isCompleted();

//
}
Aggregate |—— Client | ——{ lterator
+createlterator() +first ()
+next ()
+isDone {)
+currentlItem()
ConcreteAggregate
+createlterator() .
L}

T
1
1

return new Iterator(this)H

Figure 37: The ITERATOR design pattern.

103

When the transform() request is actually made, the descriptor of the transform is initialized with
the transform step for the first level of the transform (using the iterator), and then the transform

process is started:

bool
WaveletTransform: :transform() {
_transformStepDescriptor->firstStep();

recursiveTransform();

The heart of the WaveletTransform class is in fact the recursiveTransform() template method

which really captures what is common across wavelet transforms: the recursive structure.

void WaveletTransform: :recursiveTransform() {
// Get current transform step and
// perform the transform step by delegating to the
// TransformStep strategy.

_transformStepDescriptor->currentStep()->transform();

// If transform has a next level
_transformStepDescriptor->nextStep();

if (!_transformStepDescriptor->isCompleted(})
// Recursive call on lower subband

// Note: data manipulation not shown here

// since the focus is on the structure

// of the algorithm.

recursiveTransform(); }

What is not shown here is that the next level of the transform is performed on the low-level subband

of the newly transformed signal.

Now, let us look at how a transform step is actually performed. Figure 44 illustrates the class

structure of this variation-point:

The wavelet transform algorithm only knows about abstract transform steps TransformStep.

5.4.1.3 Transform Steps

The base class for transform steps looks like:

104

«Iterator»

«Strategy:strategy»

DescriptorTraverser

TransformStep

«Strategy.:context»
WaveletTransform

+firstStep () +transform_step() +transform()
+nextStep () +createDescriptorTraverser()

+currentStep(): TransformStep

+isCompleted ()

«Composite:composite»
MultiLevelTransformStep

«Strategy:concreteStrategy»
ConcreteTransformStep

+transform_step(}
+createDescriptorTraverser ()

+transform() ==ec=m-wmecaoc—-
+createDescriptorTraverser ()

// Perform the actual work
// of transforming the data.

Figure 38: Design of the wavelet transform variation-point.

class TransformStep {
public:
virtual DescriptorTraverser* descriptorTraverser() = 0;

virtual void transform() { // Default empty implementation }
/...
3

Concrete transform steps only have to implement the factory method descriptorTraverser () and

provide an implementation for the transform step.

class ConcreteTransformStep : public TransformStep {
public:
ConcreteTransformStep() { //...}
DescriptorTraverser* descriptorTraverser() {
return new DescriptorTraverser(this); }

void transform() {

// Implementation of the transform step

};

The sequence of transform steps to be performed in a multi-level transform are represented by a
composite transform step called MultilevelTransformSteps:

class MultiLevelTransformStep : public TransformStep {
public:

friend class DescriptorTraverser;

105

DescriptorTraverser* descriptorTraverser() {
return new DescriptorTraverser(this); }
// Methods for setting up a multi-level transform
void addLevel(TransformStep* step) { _steps.push_back(step); }
/..
private:
// Transform steps for all levels

vector<TransformStep*> _steps;

};

A wavelet transform algorithm only knows about abstract transform step (TransformStep) and their
iterator proxy (DescriptionHandle). So, whether the transform (step) is single or multi-level, this

is transparent to the wavelet transform. Hence the simplicity of the transform template method.

5.4.1.4 Configuring and Executing a Multi-Level Wavelet Transform Application

The main driver program for this wavelet transform framelet implementing the transform step

variation-point is illustrated in the following code fragment:

int main() {
// 1- Creating a 2D multi-level transform
MultilevelTransformStep *descriptor = new MultilevelTransformStep;
// Level 1: on rows then columns
descriptor->addLevel (new ConcreteTransformStep("RC"));
// Level 2: on rows only
descriptor->addLevel (new ConcreteTransformStep("R"));
// Level 3 - on columns only

descriptor->addLevel(new ConcreteTransformStep("C"));

// 2- Configuring the transform

WaveletTransform multi_level_wt(descriptor);

// 3- Performing the transform

multi_level_wt.transform();

// 1~ Building a single-level transform

ConcreteTransformStep *step = new ConcreteTransformStep("RC");

// 2- Executing the transform

WaveletTransform single_level_wt(step);

106

single_level_wt.transform();

This approach allows for great flexibility in configuring a transform since each level of a transform

can be configured independently with an open-ended number of extensible algorithms.

107

5.4.2 Supporting Different Prefiltering Schemes

Prefiltering schemes were introduced in Chapter 3 as means to prepare data signals for a transform
step processing unit when the wavelet coefficients and the signal coefficients are of different types
(or dimensions). In this section, we present some elements of design in support for the prefiltering
variation-point, i.e. the need for different applications to add, remove and customize preprocessing

steps, and more particularly, pre-filtering steps.

5.4.2.1 Transform

In this context, the framework provides a Transform processor with default behavior. The process
method is adapted in order to provide the application developer a semantically meaningful interface

(the process operations are only of interest to the framework taking care of double-dispatching).

// Predefined framework
class Transform : public Processor {
public:
// Adapter methods for transform on different
// framework predefined data
DatalD* process(DatalD *d) {
return transform(d);
}
Data2D#* process(Data2D *d) {
return transform(d);
}
private:
// Hook methods for subclasses to override
virtual DatalD* transform(DatalD *d1) {
// Default ‘‘empty’’ implementation
return di;
}
virtual Data2D* transform(Data2D *d2) {
// Default ‘‘empty’’ implementation

return d2;

108

5.4.2.2 General Processor Decorator

The general processor decorator, as its name indicates, is based on the DECORATOR pattern. The
intent section of this pattern says:
DECORATOR

Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.[24]

Gomponent

L Decorator | [ConcreteComponent |
]

’|+0peration() | [+operation ()
companent->Oparation{] | T

ConcreteDecoratorA ConcreteDecoratorB

+Operation () +addedState
+AddedBehavior () +Operation ()

1
'
'
'
1
Decorator::Operation()
AddedBehavior (};

Figure 39: DECORATOR. design pattern [24].

To filter the data before actually processing it is to extend the functionality of the processor object

with the additional responsibility to pre-filter the data. So we define a general decorator to support
various kinds of extengions:

// Framework
class ProcessorDecorator : public Processor {
public:
ProcessorDecorator (Processor *processor)
:_processor(processor) {}
virtual Data* process(Data *d) {
return _processor->process(d);
}
private:

Processor * _processor;

};

5.4.2.3 Preprocessing Wrapper

A subclass of the PreprocessorDecorator specializes the decoration for pre-processing:

109

// Framework
class Preprocessor : public ProcessorDecorator {
public:
Preprocessor(Processor *p, Processor *supplier)
: ProcessorDecorator(p), _supplier(supplier) {}
Data* process(D *d) {
// Notice how the data is filtered before
// it is being processed.
return ProcessorDecorator: :process(prefilter(d));
}
private:
virtual Datax prefilter(Data *d) {
return d->apply(_supplier);
}
Processor *_supplier;

};

Hence, a preprocessor is configured with a Processor supplier.

5.4.2.4 Prefilter Supplier Processor

In order to guide the development of applications interested in prefiltering as a specific kind of
preprocessing, a Prefilter class plays the role of an interface for the prefilter operation (it also

plays the role of a carrier of type information and an adapter for the Processor: :process method.

// Predefined framework
class Prefilter : public Processor {
public:

// Adapter method

DatalD* process(DatalD *d1l) {

return prefilter(dil);

}
private:

virtual DatalD* prefilter(DatalD *d1) = 0;
};

5.4.2.5 Application-Specific Prefilter

Applications subclass the prefilter and provide an implementation to the prefilter operation.

Basically, a subclass represents a place to put an implementation:

110

// Application: subclass of framework-provided Prefilter
class AppPrefilter : public Prefilter {
public:

DatalD#* prefilter(DatalD *d1) {

// Prefiltering implementation

};

A concrete transform is configured with a wavelet (here seen as a container of wavelet coefficients)

// Application
class ConcreteTransform : public Transform {
public:
MyTransform(Waveletl *wl)
:_w(wl){}
DatalD* transform(DatalD *d1) {
// Perform the transform and return transformed signal
// Details of the transform are ignored here since
// they are not important in the context of this
// variation-point.
return di;
}
private:
Waveletl *_w;

};

5.4.2.6 Creating a Prefiltering Application

The following code illustrates the configuration and execution of an application that performs pre-

filtering on a data signal as a preprocessing step to a wavelet transform:

int main() {
// 1- Creation of input data signal
Data *input;
/...
// 2- Configure a transform processor with
// a wavelet and a corresponding prefilter.
Processor *p =
new Preprocessor(new ConcreteTransform (new Waveletl),

new AppPrefilter);

111

// 3- Initiate the processing

Data *output = p->process(input);

return 0;

5.5 Data Representation

We refer the reader to the Design Notes sections from this chapter and the previous one, especially
the section 4.6.4 (p. 85), which illustrates the problem of defining the interface of a data class
hierarchy in the face of diversity. In this section, we simply present a candidate design for the

representation of data in the context of wavelet transforms.

The interface proposed for the data hierarchy is composed of three kinds of operations:

e Data element index methods: The data interface is allowing direct access to data elements via
indexing with operations like index(int i), index(int i, int j), and index(int i, int

j, int k) for 1D, 2D and 3D data respectively.

e Subband access methods: Another type of indexing is also available in the form of accessor
methods for elements in the transformed data hierarchical composition consisting in subbands

containing subbands.

e Factory methods: Iterators allowing sequential access to raw data elements independently of
the underlying implementation (vectors, arrays, etc.) and data structure type (1D, 2D and 3D
data) as well as encapsulating different kinds of traversal and sub-data type access (like rows

and columns) are created using a factory method.

5.5.1 Base Data

Let us start our tour of this design with the base class for data signals:

class Data {
public:
virtual void accept(DataProcessor *ts) = 0;

}
declaring only the visitor’s accept interface.

112

Data2D

A

TYPE !
TData3D]

TTYPE 1 L) " IYPE !

TDatafD]" [WT1D | TData2D]" |WT2D

Figure 40: Data hierarchy in Wave ImAgE.

5.5.2 Data Subclass for Non-Transformed 1D Signals
This subclass declares a general interface for subband access and to support the VISITOR pattern.

class DatalD : public Data {
public:
DatalD() {}
DatalD(DatalD *parent)
:_parent(parent) {}
// Visitor’s accept method
virtual void accept(DataProcessor *p);
// Wavelet transform related method (as base class)
virtual WT1D* GetWT() { return 0; }
// Return subband <band> at current level
virtual DatalD *subband(const enum WT_Subband &band) { return 0; }
virtual DatalD *average_subband() = O;
// Return subband <band> at level <level>
DatalD *subband(const enum WT_Subband &band,
const int level) { return 0; }
virtual const int size() comnst = 0;
protected:
DatalD *_parent;
3

5.5.3 Data Subclass for Non-Transformed 2D Signals

This subclass for two-dimensional data provides additional methods for rows and columns access.

113

class Data2D : public Data {
public:
Data2D() {}
Data2D(Data2D *parent)
: _parent(parent) {}
// Visitor’s accept method

virtual void accept(DataProcessor *p);

// Wavelet transform related method (as base class)
virtual WT2D* GetWT() { return 0; }
// Return subband <band> at current level
virtual Data2D *subband(const enum WT_Subband &band) { return 0; }
virtual Data2D *average_subband() = O;
// BReturn subband <band> at level <level>
Data2D *subband(const enum WT_Subband &band, const int level) { return 0; }
// Rows and columns access
virtual const DatalD* row(int iRow) const;
virtual DatalD *row(int iRow);
virtual void setRow(int iRow, DatalD *row) {}
/...
protected:
Data2D *_parent;
}

Notice the absence of data element access methods. At this level in the hierarchy, the type of the

data coefficients is not known, and does not need to be known.

5.5.4 Templatized Data Subclasses

These classes declare the index-based interface for element access plus the factory methods for the

creation of iterators. These classes play the role of the envelop in the ENVELOP AND LETTER idiom.

template<class Element>
class TData2D : public Data2D {
public:
typedef Impl2DA<Element> Impl_t;
typedef Element CoefType;
// Constrution
TData2D(int nRows, int nCols)
:_impl(new Impl_t(nRows, nCols)) {}

114

TData2D(const Element *coefficients, int nRows, int nCols)
:_impl(new Impl_t(coefficients, nRows, nCols)) {}
TData2D{(const TData2D &rhs) { // ...}

// Iterators factory methods

virtual Iterator<Element> *Createlterator() {
return _impl->Createlterator();

}

virtual RowIterator<Element> *CreateRowIterator() {
return _impl->CreateRowIterator();

}

const int size() const { return _impl->Count(); }

virtual int nRows() const { return _impl->nRows(); }

virtual int nCols() const { return _impl->nCols(}; }

// Access elements
const Element& operator() (int i, int j) const { return _impl->Get(i, j); }

Element& operator() (int i, int j) { return _impl->GetRef(i, j); }

// Access rows and columns

//

// Subband access

virtual Data2D *average_subband() { return this; }

// Acyclic Visitor’s accept
void accept(DataProcessor *ts) {
if (Data2DGenericProcessor *p =
dynamic_cast<Data2DGenericProcessor *>(ts)) {

p->process(this);

} else {
// optionally call a catch-all function
/...
}
}
private:

struct Impl_t;
Impl_t *_impl;
}s;

115

5.5.5 Concrete Letters

Concrete templatized classes are defining storage layout and implementation’s data structure, playing

the role of the letter in the ENVELOP AND LETTER idiom. This class is application-specific.

template<class Element>
class Impl2DA : public Impl2D<Element> {
public:

Impl2DA(int nRows, int nCols);

Impl2DA(const Element *coefficients, int nRows, int nCols);

// Factory methods for iterators creation
Iterator<Element> *Createlterator();

RowIterator<Element> *CreateRowIterator();

// Interface used by the iterator
int Count() const;
int nRows() const;
int nCols() const;

const Element& Get(int i, int j) const;

// Element and substructure access

Element& GetRef(int iRow, int iCol);

const DatalD *row(int iRow) const;

TDatalD<Element> rowRef (int iRow);

DatalD *row(int iRow);

void setRow(int iRow, DatalD *data);
private:

int _count;

int _nRows;

int _nCols;

Element *_elements;

};

5.5.6 Iterators for Element Access

Tterators are used by clients (aplication algorithms) to access data sequentially. The external iterator

Impl2DA _Tterator is written by an application developer to give access to application-specific data.

template<class Element>

116

class Impl2DA_Iterator : public Iterator<Element> {
public:
Impl2DA_Iterator (Impl2DA<Element> *impl) ;
virtual void First();
virtual void Next();
virtual Element &CurrentElementRef();
virtual bool IsDone() const;
private:
Impl2DA<Element>* _impl;
int _iRow;
int _iCol;

};

5.5.7 Row and Colums Iterators for 2D Data

For 2D data, it is also possible to iterate through the rows and columns of an image using iterators.

template<class Element>
class Impl2DA_RowIterator : public RowIterator<Element> {
public:
Impl2DA_RowIterator (Impl2DA<Element> *data);
virtual void First();
virtual void Next();
virtual DatalD *getCurrentRowPtr();
virtual void setCurrentRowPtr(DatalD *row);
virtual DatalD &CurrentRowRef ();
virtual TDatalD<Element> CurrentRow();
virtual bool IsDone() const;
private:
Impl2DA<Element>* _data;
int _iRow;

};

5.5.8 Transformed Data

Wavelet transforms are composed of subchannels, as illustrated in Figure 41. These subchannels can
be of two kinds: transformed or non-transformed (data). The transformed channels are composed
of subchannels which can either be transformed channels themselves or data channels, i.e. channels
holding data.

117

TransformedChannel

TransformedChannel

LL L| DataChannel LH DataChannel

H| DataChannel

HL DataChannel HH DataChannel

Figure 41: 2D Wavelet decomposition into subbands.

For example, a non-standard (square) wavelet decomposition on a image can be represented using

a quadtree: every transformed channel has 4 children, the data channels (see Figure 42). As for the

7 N

Figure 42: Quadtree representation of a two-level non-standard wavelet decomposition.

hierarchical representation, at first sight, the COMPOSITE design pattern (see Figure 50) seems to

provide a possible solution, where Leaf is a DataChannel and Composite a TransformedChannel (or
Wavelet Transform). The Intent section says:
COMPOSITE

Compose objects into tree structures to represent part-whole hierarchies. COMPOSITE

lets clients treat individual objects and compositions of objects uniformly [24].

118

Client > Component

+Operation()

l |
Composite Leaf
+Operation () +Operation()

Figure 43: COMPOSITE design pattern [24].

Thus, in order to allow access to those subbands, the interface for 2D wavelet transform should

contain operations to manage subbands across levels of a multi-level transform.

class WT2D : public Data2D {
public:
typedef map<enum WT_Subband, Data2D *>::value_type valType;
map<enum WT_Subband, Data2D *>::iterator iter;
/7.
// Interface for 2D transformed data
void add(Data2D *aSubband, const enum WT_Subband &aSubbandName) {
_subbands. insert(valType(aSubbandName, aSubband));
}
virtual WT2D* GetWT() { return this; }
// Return subband <band>
Data2D *subband(const enum WT_Subband &band) {
return _subbands[band];
}
Data2D *average_subband() {
return _subbands[Subband_L]->average_subband();
}
Data2D *low() { return _subbands[Subband_LL]; }
void low(Data2D *subband) { _subbands[Subband_LL] = subband; }
// Return subband <band> at level <level>
Data2D *subband(const enum WT_Subband &band, const int level) {
Data2D *ch = 0;
if (level == _level) {
ch = subband(band);
} else if (level > _level) {

for (iter = _subbands.begin(); iter '= _subbands.end(); iter++) {

119

// If the subchannel is a WIChannel, recursive call
if ((*iter).second->GetWT() '= 0)

ch = (*iter).second->subband(band, level);

3
}
return ch;
}
private:

int _level;
int _offset_x, _nRows, _offset_y, _nCols;

map<enum WT_Subband, Data2D *> _subbands;

¥

This sample code simply illustrates the kind of operations present in a wavelet transformed data

class.

120

5.5.9 Refining the Data Processing Framework

The Wavelet Transform Framework is a sub-framework created by adapting the Data Processing
Framework discussed in the previous chapter. In this section we outline this adaptation of a general

VISITOR-based framework. for a STAGGERED VISITOR-based framework, see figure 44.

+apply (Processor)
A

| |

AppData FwkData
+apply (Processor) +apply (Processor)
+apply (AppProcessor) +apply (FwkProcessor)
Application

[FwkDataiD | | FwkData2D | | FwkData3D |

[+apply (FwkProcessor) | {+apply{(FwkProcessor) | [+zpply (FwkProcesor) |
j ' '
' 1]
L) 4 '

Framework
p.process(this)
,»l // framework Catch*allﬁ
Processor | .
+process (Data)

l// application catch—allﬁ // framework-defined j
[

// elements catch-all

1 ! i
1
AppProcessor ! FwkProcessor ' Wavelet
+process (Data} g tprocess (Data) ==w~fprmmemcuson a)
+process (Appbata) f=m=========-== +process (FwkData)
N +process (FwkDatalD) - -
i +process (FwkData2D) [SingleWavelet | [MultiWavelet]
L +process (FwkData3D)

Framework

Application

l// extension catch-allshl T

1
| AbstractWaveletTransform ___l AbstractTransformStep [Prefilter

[tprocess (FwkData) [+process {FwkData)
| WaveletTransform | TransformStep
|+process (FwkData) | +process (FwkData)

+process (FwkDatalD)
+process (FwkData2D)

+process (FwkData3D)

L WaveletTransformWrapper

[tprocess (FwkData) | TransformStepWrapper
pmmmmmemm . ————— 4tprocess (FwkData)

Preprocessor
hiiebe kel bbbl +process (FwkData)

' ~preprocess (FwkData)
' —postprocess (FwkData) !
)

-
preprocess (FwkData)

TransformStepWrapper: :process (FwkData) |:prefilter—>process {FwkData) Iﬁ
postprocess (FwkData)

Figure 44: Overview of a STAGGERED VISITOR-based Wavelet Transform Framework.

121

5.5.9.1 Framework Defined and Predefined Processor and Data Classes

The basis for the framework are the classic visitor base classes for data and processors:

// Main framework data class
class Data {
public:
virtual void apply(Processor&) = 0;
I
// Main framework processor class
class Processor {
public:
virtual void process(Data *e) {
// Default empty implementation
}
virtual void process(DatalD* d) { // ...}
virtual void process(Data2D* d) { // ...}
// and so on for other concrete data...
/...
s

5.5.9.2 Transform Steps

Abstract wavelet transform steps are just another kind of processor.® An abstract wavelet transform

step contains the hook method (and is therefore the hook class in the context of a wavelet transform):

// <<Wavelmage>>, <<Sep-H:Transform>>, <<Strat-Strategy>>,
// <<WavTrfmStep-TransformStep>>
// <<Visitor-ConcreteVisitor>>, <<Decorator-Component>>
class AbstractWaveletTransformStep : public Processor {
public:

virtual void process(Data* e) = 0;

};

Concrete wavelet transform steps implement the hook methods. This class is adaptable either via

composition (i.e. an implementation supplier can be provided) or subclassing.

// <<WaveImage>>, <<Sep-H:WaveletTransform>>,

3In the code samples to follow, we use UML-F profile notation to express the role of the the classes.

122

// <<Unif-T:TransformStep>>, <<Strat-ConcreteStrategy>>,
// <<WavTrfmStep-TransformStep>>
// <<Visitor-ConcreteVisitor>>, <<Decorator-ConcreteComponent>>
class WaveletTransformStep : public AbstractWaveletTransformStep {
public:
WaveletTransformStep (Processor* suppliér = 0)
: _supplier(supplier) {}
void process(Data* e) {
if (_supplier) {
e->apply(*_supplier);
} else {
e->apply(*this);

}
// Initialization method indicating the shape of a transform step
void shape(const enum Shape &shape) { _shape = shape; }
private:
// Adapter method: so that subclasses can implement
// a method that is more meaningful.
void process(Data2D* e) { // <<Unif-t:TransformStep>>
transform_step(e);
}
// Hook/template method
// <<Unif-h:TransformStep>>, <<Unif-t:2DTransformStep>>
virtual void transform_step(Data2D* e) {
switch(_shape) {
case R:
transformStepR(data);
break;
case C:
transformStepC(data);
break;
case RC:
transformStepRC(data) ;
break;
default:
transformStepRC(data) ;

break;

123

// Hook (finest level)/ template (finest level of granularity)

// <<Unif-h:2DTransformStep>>,

// <<Sep-t:2DTransformStepAlgo>>

virtual void transformStepR(Data2D* e) {
// Default implementation

}

virtual void transformStepC(Data2D* e) {
// Default implementation

}

virtual void transformStepRC(Data2D#* e) {
// Default implementation

}

private:

// Generic processor that can be used as a

// service supplier

Processor* _supplier;

enum Shape _shape;

};

5.5.9.3 Framework Predefined Default Transform Step

The framework is providing a default Concrete wavelet transform step.

// <<Application>>, <<Strat-ConcreteStrategy>>,
// <<WavTrfmStep-ConcreteTransformStep>>
// <<Visitor-ConcreteVisitor>>, <<Decorator-ConcreteComponent>>
class DefaultWaveletTransformStep
: public WaveletTransformStep { // Framework defined default transform step
public:
DefaultWaveletTransformStep() { // ...}
virtual void process(Data2D *a) { // Default impl. }
virtual void process(DatalD *a) { // default impl. }
s

5.5.9.4 Transform Step Wrapper

A transform step can be decorated at run-time, i.e. new functionality can be added or removed

to/from a transform step object. The added behavior can be provided by any kind of processor.
// <<WaveImage>>, <<Sep-H:Transform>>, <<Strat-ConcreteStrategy>>,

124

// <<WavTrfmStep-TransformStep>>
// <<Visitor~-ConcreteVisitor>>, <<Decorator-Decorator>>
class WaveletTransformStepDecorator : public AbstractWaveletTransformStep {
public:
WaveletTransformStepDecorator (Processor* preprocessor,
AbstractWaveletTransformStep *step,
Processor* postprocessor)
:_preprocessor (preprocessor),
_decoratedWaveletTransformStep(step),
_postprocessor (postprocessor) {}
// Other comstructors...
virtual void process(Datax e) { // ... }
Preprocess(e);
_decoratedWaveletTransformStep->process(e);
Postprocess(e);
}
protected:
virtual void Preprocess(Datax e) {
if (_preprocessor) {
e->apply (*_preprocessor) ;
} else {
// Default behavior - NOTHING

}
virtual void Postprocess(Datax e) {
if (_postprocessor) {

e->apply (*_postprocessor) ;

} else {
// Default behavior - NOTHING
}
}
private:

AbstractWaveletTransformStep* _decoratedWaveletTransformStep;
Processor* _preprocessor;

Processor* _pOSth‘OCGSSOI’;

};

125

5.5.9.5 Application-Specific Transform Step Wrappers

It is also possible for application developpers to add application-specific wrappers (to extend the
functionality of transform steps) by subclassing the framework generic transform steps wrapper.
Extension is achieved by implementing the preprocess and/or postprocess hook methods as il-

lustrated below: transform

class AppPreprocessor : public WaveletTransformStepWrapper {
public:
AppPreProcessor (AbstractWaveletTransformStep* step)
: WaveletTransformStepWrapper (step) {2}
virtual void preprocess(Datax e) {

// Application-specific implementation

};

5.5.9.6 Application-Specific Transform Steps

It is interesting to note that application developers can focus on implementating only the hook
method corresponding to the data dimension of their application. Below, only transform.step(Data2D
*) is implemented.

// <<Application>>, <<Strat-ConcreteStrategy>>,
// <<WavTrfmStep-ConcreteTransformStep>>
// <<Visitor-ConcreteVisitor>>, <<Decorator-ConcreteComponent>>
class AppWaveletTransformStep
: public WaveletTransformStep {
public:
void transform_step(Data2D *a) {

// Application-specific implementation
};
Such a thing is made possible because of two methods provided by the transform step base class:

o Adapter method: A process(Data2D *) method performs adaptation for the transform_step(Data2D
*) method.

o Catch-all methods: A catch all process(Data *) method taking care of dispatching to the
correct method operating on data of interest to the application.

126

It is also possible for application-developers to implement only one or more fine-grained shape-specific

transform methods. This is illustrated below.

class SingleShapeWaveletTransformStep
: public WaveletTransformStep {
public:
void transformStepR(Data2D *a) {
// Application-specific implementation
// for a transform step on the rows only.
}
private:
enum Shape shape() { return Shape::R; }
s

or in case multiple shapes are supported:

class MultiShapeWaveletTransformStep
: public WaveletTransformStep {
public:
void transformStepR(Data2D xa) {
// Application-specific implementation
// for a transform step on the rows only.
}
void transformStepC(Data2D *a) {
// Application-specific implementation

// for a transform step on the rows only.

};

In order to have the desired method executed however, the application developer is responsible for
indicating to the calling method in the framework which shape-specific method is to be executed.

This can be done in two ways:

1. In the transform step subclass: By implementing the hook returning the desired shape. The
framework class will ask the application class for the shape of the transform step. This is
useful when the subclass is dedicated to a single type of transform. Once the class is written,

no further initialization is necessary. This is shown in the above code sample.

2. During the configuration phase: During the initialization phase of the transform configuration,
the application will place a request on the transform step to set a flag indicating to the template

method which hook method to execute. The initialization is shown below.

127

These two situations are illustrated in the code fragment below.

In the first case, since the transform step is dedicated to a single shape, no initialization is necessary:

SingleShapeWaveletTransformStep *s = new App3WaveletTransformStep;

In the second case, the application has to specify which method should be called:

MultiShapeWaveletTransformStep *step = new App4WaveletTransformStep;
step->shape(C);

5.5.9.7 The Abstract Wavelet Transform

In the previous sections, we have described the strategy side of the collaboration between a wavelet
transform (as a context in the sense of the STRATEGY pattern) and its numerous possible strategies.
Now we look at the context side of the transform, i.e. the class containing the template method

capturing the commonality between many wavelet transforms. The abstract wavelet transform looks
like:

// <<Wavelmage>>, <<Sep-~T:Transform>>, <<Strat-Ctxt>>, <<WavTrfm-Transform>>
// <<Visitor-ConcreteVisitor>>, <<Decorator-Component>>
class AbstractWaveletTransform : public Processor {
public:
virtual void process(Data *e) = 0;

};

Notice how the process method is accepting the base data class as argument. This indicates the

data structure independence of the wavelet transform algorithm.

5.5.9.8 The Concrete Wavelet Transform

The WaveletTransform class is containing the process template method which captures the recur-

sive nature of the transform algorithm.

// <<Wavelmage>>, <<Sep-T:Transform>>, <<Strat-Ctxt>>, <<WavTrfm-Transform>>
// <<Visitor-ConcreteVisitor>>, <<Decorator-ConcreteComponent>>
class WaveletTransform : public AbstractWaveletTransform {
public:
WaveletTransform(AbstractWaveletTransformStep *step = 0)

: AbstractWaveletTransform(),

128

_step(step ? step : new DefaultWaveletTransformStep) {}
// Template method
void process(Datax e) {
// Stable structure of the wavelet
// transform algorithm is captured here
// (details omitted).
_step->process(e);
}
private:
AbstractWaveletTransformStep *_step;
i

5.5.9.9 Supporting Legacy Wavelet Transforms

We use the term “legacy” loosely to refer not necessarily to pre-existing wavelet transform code, but
rather to refer to the kind of wavelet transform implementation that is found in many other systems.
Thus, by legacy wavelet transforms we mean a wavelet transform for which extensibility is limited
to what a minimal descriptor can hold i.e., for each level of a multi-level transform, a wavelet filter,

and, in the 2D case illustrated here, a direction (or shape):

enum DIRECTION {R, C, RC};

class Wavelet { // ...};

class Waveletl : public Wavelet { // ...};
class Wavelet2 : public Wavelet { // ...};

class LegacyDescriptor {
public:
struct step {
Wavelet *wavelet;
DIRECTION dir; };
step *_steps;

};

5.5.9.10 Legacy 2D Wavelet Transform

A base class for legacy wavelet transform may look like this

class LegacyWaveletTransform : public AbstractWaveletTransform {

public:

129

LegacyWaveletTransform()
: AbstractWaveletTransform() {}
void process(Datax d) {

d->apply(*this);

};

and a subclass for a 2D wavelet transform implements an init(string config info) operation,
which is using the configuration information passed as a parameter to initialize a transform descrip-
tor. The format is irrelevant, as long as it contains the necessary information, which is a wavelet

type and a direction for each level.

class LegacyWaveletTransform2D : public LegacyWaveletTransform {
public:
LegacyWaveletTransform2D()
: LegacyWaveletTransform() {}
void init(string config_info) {
_descriptor = config_info; /* For ex.: "W1 RC W2 C W1 R" %/
}
// Template transform method
void process(Data2D* d) {
Wavelet *wl; Wavelet *w2;
/...
transform_RC(d, wil);
/...
transform_C(d, w2);
transform_R(d, wl);
/..
}
private:
// Hook methods to be overridden in subclasses
virtual void transform_R(Data2D *d, Wavelet *w) { // ...}
virtual void transform_C(Data2D *d, Wavelet *w) { // ...}
virtual void transform_RC(Data2D *d, Wavelet *w) { // ... }
string _descriptor;

};

where the process method contains the switch logic and looping taking care executing a sequence
of calls according to the information contained in the descriptor (details omitted in the above code

sample).

130

5.5.9.11 Creating Wavelet Transform Applications

In this section, we give three examples of how this prototypical framework can be adapted to create
wavelet transform applications. A simple 1-level wavelet transform on 2D data can be build the

following way:

// 1- Creation or acquisition of a 2D input signal

Data *data = new Data2D;

// 2- Creation and configuration of a wavelet transform

Processor *processor = new WaveletTransform(new AppWaveletTransformStep);
// 3- Launch the execution

processor->process(data);

A wavelet transform with pre- and post-processing applied to the transform step can be written like
this:

Data *data = new DataZ2D;

// Creation of a wavelet transform processor

// where the transform step is extended

// to perform preprocessing.

Processor *processor =

new WaveletTransform(

new WaveletTransformStepDecorator(new Preprocessor, // Preprocessing

new AppWaveletTransformStep,
new Postprocessor));// Postprocessing

processor->process(data);

Creating and configuring a “legacy” wavelet transform application can be achieved in the following

way':

Data *data = new Data2D;

string config_info = "W1 RC W2 R W1 C";
LegacyWaveletTransform2D *wt = new LegacyWaveletTransform2D();
wt->init(config_info);

Processor *processor = wt;

processor->process(data);

131

5.6 Design Notes

5.6.1 From the Ground Up: Towards More Flexibility and Extensibility.

In this section, we expose the requirements for the design of a wavelet transform and image pro-
cessing system by following a systematic generalization approach. This means that we start with a
simple and unflexible example {a specific, but overly simple application) and work our way towards

a flexible framework.

Consider for example the basic paradigm involved in the task at hand: transforming an image. In
object-oriented terms (or at least in C++), such a requirement could be captured by a single class

Image having a single method transform() as an interface.

class Image {
public:
void transform() {
// Implementation of the
// transform algorithm.

};

It can hardly be any simpler than that. It can also hardly be less flexible and extensible than
that. Adding a new operation (other than a transform) would require changing Image’s interface.
Providing a different transform algorithm’s implementation would require changing the current

implementation:

class Image {
public:
void transform() {
// Modified implementation to provide

// a more efficient transform algorithm.
b

void another_operation() {
// Operation’s implementation

};

In both case, this is forcing a recompilation of the client code and increasing the risk of introducing

errors.

132

A step towards more flexibility would be to take advantage of polymorphism, by making the opera-
tions already present in the interface virtual:

class Image {
public:
virtual void transform() {
// Base class default implementation of the
// transform algorithm.
}
virtual void another_operation() {

// Base class default implementation.
3

This approach at least violates less the Open-Closed principle saying that module should be open
for extension but closed for modification: Adding a new implementation for any of the methods in

the image interface can now be achieved by subclassing, i.e. without touching the code in Image at
all.

class MyImage : public Image {
public:
void transform() {
// My new implementation of the
// transform algorithm.
}
void another_operation() {

// My new implementation.
};
But there are still two big problems with this approach:

1. Modifying operations incurs providing a different image subclass, even though the image rep-

resentation itself may not be different at all.

2. Adding a new operation (semantically) still requires changing the base class interface.

The second problem is magnified if we want to add operations to a true hierarchy of images.

Since one of the flexibility requirement is to keep the transform algorithms flexible, it seems like a

good idea to encapsulate the transform algorithm in its own class, Transform. If we do not do so,

133

then, in order to change the transform routine, one would need to modify the code in the Image
class. This approach would not only lead to code duplication, but it would also contribute to increase
the chance of error. In that context (i.e. a single class hierarchy), if one wants to keep flexible the

transform algorithm, then two main avenues can be looked at:

e Modify the code:
Modifying the Image class transform() method by adding conditional statements for the
different transform algorithms supported. This approach is clearly prone to error. Why touch
well working code (the Image class) when the transform and only the transform should change?
The problem here is really that the data representation and the transform process are the same

thing (at least, are in the same location: the Image class).

¢ Subclassing:
Subclassing the Image class and overriding the transform() method. This amounts to creating
different kinds of images when what one really wants are different transform algorithms. This
is clearly not satisfactory. Another drawback is code duplication: the whole transform()

method has to be overridden when only part of it should be changed. This is also error prone.

Extensibility requires that it should be easy to add functionality, to add new image processing
algorithms. In the above example, this can be achieved by adding new methods to the Image
interface. Why this can quickly become difficult and ugly can easily be seen if we have a hierarchy

of images to account for the types of images supported by the framework.

A first design decision that has to be made is the separation of the image representation from the

transform algorithm:

class Image {
public:
void transform() {
_transform->transform();
}
private:
Transform* _transform;

};

// A separate class encapsulating
// the transform algorithm

// (i.e. the concept that varies)
class Transform {

public:

void transform() {

134

// Implementation of

// transform algorithm
3

This design is better with regards to isolating the concept that varies. However, if one wants to
perform the transform differently, i.e. to use a different implementation, then the whole method
transform() would need to be changed, even if the required change is only a well localized single
step of the whole algorithm.

The change to the code would not be local anymore (in the transform method context). One way
to ensure locality of change would be to (1) clearly identify the parts that vary, and (2) provide a

design solution that support those flexibility requirements by encapsulating what varies.

Our goal is to keep a transform step (or sub-routine) flexible. The step is the part that varies. A
possible way to support that flexibility (or adaptability) would be to follow the unification prin-
ciple through the use of template and hook methods. Class Transform could contain a template
transform() method and a transform_step() hook method. Then, if the transform step of the
Transform was to be changed without touching the existing source code, one would do so by defin-
ing a subclass of Transform that simply overrides the transform_step() method. This elegantly

changes the behavior of the transform method without duplicating or altering any source code.

This is an example of the TEMPLATE METHOD design pattern [24]. Basically the intent of the
Template Method design pattern is to define the skeleton of an algorithm in an operation (here,
transform(...)) in a base class, letting subclasses redefine some steps (here, transform step(...))
of an algorithm, without changing the algorithm’s structure.

In our domain analysis, we have identified, for example, two possible resulting shapes for a two-
dimensional transform algorithm: square (non-standard) and rectangular (standard) transforms.
We could consider having two template methods in the Transform class: square_transform(...)
and rect_transform(...). The hook method, tentatively named transform step(...) could be
a prefiltering operation for example. And since a prefiltering operation is needed only for a certain

type of transform (the ones using multifilters), the default implementation could be left empty.

Consider a class Data representing the data to be transformed. The operations transformA(),
transformB () and transformC () represent different transform algorithms. The problem here is that
distributing all these operations across various classes leads to a system that is hard to understand,
and hard to maintain. Adding a new transform algorithm requires recompiling all of these classes and
their clients. It would be much better if each new transform algorithm could be added separatly, and
if the data classes were independent of the operations that are applied on them, as we acknowledged
earlier. This can be achieve by packaging transform operations in separate objects, in a separate class

hierarchy (See Figure 46). This simplistic decomposition of the problem is based on the recognition

135

Data

+transforma ()
+transformB ()
+transformC ()

DataiD Data2D Data3D
+transformh () +transforma () t+transformA ()
+transformB () t+transformB () t+transformB ()
+transformC() | |[+transformC() +transformC ()

Figure 45: A data class hierarchy representing the data to be transformed with various transform
algorithms.

Transform
+transform(...)
Transform_1D Transform_2D_Square Transform_2D Rect Transform_3D
+transform(...) +transform(...) t+transform(...) +transform(...)

Transform_2D_Square_Tl Transform_2D_Rect_TI

+transform(...) +transform(...)

Figure 46: Transform hierarchy. Such a shallow and wide hierarchy indicates that more abstractions
are still to be found.

of the following requirement: different applications use different wavelet transforms. A variety of
applications differ in, among other things, the fact that they use different transforms. We now have

two tasks to perform:

1. Study closely how the different transform algorithms differ, i.e. clearly identify what is their

commonality and where they vary (variation-points).

2. Find a design solution supporting the variability requirements identified above.

Here we are concerned with the dimensionality of the signal on which the transform algorithm
operates as well as with the dimensionality of the algorithm itself (i.e. the dependency of the
algorithmic structure on the data structure type). We qualify transform algorithms operating on
one-dimensional data as one-dimensional algorithms, and so on with other dimensions.

Notice that in Figure 46 we assist at an explosion of subclasses, since there is one subclass per
transform algorithm. Such a shallow and wide class hierarchy, even though it gives us the flexibility
of define new algorithm at will through subclassing, is hard to understand and to maintain.

A shallow and wide hierarchy may indicate that:

136

e More abstractions still have to be found, and
e Some classes could be removed through a clever use of parametrization.
Parametrization will be considered in the next section, where we discuss the shape (standard, or

non-standard) that a transform can take. Now we will focus on refining the class hierarchy in Figure

46 following the guideline:

Guideline | Class hierarchies should be fairly deep and narrow. Shallow and wide inheritance

hierarchies indicate that abstractions still are to be found in the hierarchy

In doing so however, we should be careful of preserving the abstractions that were identified in the
domain analysis, or at least not violating them. Applications and application developers are often
interested in algorithms and signals of only a single specific dimension at a time. It would therefore
make sense to group the transform algorithms of same dimensionality together. Such a grouping can
be achieved in object-oriented terms with base classes, one per dimension (see Figure 47). Doing
so results in the hierarchy depicted in Figure 47. This approach has the advantage that adding a
new algorithm’s implementation for a specific dimension requires subclassing the base class of the

appropriate dimension.

Data Transform

+perform(Transform) +operate_on {DatalD)
+operate_on(Data2D)

+operate_on(Data3D)
AN
|]
Transform1D Transform2D Transform3D
Data1D Data3D +operate_on (DatalD) +operate_on (Data2D) +operate_on (Data3D)
+perform{Transform) +perform(Transform)
Data2D
+perform(Transform)
TransformA [TransformB | TransformB
[+operate_on (DataliD) {+operate_on (Data2p) | Yoperate_on (DatasD)
| TransformB | | TransformC
[+operate_on (DatalD) | [+operate_on (Data2D) |

Figure 47: A data class hierarchy representing the data to be transformed with various transform
algorithms. The new classes TransformiD, Transform2D and Transform3D capture an intuitive (and
easy to learn) classification for application developers.

5.6.2 Standard and Non-Standard Wavelet Decomposition

Having narrowed down our hierarchy like that, haven’t we get rid of a few categories that were iden-
tified during analysis, namely the shape of a transform (square and rectangular transforms)? When-

ever parametrization can express the variability of a variation-point, we should use a parametrized

137

class instead of providing new alternative classes, since this is simpler. In doing so, we apply the

following guideline:

Guideline | Eliminate difference by parametrizing. Consider replacing classes or methods

providing semantically equivalent behavior by common parametrized classes or

methods.

A closer analysis of a two-dimensional wavelet transform, shows us that parametrization can be used
to get rid of classes encapsulating the shape of a transform. The parameter introduced describes the
shape or type of the transform for every level of a multi-level transform. This approach results in
greater flexibility for the transform since at each level, the transform can be of three types: square
(transformation of columns and then rows), rectangle (rows only) and rectangle (columns only).
This parametrization takes care of the transform shape variation-point. For example, consider the

following:

class Transform2D {
public:
// Instead of subclasses, we use a parameter to
// select the desired implementation.
void transform(ShapeParameter *sp) {
// Switch logic to call the operation
// corresponding to the <ShapeParameter> sp.
}
private:
// Different operations for different shapes,
// instead of subclasses.
virtual void transformRows() { //... }
virtual void transformCols() { //... }

virtual void transformRowsCols() { //... }

And the gain here is even more than we may think, since the resulting shape of a multi-level transform
is the product of a recursive process for which the basic three operations above (transformRows(),
transformCols and transformRowsCols()) are only the building blocks, at a single level. Wanting
to represent each possible resulting shapes with a subclass is simply not possible since it depends
on the shape of each single level of the transform and the composition of those in a multi-level

transform.

138

5.6.3 Basis Functions, Wavelets and Filters

Another variation-point is that different basis functions, or wavelets (filter coefficients) may be used
in different applications. Not only can the filter coefficients differ, but we can also have different
types of wavelet coefficients: integer coefficients (lifting scheme), single wavelets (scalar coeflicients),

multiwavelets (matrix coefficients) and complex wavelet (complex coefficients).

Wavelet
+transform_step ()
IntegerWavelet ComplexWavelet MultiWavelet SingleWavelet
—filter: Filter<int> —filter: Filter<Complex> -filter: Filter<fMatrix> -filter: Filter<float>
ttransform_step () +transform_step () +transform_step () +transform_step (

Figure 48: Wavelet class provides an interface for low-level transform operations only, i.e. those
operations where the actual work is done with the filter: convolution with a signal (signals details
omitted here). The different wavelet subclasses implement those operations since their implementa-
tion depends on the type of filter used. Filter is a template class acting as a container for various
types of coefficients. The framework is also providing “helper classes” where coefficients types like
matrix, complex numbers are defined as well as low-level default operations like convolution be-
tween a signal and a filter sequence.

5.6.4 Wavelet Transform Process

Performing a multi-level wavelet transform is a recursive process (see Figure 49). The recursive
wavelet transform algorithm can be described in terms of his overall structure and actual processing

steps.

class WaveletTransform {
public:
CH *transform(CH *nt, TD *td) {

// Recursive structure of wavelet
// transform algorithm.

// This structure is common to all
// wavelet transform algorithms,

// independently of data structure

139

. \— final product of transform

intermidiary products
(and parts of final product)

transform step

Figure 49: Wavelet transform recursive process yielding a recursive wavelet transform structure.

// and filter used.

// Transform step:

// Forward request to a

// TransformStep object whose
// responsibility is to perform

// that transformation.

if (td->next)
wt->low(transform(wt->low() ,td->next));
return wt;
}
private:
// How and when _transformStep pointer gets initialized?

TransformStep *_transformStep;

140

};

The motivation behind delegating to a TransformStep object is simple: how such a transform
step is implemented depends on at least two things, the dimensionality of the data and the filter
used. Since the implementation of WaveletTransform::transform(...) is data structure and
filter independent, it makes sense to keep it that way by encapsulating the concept that varies, the

transform step:

class TransformStep {
public:
CH *transform_step(CH *nt, TD *td) {

// Implementation 777
};
Ultimately, some useful work corresponding to a single-level wavelet transform has to be performed
on the data i.e. somewhere some functions have to provide implementation that actually manipulates

the data:

CH1 *transform_step(CH1 *nt, ...) {
// Transform 1D signal

3

CH2 *transform_step(CH2 *nt, ...) {
// Transform 2D signal

I

Let’s focus on the 2D case first.

class TransformStep2D {
public:
CH2 *transform_step(CH2 *nt, ...) {
// Transform 2D signal:
// There are three possible shapes
// for a 2D transform: on the rows only,
// on the columns only, and on the rows

// followed by on the columns.
I

A possible way to select the correct implementation (see code sample above) is to have three different

functions:

141

class TransformStep2D {
public:
CH2 *wt;
CH2 *transform_step(CH2 *nt, TD *td) {
switch(td->shape) {
case WT2D_SHAPE R :
wt = transformR(nt, td->filter);
break;
case WT2D_SHAPE_C :
wt = transformC(nt, td->filter);
break;
case WT2D_SHAPE_RC :
wt = transformRC(nt, td->filter);

break;
}
return wt;
}
private:
// Helper functions performing the actual transform
CH2 *transformR(CH1 *nt,...) { // ... }
CH2 *transformC(CH1 *nt,...) { // ... }
CH2 *transformRC(CH1 #*nt,...) { // ... }
3

One way to get rid of that switch logic would be to apply the STRATEGY pattern (which replaces

functions by classes). The context for a 2D transform step could then look like:

class TransformStep2D {
public:
CH2 *wt;
CH2 *transform_step(CH2 *nt, TD *td) {
// No details on that Factory class for now...
_transformStepAlgo = TransformStep2DAlgoFactory::instance()
->makeAlgo(td->shape)
return _transformStepAlgo->transform_step(nt);
}
private:
TransformStep2DAlgo *_transformStepAlgo;
3

where we have the new hierarchy for 2D transform step family of algorithms:

142

class TransformStep2DAlgo {
public:
virtual CH2 *transform_step(CH2 *nt) = 0;
5
class TransformStep2DAlgo_R : public TransformStep2DAlgo {
public:
virtual CH2 *transform_step(CH2 *nt) {

// Implementation of transformation on rows

3
class TransformStep2DAlgo_C : public TransformStep2DAlgo {
public:

virtual CH2 stransform_step(CH2 *nt) {

// Implementation of transformation on columns

¥
class TransformStep2DAlgo_RC : public TransformStep2DAlgo {
public:
virtual CH2 *transform_step(CH2 *nt) {
// Implementation of transformation

// on rows, then columns.
};

This begs the question: How to bridge the gap between the transform-step(...) method and its
implementation 7.e. how to get the right code to execute when TransformStep: : transform step (CH
*nt, TD *td) gets called? A possible solution is in via a VISITOR-based approach.

5.6.5 Wavelet Transform Data Representations

Different transform processes yield different transform representations (products) (see Figure 49).
Processes and products are different. A wavelet transform consists of hierarchically structured
information. A wavelet transform is constructed through a recursive process yielding a recursive
hierarchical representation. How to represent such a hierarchical structure? With a flat array or a
composite structure? Do we gain anything in using a representation that reflects this hierarchical
structure? It all depends on the users or clients of wavelet transforms, which are the algorithms or
processors operating on the transformed data.

Let us consider two possible options: a simple array of pixels and a composite structure (recursive

composition). In the array-based solution, we may have something like this:

143

class WaveletTransform {

int datal10][10]; // a bi-dimensional array
public:

// Public interface
s

A flat representation like that can be implemented in many ways:

int *data;
vector<int> data;
valarray<int> data;

// and many other possible representations...

As for the hierarchical representation, at first sight, the COMPOSITE design pattern (see Figure 50)
seems to provide a possible solution, where Leaf is a DataChannel and Composite a Transformed-
Channel (or WaveletTransform). The Intent section says:

COMPOSITE

Compose objects into tree structures to represent part-whole hierarchies. COMPOSITE

lets clients treat individual objects and compositions of objects uniformly.[24]

| Component

r +Operation()
I I

Composite Leaf
+Operation () +Operation ()

Figure 50: CoMPOSITE design pattern [24].

We can think of Component as a generic Channel ([?]). The important question is whether we want
clients to ignore the difference between compositions of objects and individual objects, i.e. treat

them uniformly.

Let us consider the clients of wavelet transforms: the algorithms that operate on them.

void algorithm(WaveletTransform &wt) ;

Points to consider:

144

> +Opera4t§on ()
$ [I

TransformedChannel DataChannel
+Operation () +Operation()

Figure 51: Wavelet transform data implemented using the COMPOSITE design pattern.

It does not make sense to ask a non-transformed channel to inverse-transform itself. So, do we

really want compositions and parts to share a common interface? Probably not.

There are various particular wavelet transforms with varying structure. It is easy to understand
that a CoMPOSITE-based approach is powerful enough to represent all those transforms, but
is it ezpressive enough to be able to differenciate compositions (or does it hide too much
information)? For example, let’s say an algorithm is expecting a non-standard transform as

parameter. The signature of such an algorithm could be:
void algorithm(Channel &transform);
or
void algorithm(TransformedChannel &transform);

In both cases, there is no way to guaranty that the transform object passed as an argument
will have the desired structure, i.e. that it will be a composition of a specific type, for there is
no type information attached to a specific composition, for example, of a 2-level non-standard
transform (i.e. with 4 subbands at each scale). This is a problem shared with the flat array-
based approach. Unless there is a type corresponding to each possible decomposition, there is
no way to ensure that the transform (composition) passed as an argument to an algorithm is

of the right type, at least at compile-time?.

5.6.6 Finding an Interface for Wavelet Transforms

In this section we address the problem of defining a complete and minimal interface for wavelet-

transformed data also called wavelet transforms.

A wavelet transform can also be called a hierarchical subband decomposition. Sometimes, a wavelet

transform refers to the wavelet coefficients only, excluding the scaling coefficients. Also, a wavelet

4We refer to compile-time type checking in the strong sense, and not in weak run-time “type” checking provided
by reflective mechanisms where an object can provide information about itself when asked.

145

transform is sometimes referred to as the transform coefficients, which can include the scaling and
wavelet, coefficients or only the wavelet coefficients. Two important concepts are used to described a
wavelet transform: scale and subband (or orientation). Each scale of a multilevel wavelet transform
is composed of subbands. The orientation refers to the type of subbands across scales which, in the
case of a 2D non-standard transform, are labeled LH, HL, HH and LL, arising from the separable
application of vertical or horizontal filters on a 2D signal. The latter (LL) being the lowest frequency
subband, a representation of the information at all coarser scales. Depending on what one wants
to achieve, a wavelet transform can be seen as a set of coefficients where each coefficient is treated
as a distinct, potentially important piece of data regardless of its scale and subband or it can be
seen as composed of subbands where the coefficients from a given subband (at a certain scale) are
being grouped together suggesting that statistics computed from a subband are representative of
the samples in that subbands [52]. Other concepts of importance, from the point of view of image

coding, are the orientation and the spatial location of wavelet coefficients.

In defining a complete and minimal interface for a wavelet transform class, we have to take into con-
sideration what the clients might reasonably want to do (with a wavelet transform) [see [39], Item
18]. The clients of wavelet transforms are algorithms operating on that type of data (i.e. taking a

wavelet transform as input).

A typical transform-domain algorithm will want to perform the following:

o Access (coefficients belonging to) specific subbands. Some algorithm sub-routines might want
to perform some operations on the coefficients that are specific to the subband from which the
coeffcients are extracted. The coefficients themselves in a subband need to be accessed (and

manipulated) and traversed in an algorithm-specific order.

e The subbands might need to be accessed and traversed following an algorithm-specific order

across scales.

From what we just said, it seems that an important role of a wavelet transform interface is to allow
access to its elements. So, regardless of the data structure used to implement a wavelet transform

we can agree on a class interface might look like this®:

template< class T >

class WaveletTransform {

public:
// Overloaded operator() for access
// of data elements using indexing

// for dimensionality supported: 1D, 2D and 3D

5Here we use a template class with the data type as an argument only to simplify the interface

146

T operator () (int i);
T operator() (int row, int col);

T operator() (int sli, int row, int col);

// Retrieval of a subband <sub> at scale <scale>

T* subband(int sub, int scale);

private:

T* data;

Obviously, in addition of being far from complete, there are many problems or weaknesses with such

a minimal interface. One of the most striking problem is the subband function returning a pointer

an array) to a T object. To illustrate this point, let’s consider a “typical” algorithm operating on
y J g g

a wavelet transform. We might have something like this:

template< class T >

void algorithm(WaveletTransform &wt) {

// Assuming the interface provides

// a way to make sure the wavelet transform
// is a 2D one.

int subband_LH = 1;

int level = 2;

// Assuming the interface provides

// a neat way to get bound/size information
T *subband = new T[size]l;

subband = wt.subband(subband_LH, level);

// Manipulation of subband coefficients
for (int i=0; j<size; j++) {
// Some operation on coefficient

// subband[j] of type T

It is virtually impossible for the algorithm to be written in a way that takes advantage of the hi-

erarchical nature of the wavelet transform, a shape that is often present in the structure of the

algorithm itself: algorithms taking advantage of the structure of the data structure, or, in other

words, algorithms operating on structured data (structure) are often described in terms of how they

147

make use of that structure. It’s just another way to say that algorithms are expecting the data they
operate on to be of a certain structure. The interface proposed above is weak in the sense that it

allows a user to lose precious structural information, by calling subband for example.

A wavelet transform is ultimately just an arrangement of basic logical structures such as subbands and
groups of coefficients. These elements capture the total information content of a wavelet transform.
The user should be able to refer to a subband as a whole having structure and not as an unstructured
mass of coefficients. That helps make the interface simple, clear and intuitive for the user. An

internal representation that has similar qualities should support the following:

e Maintaining the wavelet transform’s logical structure, that is, the arrangement of subbands

and groupings of coefficients.

¢ Mapping positions of coefficients on the transform to elements of the internal logical represen-
tation letting users access groups of coefficients belonging to a particular subband and accesing

subband elements through coefficients at specific locations.

o Generate and present the transform in a format suitable for storage and visualization.

A common way to represent hierarchically structured information is through a technique called

recursive composition. This technique has two important implications:

1. The objects in the composition need corresponding classes.

2. These classes must have compatible interfaces.
Those two implications require careful analysis since we want to keep the number of classes reasonable
(do we want a subclass for all possible “type of” subband for 1D, 2D and 3D data?) and compatible

interfaces to be meaningful (if non-transformed and transformed data classes have same base class,

issues like being transformable (invertible) and having subbands need to be taken care of).

148

Chapter 6

The Image Processing Experiment
Configuration and Scheduling

Framework

6.1 Overview

This chapter describes the Image Processing Experiment Configuration and Scheduling Framework
for the Wave ImAgE framework. The framework is described at both the framelet design level and

at the framelet architectural level.

This framework proposes a design solution to the problem of supporting the flexible configuration

of wavelet-based image processing experiments.

6.2 Context

This chapter assumes that the reader is familiar with Design Patterns [24]' and with the data pro-
cessing and wavelet transform frameworks in Chapter 4 and 5.

The Image Processing Experiment Configuration and Scheduling Framework implements a variant
of the COMPONENT CONFIGURATOR pattern to support the flexible configuration of wavelet-based

1Particularly the COMPONENT CONFIGURATOR, MANAGER, ABSTRACT FACTORY, BUILDER, PROTOTYPE, STRATEGY
and WRAPPER FACADE

149

image processing experiments through the dynamic configuration of abstract processors, data fac-
tories and strategies into an experiment. This framework enhances reuse by enabling abstract (and
pluggable) factories {(and the algorithms they embody) to be treated as interchangeable building

blocks in wavelet-based image processing applications.

6.3 Problem

The design solution for the Configuration and Scheduling Framework should be influenced by the

following forces:

e Since as an application matures new algorithms may be discovered and need to be tested, it
should be possible to modify processors implementations at any point during an application’s
development. It should be possible to initiate, exchange, or shutdown a component dynamically

within an application at run-time.

¢ Since a large number of applications are likely to be designed using the framework, a fixed
application structure should be introduced to ensure consistency among the different programs.
Treating an application as another object in the object model (as opposed to the widespread
use of a main() function) should allow the sharing of common application logic since all

applications in the system would be derived from the Application class.

e The system should provide and enforce a common programing model for all applications. Fail-
ing to provide and enforce such a common programming model may result in developers
implementing their own unique versions of an execution model for each application they write,
leading to hard to understand, hard to maintain and hard to reuse code. The system should
therefore provide a simple, easy to learn but yet flexible programming model that all devel-
opers will adhere to. This could be accomplished by letting an Application class defining an

interface providing a set of fundamental execution stages for any program.

o Wavelet-based image processing applications are characterized by algorithms or processors
operating on data (images, transforms). It should therefore be possible for developers to reuse
experiments in a way so that they could operate differently on the same data, or operate (the

same way) on different data.

6.4 Solution

The patterns involved in this solution are, by order of importance with respect the variation-point
semantics (i.e. what varies) MANAGER, SERVICE CONFIGURATOR, ABSTRACT FACTORY, FACTORY
METHOD, PROTOTYPE, ADAPTER, STRATEGY, COMPOSITE, ITERATOR, and SINGLETON. Their

role in this specific context are briefly described below:

150

1. MANAGER and SERVICE CONFIGURATOR: Components (processors and processor factories
embodying processors as strategies) are configured dynamically into applications using a vari-
ation of the SERVIVE CONFIGURATOR pattern. The component repository of this pattern is
implemented as a MANAGER.

2. ABSTRACT FACTORY and FACTORY METHOD: Combined together, they provide a single
component that builds related objects. Concrete factories are dynamically linked into the
system and the factory methods they implement allow for the creation of groups of semantically

compatible processors.

3. PROTOTYPE: A concrete factory implements the PROTOTYPE pattern to allow for more flexi-

bility in the creation of concrete factories.

4. STRATEGY: The transform steps and other processors are strategies. They implement algo-
rithms performing the actual transform or processing on the data. Also, experiments (as a class,

Experiment) are also strategies used in a context (role played by the Experiment Scheduler).

5. COMPOSITE: Experiment Lineup is a composite. It is composed of experiments to be executed

sequencially.

6. ITERATOR: Iterators are used by the Experiment_Scheduler to iterate through the experiment

lineup in order to execute them sequencially.

7. ADAPTER: Allow existing implementations not related by inheritance in the processor hierar-

chy to become reusable implementations.

8. SINGLETON: Many classes in this framework are meant to have only one instance (Experiment_Scheduler,
Component Configurator, Options, and Environment for example) because they provide

global points of access. They are therefore implemented as singletons.

6.5 Configuration and Scheduling Sequence

In this section we present the steps performed during the configuration and scheduling of image

processing experiments.

1. An initial configuration source (script file, command line, database, etc.) is created by an
application developer. It then becomes the single location that can be managed centrally by

applications.

A sample configuration file, say exp.conf, for the configuration of two experiments, may look
like this?:
2The exact syntax of the language for writing directives for the configuration of components is not important here,

but it has to be taken care of eventually. Then, the INTERPRETER pattern could be used to implement a mechanism
to parse and process these directives.

151

exp:

/image_processing/processors/ processorl ‘‘lenna.pgm 3 ghm’’

exp:

/image_processing/factories/ factory2 ‘‘RC daub R haar’’

where what is important here the presence on some tag or divider for different experiment
(exp), the location of the component (which can be a processor or a factory), an ID or name
tag for the component to be identified, and finally, optionally, some extra parameters to be

used to initialize the experiment.

2. A generic main() program is then in charge of performing the following activities:

(a) Reading in and parsing the framework-level command line parameters providing the fol-
lowing information:
e Configuration source type: text file, xml file, command line, etc.
e Configuration source name: including the location of the source.
e Type of Experiment to perform: lineup of experiment or task (configurable experi-
ment).
e Application-specific parameters: optionally, parameters to be used to configure the
experiment(s).
(b) Configuring the configuration source manager singleton with the configuration to be used.
(c¢) Accessing the ezperiment configurator single instance and calling the process_directives()
method on it. Using the Configuration Source Manager, it will parse and process the

directives present in the config source to create and populate configuration information

structures (Experiment Config Info) storing them in a container.

(d) Launching the experiment scheduler by calling the Experiment _Scheduler: :run() method.

The experiment scheduler then performs the following actions:

(a) Access the singleton Options to figure out whether to run alineup or a generic experiment.

In case of a lineup:

o The scheduler uses a lineup iterator to iterate through the experiments in the lineup.
It use the experiment’s id to retrieve the configuration information stored in the
configurator. Then the process_directive() method is called with the configuration
information passed as arguments.

e The component configurator then dynamically link the corresponding component,
initializes it with the configuration information, and insert it into the component
repository.

In case of a generic experiment:

The scheduler iterates through the Experiment Config Info objects, and for each one:

152

o It ask the component configurator to process the configuration info, which results in
having the components loaded, initialized, and added to the repository.

e The scheduler creates and configures a task with the components found in the repos-
itory.

(b) The scheduler calls the performExp on the experiment.

6.6 Resolved Example: From the Ground Up

One of the force of the solution is to allow for flexible configuration of components making up image
processing experiments. One element responsible for that flexibility is the dynamic configurability,
i.e. the ability to dynamically load components into applications. We first look at the lower-level

mechanisms that support run-time configurability.

6.6.0.1 Dynamically Loading a Component

Let’s say we have a base class Component, and we want to be able to dynamically load subclassed

component object in the framework:
Component *component = new ...

Since the experiment configurator has no way to know the name of the class to load ahead of
time, the component to be loaded has to provide to the configurator a way to let it create the new
class. The component does so via a factory method (as in the FACTORY METHOD design pattern)
returning a pointer to the new object (this is possible since this factory is located in the same file

as the definition of the subclassed object).

Component *createComponent() {

return new ConcreteComponent;

The framework still needs a receiver on which to place the createComponent () request. This is
achieved by defining a global factory keeping information about concrete component via an associa-

tive map

typedef Component *maker_t();

extern map<string, maker_t *, less<string> > factory;

And concrete component can then register their factory method themselves in the global associative

container in the following way:

153

Component *myComponent = factory[‘‘my component’’];

We ensure that the factory method will register itself automatically (this is called “self-registering

objects”) when the library is loaded by using a proxy class that will do just that:

class Proxy {
public:
Proxy() {

factory[‘‘my component’’] = createComponent;

};

Since the registration occurs in the constructor, we need to ensure that one (and only one) instance

of the proxy is created

Proxy p;

The rest consists in passing the RTLD NOW flag to dlopen (see the DLL Wrapper Facade below) to
cause p to be instantiated.

So the file containing the concrete component’s implementation looks like this:

ConcreteComponent () : :ConcreteComponent () {3}
void
ConcreteComponent: :operation() { // Implementation... }
/o
extern "C" { // To resolve name mangling
Component *createComponent() {
return new ConcreteComponent;
}
// Proxy class whose sole purpose is to
// register a maker for this concrete factory.
class Proxy {
public:
Proxy() {
// register the maker with the factory

factory["ConcreteComponent"] = createComponent;

+;
// Instance of the proxy: concrete component will

// now be registered with global component factory.

154

Proxy p;

And it is now possible for the component configurator located in the framework to create concrete

component

string componentName;
/...

Component *concreteComponent = factory[componentName] ;

6.6.0.2 A DLL Wrapper Facade for Dynamically Loading Libraries

The following wrapper facade encapsulates the low-level function calls responsible for the dynamic
linking of shared libraries. It thus shields the client code from platform-specific details which results

in simpler, more robust client code.

class DLL {
public:
DLL(const string &dll_name) {
handle_ = dlopen(dll_name.c_str(), RTLD_NOW);
}
“DLLO {
dlclose(handle_);
}
void *symbol(const string &symbol_name) {
return dlsym(handle_, symbol_name.c_str());
}
private:
void *handle_;

3
6.6.1 Dynamically Loading Concrete Factories into Applications
As we saw from the previous two chapters, Wave ImAgE can become a heavily strategized framework
very fast. Processors are strategies of other higher level processors providing the context of an

algorithm execution. Such an aggressive use of the STRATEGY pattern can lead to a configuration

nightmare for two main reasons:

e Managing a large number of strategies becomes harder as the number goes up.

155

o It becomes hard to ensure that groups of semantically compatible strategies are configured.

For example, two-dimensional transform step algorithms are not meant to operate on 1D signals.
Denoising strategies are not meant to configure compression algorithms, etc. In order to solve this
problem, we can use the ABSTRACT FACTORY pattern {see Figure 52) to consolidate multiple image
processing experiment strategies into compatible configurations. The number of abstract factories
is also more manageable and it allows applications to create their components without explicitely

specifying their subclass name. The intent of the ABSTRACT FACTORY patterns says:

Provide an interface for creating families of related or dependent objects without speci-

fying their concrete classes.[24]

A general example of how to use abstract factories to create objects is given below. In that example,
we want to reuse an existing implementation to create a wavelet transform in a 2D denoising image

processing experiment:

// The implementation we wish to reuse

class MyEfficientWaveletTransform {

public:
virtual void transform();
};
ConcreteFactory2
+CreateStrategyA()
+CreateStrategyB() f-~-—-=-—"—-—-=---=-=-—-=-=-—-=----< |
________ +CreateStrategyC() |
y o V
[ConcretestiategyA | j:l .[ConcreteSlralegy02J
! y [ConcreteStrategyB2 |1
= \ A ExperimentAbstractFactory
+CreateStrategyA() I StrategyB | [StrategyC I
_ +CreateStrategyB() L T B 1
+CreateStrategyC()
[ConcreteStrategyB1
[ConcreteStrategyAt | E x 1
t % 1 | | ConcreteStrategyC1 |
] | = —
' PluggableFactory ' ’:\
] +CreateStrategyA () 1 \
1 +CreateStrategyB () 1 '
1 +CreateStrategyC () -1 1
]
1
1
i

ConcreteFactory1

+CreateStrategyA()
tCreateStrategyB ()
+CreateStrategyC()

Figure 52: ABSTRACT FACTORY and PLUGGABLE FACTORY (based on the PROTOTYPE patterns to
flexibly consolidate multiple strategies into semantically compatible configurations.

156

6.6.1.1 The Framework-Provided Abstract Factory

The framework provides an ExperimentFactory base class:

class ExperimentFactory : public FwkComponent {

public:
// Initialization and termination interface (not shown)
//
// Service-specific interface (factory methods)
virtual Transform* createTransform() const = 0;
virtual ImageProcessor* createImageProcessor() const = 0;
/7

¥

Then this abstract factory can be subclassed to implement the factory methods for the creation of

components for 2D denoising experiments for example:

class Denoising2DExperimentFactory : public ExperimentFactory {
public:
// Initialization and termination interface (not shown)
//
// Service-specific (Abstract_Factory) functionality
// declaring the interface of interest to the client
virtual Datax getData() const;
virtual Transform* createTransform() const;
virtual ImageProcessor* createImageProcessor() const;
//
I

where Data, Transform and ImageProcessor are considered as three different kinds of abstract

products. For example, we can implement the createTransform() factory method like this:

Transform *
Denoising2DExperimentFactory: :createTransform() const {
// Creation of my reusable implementation
MyEfficientWaveletTransform *transform =
new MyEfficientWaveletTransform;
// The adapter ‘‘adapts’’ the implementation
ProcessorAdapter<MyEfficientWaveletTransform> *adapted_transform =

new ProcessorAdapter<MyEfficientWaveletTransform>

157

(transform, &MyEfficientWaveletTransform: :transform) ;

return adapted_transform;

This factory can then be used to configure an application, as shown below:

int main() {
// 1- Initialization (i.e. creation of concrete factory)

ExperimentFactory *factory = new Denoising2DExperimentFactory;

// 2- Creation of semantically compatible component
Data *data = factory->getData();
Transform *wt = factory->createTransform();

ImageProcessor *ip = factory->createlmageProcessor();

// 3- Usage of the components...
//

simply and clearly without having to mention the names of subclasses and without having to worry
about the compatibility of the transform and the image processor since these are specified in a single,

application-defined location: a concrete factory.

However, we want a framework to give us more opportunity for reuse than this simple dynamic

linking mechanism. This is where the component configurator comes into play.

6.6.2 The Component Configurator

The configuration framework we designed is implementing a variant of the COMPONENT CONFIG-
URATOR pattern 3. It supports the flexible configuration of image processing experiments whose
processing strategies can be determined at run-time into experiments via a configuration source
(command line arguments, configuration files, etc.). As a result, the abstract factories (and the
algorithms they embody) can be treated as building blocks (see Figure 53). According to the
CoMPONENT CONFIGURATOR pattern [51}, the configurator’s responsibility is to coordinate the
configuration of concrete components into an application. Using a component configurator, we can

write a generic main program that now look like this:

31t is a variant in the sense that the scheduling functionality is reduced to initialization and termination and
re-configuration functionality is absent.

158

Component_Repositary
+find (name:string): FwkComponent
+insert (name:string, comp:FwkComponent)
+remove (name:string)
A

«conthins»
1

1
Component_Configurator Fwk_Component
+process_directive(...) +process()
+process_directives() +init ()
+repository(): Component_Repository +fini{(})
[l
Processor Processor_Factory

+gr9cess() +createTransform()

+init () +createProcessor ()

+fini () +init ()

+fini ()

Figure 53: Class diagram for the COMPONENT CONFIGURATOR pattern.

int main(int argc, char *argv[]) {

// Create the component configurator
Component_Configurator *comp_config =

Component_Configurator: :instance();

// The factory specified in argv[1] is linked
// and added to the repository

comp_config~>process_directive(argv[1]);

// Retrieval of the factory from the repository
ExperimentFactory *factory =

Concrete_Component<ExperimentFactory>::instance(argv[1]);

// Usage of the factory to create the experiment components
Data *data = factory->getData();
TransformProcessor *transform = factory->createTransform();

ImageProcessor *imgProcAlgo = factory->createProcessor();

// Usage of the processors to operate on the data
// i.e. to process the transformed data.
Data *processedData =

imgProcAlgo->process(transform->process(data));

159

Such a main program is now generic and reusable in the sense that, based on an external con-
figuration source (a configuration file, or command line arguments, etc.), component factories are
dynamically configured (loaded into the application). The factories are then used for the creation of
data and processors, which are the basic components of image processing applications. Processors
implement image processing algorithms operating on data.

There is a strong separation between a component implementation and configuration. Component
developers are just providing implementations for the components, while the component configura-~
tor takes care of accessing the separated configuration information and dynamically configuring the
components into applications. An application programmer can develop his code against the compo-
nent interface without being concerned with the implementations, since it is simply not visible to
the application programmer which implementations are currently loaded. In our example, a group
of compatible implementations are loaded via a factory.

If we join the roles of application and component implementation developers, then what needs to be

done is:

o Edition of a configuration source, and definition of concrete factories.

e Implementation of components.

Now, going back to our discussion of the liabilities of a VISITOR-based approach in Chapter 4, and

more precisely about the expressiveness of applications, we ask the questions:

e What is and what goes into an application (as a class, i.e. an Experiment)?

e What is the meaning of an experiment lineup?

Without doing what Robert Martin calls pattern abuse in Chapter 14 of [37], we claim that there
is a place for an experiment as a class to provide to an application developer some extra flexibility
and freedom to implement a number of user-defined “helper” routines where they are needed. We
see an experiment (as a class) as a place where code can be written and tested by a developer,
probably before these elements of code are promoted to the rank of application-specific components.

We illustrate. Consider a main program like the one below:

int main(int argc, char *argv[]) {
// Create the component configurator
Component_Configurator *comp_config =
Component_Configurator::instance();
// The factory specified in argv[1] is linked
// and added to the repository
comp_config->process_directive(argv[1]);

// My experiment is created and executed

160

Experiment *exp = new ProcessingExperiment;
exp->performExp(arge, argv);
return 0;

};

where ProcessingExperiment is a class now encapsulating the creation, access and usage of the
concrete components to perform some useful work. In our case, Experiment could be a base class
offering a template method performExp with init, perform and shutdown hooks that subclasses

override and implement *

class Experiment {
public:
void performExp(int argc, char *argv[]) {
init(argc, argv);
perform(argc, argv);
shutdown();
¥
protected:
virtual void init(int argc, char *argv[]) {

processor = Concrete_Component<Processor>::instance(argv[1]);

3
virtual void perform (int argc, char *argv[]) = 0;
virtual void shutdown() { // ... }

AbstractFactory *factory;
Processor *processor;
TransformProcessor *transProc;
ImageProcessor *imgProc;

I

where Concrete_Component is just a templatized class taking care of retrieving components form
the repository and down casting them to application-specific types. Concrete experiments can either

be a simple experiment using an unspecified processor:

class ProcessingExperiment : public Experiment {
public:
virtual void perform (int argc, char *argv[]) {

processor->process();

};

4An additional string id() method must be implemented to return a unique id tag for the experiment. For
example, it can simply be the name of the class: string MyApplication::id() const { return "MyApplication";}

161

or typical wavelet-based applications involving the transformation of a signal followed by the pro-

cessing of the transformed data:

class TransformBasedExperiment : public Experiment {
public:
virtual void init (int argc, char *argv(]) {
// Get the components from the component repository
TransformProcessor *transformPrototype =
Concrete_Component<TransformProcessor>::instance(argv{1]);
ImageProcessor *processorPrototype =
Concrete_Component<ImageProcessor>::instance(argv([2]);

// Configure a concrete ‘°

pluggable’’ concrete factory

// with prototypical instance loaded earlier

PluggableFactory plugFac(transformPrototype, processorPrototype);
factory = &plugFac;

};

class TransformBasedExperimentl : public TransformBasedExperiment {

public:
virtual void perform (int argc, char *argv[]) {
/]
factory->createTransform()->process();
/7.
factory—>createProceésor()—>process();
/...

};

The flexibility (or ease of use for the application developer who does not have to implement a con-
crete factory subclass) gained from using the prototype factory has a cost: it becomes harder to
enforce statically the consistency between processors. It is however possible to check for illegal com-

binations, see [66], and [64] for possible mechanisms to ensure compatibility.

Now that we have a mechanism to configure experiments, let us look a ways to schedule their orderly
execution. In the next sections, we will give an overview of the scheduling subsystem of the Image

Processing Experiment Configuration and Scheduling Framework.

162

6.6.3 Experiment Scheduling

Scheduling an experiment in our context refers to the activity of launching the execution of applica-

tion lineups. The classes involved in this activity are shown in Figure 54. An experiment scheduler

Executable Experiment_Scheduler

+performExp () +run{)

Experiment

+performExp ()
#init ()
#perform()
#shutdown ()

Figure 54: Class diagram for the experiment scheduling subsystem.

— |

[Experiment_Lineup

Lineup_Maker

+append_experiment_lineup ()

is responsible for the execution of image processing experiments.

6.6.3.1 Experiments Lineups

Adding experiments to the experiment lineups amounts to creating a lineup maker class imple-
menting the lineup building process in the build_experiment lineup() method. A simple example

is given below where three distinct experiments are created, the first two being part if the same

composite experiment:

#include <Experiment_Lineup.H>

// Include the experiments to perform

#include <./NewAlgorithms/MyFirstExperiment.H>

#include <./01dAlgorithms/MySecondExperiment.H>

#include <./ImageStatistics/MyThirdExperiment.H>

void

build_experiment_lineup(Experiment_Lineup &aLineup) {

Experiment_Lineup *subLineup = new Experiment_Application;

subLineup->add(new MyFirstExperiment);

subLineup->add(new MySecondExperiment) ;

alineup.append(subLineup);

163

al.ineup.append(new MyThirdExperiment);

where the header files included are containing the implementation of distinct image processing

experiments.

6.7 The Configuration Framework: Putting It All Together

The UML diagram in Figure 55 contains the main classes involved in the configuration and scheedul-
ing of image processing experiments. With these mechanisms into place, it is now possible to set

the framework into motion by writing a generic main program that looks like this:

i Logger | [Environment | Executable
[flogmsg:string) | [Fid0: string | Yper formEXp ()

A

[Experiment_Scheduler | | Lineup_Maker | [
[+xun () —{*append_experiment_lineup() |
Experiment_Lineup
Experiment
+performExp ()

[Component_Repositary | e

4 #perform()
1

1

1

L

#shutdown ()

)

[_Component Configurator | I'fwk Component ConcreteExperiment1 ConcreteExperiment2
+process () +init () +init ()
+init () +run () +perform()
+fini () +shutdown (} +shutdown ()
I]
Processor Processor_Factory
+process () +createTransform()
+init {} +createProcessor ()
+£ini {} +init ()
ZP +fini O
[. i
ImageProcessor Transform
+process ()
+process () +init ()
+init () +£ini ()
+£ini () N
+copy () : ImageProcessor doopy () : TransformStep
[| [1
Processor1 Processor2 Transform1 Transform2
+process (} +process () +process () +process ()
+init () +init () +init () +init ()
+Eini{) +fini () +£ini () +£ini ()
+copy () : ImageProcessor +copy () : ImageProcessor +copy{): TransformProcesor +copy () : TransformProcesor
A A A A
' 1 1
1 Ve e e e e e e e e e e e m -~ -
1 3 1
1 ' 1
[|mmmommme——. - fmmmmmmmm— -
1 1
1 '
1 L
ConcreteFactory1 ConcreteFactory2 PluggableFactory
+createTransform{) +createTransform(} +createTransform()
+createProcessor{) +createProcessor () tcreateProcessor ()

Figure 55: Class diagram for the Image Processing Experiment Configuration and Scheduling Frame-

work.

#include <Component_Configurator.H>

164

#include <Exception.H>

#include <Experiment_Scheduler.H>
#include <Optioms.H>

#include <Configuration_Source_Manager.H>

#include <Config_Source_Factory.H>

// Main Program.

// Parse the framework level command line arguments

// and start up the Experiment scheduler.

int main(int argc, char *argv[]) {
// Set up some default values
Options::instance()->disable_lineup();
Options::instance()->config_source_info("file", "config.conf");

short result = -1;

// Framework-level command line
// arguments parsing & options set up

Options::instance()->parse_args(argc, argv);

// Create Configuration Source Manager configured

// with source specified in command line

// to use different types of configuration sources:

// text, xml, remote or command line arguments.

ConfigSourceFactory factory;

ConfigManager: :instance(
factory.createConfigSource(

Options::instance()->config_source_type(),

Options::instance()->config_source_name()));

// Create the configurator singleton
Component_Configurator *comp_config = Component_Configurator::

instance();

// Launch the experiment scheduler
try {

// Launch the Experiment Scheduler

result = Experiment_Scheduler::instance()->run();
} catch(Exception::scheduler_failure &sf) {

// Catch the exceptionms...

165

return result;

The scheduler run() method simply decides what kind of experiments the user wants to perform
based on the _is_lineup_enabled option. Either a lineup of experiments or a generic task will be

executed.

6.7.1 Generic Experiment and Application-Specific Experiment Lineup
The scheduler implements a run method that selects the course of action to take:

short
Experiment_Scheduler::run() const {
short result;
if (Optioms::instance()->is_lineup_enabled()) { // Run experiment lineup
result = run_lineup();
} else { // Run generic experiment (a semantic task)
result = run_task();
}

return result;

The scheduler implements these two functions, run_lineup()} to run the configured lineup, and
run_task() to execute a generic (in the sense that it can be reused, because configured differently,

to perform many different “applications”) experiment.

6.7.1.1 Configuring and Executing a Lineup

short
Experiment_Scheduler: :run_lineup() const {
// Get the available lineups
Experiment_Lineup &lineups =
Experiment_Lineups_Maker::instance()->lineups();
// Iterate through the experiments in the lineup
for (Experiment_Lineup: :Experiment_Iterator I = lineups.begin();
I != lineups.end(); I++) {
// Set up the environment to current experiment
// (for configuration and logging purposes -- currently

// only a file logger is implemented: see future work section.)

166

Environment: :instance()->id((*I)->id());

// The component configurator will process the configuration
// information for this experiment by looking at the stored
// configuration information created earlier from the config
// source, initialize the component, and load them into the
// repository.

Component_Configurator::

instance()->process_directive (Environment: :instance()->id());

// Run the application by calling the performExp template method
(*I)->performExp();

// Will call fini on components named in <id> configuration info
// structure, remove them from repository and unlink them.
Component_Configurator::
instance()~>process_directive(Environment: :instance()->id(}));
1

return 0;

The next section illustrates how a generic experiment can be configured.

6.7.1.2 Configuring and Executing a Generic Experiment

We call image processing experiments that are generic tasks.

short
Experiment_Scheduler: :run_task() const {
// Will iterate through experiment configuration info
ExperimentIterator I = Component_Configurator::
instance()->createlterator();
Experiment *task = new ExperimentTask;
for (I++) {
if (task->init((xI))) {
task->run();
3
task->shutdown() ;

// Load factory into repository

167

Component_Configurator::instance()->process_directive((*I));
// Run the experiment
ExperimentTask: : instance()->performExp() ;
// Terminate components
Component_Configurator::instance()->process_directive((*I));
}
return 0;

delete task;

where ExperimentTask is a singleton experiment using the component configurator to configure
itself.

class ExperimentTask {
public:
bool init(ExperimentConfigInfo &info) {
// 1- 1If component referred to by the config info is
// not already in the repository, load it, and (re-)initialize it
// and add it to the repository.
Component_Configurator: :instance()->process_directive((*I));
// 2- Retrieve the component from repository.
_processor = // ...
_data = // ...
}
void run() {
_processor->process(data);
}
private:

Processor *_Pprocessor;

};

In the next section, we give an overview of the framework.

168

6.8 Framelet Constructs

The main framework constructs are shown in the table below.

[CONFIGURATION FRAMELET

Design Patterns

COMPONENT CONFIGURATOR, WRAPPER FACADE, ABSTRACT FACTORY, FACTORY METHOD,
PLUGGABLE FACTORY, STRATEGY, SINGLETON

Framelet Interfaces and Base Classes

Interfaces:
Ezxecutable, FwkComponent
Base Classes:

Experiment, AbstractProcessorFactory, AbstractProcessor

Framelet Core Components

Experiment_Scheduler, Experiment_Lineup, Lineup_Maker

Component_Configurator, Component_Repositary

Framelet Default Components

FileConfigSource

The roles played by each of the design pattern involved in the solution elements presented in this

chapter are given below.

A Component Configurator: Central administrative unit responsible of configuring concrete

components into an experiment.

e A Component Repository: A container holding the component currently configured into an

experiment.

e An Abstract Experiment Factory: Interface for all factories to be used by experiments to create

the semantically compatible components they need to perform their image processing tasks.

o Concrete Experiment Factories: Implemented by application developer and packaged in DLLs,
they implement factory methods for the creation of concrete components (implementation)

without specifying the name of the concrete classes.

e A DLL Wrapper Facade: Wrap the low-level (OS) function calls to dynamically load shared

libraries.

o A Configuration Source Manager: Singleton manager class providing a common interface to

underlying concrete configuration sources of different types.

o An Abstract Configuration Source: Anstract interface defining the operations supported by all

concrete sources.

169

o A Default Concrete Configuration Source: Currently, only text file configuration source are

provided by default by the framework.

e A Logger singleton is responsible for the logging of messages to text files in a consistent and

straightforward way.

e An Environment singleton is a globally accessible class holding information about the current
experiment running. Used mostly for logging purposes (the destination file where logging is

made) and to access configuration information for each individual experiment.

¢ An Options singleton responsible of parsing framework-level command line arguments and to

offer a globally accessible options ...
o Lineup Maker: Class providing an interface for setting up an experiment lineup.
o FExperiment Lineup: Composite representing a lineup (sequence) of executables.

o Experiment Scheduler: Manager class responsible to iterate through a list of experiments and

run each of them sequencially after having configured them using the component configurator.

o Ezperiment: Environment where processors and data are configured and where the execution

of processors operating on data is launched.

o Ezecutable: An interface for all executable objects (experiments, lineups).

This concludes our presentation of the design elements involved in the configuration and scheduling

framework.

170

Chapter 7

Conclusion and Future R&D Focus

Areas

7.1 Conclusion

Before we even thought of developing an object-oriented framework, we were working on specific ap-
plications for image (2D) denoising using multiwavelets. Writing specific, well-targeted applications
specialized in doing a single thing, down to the low-level details (multiplication of coefficients in a
convolution function, thresholding of coefficients, image loading, etc.) is relatively easy (after all, we
did it already, as our starting point...) and “down to earth” compared to the challenges represented
by the development of a framework.

We then became interested in the development of another type of application, denoising (using a
different denoising algorithm) of noisy images (a different kind of noise), using complex wavelet
filter (different filter, different transform algorithm), and we were interested in expressing in code
the similarity found in theory between those two setting. Modifying the code we were working with
to be general enough to support both applications soon appeared to be a not so smart task: it either
required duplicating lots of similar code, or rewriting everything from the beginning. In both cases,
we would have ended up with more generic code, but still dedicated to only two applications... We
found out that a framework solution would be more appropriate, and definitely, more interesting.
This is what we did. Developing a framework being much harder than developing a single application
(at least, the focus is shifted), there remains lots of areas where further developments are possible

and desirable. Below, we name a few.

171

7.2 TFuture R&D Focus Areas

Given the depth and the breadth to which the development of a framework can lead in terms of
domain analysis, design and implementation (let alone documentation), there are some areas that
we originally planned to cover more extensively, that we would have liked to analyse, explore and
design further but that, due to choices made early in terms of focus, as well as to very real time and
space constraints, we were unable to tackle, either at all, or at the level we would have liked. Here

they are, organized by category:

7.2.1 Extensions

e Adapters for the reuse of Matlab implementations. Due to the widespread use of Matlab in
numerical and wavelets computations, it would be interesting to write wrappers for Matlab
code for Matlab implementations to be reusable within the framework. Similar efforts have
been done by the developers of the AOCS framework [20].

7.2.2 Support for processors

e We would like to push further the study of iterators, internal iterators, wrappers in the context
of multi-paradigm programming (classic polymorphism and generic programming) in order to

develop additional support in the framework for the writing of image processing algorithms.

7.2.3 Image Processing Functionality

Development of application-specific functionality like:

e Translation-Invariance: Even though that was originally the area that we were working on
before thinking about building a framework, this functionality was ignored in the current
framework. A variant of the LIGHTWEIGHT pattern could be used to represent translation-

invariant, transforms, which exibit redundancy.

e Denoising algorithms. Same as above. We started by working on applications for denoising 2D
images using multiwavelets. But because of our focus on the architecture of the framework,

we left aside any implementation of specific processor.

o Lifting scheme: integer wavelet transform is a targetted application. It would be interesting

for an application developer to customize the framework for such a transform.

172

7.2.4 Sub-Frameworks and Other Subsystems

As mentionned in the core of the text, here are the other frameworks that we worked on and for

which designs or protoypes were developed:

Image handling. We designed a prototype, but it was not discussed nor included.

Flexible logger that can log to different sources. A skeleton of this small framework is imple-

mented, but we decided to leave aside for space and time constraints.

Viewing subsystem.

e Memory management system.

Architect exception handling into the framework.

173

Bibliography

[1] M. A. Abidi and R. C. Gonzales, editors. Data Fusion in Robotics and Machine Intelligence.
Academic Press, 1992.

[2] M. Aksit, B. Tekinerdogan, F. Marcelloni, and L.. Bergmans. Deriving Frameworks from Domain
Knowledge, pages 169-198. In M. E. Fayad [34], 1999.

[3] A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.
Addison-Wesley, 2001.

[4] J. J. Barton and L. R. Nackman. Scientific and Engineering C++. An Introduction with Ad-
vanced Techniques and Examples. Addison-Wesley, 1994.

[5] G.Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Addison-
Wesley, 1999.

[6] T.D. Bui, G. Y. Chen, and Y. Roy. Translation-Invariant Multiwavelets for Image Denoising.
In Proceedings of International Conference on Advances in Intelligent Systems and Computer
Science, pages 127-131, July 4-8 1999.

[7] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture - A System of Patterns. John Wiley & Sons, 1996.

(8] G. Butler and P. Denommee. Documenting Frameworks, chapter 21, pages 495-503. In
M. E. Fayad [34], 1999.

[9] G. Butler and L. Xu. Cascaded refactoring for framework evolution. Proceedings of 2001
Symposium on Software Reusability, ACM Press, 2001.

[10] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo. Wavelet transforms
that map integers to integers. Technical Report 3, 1998. http://cm.bell-labs.

com/who/wim/papers/integer.ps.gz.
[11}] K. R. Castelman. Digital Image Processing. Prentice-Hall, 1996.

[12] K. W.. Cheung and L. M. Po. Low complexity 2-d preprocessing for discrete multi-
wavelet transform of image signals. Technical report, City University of Hong Kong, 1999.

http://www.image.cityu.

174

[13] C. K. Chui. An Introduction to Wavelets. Academic Press, 1992.

[14] C. Cleeland, D. C. Schmidt, and T. H. Harrison. External polymorphism. In Proceedings of
the 3rd Pattern Languages of Programming Conference, Allerton Park, Illinois, September 4-6
1996. http://www.cs.wustl.edu/~cleeland/papers/.

[15] I. Daubechies. Ten Lectures on Wavelets. SIAM, Society for Industrial and Applied Mathe-
matics, 1992.

[16] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. Technical
Report 3, 1998. http://cm.bell-labs.com/who/wim/papers/factor.ps.gz.

[17] G. Davis. Wavelet Image Compression Construction Kit, 1997. http://www.cs.kuleuven.

ac.be/~wavelets/.

[18] EPITA. Applying Generic Programming to Image Processing. http://www.lrde.epita.
fr/people/thierry.geraud/papers/0l-ai-slides.pdf.

[19] M. Fontoura, W. Pree, and B. Rumpe. The UML Profile for Framework Architectures. Addison-
Wesley, 2002.

[20] AOCS Framework Project. Design and
prototype a component-based software framework for a satellite Attitude and Orbit Control

System. http://control.ee.ethz.ch/~ceg/AocsFramework/index .html.

[21] F. Khendek G. Butler, P. Grogono. A Reuse Case Perspective on Documenting Frameworks.
Taiwan, December 1-4. IEEE Computer Society Press.

[22] L. Gagnon and A. Jouan. Speckle filtering of sar images - a comparative study between complex-
wavelet-based and standard filters. volume 3169 of SPIFE Proceedings, 1997.

[23] L. Gagnon and F. Drissi Smaili. Speckle noise reduction of airborne sar images with symmetric
daubechies wavelets. volume 2759 of SPIE Proceedings, 1996.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. John Wiley & Sons, 1995.

[25] T. Geraud, Y. Fabre, D. Papadopoulos-Orfanos, and J.-F. Mangin. Towards a Total Reusability
of Tmage Processing Algorithms. Technical Report 9902, 1999. http://www.ldre.epita.fr.

[26] 1. S. Geronimo, D. P. Hardin, and P. R. Massopust. Fractal functions and wavclet expansions

based on several scaling functions. Journal of Approzimation Theory, 78:373-401, 1994.

[27] D. P. Hardin and D. W. Roach. Multiwavelets prefilters i: Orthogonal prefilters preserving
approximation order p < 2. preprint, 1997.

[28] B. Burke Hubbard. The World According to Wavelets. The Story of a Mathematical Technique
in the Making. AK Peters, Wellesley, Massachusetts, 1996.

175

[29] ImageLib. An Image Processing C++ Class Library. http://www.dip.ee.uct.ac.za
/~brendt/srcdist/.

[30] R. Johnson. Documenting Frameworks using Patterns. In Proceedings of OOPSLA, pages
63-76. New York:ACM/SIGPLAN, 1992.

[31] S. R. Jones. A Framework Recipe, pages 237-266. In M. E. Fayad [34], 1999.
[32] G. Kaiser. A Friendly Guide to Wavelets. Birkhauser, 1994.

[33] J. M. Lina and B. MacGibbon. Complex daubechies wavelets. App. Comp. Harmonic. Anal.,
2:219-229, 1995.

[34] R. E. Johnson M. E. Fayad, D. C. Schmidt, editor. Building Application Frameworks: Object-
Oriented Foundations of Framework Design. Wiley, 1999.

[35] S. Mallat, editor. A Wavelet Tour of Signal Processing. Academic Press, 1998.

[36] R. C. Martin. Acyclic visitor. 1996. Available from http://www.objectmentor.com/

ressources/articlelndex.

[37] R. C. Martin, editor. Agile Software Development: Principles, Patterns, and Practices. Prentice
Hall, 2002.

[38] Y. Meyer. Wavelets — Algorithms and Applications. SIAM, Society for Industrial and Applied
Mathematics, 1993.

[39] S. Meyers. Effective C++. Addison-Wesley Professional Computing Series, 1998.

[40] S. G. Nikolov, D. R. Bull, C. N. Canagarajah, M. Halliwell, and P. N. T. Wells. Image Fusion
Using a 3-D Wavelet Transform. In A. F. Laine and M. Unser, editors, Image Processing and
Its Applications, number No. 465 in IEE Conference Publication, pages 235-239. IEE, 1999.

[41] POOMA. Parallel Object-Oriented Methods and Applications. http://www.codesourcery.

com/pooma/pooma.
[42] W. Pree. Framework Patterns. SIGS Books, 1996.
[43] W. Pree. Hot-Spot-Driven Development, pages 379-394. In M. E. Fayad [34], 1999.

[44] W. Pree and K. Koskimies. Framelets: Small and Loosely Coupled Frameworks. ACM Com-
puting Surveys (CSUR), Issue 1, Vol 32(6), March 2000.

[45] D. Roberts and R. Johnson. Evolving Frameworks. A Pattern Language for Developing Object-
Oriented Frameworks.

[46] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object Oriented Modeling
and Design. Prentice Hall, 1991.

176

[47] H. A. Schmid. Framework Design by Systematic Generalization, chapter 15, pages 353-378. In
M. E. Fayad [34], 1999.

[48] D. C. Schmidt and F. Buschmann. Patterns, Frameworks, and Middleware: Their Synergistic
Relationships. pages 694-704, Portland, Oregon, May 3-10 2003. IEEE Computer Society.
http://wuw.cs.wustl.edu/~schmidt/PDF/ICSE-03.pdf.

[49] D. C. Schmidt and S. D. Huston. C++ Network Programming: Resolving Complezity Using
ACE and Paterns. Addison-Wesley, Reading, Massachusetts, 2002.

[50] D. C. Schmidt and S. D. Huston. C++ Network Programming: Systematic Reuse with ACE
and Frameworks. Addison-Wesley, Reading, Massachusetts, 2003.

[51] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture
- Patterns for Concurrent and Networked objects. John Wiley & Sons, 2000.

[62] J. M. Shapiro. Embedded Image Coding Using Zerotrees of Wavelet Coeflicients. IEEE Trans-
actions on Signal Processing, 41(12):3445-3462, 1993.

[53] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge Press, 1997.

[54] V. Strela, P. N. Heller, G. Strang, P. Topiwala, and C. Heil. The application of multiwavelet
filter banks to image processing. Technical report, MIT, USA, 1995.

[65] V. Strela and A. T. Walden. Signal and image denoising via wavelet thresholding: Orthogonal
and biorthogonal, scalar and multiple wavelet transforms. Technical report, STATISTICAL
SECTION TECHNICAL REPORT TR-98-01, Dept. of Mathematics, Imperial College of Sci-
ence, Technology & Medecine, 1999.

[56] G. Succi, P. Predonanzi, A. Valerio, and T. Vernazza. Sidebar 3, Frameworks and Domain
Models: Two sides of the same coin, pages 211-214. In M. E. Fayad [34], 1999.

[57) W. Sweldens. The lifting scheme: A new philosophy in biorthogonal wavelet constructions.
In A. F. Laine and M. Unser, editors, Wavelet Applications in Signal and Image Process-
ing III, pages 68-79. Proc. SPIE 2569, 1995. http://cm.bell-labs.com/who/wim/papers/
lift2.ps.gz.

[58] W. Sweldens. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl.
Comput. Harmon. Anal., 3(2):186-200, 1996. http://cm.bell-labs.com/who/wim/papers/
liftl.ps.g=z=.

[59] W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J. Math.
Anal., 29(2):511-546, 1997. http://cm.bell-labs.com/who/wim/papers/1ift2.ps.gz.

[60] Taligent. Introducing Object-Oriented Frameworks. Taligent Inc., 1996.

177

[61] G. Uytterhoeven, F. Van Wulpen, M. Jansen, D. Roose, and A. Bultheel. WAILI: A software
library for image processing using integer wavelet transforms. In K.M. Hanson, editor, Medical
Imaging 1998: Image Processing, volume 3338 of SPIE Proceedings, pages 1490-1501. The
International Society for Optical Engineering, February 1998.

[62] M. Vetterly and J. Kovacevic. Wavelets and Subband Coding. Prentice Hall PTR, Upper Saddle
River, New Jersey, 1995.

[63] J. Vlissides, editor. Pattern Hatching. Design Patterns Applied. Addison-Wesley, 1998.
[64] J. Vlissides. Pattern Hatching. Pluggable Factory, Part II. C++ Report, February 1999.

[65] J. Vlissides. Pattern Hatching. Composite Design Patterns (They Aren’t What You Think.
C++ Report, June 1998.

[66] J. Vlissides. Pattern Hatching. Pluggable Factory, Part I. C++ Report, November-December
1998.

[67] J. Vlissides. Pattern Hatching. Visitor in Frameworks. C++ Report, November-December 1999.

[68] X. G. Xia, J. Geronimo, D. Hardin, , and B. Suter. Design of prefilters for discrete multiwavelet
transforms. IEEE Trans. on Signal Processing, 44:25-35, 1996.

178

