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Abstract

Feature Based Techniques for Point Sampled Surface Models
Liang Luo

Recent advances in 3D acquisition technologies have resulted in a large and
growing body of 3D point datasets. Such datasets are typically densely sampled points on
the surfaces of the object. They are unstructured, lack connectivity information, and are
increasingly becoming very large with upwards of several million of points. Current
techniques for handling such large point datasets have evolved from several decades of
research in triangle meshes. However, there is increasing interest in techniques that deal
with these point sets directly without having to create any underlying mesh or surface
information in advance.

The primary objective of the research reported in this thesis is to develop new
techniques for dense point sampled surface models that directly work on the point
samples. Rather than using a deterministic approach, our techniques use a statistical
approach of associating properties with points based on the distribution of the point
samples in a local neighborhood. Based on this research, our main thesis can be stated as
follows: We can classify points using the statistical techniques of principal component
analysis (PCA) into different categories such as flat, corner, crease and border. This
classification can then be used to devise efficient techniques for processing such dense
point sampled models. Specifically we have developed and tested new techniques for
efficient rendering and reverse engineering the boundary representation of such dense
point sampled models.

Rendering efficiency is considerably improved by using stochastic sampling that
is controlled using various model features and view dependent image space properties.
The boundary reconstruction is a rather more complex process and is performed in the
five stages — classification, model edge detection, edge refinement, loop detection and
half-edge representation of model features, and lastly face level segmentation of point
sets using a seed fill like algorithm in 3D. Implementation and testing of these

techniques required extensive graphics software development effort (over 30K lines of C
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and OpenGL code). While the rendering technique works well for all classes of model
shapes, the reconstruction technique is most suited for engineering models which have

planar faces and sharp edges.
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Introduction

1.1 Point Sampled Surface Models

Point sampled surface models are essentially point sets that are obtained as a
result of sampling the surface of any three dimensional object. The sampling process
may be the result of the use of 3D scanning devices that are becoming increasingly
affordable and accurate these days. Or it could the result of scientific computations
simulating complex physical phenomena, primarily to benefit from some of the
advantages that such representations provide further down the processing pipeline. The
net impact of this has been that such representations, with a 3D point as the primitive
representation are receiving a growing amount of attention as a representation of 3D
surface models in computer graphics. A further motivating factor is that highly detailed
surfaces require a large number of small primitives, which contribute to less than a

pixel when displayed, so that points become an effective display primitive.

Point sets are typically densely sampled points on the surfaces of the object.
They are unstructured, lack connectivity information, and are increasingly becoming
very large with upwards of several million of points. In order to make such data sets
useful for graphics applications, a set of surface attributes could also be associated
with each sample point, most importantly: a normal vector, color information, and a
conservative estimate for the local sampling density. Historically, it is clear that the
use of points as a universal representation was not a difficult concept to devise or

justity given the trend towards richer graphics content with extreme geometric



complexity. However, the implementation of effective geometry and graphics
processing techniques was never simple, with limited memory and computing power
that was available in earlier days. While on current hardware this is much less of a
problem, dense point sampled surface models are still much too large for a number of
tasks such as real time rendering, shape editing, geometric interactions, etc. Table 1-1
shows some statistics of a few example models that we have used for experimental
purposes in our research. It must be noted that these model sizes are not necessarily
representative. In practice sizes could be very much larger. The interested reader is

referred to the Digital Michelangelo project in Levoy et al. [27].



Picture Model Number of | Source

Name Points

Bunny 35947 Stanford University Computer
Graphics Laboratory

Armadillo | 172,974 Stanford University Computer
Graphics Laboratory

Happy 543,652 Stanford University Computer

Buddha Graphics Laboratory

Dragon 566,098 Stanford University Computer
Graphics Laboratory

Lucy 14,027,872 | Stanford University Computer
Graphics Laboratory

Single Box | 60,002 Made by myself.

Dual Box 74,402 Made by myself.

Anvil-1 162,882 Offered by Hao Zhou

Table 1-1: Sample 3D Point Cloud Models




1.2 Point Sampled Surface Techniques

The point as a graphics rendering primitive was first proposed in Levoy et al.
[27]. In recent years the interest has grown beyond rendering and the point is being
proposed as the shape representation primitive. In this larger context a number of
processing tasks need to be performed on point set based 3D surface models. Major
challenges in this type of representation are the handling of large amount of data
produced and its interactive rendering. There are basically three broad categories of not
necessarily independent techniques that are being researched. These are:
1. Real time rendering at desired resolutions
2. Reverse engineering for obtaining more abstract representations, such as
triangle mesh representations, implicit or parametric algebraic representations
for the underlying surfaces and boundary representations.
3. Simplification for reducing model data sizes and enabling more efficient
model processing.
In this research we have focussed on real time rendering and reverse

engineering to obtain boundary representation of the point set.

1.3 The Problem of Rendering Dense Point Sampled Surfaces

Straight forward rendering of the point sampled surface would involve the

following for every 3D point in the set:

1. Determine the pixel in the display screen on which this 3D point projects
under the current view parameters.

2. Get the normal vector to the underlying surface at this point, the



color/material properties, and texture map values if available.
3. Compute the color and assign to this pixel.
The main difficulties with this problem are the following:

- Ifthe sampling density is very high as compared to the display image size, it
may happen that a very large number of pixels map onto the same pixel,
resulting in considerable slowing of rendering speeds for virtually no gains
in image quality.

- If the sampling density is low, say when zooming into a region, then many
pixels in the image my not be covered by any of the 3D points causing holes
in the final image. One of the techniques suggested to overcome this problem
is to define small regions around each point (or pixel in image space)
referred to usually as surface splats, such that a continuous surface can be
displayed by accumulating or blending these splats in image space. The other
approach is to derive the equation for the underlying surface locally and
super sample the local surface equation to generate as many point s as

needed for a continuous surface image.

1.4 The Problem of Recovering a Boundary Representation from Dense

Point sampled Surface Models

1.4.1 Reverse Engineering
Reverse Engineering (RE) usually starts with the acquisition of digital point
surface sampled data from the physical/master model and then developing surfaces on

this point set data for other engineering purposes. Reverse Engineering involves more



than the mere use of the latest scanning technology and/or the latest surface fitting
software. The end result of the RE process must depict the most accurate and usable
dataset, for the true representation of the physical product definition.

There are up to three steps in the process of reverse engineering. The first step
is to use some input device or technique to collect the raw geometry of the object. This
data is usually in the form of (x,y,z) points on the object relative to some local
coordinate system. These points may or may not be in any particular order. The
second step is to use a computer program to read this raw point data and to convert it
into a usable form. This step is not as easy as it might seem. The third step is to
transfer the results from the reverse engineering software into some 3D modelling or
application software so that you can perform the desired action on the geometry.

Sometimes, steps 2 and 3 can be done inside one program.

1.4.2  Simplification

Point sample surface data usually are acquired with a range scanner. It always
performs multiple scans; each scan is in its own coordinate system, and combines all
scans together by registering the scans in order to get a complete object.

The main function of surface simplification is to reduce the point set data size.
The benefits are (1) optimizing rendering performance, (2) the subsequent surface

reconstruction becomes significant efficient and faster.

1.4.3 Feature Extraction

Point sample surface is a surface described by a set of sample points without

further topological information such as the triangle mesh connectivity or a



parameterization. Furthermore, the point sample data is usually a very large data set. In
order to be used for graphic process or rendering system, geometry information is
necessary. Geometric feature includes vertices, edges, loops and faces of the original
object.

Feature extraction is the process of feature detecting. These processes usually
detect line-type feature or surface feature from the point sample data set. The

geometric information is very helpful for further graphic processing.

1.4.4 Surface Reconstruction

Surface Reconstruction is also called surface recovery in Hoppe et al. [19],
Savadjiev et al [46].

Surface reconstruction is to find an algebraic surface representation that
approximates a physical surface by using a set of point coordinates sampled from the
surface. These point coordinates may be corrupted with noise, due to imperfections in

the acquisition of the data.

1.5 A brief Introduction of Point Sample Surface Data

The Point Sample Surface is created by scanning the surface of an object, and it
is unorganized point clouds derived from laser scanner data or photogrammetric image
measurements. The Point Sample Surface Data are always very big data without any
geometry information. It is hard to use Point Sample Surface Data directly by graphics

applications.



The Point Sample Surface Data has three kinds of model, one is derived from
image range data, the second one is multi-view point cloud model and the third one is
close surface point cloud model.

The Point Sample Models are separated to engineer structure model and nature
model according to the source object. Engineer structure model are composed of many
engineer objects, and each of them is composed of the primitives. The nature models
are coming from the nature objects, and they are always composed of very complex

curve surfaces.

1.6 Objectives and Main Contributions of this Research

Current techniques for handling such large point datasets have evolved from
several decades of research in triangle meshes. Creating a triangle mesh representation
of a dense point set representing the closest simplical complex approximation of the
underlying surface is a computationally complex task. It is also highly dependent on
the sampling density and could be prone to errors if there is wide variation in sampling
density. There is a need for efficient techniques that can process and render large point
sets directly without having to explicitly digital representations of the underlying
surface geometry. This is the primary objective of the research reported in this thesis. It
is to develop new techniques for dense point sampled surface models that directly
work on the point samples. Rather than using a deterministic approach, our techniques
proposed in this thesis use a statistical approach of associating properties with points
based on the distribution of the point samples in a local neighborhood. Based on this
research, our main thesis can be stated as follows: We can classify points using the

statistical techniques of principal component analysis (PCA) into different categories



such as flat, corner, crease and border. This classification can then be used to devise
efficient techniques for processing such dense point sampled models. Specifically we
have developed and tested new techniques for efficient rendering and reverse
engineering the boundary representation of such dense point sampled models.
Rendering efficiency is considerably improved by using stochastic sampling that is
controlled using various model features and view dependent image space properties.
The point set data is first preprocessed into a hierarchical oct-tree representation using
PCA results, such that each leaf node of the oct-tree is near planar. Next the PCA
results and the proximity information present in the oct-tree are used to estimate
correctly oriented normals for any point. Finally depending on the view point and
properties such as image size, the oct-tree nodes are traversed to the desired depth, and
the nodes for display are selected. These nodes are then rendered using a random

sampling of the points in that node.

The boundary reconstruction is a rather more complex process and is
performed in the five stages — classification, model edge detection, edge refinement,
loop detection and half-edge representation of model features, and lastly face level
segmentation of point sets using a seed fill like algorithm in 3D. We have had to
develop new methods to enable us to reconstruct boundary representation entities from
point sample surface data. During reconstruction of the boundary representation, the
first stage is the classification of the vertices into 3 classes: flat, crease and corner
vertices. This stage consists of analyzing noise data, the fast neighbor vertices

collecting, eigenvalues and eigenvectors calculation, and classifying the vertices. The



second stage is generating the crease edges by recursively traversing the crease vertices
and corner vertices along the crease vertices’ direction. The third stage is refining the
crease edges, and this stage consists of splitting intersecting-edges, culling short edge
loops and edge merging at the corner vertices. The fourth stage is generating the crease
edge loops. For this we use the half-edge data structure described in chapter 2 later.
The fifth stage involves segmenting of points into different faces using the crease edge
loops. In this stage we have devised an extended of the seed fill algorithm in 2D to 3D
surfaces data. Another difficult task to be addressed here is the disambiguation of

points close to the edges that are wrongly classified by the statistical process.

Implementation and testing of these techniques required extensive graphics
software development effort (over 30K lines of C and OpenGL code). While the
rendering technique works well for all classes of model shapes, the reconstruction

technique is most suited for engineering models which have planar faces and sharp

edges.

1.7 Organization of this Thesis
The rest of this thesis is organized as follows. Chapter 2 first provides a brief
overview of basic techniques such as the principal component analysis and half edge
representation data structure. This is followed by a comprehensive survey of the
different techniques that have been reported in literature for processing point sampled

surface models. Chapter 3 of this thesis describes in detail the statistical rendering
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technique. It includes examples of the results of our implementationl. Chapter 4
addresses the problem and our proposed solution for detecting and refining edge
features in the model, and Chapter 5 similarly addresses segmentation of points into
faces. Extensive implementation work was involved. All implementation was carried
out in C with OpenGL used for 3D graphics. Relevant details of this implementation
are presented in Chapter 6. Chapter 7 presents our conclusions and potential for future

work.

! This implementation was joint effort with Mr. Sushil Bhakar, a doctoral student of my supervisor.
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2 A Survey of Techniques for Processing Point Set Models

Point sampled surface data may originate from a number of sources. The data
could be from a 3D scanner or the result of scientific simulations. Data from 3D scans
could be processed in raw format or could be the processed result of merging raw scan
data from different views. In the latter case, the point set data will be unorganized and
there may not be any connectivity or spatial proximity information present in the
structure of the data. The originating source also plays a significant role when devising
a processing technique for such models. In this chapter we first give an overview of
processing techniques for point sample data. Then we present some basic methods that
are used by these techniques. Lastly we provide a comprehensive survey of techniques
devised for irregularly sampled surfaces, the originating source of data that is of

interest to our research.

2.1 Overview of Processing Techniques for Point Sampled Surfaces

The point sample surface data could be in two forms. One is image range data
from laser range scanners, the second one is a point cloud model, either modeling a
closed or open surface. Image range data consists of regularly spaced samples in a two
dimensional domain, with a depth value associated with each sample point. Hence
these are also referred to sometimes as depth images. Point cloud data is irregularly
spaced and sampling density may vary considerably over the complete surface of the
model. The output resulting from processing of these point sets can also be different
depending on the process and the desired end application. A rendering process will

result in an image, usually a color shaded picture of the 3D model. On the other hand,
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geometry recovery processes would give us many different kinds of models: 3D
triangle mesh model, piecewise implicit or piecewise parametric algebraic surface
model, boundary representation of the model in terms of vertices, edges and faces (B-
Rep model), etc. Simplification and boundary feature extraction are other processing
tasks that could give us different outputs. These processing techniques are not isolated
and can be used in sequence. Those are one may simplify, then carry out surface
reconstruction, and then do point sample rendering. One may apply point sample
rendering directly, or feature extraction and then surface construction etc. Figure 2-1

gives a diagrammatic representation of the data formats, processing techniques and

outputs.
i Processing Technique
Point Data Format Qutput Type
Simplification/Blen
ding
Triangle mesh Model
Image Range Data
Surface LN
:> Reconstruction ———/] | Surface Model
Close Surface Point
Sample Data Feature Extraction B-Rep Model
B-Rep Solid Model
reconstruction
Color Shaded Image
Rendering

Figure 2-1: Diagrammatic Overview of Point Sampled Model process.

Various algorithms with different capabilities and guarantees have been

proposed for these different processing techniques. The process of turning a set of
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sample points into a computer graphics model generally involves several steps: the
reconstruction of an initial piecewise-linear model, simplification, and perhaps fitting
with curved surface patches.

Undersampling happens when a surface has small features such as high
curvatures that are sampled inadequately. It cannot be avoided when a surface is not
smooth. In this case no finite sampling is dense enough for sharp edges or corners.
Even the presence of boundaries in the surface can be thought of as being a
consequence of undersampling.

Oversampling causes difficulties, particularly in post-processing. A surface is
sampled with unnecessarily high density. Surfaces reconstructed from an unnecessarily
dense sample contain large numbers of geometric entities and thus become unwieldy

for further processing such as graphic rendering or finite element analysis.

2.2 Some Basic Methods for Dealing with Point Sampled Geometry

2.2.1 Delaunay Triangulation Algorithm

A number of point sample processing techniques reported in the literature use
the classic Delaunay Triangulation Algorithm to create the 3D triangle mesh
connecting the points in the sampled model in [Gumhold 14], [Amenta 1], [Amenta 2].
The triangle mesh imposes topological connectivity and a neighborhood relationship
on the sample points. In general, 3D triangulation is a very complex problem as it first
needs to create tetrehradra in the 3D space and then to extract the surface triangles. For
very large models with millions of points, many degenerate geometric conditions could

arise and it is not clear if the reported techniques will take acceptable computation
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times or even work correctly. Many papers therefore just assume that the triangulation
of the surface of the point cloud model is given and describe further processing based

on the connectivity and proximity information provided by such a triangle mesh model.

2.2.2 Voronoi Diagrams in 3D

Voronoi diagrams are a fundamental structure in geometric computing.
Voronoi tessellations are duals of Delaunay triangulations. They provide a polyhedral
partitioning of the space so that points in space nearest to any sample point are
guaranteed to lie within the convex polyhedron containing the sample point. Like
Delaunay triangulation, robust and efficient implementations of Voronoi methods that
can work with very large point cloud models are difficult. Fig 2-2a shows the 2D
Voronoi tessellation. Figjure 2-2b shows the delaunay triangulation of all the points

and then the boundary of the original point set. (Figure source: Amenta et al. [1],[2]).

Figure 2-2: Voronoi Diagram.
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2.2.3 Least Squares Fitting Method

Least Squares Fitting Method is a popular method used in the 3D point cloud
processes. It is usually used for fitting the sample point dataset to primitive surfaces
such as planes, quadric surfaces, etc. The least squares fitting method is based on
minimize the expression:

n

S= Z[f(xia Yis Zi)]2

i=1

f(x,y, z) = 0 is the algebraic representation of the geometry primitive.

Feddma et al. [12] describe how to fit large range data sets to geometric

primitives such as planes, cylinders, spheres, ellipsoids and other quadric surfaces.

2.2.4 Moving Least Squares Fitting Method

Moving Least Squares Fitting Method is usually used for approximating the
local planar surface in the process of refining or simplifying the point cloud data.

Levin et al. [é6] describes the moving least squares fitting algorithm. Let {X;}io
be some data values at these points. The moving least-squares approximation of degree
m at a point x(JR? is the value p(x) where pDHmd is minimizing, among all pDHmd, the
weighted least-squares error

2 (p(x) — £(x)” O([x — xil)

Throughout, 0 is a non-negative weight function, || *|| is the Euclidean distance

in Rd and Hmd is the space of polynomials of total degree m in RY. The approximation
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is made local if O(s) is rapidly decreasing as s —, or is of finite support, and

interpolation is achieved if limg _,00(s) = .

2.2.5 Principal Components Analysis:

Principal components analysis (PCA) was originally introduced as far back as
1901 by Karl Pearson and found its first use or rather misuse in the analysis of
intelligence tests.

The basic idea of the method is to describe the variation of a set of multivariate
data in terms of uncorrelated (linearly independent) variables each of which is a
particular linear combination of the original variables. The new variables are derived
in decreasing order of importance so that, for example, the first principal component
accounts for as much as possible of the variation in the original data. The objective of
this analysis is usually to see whether the first few components account for most of the
variation in the data. If so, it is argued that they can be used to summarize the data
with little loss of information, thus providing a reduction in the dimensionality of the
data, which may be useful in simplifying later analysis.

PCA summarizes the variation in a correlated multi-attribute into a set of
uncorrelated components, each of which is a particular linear combination of the
original variables.

Principal component analysis (PCA) involves a mathematical procedure that
transforms a number of (possibly) correlated variables into a (smaller) number of
uncorrelated variables called principal components. The first principal component
accounts for as much of the variability in the data as possible, and each succeeding

component accounts for as much of the remaining variability as possible.
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The mathematical technique used in PCA is called eigen analysis. The
eigenvector associated with the largest eigenvalue has the same direction as the first
principal component. The eigenvector associated with the second largest eigenvalue
determines the direction of the second principal component. The eigenvector
associated with the least eigenvalue determines the direction of the third principal

component.

2.2.6 Eigen-Analysis Algorithm
The mean vector of the population is defined as m = E{x}, where E {arg} is the
expected value of the argument. Covariance matrix C of the vector population is
defined as C[x] = E{(x-m)(x-m)'}.
We denote the 3 eigen values of this covariance matrix as 4,,4,,4, where
Ay A, L4,

o FEigenvalues measure the amount of the variation described by each principal
component (PC) and will be largest for the first PC and smaller for the
subsequent PCs.

e Eigenvectors provides the vectors for the uncorrelated PC, which are the
linear combinations of the centered standardized or centered un-standardized
original variables.

Eigenvector and Eigenvalue Calculation:
Jacobi's method and QR iteration are two of the most common algorithms for

solving eigenvector and eigenvalue in Sleijpen et al. [50].

18



2.3 Boundary Representation

A common way to represent a polygon mesh is a shared list of vertices and a
list of faces storing pointers for its vertices. This representation is both convenient and
efficient for many purposes, however in some domains it proves ineffective.

For a solid model or a close surface model, there are always many queries that
need the adjacency relationships between the components of the mesh, for example,
the faces, the edges and the vertices. To implement these types of adjacency queries
efficiently, the boundary representations (b-reps) have been developed which
explicitly model the vertices, edges, and faces of the mesh with additional adjacency
information stored inside.

The two common types of boundary representation are Winged-Edge

Representation and Half-Edge Representation.

2.3.1 Winged-Edge Data Structure

Winged-edge data structure is developed by Baumgart in Mantyla et al. [30].
Each edge in Winged-edge data structure is represented by pointers to its two vertices,
to the two faces sharing the edge, and to four of the additional edges emanating from
its vertices. Each vertex has a back ward pointer to one of the edges emanating from it
where as each face points to one of tits edges.

The Winged-Edge Data Structure makes it possible to determine in constant
time which vertices or faces are associated with an edge, but it takes longer to query

the adjacent relationships.
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As show in the Figure 2-3, for the edge E1, its two end vertices, two faces
sharing the edge E1 and four edges emanating from E1’s end vertices are stored in the

E1’s data structure.

F1

Figure 2-3: Winged-edge data structure

2.3.2 Half-Edge Representation

A halfedge data structure is an edge-centered data structure capable of
maintaining incidence information of vertices, edges and faces. Each edge is
decomposed into two halfedges with opposite orientations. One incident face and one
incident vertex are stored in each halfedge. For each face and each vertex, one incident

halfedge is stored. (Figure 2-4 Source: Kettner et al. [25].)
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e

ineident facet

Figure 2-4: Half Edge Data Structure

2.4 Previous Work on Processing Techniques for Point Cloud Models

In recent years, there are a very large number of papers reported in the
literature on techniques for processing 3D point cloud data. Below we provide a

survey of techniques that are relevant to our research.

2.4.1 Simplification

A major issue that needs to be addressed due to very high sampling density is
that, in processing of these models, many points contribute to the same output value.
For example, in the rendering process many points will project onto a single pixel.
Hence a major pre-processing task that has been the focus of work with such models is
that of creating a simplified version of the original sampled set. This can be stated as
follows: Given the original sampled set S and its simplified version S’, for any process,
say P, we would like to find that S” which minimizes the error [P(S), P(S’)], for a
given constraint, such as |S’| <= a given number or error [P(S), P(S’)] <a given

Cignoni et al. [10]. So, for surface reconstruction, this would translate to saying
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error[reconstructed_surface(S), reconstructed_surface(S’)]
should be minimized. All current simplification methods take the approach that most
processing tasks are determined by the underlying surface geometry and hence these
methods concentrate on minimizing the following error metric:
error[surface_geometry(S), surface_geometry(S’)].
Simplification methods may choose either to ensure that S’ is a proper subset of S or
may choose to compute an approximate S’ that only minimizes the prescribed error
metric. These simplification methods can be broadly classified into three categories as
follows:
Set Partitioning — S is partitioned into subsets {S1, S2, ..., Sn} such that each subset
can be represented by a single sample point according to the desired error metric
[PfiSter 40, Brodsky 8, Shaffer 47].
Point Pair Collapsing — Point pairs in S are successively considered and if possible
collapsed into a single point, according to the desired metric [Alexa 3, Garland 18,
Hoppe 20].

Resampling — New sampling positions are computed, say according to local
geometric characteristic such as curvature [Kalaih 24], or say by moving particles on
the surface of the original set S simulating inter-particle repelling forces [Witkin 55].

Since for all purposes, S’ is now the representation of S, a major concern that
all these methods try to address is not to lose any significant property present in the
original set S. For example, inadequate samples in S’ could result in holes in
rendered picture(S’), particularly for highly zoomed-in close-up views. This is

avoided by storing a disk of influence on the tangent plane [PfiSter 40] or more
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elaborate differential geometric information [Kalaih 24] at each point. The point is

then rendered either using flat shading optionally followed by screen—space filtering or
by choosing a suitably approximating 3D shape or a splat in screen space [Zwicker 56].
This delicate balance between reducing the size of S° and at the same time, not losing
any significant information present in the original sampled set S, often results in very
complex pre-processing to be carried out on the original point set. A more detailed
review can be found in Pauly [34]

Alexa et al. [3] reduce point cloud redundancy by estimating a point’s
contribution to the moving least squares (MLS) representation of the underlying
surface. Those points contributing the least are subsequently removed.

Pauly et al. [34] adapted a technique of the quadric error metric presented for
polygonal meshes. The idea in this paper is to approximate the surface locally by a set
of tangent planes and to estimate the geometric deviation of a mesh vertex v from the
surface by the sum of the squared distances to these planes. In this paper eigenanalysis
of the covariance matrix of a local neighbourhood is used to estimate the local surface
properties. Pauly et al. [34] adapted two clustering approaches: incremental clustering
by region-growing which is computationally efficient, and hierarchical clustering
which is feature sensitive and has less approximation error.

Moenning et al. [33] introduced another simplification technique which is
called Fast Marching farthest point sampling. FastFPS algorithm computes discrete
Voronoi diagrams in the form of weighted distance maps incrementally directly across

the input point set.
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2.4.2 Surface Reconstruction

Surface reconstruction is to find a surface that approximates a physical surface
by using a set of point coordinates. These point coordinates may be the original point
set itself and may be corrupted with noise, due to imperfections in the acquisition of
the data. Or they could be simplified point set.

2.4.2.1 Voronoi-Based Surface Reconstruction

Amenta et al ([1] [2]) introduced the crust algorithm that is based on the three-
dimensional Voronoi Diagram and Delaunay triangulation; it produces a set of
triangles that we call the crust of the sample points. All vertices of crust triangles are
sample points; in face, all crust triangles appear in the Delaunay triangulation of the
sample points. The algorithm computes the voronoi diagram of the sample points first;
and then generates the triangles by Delaunay triangulation. The algorithm removes the
triangles which include more than one voronoi vertices, so it only keeps the
connectivity of the sample points. The algorithm can not handle surfaces with sharp
edges and boundaries; and it fails when the noise level is roughly the same as the
sampling density.

Renner et al. [41] introduced an approach to reconstruct the surface from
scattered 3D point sampled surface data using a—shape algorithm, Delaunay
triangulation and Voronoi diagram.

2.4.2.2 Other methods Surface Reconstruction

Hoppe et al. [19] adapted a combination of K-nearest neighbors, eigen analysis,

Signed Distance Function, EMST graph, and contour tracing methods to reconstruct

the surface from unorganized point cloud data. The K-nearest neighbors and eigen

24



analysis method is used to get the local planar properties, and Signed Distance
Function and EMST graph is used to determine geometric properties, and the contour
tracing method is used to determine the boundary. However, Hoppe et al. [19] assume
the point sample data is p-dense and &-noisy.

Savadjiev et al. [46] introduced a curvature consistency algorithm to
reconstruct the surface by iteratively minimizing the function to satisfy the local

constraints on the curvature.

2.4.3 Modeling

2.4.3.1 Multiresolution modeling
Pauly et al. [37] introduced an approach for modeling multiresolution
representation of the point cloud date. The multiresolution representation is each
sample p is represented by a point p0O plus a sequence of normal displacement offsets
do,..., dn-1. The approach includes decomposition and editing of the multiresoltion
representation.
2.4.3.2 Shape modeling
Pauly et al.[36] devised this approach for modeling a hybrid geometry
representation by combining unstructured point clouds with the implicit surface
definition of the moving least squares approximation. The approach is able to perform
the large constrained deformation and Boolean operations on the arbitrary shaped
objects.
2.43.3 B-Rep modeling
Viérady et al. [52], [7] present an algorithm for reverse engineering B-Rep

models from multiple point clouds. The algorithm includes four major components:
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triangulation/decimation, efficiently segmenting point data into regions, reconstructing
translational and rotational surfaces with smooth, constrained profiles, generating the
B-Rep topology and adding blends.
2.4.3.4 Mesh modeling
Roth et al. [42] presented the marching cubes algorithm to create triangular

mesh from multiple views of point data.

2.44 Segmentation

Segmentation is the process of partitioning the point data set into subsets where
each subset constitutes a distinct feature of the object represented by this point set.
These features could be faces, loops, borders, edges, vertices etc.

Benkd et al. [6] introduced the direct segmentation method that is based on a
special sequence of tests. The sequence is the hypotheses in the order of simplicity,
which also corresponds to the frequency of occurrence. The first process of the direct
segmentation method is to split the point cloud into smaller, distinct point regions by
separating the sharing sharp edges and the various types of the smooth edges. For each
point region various filters to determine planarity, dimensionality, axis direction, apex

angle and rotational axis are applied.

2.4.5 Feature Extraction

Gumbold et al. [14] introduced a two stages method to extract feature lines
directly from point sample surface data. The first stage consists of Delaunay

triangulation/filtering, eigen analysis, minimizing the penalty weights to the each point
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and the edges of the neighbor graph. The second stage is to recover the feature lines
and junctions by fitting wedges to the crease lines and corners.

Pauly et al. [35] introduced a multi-scale surface variation method to extract the
feature of the point sample surface data. Pauly et al. [35] used principal component
analysis/eigenanalysis to estimate local surface properties, and used the automatic
scale selection to optimize determining feature weights. And by the minimum spanning
tree process and active contour models process, the line-type feature is detected.

Weingarten et al. [54] describe a simple and fast algorithm for generating
planar feature of indoor environments with a mobile robot. The emphasis lies on the
high performance of the algorithm. The algorithm includes three processes: dividing
(the input data set is divided into small cubic neighborhoods), local surface detection
(Least Square Planar Fitting) and region growing (merging the neighboring cube cell if

they are on the similar plane).

2.4.6 Range and Image data segmentation

Stamos et al. [45] introduced an approach for segmenting range and image data.
The range and image data is the combination of range (dense depth estimates) and
image sensing (color information) datasets. This algorithm segments the planar regions
by clustering the locally planer points that have similar orientation and are close in 3D
space. The algorithm detects the intersection lines between the planar regions. The last

process is registering the intersection lines onto the range image dataset.
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2.5 Observations
From the above survey it is clear that techniques for dealing with point sampled
surface data have been researched vigorously and continue to be. Such techniques need
to be efficient, correct and robust. The very large volumes of data necessitate the need
for efficiency. The unstructured nature and absence of proximity information could
result in erroneous outputs. And the variation in sampling densities and the presence of
noise contribute to problems in robustness. Each of these problems is individually

challenging.
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3 Stochastic Technique for Point Rendering

In chapter 2 we have described a number of different techniques that have been
developed so far for efficient rendering of large point sampled surface data sets. An
important characteristic of all these techniques is that they work on a discrete sampling
of the surface of the object and yet are deterministic. They compute local features of
the underlying surface or fit a local surface and then use it in a deterministic fashion
for rendering the 3D object. In our work we have devised a new rendering technique
that is based on statistical estimates of local features as in [4]. We propose a scheme
for representing feature based details of a given unstructured point sample geometry
using a hierarchical statistical analysis of the original dataset. Hierarchical statistical
analysis allows us to trade off accuracy against determinism.

A Principal Component Analysis (PCA) analysis of the original point data set
allows us to hierarchically represent the model using an oct-tree data structure, recover
model details to the extent needed, as well as use randomized rendering to efficiently
display the model. Our motivation for this new representation lies in the following
three observations: (1) Features exhibit very high coherence in local point
neighborhoods. For example, a point belonging to an edge will be close to other points
of that edge, (2) the accuracy with which different parts of the object need to be
rendered depends on the type of features to be found in that part and also the view
from which the part is being rendered. So, for example, parts which have sharp edge
features will need to be rendered with greater accuracy than flat parts. Similarly, if a
part consisting of hundreds of point samples projects onto a few pixels, then a

simplified rendering of this part may very well suffice. 3) The accuracy required to
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generate a visually realistic image from a point cloud model can be achieved using

statistical methods on a sparse point representation.

3.1 Normal Estimation

All point-based rendering techniques require a cotrectly oriented normal at
every point that is rendered and often this requires topological connectivity or
continuous surface information. With each local region of the point set surface, we first
compute and associate a representative normal. We then describe a simple method of
orienting these representative normals and then use these to determine the correctly
oriented normal at any of the point samples chosen for rendering. Sampling itself is
controlled by the use of multiple visual cues, both object based and image based,
which include flatness of any region of the model, presence of features such as an edge
of the model in the region, pixel coverage or rendered image size and silhouette
containment. Fewer points are rendered in flatter regions than in highly curved regions
or in regions containing an edge. The number of points itself is proportional to the
number of pixels covered in the final rendered image. Along the same lines, more
points are rendered closer to the silhouette [Sander 48]. Individually each of the above
visual cues has been successfully used in rendering and has been reported earlier in
literature. However, together they enable considerable computational speed-ups in the
rendering process while at the same time not losing any of the information present in
the original point sampled set.

The next section describes the details of computing the different visual cues for

densely sampled surfaces using stochastic sampling. This is followed by a brief
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description of the Hierarchical oct-tree structure and the rendering algorithm itself. We

then show some examples from our implementation.

3.2 Stochastic Computing of Visual Cues

e Region Flatness:

Flatness in any region of a surface is a significant cue that can be used to
optimize rendering. Clearly flat regions can be rendered with fewer samples, unless we
wish to capture special effects like specula highlighting. Given a subset of point
samples covering a region of the surface, we use the eigen value analysis of the
covariance matrix of points described below to determine the local surface curvature
variation [23, 14, 22]. If the number of points in this region is very large, then for
increased computational efficiency, a more reasonably sized stochastically sampled
subset can be used.

We can construct a population of random vectors of the form x = [x1,x2,x3]t
using x,y,z components of point coordinates.

We decide on the flatness of a region by examining the value of the

expression A /(A + 4+ 4)  Smaller the value of this expression, more stringent is the
flatness criterion. Fig. 3.1 shows the regions classified according to two different

values for this expression, (0.005 and 0.001).
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Figure 3-1: Region classification using different thresholds for classifying flatness.

o Edge Containment:

If a region contains an edge of the original surface, then we must choose a
larger number of samples to render in that region to avoid aliasing problems. The same
method of computing eigen values used for determining flatness can be used to
determine the presence of an edge in the region. Point p can be said to be very likely

Ay = A, A, =24, [14].

belonging to an edge if

In order to estimate the presence of an edge in the region we check a randomly
chosen subset of points for being classified as edge points. If none of the chosen points
get classified as edge points, then we declare that this region has no edge.

e Pixel Coverage:

The final image size in pixels is another important visual cue that is used to
optimize rendering. The number of point samples to be selected for rendering a region
of the object surface can be chosen in some proportion to the number of pixels this
region will cover in the rendered image. In an oct-tree structure, the cell dimensions

and the current viewing transformation are sufficient to give us a usable value for this

cuc.
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e Silhouette Containment:

In regions that include the silhouette, we must choose a larger number of
samples. A region contains a silhouette if some of the points in the region have
normals facing the eye point and other points have normals facing away. Once again
we select a subset of points in the region. Normal computation is done again using the
eigen value analysis described above. The correct orientation of the normal is
computed by using the representative normal for that region. This is simply done by
ensuring the normal orientation is such that its dot product with the representative
normal is positive. Using the chosen subset of points we obtain a probabilistic
estimate for whether the region contains a silhouette or not. If all normals are either
facing towards the eye point or are all facing away from the eye point, we say that this

node does not contain any silhouette.

Figure 3-2: Silhouette Containment
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Figure 3-2 ) (left) Un-oriented normals (red facing inwards). B) (right) Results
after normal orientation. (top images show picture shaded using normals as computed

using eigen value analysis). Bottom shows images rendered after orientation correction.

3.3 Rendering Process

3.3.1 Construction of oct-tree:

Given a group of points S, the first step we do is to organize the set into an oct-
tree. The oct-tree construction process is well known énd straightforward. The
bounding box for the entire set S is first computed as the root and then subdivision
proceeds until the following criteria are met:

e The number of points in a node is less than a pre-set number, say,
max_point_budget.

e The points in that node satisfy a given flatness criterion.

e With each leaf node of this oct-tree we associate the following information:

e Pointers to the set of points belonging to this node.

e Count of total number of points in this node.

e A marker indicating presence/absence of an edge; this is done by carrying out
the edge containment computation described earlier.

* A correctly oriented normal; the method for computing the correctly oriented
normal for the region of the object’s surface covered in this node is described
below.

Figure 3-2 shows an oct-tree visualization using cubes for a point-sampled surface
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Figure 3-3: Oct-tree (right) for point sampled surface (left).

3.3.2 Rendering by stochastic sampling:

During rendering every leaf node is traversed and then the number of
samples to be selected for rendering from the region represented by the leaf node is
determined based on the values for the different visual cues. The basic structure of
this algorithm is given below. We first describe the algorithm with out giving values
for a number of the factors used in the algorithm. For example, we have just said
that if the silhouette is present then suitably increase the sample size. However, later
in Table 3.1 we give the values that we have used in our experiments for the
different factors that appear in this algorithm.

void render _leaf node(node) {
//find number of points needed to render

int Ns = find_Ns(this_node);

for (1=0;i<Ns;i++) {

//select a point (random) in this node and find its neighborhood
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current_point = node_points[random(Ns)];

points[] = find neighbouring points();

//find eigenvalues and eigenvectors.

//eigen[0] is smallest eigenvalue. Eigenvectors contains corresponding
eigenvectors.

eigens[3], eigenVectors[3] = eigen computations(points);

normal = eigenVector[0].normalize();

//check if normal properly oriented.
//otherwise reverse direction
if( dot_product(normal, rep normal ) <1 ) {

normal = -normal;

}

// find and render an ellipse in tangent plane based on principle curvatures [14]
curvatures[2] = compute_principle curvatures(points);
draw_ellipse(curvatures);

¥

}

//Ns is number of points needed for rendering leaf node
int find Ns(leaf node) {
//estimate initial size

int Ns = projected_screen_area() * pixel density;

// do eigen computations for this node.
// eigenvalues are stored in increasing magnitute.
eigens[3] = perform_eigen analysis(leaf node);

eigens = normalize(eigens);
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//adjust Ns based on min_eigenvalue for flatness.
/1 K=constant to adjust rendering speed vs quality
double flatness = K* eigen[0];

Ns = Ns* (flatness);

//check for edge and update Ns
if(eigen[0] = eigen[1] && eigen[2] = 2* eigen[0]) {

//edge present;
Ns =Ns * edge factor();
}

//check for silhouette and update Ns
double silhouette factor = perform_silhouette analysis();

Ns = Ns*silhouette factor;
}

Return Ns;

void find rep normals(leaf nodes[]) {
/irst find a cell for which we always know the orientation.
// our first cell is the one with max z cooridinate

start node = find leaf max z();

normal dir = {0,0,1};
// call recursive function to correct nodes starting with this /node

correct_neighboring nodes(startnode, normal_dir);

}

//recursive function to correct orientations.
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void correct neighboring nodes(node, prev_rep normal){

// if no more neighbors return.
if(node == null)

return;

//see if rep_normal correctly oriented, otherwise reverse //direction
rep_normal = unoriented normal(node);
If(dot_product(rep _normal, prev_rep normal) < 1) {

rep_normal = -rep_normal;

}

//recursively correct neighbors of this node

correct_neighboring nodes(, rep_normal);

}

3.3.3 Implementation Heuristics

The implementation of the preprocessing task and the rendering algorithm as
described above is rather straightforward. There are a number of factors that have to be
heuristically determined. These include the various ratios and factors mentioned earlier
that decide on whether a node is flat or curved, whether a point can be classified as
edge or not, the factor for the nominal number of points to be rendered, etc. In our
present implementation we have experimented with different values. Table 1 contains
the values, which seem to give us good results in all of the cases we have experimented
with.

e Efficiency Improvements

Our rendering process depends very heavily on computing eigen values and

eigen vectors of a point set. We have come up with an efficient method to carry out

these eigen value computations. There are 2 key observations:
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In our case we need to perform eigen value analysis on 3x3 matrix only. Since

cubic equations can be solved explicitly, this makes this calculation linear in time with

respect to the number of points.

The other key observation is that this 3x3 matrix is symmetric in nature. Hence

the complexity of cubic equation is less than the full general form of cubic equation.

Pauly et al have used the Newton-Rapson method to solve this cubic equation in Pauly

et al. [35]. They have said that it needs on the average less than 3 or 4 iterations. In

our case, we have taken advantage of the special structure of cubic equation, which

guarantees us that roots are always real.

Property Criterion/formulae
Flatness J= Xy /(hg +1, +1,) <0.005
Edge point Ay = A A, =22,
classification

Nominal number of
samples in a flat

region — Ns

Let Np be the point count of the points in that leaf node; Let W be
the estimate of the number of pixels covered by this leaf node in
screen space taking into account current viewing parameters. Then

Ns = min(W/4, Np).

Flatness adjustment

factor

Ns =min ((1 + £/0.005)*Ns, Np)

At most we will choose double the number of nominal points.

Silhouette/Edge

containment factor

If silhouette is present in this leaf node, then Ns = min (4.0* N,

Np)

Splat dimensions

If the ratios of the two principal curvatures is 1.0, then a circle is
in the tangent plane is chosen with radius R such that R maps to
ceil[sqrt(W/Ns)] number of pixels. If the ratio is less than 1.0, then
the minor axis size is suitably scaled. The major axis is aligned

with the direction of maximum principal curvature.

Table 3-1: Rendering algorithm parameters.
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1) Most of the time we are only interested in finding whether to subdivide the cell
further depending on whether it is nearly flat or not and then find the
corresponding eigen vector that is used as the normal direction. This can be done
very efficiently as follows:

a) We know that sum of reciprocals of roots of cubic equation = (sum of
products taking 2 roots at a time) / product of all 3 roots

b) Since smallest root must have a very small value for the flat regions, its
reciprocal is very large. Hence reciprocal of smallest root approximately
equals the sum of reciprocals of roots

c) This allows us to get the smallest root without solving the cubic equation but
by evaluating an expression in terms of coefficients of cubic equation.

d) We verify the correctness of this as the root by substituting it back in the cubic
equation. If this is not a root, then it also implies that the region under
consideration is not flat.

e Results

We carried out some experiments to check the performance of our
method. Fig.3.5 shows a model rendered at different image sizes. The larger
images have been cropped from the right to fit into the column. In Table 3.2 we
give the image size and the actual number of samples selected and rendered.
The variation in the number of samples required for each case is as expected.

We see that number of sample points rendered does not increase
linearly with image size in pixels. This is due to the fact that visual cues (such

as flatness criteria) help us in reducing the number of points needed to render.
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Figure 3-4: Rendering at different image sizes.

Image # Image size # of Sample points performance
in Fig. 3-4. in pixels rendered improvement
factor

(1) 96 x 96 10247 55

(i1) 160 x 160 21882 25

(iii) 250 x 250 44235 12.5

(iv) 380 x 380 76789 7.3

v) 500 x 500 109412 5.2

Table 3-2: Number of samples varying with image size.

3.4 Some Remarks on Stochastic Rendering

We have presented a novel way to render a large point cloud model using a
non-deterministic approach. The method works by exploiting local coherence with a

PCA analysis. It is fairly general in that it can handle other local attributes such as
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color within this framework. The oct-tree representation efficiently approximates the
original geometry with hierarchy. The real application of this is in situations where we
need fast rendering of large models without the need for extremely accurate images.
We have observed a few problems. The treatment of the PCA subdivision is
done with no connectivity information and this can sometimes cause two non-adjacent
surface areas to be merged into one PCA node. Similarly, in case of an animated view
of the object, the fact that different sample points are displayed in a view dependent
manner could sometimes result in temporal discontinuities in the displayed image.
These are major research problems and we have not addressed them as part of our

research.
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4 Edge Recovery from 3D Point Cloud Models

While surface fitting techniques applied to point cloud models can give us a
mathematical representation of the best surface approximating the 3D object’s surface,
these techniques are applicable only to 3D objects or parts of 3D objects that can be
considered as a continuous surface. Similarly, techniques that fit a triangle mesh to the
point cloud model give back the surface as a connected mesh of small triangles. This
too is more suited for natural or sculptured objects. For most engineering objects
however, these techniques result in a far too low level and verbose representation.
More importantly they miss out on the representation of key features such as vertices,
edges, loops and faces that make up the object. The B-Rep technique of representing
3D objects essentially describes a 3D object using these features. In our research we
have attempted to devise new algorithms for detecting such features. In this chapter we
shall describe our technique for detecting vertices and edges. And in the next chapter
we describe our techniques for detecting edge loops and for segmenting the point set
into different faces bounded by these edge loops.

Edge recovery techniques for 3D point cloud models is done in two major
stages. The first stage involves classification of points in the point set. And in the
second stage we collect all the points belonging to an edge. This is done first by
traversing and collecting points that belong to the same edge and then further refining
the points collected for an edge.

The entire point set is very large. For increased efficiency, we need to restrict
our traversal to a subset of points that are most likely to belong to the edge being

traversed. It would be best if we can classify points as definitely not belonging to any
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edge. This is done in the first stage of point classification. As in Gumbhold et al. [14],
we classify the complete point set into four types according to the geometric properties
of the point with respect to its neighbourhood. These categories are: Facelnterior,
SurfaceBorder, SurfaceCrease and SurfaceCorner. The Facelnterior points are interior
to some face of the object’s surface. The SurfaceCorner, SurfaceBorder and
SurfaceCrease points are the subset of points that need to be traversed for belonging to
an edge of the 3D object. SurfaceCorner points are points of the 3D object, where
multiple faces and multiple edges meet.

Every edge is bounded by two SurfaceCorner points. Once the point
classification stage is completed, we recursively traverse the SurfaceCrease points
starting from one SurfaceCorner point until we reach another SurfaceCorner point.
This traversal is along the potential direction determined for that edge of the 3D object.
Once we have collected and identified the subset of points that make up each edge, we
analyze all edges in order to use them subsequently in the face recovery process. The
edge analysis task includes erasing of duplicate edges, splitting of edges that intersect

other edges, and merging the two or more edges if their edge end points are very close.

4.1Classification of Points

For classification of points we need to arrive at exclusive criteria that can be
evaluated. Such evaluations depend on different parameters computed on the point set.
The parameters to be computed and their use in evaluation criteria vary according to
the type of object surface sampled and also the sampling attributes. For a model with
sharp corners and edges, it is easy to define the parameter values to classify the points

because the parameter values are not continuous, but for a smooth model, it is hard to
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determine the best parameter values for classification. Furthermore, there are many
other factors that affect the parameters, for example, noise, sampling density
(dense/sparse) and the variation in sampling density, etc. Hence, there is no unique
method to define parameter values that can work for all models. Some other
researchers just ask the user to define the parameter values to be fed in as user input
interactively. However in our work we have proposed a statistical method. The
statistical method has two stages in the classification process: initial classification
process and refinement process. In the initial classification process, we define the
classification only for a small sample of the complete point set. Then we analyze and
determine the parameter values based on this small sample. In this way, we can cover
all true SurfaceCrease/SurfaceCorner points, and it may also cover some Facelnterior
points that are located around the true SurfaceCrease/SurfaceCorner points, but we will
reduce these points during the refinement process. The refinement process is to identify

the classification again based on the local neighbourhood of the points.

4 1.1 Initial Classification Process

Our classification process uses the statistical values computed by an eigen value
analysis technique applied to a point by considering all the points within a small
neighbourhood. These statistical properties are then used to classify the point into one of

the four categories: Facelnterior, SurfaceBorder, SurfaceCrease and SurafceCorner.

Let us denote Ag, A1, A2 (Ao <= A; <= A,) as the three eigen values.
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Figure 4-1: Initial Classification

4.1.1.1 Facelnterior Points

Facelnterior points are the points that are interior to a face and within a local
neighbourhood are part of a locally flat plane, i.e, they are surrounded by other points
on the same plane. Here we assume that the properties associated with the mean of all
neighbor points of one point are approximately the same as the properties of the point
itself. For a point to be classified as Facelnterior, the eigenvalue of first PC and second
PC are almost same, and the eigenvalue of third PC is almost zero comparing to the
eigenvalue of other two PCs because all neighbor points are on the same plane.

M/ (otA+A)=0
.1.1.2 SurfaceBorder Points

SurfaceBorder points are also the points which are on locally flat plane, but
they are not inside the face, but are on the edge of the face, with no points on the other
points outside the face. For a point to be calssified as a SurfaceBorder point, all
neighbor points must be on one side of the border of the face, or along the border edge.

Hence, the first PC vector has to be along the border of the face, and the second PC
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vector has to be orthogonal to the first PC vector but still on the locally flat plane, and
the third PC vector is the normal vector to the flat plane. The length of the first PC
vector is approximately double of the length of the second PC vector, and the length of
the third PC vector is close to zero in comparison to the other two vectors.

M/ (o tA+A)=0
and AM*E2xA,

For the a closed surface model, there is no border in theory, but some points
could be erroneously identified as SurfaceBorder points. This could be due to noisy
data which causes one side to be dense, and another side sparse.

4.1.1.3 SurfaceCrease Points

SurfaceCrease points are shared between two faces. The neighbor points of
SurfaceCrease points are two groups; each group belongs to a face of the object. Hence
they are classfied as Faelnterior points. Hence, the centre point of all neighbor points
should move down to the center of two planes. For classifying a point as SurfaceCrase,
the vector of first PC points in the direction of the SurfaceCrease line. The eigenvalue
of the second PC reduces a little, and the eigenvalue of the third PC increases in
comparison to the Facelnterior points.

ho = A
and Mt+AixA

Actually, the SurfaceCrease type is very hard to determine. Firstly, A is not
close to zero because the neighborhood points have certain distance in the direction of
the normal. We also cannot define a range for A, of the SurfaceCrease type because it

is really very closely related to the intersecting angle of the two surfaces of the
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adjacent faces. As the angle is decreases from 180 degree to 0 degree, A is increasing.
If it is a very small angle, A, can increase to become A, in this case it may get
erroneously classified as a SurfaceBorder point. Secondly, A; will increase when the
angle is increasing from 0 degree to 180 degree. It may be close to A, when the angle is
increasing to close to 180 degree. Hence the criterion above is applicable only in the
regular case. It needs to be considered in conjunction with the criteria for
SurfaceBorder and SurfaceCorner point classification.
4.1.1.4 SurfaceCorner Points

SurfaceCorner points are on the intersection of more than two faces, and the
principal components are more complicated. The neighbor points of SurfaceCrease
points may consist of many groups; each group belonging to a different face. Locally
these will be on different planes. Hence, the centre point of all neighbor points should
move down to the center of all planes. For classifying a point as SurfaceCorner, all

eigen values of the three PCs must be similar.

()uz-)uo)/()»0+7\,1+7\,2)z0

4.1.2 Classification Distribution:

In the process of the initial classification, the program always needs the
predefined parameter thresholds for the eigen values to classify the points. People
setup the threshold directly either by experience or interactively through user input.
We have not chosen this method. Instead we estimate the values according to the

sampled data model based on the distributions of all points during the processing.
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4.1.2.1 Planar Estimation Distribution
Planar Curvature Estimation Value is used to identify the

SurfaceCrease/SurfaceCorner points from Facelnterior/SurfaceBorder points. The
planar estimation value for Facelnterior/SurfaceBorder points should be very small
because the neighborhood points of a Facelnterior or SurfaceBorder point are
approximately on a plane. On the contrary, the planar curvature estimation value for a
SurfaceCrease or SurfaceComer point should have certain value because the
neighborhood points of a SurfaceCrease or SurfaceCorner point are not apparently on
the same plane.

Planar Estimation = Ao / (Ag + A1 + A3)

Dual box A anar Estination Ostribution Anwil1 Aanar Estination Ostribution
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|
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Figure 4-2: Planar Estimation Distributions.

Figure 4-2 shows the planar estimation distributions for a) Dualbox, b) Anvil, ¢)

Bunny and d) Dragon. The planar estimations of most models vary continuously, so we
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prefer to use the distribution of the planar estimation to identify the
SurfaceCrease/SurfaceCorner points from Facelnterior/SurfaceBorder instead of one
predefined value.
4.1.2.2 SurfaceCrease Estimation Distribution
SurfaceCrease Estimation Value is used to distinguish the SurfaceCrease points
from the SurfaceCorner points. The SurfaceCrease points should have significant
SurfaceCrease estimation value, but the SurfaceCrease estimation value for a
SurfaceCorner point should be close to zero.

SurfaceCrease Estimation = 1- A / A,
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Figure 4-3: SurfaceCrease Estimation Distributions.

Figure 4-3 shows the SurfaceCrease estimation distributions for a) Dualbox, b)

Anvil, ¢) Bunny and d) Dragon. The SurfaceCrease estimations of most models vary
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continuously, so we prefer to use the distribution of the SurfaceCrease estimation to

identify the SurfaceCrease points from SurfaceCorner points.

4.1.2.3 SurfaceBorder Estimation Distribution
SurfaceBorder Estimation Value is used to distinguish the SurfaceBorder points
from the Facelnterior points. The SurfaceBorder points should have significant
SurfaceBorder estimation value, but the SurfaceBorder estimation value for a
Facelnterior point should close to zero.

SurfaceBorder Estimation = A/ A

Bual box Surf aceBorder Estimation Distribution Anvil 1 QurfaceBorder Estination Ostribution
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Figure 4-4: SurfaceBorder Estimation Distributions.

Figure 4-4 shows the SurfaceBorder estimation distributions for a) Dualbox, b)
Anvil, ¢) Bunny and d) Dragon. The SurfaceBorder estimations of most natural models

varies continuously, but the SurfaceBorder estimations of the engineering models like
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dualbox and anvil only have several values. It is very hard to find out the proper
SurfaceBorder estimation value to identify SurfaceBorder points for different models,
so we prefer to use the distribution of the SurfaceBorder estimation to identify the

SurfaceBorder points.

1.3 Refining Points Classification:

The initial classification is to determine the thresholds for eigen values for use
in in the classification process. For each class of the points, we give global criteria for
all points of the sample model. The global criteria are based on the eigen values of the
neighborhood points. However, the eigen values of the close points are also very
similar because the close points share most neighborhood points and they have very
similar local surface properties. Moreover, the different parts of the sample surface
have different variation. Some parts of the surface vary with sharp discontinuities, but
some may vary very smoothly. The classification of points belonging to objects with
sharp edges is easy, but the points of smooth surfaces are hard to be classified. For
proper classification of points of natural or sculptured objects, it will be necessary to
extend the criteria for the SurfaceCrease/ SurfaceCorner/ SurfaceBorder. This is
beyond the scope of our present research.

During the process of the initial classification, there are many Facelnterior
points that are identified to other types because of two reasons described above. Hence,
we add a refinement process after initial classification in order to correct the point
classification. The refining logic is based on the neighborhood points, and the refining

is done on a case by case.
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There are three major cases:
eThere are many points classified as SurfaceCrease points besides the actual edge
points on both sides.
eSome Facelnterior points are identified to be SurfaceBorder points.
eSome SurfaceCrease points on the edge are identified to be SurfaceCorner points.
4.1.3.1 SurfaceCrease Points Refinement Process
The initial classification finds not only exactly SurfaceCrease points along the
edge, but also the points besides the true SurfaceCrease points on both sides because
all of them have very similar local surface properties. In order to extract the real edge
points from the neighborhood SurfaceCrease points, the curvature estimation is a good
property to deal with it.
We use the value similar to the curvature estimating method described by
Gumbhold et al. [14]. The curvature K is:

2d;
Ki =

2
u
u is the average distance between the point to other neighbor points, and d is the

distance on the normal direction from the point to the local plane which passes the
center point of the neighborhood points.
d =vive'Ni.
If the point is close to the spine; the curvature estimation value K; becomes
larger. If we take a plane that is orthogonal to the edge direction and it cuts the
neighborhood points like below on the right side, the point on the spine line will have

the biggest curvature value.
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Figure 4-5: Curvature Estimation

4.1.3.2 SurfaceBorder Points Refinement Process

The SurfaceBorder points and the Facelnterior points are easy to be mixed up.
They both have eigen values with very short length along the normal direction
comparing to other two PC vectors. The only difference is the variance between 1* and
2" PC vectors. As a SurfaceBorder point, the length of 1% PC vector may be close to
double of the 2™ PC vector, and as a Facelnterior point, the length of these two PC
vectors are approximately same. In fact, the variance between the length of these two
types points changes gradually, so we can not simply distinguish SurfaceBorder and
Facelnterior points only by the length ratio of the 1% PC vector with respect to the 2™
PC vector.

Gumbhold et al. [14] introduced a very good property of the SurfaceBorder and
Facelnterior points. After calculating the eigen matrix for a SurfaceBorder point v;, we
can get a plane (e, ci). The e is the normal, and the c; is the mean of the neighborhood
points. We can project all neighbor points on this plane, and then connect all projected
neighbor points to the projected SurfaceBorder point on the plane; each pair of the
adjacent neighbor points on either clockwise or anti-clockwise direction have an angle.

The maximum open angle is a very good property for the SurfaceBorder points.
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Figure 4-6: Maximum Open Angle

For the Facelnterior points, the neighbor points should be distributed around
them randomly; for the SurfaceBorder points, the neighbor points should be located on
one side, less or none are located on another side, so the maximum open angle for a
SurfaceBorder point is much bigger than a Facelnterior point. We predefine a value f8
for the maximum open angle; and a SurfaceBorder point will change to the

Facelnterior point if it’s maximum open angle is less than the predefined value S.

4.1.3.3 SurfaceCorner Points Refinement Process
The logic to identify SurfaceCorner points is based on the ratio of the length of

15! PC vector to the length of 2" PC vector. This means comparing the 2™ PC vector
and the 1% PC vector. If the difference between these two PC vectors is large; it is more
likely to be a SurfaceCrease point. If the difference between these two PC vectors is
less; it is more likely to be a SurfaceCorner point. Hence, some SurfaceCrease points
on the edge are identified to be SurfaceCorner points for two reasons. One is noise data.
The noise data will increase the variation on 2™ PC vector if noise points are located

along 2™ PC vector. Another reason is the criteria for identifying the SurfaceCorner
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points is weak; and it causes more points to be classified as SurfaceCorner, than the
actual case.
The SurfaceCorner point on the edge has following property:
e All close points have the same direction as the 1* PC vector; which is also the
edge direction.
We change the point from the SurfaceCorner point to the SurfaceCrease point

if the SurfaceCorner point has above property.

4.1.4 Neighborhood size:

The neighbor points are the sample points that are close to the point being
classified. The neighborhood size is the number of closest sample points’ contributing
to the local surface variation. Increasing the neighborhood size means the contribution
of any one sample point to the local variation is less and the variation of the local
surface becomes smoother. Decreasing the neighborhood size means the contribution
of any one sample point to the local variation is more. If there are some noise data in
the neighborhood, they cause more damage to the local surface estimation for a smaller
neighborhood size than for a bigger neighborhood size.

A good neighborhood size is very hard to be estimated. If the data is dense, the
neighborhood size should be bigger and vice versa. The data is noisier, the
neighborhood size should be bigger. Taking more neighbor points can reduce the noise
data contribution to the local surface variation.

Most of algorithms published in the literature for feature detection in point
clouds use the Delaunay Triangulation method to get the relationship between the

neighbor points, and then they use the k-nearest neighbor method to estimate the local
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neighbourhood. However, 3D Delaunay Triangulation for the surface of a 3D point
cloud model is a complex and expensive process, particularly for a very large point set.
We have chosen to use a distance function to choose the neigbourhood.

eThe average distance distribution:

For the sampled data model, the average distance of the adjacent points is
always unknown. In some papers, they get the average distance as user input. In our
approach, we estimate the average distance by calculating the minimum distance
distribution. We calculate the minimum distance of the neighbor point for each sample
point first, and then split the minimum distance range into hundred segments, and
distribute all sample points into the hundred segments. Two cases of the noise data
affect the average distance estimation, one is duplication sample which is caused by
the process of registering the multiple range data sets; another case is that some noise
data is far away from the surface, so we skip the minimum 1/10 sample points and the
maximum 1/10 sample points, and only calculate the average of distance from the

middle 80 percent points.
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Figure 4-7: The average distance distributions

4.2 Edge Traverse

4.2.1 SurfaceCorner Point Adjustment:

There may be more than one SurfaceCorner points wthin a small
neighbourhood after point classification, whereas there should be only one. Since
edges are between two SurfaceCorner points, incorrect SurfaceCorner points will in
turn generate very short edges, and cause the edge analysis to go astray or involve a
very complex process. Hence, the first step is to adjust the SurfaceCorner points
classification and rectify this situation to the extent possible.

For the SurfaceCorner point, Vo is defined as below:

Veom= (A2 - o) / (Ao + A1 + A2)

The values of V om are compared if there are more than one SurfaceCorner
points in the small range. The minimum V., of the SurfaceCorner point is the best
SurfaceCorner point because its Vom is more close to zero. Other SurfaceCorner
points of the neighbor points are changed to the SurfaceCrease points.

By recursively selecting the best SurfaceCorner point, the process finally

retains only one SurfaceCorner point in any small neighborhood.
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4.2.2 Direction of Edge Points

According to the points classification, the eigenvector of the first PC is the
direction of the edge at that SurfaceCrease point. The vector between two adjacent
edge points should be fitting the direction of the edge at the SurfaceCrease points. Not
only does the vector from current point to next point fit the direction of SurfaceCrease
points, but also it should fit the direction of edge tangent vector of next point if next
point is SurfaceCrease or SurfaceBorder point.

The traversing algorithm only traverses the SurfaceCrease, SurfaceBorder and
SurfaceCorner points. If current point is SurfaceCrease or SurfaceBorder type, the first
PC vector is the edge direction. If the current point is SurfaceCorner point, the edge
direction cannot use the first PC vector; it has to be the vector from the previous point
to the current point. For each neighborhood point, three conditions have to be satisfied
to be next point on the edge.

o It should be SurfaceCrease or SurfaceBorder or SurfaceCorner point.

o The angle between the edge direction and the vector from current point to
neighbor point should be <= predefined angle f;.

o The angle between the vector from current point to neighbor point and the edge
direction of neighbor point <= predefined angle 3, if the neighbor point is
SurfaceCrease or SurfaceCorner point.

The algorithm is described below:

edge_traverse(S:current traversing point)
o  Get the previous traversing point P.
o Get the vector from P to S as V_PS.

o IfSis SurfaceCrease point or S is SurfaceCorner point
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Set Edge Traversing Direction(ETD) = the first PC vector of §
IfETD dotproduct V_PS < 0 then
Set ETD = ETD * (-1) /* Change direction */
Else if S is SurfaceCorner point

Set Traversing Direction(ETD) =V _PS
Else

Return with error message because S can not be Facelnterior point.
End if

Clear the next traversing list TL.
Get the neighborhood points set NGP(S).
For each point N of the NGP(S)
If V is not SurfaceCrease/SurfaceBorder/SurfaceCorner point then
Skip. /* next neighbor point loop */
End if
Set A_I(N) = the angle between V_PS and V_SN
IfA_1(N) > PBithen
Skip. /* next neighbor point loop. */
End if
If S is SurfaceCrease or SurfaceBorder point then
Set C_N = the first PC vector of Nas C_N
Set A_2(N) = the angle between V_SN and C_N
IfA_2(N) > B, then
Skip. /* next neighbor point loop */
Endif
Append N, A_I1(N) into TL.
End Loop
Order TL by the angle in descent
For each point Tin TL
myPush(T) /* The stack to keep all traversing points */
Set ret = edge_traversing(T)
myPop()
If ret = Succeeded then
Return Succeeded

Endif
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o  End Loop
o Foreachpoint Tin TL
0 If Tis SurfaceCorner point then
o Append_edge() /* Make a traversing edge from the stack */
o Return Succeeded
o Endif
o End Loop
o Return Not_Found /* No edge is found */
o /*end of function edge_ traversing() */
4.3 Edge Analysis:
4.3.1 Edges Analysis Objective:

In order to get the geometry information from these edges, several rules are defined as

given below:

L

IL

I11.

IV.

No vacancy along the edge:
Any two adjacent points of an edge must be close to each other, which means
there are not any other points approximately lying on the middle between two
adjacent edge points.
No edges intersect or cross each other.
The edge is used to split the surface into different faces later. It will cross more
than one surface if it intersects other edges.
No parallel edges.
There must not be two edges that are between the same start and end points,
and all points of one edge are very close to second edge.
No short edges loop.

Each edge has to connect to other edges on both sides.
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All edges have to be on one or more edge loops; otherwise, it is useless for face
recovery.
VI.  Any adjacent edges must connect each other at the end point.

1t will be done after the SurfaceCorner points merge operation is completed.

4.3.2 No gap along the edge

No gap along the edge means any two adjacent points of an edge must be close
to each other, and there are not any other points lying in the middle of two adjacent
edge points.

For example, there are two adjacent edge points A and B, and there is one point

C which is very close to the segment of A and B.

Figure 4-8: Vacancy Example.

Hence, C will be added into the edge between A and B. The old edge segment

is AB, and the new edge segment is ACB.

The reason for this function is to make the edge more solid on the surface. The
edge of a point cloud model has to be along the points of the surface and it should
separate the points of the surface into two faces on either side of the edge. Actually,
one line/curve cannot separate the points into two sets in 3D, but the plane can. The
edge separates the points of the surface into two sets only because we only consider

these points as close to the edge, and we are assuming the points and the edge are on
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the same surface and locally on the same plane. Hence, if there are two adjacent points
whose distance is big, it may cause the edge to be far from the surface, and it cannot
separate the nearby points into two sets.

o How to decide about the third point that lies in between adjacent edge points?

In order for it to be easy for checking intersection or crossing of the segments,
we assume the distance of the adjacent edge points should be less than 2 times of the
average distance. The point cloud model is like a grid that has the same distance
approximately, the third point between two points should be found if the distance of
two points is more than 2 grid distance.

For example: There are two adjacent edge points A and B in three cases. The
distances of A and B in each of the three cases is not less than 2 times of the average
distance, and we can find third point C and insert C into the edge between A and B.

A C B A C A
& O O (2 ) )

Case 1 Case 2 Case 3

Figure 4-9: Three cases of segment vacancies.

This operation is done when a traversed edge is added into the edge list. It will
check the gap along the new edge, and it will fill the points into the new edge if one or

more points are found to fit the edge between any adjacent points in the new edge.
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4.3.3 No intersecting edge

There are two cases of edge intersection. One is two edges intersect at the same
point. Another case is two edges do not intersect at the same point, but they cross each
other. Intersecting edges have to be split into three or four edges for both cases.

4.3.3.1 Edges Intersect at the same point

Edge intersecting at the same point is very easy to handle. Each edge is split
into two edges from the intersecting point.

4.3.3.2 Edge Crosses Edge

Edges’ crossing means that one edge cross another edge but they are not
sharing any point. It takes four steps to process it:

L Two adjacent points on the same edge should be very close to two adjacent
points on the crossing edge because crossing edges have to on the same surface.

There are two edges E1 and E2; A and B are two adjacent points on the edge

El; C and D are two adjacent points on the edge E2. Based on the rule-I of

edge analysis in chapter 4.3.1, A and B are less than 2 time of average distance;

C and D are very close, less than 2 time of average distance; and these two

edges are crossing each other. Hence, the distance from A to one of C and D is

less than 2 times of the average distance. B is also in the same situation.
I Projecting four points onto the same plane, and check whether the projected
lines intersect each other.

Three of four points (A, B, and C) decide one plane PL, and the fourth point (D)

is projected onto the plane PL as D;. Hence, the question to check whether two

lines on different planes intersect is changing to the question to check whether
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two lines on the same plane intersect. It is easy to check whether the projecting
lines (A-B and C-D1) are intersecting each other on the same plane.

III.  Insome special case, different selections of three out of four points to decide
one plane gives different results. Hence, if the result of step II is no-intersection,
another set of three of four points (A, B and D) are selected to decide another
plane PL1, and the fourth point(C) is projected onto the plane PL1 as C,, and
checked again as described earlier.

IV. Ifthese two edges are intersecting each other according to step II or step IIT,
then the best splitting point is selected from these four points.

V. Each edge is split into two edges at the best splitting point.

4.3.4 No parallel edges

The parallel edges are not exactly parallel. The parallel edges are two cases.
o Both edges have the same start and end edge points, and at least one edge is a
short edge.
o Each point on either edge is very close to at least one point on another edge.
The shorter edge will be removed in both cases. (In our experiments, the short

edge is the case when the number of the points is less than 6.)

4.3.5 SurfaceCorner Points Merge Operation

The face recovery process has to be based on detection of edge loops, and any
two adjacent edges on the edge loop connect each other on the same edge end point.

We have the rule-VI for this constraint in the edge analysis. The rule-VI will remove
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the edge from the edge list if that edge does not connect to other edges at either edge

end point.

In the edge point traversal process, the traversing always begins at a
SurfaceCorner point and also ends at a SurfaceCorner point, assuming that these points
have the connectivity on the sampled 3D object. However, the edge traversing may not
be successful if the surface is irregular; specially, the areas that are close to a convex
vertex as shown in the figure below. The SurfaceCrease points do not have the clear
edge direction if it is in the area around the convex vertex, or the valley of the surface
because there are more than two surfaces merging together in that area. The points
belonging to different surfaces will affect the first PC vector of the SurfaceCrease point.
Hence, the SurfaceCrease points traversed in the SurfaceCorner area may not succeed.

We need to create additional edges to connect two close by SurfaceCorner points.

The process always selects the closest pair of the SurfaceCorner points first, and
creates a new edge with two close SurfaceCorner points. Creating a new edge with two
end points does not create a vector any more, it follows the same rule of identifying out
the gaps in the new edge as described earlier in section 4.3.2. The process always takes
the middle point between any two adjacent edge points on the new edge. The process is

illustrated in the figure below.
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Figure 4-10: The first step of the SurfaceCorner points merge operation.

On the left side, there are three surfaces merging at the point A. AB, AC, AD
and their extended line for each is the common edge between two faces. E1, E2 and E3
are three existing edges after the SurfaceCrease points are traversed, but the edge
traversing has failed to find the edges AB, AC and AD. B, C and D are identified as
SurfaceCorner points; and they are very close to each other. E carries out the
SurfaceCorner points merging process. On the right side, is the result of the
SurfaceCorner points merging process without considering the short edge loop. E4 is
the new edge creating between B and C; and ES5 is the new edge creating between C

and D, and E6 is the new edge creating between D and B.

SurfaceCorner Points Merging can help the edge loop, but it may cause more
small faces because the short edge loop may form new loops after creating the new
edge between the close SurfaceCorner points as illustrated in the righthand side picture
in the figure above. Hence, several rules have to be applied in the SurfaceCorner Points

Merging Process. These rules are given below:
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Two SurfaceCorner points are close

The new edge of two SurfaceCorner points should be on the same surface.

If they are too far, they may cross another face.

Always process closest pair of SurfaceCorner points

Closest pair of SurfaceCorner points has more chance to be on the same surface.
When the short edge loop forms after a SurfaceCorner points merging operation,
the edge with closest pair of SurfaceCorner points should be kept, and the edge
with further pair of SurfaceCorner points should be removed.

No intersection with any existing edges

This pair of SurfaceCorner points should be connected to an edge because one
existing edge intersects it.

No short edge loop must be created

It can avoid detection of very small faces.

The first two rules are used before creating the new edge; and 3 and 4™ rules

are used to cancel the new edge after it has been generated.
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Figure 4-11: Final Result of SurfaceCorner points merge operation.

Hence, the new edge E6 between B and D is cancelled after checking 4™ rule;
and the final result of the SurfaceCorner points merging process is as shown in the

figure 4-11.

4.3.6 Edge Combination
This process is to combine two lines together if they are connected to each other;
and they can fit the feature of the edge. Right now, we only consider combination of the

straight lines, but we can easily extend our method so that curves can also be combined.

We are using the Least Square Fitting approach to combine the edges. Different
formula can be defined for fitting different features. For 3D straight lines, we have
used Linear Fitting Using Orthogonal Regression in Eberly et al. [11].

4.3.6.1 General Linear Least Squares Fitting

We have already described this in section 2.2.3. for a more detailed discussion,

please see Feddma et al. [12].
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43.6.2 Linear Fitting Using Orthogonal Regression
Let a line be L (¢) = tD + A where D is unit length, and 4 is the reference
position on the line.
Define Xi to be the sample points,
Xi=A+diD+ Db oo, (1)
Where d;i= D o (X;- A ), and D; is some unit length vector perpendicular to D with
appropriate coefficient p;. Define ¥; = X; - A. The vector from X; to its projection onto
the line is

Yi-dD =pi DY e )

Figure 4-12: The distance from one point to 3D line.

The squared length of this vector is (p,-)2 =(Y;-dD) 2 The energy function for
the least squares minimization is £(4, D) = "= 1(p)°. Two alternate forms for this
function are

E(A, D) =3"—1(Ye[I-DD'] oY) ccc.cevviiuraaiiiiiiaaaaniin. 3)
And

E(d, D) =D(Y"i[(YieY)I- Yo Y )D=D'MA)D ............. 4)
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Using the first form of E in the previous equation (3), take the derivative with respect

to A4 to get

OE/0A=-2[T-D DT Y =1 Vi i, (5)

This partial derivative is zero whenever Y";—; ¥; =0

in which case 4 = (1/m) >™;-; Y; (the average of the sample points).

Given A, the matrix M(A) is determined in the second form of the energy
function. The quantity D'M(A)D is a quadratic form whose minimum is the smallest
eigen value of M(4). This can be found by standard eigen matrix solvers. A
corresponding unit length eigenvector D completes our construction of the least

squares line.

Forn=2,if A4 = (a, b), then matrix M(4) is given by
|1 0] | Y mii-a) X imilri- @) (i- b) |
M) = (X" imi(xi- *+X == ) | |- |
10 1] | Y =ifxi-a) (- ) X"imi(0i- )|

Forn=3,if 4 = (a, b, ¢), then matrix M(A4) is given by
100 Y- Y - Ai- b)Y ii(xi- A)zi- )
M(4) =3[ 010] [ 3" -1ci- ))(vi-b)  T"i-1(i- b)° Y- B)(zi- ) ]
001 Yl @)Gi-¢) Y- Do) Yimiz-of
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where

O =Y"ilxi- af + 3" i(yi- b+ Y i(zi- o)

4.4 Remarks

Detecting features such as vertices and edges are the first step in the process of
segmenting a 3D point cloud model into point subsets that can be identified as faces,
edges and corners. The techniques are sensitive to a number of model related
properties. These are the type of object (engineering class or the class consisting of
natural or sculptured shapes), the sampling density, the variation in sampling density
over the entire model and finally the noise in data set. We have devised techniques
that try to take into account all the above characteristics. These techniques use
statistical properties of the point data set and adaptively derive the required
thresholds needed for reasonably accurate classification. This is followed by fairly
complex methods for refining the initial classification and then traversing the point
set space for getting edge points. These techniques have been implemented and
tested on a wide variety of models. The results are presented in chapter 6 of this

thesis.
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5 Face Recovery Techniques for Point Cloud Models

In Chapter 4 we have discussed the techniques that we have devised for
detecting points that can be identified as vertices and points that can be identified as
making up the different edges in the 3D object. At the end of the edge detection process
all the unidentified points will be of type Facelnterior. The next step in reverse
engineering the boundary representation (B-rep) of the 3D object is to segment the
entire point set into different faces that make up the object. It may be noted that in a B-
rep model of the surface of a 3D object, each face may be bounded by one of more
edge loops. In case of a closed surface, each edge will belong to exactly 2 faces. In the
case of an open surface, the edge made up of SurfaceBorder points will belong to only
one face. In this chapter we describe the techniques we have devised for detecting edge
loops and for segmenting the point set into different faces bounded by edge loops. We
use the popular half-edge data-structure to represent the B-rep recovered by this

Pprocess.

5.1 Half Edge Data Structure

The half-edge data structure is an edge-centered data structure capable of
maintaining incidence information of vertices, edges and faces. The basic half-edge
data structure is as follows:

Edge Item Definition:
e FEdge next.
o FEdge opposite halfedge
e Vertex end vertex

e Tace face
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Face Item Definition:

¢ FEdge start_edge

Vertex Item Definition:

e Double X
¢ Double y
¢ Double 4

The basic half edge data structure cannot handle hole loops, i.e., faces with
multiply connected boundary loops. For our surface structure, we do consider holes.
For a face with multiple edge loops, one loop is the outside boundary, and other loops
make up the inside boundary of the face. We extended the basic half edge data structure
in order to handle this case. Hence, we add another layer between the face and the half
edge layer. This additional layer is half edge loops which consist of all half edges in the
loop.

The face recovery process has three stages. The first stage is to construct the
half edge node list; and second step is to detect half edge loops from the half edges; and
the third step is to segment the point set into different faces from the half edge loops.

Our half edge data structure has four major nodes: vertex, half edge, half edge
loop and face. In order to make an efficient structure, we have to add more links to the

whole structure.
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5.1.1 Vertex/Half Edge Structure:

There are several types of node structures in the Vertex/Half Edge Structure in
order to query the information quickly. They are Vertex Node, Start Vertex Node, Edge
list, Half Edge Node. Vertex Node just keeps the 3D coordinates information. Edge list
is the source data of the half edge construction; and it comes from the previous process
of edge recovery. Each edge has a start vertex and end vertex. In the half edge node, we
only keep the start vertex reference. Start Vertex Node is to collect all half edge nodes
which have the same start vertex. All Half Edge Nodes are stored in one list which is
used to generate the half edge loop later. Each Half Edge Node has a pointer to Start
Vertex Node, a pointer to the opposite Half Edge Node and a pointer to Loop Element.
Loop Element is valid only if the half edge has been inserted into a half edge loop. The
Loop Element will be described in next section.

These structures are used in the first stage of the face recovery process. This

process takes the edge array as the source, and it generates other three data structures.
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Vert/Edge/Half Edge Organization

Vertices List Start Vertex Item Lists Half Edge List
y N Ty | e— Ve —t——‘

Vertex: V1 - ) Half Edge: H1A
Prev Vertex NULL Start Vertex flem SV1A NULL«~/[Y [__Prev Half Edge
NULL: Prev Start Vertex ltem Next Half Edge

Next Vertex | Next Start Vertex ttem— Opposite Half Edge

Half Edge IN- Start Vertex ftem
Start Vertex ttem H g - Vertex Loop Hement
g SN

L 4
Half Edge: H1AO

Start Vertex temx SV1B

LT
z:\; z:a; xezex :em - Prev Half Edge
Vertex: V2 E" art vertex tem Next Half Edge

|

=
H| Prev Vertex \-—{,EVenex | osite 3

H tart Vertex ltem
Next Vertex Loop Bement
Start Vertex tem H— Start Vertex tem SV1C L
L1 Prev Start Vertex tem J\_—’l
Next Start Vertex tem[-+—"§ NULL
l Fefbdge M/ ';':"f Eﬂg;'gm
B Vertex 1 ev ge
Vertex: V3 Next Half Edge  H
L{| PrevVertex r—_— Opposite Half Edge
. P Start Vertex tem
Next Vertex » NULL Start Vertex ttem SV2A | Loop Bement
Start Vertex tem H— Start Vertex fem SV2B |
Start Vertex tem: SV2C
Prev Start Vertex tem Half Edge: H1BO
Next Start Vertex tem Prev Half Edge |
Half Edge Next Half Edge
Vertex Opposte Fall Edge |
. % Start Vertex ltem
¢ Loop Bement
Start Vertex tem SV3A

Start Vertex tem: SV3B £

Prev Start Vertex ftem
Next Start Vertex tem

Half Edge: H1D

Half Edge: H1DO
Prev Half Edge
Next Half Edge

Opposite Half Edge
Start Vertex tem

Figure 5-1: Vertex/Start Vertex/Half Edge Organization.

The Start Vertex Item is a data structure that supports query on the next half
edge during the process of the half edge loop. The query on Half Edge A can be done

easily using the following steps:
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e A -> Opposite Half Edge -> StartVertexltem

e All items except opposite half edge in this Start Vertex Item list are the next half

edge of A.

5.1.2 Half Edge/Half Edge Loop/Face Structure:

The face consists of at least one half edge loop; a half edge loop consists of at

least two half edge elements; a half edge element is a reference to half edge node.
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Half Edge/Half Edge Loop/Face Organization

Face Node List

<

Half Edge Loop Lists

Half Edge Loop Element Lists

&
o

Half Edge Loop: F3LA

Half Edge Loop: F3LB

Prev Half Edge Loop

Next Half Edge Loop

Loop Hement

Face

LN

l

Loop Element: LE1A1

Prev Loop Bement

Next Loop Bement

Half Edge

Half Edge Loop

Loop Element: LE1A2

Prev Loop Bement

Next Loop Bement

Half Edge

Half Edge Loop

Loop Element: LE1A3

Prev Loop Bement

Next Loop Bement [ NULL

Half Edge

Half Edge Loop

Face Node: F1 J\————PV
Prev Face NULL Half Edge Loop: F1LA
NULL 4 Prev Half Edge Loop
NextFace  n Next Half Edge Loop |
Half Edge Loop Loop Element -
— Face
Half Edge Loop: F1LB
v — Prev Half Edge Loop
Face Node: F2 Next Half Edge Loop » NULL
Loop Element
— Prev Face Face
Next Face
Half Edge Loop H 7N l
Half Edge Loop: F2LA
NULL «—}| Prev Half Edge Loop |
Face Node: F3 Next Half Edge Loop » NULU
Loop Element
Prev Face Face
Next Face ——p NULL
Half Edge Loop

¥

Loop Element: LE1B1 |

Loop Element: LE1B2 I

Loop Element: LE1B3

Prev Loop Hement

Next Loop Bement

Half Edge

Half Edge Loop

5.1.3 Three types of half edge loops to split surface:

Figure 5-2: Half Edge/Half Edge Loop/Face Organization.

v

Loop Element: LE2A1

Loop Bement: LE2A2
Prev Loop Element
Next Loop Element

The half edge structure for the entire 3D object is built incrementally by

considering one edge at a time. Introduction of a new half edge will cause changes to

loop, but some faces may consist of more than one half edge loop.
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One half edge can be part of a half edge loop or may be the start of a new half
edge loop; A half edge cannot be the start and end half edge of the same loop. It will
connect to another half edge loop. There are 3 types of loop endings.

5.1.3.1 Half Edge Loop Type A:

The new half edges ends at the beginning of the loop itself.

If the new half edge loop ends at the beginning of itself, all opposite half edge of this
loop’s half edge should connect to build another loop. If the first loop is outside, then
the opposite loop is inside. Both loops split the old face into two faces.

There are two cases of type A. One is that one face is surrounded by one half

edge loop. Second case is that one face is surrounded by more than one half edge

loops.

Face-1 Face-1

HE-1

HE- HE2 HE-8

HE-7 HE-3 D HE-7

HE-6 HE-4

HE-5

Figure 5-3: First case of Half Edge Loop Type A.

In this case one new half edge loop (HE-1 — HE-8) is found. It is beginning at

HE-1, and is ending at HE-1. Its opposite half edges (OE-1 — OE-8) form another loop.
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Both loops split old Face-1 into two faces: Face-1 and Face-2. Face-1 has the loop
(HE-1 — HE-8) as the boundary, and Face-2 has the loop (OE-1 — OE-8) as the

boundary.

Face-1

HE-3

HE+4

Face-1

Figure 5-4: Second case of Half Edge Loop Type A.
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In the second case, the new Face-1 is surrounded by two half edge loops (from
HE-1 to HE-8 and from HE-9 to HE-16) after the old Face-1 is split into new faces,
Face-1 and Face-3.

If another isolated half edge loop is found like the loop (from HE-9 to HE-16)

in the Face-1 again, the result will be three loops surrounding the new face.

5.1.3.2 Half Edge Loop Type B:
The new half edge loop begins at one existing loop, and ends at the same

existing loop.

Figure 5-5: Half Edge Loop Type B.

Based on the example of case-1 in Half Edge Loop Type A, there is the new
half edge connectivity (HE-9 — HE-12) which is beginning after HE-3, and is ending at

HE-I’s end vertex. Hence, it breaks the old half edge loop (HE-1 — HE-8)
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5.1.3.3 Half Edge Loop Type C:
The new half edge loop begins at one existing loop, and ends at another
existing loop. It does not form another face, and it breaks both existing loop, and

connects both broken loops into another loop plus itself and its opposite edges.

Face-1

HE-8

HE-7

Face-1

Figure 5-6: Half Edge Loop Type C.
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Based on the example of the case-2 in Half Edge Loop Type A, there is the
new half edge connectivity (HE-17 — HE-18) which begins after HE-2 of the first edge
loop, and ends after HE-15 of the second edge loop.

It breaks the first edge loop from HE-1 — HE-8 to HE-3 — HE-8 — HE-2, and it
breaks the second edge loop from HE-9 — HE-16 to HE-16 — HE-9 — HE-15, and it
forms the new edge connectivity (HE-3 — HE-8 — HE-2 - HE-17 — HE-18 - HE-16 —
HE-9 — HE-15). After adding the opposite edges of the edge HE-17 and HE-18, the
new edge connectivity becomes the new edge loop: HE-3 — HE-8 — HE-2 - HE-17 —
HE-18 - HE-16 — HE-9 — HE-15 — OE-18 - OE17.

However, the new edge loop does not split the old face: Face-1. It just
combines two old edge loops into one edge loop, and it keeps the same face: Face-1.

Hence, Half Edge Loop Type A and Half Edge Loop Type B always split one

face into two faces, but Half Edge Loop Type C does not split the face.

5.2 Surface Split Algorithm

5.2.1 Types of points used in surface splitting:
5.2.1.1 Point Types after Face Segmentation
e Processed Internal Face Vertex (PDIFV)
e Processed Edge End Vertex (PDEEV)
e Processed Edge Vertex (PDEV)
Processed Internal Face Vertex (PDIFV) is the internal point inside the face.
Processed Edge End Vertex (PDEEV) and Processed Edge Vertex (PDEV) are the

points on the boundary of the face.
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5.2.1.2 Types Used During Processing
o Processing Internal Face Vertex (PGIFV)
e Processing Close Boundary Vertex (PGCBV)
o Processing Old Edge End Vertex (PGOEEV)
e Processing New Edge End Vertex (PGNEEV)
e Processing Shared Edge End Vertex (PGSEEV)
e Processing Old Edge Vertex (PGOEV)
e Processing New Edge Vertex (PGNEV)
® Processing Shared Edge Vertex (PGSEV)

Processing Internal Face Vertex (PGIFV) is the initial value of the points
belonging to the old face which is going to be split.

When the new edge splits an old face into two new faces, each new face will
have its own edge loops. One new face may only have one edge loop, and it may also
have more than one edge loop like the second case of Half Edge Loop Type A. We
assume one of the new faces is still the old face because it uses the old face structure
and face id, and another face is the new face created after the split. The points of the
old face boundary are Processing Old Edge End Vertex if they are the end of the edges
or Processing Old Edge Vertex if they are not the end of the edges. The points of the
new face boundary are designated as Processing New Edge End Vertex if they are the
end of the edges or Processing New Edge Vertex if they are not the end of the edges.
However, both half edges are the shared edge between the old and new face if the

opposite half edge of the one old boundary edge is also the new boundary edge; and
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the end points of the shared edges are Processing Shared Edge End Vertex (PGSEEV),
and other points of the shared edges are Processing Shared Edge Vertex (PGSEV).
During the first phase of the face split process, the point is called Processing
Close Boundary Vertex (PGCBV) if it is very close to the shared edges, and it is not
clear which face it belongs to. It will be identified later in Close-Boundary Vertex

Processing.

5.2.2 A 3D Seed Fill Algorithm:

5.2.2.1 How Does the 3D Seed Fill Algorithm Work

We have extended the idea of the 2D seed fill algorithm used extensively in
computer graphics for raster filling a region given the region boundary and a seed that
is guaranteed to be interior to the region. This algorithm works by recursively growing
the region around the seed until a boundary pixel is hit. Our 3D version takes one
Facelnterior point as the seed, and starts from the seed point to extend each
neighboring point. Each Facelnterior point in the neighbourhood is now considered as
belonging to this face. This process is continued recursively by considering each newly
added point as the new seed. The process terminates when a non Facelnterior point is
reached.

The boundary of the face in this 3D Seed Fill Algorithm means the loop of
shared edges. The new or old edge type vertices do not affect 3D Seed Fill Algorithm
because they are the edge between the split faces. Meantime, if there is at least one
neighbor vertex whose type is Processing Shared Edge End Vertex (PGSEEV) or

Processing Shared Edge Vertex (PGSEV), Seed Fill Algorithm marks the seed as
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Processing Close Boundary Vertex (PGCBV) and stops processing of the neighbor
point of the current seed. The pseudo-code for this algorithm is given below.

3DSeedFillAlgorithm(Seed)
o Collect all neighbor vertices of the seed

e For each neighbor vertex

. If the vertex is Processing Shared Edge End Vertex (PGSEEV) or Processing
Shared Edge Vertex (PGSEV)

o Set Seed to Processing Close Boundary Vertex (PGCBY)), and quit this
Sfunction

. Endif

e End Loop

o For each neighbor vertex

o If the neighbor vertex is Processing Internal Face Vertex (PGIFV)

) Set the same face for this neighbor vertex as the seed.

® SeedFillAlgorithm(the neighbor vertex)

. End if

e FEnd Loop

5.2.2.2 Efficiency of 3D Seed Fill Algorithm
This 3D Seed Fill Algorithm is very simple and efficient because it does not
have much computation. It just searches the neighbor points for each seed, and checks
the type of each neighboring point. Collecting neighboring points and checking the

type are computationally quite inexpensive and fast.

Furthermore, since most of the points in the face are interior points, 3D Seed
Fill algorithm identifies the face id for these points fast. Only a very small portion of
vertices are Processing Close Boundary Vertex (PGCBV), and these vertices have to
use a more complicated algorithm to identify the face id later. In our experience,

usually less than 3% of the vertices need the Close-Boundary Vertex Process.
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5.2.3 Close-Boundary Vertex Processing:

After the Seed Fill process, most points on the surface have been identified as
belonging to one of the current set of faces in the half-edge structure, except all the
points that are very close to any edge of new/old face which need further processing.
We call these points as Close-Boundary Vertices. The Close-boundary Vertex Process

is used to identify the faces for these points.

The neighbor points of Close-Boundary Vertex are very many different types,
but only some types will affect the processing of Close-Boundary Vertex. The different

types that are not used are:

e Processed Edge End Vertex (PDEEV)

e Processed Edge Vertex (PDEV)

e Processing Old Edge End Vertex (PGOEEV)
e Processing New Edge End Vertex (PGNEEV)
e Processing Old Edge Vertex (PGOEV)

e Processing New Edge Vertex (PGNEV)

PGOREV is the boundary of the old face; and it is not shared with new face.
PGNEYV is the boundary of the new face; and it is not shared with old face. Both
PGOEYV and PGNEYV are used to identify which face the points belong to in the 3D
Seed Fill process. However, the edge cannot be used to identify the face if the edge is
shared by old and new faces. The types of the shared edge are PGSEEV and PGSEV
described below.

The only types that are used in the processing of Close-Boundary Vertex are:

e Processed Internal Face Vertex (PDIFV)
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e Processing Internal Face Vertex (PGIFV)
o Processing Close Boundary Vertex (PGCBV)
e Processing Shared Edge End Vertex (PGSEEV)
e Processing Shared Edge Vertex (PGSEV)
Processing Shared Edge End Vertex (PGSEEV) and Processing Shared Edge
Vertex (PGSEV) compose the edge between two faces. The Close-Boundary Vertex
Process identifies the face for an unknown point based on the relationship between
points with previously established identities and itself. There are three kinds of
relationships between neighboring Facelnterior points and the seed vertex that the
close-boundary process will identify.
These three types of relationships are same-face, different-face and unknown.
The same-face relationship means the seed vertex stays on the same face as the
neighboring Facelnterior point. The different-face relationship means the seed vertex
stays on a different face as compared to the neighboring Facelnterior point. There are
only two faces to be identified for the seed vertex: old face and new face, so the seed
vertex belongs to old face if its’ neighboring Facelnterior point belongs to the new
face, and vice versa. The unknown relationship means it cannot be used to identify the
face. The unknown relationship happens when one of the following situations exist.
o The neighboring Facelnterior point is far away from the seed vertex.
o The neighboring Facelnterior point and the seed vertex are not on similar
plane
o The segment from the neighboring Facelnterior point for the seed vertex

crosses more than one segment on the shared edges.
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Two points are on similar plane if:
both points have similar normal directions;
and the distance between two vertices along the normal directions of either
vertex <= predefined distance.

The segment from the neighboring Facelnterior point for the seed vertex
crosses more than one segment on the shared edges. Usually it means the segment
crosses more than one edge, but it may also cross one shared edge twice sometime.
However, we still say it only crosses the shared edge once if two crossed segments on
the shared edge are adjacent and both crossing positions are close to the same edge
vertex.

The relationship between a neighboring Facelnterior point and the seed vertex
is the same-face relationship if all the following conditions hold:

e Both vertices are close
e Both are on the same plane
e They do not cross any shared edges.
The relationship between a neighboring Facelnterior point and the seed vertex

is a different-face relationship if all the following conditions hold:

e Both vertices are close

e Both are on the same plane

o They do cross a shared edge once or they cross a shared edge twice but both
crossing positions are close to the same vertex or they cross two adjacent
shared edges but both crossing positions are close to the same edge end

vertex.
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The relationship between the neighborhood points and the seed vertex becomes
an unknown relationship when either same-face relationship or different-face

relationship conditions are not satisfied.

The close-boundary process gets the relationship between each neighboring
Facelnterior point and the seed vertex. If there is any same-face relationship vertex or
different-face relationship vertex among the neighborhood vertices, the seed vertex
can be associated with a face according to these neighboring points. Nevertheless,
there may be conflicts in the relationships of the neighborhood points. For example,
two neighboring points may be identified with the same-face relationship to the seed;
but these two points actually belong to different faces. So this can cause a conflicting
situation if we try to identify the face for the seed. In this case, the process will not
identify the face for the seed vertex and keep the original status of the seed vertex. The
seed vertex could be identified later when it is a neighborhood vertex of other seed

vertex and they have same-face or different-face relationship.

After the seed vertex is identified, the process continues to identify other
unknown face vertices in the neighborhood to check if they have same-face or

different-face relationship with the seed vertex.

5.2.4 Close-Boundary Vertex Processing Algorithm:

e Get the neighborhood vertices set NGP(S)

e Get the Processing Shared Edge End Vertices(PGSEEV) and the Processing Shared
Edge Vertices (PGSEV) as SV(S)

e Find the adjacent edge vertices for each of SV(S), and order it.

o /* Check the relationship between each neighbor vertex and Seed vertex(S) */

e Foreachvertex Vin NGP(S)

90



If the distance of SV exceed the pre-defined distance of close-boundary checking.
Skip the following process.
Llse
If'V and S are on the same plane
Set SPL = YES.
For each pair of adjacent shared edge vertices in SV(S) as SVI, SV2
If the segment of SVI and SV2 is crossing the segment of S and V
If the number of crossing segments NCS= 1 AND previous
shared edge vertices and the shared edge vertices( SV1,V2) are the adjacent edge
vertices pair AND the crossing position is close to the middle edge vertex of these two

pairs of shared edge vertices.

Else if the number of crossing segments NCS = 0
NCS++
Keep the pair of the shared edge vertices (SV1, SV2) and
the crossing position.
Else if the number of crossing segments NCS > 1
NCS++
If'V and S are not on the same plane
Set SPL = NO.
/* Determine the New/Old Face */
For each vertex V in NGP(S)
If the face of V = Unknown
Skip it.
If the distance of SV < the pre-defined distance of close-boundary'checking AND
SPL is YES AND NCS = 0
If the face of S Face(S) = Unknown
Set Face(S) = Face(V)
Else if Face(S) <> Face(V) /* If the checking is inconsistency */
Set Face(S) = Unknown_But_Processed
Return.
Else If the distance of SV < the pre-defined distance of close-boundary checking
AND SPL is YES AND NCS = 1
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If the face of S Face(S) = Unknown
Set Face(S) = Opposite of Face(V)
/¥if Face(V) is new, then Face(S) is old, and vice versa.*/
Else if Face(S) = Face(V) /* If the checking is inconsistency */
Set Face(S) = Unknown_But Processed
Return.
Else If the distance of SV < the pre-defined distance of close-boundary checking
AND SPL is YES AND NCS > 1
Skip it. /* It can not be used because of too many crossing shared
edges. ¥/
Else If the distance of SV < the pre-defined distance of close-boundary checking
AND SPL is NO
Skip it. /* No crossing check because they are not on the same plane. */
Else If the distance of SV > the pre-defined distance of close-boundary checking
Skip it. /* No necessary for crossing checking because they are too far.
*/
/* Update other close-boundary vertices in the neighbor vertices */
If Face(S) = Unknown
Set Face(S) = Unknown_But Processed
Return
For each vertex V in NGP(S)
If Face(V) <> Unknown
Skip it.
If the distance of SV < the pre-defined distance of close-boundary checking AND
SPL is YES AND NCS = 0
Set Face(V) = Face(S)
Else If the distance of SV < the pre-defined distance of close-boundary checking
AND SPL is YES AND NCS = 1
Set Face(V) = Opposite of Face(S)

92



5.3 Remarks

Detecting edge loops is comparatively a straight forward task once the edges
have been detected and the edge corner vertices are known. Segmenting the point set
into different faces bounded by these edge loops is however a far more complex task,
particularly, for points which are close to the edge points. The 3D seed fill algorithm
that we have introduced in this chapter is simple and efficient for the more straight
forward cases in labeling the points with their owner faces. For points that are very
close to edges, more complex techniques have been devised. All the above techniques
have been implemented and tested on a variety of models. The results are presented in

the next chapter.
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6 Implementation Issues and Results

All the techniques described in chapters 3, 4 and 5 have been implemented and
tested on a number of point cloud models. For purposes of testing our programs, many
of the 3D data models were available for download from other research web sites.
However, we also wrote our own programs for creating some of the simpler data sets
such as the cube, two cubes and the anvil. These were needed so that we could test our
programs using small and simple models. The total size of the programs is over 38,000
lines of code written in C, Open GL, and GLUT on the windows 2000 platform. All
performance measures were measured on the same system consisting of a 2.8GHz
CPU and 1GB of memory. In this chapter we describe the overall structure of our
program and the results of running these programs on different point sampled surface

datasets.

6.1 Program Structure/Workflow

The processing of the 3D sampled data is very complicated because of the huge
scale of data to be processed and the visual aspects of the results. Due to these reasons,
it is also very hard to debug such programs.

The boundary recovery techniques implementation has three stages: initial
process, edge recovering and face recovering; and all major processes are included in

Table 6-1. The workflow of the implementation is described in figure 6-1.
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Stage Process Function
Sample Data Loading | Load the data
A Dist Analysi
Cube Establish Process V.erage & anc.e e YSIS.
Neighborhood Size Analysis
Initial Multi-Partition Analysis
Noise Data Process Duplication Vertices Analysis
Standalone Vertices Analysis
Eigen Matrix Process Jacobi Process
Initial Classification Flat/Border/Crease/Corner Classifying Process
Process
Classification Refini Crease Refining
assification Refining Border Refining
Process
Corner Refining
Edge Fdoo T ;
Reversing g "raversing Recursively Traverse Edge Vertices
Process
Edge Intersecting Analysis
) Short Edges Loop Analysis
Edge Refinin
ge Reliing Parallel Edges Analysis
Edge Merging Process
HalfEdge Strucutre Establish
HalfEdge Process & -
Face HalfEdge Loop Analysis
Reversing . SeedFill Process
Face Splitting Process
CloseBoundary Process

Table 6-1: Processes of the whole system
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3D Coordinate
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3D Coordinates +
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2. Average Distance Analysis

3. Neighborhood Size Analysis

[~5. Duplication Vertices Analysis ™
6. Standalong Vertices Analysis
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Vertices Data
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Vector Data
Edge Reversing Process
Flat/Border/
Eigen Vaule/Eigen . o Crease/Corner
Vector Data +———8. Initial Classifying Process —p Class Vertices
Data

9. Crease Refining Process

10. Border Refining Process
11. Corner Refining Process

Refined
Classification
Vertices Data

——12. Edge Vertices Traversing—|

Edge Data

13. Edge Intersecting Analysis
14. Short Edges Loop Analysis

15. Paraltel Edges Analysis
16. Edge Merging Process

Refined Edge
Data

Face Recovering Process

Edge Data

Edge/Face
Feature Data

|_17. HalfEdge Strucutre Establish
18. HalfEdge Loop Analysis

19. SeedFili Process
20. CloseBoundary Process

o

HalfEdge Data
Structure +
HalfEdge Loops

Figure 6-1: The overview of the system.
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6.2 Information of each process

All models used in the tables of this chapter have been described earlier in
Table 1-1.

6.2.1 Cube Establish Process

6.2.1.1 Cube Information

Model NGP | Number of Cube Size Average Maximum
Size Valid Vertices in Vertices in
Cubes Cube Cube
Single Box 3 1016 | 0.0144 59 169
Dual Boxes 3 1340 | 0.0072 55 169
Anvil 5 3794 | 2.5523751878 42 246
Armadillo 3 5904 | 0.0304893091 29 100
Bunny 3 1526 | 0.0374461665 23 60
Dragon 3 54695 | 0.0063659866 9 91
Dragon 5 22265 | 0.0106102264 24 172
Happy Budda 3 65364 | 0.0037658957 10 117
Happy Budda 5 29089 | 0.0062768406 24 184
Happy Budda 7 15501 | 0.0087875769 46 272

Table 6-2: The cube structure information.

Cube construction is the first process in the initial process. The cube size is the
double of neighborhood size; hence, the neighbor point graphic for one point is
computed in its cube and the eight cubes around it. Table 6-2 shows the cube structure
information for each model. NGP Size is the estimating neighborhood radius based on

the average distance.
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6.2.1.2 Neighborhood Collection Information

Model NGP | Neighborhood Average Minimum Maximum
Size Radius Neighborhood | Neighborhood | Neighborhood
Number Number Number
Single Box 3 0.0072 25 19 33
Dual Boxes 3 0.0036 25 19 33
Anvil 5 1.2761875939 41 4 134
Armadillo 3 0.0152446545 21 12 69
Bunny 3 0.0187230832 16 5 24
Dragon 3 ]10.0031829933 9 2 74
Dragon 5 0.0053051132 22 2 130
Happy Budda 3 10.0018829478 10 2 92
Happy Budda 5 10.0031384203 23 2 170
Happy Budda 7 10.0043937884 44 2 249

Table 6-3: The Neighborhood vertices information.

Table 6-3 shows the average neighborhood vertices number, minimum

neighborhood vertices number and maximum neighborhood vertices number according

to the neighborhood size and the neighborhood radius for each model. The

neighborhood radius is calculated based on the neighborhood size and the average

distance of the model.

6.2.2 Processing Noise in Data

Model Vertices NGP Size Partitions Dup Noise | Standalone Noise
Single Box 60002 3 0 0 0
Dual Boxes 74402 3 0 0 0
Anvil 162882 5 0 0 0
Armadillo 172974 3 0 0 0
Bunny 35286 3 0 0 1
Dragon 566098 3 2082 25932 3041
Dragon 566098 5 55 25932 152
Happy Budda 727735 3 8844 7777 10024
Happy Budda 727735 5 1299 7777 794
Happy Budda 727735 7 85 7777 50

Table 6-4: Noise Analysis Data
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Table 6-4 shows the separating partitions, duplication vertices and standalone
vertices for each model. The separating partition means a part of vertices that can not
be traversed based on the neighborhood size specified in the Table 6-4. Duplication

vertices means two vertices are very close. The standalone vertices are the vertices that

can not get any neighborhood vertices.

Figure 6-2: The noise analysis of the dragon.

Figure 6-2 shows the comparison between the dragon model with NGP 3 (a)
and NGP 5 (b). The blue color points in figure 6-2 show the noise data. The dragon
model with NGP 5 still has some noise data showing in the picture, but is has much

less than its’ NGP 3.
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Figure 6-3: The noise analysis of Happy Budda model.

Figure 6-3 shows the comparison between the Happy Budda model with NGP 3
(a) and NGP 7 (b). The blue color points show the noise data. The Happy Budda model
with NGP 7 still has some noise data showing in the picture, but is has much less than
its’ NGP 3. Happy Budda model with NGP 5 still has a lot of separating partitions.

Bunny has one point that is far away from any other points; and all other

models have no noise point.
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6.2.3 Eigen Matrix Computation Process

Model NGP Total Vertices | AVG Neighborhood Time Cost
Size Number
Single Box 3 60002 25 8.92s
Dual Boxes 3 74402 25 9.00s
Anvil 5 162882 41 34.50
Armadillo 3 172974 21 25.19
Bunny 3 35286 16 7.31s
Dragon 3 566098 9 42.0s
Dragon 5 566098 22 82.71s
Happy Budda 3 727735 10 74.91s
Happy Budda 5 727735 23 97.12s
Happy Budda 7 727735 44 174.77

Table 6-5: Eigen Matrix Calculation Information

Table 6-5 shows the time cost of the eigen vector/eigen value calculation for
each model.
Time consumed = neighborhood vertices collecting time + eigen matrix

calculation time.

6.2.4 Using Eigen Values in Rendering Process

e In chapter 3 we described our rendering algorithm that uses eigen values for

efficient rendering of very dense point sampled surfaces.
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Figure 6-4: Rendering at different image sizes.

A dense region of the original surface is rendered using a small number of
sample points. This selection uses multiple visual cues such as flatness of the region,
presence of features such as an edge or silhouette.

A basic assumption that we have made is that for rendering a densely sampled
flattish region without any other visually significant features we only need to render a
few of the sample points. And further, every point in this region is “characteristically
similar” to another. Since a large number of these points map onto the same pixel, there
is nothing to choose one point from another. Hence we use uniform random sampling to
select the subset of points to render. On the sample models we have used, the
performance improvements are as shown in Table 3.2. One can observe that for smaller

image sizes we get very good performance. This is as expected.
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Continuing on the same line of thinking, we also assume that in a densely
sampled region, the presence of any significant feature can be probabilistically
determined by examining a smaller sample of the total set of points in the region.
Accordingly in our algorithm we decide on the presence/absence of a feature using
stochastic techniques rather than a totally deterministic approach that is used by all
other algorithms. In all our experiments we have not found this causing any major
problem. The figure above shows the results from our algorithm for different screen
resolutions and zoom factors. Yet, there is the situation, however low its probability
may be, that we could miss a feature and accordingly create not such an accurate

rendering of the surface.

6.2.5 Initial Classification Process

When it comes to using the eigen value analysis in recovering the boundary
representation for the 3D object, we have to carry out further analysis and calssify the
points into the different classes discussed earlier in chapter 4. Table below shows this

classification for the different 3D objects we have experimented with.

Model NGP Flat Vertices Border Crease Corner

Size Vertices Vertices Vertices
Single Box 3 52114 2036 3516 2336
Dual Boxes 3 62517 2537 5612 3736
Anvil 5 129453 5373 21920 1915
Armadillo 3 140755 5822 24269 2128
Bunny 3 28727 1180 4943 435
Dragon 3 419824 17403 74811 6571
Dragon 5 439407 18168 75501 6661
Happy Budda 3 533214 21968 91068 7974
Happy Budda 5 578778 24099 99031 8707
Happy Budda 7 587045 24285 99589 8714

Table 6-6: Initial Classification Result.
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Table 6-6 shows the result of the initial classification for each model. All points
of each model are classified into four types: flat vertices, border vertices, crease
vertices and corner vertices. The classification information will be used in the edge

recovery process. The initial classification is based on predefined portion of each class.

Figure 6-5: The initial classification information of each model.
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Figure 6-5 show the result of the initial classification for a) Single Box b)Dual
Boxes c)Anvil d)Armadillo e)Bunny f)Dragon using NGP 5 g)Happy Budda using
NGP 7. The red points are the corner points; and the blue points are crease points; and

the green points are border points; and the yellow points are the flat points in figure 6-5.

6.2.6 Classification Refining Process

Model NGP | Flat Vertices Border Vertices Crease Vertices Corner Vertices
Size Before After Before After | Before After | Before After
Single Box 3 52114 58770 2036 0 3516 1212 | 2336 20
Dual Boxes 3 62517 72412 2537 0 5612 1938 | 3736 52
Anvil 5 129453 | 144077 | 5373 3219 | 21920 10390 | 1915 975
Armadillo 3 140755 | 160715 | 5822 11 24269 11198 | 2128 1050
Bunny 3 28727 32323 1180 96 4943 2626 | 435 240
Dragon 3 419824 | 455511 | 17403 14647 | 74811 44637 | 6571 3814
Dragon 5 439407 | 501974 | 18168 11766 | 75501 23518 | 6661 2479
Happy Budda | 3 533214 | 579059 | 21968 18603 | 91068 51956 | 7974 4606
HappyBudda | 5§ 578778 | 660059 | 24099 17011 | 99031 30366 | 8707 3179
Happy Budda | 7 587045 | 686364 | 24285 12111 | 99589 18962 | 8714 2196

Table 6-7: The initial classification and the refined classification comparison.

Table 6-7 shows most of the border vertices in the initial classification are re-
identified to the flat type; and a part of the crease vertices and the corner vertices also
has been re-identified. These models should have no border vertices because they are
close surfaces, but there still are a small number of border vertices in Happy Budda
because the continuous of the planar estimation values.

The result after Classification Refining Process:

105




Figure 6-6: The refined classification information of each model.

Figure 6-6 shows the result of the classification refining for a) Single Box
b)Dual Boxes c)Anvil d)Armadillo €)Bunny f)Dragon using NGP 5 g)Happy Budda
using NGP 7. The red points are the corner points; and the blue points are crease points;
and the green points are border points; and the yellow points are the flat points in

figure 6-6.
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The lines of the refined classification models become very slim comparing to

the lines of the initial classification models.

6.2.7 Edge Traversing Process

Model NGP | Number | AVG Number | 20>Edge >= Edge >=20
Size | of Edges of Vertices 10 Vertices Vertices
Single Box 3 12 101 0 12
Dual Boxes 3 36 52 0 22
Anvil 5 175 17 31 36
Armadillo 3 290 8 64 13
Bunny 3 49 7 10 2
Dragon 3 886 7 156 19
Dragon 5 721 11 250 81
Happy Budda 3 835 6 93 6
Happy Budda 5 779 10 236 82
Happy Budda 7 632 16 256 164

Table 6-8: The edge data after traversing.

The edges are much shorter in the complicated models than the simple models
in Table 6-8. The simple models like the engineer models have clear crease/corner
attributes, so they can get good traversing edges. On the contrary, the crease/corner
attributes of the complex models is very hard to be detected so it causes many crease
vertices may be identified as the corner vertices, and then the long edges are broken by

this kind of corner vertices.
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6.2.8 Edge Refining

Model NGP Number of Edges
Size

Before After
Single Box 3 12 12
Dual Boxes 3 36 38
Anvil 5 175 335
Armadillo 3 290 47
Bunny 3 49 8
Dragon 3 886 227
Dragon 5 721 445
Happy Budda 3 835 168
Happy Budda 5 779 343
Happy Budda 7 632 823

Table 6-9: The comparison between the traversing edges and the refined edges.

The Table 6-9 shows the result of comparison of traversing edges and refined
edges. The edge refining process increases the number of edges for the intersecting
edges and the corner merging, but it also reduces the number of edges that are not in

any edge loops.
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Figure 6-7: The result of the edge refining.

Figure 6-7 shows the result of the refined edges for a) Single box, b)Dual boxes,

¢)Armadillo d)Bunny, e)Dragon f)Happy Budda. The blue points are the edge end
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points; and the blue points are edge points; and the yellow points are the internal points

of the surfaces in figure 6-7.

6.2.9 Face Splitting Process

Model NGP Size Faces Loop Edges
Single Box 3 6 6
Dual Boxes 3 11 12

Table 6-10: The face recovering information.

The result after face splitting process:

Figure 6-8: All faces are recovered.

Figure 6-8 shows the result of the face recovery for a)single box b)dual box. The
yellow points are the edge points of the edge loop; and the other color points are surface
internal points; and black points are unknown-type points. Fortunately, there are no black

points appearing in the face recovering process.
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6.2.10 Time consuming Process

Model NGP Total Eigen Classify Edge Edge Face
Size Vertices Analysis Process | Traverse | Analysis | Recover
Single Box 3 60002 8.92s 0.96 0.21 0.46 4.86
Dual Boxes 3 74402 9.00s 1.48 0.37 0.93 6.47
Anvil S| 162882 34.50 3.61 2.06 98.34 X
Armadillo 31 172974 24.74 1.86 0.72 2.40 X
Bunny 3 35286 7.31s 0.57 0.18 0.14 X
Dragon 3 566098 42.0s 6.70 3.32 30.2 X
Dragon 5| 566098 82.71s 11.90 5.48 63.54 X
Happy Budda 3| 727735 74.91s 7.31 3.07 13.56 X
Happy Budda 5| 727735 97.12s 15.35 5.54 229.34 X
Happy Budda 71 727735 174.77 28.18 10.64 | 230.79 X

Table 6-11: The time costs of each step.

Table 6-11 shows the time costs of eigen calculation, classifying process, edge

traversing process, edge analysis process and face recovering process. For the natural

models, they have a lot of short edge loops and these loops form small faces. The

program could not complete the small face splitting.
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7 Conclusions and Potential for Further Work

In the last 6 chapters of this thesis we have discussed the emerging importance of
point sampled surfaces in 3D graphics. We presented the current state of the art in
processing these models and then described new techniques that we have developed for
processing these models. These techniques are for efficient rendering of these models and
for reverse engineering these models to recover their 3D boundary representation in the
B-Rep format. The problem is a very difficult one due to a number of problems in the
point sampled data — large volume, noise, sampling density variation. Below we discuss
our successes and also the places where our techniques need more work before thy can be

made to work correctly.

Rendering technique
The rendering technique works well when the data is dense and uniformly
sampled. For sparse data, we have to resort to splatting and our image quality may suffer.

The salient features of this method are the following:

¢ Unlike many of the earlier techniques our method does not require a simplified
subset to be pre-computed.

» Instead it selects a smaller subset on an as needed basis using multiple visual cues.
Each time the viewing conditions change, a new subset is selected and rendered. A
significant advantage is that the original point set is always available. In an extreme
zoomed in situation, all the sample points within the visible region may be selected and

rendered.
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* At every sample point that is rendered, a correctly oriented normal is needed. For
this, most other algorithms depend on having access to the underlying continuous
surface either in the form of a polygon mesh or piecewise algebraic geometry
representations such as quadric or spline surface patches. Our approach makes a
significant departure from this. We do not need any underlying continuous surface
representation. We also do not require that the normal orientation be computed at every
sample point of the original set. We have described a method, which associates a
representative normal with each flattish region, and a method of correctly orienting this
representative normal. Using this representative normal for the region, the correctly
oriented normal at any point in that region can be computed. For a 2-manifold surface
this method will give correct results as long as the surface has been adequately sampled.
In an irregularly sampled surface, there could be regions, where this may not give us the
correct approach. We give an example. The surface is such that it almost folds into itself
and touches itself; the touching point is nearer to this point than other points that are
topologically nearer to this point. As a result when basing our decisions only on spatial
proximity of the points we may associate an incorrect orientation for the normal at one
of these touching places. In such a situation, knowledge of the underlying surface
connectivity is essential. However, this problem is not specific to our approach. Any
approach that has to determine the underlying surface connectivity — say triangulating
the sample points or fitting a surface would also need this knowledge to be externally
supplied to it. Otherwise the underlying surface could be created with inaccurate

topological connectivity.
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While the overall results seem quite good, there are a number of aspects that we

would be considering for further improvement. We briefly discuss these below.

Presently we use simple heuristics to determine the number of samples that represent
a region. An adaptive approach to determine the sample size must be investigated,
one in which the error is minimized.

Since we use the oct-tree nodes our sampling is more of a stratified nature.
Importance sampling, associating importance to different subsets of the original
sample is another approach that may help considerably improve yield better results.
Presently we traverse all the leaf nodes of the oct-tree and determine the sample
points to render. This is single resolution rendering. The hierarchical structure already
present should help to devise a multi-resolution rendering algorithm.

We can also investigate the development of an out of core rendering technique with
the oct-tree structure maintained in persistent storage, and neighboring nodes loaded
into main memory on an as needed basis.

Since our method is probabilistic, it is important to estimate the error in the rendered
image. This would require clearly defining a metric for measuring error in rendered

images.

Reverse Engineering

Specifically our approach works very well on the engineering sampled data model
as box and anvil in Table 1-1. It needs clear separation of facial regions. In engineering

objects we usually have sharp edges and relatively large face regions. For natural or
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sculptured surfaces, the edges are curved and often small curved patches blend into
neighboring surface patches. Hence our methods will need major refinements to work for
such models as well.

There are some characteristics of our implementation which are worth mentioning

here.

7.1 Implementation Issues

> This is very large implementation, and it includes fairly complex algorithms.

> For reasons of efficiency and correctness, we had to consider a large number of
exceptional cases, making the program unwieldy and even more complex.

> There are many recursive functions in this program,; the stack size is raised from 2MB
to 32MB.

> Many complex data structures like Hash tables, FIFOs etc. are used in this program.

> Double/long base types are used in order to get more accurate calculations in the
process.

» Large memory is required; we have to keep the eigen value/vectors information, and
other status for more than 100,000 points.

> There is no easy way to debug it for two reasons. One reason is that these models
have huge data to be processed. Second reason is that the environment of the running
program is huge, especially, in the process of the edge traversing/edge analysis

recursively.

115



7.2 Robustness Issues

> The entire aspect of detecting edge features or segmenting points into faces in 3D is
relatively new and all its complexities are not yet well understood.

» As already mentioned, classification/face splitting process at the merging point works
well for simple objects, but for multiple surfaces meeting at a corner vertex, this
process is not as stable as one would like it to be.

> The noise in the data can significantly affect the performance of the algorithms. We
have tried our best to ensure that our algorithms work in spite of noise in the data,
however we have not used formal signal processing techniques of filtering out noise
etc. It is certainly worthwhile to trying out the effectiveness of such techniques.

» Some calculations can only be done approximately, not accurately, for example, we
say two 3D segments intersecting on the surface, but they do not have any intersect
point in 3D. This causes a lot of exceptions in the process of the edge analysis and

face split process.

7.3 Potential Extensions

» Flexible Neighborhood Collection Method
I have used FNCM in the seed fill process. Once the seed touches the boundary, the
size of the neighborhood will reduce a portion, for example, 1/10; and the size of the
neighborhood will increase a portion if the seed does not touch the boundary in a

number of times.

> For extension to natural and sculptured objects, edge processing needs further case

based analysis.
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For the natural model, the surface merging is smooth, but they always have more
merging places than the engineering models, which causes a lot of short edges. The
edge analysis(intersecting/splitting/corner merging) is much more complicated if
there are more short edges.

» The correctness of the 3D segments intersection algorithm needs to be verified further.

3D point sampled surfaces involve dealing with very large point data sets. Due to
the absence of any underlying structure, devising computational processes that work at all
scales and in a generic manner is both challenging and exciting. Our research objective
was to investigate the use of features in devising efficient and correct algorithms for
processing such models. Towards this objective we devised algorithms for efficient
rendering and for recovering the B-Rep representation of large point cloud models. We
have implemented these algorithms and tested them for a wide range of point sampled
data sets covering simple objects to very complex objects and also engineering objects to
natural or sculptured objects. Clearly our reverse engineering techniques are limited to
work for engineering class of objects. This is because we have yet to devise robust
feature detection algorithms for this class of models. Nevertheless, we do believe that our
work has convincingly shown that feature based techniques can be devised for processing

large point cloud models and the benefits that could be gained therefrom.
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