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Abstract
An Image System for CINDI

Beihua Zhang

Content Based Image Retrieval (CBIR) becomes possible and necessary as computer
graphics, machine learning, knowledgebase and database technologies mature. Though
more research needs to be done in different aspects of CBIR, such as abstracting accurate
semantic meaning from an image, current CBIR systems are actually well configured into
modules, which can be re-used in different applications. The purpose of this thesis is to
build a CBIR system, and incorporate Semantic Header for Multi-Media (SHMM), using

these modules.

SHMM aims to be a web oriented image library with an automatic image addition and
classification mechanism to support sample image based similarity search, and semantic
description search as well as allowing the registered users to add image to the database.
As a sample CBIR system, SHMM has its feature extraction layer, which supports colour
and texture feature extraction that generates a 16-dimensional vector value. Based on this
vector, a 16-dimensional SR tree is constructed. Using the nearest neighbor search
technology on the SR tree, similarity search is supported. With backend database support,
semantic description search, which is based on the keyword of the semantic meaning of
image, is also implemented in SHMM. When a new image is added to the system,
SHMM will automatically scan its feature, suggest the semantic description based on the
similarity search result in the library, and wait for the user’s response. Image contributor
can accept the system’s suggestion or inform system administrator via email to create

new semantic description category in the system.
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Chapter 1

Introduction

1.1 Overview

Image database and image retrieval have been subjects of extensive research during the
last 20 years. Research has focused on the design of robust image processing and
recognition techniques from its beginning. Interest in this area is rapidly growing with the
continuous evolution of telecommunication and computer technologies. The most popular
and challenging jobs in the development of image databases include image processing for
feature extraction, identification of salient objects, development of efficient data models
to allow content-based indexing and retrieval, query formulation, and fuzzy query

processing.

In the early 1990s, Content-Based Image Retrieval (CBIR), a technique for retrieving
images on the basis of automatically-derived features such as colour, texture and shape,
appeared after a workshop held by the US National Science Foundation (USNSF). The
workshop clearly stated, “Computer vision researches should identify features required
for interactive image understanding, rather than their discipline’s current emphasis on

automatic techniques” [31].

With the advent of powerful but inexpensive computers and storage devices and with the
availability of the World Wide Web, CBIR, not yet a commercial success, has already
been applied into different areas, such as Military, GIS, Digital Library, and medical

applications.



1.2 The problem

This thesis is motivated by digital library requirements: classifying different types of
images, adding new images as well as retrieving similar pictures from the image

database. These requirements could be divided into the following sub-functions.

Setup image database: At the start of the project, storage strategy and content
representation schema of images, as well as database schemas, should be decided.
Because image databases in digital library applications could be large, system scalability

and quick access need to be considered.

Query by Image Content: Query by examples and semantic description search should be

supported.

Classify new images: Both automatic and semi-automatic classification should be

provided as to support similarity search based on these classifications.

1.3 The Goal

This thesis presents a CBIR system based on a content representation schema called
Semantic Header for Multi-Media (SHMM), which attempts to build an image library
described in section 1.2. SHMM is a web-based, 2 layer CBIR system, which supports
both syntactic and semantic descriptions of image content. With the simplicity of the
design and well-accepted algorithms, SHMM serves to demonstrate what a CBIR system
is and how to build a CBIR system.

1.4 Outline

Chapter 2 presents a survey of contemporary intelligent image database systems and

provides the current state of the art in CBIR.



Chapter 3 describes the problem domain and examines various CBIR systems with their
detailed differential approaches in modules and layers. The intent is to choose an

approach most suitable for the project.

Chapter 4 introduces the SHMM system and discusses in detail its major components,

their interactions, as well as algorithms.

Chapter 5 discusses the result achieved from the SHMM system and how these results

differ from other systems.

Chapter 6 gives our conclusions, the contribution of this thesis and suggests for possible

directions for future work on the SHMM.



Chapter 2

State of the Art survey

2.1 What is CBIR?

The earliest use of the term content-based image retrieval can be traced back to 1992,
when the US National Science Foundation (USNSF) first outlined the major tasks for
automatic retrieval of images from a database by colour and shape feature. The term has
since been widely used to describe the process of retrieving desired images from a large
collection on the basis of features (such as colour, texture and shape) that can be
automatically extracted from the images themselves. The features used for retrieval can
be cither primitive or semantic, but the extraction process must be predominantly
automatic. Retrieval of images by manually-assigned keywords is definitely not CBIR as

the term is generally understood — even if the keywords describe image content.

CBIR differs from classical information retrieval in that image databases are essentially
unstructured, since digitized images consist purely of arrays of pixel intensities, with no
inherent meaning. One of the key issues with any kind of image processing is the need to
extract useful information from the raw data (such as recognizing the presence of
particular shapes or textures) before any kind of reasoning about the image’s contents is

possible.

CBIR draws many of its methods from the field of image processing and computer
vision, and is regarded by some as a subset of that field. While research has been
expanded in breadth and depth, CBIR differs from these fields principally through its
emphasis on the retrieval of images with desired characteristics from a collection of
significant size. Image processing covers a much wider field, including image
enhancement, compression, transmission, and interpretation [2]. While there are grey

areas (such as object recognition by feature analysis), the distinction between mainstream



image analysis and CBIR is usually definitive. An example may make this clear. Many
police forces now use automatic face recognition systems. Such systems may be used in
one of two ways. Firstly, the image in front of the camera may be compared with a single
individual’s database record to verify his or her identity. In this case, only two images are
matched, a process few observers would call CBIR. Secondly, the entire database may be

searched to find the most closely matching images. This is a real example of CBIR.

2.2 CBIR modules

Though more research needs be done in different aspects of CBIR, such as abstracting
accurate semantic meaning from an image, efficiently grouping raw data, current CBIR
systems are actually well configured into modules [1]. Generally, a CBIR system has
three fundamental modules based on functionalities. Content Expression Module,
denoted as CEM (2.2.1) is the most important and also the most difficult part of CBIR,
which handles not only physical meanings of images but also semantic meanings. It
normally can be subdivided into 3 layers: including Feature Extraction Layer (FEL),
Object Recognition Layer (ORL), Spatial Modeling and Knowledge Representation
Layer (SMKRL). There are some exceptional applications where FEL and ORL are
combined as syntactical feature extraction layer [3]. Index Structure Module, denoted as
ISM (2.2.2), creates indices and data structures based on the content abstracted from
Content Expression module. It is easier and more stable in techniques. R* tree family [7,
8] and SS tree [9] is usually the choice, among which SR [10] tree stands out due to low
CPU load and number of disk reads. User Interface Module, denoted as UIM and
discussed in section 2.2.3 is the only interaction between system and users; the
interaction could be queries, classifications, and answer refinements. Each of the given

modules is described in the following sections.

2.2.1 Content Expression module

Content Expression module aims to extract both syntactic and semantic meaning from
images so as to provide enough knowledge for future image retrieval. This module
largely affects or even determines the remaining two modules in system design and

therefore it requires the most critical strategic decision procedure within a CBIR system.



A simple example may illustrate the importance of this module. The simplest way to
measure the similarity of two images is to take a difference of colour values at each pixel,
known as the pure physical meaning of the image, and average all the differences over
the entire image. With such a feature selection, there is really no need to extract semantic
meaning from images. However, as image matching is performed on the raw image data,
designing an effective indexing and search scheme becomes almost impossible.
Furthermore, systems using such pixel-wise comparisons obviously can retrieve only the
images that have a layout very similar to that of the sample image. This inevitably leads

to a poor database query scheme that has very limited image retrieval capabilities.

At the other extreme, suppose that the image’s semantic content is fully interpreted, and a
complete set of descriptive keywords is generated as a result of the image interpretation.
In this case, the voluminous raw image data are reduced into abstractions that retain the
critical information embedded in the image. With these descriptive keywords, an
effective indexing and search scheme can be easily constructed by using database
techniques. Thus a powerful database query scheme that enables users to retrieve images
by referring to any specific parts and contents of an image becomes available. With high-
level image features, however, feature defining and capturing, both in syntax and
semantics, becomes problematic because none of the contemporary computer vision and
image understanding techniques are able to automatically interpret, and fully annotate the

contents of general images.

To get as much syntactic and semantic meaning from an image as it is possible, most
traditional approaches to image data management use multilevel abstraction mechanisms.
Generally, there could be three layers of the Content Expression module: this depends on
whether it is required to extract either the primitive or semantic feature from an image, as
illastrated in Figure 1. Figure 1 was first introduced by [3] in 1999 as the model to
examine the pioneer CBIR systems that appeared in the early 1990’s and after that it

became an accepted model for CBIR systems.
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Figure 1: Component of a CBIR from [3]

2.2.1.1 Feature Extraction Level (FEL)

A typical approach in FEL is to extract the set of features, which is specified by the
system, and then to seek these features in the image. Normally, image features include
colours, textures, shapes, and edges. Different applications may concentrate on extraction
of one or several features, while colour histogram and textures are the most popular
choices. These features are mapped into a multidimensional feature space that can allow
similarity-based retrieval of images. Features are in the form of encoded vectors, which
provides the basis for indexing and searching mechanisms of an image database.
Logically, features in an image can be classified as global or local [21]. Global features
generally emphasize “coarse-grained” [3] matching techniques. The global feature
extraction techniques transform the whole image into a “functional representation”,
where finer details within individual parts of the image are ignored. Global features for
image carry out uniform processing over the whole image for the chosen feature.

Therefore, global features are well suited for processing the type of queries that deal with



images as single entities during the matching process. In local features approach, also
called “fine-grained” [3], the images are segmented into a collection of smaller regions,
with each region representing a potential object of interest. Local features can be used to
identify salient objects in an image and to extract more information about the finer details
in the image. Though local features in FEL might deal with some simple semantic object,
such as shape, generally FEL deals with syntactic meaning of images and is also called

low-level image process.

As shown in Figure 1, for example, both image data and feature specification are the
input for Feature Extraction Process, known as the key function of FEL. Normally feature
specifications include the feature definitions, the feature’s implementation strategies and
algorithms. Image data in the Figure 1 represents raw data for each original image. The
output of Feature Extraction Process, which is also the output in FEL, is the input for

Object Recognition Process, which also takes object models as an input.

Since colour is the basic and the important feature in feature extraction process, we

present the approaches used below.

Colour Space

A colour space is a method by which we can specify, create and visualize colour [34]. As
humans, we may define a colour by its attributes of brightness and colourfulness. A
computer may describe a colour using the amounts of red, green and blue phosphor
emission required to match a colour. A printing press may produce a specific colour in
terms of the reflectance absorbance of cyan, magenta, yellow and black inks on the

printing paper [38].

A colour is thus usually specified using three co-ordinates, or parameters. These
parameters describe the position of the colour within the colour space being used. They
do not tell us what the colour really is since the meaning of the colour depends on what

colour space is being used. An analogy to this is that we may be told the directions to



visit Concordia from Mont Royal. These directions only mean anything if we are on

Mont Royal or know how to get there; otherwise, the instructions are meaningless.

There are many common and computer related colour spaces defined to derive colour
features from images, among which are RGB [16], XYZ [17], L*a*b* [20], HVC [23].

HVC is the most typical approach.

RGB colour system

RGB colour system represents the colour of R (red), G (green), and B (blue),
corresponding to the pixel value of images. However, RGB colour system cannot
represent the human perspective of colour. First, an RGB tristimuli does not carry
direct semantic information about a colour. People cannot visualize a colour
given its RGB tristimuli. Second, equal geometric distances in the RGB colour
space do not generally correspond to equal perceptual changes in colours. Finally
and most importantly, the R, G and B values at each pixel change remarkably
when a uniform region is unevenly illuminated, making image segmentation
using the RGB colour space very vulnerable to illumination changes. Also this
approach is device dependent, which means image understanding depend on the
direction of viewing, direction of illumination, and intensity. This dependence

will greatly influence the performance of a CBIR system.

CIE XYZ colour system

The CIE colour theory is based on RGB, and it introduces the additive mixture of
three imaginary primaries X, Y, Z. These primaries cannot be seen by a human
eye or produced, because they are too saturated. However, this fact will not
influence the rightness of colour expression since any perceived colour can be
described mathematically by the amounts of these primaries. Because XYZ
system is a linear combination of R, G and B values, the XYZ colour system
inherits all the dependences on the imaging conditions from RGB colour system.
The following conversion matrix is one of the most frequently used formulas [17]

(based on NTSC RGB):



Table 1: Transforming Matrix from RGB to CIE XYZ

X =0.607*Red + 0.174*Green + 0.201*Blue
Y =0.299*Red + 0.587*Green + 0.114*Blue
Z = 0.000%*Red + 0.066*Green + 1.117*Blue

However this colour system has an obvious gap between human perspective and

machine process.

CIE L*a*b* colour system

It is a theory based on XYZ colour system, where the colour feature L* correlates
with the perceived luminance, colour feature a* correlates with the red-green
content of a colour and b* reflects the yellow-blue content. The transformation

format is as follows [20]:
Table 2: Transforming Matrix from CIE XYZ to CIE L*a*b*

if Y/Yo > 0.008856 L* = 116*(Y/Y0)"*- 16

if Y/Y0<0.008856 L*=903.3*(Y/Yo)

a* =500*((X/X0)"° -(Y/Y0)"?)

b* =200%((Y/Y0)"” ~(Z/Z0)"?)
X, Y, Z are the primaries in XYZ colour system, while X0, Y0, Z0 are values of a
nominally white object-colour stimulus.
As is easy to tell, this theory uses a non-linear transformation, which means that
the system becomes unstable when intensity is small [20]. Also this colour system
is dependent on viewing directions, object geometry, highlights, direction of

illumination, intensity, and colour of the illumination.

HVC colour system

HVC colour system comes from Munsell [22] colour coordinate system [23],
which is famous for its successful imitation of human colour perception. It
represents a colour in terms of hue (H), which indicates the types of the colour,

value (V), which tells the total amount of light, and chroma(C) that describes
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how much white light is mixed with the colour (purity). There are several
important advantages in using HVC colour system. First, as the luminant and
chromatic components of a colour are completely separated in the HVC colour
space, it enables us to derive an effective model to handle images under non-
uniform illumination conditions. Furthermore, [5] proves that “colours in the
HVC colour system are arranged in such a way that equal geometric distances
correspond to equal perceptual differences, making it the ideal colour space for

colour clustering purpose in CBIR”.
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Figure 2: Schematic diagram of the three axes of Munsell color system from [19]

Figure 2 demonstrates the schematic diagram of the three axes of the Munsell

colour system by giving examples from the real colour world.
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Assume that the colour image is represented in 24 bits per pixel, which means 8
bits each for R, G and B, respectively. There are several ways to mathematically
transform the RGB to the HVC colour system. Because CIE L*a*b* colour space
is known for its good perceptual correspondence and simple computation [20],
the formula that NTSC RGB values are first transformed into CIE XYZ, and then
changed to CIE L*a*b*, and then altered to HVC values [23] is as follows:

Table 3: Transforming Matrix from CIE L*a*b* to HVC

X =0.607*Red + 0.174*Green + 0.201*Blue
Y = 0.299*Red + 0.587*Green + 0.114*Blue
Z = 0.000*Red + 0.066*Green + 1.117*Blue

L* =116*(Y/Yo0)*-16
a* =500*((X/X0)"? —(Y/Y0)"?)
b* =200*((Y/Y0)"* —(Z/7.0)'")

H = arctan(b*/a*)

V=L#
C = (a*2+b*2) %

X, Y, Z are the primaries in XYZ colour system, while Xy, Yy, Zy are values of a

nominally white object-colour stimulus.

Image Features

Image features in CBIR systems include colours, textures, shapes, and edges. Different
applications may concentrate on one or several features extraction while colour histogram

and textures are the most popular choices.

12



e Colour Histograms

Colour histogram is a way to group colour values within an image so as to generate
colour meaning for it. To get the colour meaning from an image, the traditional way
is to equally subdivide the image into a large number of small bins, and then count
the number of pixels each bin contains. The major problem of the histograms created
by this method is that colours from two adjacent histogram bins reveal only trivial
differences. A small change in illumination conditions or the influence of noise can
cause pixels to drift from one bin to another. And therefore, though two images are
similar in colour, they might have two different sets of histogram bins. While
introducing colour understanding to CBIR systems, it is possible that we can use

human perspective to describe image colour histograms.

There are two major rules in creating colour histograms. First, matching of two
histograms should result in an approximate, rather than exact matching of the
correspondence images. For CBIR, approximate matching is more useful than exact
matching because users are generally more interested in the image similar to, rather
than exactly the same as, the sample image when querying the database. Second, the
histogram must be able to capture macro colour configuration, rather than trivial
colour details of an image. It is quite understandable if we look at human colour
perception. It has been proved that human vision system is relatively insensitive to
small colour difference [34]. Colour names that are widely used in our daily lives,
such as “Red”,”Green”,”Blue”, actually represent groups of colours with a wide
spectrum range. Therefore, human beings evaluate the similarity between images
based on overall impression, and trivial colour differences are not of much

importance in the process.

Colour histogram is one of the most important techniques for content-based image
retrieval [36] because of its efficiency and effectiveness. All colour histogram-based
image retrieval systems are composed of at least three operations: a suitable colour

space with the specific number of cells in it, an algorithm of how to count pixel

13



number for cells in colour space, and an algorithm of how the pixel number values in

the similarity matching.

e Textures

Texture is a blanket term used to describe the brightness variations observed in all
surfaces [24]. It conveys information about pixel and surrounding. The texture of an
image is the distinctive physical composition or structure of something, especially
with respect to the size, shape, and arrangement of its parts. The key issue in texture
detection is to distinguish texture from non-texture regions. Saying that
distinguishing texture from non-texture regions is the issue also attributes to the fact
that texture detection and image content recognition are a pair of “chicken and egg”
problems. It is easy to understand that complete texture detection cannot be achieved
without recognition of the image content while image content recognition relies
highly on image segmentation, which includes texture detection. Furthermore, there
is no clear boundary between texture and non-texture regions. Hence, a texture

detection method has to be made domain-dependent and application-dependent.

There are two main points inside a texture based image retrieval system. One is the
texture rule, which consists of many parameters to describe a texture pattern. The
other is the algorithm or more specifically, the metric, to demonstrate the similarity
between textures. Texture feature describes the content of many real-world images,
for example, clouds, trees flowers. Therefore, it has been widely implemented in

CBIR systems.

2.2.1.2 Object Recognition Layer (ORL)

This layer focuses on analyzing features extracted from the feature extraction layer and

provides solutions on how to group them. The process involves matching features with

object models stored in a knowledge base. In general, an object model is a template

describing a specific object. Based on the flexibility of definition, there are two types of

template matching: fixed template matching and deformable template matching [29].

Approaches based on fixed templates are useful when object shapes do not change with

14



respect to the viewing angle of the camera. For example, application for X-ray image
database could use this technique since target images have a fixed viewing angle. Even if
image intensities change frequently and sometimes there is noise in images, as far as
templates do not change, systems with this approach can relieve from these influence via
applying image subtraction techniques. Approaches based on deformable template are
more suitable for cases where objects in the database may vary due to rigid and nonrigid
deformations. A typical example could be an application for face recognition. A certain
level of fuzziness and imprecision in object recognition is inevitable and needs to be
incorporated in the similarity measure in order to increase the success rate of queries and
not to exclude good candidates; such fuzzy matching is implemented in almost all
applications of CBIR. The main difference between implementations in this level is the
method used to build the related knowledge base, Frame based or Constraints based. In
the Constraints-based methodology, the domain knowledge is represented using a set of
constraints in conjunction with formal expressions such as predicate calculus or
graphs[3]. Such predicates are augmented with procedural information. A constraint is
usually a relationship between two or more objects that needs to be satisfied. This
approach is suitable for systems with sufficient description information of images. In
Frame-based methodology, frames are used to represent knowledge relevant to particular
objects, situations, or concepts [3]. A frame usually consists of a name and a list of
attribute-value pairs. A frame can be associated with a class of objects or with a class of
concepts and frame abstractions allow encapsulation of file names, features, and relevant
attributes of image objects. Though a lot of research has been done in ORL and some
successful implementations of several prototypes have been reported, such as [13,14],
lack of precise models for object representation and the high complexity of image

processing algorithms make the development of CBIR still a challenging task.

2.2.1.3 Spatial Modeling and Knowledge Representation Layer (SMKRL)

The main function of this layer is to maintain the domain knowledge of representing
spatial semantics associated with image databases. Semantics at this level are based on
spatial actions describing the relative locations of multiple objects, which have been

extracted and recognized by object recognition layer (ORL). Such semantics are used for
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high-level indexing and content-based retrieval of images. An example involving such
semantics is a range query, which involves spatial concepts such as “left, right, close by,
smaller than, behind, between”. A geographic information system (GIS) is probably the
most common application implementing spatial semantics and content-based retrieval
based on range queries. The general approach for modeling spatial semantics is based on
identifying spatial relationships among objects when they are recognized and marked by
ORL. Various knowledge-based techniques are applied in representing spatial
relationships, such as semantic networks [28]. Semantic networks are used extensively in
artificial intelligence applications. “Semantic networks are graphs of nodes representing
concepts that are linked together by arcs representing relationships between these
concepts.”[3]. Contrary to the traditional approach that identifies an object each time it is
used in a relation, in semantic network, it defines each concept or object once, and uses
pointers for cross references. Therefore the semantic network approach achieves
efficiency in the processing time and storage space. Techniques to recognize objects in
ORL, for example, constraints-based approach and frames-based approach, can also be

applied in this layer to describe the spatial relationships between objects [3].

The problem of content expression in CBIR has been actively studied for decades;
however, extracting knowledge from images and representing such knowledge is a
challenging problem and requires further research. Therefore development of a general-
purpose, automatic image database system capable of supporting arbitrary domains is a
challenging task due to the limitations of existing image processing knowledge

representation models.

2.2.2 Index Structure module

Usually CBIR systems represent images by using certain image feature spaces, define
similarity metrics on those feature spaces and retrieve image in an order similar to the
user-provided reference images. Under this scenario, each image in a CBIR system is
represented as a point in multi-dimensional feature space, and a distance between two
feature points, either Euclidean or city block distance, is frequently used as a similarity

metric. For two points A (X1, X, ..., Xn) and B (yi, Y2, ..., ya) that represent two images in
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an n dimensional feature space for a CBIR system, the Euclidean distance between A and
B is ((y1 —x1) 24 (y2- X2) o+ (Yn- Xn) 2) 12 while city block distance for A and B is
lyi — x1| + [y2 =X2| + ... + |[yn — Xa|- To provide similarity-based image search, the system
must have search schemes as the nearest neighbor search and the range search. The
nearest neighbor search finds the n-nearest neighbors to a reference, while the range
search retrieves all the images within a region of the feature space. Index structure
techniques have matured over the last few decades. Among those that have been
proposed to support these two search schemas, there are some major differences [5]:
e Dynamic or Static
A dynamic index structure supports dynamic index updates, which include
insertion and deletion. On the other hand, a static index structure requires that the
complete dataset be given beforehand, and no insertion and deletion occurs after
the index of the given dataset is created.
e Memory resident or Disk-resident
A memory-resident indexing structure creates indices in computer memory,
while a disk-resident indexing structure stores indices on hard disk. Disk-resident
indexing structure can accommodate a large-scale dataset.
e High dimensional or Low dimensional
Low-dimensional index structure, which is usually classical indexing method
such as B-Tree [30] and its variants, can index only one dimensional data points.
High-dimensional index structure, which is recent indexing structure such as R-
Tree [7] and its variants [8], can support multiple-dimensional indices. The

dimension ranges from 2 — 20 or even higher.

For a CBIR system, an image database must be able to support dynamic database updates
and also to accommodate hundreds of thousands of images, each of which might be
represented by feature vectors of between 10 to 100 dimensions. Therefore, an index
structure in a CBIR system must have the capabilities of dynamic updates, efficient disk-
based implementation, and high-dimensional indexing. Many index structures could be

implemented such as KDB tree [6], R tree [7], R* tree [8], SS tree [9], SR tree [10],
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among which SR tree stands out for its outstanding performance in CPU time and the

number of disk reads.

KDB tree

KDB tree was one of the first structures proposed to support high-dimensional data
indexing and disk resident implementations [6]. It is a height-balanced tree and its tree
structure is constructed by dividing the search space into sub regions with coordinate

plane recursively.

A KDB tree consists of the following two types of nodes:

Non-leaf nodes: These contain a collection of (region, np) pairs. np is the address of a
child node, and region refers to a subspace which can be expressed as Ip * I1*...* I 4,
where k is the number of dimensions and I; is the interval of the subspace along
dimension .

Leaf nodes: These contain a collection of (point, dp) pairs, where point is the coordinates
of a point in the k-dimensional data space, and dp is the address of the database record

that is associated with point.

In a KDB tree, each leaf node provides a bucket in which to store one data point, while
each non-leaf node represents a region of the space, which is the result of data space
partitioning. When a non-leaf node P is overfilled, the region represented by P is further
partitioned, resulting in the splitting of P. Therefore, there is no overlap between any pair
of regions; thus each data point has only one path between itself and the root. Figure 3b
shows how a traditional KDB tree is constructed. The non-leaf nodes 1,2,3 represent
subspaces while leaf nodes, point A, B, C, D, E, F, G and H stand for the value vectors of
the images to be indexed. In CBIR systems, each point represents a value vector for an
image. Here, points A, B, C, D, E, F, G and H represent the value vector for each image
respectively which will be generated after FEL or ORL. To create indices on images is to
create indices on these value vectors. Originally, only one space is created, known as
being related to the root node. During the process of adding a new leaf to the index

structure, which represents adding a new image to the image database, non-leaf node
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splits when it is overfilled. To process similarity search on images is to process nearest
neighbor or range search among the created indices structure. For range search, based on
an example image’s value vector and so formed query space, system retrieves all the
images with their spaces having intersection with the query space. For example, if we
have a new image with its query space having intersection with space 1 (The space of an
example image can only have one intersection with spaces in KDB tree), image A, B and
C will be retrieved as the result for the range search. For nearest neighbor search, first,
based on the value vector of a sample image, a sphere of selected radius, which is also
known as the definition of similarity, will be generated. Afterwards, any image with its
value vector falling into the sphere will be retrieved. Despite the advantage that the data
retrieval time in KDB tree depends only on the height of the tree, a KDB tree does not
define the minimum number of entries in a node; therefore it cannot ensure the minimum
storage utilization, which reduces the performance on range queries and nearest neighbor

queries [10].

R tree & R* tree

R tree was initially proposed to index data objects of non-zero size in high-dimensional
spaces. Although the R tree and R* tree are originally designed for rectangles, it can be
used solely for points and known to be effective also as a point access method for multi-

dimensional index [7].

Let M be the maximum number of entries that will fit in one node, and m (2< m < M) be
the minimum number of entries in a node. An R tree is constructed as follows:

1. A non-leaf node contains between m and M entries of the form (rect, np ), where
np is the address of a child node, and rect is the minimum bounding rectangle that
covers rectangles of all the entries in the child node.

2. A leaf node contains between m and M entries of the form (point, id), where id
refers to a data object in the database, and point is the coordinates of a point in the
k-dimensional data space, where k is the number of dimensions of the whole
domain.

3. The root node has at least two children unless it is a leaf.
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4. All leaves appear on the same level.
An R tree is built based on the clustering of all points in a data space. Each non-leaf node
P corresponds to a cluster in the space with its minimum bounding rectangle representing
the extent of the cluster. When a node is overfilled, the cluster represented by the node is
partitioned, and the node is split into two nodes. Figure 3¢ shows how a traditional R tree
is constructed. The non-leaf nodes 1,2,3 represent subspaces while leaf nodes, points A,
B, C, D, E, F, G and H stand for the value vectors to be indexed. In CBIR systems, A, B,

C, D, E, F, G and H are the value vector for each image respectively.

In R tree, each node in the tree must store between m and M entries; therefore, the worst-
case space utilization for all the nodes except the root is m/M. However, since an R tree
allows overlapping of minimum bounding rectangles in different nodes, there can be
more than one path between any data object and the root. Hence, the search algorithm
must traverse more than one path to search for the desired data. Therefore, the search
time of a point query depends on the amount of overlap and is not determined by the
height of the tree [10]. A simple example might help to understand this scenario. Suppose
there is an R tree constructed as in Figure.3c, we have a search requirement B, whose
query space falls into the intersection between space 1 and space 3. Therefore, to do the
search, not only we have to examine spacel, but also have to check space 3. The extreme
case would be that all the space in the non-leaf nodes has intersections, and the search

value is unfortunately falls in that part.

R* tree is the most successful variant of the R tree, which shares the same tree structure
with the R tree. The optimization comes from the minimization of the area of enclosing

rectangles in nodes while processing data insertion and node split algorithms [8].

SS tree

SS tree is an index structure designed for similarity indexing of multidimensional point
data. Having a similar configuration to R* tree, SS tree employs minimum bounding
spheres rather than minimum bounding rectangles for the region shape. Hence, the key

difference between SS tree and R* tree is that SS tree divides points into isotropic
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neighborhoods by utilizing bounding spheres while the R* tree divides points into small

regions by utilizing bounding rectangles.

A SS tree is constructed as follows:
L. Non-leaf nodes contain the form (sphere , np ), where np refers to a child node, and
sphere is the minimum bounding sphere that consists of (centroid, radius). The
centroid is the mean value of the feature vectors in the child node, and the radius is
the distance from the centroid to the further feature vector.
2. Leaf nodes contain entries of the form (vect, data), where data holds the data for
the leaf, and vect holds the data’s feature vector.
Figure 3d shows how a traditional SS tree is constructed. The non-leaf nodes 1,2,3
represent subspaces while leaf nodes, points A, B, C, D, E, F, G and H stand for the value
vectors to be indexed. In CBIR systems, A, B, C, D, E, F, G and H are the value vector

for each image respectively.

The utilization of bounding spheres has been proven to yield a higher node branching

factor, and a better data clustering in a high dimensional data space [9].

SR tree and its advantage

Bounding rectangles and bounding spheres have both merits and demerits. Experimental
results show that bounding rectangles divide points into small volume regions with long
diameters while bounding spheres divide points into larger volume regions but with
shorter diameters [10]. For nearest neighbor search queries, bounding spheres are more
advantageous than bounding rectangles because the lengths of region diameters have
more influence to the performance on nearest neighbor queries than the volumes of
regions [10]. With the desire to divide points into regions both with small volumes and
with short diameters, the SR-tree (Sphere/Rectangle) is developed to combine utilization

of bounding spheres and bounding rectangles.

Let M be the maximum number of entries that will fit in one node, and m (2< m < M) be

the minimum number of entries in a node. A SR tree is constructed as follows:
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Leaf node: A leaf node contains between m and M entries of the form (p, data), where

data holds the data of the leaf, and p holds the data’s pointer.

L :(El,...,En) (mp <n< M)
E; : (p, data)

Non-leaf nodes: A non-leaf node contains between m and M entries of the form (S,R, w,
np), where np is the pointer to a child node, w is the total number of data entries stored in
the sub tree pointed to by np, S and R are the minimum bounding sphere and minimum

bounding rectangle of the child node, respectively.

N:(Cl,...,CTn) (mNﬂnSMN)
Ci : (S, R, w, child_pointer)

Figure 3e shows how a traditional SR tree is constructed. The non-leaf nodes 1,2,3
represent subspaces while leaf nodes, points A, B, C, D, E, F, G and H stand for the value
vectors to be indexed. In CBIR systems, A, B, C, D, E, F, G and H are the value vector

for each image respectively.

According to performance tests in [10], the SR-tree outperforms the R*-tree and the SS-
tree especially for high-dimensional and non-uniform data, which are likely to appear in
the actual image applications. Therefore, recent CBIR systems always choose SR tree as
their index structure for their multidimensional value vectors, which could be colour,

texture, edge, or most commonly a combination of all of these features.
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2.2.3 User Interface Module

Web-based interface is the most popular choice in current CBIR systems for the user due
to its convenience in connection over the Internet and its excellent look and feel. From
functional point of view, user interface module could be divided into two categories;

namely “Query by image examples” and “Interaction” [26].

Query by image examples is the most well known and also most thoroughly researched
schema for user interface module. While providing an example image as an input, a
CBIR system will examine it, search for the most similar images in the system, and
display the retrieval results in a predefined order. However, since an image is suited to
be as an example only when another image with the same objects is the aim of the search,
it is simply not sufficient and practical to find example images in all cases. Semantic
description search, on the other hand, uses general contents of an image as keywords to
provide queries. Though semantic description search has nothing to do with the example
image, still we categorize it as “Query by image examples” since logically it is more like
it than “Interaction”. The query result has an inherent display dimension, which depends
on the variety of queries [1]. In “Semantic description search” mode, when the query is
exact, (for example, the system only retrieves images hundred percent belonging to the
semantic descriptions) the result of the query is a set of images, and the sequence of them
does not matter at all. In “Query by image examples” mode, for approximate query,
which is what a CBIR system usually dealing with, the query result is the images with
similarity ranking respect to the query. Therefore, most systems display these images in a

2D grid, in the order of related rankings [27].

Interaction was originally developed for text, and only was applied to image retrieval
several years ago. It comes with the idea that the retrieval procedure is no longer a feature
matching algorithm but a complex process integrating image classification [1]. During
the retrieval process, users give their feedback to evaluate the retrieval results. Depending
on when the “Interaction” mode is applied, it can be subcategorized as “Classification”

and “Answer refinement” [11].
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Classification is important since similarity measurement is hard to describe in machine
language, and even it is subjective to change from person to person depending on domain
expertise. Compared to the traditional manually or automatically classifying function in
text-based systems such as digital library, image classification is more complicated and
less efficient due to the difficulties of image interpretation. Therefore, it is usual for
CBIR to have both automatic and semi-automatic classification function, which requires

user’s involvement.

Answer refinement, or relevance feedback is important in interaction process, which
could bring into both long term and short term refinement procedures [11]. Long term
refinement keeps updating and adjusting the image database organization with the help of
user’s evaluation of the retrieved images. Short term refinement determines the meaning
of similarity gradually with users preferences in the loop. The idea comes mainly because
users can normally judge the relevance of a set of images displayed on the screen quickly.
Furthermore, only a limited number of current systems are capable of matching users’
needs accurately first time round due to the difficulites of image content understanding.
The key technique used is a refining algorithm that differs a lot between applications. For
query result, as apparent from Query by image examples mode, there is an abundance of
information available for display [1], such as how many people retrieve the same image
and what’s their preference of ranking. Therefore, the traditional 2D grid model might

not satisfy the requirement, though it is still the current choice in implementations.

2.3 Survey of well-known CBIR systems

Since 1990, a number of CBIR systems have appeared and brought new technology into
this area [3]. Also competition among these systems helped their development and led to
maturity of CBIR. Among pioneer CBIR systems, the following stand out not only for
their success in different areas but also for their contributions to CBIR technology: QBIC
by IBM [4], CHABOT [12] by UC Berkeley, KMeD [13] by UC Los Angeles,
PICTION [14] by the State University of New York, Buffalo, Photobook [15] by MIT.
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QBIC is a comprehensive and complete commercial image database system, which
allows querying of the database by sketching features and providing colour information
about the desired objects. It employs multiple image features such as colour histogram,
text and object shape to retrieve images, and adopts the R* tree to form database indices

on the basis of these image properties.

CHABOT is a picture retrieval system for a database that will eventually include over
500,000 digitized multi-resolution images, which is part of the digital library project
belonging to the State of California Department of Water Resources (DWR) [12]. It
integrates the use of stored text and other data types with content-based analysis of the

images to perform “concept queries”.

KMeD known as Knowledge-Based Medical Database System has a domain knowledge
of descriptions about the shapes of objects with simple structures such as tumor, brain,
bones, etc. It has four layers consisting of the raw data layer, feature and content layer,
schema layer and knowledge to represent the various aspects of an image objects’
characteristics. Besides automatic image processing, human assisted object recognition

process is also implemented in the system.

PICTION uses a combination of text annotation and image processing techniques for face
recognition and identifying relative positions of people in images. It involves three steps
of face recognition: face detection to locate a face inside an image; feature extraction
where various parts of a face are detected; and face recognition where the person is

identified by consulting a database containing facial models.

PHOTOBOOK is known for its learning mechanism while expressing the meanings of
images. It uses collective texture models that interact to explain texture patterns in
pictures, observes the user’s annotation to pieces of images and then finds similar regions

to which to propagate the user’s preference on the image understanding.
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While these systems contributed to the process of defining the architect of typical CBIR

system, we can still use the standard CBIR modules to examine these well-known

systems. Among three fundamental modules we discussed in section 2.2, many

differences lie in Content Expression module. Therefore, we will focus on the different

approaches among these systems.

Feature Extraction Level

As described in section 2.2.1.1, image features include colours, textures, shapes,'
and edges; colours and textures are the most popular choices. Choice of features,
their extraction mechanisms and the search process are domain specific.

QBIC uses colour, shape, and texture features for image retrieval; CHABOT uses
colour and texture features; Photobook uses shape and texture features; KMeD
uses quantitative methods for edge detection to identify shape features and
ignores colour feature since medical pictures could be black and white; PICTION
uses specific facial shape and ignores colour feature to eliminate application
constraints.

Object Recognition Layer

As discussed in section 2.2.1.2, ORL focuses on analyzing features extracted from
the feature extraction layer and provides solutions on how to group them. It
matches features with object models stored in a knowledge base. The main
difference between applications in ORL is the method to build the related
knowledge base, Frame based or Constraint based.

QBIC does not have ORL since it is almost the oldest CBIR application and ORL
requires more specific domain knowledge to work effectively. Therefore QBIC,
when processing a user query, automatically compares the example sketch with
the stored image features without recognizing the content of an image. CHABOT
uses the notion of “concept query” where a concept, like sunset, is recognized by
analyzing images using colour features. It uses a frame based knowledge
representation of image contents, which is precomputed and stored as attributes in
a relational data model. For improving the performance of the system, it uses
textual annotation of images by keywords that are manually entered. KMeD also

use frame based knowledge representation technique while it is more complex in
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using schema definition, and human-assisted object recognition process since
objects may vary due to rigid or non-rigid deformations as discussed in
section 2.2.1.2. PICTION uses constraints based knowledge representation, which
is a Natural Language Processing (NLP) module. A set of constraints is derived
by the NLP module from the picture captions, and will be used with the face
recognized in the picture to identify the spatial relationships among people.
Photobook uses frame based knowledge representation; however its pre-analysis
features limits the application to be a fixed template matching system while the
propagating procedure keeps the model updated and more accurate.
e Spatial Modeling and Knowledge Representation Layer

As mentioned in section 2.2.1.3, there are several popular methods in spatial
modeling to define spatial concepts. These are semantic networks, inclusion
hierarchies, constraints-based and frames-based.

QBIC, CHABOT, Photobook do not have SMKRL at all. KMeD has a knowledge
base abstraction to represent higher level semantics in level three, which is called
type abstraction hierarchy (TAH). TAH is organized using semantic networks to
conceptualize the objects and their semantics and to incorporate the domain
expert knowledge in order to improve search efficiency in radiological database.

PICTION uses constraints to organize the recognized objects.

Even a quick glance at these pioneer systems can easily tell us their varieties in technical
approach and system design. Though a CBIR system could be examined in general
models, there is definitely no rule what a CBIR system should look like. Furthermore, a

CBIR system is determined more by its specific domain than by any specific techniques.

29



Chapter 3

Problem Domain

3.1 The need for CBIR and major issues in system design
Today’s computers are not only empowered with networking capabilities, but also

equipped with CD-ROMS, scanners, and various other multi-media devices. With the
explosion of image data, a big challenge we are facing is the lack of techniques to
efficiently handle the needs of interpretation, storage, and retrieval of them. Currently,
many organizations possess large archives of photographs but have not made good use of
them since they lack efficient tools for search and retrieval. The ideal solution to this
problem is the development of automated methods that are able to recognize the
composition and the content of the images, and to make use of the recognized image
content to achieve content-based image retrieval. A major obstacle to accomplishing this
intelligent image database is that research on machine vision has to provide a solution on
general image understanding and object recognition; hence we are not yet at the stage to

automate image content recognition by computers.

In developing a complete intelligent image database system, at least the following three
important issues must be addressed in system design:

Feature Extraction: Determines what image feature, or combination of image features is
to be used for image matching and retrieval purposes. Selects algorithms to capture the
determined image feature or to combine the determined image features.

Indexing and Search Scheme: Creates effective indices and data structures based on the
determined image features to speed up image retrieval on database.

Database Query Schema: Provides methods that enable users to effectively form

database queries.

Before describing how these issues are related to our specific problem domain, we would

like to clarify two prerequisites.

30



Prerequisite 1: Image domain

Image domain is the set of images which CBIR systems are designed to handle.
Generally, narrow domain and broad domain are known as two subcategories of the

image domain [25].

Narrow domain has a limited and predictable variability in all relevant aspects of its
appearance [1]. For example, a set of frontal views of faces recorded against a clear
background could form a narrow domain for face recognition. Although each face is
unique and has large variability in the visual details, there are obvious geometrical,
physical, and color-related constraints governing the domain. The domain would be
wider if the image is that of a crowd or an outdoor scene. In that case, variations in
illumination, clutter in the scene, occlusion, and viewpoint will have a major impact on
the analysis. The advantage of using this domain is clear, as semantic description of
images is usually easy and well defined with uniqueness. The disadvantage of this

approach is that we will have to refine the raw images from current resources.

Broad domain has an unlimited and unpredictable variability in its appearance even for
the same semantic meaning [1]. It might be the case that there are conspicuous objects in
the scene for which the object class is unknown or even that the interpretation of the
scene is not unique. As it is easy to get a broad class of images under this domain from
large photo stocks or other photo archives, semantic description of images becomes the

most difficult task and hard to achieve.

In a broad image domain, the gap between the feature description and the semantic
interpretation is generally wide. For narrow and specialized image domain, the gap
between features and their semantic interpretation is usually smaller, so domain-specific
models may help. For example, for a face recognition system, such as PICTION, the
model is not available for broad image domains as the required number of computational
variables would be enormous. More practical applications have an image domain just
between these two extreme spectrums. If a CBIR system works well on a narrow image

domain, with more work and modifications, it would also work on wider domains.
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Therefore, we choose narrow image domain as the default image domain for our CBIR

system discussed below.

Prerequisite 2: Definition of similarity

In each CBIR system, it is necessary to define criteria for similarity of images. Generally
either syntactical or semantic features could be selected. Syntactical features are extracted
from physical representation of images while semantic features must be assigned to
images through image understanding by systems, by users and by contributors of images.
Choosing syntactical features as the criteria comes from the idea that they are easy to
derive from images. However, the shortcoming is obvious that these syntactical features
are in some way different from human perception model. On the other hand, choosing
semantic features as the criteria is based on human interpretation of images. The
disadvantage of this approach is that it is not easy and cost effective to implement. Our
choice is to combine syntactical and semantic approach together so as to make a balance

between cost and effectiveness.

3.2 Problem scenario
The problem description could be simplified as follows:

Step 1
Image Resource »  Image Database

Step 2

User Query

Figure 4: Data flow

Two major steps, which shall be used by all CBIR modules, are:
Step 1:
Objective

Classify images; Create semantic descriptions for each image;
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Possible CBIR fundamental modules involved

In order to classify an image, Content Expression module is needed with all three layers:
Feature Extraction Layer (FEL), Object Recognition Layer (ORL), Spatial Modeling and
Knowledge Representation Layer (SMKRL). But how these three layers work together
and how this module works may differ from system to system. Since we have already
defined two prerequisites in section 3.1, we will only discuss domain-specific models,
which means, as a sample application, only several categories of images will be
examined (In SHMM, in total, 10 categories are under consideration) and all the
similarities are based on a simple combination of syntactic and semantic meaning of

images.

Moreover, Index Structure module is needed for future search function in image library.
Index content may vary based on the details of images, but the indexing strategy could be
the same during the image classification process even though terms used may not be the

same.

Also this classification process could be automatic or manual depending on the system
need and the accurate rate of classification. A nice solution could be a semi-automatic
system. Not only automatic and manual classification is supported, but also during the
manual process, the system may suggest the category an image may belong to. A better
approach would include a learning process, which trains the classification process when

the contributor modifies a classification.

Step 2:
Objective
Through an interface between users and image library, provide similarity search

functions.
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Possible CBIR fundamental modules involved

User Interface Module (UIM) is the primary component here. No matter what kind of
similarity search function it supports, Query by image examples, Query by keyword or
Query by natural language, the system provides essential introduction information for the
operations. For example, in Query by image examples mode, random samples from image
database shall be provided while in Query by keyword mode, keyword information is
necessary. Also, since our project is a part of the digital library project, considering the

security reason, User Management has to be included in UIM.
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Chapter 4

SHMM—Semantic Header for MultiMedia

4.1 System diagram

Based on the problem scenario discussed in section 3.2 and with the two prerequisites

discussed in section 3.1, we designed our system framework as follows:

Texture Detection Module
Input Image q }

Colour Histogram Module

v

Index Creation Module

v

Database Module

User Query
Module

Figure 5: System diagram

This system diagram can be mapped to CBIR fundamental modules as follows. The
texture detection module and colour histogram module serves the same purpose as
Content Expression module of the CBIR, index creation module could be regarded as
CBIR’s Index Structure Module and User query module could be mapped to the User
Interface Module.

There are two categories of input images. For all new non-classified input images, the
system will determine image feature vector via texture detection module and color
histogram module, and then this image feature vector will be added to index structure

through index creation module. Then the semantic description of the image and other
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input features will be added to image database by the use of user query module. For
input images that come from organizations or public resources with some semantic
classification already done, the main task for adding these pictures into the image
database is to map the semantic classification in the resource into semantic descriptions
in our database, using traditional data integration techniques. Therefore, in our system,

we can only focus on new non-classified images as the original input.

The Texture Detection Module scans the input image and searches for texture regions.
To make the system easy to implement, we choose a simple algorithm, which will be
discussed in section 4.2.1, to form a texture region for an image. After detecting the
texture region, the module will take out the part of images inside it and then pass them to
the next image module (Colour Histogram Module) for further processing and

classification.

The Colour Histogram Module takes the texture region masked off from an image as
input. Before doing any further analysis, the module will divide the input into 16
segments and these 16 segments will be examined for colour histograms. The output of

this module is a 16 dimensional colour vector.

The Index Creation Module uses SR tree to store and manage the multidimensional
indices for the colour vectors generated from the Texture Detection Module and the
Colour Histogram Module. At the same time, it uses the nearest neighbor search to get

the most similar picture.

The Database Module assigns semantic descriptions for images while maintaining the
image database. The input to this module depends on the query involved. For adding new
images or classifying images, input comes from the Index Creation Module, where the
image understandings for new images have been processed and the categories for these
images have been suggested, and from the User Query Module, where users determine
whether to follow the system’s suggestion or to change the classification according to the

human perception of the image. For retrieving images under the specific category, the
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input comes only from the User Query Module, where user defines the request. In our
system, this module is implemented in MICROSOFT ACCESS; however, it can be any
other relational database, such as SQL SERVER without any source code and table
structure change or any object-oriented database with minor source code change and table

structure change.

The User Query Module provides the user with a graphical interface, translates the
user’s database queries into internal index keys and conducts the user feedback to the
Database Module. Query by image examples and Query by keyword functions are

supported in our system.

4.2 Algorithms for the modules

Though the modules and functions of how to build one CBIR system have been decided,
there are still lots of variations in the algorithms of how to implement them. Both the
theoretical and practical reasons are considered when we make the choice. Based on

modules, the detailed solutions are as follows:

4.2.1 Texture Detection Module
As discussed in section 4.1, the input for this module is any image, and the output from

this module is the part of the original image that lies inside the detected texture regions.

The key element in Texture Detection Module is the texture detection algorithm, which
has more than twenty models [1]. The conclusion about textures that we get from the
discussion in section 2.2.1 is that we have to make texture detection method be domain-
dependent and application-dependent. We perceive the fact that pattern containing high
frequency colour transitions causes a significant deterioration for texture detection
method; therefore, in our systems, we restrict our image domain to the pictures with such
characteristics, for example flowers, buses. That means pictures with dominant colour
figures will be more correctly classified than images without dominant colour. We can

build a simple but still efficient system that generates one texture region for an image to
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get the whole idea of what the image looks like. Gong in [5] compares two common
techniques called the first and the second order local derivative operators first introduced
by Laplace [32]. He concludes that there is no clear evidence that one is better than the
other and each solution has its advantages and disadvantages in detecting different type
of images. Based on share software CxImage [18], which uses the second order local
derivative operator known as Laplacian Filter Kernel [32], we implemented our texture

extraction module.

CxImage is a collection of C++ classes to manage virtually any kind of images. It can
load, save, display, and transform images in a very simple and fast way. It was developed
by Alejandro Aguilar Sierra in 1995. Since then, it has become a shareware and has been
expanded by different groups of people. In our installations, we are using the latest
version of CxImage 5.53, which was released in January 2003. In our implementation, we
do image processing using some of the CxImage functions, refine the picture and pass it
to the colour histogram module.
The algorithm is as follows while more details can be found in the appendix:
Step 1: Load the image from storage place, scale the image to a standard size and get the
image index for future processing.
To avoid the difference from image quality that is the number of dots in the
image, we have to scale the image to a standard size. The texture we get by using
CxImage function is a number of dots that describe the general map of what the
image looks like. The image index is just like the file handle in the file operation.
Step 2: Get the texture value of the loaded image using Laplacian Filter.
Gonzalez and Woods demonstrated in [37] that Laplacian Filter can be

constructed in various ways while they choose

-1-1-1
-1 8-1
-1-1-1

as a 3-by-3 kernel for edge detection. Therefore in our implementation, we also

select this value as the Laplacian Filter Kernel.
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Step 3: Get a group of dots that stand for the texture of the image and generate a new
image that only contains the texture part of the original picture.
The newly generated image file is a temporary file and will be deleted after

getting its colour histogram feature.

In Figure 6, the right hand side (b) represents the texture region of the original image in
the left hand side (a). Based on this texture, we divide the image into one texture region
and one non-texture region. Afterward, the image inside the texture region will be
examined in Colour Histogram Module. This approach we have taken in texture detection
module tries to reduce the influence from non-texture region, which sometimes has

dominant values in colour.

a) original image b) texture region from original image

Figure 6: Sample result from texture detection module
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a) original image b) texture region from original image

Figure 6 cont’d: Sample result from texture detection module

4.2.2 Colour Histogram Module
As discussed in section 4.1, the input for this module is the part of the original image that

1s inside texture regions, and the output from this module is a 16 dimensional colour

vector.

Recall the colour theory discussion in section 2.2.1.1, the HVC colour system is well
known for its representation of colour along human colour perceptual dimensions; hence
here we choose this approach to create colour histograms. When transferring RGB colour
into HVC colour and then combining similar HVC colours based on human perception,
[5] presents a colour-matching table according to the intensive experimental evaluations.

The experimental evaluation of 11-color zone table is as follows.
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Table 4: HVC value list from [5]

Color name Hue(H) Value(V) Chroma(C)
Red 0~36 4~9 1.5~30
36~64 4-~9 15~30
Orange 64~112 4~8 9~30
Yellow 80~112 9~10 1.5~30
Skin Color 36~64 4~9 1.5~15
64~112 4~8 1.5~30
Green 112~196 4~10 1.5~30
Cyan 196~256 6~8 1.5~30
Blue 256~312 4~8 1.5~30
Purple 312~359 4~8 1.5~30
Black <3
Gray 4~8 <1.5
3~4
White >9 <1.5

It is really wonderful to have this table after we get HVC values via applying the
transferring formula from RGB colour system to HVC colour system. By comparing the
transferred HVC values with the sample experimental results, we may easily map the
RGB colour world into the real world colour and get the semantic meaning from image

colours if adding enough domain knowledge.

However, when we apply this experimental result into our implementation, we find it is
hard to achieve this result. Take RGB (159, 2, 23) as an example, which is a traditional
red colour. While Applying the HVC exchange formula described in table 1, 2 and 3, we
will get the following result, which contradicts the result map in table 4 .

R =159

G=2

B=23

X =101.484
Y =51.337
Z =125.823

L* =52.022

a* =76.955
b* =29.074
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H = 20.697

V =52.022

C =82.264

It is obvious that the inaccurate result lays in value V and C. And the more we transfer
sample RGB data to HVC colour system, the more we find the contradictions between
the results in table 4 and the real data we get from experiment.

Following is a sample RGB colour list from some published materials [32, 33] with the
transformation result we get from the formula.

Table 5: Map sample RGB colour into HVC colour system

X/255 Y/255  Z/255 L* A* B* H \') C
red 0.176  0.102 0.048 38.1990 46.5875 20.7618 24.0202 38.1990 51.0044
orange 0.386 0311 0.066 625920 252955 54.6786 65.1737 62.5920 60.2462
yellow 0.614 0.644 0.112 84.1736 -6.8116 76.3074 95.1010 84.1736 76.6108
dark skin  0.092 0.081 0.058 34.1903 9.3804 9.1174 441855 34.1903 13.0813
lightskin  0.411 0.376 0.303 67.7248 10.8671 10.0216 42.6823 67.7248 14.7827
green 0.149 0.234 0.106 55.4820 -43.0390 28.5923 146.4025 55.4820 51.6709

cyan 0.149 0.192 0.421 50.9204 -23.3770 -34.5163 235.8913 50.9204 41.6876
blue 0.060 0.035 0.183 219444 20.6483 -48.1269 293.2211 21.9444 52.3694

purple 0.059 0.040 0.102 236714 236522 -25.0475 313.3588 23.6714 34.4501
white 0.981 1.000 1.184 100.0000 -3.1869 -11.5829 254.6162 100.0000 12.0133
black 0.000 0.000 0.000 -16.0000 0.0000 0.0000 -16.0000 0.0000
neutral 8 0.632 0.644 0.763 84.1736 -2.6987 -10.0428 254.9588 84.1736 10.3991

Theoretically, we can prove that table 4 is not accurate.
Recall the transforming formula in table 3;
X = 0.607*Red + 0.174*Green + 0.201*Blue
Y = 0.299*%Red + 0.587*Green + 0.114*Blue
Z = 0.000*Red + 0.066*Green + 1.117*Blue
L* =116*(Y/Yo0)'” - 16
a* =500*((X/X0)"” —(Y/Y0)"?)
b* =200*((Y/Y0)"* ~(Z/2.0)"")
H = arctan(b*/a*)

V=L%*

C = (a*2+b*2) %
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where Xy, Yo, Zp are values of a nominally white object-colour stimulus.
Red, Green, Blue value for white is (255,255,255), giving XoY¢Zo for white as (250.41,
255, 301.66).
We will prove using the method of reduction to absurdity.
In table 4, V values for natural red, orange, etc. are between 4 and 10.
Thatis 4 <116%(Y/Y0)"*-16 <10 (1)
From (1), and the value of Yy, we get 1.3069 <Y <£2.8714 2)
That is 1.3069 < 0.299*Red + 0.587*Green + 0.114*Blue <2.8714 3)
Y =0.299*Red + 0.587*Green + 0.114*Blue
= 0.114*(Red + Green + Blue) + 0.185*(Red + Green) + 0.288* Green (4)

> 0.114*(Red + Green + Blue) 5
from (3),(5) , we will get 0.114*(Red + Green + Blue) <2.8714 (6)
that is (Red + Green + Blue) < 25.1877 @)

In RGB colour space, (7) cannot always true. Therefore, we proved that V value range in
table 4 is not correct.

Similarly, we can prove that C value range in table 4 is also not correct.

Though the results we get are different from [5], table 4 still has its values:

1. For RGB colour value, H value is accurate in table 4. Therefore, we can still use
H value of a colour to justify the colour family it belongs to. Also V value varies
when two colours are quite similar and belong to the same colour family. Since C
value represents the purity of a colour, it does not contribute a lot to justify the
colour family. Therefore, we neglect C value in our implementation.

2. For black, gray and white, they don’t have special Hue value feature; therefore,
we have to use other way to recognize them. However, thinking of an image from
the real world, gray is the colour between white and black and usually these three
colours are background colours. And after we refine images with textures, it is

possible that we can treat black, white and grey as the same colour group.

Therefore, based on experimental result and analysis, we formed our new colour range as

shown in table 6
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Table 6: Modified HVC value list

Color name Hue(H) Value(V)
Red 0~64
Orange 64~112
Yellow 80~112
36~64
Skin Color 64~112
Green 112~196
Cyan 196~256
Blue 256~312
Purple 312~359
>90
Black,Gray,White <10

Another new approach in our histogram generation module is the way that we group our
colour data. [5] takes the pixel counts in the 11-colour zones as the elements in the
feature vector formed from histogram generation module. It considered the importance of
the number of pixels in the similarity of two images, but it did not take the distribution of
these pixels into account. For example, 2 images might have quite similar number of
pixels in all 11-colour zones while the sequence of how these colours appear is different.
In human understanding, these two images are hard to be viewed as similar in colour;
however when using this approach in histogram module, these two images are considered
similar. To avoid this shortcoming, we divide the image into 16 segments, and count the
dominant colour in each segment. Afterward, we group these 16 dominant colour values

in a sequence which has been predefined as from left to right and from top to bottom.

The algorithm details are as follows:

Step 1: Scale any input image to a standard size. With our experimental pictures, we
choose 256*256 pixel size of. Though we scale an input image into a standard
size, it does not influence the physical storage of the image. Another issue here is
the colour loss. There are two kinds of possible change in image pixel size when
we scale an input image to a standard size. One is “shrink”. While the pixel size
of the input image is larger than 256*256, colour loss is inevitable since not only

some of the pixels will be lost but also the pixel colour will be modified to match
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the human perspective. Another operation is “expand”. Traditional approach in
this operation is to split rows and columns inside an image. Since the input file in
this module is an output processed by texture detection module, we can not
change the texture that was derived. Therefore, in our implementation, we fix the

input image, and add background blocks to meet the size change of pixels.

Step 2: Divide the image into 16 equal segments. Each segment with a pixel size of

64*64 will be processed from Step 3 to Step 5.

Step 3: Get RGB colour for each pixel in a segment that has a pixel size of 64*64. The
return type of the colour is a RGBQUARD structure.

Step 4: Transform RGB colour value to HVC colour value applying formulas in table3.
While computing H value, to keep its value range from 0 to 360, following
formula is applied :

If a*>0 and b* >0  H = actan(b*/a*)

If a*>0 and b*<0 H =360 + actan(b*/a*)

If a*<0 and b* >0 H = 180 + actan(b*/a*)

If a*<0 and b*<0 H =270 + actan(b*/a*)

Here a* =500*((X/X0)"> —(Y/Y0)"?), b* =200*((Y/Y0)"® ~(Z/Z0)"*}(more details
in table 3)

Step 5: Compare HVC value with the colour range value in table 6; count the pixel
number for each colour and choose one dominant colour for this 64*64 image
part. Colour with the largest pixel count is regarded as the dominant colour. Use
(H)**V/10000 as the representation value to represent those dots belonging to
dominant colour. Generate the final result with the mathematical average of these

values
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Step 6: Combine 16 chosen colours into a 16 dimensional colour vector which represents
the colour histogram for the image; write this record out into a file that will

become an input for index creation module.

In figure 7 the first number represents the number of vector that is used to describe an
image. The 16 numbers, separated by a colon (:), are the colour histogram for the image

with the image name given at the end of the record.

16
0.001735:0.001146:0.000807:0.000409:0.000147:0.000022:0.000000:0.000000:0.00000
0:0.000000:0.000015:0.000137:0.000385:0.000787:0.001125:0.001694:(600.jpg)
0.002212:0.001614:0.001353:0.001185:0.000997:0.000721:0.000462:0.000335:0.00032
9:0.000445:0.000711:0.000974:0.001179:0.001338:0.001594:0.002154:(301.jpg)
0.001961:0.001683:0.001462:0.001138:0.000900:0.000625:0.000358:0.000154:0.00013
8:0.000348:0.000610:0.000878:0.001121:0.001449:0.001671:0.001924:(400.jpg)
0.002327:0.001875:0.001662:0.001475:0.001280:0.001036:0.000729:0.000467:0.00046
0:0.000710:0.001021:0.001263:0.001468:0.001647:0.001858:0.002283:(100.jpg)

Figure 7: Colour histogram for Figure 6 from colour histogram module

4.2.3 Index Creation module

As described in section 4.1, the input for this module is a 16 dimensional colour vector,
which 1s given in Figure 7, and the output from this module is the updated index file
together with the most similar image as the result of the nearest neighbor search. The
input file is a .txt file while the index file is a binary file. SR tree is our choice for index

structure with its advantage having been discussed in section 2.2.2.

In [10], Katayama gives a detailed discussion about how to construct SR tree while at the
same time presenting related algorithms. Part of the source code can be downloaded from

http://research.nii.ac.jp/~katayama/homepage/research/srtree/. (The program has also
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been archived at http://www.cs.concordia.ca/~bedesai/erads/bh_zhang/srtree.zip)The

detailed algorithms of how we implement our SR tree based on [10] are given below:

Configuration of an SR-tree’s nodes

Notation: m and M are the minimum and maximum number of entries in a node.

Leaf node: A leaf node contains between m and M entries of the form (p, data), where
data holds the data of the leaf, and p is the pointer to the data.

L (El,...,En) (mr <n< M)
E; : (p, data)

Non-leaf nodes: A non-leaf node contains between m and M entries of the form (S, R, w,
np), where np is the pointer to a child node, w is the total number of data entries stored in
the sub tree pointed to by np, S and R are the minimum bounding sphere and minimum

bounding rectangle of the child node, respectively.

N : (C,...,Ch) (my £n < My)
Ci : (S, R, w, child_pointer)

In our implementation, M is selected as 10 while m is 6. Actually we may change these
two parameters and can still get the similar experimental result in time consumption and

processing space, as reported by Katayama in [10].

Operations on SR tree

SplitNode (quadratic algorithm)

SR tree takes SplitNode algorithm from R tree [10] since SS tree will reset a portion of its
entries rather than split it [9]. E1, E2 represent the leaf node for SR tree, and El.rect
represents the bounding rectangle for E1. The data structure for R tree can be found in

section 2.2.2.

Step 1: Compose a rectangle R enclosing El.rect and E2.rect for each pair of entries E1

and E2. Calculate d = area(R) — area (El.rect) — area (E2.rect).
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Step 2: Choose the pair with the largest d to be the first elements of the two subspaces.
Step 3: For each entry E not yet in any subspace, calculate d1 = the area enlargement of
the covering rectangle of subspacel for enclosing E.rect. Calculate d2 similarly for
subspace 2. Choose the entry with the maximum difference between d1 and d2 as the
next entry to be distributed.

Step 4: Add the entry selected in Step 3 to the subspace whose covering rectangle will
have to be enlarged least to accommodate it. Resolve ties by adding the entry to the
subspace with the smaller area, then to the one with the fewer entries.

Step 5: Repeat Step 3 and Step 4 until all the entries are distributed, or one of the two

subspaces has M - m + 1 entries.

Search

Suppose T is the root node of an SR tree and S is the search rectangle specified by the
user.

Step 1: if T is not a leaf, find all the entries E whose rectangle E.rect overlaps S. For each
overlapping entry E, set T = E.np, and perform this operation recursively.

Step 2: If T is a leaf, find all the entries E whose rectangle E.rect overlaps S and retrieve

the record that is pointed to by E.id from the database.

Insertion

Suppose D is the new entry to be inserted into SR tree.

Step 1: Set N to be the root node.

Step 2: If N is not a leaf, find the entry E in N whose rectangle E.rect needs least
enlargement to include D.rect. Resolve ties by choosing the entry with the smallest
rectangle and also the smallest bounding sphere. Set N to be the child node pointed to by
E.np, and repeat step 2.

Step 3: if N is a leaf, and N has room for another entry, insert D in N. Otherwise, invoke
SplitNode to obtain N and NN with contain D and all the old entries in N.

Step 4: Let P be the parent node of N, and let E®™ be N’s entry in P. Adjust rectangle
E™.rect to enclose rectangles of all the entries in N. Adjust new bounding sphere with

the following format.
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Let d be the dimension of the data space, x = {Xi | I=1,. . ., d} and r be the center and the
radius of the new bounding sphere, respectively, Ex(k =1,. . .,n) be the k’th entry in the
child node, Ei.X; and Ei.r be the center and radius of entry Ei’s bounding sphere,
respectively, Ex.R be entry Ei’s bounding rectangle, and E.w be the total number of data
entries stored in the sub tree pointed to by Ey.

Xi = Qk=1(Bi. X * Ex.w)) / 2 11 Bew

r = min (d,d;)

ds= max (||x-Ex.x|[+Ex.1), 1Sk <n

d; = max (MAXDIST (x, Ex.R)), Ik <n

MAXDIST(p, R) is the longest distance from point p to rectangle R.

Step 5: If NN is created as a result of a split, create a new entry E™ with ENV.pp
pointing to NN and E™_recr enclosing all the rectangles in NN. Add E™ to P if there
is room. Otherwise, invoke SplitNode to produce P and PP containing E™ and all old
entries in P.

Step 6: Set N=P and NN=PP if a split occurs. If N is the root node, then go to Step 7.
Otherwise, repeat from Step 4.

Step 7: If node split propagation causes overflow in the root, create a new root whose

children are the two nodes obtained by splitting the old root node.

Deletion

Suppose D is the entry to be removed from the database.

Step 1: Set search range S = D.rect, and invoke the search algorithm to find leaf L
containing the entry that matches D. Stop if the entry is not found.

Step 2: Remove D from L.

Step 3: Set N =L, and initialize the temporary working area Q to be empty.

Step 4: If N is the toot, go to Step 8. Otherwise, let P be the parent of N, and E™ be N’s
entry in P.

Step 5: if N has fewer than m entries, delete E™ from P and store all the entries in N in
Q.

Step 6: Otherwise, adjust E™.rect to tightly enclose all the entry rectangles in N. Adjust

new bounding sphere with the following format.
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Let d be the dimension of the data space, x = {Xi | I=1,. . ., d} and r be the center and the
radius of the new bounding sphere, respectively, Ex(k =1,. . .,n) be the k’th entry in the
child node, E;.X; and Ei.r be the center and radius of entry Ei’s bounding sphere,
respectively, Ex.R be entry E;’s bounding rectangle, and Ey.w be the total number of data
entries stored in the sub tree pointed to by Ej.

Xi = Q=B Xi * Exw)) / 2 =1 Exw

r = min (ds,d;)

ds= max (||x-Ex.x|[+E.1), 1<k <n

d; = max (MAXDIST (x, Ex.R)), ISk <n

MAXDIST(p, R) is the longest distance from point p to rectangle R.

Step 7: Set N = P and repeat from Step 4.

Step 8: Re-install all the entries stored in Q. The principle of the re-insertion is that an

entry must be re-inserted into the same level as it was deleted from.

In our implementation, the input file containing the colour vector values is a .txt file and
in a format as demonstrated in Figure 7. The first line in the file describes how many

dimensions the index will have. In our system, we use 16.

4.2.4 Database Module

As described in section 4.1, this module connects to Index Creation Module and User
Query Module and could take outputs from both modules as input. The main task in this
module is to assign semantic descriptions for images while dynamically maintaining its
own information. Though we implement this module in MICROSOFT ACCESS, other

relational or object oriented database could be the choice.

Database structure
There is only one level of semantic description in the sample database that has been
implemented. The system can be expanded easily following the logical relationship in the

current model.
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Semantic header description: All semantic headers are kept as records in relation “cat”.
The table structure is flexible in expanding and hence we may give subdivision and
semantic headers for each category. This expansion is extremely useful when users ask
for more detailed classification suggestions. Also, when the user gives feedback of
discovering a new category, a new record will be inserted to the table.

Table 7: SHMM-Relation cat

catid |AutoNumber [Semantic category ID

Semantic category

catdesc |Text description

subdesc|Text Description for subcategory

a: Relation Name: cat

Africa

Beach

Building

Bus

Dinosaur

Elephant

Rose

Horse

Mountain
Dish

O] O] 0| NI O] O] »I WI N =

b: Sample data entry

In our test database, 1000 sample pictures are classified into 10 categories with the

detailed information in table 7 b.

Image description: Each image has a unique record in the relation “pic”. Since these
records have no relationship with the procedure of CBIR, it doesn’t matter how huge it
might be. The main usage of this table is to use picid, which is generated automatically
by the database system, to uniquely identify an image. Picture name are given by
contributors and could be the same since different contributors may use the same name to

describe different images. Also this table will hold more specific features for images.
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Table 8: SHMM-Relation pic

Picid AutoNumber picture ID

Picname Text picture name

Picdesc Text picture description
picdate Text picture shooting date
photographer  [Text Photographer
contributor Text contributor of the picture
picplace Text picture shooting place

people

a: Relation Name: pic

Semantic description for image: The relationship between images and semantic
descriptions is maintained as records in relation “sedesc”. Since there is only one level of
semantic description known as category in the sample implementation and there is no
overlap between categories, currently the combination of picid and catid is unique. When
expanding the system to at least two level semantic descriptions, the structure might be
changed to add more subcategory id in this relation. Another approach is to add a new
table to describe directly the relationship between picture and subcategory. The former
approach reduces storage space while wasting time in reading irrelevant information if
we only care about the subcategory. The latter approach instead, provides efficiency in

query process while wasting storage space. This table is useful when suggesting image

b: Sample data entry for pic

categories during the image classification process.

Table 9: SHMM-Relation sedesc

Picid

Number

picture ID

Catid

Number

category ID

a:

Relation Name: sedesc
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b: Sample data entry for sedesc

User Management: User information and requests are kept as records in relation “user”.

Not only does this table protect system security, but also it determines the function

modules users can view in SHMM. Also the session and request fields will play an

important role in the user query module.

Table 10: SHMM-Relation user

Userid Text User ID

Password [Text Password

Session  {Text Session

Request  {Number Request result or not
WL Number Whether in waiting list
Privilege |Number Viewing Privilege

a: Relation Name: user

4.2.5 User Query Module

As discussed in section 4.1, this module provides the user with a graphical interface,

b: Sample data entry for user

translates the user’s database queries into internal index keys and conducts the user

feedback to the Database Module.

In web applications, we seldom use files to transfer information between two pages.

However in our SHMM system, there are some backend programs such as index creation

program (dynamicbuild.exe) and search for nearest neighbor program (fecthNN.exe).
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These programs take a specific file as input and another file as output; therefore, in our
implementations, we have to consider the conflicts that the file sharing mechanism brings

to the multi-request web application.

The solution is to use relation USER to manipulate the user request. In relation USER,
only one record could have value “1” in field REQUEST, while other records have value
“0”. When running backend programs, all requests with REQUEST value “O in relation
USER” have to wait. After finishing processing one request, the system will choose the
smallest session ID to respond to another request. Figure 8 explains how the User Query

module handles requests generally.

User Query Module Index Module
while(at least one request in table USER)
Hold all requests
Select the smallest session ID(IDs) E
Change REQUEST to 1 for IDs _E"" either create new index or search for
the nearest neighbor (destination file
generated); remove WL sign for IDs
from USER
Process and display the result for session IDs
Clear the REQUEST for IDs

Figure 8: How User Query Module handle multiple requests

The main screen for SHMM is as follows:
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-él] http:fflocalhostf

CINDI Virtual Libaray

Welcome to CINDI image library!

User ID | Password | { ot

Concordia University

Currently two kinds of users are supported in SHMM: system administrator and

registered user.

After inputting correct user id and password, main menu will be seen as Figure 10:
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fﬂ Untitled Document - Microsoft Internet Explorer provided by Sympatico

CINDI Virtual Libaray

CINDI Image Library

Similarity Retrieval

Inage addition and Clussification

login as different user

Figure 10: SHMM-Main Menu

In the main menu page, users can select similarity retrieval, image addition and

classification, keyword search or logout and login as different user.

Clicking “Similarity Retrieval”, the interface is as follows:
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3 Imane Process Microsoft Internet xplorer provided by Sympatico
Fle Edt Vew Favortes Tods Mk ———___W‘l-
Gumack ~ - @[] 2} | Qsewch (HiFvoes Preds B D- DWW -EH B

Address ) hitp:/ocahostjmageload.asp x| @

home Similarity Retrieval

Random Select Sample from Database

Please select the number of similar pictures to be retrieved 20~

@ [T B
Figure 11: SHMM-Similarity Retrieval 1

This interface provides Query by image examples function where sample images are
randomly selected from the database. Before clicking the selected sample image, users
can change the number of results the similarity search might return while the default

value in the system is 20.

Once the selected image is clicked, assuming it to be the image with the yellow rose in

Figure 11, the result will be given in Figure 12:
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Address I@ http:{flocabhost {resultl . asp?fiename=623.ipg i‘ Peo
-

home Similarity Retrieval

Sample Image:

Similarity Retrival Result

i d | R ] . ety ! =]
[&] pore T [ @ wocaliorane:

Figure 12: SHMM-Similarity Retrieval 2

The process in both front and back ends of the system includes:

Stepl Get the picture id and the number of returned retrieved images.

Step2 Pass the variable value in Stepl to Index Creation Module, and use the nearest
neighbor search to get the query result.

Step 3 Apply the result getting in Step 2 to Database Module, and show the result in the

user query module.

The main screen for “Image addition and Classification” is as follows:
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8 :
Add § @‘:] http:/flocathostfimagepracess.asp

e

Figure 13: SHMM-Image addition and Classification 1

The classification process procedure includes:

Step 1: Select the image contributor /user would like to add. Use “browse” button to find
the picture and use “submit” button to confirm. Currently, the system only supports
image files with .jpg format.

For example, we try to add an image of a rose to the database. After clicking the “submit”
button, we can see Figure 14 as follows. There is a similar interface for “Query by

Example” to upload an image for which you are looking for a similar image.
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retnieval result - Microsoft Internet Explorer provided by Sympatico

Fle Edt Vew Favokss Tods re _“ T s
apack v o - @ [ 23| @oearch (FaFavorkes Preds B D - E ¥ wo @

Address [ ] tp:/fiocahost result3.asp | oo
home Image addition and Classification

Image Classification

The most similar pic is

CATEGORY :rose

suggested category is rose

Cafrica © beach ¢ building © bus € dinosaur " elephant & rose ¢ horse Cmountain © dish Cecar

«New Category
Confirm
|
(&1 pone [T T B Localintranet

Figure 14: SHMM-Image Edition and Classification 2

The following steps are involved in getting the suggested category.
1) Pass the image to the Texture Detection Module and Colour Histogram Module,
respectively, and get a 16-dimensional vector.
2) Use the 16-dimensional vector to query Index Creation Module. After applying
nearest neighbor search, get the most similar image in the database.
3) Applying the result generated in 2 to Query Database Module, get the suggested
category and semantic header for the image waiting for classification.
4) Display the result from 3 in User Query Module and wait for the final decision
from users/contributors.
If the user has the system administration privilege, he (she) may choose the New
Category option and add a new category to the system, as shown in Figure 14. If the
image contributor uses this system, he (she) cannot add new category to the system
directly due to system security while he (she) may use email or phone administrator about

adding the preferred new category. The sample interface is given in Figure 15.
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suggested category is rose
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Confirm

|
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Figure 15: SHMM-Image Edition and Classification 3

Once user makes the choice, and click “confirm button”, the new image will be added to
the image database. The required process includes:

1) Get the picture name together with the location, 16-dimensional colour vector,
picture category and semantic description from User Query Module.

2) Copy the source image to the image database, insert 16-dimensional colour vector
of this image into index structure through Index Creation Module, and insert
semantic description of this image into image database through Database Module.
In case any part of processing fails, the whole process will be rolled back to
maintain the integrity of the system.

3) Transfer system feedback to User Query Module for further actions.

The main screen for “Keyword Search” is as follows:
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Please select Keyword for image retrieval

lafricalbeachbuilding|buz dinosaurelephant roze {horseglmount ainldishine !

Figure 16: SHMM-Keyword Search 1
This interface provides Query by keyword function. While automatically searching the
image database for category and semantic description information, the system first
provides all possible key words for user query selection. Of course, when the system has
a large volume of keywords, we can only display the first layer keywords, or even in
some extreme case the limited quantity of keyword. In current stage, we only
implemented the category as the keyword; it is the same way to implement the semantic
descriptions with subcategory as key word. When the user selects one keyword, the
images under this category or more specifically that have this meaning in content are
being shown in the order of creation date. For example, we choose the keyword rose, and

all images classified in this category are displayed as in Figure 17.
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Fle Edt vew Favoites Took Hep [ ks »i_
sack + @ - G [ 5} | Qoeorch Goravorkes Pmeda B D- S W - E X o o
Address I@ http:fflocatostjresult2, asprkeywordm? ﬂ e

home Keyword search

Please select Keyword for image retrieval
o
=l

Figure 17: SHMM-Keyword Search 2

Users can also do Query by image examples in this interface via clicking any picture they
have seen. The process procedure is almost the same as it does in “Similarity Retrieval”
except that the number for retrieving results is kept as default value 20, and users cannot

make any change there.
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Chapter 5

Experimental Results and Discussions

The system is implemented on a PC with Microsoft Windows 2000. While using Personal
Web 5.0 for web publishing, the web page is written in ASP. Also C, MFC have been
used in different modules. Two-phase tests have been done on SHMM. First, the testing
sample images come from the joint project from Stanford University and Penn State
University started from 1995 known as SIMPLICITY (http://wang.ist.psu.edu/docs/related/)
with totally 1000 images equally distributed in 10 categories. Secondly, the 10000 testing
sample images come from Internet and have no clear classifications. The system
performance is evaluated by the accuracy of similarity search results and the accuracy of
image classification. Session 5.1 and Session 5.2 will discuss the performance based the
testing for 1000 images. Session 5.3 will focus on the performance comparison between

two-phase tests while session 5.4 will give an overall performance discussion.

5.1 Results for Similarity Search

Generally, the results vary a lot for various input images.

For images with one dominant texture and almost uniform colour inside that texture
region, such as category of “roses”, "buses”, ’dinosaur”, the result is excellent. We can
get at least 16 out of 20, usually 18 out of 20, and even hundred percent matching is not

rare. The sample result is given in figure 19:

The first image is the sample image and the outcome is 8 out of 10. The reason why the
other two images appear is simple. As discussed in the Query by image examples process
procedure in section 4.2.5, this result lies in the values in the index structure. While the
index value to represent an image is a 16-dimensional colour vector, it is obvious that the
suspect images must have similar colour vector as the sample one. Considering the way
we get the colour vector, we might have to admit that this kind of mistake is not

avoidable. In Texture Detection Module, only one texture region is detected; therefore,
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suspect images such as 2 and 8 (numbered from left to right) have almost the same
textures as the sample image. Taking this result as an input to Colour Histogram Module,
first we divide the image into 16 parts, then select one dominant colour in each part, and
form the colour vector based on these values. Since there is quite similar colour in each
part, while processing nearest neighbor search in SR tree, this process will generate the
result shown in Figure 18. However in reality, images 2 and 8 are not similar to the

sample image.

/Rretrieval result - Microsoft Internet Explorer provided by Sympatico

Fle Edt View Favarites Tools Help [ ks ]

@aack-»v@ﬁﬂ‘@&mh [FJFavorkes %Meda @)%vg'gﬁaﬂ&

Address @I-ttp:mocahnstjrasultl.asp?fienams-iilz.ipg i ? ‘(DGO
home Similarity Retrieval

Sample Image:

Le L

&) Done [— f__ I-— ]@1&:& intranet
Figure 18: Sample result from Similarity Retrieval

5.2 Results for Image Addition and Classification

The result also varies a lot from the input. As discussed above, for images with one
dominant texture and almost uniform colour inside that texture region, we can get better
result. And on the other hand, if images are full of trivial partial characters, the

classification might be a disaster.

The sample would be as follows:
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Address @Mp;[ﬂo;&pst]rasult&.asp ) o o E] PGo

home Image addition and Classification

Image Classification

Browse... | Submitl

The most similar pic is

CATEGORY :building

suggested category is building

Cafrica beach #building ¢ bus ¢ dinosaur ¢ elephant " rose ~ horse " mountain ¢ dish C car
Confirm

@oone T —

Figure 19: Sample result from image addition and classification

Since we only generate one texture region in an image, it is hard to describe the
difference between people in a building and the inner side of a building. If we keep all the
current algorithms and still want the system to classify the above two categories, the

success rate will be certainly low.

The texture for the sample image is shown in Figure 20-a while the most similar image in
the database has the following texture given in Figure 20-b. After examining the colour
feature, which even from the human perception is quite similar, the colour vectors for
these two images are eventually similar. Therefore, after the nearest neighbor search
inside index structure, we get the answer, which is obviously not a quite reasonable

classification.
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a ) b

Figure 20: Result comparison

5.3 Performance comparison between two-phase tests

After having successfully finished the system test for 1000 images, we expand our testing
to 10000 images. While randomly select images from Internet, we also have got several
categories of images within our image domain. Our experimental results show that
images with dominant colour inside texture region have better performance in SHMM
than images lack of frequency colour transitions though the overall performance is worse
than the first phrase testing. Looking back to these random images from Internet, we find
that image quality and image size have influences to the performance. In our case, the
quality of these 10000 images is not as good as it is in the phrase one and the image size
for the 10000 images is smaller than the first phrase test. Also we can conclude that

colour feature is not enough for a CBIR system.
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5.4 Discussions

Though CBIR has been the hot research area in the past ten years, and models to well
discipline modules as pointed out, how to build a good CBIR system and what a CBIR
looks like are still unresolved. Through a literature survey on contemporary CBIR
systems, our SHMM system chooses the most typical and also simple approach in each
module of a CBIR. Despite the shortcoming of unstable performance due to different
input image types, our experimental evaluations have shown that SHMM is effective and

flexible in forming database queries, as well as retrieving user desired images.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Contributions

Through SHMM, we demonstrate how to build a CBIR system. SHMM aims to be a web
oriented image library with an automatic image classification mechanism to support
similarity search, and keyword search. As a standard CBIR system, SHMM has its
feature extraction layer, which supports colour and skeleton feature extraction so as to
generate a 16-dimensional vector value, based on which, a 16-dimensional SR tree is
constructed. Using the nearest neighbor search technology inside the SR tree, similarity
search is supported. With backend database support, the semantic description layer,
which constructs the keyword of the semantic meaning of image, can be selected as a
search requirement. When a new image is entered in the system, SHMM can
automatically scan its feature, and based on the similarity images in the library, the

system can provide the suggested semantic description for the new image.

The SHMM presented in this document serves as a sample and efficient CBIR system for
image understanding especially for the pictures with one dominant texture and almost
uniform colour inside that texture region. With the flexible module driven design, SHMM
is capable of addressing complicated multi-layer CBIR requirement while expanding
feature definition, defining knowledge representation model and adding domain

knowledge.

6.2 Future Work

Future work for the SHMM might lies in three main directions:
1) Introduce more efficient texture detection algorithm or optimize the current

algorithm to get more texture regions from an image.
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2)

3)

4)

Introduce segmentation detection into SHMM so that more detailed image
understanding could be processed and hence even partial image matching might
be supported in the future.

Add object and spatial representation to SHMM, so that more semantic meaning
would be derived from images.

Migrate current system to the platform of Linux plus PHP plus MY SQL so as to
integrate with CINDI system.
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Appendix: Algorithms in SHMM

Algorithms in SHMM can be divided into 5 parts based on system diagram illustrated as
Figure 5 in the thesis. While main algorithms lie in the image processing and index
module, we will go through algorithms in these parts denoted as Al for Texture
Detection Module, A2 for Colour Histogram Module, A3 for Index Creation Module.
How these modules work with Database Module and User Query Module has been
illustrated in the thesis; for the 3 modules, we will focus on the algorithms as well as

input and output.

Al and A2 are implemented in getfeature.cpp while A3 is implemented in fetchNN.cpp,
storeRecord.CPP, dynamicBuild.CPP.

Al:
Input: filename

Output: global CxImage object imageTx

Void scanTx(filename)
{

if (!imgTemp.Load(filename,0)) return;

/[iWidth, iHeight is the standard size of the image. Here is 256*256
If (limgTemp.Resample(iWidth, iHeight)) return;
imgTemp.FFT2(&imgTemp, &imgTemp, &rfftl, &ifftl);

pIndex = rfft1.GetPixellndex();

// get the texture dots from an image
long kernel[]={-1,-1,-1,-1,8,-1,-1,-1,-1};
ifft1->Filter(kernel,3,pIndex,0);

/1 get the texture image

/lcompare each dots with the edge dots in the texture
pImage = rfft1.GetBits();

/fblocksize =16
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for(iRow = 0; iRow < iHeight; iRow += iBlockSize)

{

for(iCol = 0; iCol < iWidth; iCol += iBlockSize )
{
// Block Processing
for(iLoopRow = 0; iLoopRow < iBlockSize; iLoopRow++ )
{
for(iLoopCol = 0; iLoopCol < iBlockSize; iLoopCol++ )
{
Get the filtered value in the same position
If value exists
count this dot in the texture,
combine this not with the last confirmed texture dot
add to dImage
}
}
}
}
dImage . FFT2(&dimage, &dimage, & imageTx, & imageTx);
}
A2:

Input: imageTx

Output: global file object picfeature.txt

Void colorHis()
{

/lresize the image to 256*256, rewrite Resample function in CxImage
If (!imageTx.Resample(iWidth, iHeight)) return;
//blocksize=64
for(iRow = 0; iRow < iHeight; iRow += iBlockSize)
{
for(iCol = 0; iCol < iWidth; iCol += iBlockSize )

{
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// Block Processing
reset pixel counter for each colour (9 counters totally)
reset representation value for each colour(9 values)
for(iLoopRow = 0; iLoopRow < iBlockSize; iLoopRow++ )
{
for(iLoopCol = 0; iLoopCol < iBlockSize; iLoopCol++ )
{ R,G,B = imageTx.GetPixelColor(iRow* iBlockSize + iL.oopRow
1Col*  iBlockSize + iLoopCol)
transfer RGB to HVC
use H, V value to classify the colour group
in the newly classified colour group ,counter = counter +1

value= value+ (H>*V/10000)*

}

decide the dominant colour through pixel counter

represent this dominant colour by (value)"? /counter

}
delete imageTx;

get 16 colour value, export to picfeature.txt

}

A3:
Actionl: build index (create a new index file or insert new values to a index file )
Input: picfeature.txt , picindex

Output: updated picindex

void storeRecord (picfeatureFile, picindex)

{

picFeature.open(picfeatureFile);

if( !'picFeature ){return ;}

//check whether the destination exists
if picindex not exist

{ //dynamicBuild an empty index file
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create binary file picindex ;

create an empty root node;

define the maximum and minimum number for leaf node, 10 and 6 respectively

binding the root node with HnSphere(sphere), HnRect(rectangle)

}

while( picFeature.eof() 1=0)

{

read a line;
/finsert the new vector into picindex
create 16 dimensional vector;
allocate this vector into picindex by choosing the smallest HnSphere,
HnRect
if available position exists in the entry leaf node
{ insert this vector to the leaf node

while(not root node)

{
modify counter, HnSphere, HnRect at its parent node
modify pointer if necessary at its parent node
}
}
else
{//split the leaf node
while (no request in splitting stack)
{
create a new node with its HnSphere, HnRect covering the whole
entry needed to be deployed;
take the new node as a parent node and stack a new split
requirement if necessary;
rearrange entries to be mostly equally distributed in the new
parent node;
delete this request from splitting stack;
}

insert this vector to the leaf node

while(not root node)
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modify counter, HnSphere, HnRect at its parent node

modify pointer if necessary at its parent node

Action2: find the nearest neighbor for the input vector
Input: value vector, picindex
Output: global picresult.txt
void fetchNN(sampleVector, picindex)
{
//set the comparing range, radius for rectangle and sphere
set HnRange for HnRect;
set HnSphere.radius;
put root node to the visiting list
while (not empty in visiting list)
{
get child node T from the top node in visiting;
if not leaf node
if ((HnRect(sampleVector)overlapsHnRect(T)) or
(HnSphere(sampleVector)overlaps HnSphere(T)));
{

put to the visiting list

else

retrieve any entries under T that has overlaps range among predefined values
}
sort the result based on the range and radius differences;
export value handles in the result to picresult.txt

update USER table while set WI.=0 for record where REQUEST=1
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