Genetic Characteristics of
Artificial Agents In FormAL

Lei Zhao

A Thesis
in
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

March 2004

©Lei Zhao, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91157-8
Our file Notre référence
ISBN: 0-612-91157-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

11

Abstract

Genetic Characteristics of Artificial Agents in FormAL
Lei Zhao

This work addresses several issues regarding Artificial Life. It focuses on the behaviours
of simulated organisms in such models, e.g. the evolutionary tendencies displayed
through reproduction. The scope of Artificial Life is briefly discussed, as well as some
arguable issues in this area. An Artificial Life model, called FormAL, is presented.
FormAL is a platform capable of running simulations with thousands of organisms
(agents), and tracing their evolutionary properties through the changes of their genomes.
The design principle of FormAL is to allow the simulated agents maximum freedom
possible for their behaviours, with fewest possible ‘law’s to govern them. The ultimate
goal of this design is to give rise to emergent properties of the agents governed with very
simple rules. Some interesting results came out of extensive experiments conducted with
FormAL. Although there is no explicit fitness function in this work, the selection
pressure from competing for the finite energy supply drives the agents to evolve into
optimized forms. The test results presented in Chapter 4 and 5 indicate that even in a
fairly simple environment, premature convergence can be avoided, and that the mutation
mechanism plays a crucial role in evolution. The moment the mutation mechanism is lost,
the system stops evolving and the course of evolution reaches a dead-end. This project is
still young in its development, and a number of future research directions are discussed at

the end of this thesis.

i

Acknowledgements
I have only inadequate words to express my gratitude to Prof. Peter Grogono, who has
helped me throughout this work in many profound ways, with guidance, advice,

encouragement and patience.

I also owe much to my family, Ming, Lawrence and Cara, who supported me with great

understanding and patience. This would not have been possible without their sacrifice.

v

Table of Contents

List of Figures viii
List of Tables xi
1 Introduction 1
2 Artificial Life 4
2.1 Overview 4
2.2 History Review 8
3 Design Document of FormAL 16
3.1 Design Philosophy 16
3.2 Structures of FormAL 20
3.2.1 The Environment 20
3.2.1.1 The Space 20
3.2.1.2 Atoms and Energy 21
3.2.1.3 Communications 22
3.2.2 The Agent 23
3.2.2.1 Structure 23
3.2.2.2 States 26

3.2.2.3 Reproduction
3.2.3 The Algorithm
3.2.4 User Interface

3.2.5 The Output File

4 Experiments in FormAL

4.1 System Behaviours
4.11 Genome Convergence
4.1.2 Tendencies in Genome Evolution
4.13 Contingent Factors

4.2 Experiments
4.2.1 Experiment Set 1---Standard Runs

4.2.1.1 Experiment Set 1.1---Standard Runs with Variations

4.2.2 Experiment Set 2---Miscellaneous Runs
4.2.3 Experiment Set 3---Runs with Fine-Tuned Reproduction Strategy
4.2.4 Experiment Set 4---Runs with Mutation Adjusted

4.3 Summary and Discussion

5 More Experiments with Enriched Environments for FormAL
5.1 Runl
5.2 Run2,3,and4
53 Run5and6

5.4 Conclusion

Vi

26

29

31

33

34

34

35

37

39

40

42

47

49

54

57

63

67

67

68

71

73

6 Problems Encountered and Their solutions
6.1 Population Explosion
6.2 Memory Leak
6.3 Parts Overlapping
6.4 Growth in Single Direction

6.5 Agents Not Mutating

7 Conclusions and Further Work

References

Appendix

My Work In FormAL

vii

74

74

76

76

77

78

80

83

87

87

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

List of Figures

The Graphic Windows

No. of Genomes in Set 1, Run 1

No. of Genes in Set 1, Run 1

No. of Distinct Genes in Set 1, Run 1

Genome results in Set 1, Run 1
No. of Genomes in Set 1, Run 2
Genome results in Set 1, Run 2
No. of Genomes in Set 1, Run 3
No. of Genes in Set 1, Run 3

No. of Distinct Genes Set 1, Run 3
Genome results in Set 1, Run 3
No. of Genomes in Set 1, Run 4
No. of Genes in Set 1, Run 4

No. of Distinct Genes Set 1, Run 4
Genome results from Set 1, Run 4
No. of Genomes in Set 1.1, Run 4
No. of Genomes in Set 2, Run 1
Genome results from Set 2, Run 1

No. of Genomes in Set 2, Run 2

vili

33

44

44

44

44

45

45

45

46

46

46

46

47

47

47

49

52

52

53

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

431

4.32

4.33

4.34

4.35

4.36

4.37

5.1

52

53

Genome results from Set 2, Run 3
No. of Genomes in Set 2, Run 4
No. of Genomes in Set 3, Run 1
Genome results from Set 3, Run 1
No. of Genomes in Set 3, Run 2
Genome results from Set 3, Run 2
No. of Genomes in Set 3, Run 3
Genome results from Set 3, Run 3
No. of Genomes in Set 4, Run 1
No. of Genes in Set 4, Run 1

No. of Distinct Genes Set 4, Run 1
Genome results from Set 4, Run 1
No. of Genomes in Set 4, Run 2
No. of Genes in Set 4, Run 2

No. of Distinct Genes Set 4, Run 2
Genome results from Set 4, Run 2
No. of Genomes in Set 4, Run 3
No. of Distinct Genes Set 4, Run 3

Genome results from Set 4, Run 3

Genome results from Run 1
Graphic Window in Run 2

Graphic Window in Run 3

X

53

54

56

56

56

57

56

57

60

61

61

61

61

62

62

62

62

62

63

68

70

70

54

5.5

5.6

5.7

5.8

59

6.1

6.2

6.3

Genome results from Run 2
Genome results from Run 3
Genome results from Run 5
No. of Genomes in Run 5
No. of Genes in Run 5

No. of Distinct Genes Run 5

Population Explosion
Single Direction Growth at Step 45000

Growth after Modification at Step 45000

71

71

72

72

72

72

78

79

79

3.1

3.2

33

Al

List of Tables

Genes in FormAL
The Initialization function
The Step function

Default Parameter Values For FormAL

X1

26

30

30

88

Chapter 1

Introduction

Throughout history, the origin of life, and more importantly, nature’s ability of inventing
infinite novelties, have been regarded as the most mysterious, thus the most researched
topics by scientists, and yet, to this day, a large proportion of questions in this field
remains unanswered. The invention of the computer brought about a new horizon in this
field, accompanied by the research field called Artificial Life, which encompasses a
broad range of topics. The very nature of life fascinates computer scientists as well, and
using computer as a tool to shed light on many biological issues has captured much
attention. And vice versa, a better understanding of the seemingly endless creativity of
the biological world has provided inspirations in solving many compurer-science related
problems, e.g. optimization in searching, creativity in arts, and improving software

designs.

What is Artificial Life? Is it possible to simulate, to study, and furthermore, to better
understand the infinite properties of life through a computer-based model? How
important are reproduction strategies in the process of evolution for simulated agents?
The goal of this thesis is to address these fundamental questions, in an empirical manner

b

through an Artificial Life model simulating thousands of agents.

An overview of Artificial Life is presented in Chapter 2, together with a review of
relevant previous works of Artificial Life models. Arguments about what Artificial Life
is, why computer scientists study it, how it has been developed from the beginning of
computer-age, what branches Artificial Life encompasses, as well as arguments about the
weak points of Artificial Life are discussed. The rest of this Chapter is devoted to the
descriptions of the general structural designs and algorithms of the important models in

this field, with emphasis on works that do not have an explicit fitness function.

In Chapter 3, our Artificial Life model, called FormAL, is analyzed in details. The
reasons for its development, as well as its structures are discussed. Details including its
spatial structure, energy and atom distribution, communication among agents,
configuration of an agent, structure of the genome, states of the agent, and most
importantly, reproduction mechanisms, are explained, together with its global algorithm

and user interface.

Chapter 4 is devoted to various results from experiments conducted using FormAL as the
platform. Special attentions are given to the problem of early convergence, together with
other strong tendencies in the evolution of genomes. In section 4.1.1, reasons for early
convergence in simulated agents are discussed and possible solutions are explored.
Agents clearly displayed various tendencies in these runs, and they are analyzed and
interpreted in section 4.1.2. Four sets of runs were conducted, and the configurations for
these runs as well as results are presented in section 4.2. The overall results from these

tests are summarized and relevant issues are discussed in section 4.3.

In Chapter 5, results from another group of tests are presented. Agents were simulated in
a more complex environment, in order to see whether the conclusion in chapter 4 is valid,
e¢.g. with the mutation mechanism available, agents can adapt to any change of

environment for their survival.

There were interesting problems encountered in the process of the program development.
These problems and their solutions are presented in Chapter 6. Artificial Life issues
presented in this paper, as well as some conclusions from the tests I conducted, are
summarized in Chapter 7, and further research work need to be conducted in the future
are discussed. Appendix contains the list of parameters used in runs presented in this

thesis.

Chapter 2

Artificial Life

“You know, the universe is the only thing big enough to run the ultimate game of life.
The only problem with the universe as a platform, though, is that it is currently running
someone else’s program.”

Ken Karakotsios [18](P.37)

2.1 Overview

Artificial Life, defined by Christopher Langton, is “a field of study devoted to
understanding life by attempting to abstract the fundamental dynamical principles
underlying biological phenomena, and recreating these dynamics in other physical
media—such as computers—making them accessible to new kinds of experimental

manipulation and testing.”[10].

Since the very beginning of the computer age, creating artificial life and studying the
evolution of living organism through computer simulations have fascinated computer
scientists like Alan Turing, John von Neumann, Norbert Wiener, Christopher Langton,

and others [12]. Many Artificial Life researchers seek to find answers to some

fundamental questions like “What is life” [6], as that is the base for further defining

Artificial Life. They were “motivated in large part by visions of imbuing computer
programs with intelligence, with the life-like ability to self-replicate, and with the
adaptive capability to learn and to control their environments. It should be no surprise,
then, that from the earliest days computers were applied not only to calculating missile
trajectories and deciphering military codes but also to modeling the brain, mimicking
human learning, and simulating biological evolution.”[12]. Like many biologists,
researchers of artificial life attempt to develop a truly universal theory of biology, i.e. not
only life as it is, but life as what it could be. “While biological research is essentially
analytic, trying to break down complex phenomena into their basic components, Alif¢
(Artificial Life) is synthetic, attempting to construct phenomena from their elemental
units. As such, ALife complements traditional biological research by exploring new paths
in the quest toward understanding the grand, ancient puzzle called life.”[15]. The
theoretical base of artificial life research is that the defining feature of life is independent
of matter, not limited to the carbon-based material that supports the naturally occurring
organisms that we see everyday. These researchers seek to understand how life-like
processes can be embodied in computer programs, and Artificial Life models “pursue a
two-fold goal: increasing our understanding of nature and enhancing our insight into
artificial models, thereby providing us with the ability to improve their performance. An
example of the first goal is seen in Von Neumann's research. An example of the second
goal is John Koza's work involving software development through evolution.”[15]. It is
widely believed that by modelling particular natural processes such as evolution, the
understanding of those processes and their relevance to the biological world can be

improved. The features making computer-based Artificial Life models favourable include

speed and control. It is very helpful to have the ability of creating organisms of arbitrary
simplicity, as a tool for studying biology, ecology, the intermediate states that occur on
the path to life, and the origin of life. The study of Artificial Life also provides an
opportunity of examining and studying emergent properties of life forms that were not

conceivable with more traditional methods [17], due to the speed factor.

However, there are arguments against the possibility of creating artificial life. The major
argument is that due to the vastness of life and the billions of years it took for biological
evolution to proceed, it is not feasible to compress such a process into a computer
simulation. Another formidable argument states that, when we simulate evolution, only
the important components of the process (according to what the designers opinion) are
modeled, leaving out irrelevant details. However, the primary driven force of evolution
might very well lie in irrelevant details (they seem irrelevant to us because we do not
understand it completely). Even if we could model organisms with tremendous
complexity, the complexity of their environment required to provide sufficient selection
pressure for the agents might not be possible to be integrated into artificial life systems

[18].

Despite these arguments, it is still widely believed that definite answers can only be
achieved by investigating into these issues, as Eric Bonabeau and Guy Theraulaz stated:
“AL (Artificial Life) is precisely a constructive way of checking whether these

limitations are real obstacles”[3](P.314) [18](P.42).

Tremendous amount of research work have been dedicated to this field, especially since
the early 1980s, when computers became faster and more powerful, although many
important works were completed much earlier. The interest in Artificial Life is still

growing.

Artificial Life today encompasses a broad range of research. Genetic algorithms (GA),
Evolutionary Programming (EP), cellular automata (CA), synthetic evolutionary models,
artificial chemistries, self-organizing systems, Neuro-network and robotics, to name a
few, are all branches of artificial life [5] [18] (p18). Most of these forms share some
common characteristics. There is a population of organisms; these individuals are able to
reproduce by various means; in many cases there is a fitness-function as a selection
criterion during reproduction; as the population evolves, the average fitness also evolves;

and the behaviour of an individual organism (phenotype) is defined by its genome

(genotype).

Artificial Life can be further divided into two classes of models, the first with an explicit
fitness function, the second without (endogenous fitness models [12]). Since the FormAL

project belongs to the latter, I will be focusing on this class.

In the following section, a review of some earlier works is presented. With focus only on
issues relevant to the subject of this thesis, it is not intended to be a comprehensive

analysis of research works in Artificial Life.

2.2 History Review

John von Neumann, a Hungarian mathematician, was one of the earlier Artificial Life
researchers. He devoted much time to the problem of how complicated machines could
evolve from simple machines. He believed that life was not a special arrangement of
organic molecules, but rather a process that exhibited certain behaviour. If life could be
understood and formulated as a process - in particular as a Finite State Machine (FSM),
then a computer (which can in principle emulate any FSM) could exhibit lifelike
behaviour and ultimately be deemed as alive as any other organism. He claimed that self-
replicating computers were the key to intelligence and would ultimately constitute a new
form of life. After devoting much time on designing the self-reproducing machines,
which was composed of a general constructive machine, a general copying machine, and
a control machine [22], he switched his focus and started to devise rules in order that a
computer could be composed of appropriately arranged cells, along with other cellular
elements that would enable the whole entity to build a copy of itself in the cellular
universe. Such entities and systems were dubbed cellular automata (CA) [22]. In his
work, von Neumann focused on the logic, rather than the biological, aspects of self-
replicating machines, and its ability in evolving increased complication. He was not
concerned with problems like fuel and energy, or the self-maintenance ability of
biological organisms in the face of environmental changes. Later works on CA share the
lack of biological concern as well [18]. “The majority of work (CA) still models purely
logical self-reproduction, where the reproducing entities are configurations of states with
no material grounding; in such systems, no collection of ‘raw materials’ is required for

reproduction, and from this it follows that there is no competition for raw materials

between individual reproducers. It is likely that only when such considerations are
included in these models can we expect there to be selection pressure for self-reproducers
with the ability of self-maintenance, potentially leading to the evolution of autopoietic

organisms.” [18] (P. 50).

Von Neumann’s work inspired a great many computer scientists in the search of the
origin, evolution, and the very meaning of life, using computer simulation as a powerful
tool which enabled them to run experiments otherwise impossible to achieve with
traditional research methods. Game of Life, created by John Conway, is one of the best-
known examples of CA. The rules governing the states of the cells in Game of Life are

very simple, and yet it can give rise to very complex structures.

In the group of Artificial Life where there is not an explicit fitness function, the best-
known model is Tierra, created by Tomas Ray. It is an implementation of a virtual
computer, simulating a computational environment for population of self-replicating
computer programs. The ‘organisms’ in Tierra, which include genome strings, are
computer programs, and they are written in a “specially designed language that is both
robust and simple. Programs written in this langrage can be mutated without causing the
computer to crash”[19]. The system is evolvable because of this robustness. “The
robustness of the language is achieved chiefly through the use of relative or template-
driven addressing in branching instructions (rather than absolute addressing), and by
avoiding the use of explicit memory addresses as operands to instructions.” [18] (P.53).

There is no fitness function defined by the creator. The only intrinsic selective pressure

for the organisms is to compete for CPU time (memory space). Self-replication occurs in
Tierra when an individual executes instructions that copy its own genome. These copies
are influenced by mutation that can change replication process and thus give rise to new
organisms. Sexual reproduction is not applied in Tierra’s organisms' replication
mechanisms. Interesting results have been observed from Tierra experiments, for
example, the emergence of ‘parasite’ programs that cannot replicate by themselves, but
utilise its neighbouring programs’ code in order to reproduce. Hyperparasites (parasites
of parasites) have also appeared [19]. However, when we analyse the model more
carefully, it seems clear that the observed emergence of parasites in Tierra has a lot to do
with the particular design of the language. Specifically, it is the ability of one agent to
execute code in another agent that allowed parasites to evolve, as the flow of control in
one program can jump easily to a point in a neighbouring program [20]. The questionable

emergence of these complex biodiversity leaves space for further research works.

One drawback of Tierra lies in its user interface. The model does not allow interactive
watching and analyzing of the simulation, thus experiments with the system requires a lot
of raw data handling. Nonetheless, Tierra has profound influence on the study of

Artificial Life, and inspired many models that came after it.

Another artificial life model, called ‘Avida’, by Chris Adami and Titus Brown, is based
on the Tierra design. Cells in Avida can only interact with their nearest neighbours [1],
and these local interactions between individuals are closer to real life systems. Self-

replication in Avida happens when a segment of computer code copy their genome into a

10

child string. Once the copying process is completed, the original genome is separated into
two identical pieces. The new organism with the new genome replaces the oldest cell
within the nearest neighbourhood. Like Tierra, genomes are subject to mutation, resulting
in imperfect copies, and “ this is the driving force of evolutionary change and diversity in
the system” [1]. However, unlike Tierra, programs in Avida can gain more CPU-time by
successfully completing user-specified tasks [18]. This important feature means that the
programs are given incentive to perform other functions, as well as reproduction.
However, selection pressure from these externally defined functions is arguably not
analogous to that of the natural world, in which the most important features of evolution

comes from the interactions among organisms.

Another model related to Ray’s Tierra was developed by Michael Conrad and Howard
Pattee. Organisms in this model compete for the possession of chips, which is needed for
reproduction and self-repair [18]. This is an extension to Tierra, in the sense that it has
concern over matter, which is closer to biological system Yet the authors were not totally
satisfied with the model, saying “It is evident that the richness of possible interactions
among organisms and the realism of the environment must be increased if the model is to
be improved.... the process of variation and natural selection alone, even when embedded
in the context of an ecosystem, are not necessarily sufficient to produce an evolution
process...the most profound and significant processes of evolution---the innovations, the
origins of new hierarchical levels of organization---are still outside the scope of this type

of program and remain to be discovered.” [18](P. 60).

11

Perhaps the most interesting Alife model, ECHO, created by John Holland [9], [18](P.
61) is closer to the natural ecological world than most other models, and has the potential
of shedding more light on the subject of evolution and organism’s adaptive behaviour,
than Tierra-like platforms. ECHO simulates the evolution of simple ‘agents’, instead of
computer programs. These agents are modelled at a higher level than those in the Tierra-
like platforms. They have a predefined structure, and can interact by mating, fighting, and
trading, depending on the conditions and tags of agents encountering each other. At each
time step, a fixed amount of resource is pumped into the two-dimensional sites populated
by agents, and the competition for this resources, together with mutation while
reproducing, cause agents in ECHO to evolve. Sexual reproduction in ECHO means that
two agents can mate and reproduce if their mating tags and conditions match, and if they
have acquired enough resources in their reservoir [15]. Once they have obtained
sufficient raw materials, agents can reproduce by copying, which is subject to point
mutation and insertion-deletion, as well as two-point crossover [9]. After crossover, two
offsprings replace their parents, and their parents die. If an agent reproduces asexually, by
copying its own chromosome, its offspring receives a percentage of the parent’s
resources. Agents can die if they do not have sufficient amount of resources, and they can
also be killed randomly, with a probability proportional to their resources reservation.
Agents that died have their resources returned to the environment. Like other models we
mentioned previously, ECHO does not have explicit fitness functions coded into its

agents [12].

12

It is widely acknowledged in the Artificial Life field that ECHO has demonstrated

promising potential of giving rise to complex ecological phenomena.

Another computational ecology that is in many aspects similar to FormAL is PolyWorld,
developed by Larry Yaeger [23]. In this work, “predation, mimicry, sexual reproduction,
and even communication are all supported in a straightforward fashion” [23]. Organisms’
behaviours are controlled by neural networks, and the organisms have a colour vision,
can move around in a two-dimensional environment, eat food or each other, and
reproduce sexually. Their physical and neural characteristics are all coded in the genome.
When two organisms meet spatially, and if they both are willing to mate, a child
organism is produced with a genome resulting from crossover (could be mutated). Tim
Taylor gave credit to PolyWorld as saying “Yaeger’s model is one of the very few
artificial worlds in which distinct species of organisms have evolved and coexisted.”[18]
(P. 63). One of the problems with PolyWorld is its complexity, which makes it a difficult
model to perform extensive experiments [18]. In this model, the simplicity, favoured by
Packard as saying “I make every attempt to strip down most of the complexity of real
biological systems, with the aim of discovering a minimal model that displays

evolutionary behaviour”[18](P.62), is missing.

An ad hoc fitness function is used in PolyWorld, similar to a GA, until its population can

sustain its numbers through births {23].

13

Another agent-based package, called LEE, written by Rich Belew et al, combines neural
networks, genetic algorithms, and organisms (agents). Organisms in LEE have sensors,
neural network, motors and energy stock. They live in a two-dimensional grid, into which
resources (atoms) are distributed. Agents can sense or move, and all actions cost certain
amount of energy. Instead of an explicit fitness measure, selective pressure among the
LEE population comes from intrinsic competition for resources. The behaviour of an
agent is allowed to improve through experience (learning) [11]. When agents in LEE
obtained enough energy, they can reproduce asexually. Mutation can occur at time of

reproduction, and reproduction is controlled by parameters in the GA [6].

M. Epstein and R. Axtell developed a computer model in 1995, called Sugarscape, for
studying human social and economic behaviour. The agents of Sugarscape live in a two-
dimensional landscape, with some built-in attributes, which direct them to perform
certain actions. They move around to look for resource, called sugar [14], and after many
steps, emergent phenomenon somewhat resembling human economic society appears: a
few agents have most of sugar and the rest live in relative poverty. These agents also
have cultural attributes [2], and they could engage in cultural interactions. Agents in
Sugarscape have gender programmed in them, and they select a neighbour at random for
mating. A child will be produced if the neighbour is of opposite sex and of reproductive

age.

A different model worth mentioning here, called swarm, is a general-purpose platform,

on which computer simulations can easily be built for studying in various disciplines [8].

14

Users from these fields can write code specific to their needs, and not have to worry
about general foundations like user-interface or analysis tools. Typical Swarm
simulations involve large amount of agents interacting with each other and with the
dynamic environment (most Swarm experiments use two-dimensional lattice space) [8].
Swarm agents usually reproduce and die according to a given probability, and most
actions by the agents cost energy. Agents search the neighbourhood to find another

suitable agent for mating.

The last simulator I want to talk about is called Gaia, designed for the study of certain
aspects of ecology and biology [4], and was inspired by L. Yaeger’s PolyWorld, with
some added features. There are two types of organisms in the two-dimensional world of
Gaia: Heterotrophs (critters) and autotrophs [4]. Critters can move, eat, fight, and mate.
They have a “nervous” system and their genomes define some structural and
physiological characteristics [4]. Autotrophs can grow only according to a predefined
distribution and rate. They are food for heterotrophs and are the only energy source. An
offspring is produced when two critters meet and both desire to mate. The newborn
organism is located close to its parents, and the parents transfer a certain amount of

energy to the offspring. Only mutation and crossover are used as reproduction operators.

15

Chapter 3

Design Document of FormAL

3.1 Design Philosophy

Inspired by artificial life models reviewed in Chapter 2, especially by ECHO, an artificial
life model called FormAL (stands for ‘Formal Artificial Life) was developed. It is
implemented using C++, and OOP method. The intent of this work was to explore issues
in Artificial Life, especially in the study of evolution, with a model based on simple rules
(laws), and expect to see emergent behaviour (life) in the simulated organisms. It is an
evolving system that simulates living organisms capable of reproducing, accumulating
energy, and absorbing information from their environment. A population of organisms,
called agents, reside in a 3D world, reproduce, and compete for resources. The goals of

this project included the following;:

L. Providing a platform with rules as simple as possible, to explore various

issues in Artificial Life (the ‘laws’ and ‘life’) [3].

For ensuring precision, a careful distinction between ‘laws’ and ‘life’ was made. The
unchangeable features of the environment are defined by laws, and the changeable factors

occurring in the process of evolution constitute life. In FormAL, properties defined by the

16

designers are ‘laws’, and the adaptive features by the agents are ‘life’. The goal was to
provide laws as simple as possible, thus giving the agents maximum liberty to evolve on
their own, without predefined rules. Giving the simulated agents as little law as possible,
yet at the same time aiming to give rise to complex behaviour, has proven to be the most
challenging task while designing and implementing this project. Through the
experiments, it was revealed that a compromise had to be made regarding this issue, as
too few rules would not allow agents to display any evolution within practical time
period. The current platform is fairly simple and can be understood easily, yet provides a

base allowing the agents to evolve, according to the living conditions of the environment.
2. Exploring ways of providing simulated agents with means to develop
strategies, rather than with strategies directly.
This goal is related to the first, in the sense that as few rules as possible should be
provided to the agents as they evolve. The challenge is to determine a simplest set of

rules with which the agents can evolve strategies for their survival, and adapt to any

changes occurring in the environment.

3. Providing insight into the Gould versus Wolfram debate [5].

17

It is widely believed that evolution increases complexity. “Stephen Jay Gould argued that
evolution does not take the form of a monotonic increase in complexity from amoeba to
plant to ape to Charles Darwin. The tree of life is a broad bush in which most branches
lead to extinction, not a spindly Victorian tree of progress. Gould did argue, however,
that evolving organisms will tend to increase in complexity as time passes...Stephen
Wolfram disagrees with this argument. He believes that complexity arises from very
simple mechanisms Wolfram argues that evolution is a simplifying mechanism: if
we start with a collection of simple automata with rich behaviour, evolution will find the

simplest and most economical mechanism that suffices to solve the problem.” [5] (P. 2).

In the experiments conducted (Chapter 4 and 5), the agents were given a genome that was
more complex than was required to exist in the environment, and during these runs, the
majority agents evolved to a genome much simpler than the ancestor genome, which
seemed to favour Wolfram’s opinion. However, this was probably due to the fairly
simple environment, and as this environment got more complicated, as in Chapter 5,
agents did show signs of adapting by the utilization of other genes. Complexity as an
emergent property could evolve under suitable conditions, therefore more precise insight

into this issue requires further research.

4. Avoiding the ‘mere optimization’ problem.

18

This model was designed with the goal of avoiding the limitations of optimization.
Through the development of this work, it has proved difficult to avoid optimization
completely. As mentioned in Chapter 2, no fitness functions were imposed on the agents.
In long runs, majority genomes became extinct, indicating that the genomes left was in
some sense more fit than other genomes created during that run. Thus, although there is
no explicitly programmed fitness function, the simulated environment imposes
constraints on agents that can survive, and agents evolve to satisfy those constraints as
efficiently as they can. It is hoped that with further modifications to the system, with the
environment implemented with more complexity, the agents will develop “both a variety

of strategies and also the ability to apply them in appropriate situations” [5] (P. 3).

5. Providing better understanding of the evolutionary behaviours, and of the

relation between early convergence and reproduction strategies.

FormAL is a viable platform for conducting experiments, in order to observe the
evolutionary characteristics of agents in a simulated system, and discover the relation
between convergence (end of open-ended evolution) and reproduction strategies (see
Chapter 4). The second issue is very important in the sense that a mutation rate analogous
to that of nature, which is very low, yet providing a possibility for adaptations should thé
need surface with changes of environment, has to be determined, in order to see the effect
of evolution in a context bearing similarity to that of the biological environment, and to

provide results of runs that are meaningful in a biological sense.

19

3.2 Structures of FormAL

The current design details of FormAL are presented in this section, as well as the
rationale behind them. Since this is an open-ended project, changes in the design may

occur in future development.

3.2.1 The Environment

3.2.1.1 The Space

The spatial structure in FormAL is a three-D space with a Euclidean metric. A 3D space
offers more potential for the interactions among agents and their movements than does a
2D space. Other spatial structures were considered, e.g. Hamming distance, in which the
position of an agent is defined by a string of bits, and the distance between two agents is
represented by the number of bits that differ. This method would have been
computationally efficient, but not as intuitive as a Euclidean space. This 3D space is
continuous, divided into a finite grid of cubical cells [5] (P.3), in which agents reside. A
population of agents of a predefined number (which can be set by users) is created by the
system during initialization period until a threshold is reached, and they are assigned
randomly to the cells. Once the minimum population is reached, the system no longer

creates new agents and the population is on their own for survival.

20

3.2.1.2 Atoms and Energy

The concept of matter in FormAL is defined by ‘atoms’, which are symbolically
represented by the 26 lower case letters of the alphabet. The environment in the
simulation makes changes of its atom collection in the form a—f—k—p—u—z. This
effectively adds energy to the environment. An agent gains energy by collecting high-
energy atoms, converting them to low energy ones, and discarding the low energy atoms
into the environment. Agents can use the inverse transformations (z—u—p—k—£f-—a),
as in the current simulation, but they are not restricted to these transformations. The
higher the letter in the alphabet, the more energy it contains. The total number of atoms in
the environment is conserved. Upon its death, the atoms of the individual agent are
transferred back to the environment or to another agent (depending on the cause of death,
see chapter 5), which could give rise to selection pressure for the evolution of agents who

kill other agents to get their atom collection.

During each time step in a simulation, an amount of energy is distributed into each cell
by converting the low-energy atoms to high-energy ones stored in the bag of the cell, and
agents can transfer high-energy atoms from their cell into their own storage (bag), and
obtain energy by converting them into low-energy atoms. The amount of energy each cell

receives could be different, as the case in chapter 5.

Much thoughts were given to the design of atoms and energy, since in many earlier AL
works, consideration with matters is lacking, e.g. in Tierra, the only resource for

organisms to compete for is CPU time, and memory. It is hoped that with this material

21

grounding, the system will provide selection pressures for the agents that is more

analogous to that in biological evolution.

3.2.1.3 Communications

In FormAL, there are two types of signals an agent can send or intercept: ready to kill and
ready to mate, controlled by their genes respectively. In future development, we might
allow arbitrary messages to be exchanged among agents, thus providing the agents with a
richer environment. An agent may send a certain type of pheromone, by converting a
small number of the ‘z’ atom into the atom representing this type of pheromone, and
release them into the local environment (transfer these atoms into the cell’s storage). An
agent may also detect the cell containing the most pheromone, and move toward or away
from it. Once an agent locates another agent containing the same mating pheromone as its

own, they will mate and produce offspring by crossing over their genomes.

The act of eating in the basic version of FormAL remains very simple: an agent may
detect another agent with a part that contains the most atom, and eat this part (cut it off
from its parent, and transfer this part onto its own body as a new part). In Chapter 5, a
more complicated behaviour is described with tests results. Agents can kill others and

obtain their atom collection, adding complexity to the surviving environment of agents.

An agent may move around during each step, if it has enough energy, and consume a

required amount of energy. The agent chooses a force and direction, and then

22

Newton's law is used to compute the new motion. An agent may also move toward the
cell that contains the most atoms, and move toward (or away from, depends on the value
of the argument) the cell with the most agents. It can also approach an intended prey, or

move away from a cell containing more hostile signals.

3.2.2 The Agent

All the actions an agent can perform are controlled by its genes and their arguments,
therefore mutatable, and to certain extent are within the agent’s control, instead of being

set by the programmer. Therefore they belong to ‘life’.

3.2.2.1 Structure

An individual organism in FormAL, called an agent, may be a body or a part, and is represented
graphically by a cube. There are two reasons for thinking of it as a cube:

(1) Since cubes are easy to draw;

(2) A body or part can “grow” by adding parts on any of the six faces that a cube has, and

may continue growing in that direction.

A body is an independent agent, with zero to six direct parts. A part has to be attached to
a body or other parts, and therefore is not physically independent. An agent also contains
a bag, which is the storage for its atoms, analogous to a stomach. During initialization
period of simulations, as mentioned in section 3.2.1.1, a minimum number of agents are
created by the system, and they are all bodies, with no atom and some initial energy.

When a body reproduces, its offspring is a part attached to the body, like an embryo (The

23

detailed process of reproduction is explained in section 3.2.2.2.). An agent has an age

property (see section 3.2.2.2) that is measured by time steps, and controlled by a gene.

The most important property of an agent is the genome (genotype), which is the encoded
instruction for the agent’s behaviours (phenotype), following the conventional biological
model. It plays a double role in the simulation. It is treated as data when being copied

from a parent to a child, and as instruction when being decoded to determine the agent’s

behaviours.

The structure of a genome is a string of atoms (represented by the 26 letters of the
alphabet). The genome is composed of genes, where each gene is represented by a group
of three letters, also called triplet [S]. In the group of three letters, the first stands for the
probability for this gene to be activated during each time step, the second is the action of
the gene, and the third is the argument of the gene, which affects the performance of the
gene in various ways. This structure provides a potentially vast behaviour space, with up
to 26 genes, each combined with up to 26 arguments, coming out with 676 different
actions. Currently only a portion of the genes are implemented (See table 3.1 for the
genes used in FormAL). From the definitions of these genes, it is obvious that their
performances are defined at a fairly high level, and we hope that through future
development their effect can be simplified and they can dictate the behaviours of the

agents at a lower level, thus leaving more space for the agents to evolve on their own.

24

During mutation, any one of the three letters of any gene could be changed into a
randomly selected letter, and an existing gene could be deleted or a new gene added, thus
varying the length of the genome. In crossover, the first part of the mother’s genome is
combined with the second part of the father’s genome (one point crossover), the
crossover point could be anywhere in the genome, and the new genome has a slight

chance of having a different length than that of its parents.

Body Part

a aging

¢ convert high-energy atoms to

low-energy ones to acquire energy convert energy
d reproduce by cloning grow in new direction
e regulate energy regulate energy
f grow in current direction
g get atoms from the environment get atoms

h kill other agents
1 start interaction take atoms from parent
J respond to pheromone

k emit pheromone

m regulate mass regulate mass

25

p dispose atoms to the environment dispose atoms
q mutate (currently used as another copy gene)

r reproduce with crossover

s detect the cell with the most atoms, and move toward it

t terminate interaction

u detect the cell with the most agents, and move toward or away from it

Table 3.1: Genes in FormAL

3.2.2.2 States

An agent can be in one of three states: active, inactive and dead, determined by the
amount of energy or atoms it contains. When its energy or atoms stay below some
thresholds for a certain amount of time, the agent is declared dead (with the exception of
the agent interacting with another one) and will be removed from the agents’ list. The
agent also has a higher chance of dying as its age approaches a threshold, but this
mechanism is controlled by one of its genes and agents could learn to mutate that gene, as

they always seemed to do (see Chapter 4), as an effort of improving their longevity.

3.2.2.3 Reproduction

Reproduction is doubtlessly the most important action an agent performs, as in most of
AL works, since it is the means of preserving the population. The reproduction

mechanisms in FormAL are similar to those used in Genetic Algorithm models. The

26

original design had reproduction activated by 3 genes: reproduce by exactly copying the
agent’s genome into its offspring; reproduce by mutating one of its genes; and reproduce
by combining the mother’s and father’s genomes (crossover). The mother agent is the one
bearing the offspring as its parts. During the experiments, this configuration revealed
some drawbacks (see Chapter 4, set 4), e.g. since most mutations are harmful, evolution
tends to eliminate the mutation gene. When the population no longer contains mutation
genes, evolution is restricted to crossover, which shuffles existing genes but does not
introduce new genetic material. The usual effect of losing the mutation gene is that the
gene pool converges to a single genome. To solve this problem, the current configuration
is modified, and reproduction is performed by either the copy gene or crossover gene,

each with a low probability (0.3%) of activating the mutation mechanism.

As mentioned in section 3.2.2.1, when an offspring is reproduced by one of the means
above, it is a part, attached to its parent. This method of reproduction is unusual for GA
and AL work, in which offspring are normally launched directly into the world. It is
analogous to mammalian reproduction, in which the offspring is supported by the mother
for a while before it becomes independent. Also unlike many AL works, a parent in
FormAL is not replaced by its offspring, but continuously living with its offspring. The
mechanism works as this: When an agent is about to reproduce, it checks to see if it has
enough energy. If so, one of its 6 part-locations is selected randomly and checked. If it is
unoccupied, the newborn will be attached at this location as a part. If it already contains a
part, the old part will be promoted into a body, detached from its parent, become

independent, and leave space for the newborn offspring. The new part gets half of its

27

parent’s atoms, and is inserted into the agent list as a part. A part is created without
energy, and when being promoted into a body, it receives a proportion of the parent’s
energy (determined by the value of argument for this gene, therefore evolvable), and

keeps its own atoms.

A part may also grow new parts (called divide). The problem with the “growing cube”
model is that time is required to compute whether a new offshoot overlaps an existing
one. Here is one possible algorithm:

(1) Choose a possible location L for the new part

(2) Find the body that owns the parent of the new part

(3) Recursively find the set S of locations of all parts owned by the body

4)If Le S, go back to step (1)
This could get very slow, especially if agents grow to have hundreds of parts.
Consequently, we use a heuristic method that makes it unlikely, but not impossible, for a
new part to have the same location as an existing part. The heuristic is that the location
of a new part is usually such as to extend the agent in the same direction as before, thus
reduce the chance of overlapping with other parts (see Chapter 5), with a small chance of
growing the part in other directions, in which case one of the remaining four locations is
selected randomly, and if it is free, it will be occupied by the new part, which gets half of

the original part’s atoms, and has the exact genome (reproduction by copying).

28

A related problem is that agents can overlap each other in the space. There does not seem
to be an efficient way of preventing this, but the limited energy supply from the system

helps to prevent overcrowding in each cell.

When a part is promoted into a body, its entire offspring parts are promoted into bodies
as well provided it has enough energy to do so, and each promoted part gets a proportion
of the original part’s energy. If it does not have enough energy, its parts will remain parts

of the newly promoted body.

The design of agents as bodies and parts adds biological meaning to the system
(simulates embryo development), and provides potential complexity for the agents’

behaviours.

3.2.3 The Algorithm

Simulation of FormAL advances in discrete time steps, during which all existing agents’
behaviours, encoded in their genomes, are executed. The main algorithm of FormAL is
given as pseudo-code, in table 3.2 and 3.3. The initialize function is activated only once,

at the beginning of runs. The step function is executed at each time step.

Initialize:
{
record the starting time of the simulation

set the location of each cell

29

insert a predefined number of atoms into each cell
locate all the neighbours of each cell

prepare the logfile for output data

}

Table 3.2: The Initialization function

Step:
{
if(duringInitializationPeriod)
if(population<minPopulation)
{

randomly select a cell

create a new body in this cell, with the starting genome (or genomes read from

the genebank) and some initial energy

}

insert a predefined amount of energy into each cell

execute each agent’s actions encoded in its genome (if its prob is right)

each agent makes a random move

update each agent’s position in case it has moved to another cell

check each agent’s state, and remove dead agents

update the list of agents
output data to logfile

}

Table 3.3: The Step function

30

3.2.4 User Interface

FormAL has an intuitive user interface, providing a visual presentation of the simulation,
and allowing users to set many parameter values other than the default ones, to record

various data to logfile, as well as to watch the changes occurring in the process of a run.

There are three graphic windows in the user interface (see figure 3.1). The model
window provides the visual effect of the run, showing the agents in their world (a cube),
where different colours represent different states of the agent, e.g. pink for the active
state, blue for less active, black for dead, yellow for interacting, and green is for a part,
with different shades representing different levels of energy. The colours are arbitrary
and easily changed: a different choice of colours might provide more information. We
could also use shape to convey something about an agent’s state. The visualization was
important during the early stages of development so that we could get a quick idea of

what was happening.

The statistics window displays various statistic data and their changes, including sizes of
population, energy level, time-steps, energy per step, total number of bodies, total

number of parts, atoms in each cell, atoms in agents, number of clone performed, number

31

of mutate, crossover, and number of eating performed, number of interactions, and the

current active genes, etc.

The control window provides an interface for users to set values for the minimum
population the system is required to generate during initialization, the birth rate, the
energy and atoms injected into each cell during each time step, and allows users to input
random values for these parameters as well. Users could also interrupt the run
temporarily. The viewing angle for the model window can be adjusted, and help
instructions are available. Reports on information about agents, cells, genes, vectors,
calculation of probabilities, and coordinates can all be generated into the output logfile as

extra data (a default genome report is automatically generated by the system).

The rich and intuitive user-interface of FormAL makes it easy to conduct experiments

and analyse the simulations.

32

Figure 3.1: The Graphic Windows

3.2.5 The Output File

Test results regarding genomes, information about agents and cells, coordinates, and

probabilities can be written into the output logfile for further analysis.

33

Chapter 4
Experiments in FormAL

In this chapter, a variety of formAL experiments are described. First, the relevant system
behaviours of interest are listed, and then different results from these experiments are

presented and analysed in details.

Most of the simulations were conducted for 1,000,000 time steps, except earlier tests in
set 1 and 2, where early convergence happened and tests were terminated when agents
stopped evolving. Four types of graphs are presented in this chapter. In the first type, the
number of genomes is plotted against time steps. Second type shows the total number of
genes in the majority genome, including repetitive ones. The third displays the number of
actual distinct genes in the dominating genome through out the runs, and the fourth type

shows the resultant majority genomes.

4.1 System Behaviours

The relevant system behaviours discussed in this chapter include the rate of convergence
(if they do converge), traced by the change in the number of genomes in the process of

runs, and solutions for early convergence; the noticeable tendencies in genome evolution;

34

and the method of distinguishing contingent (chance) factors from those of generic

features, factors that may affect the end results of these runs.

4.1.1 Genome Convergence

In FormAL runs, like those of some other AL models, early convergence of genomes was
encountered, which prevented any possibility of open-ended evolution (although this
word is generally used with a more specific meaning, such as evolutionary arms races
and sexual selection, here it implies that “new, adaptively successful individuals
continuously appear in the populations—evolutionary activity does not peter out” [19]
(P.80). The convergence, usually caused by the disappearance of the mutation gene,
seemed inevitable at times, and led to a halt of further evolution and prevented the

formation of any interesting gene pools.

Once left with very few numbers of genomes, the crossover gene would work just as the
copy gene, in the sense that it wouldn’t provide any varieties. However, the tests showed
that for the crossover gene to be activated, the mutation mechanism had to be effective so
that the agent could get hold of enough get-atom genes and thus obtain enough atoms in

order to be qualified as a mate.

Even if agents all evolved to a converging point, as long as they kept the mutation gene in
their genomes, they still retained the ability of changing and evolving, as noticed in run 3
of set 1 and run 1 in set 2, where agents converged into one genome, then started to

diverge again.

35

It seems that the relation between the simulated population’s ability of evolution and the
frequency settings of reproduction methods has not been explored by other AL models. In
FormAL, after many test runs with parameter adjusting, it was revealed that the
frequency of the activation of the copy gene had a strong effect on the agents’ ability of
retaining the mutation gene. A little restraint on the frequency of the copy gene slowed
down the rate of convergence significantly. That is, agents in FormAL tended to
reproduce by copying themselves, if given a choice, and shed off the mutation gene as
soon as possible. They achieved this in the course of mutation, during which they sooner
or later got hold of a copy gene with high probability. When agents got hold of another
copy gene, their reproduction rate by copying was fast enough that it was no longer
advantageous (they could afford to lose the mutation gene) to keep the mutation gene as a
reproduction method. This result indicated that the mutation mechanism was not favo»ured
by evolution in this current setting of FormAL, and that the agents preferred to reproduce
faithfully. The benefit of mutation might manifest only when the environment becomes
more complicated, at which time the agents will have to keep evolving to adapt to the

changes of the environment.

In the efforts of achieving open-ended evolution in a rather simple environment,
emphasis was given to the fine-tuning of the frequency of all three reproductive methods
at first. However, extensive tests showed that as long as mutation was implemented as a

gene, there was always a chance for it to get lost in the process of evolution.

36

The current solution to this problem was that the mutation mechanism was implemented
as a small possibility in other reproduction genes, rather than being a gene in the genome.
This design prevents agents from getting rid of mutation all together. This proved to be a
sound solution for keeping open-ended evolution in a fairly simple system, where
selection pressure from the environment is minimal. Even in a more complex
environment, it might still be necessary to impose mutation onto the system, in order to

guard off any chance event and ensure the retaining of this mechanism

4.1.2 Tendencies in Genome Evolution

Genomes in most of the runs appeared to have a surge of divergence at the beginning,

and then quieted down to a small number, or to a single genome.

In all of the runs in which the agents had a chance to evolve, the following functional
genes were shed off:

‘A’ and ‘P’.

They were for aging and dispose atoms to the environment respectively. Clearly they
were not advantageous properties and not favoured by the process of natural selection.
Many runs produced genomes that included very few genes from the ancestor genome.
The aging gene is usually the first to be lost, meaning the agents did not like to have a life

expectancy imposed on them, and liked to increase their life span.

37

The lengths of genomes in most of these runs appeared to grow longer at first, later
settled down to shorter ones (e.g. in most of the runs of set 4, the resultant genomes were
70% shorter than the ancestor genome). The number of total genes in the graphs showed
the overall numbers of genes, which could include duplicates. The number of distinct
genes was usually smaller than the total number of genes, since there were repetitive

ones.

In most of the runs, the resultant genomes showed that agents learned to acquire many of
the ‘M’ genes, for obtaining atoms and regulating mass. This could be regarded as
another sign of evolution, as this gene allowed agents to get high-energy atoms from the
environment, and so did the ‘G’ gene. It was also noticed in most of the runs that agents
mutated low-probability letter of the gene for getting atoms from the environment into a
high probability letter and thus accumulated more energy and atoms from their
environment. This could explain the fact that the population size would not shrink
towards the end of runs, when agents were usually left with only one reproduction gene,
because they would have had enough energy to perform reproduction every time that

gene was activated.

In runs which convergence happened early, the genomes did not have a chance to evolve

much from the ancestor genome other than the loss of the mutation gene.

It was also revealed through these experiments that at the early stage of runs, agents did

not have enough atoms (energy) to perform all reproductions even if they were activated,

38

therefore in most cases three reproduction genes were required in the current
configuration for keeping the agents from extinction (except for a few runs in section
4.2.2). However, once agents started to evolve and learned to acquire more atoms from
the environment, they would accumulate enough energy for any reproduction gene that
was activated, thus sustaining a stable population with only one reproduction gene in

their genomes.

The population sizes were fairly constant in these runs, therefore no graph were presented
for this matter. The reason for the stability of population size must be the constant energy
supply from the environment, which was sufficient for supporting certain number of
agents, and creating a ceiling effect on the population. This might affect the end results of
the genomes, since many new off springs could not survive, due to the lack of atoms

available in the environment.

4.1.3 Contingent Factors

It was widely believed that the course of evolution on earth was affected by generic

factors as well as contingent events.

In the effort of distinguish contingent factors from more generic features in FormAL,
same runs were performed with different seeds for the RNG (generated by clock). Results
showed that important features discussed in this chapter, like the shedding of apparently

harmful genes and the addition of get-atom genes, happened in all of the runs, indicating

39

clearly that they were not contingent events. The rate of convergence differed among

earlier tests, which might indicate the influence of chance factors.

4.2 Experiments

Four sets of runs are analyzed in this section. They all started with the same handwritten
ancestral genome, designed in a random manner, which included all useful genes as well
as some junk genes:

<aAb bBb vCo bDI fEw fFa dGf aHp oli rJg nKm 1Ll yMo nNn jPe eQy dRq wSt tTt
jUs>,

except for a few exceptions in set 2, which started with either genomes read from the
genebank or a somewhat less complete genome:

<kAk Cn Db xEv fFa uGp gHx olp hJi fKi wMw kPd xQm eRy gTa wUx>,

and again in the run 4 of set 4, with a modified genome.

As mentioned in section 3.2.2.1, the genome is organized as groups of three letters. The
first letter refers to the frequency of the gene being activated, e.g., 'Z'is 100%
probability (i.e., always) and 'a' is about 0.13%, the second letter stands for the gene (see
table 3.1), and the third is the argument letter, which influences the behaviour of agents

when that gene is activated.

40

The reason for using only one ancestor genome to start these runs was that the effect of
evolution would be clearly presented in the test results, by comparing the resultant

genome with the ancestral genome, and it was inspired by the design in Tierra [13].

The agents in these runs could reproduce by copying themselves, copying with mutation,
and crossing over with another agent’s genome, in the same time step. The first set
describes the standard runs, performed with the same parameters except for the seed for
the random number generator; the second set includes a variety of miscellaneous
experiments with small differences in their reproduction parameters; the third set shows
results from the model after fine-tuning the reproduction genes’ frequency, again keeping
other parameters the same except the random seed; and the fourth set presents a different
approach to mutation, which had mutation not implemented as a gene, but rather as a

small probability in other methods of reproduction instead.

The experiments were focused on the reproduction behaviours of agents and their effects
on the genomes, especially the convergence rate, represented by the change in number of
genomes throughout the course of runs. Considering the vast parameter space of this
model, these experiments are therefore by no means claimed to be comprehensive. Runs
with different parameter settings for energy and atom consumption, tracing of the spatial

behaviours of agents and life span of agents, etc. were beyond the scope of this paper and

were not attempted.

41

4.2.1 Experiment Set 1---Standard Runs

In the standard runs, genomes of agents could be mutated in three ways during
reproduction: (i) by randomly flipping any letter in the genome; (ii) by randomly deleting
an existing gene (with a probability of 1/13, which comes to about 7.7%); or (iii) by
inserting a new gene (again with probability of about 7.7%). While crossing over, the
offspring’s genome selected from the part of father’s genome had 1/13 chance of being
one gene shorter and 1/13 chance of being one gene longer, thus giving agents another

chance of varying the length of the offspring’s genome.

Four runs were conducted in this set, which differed only by the seed for the random
number generator. Run 1 was generated with the default seed of the system, and the other
three runs were seeded by clock. Random numbers are used in various places in the
simulation, e.g. agents are assigned a random position when created by the system in the
initialization period; the argument letter, which dictates certain behaviours of agents, are
selected randomly; and as indicated in chapter 5, a randomly selected amount of energy is

distributed into each cell for the purpose of making the environment more complex.

In run 1, agents somehow managed to retain the mutation gene (see figure 4.4), and their
genomes had not fully converged by the end of the run (see figure 4.1). The majority

genomes were 20% shorter than the ancestor genome (see figurc 4.2 and 4.3).

In the other three runs, as we can see in figure 4.5, 4.7 and 4.11, at a fairly early stage

agents lost the mutation gene in their genomes and started to converge at the same time,

42

after the initial period of divergence. The lengths of their genomes did not have enough

time to evolve (see figure 4.8, 4.9, 4.12 and 4.13).

In run 2, an extra copying gene (gene ‘D’) was inserted and the mutation gene (gene ‘Q’)
was no longer present at as early as step 10,000, which led to the complete convergence
at step 30,000. Because the evolution process stopped quite early in this run, the resultant
genome didn’t have a chance to evolve much from the ancestor genome, and differed
mainly by the addition of an extra copy gene and the disappearance of mutation gene.

The lengths of the majority genomes did not have time to change either.

The mutation gene disappeared at step 150,000 in run 3. The genomes actually converged
before this, but thanks to the mutation gene in the genome, it managed to diverge again
for a little while after, until it lost the ability to mutate and came to a full convergence.
Again the aging and dispose atom genes disappeared from the resultant genome, replaced

by four regulating-mass genes (see figure 4.10).

Same scenario happened in run 4 at step 11,000, when it lost the mutation gene.

43

No. of Genomes

120
100
80
60
40
20

0

200000 400000 600000 800000
Time Steps

Figure 4.1: No. of Genomes in Set 1, Run 1

Total No. of Genes

25

N
o

600000

200000 400000 800000

Time Steps

No. of Distinct Genes

200000 400000 600000 800000
Time Steps

Figure 4.2:

No. of Genes in Set 1, Run 1

Figure 4.3: No. of Distinct Genes in
Set 1, Run 1

4632 99% <aQb vCo fFa uGf aHp nli wMm yMv nNn dRq wSt tMt xUs mDc yMm

yMy>

2 0% <aQb vCo fFa uGf aHp nli wMm yMv nNn rQy dRq wSt tMt xUs mVc yMm

yMy>

Figure 4.4: Genome results in Set 1, Run 1

44

No. of Genomes

0 50000 100000 150000 200000 250000 300000 350000
Time Steps

Figure 4.5: No. of Genomes in Set 1, Run 2

100% <aAs bHb vCo bDI fEw fFa pGf aHp oli nKo ILI yMo nNn jPe wJy dRq wSt tHt
jUs mDc>

Figure 4.6: Genome results from Set 1, Run 2

800
700
600
500
400
300
200
100

No. of Genomes

0 50000 100000 150000 200000
Time Steps

Figure 4.7: No. of Genomes in Set 1, Run 3

45

225

]
N

21.5

N
—_

20.5
20
19.5
19
18.5

Total No. of Genes
No. of Distinct Genes

0 50000 100000 150000 200000 50000 100000 150000 200000

Time Steps Time Steps

Figure 4.8: No. of Genes in Set 1, Run3 Figure 4.9: No. of Distinct Genes in Set
1,Run3

100% <oDb vCo vMo bDI xEw fFa vGf aHi olo xGg nMm yMo nNn wSy dRq wSw (Tt
XxMn alLa>

Figure 4.10: Genome results from Set 1, Run 3

No. of Genomes

0 50000 100000 150000 200000
Time Steps

Figure 4.11: No. of Genomes in Set 1, Run 4

46

Total No. of Genes
No. of Distinct Genes

0 50000 100000 150000 200000 0 50000 100000 150000 200000
Time Steps Time Steps

Figure 4.12: No. of Genes in Set 1, Run 4 Figure 4.13: No. of Distinct Genes in Set
1, Run 4

99% <vCo bS] fEw fFa xGf oli rGg nKm ILl yMo nDc uJy dGq xSw tMt jCs>

Figure 4.14: Genome results from Set 1, Run 4

4.2.1.1 Experiment Set 1.1---Standard Runs with Variations

In the effort of finding the desired balance for the frequencies of different reproduction
methods, four more runs were conducted with certain parameters explored, in this subset

of standard runs.

In run 1, only existing genes with the same arguments could be inserted through
mutation, instead of random insertion as in the standard runs. This ensured that any
addition of the reproduction gene would not have a very high probability. The system

inserted an extra crossover gene and got rid of the mutation gene at step 15,000.

47

In run 2, no reproduction genes were allowed to be added to the agents’ genomes, and it
produced similar result. It did not have a chance of adding any mutation gene, and lost

the existing one at step 39,000, and as usual, it converged at the same time.

Run 3 was conducted with the copy mechanism limited through mutation. It allowed the
copy gene to replace an existing gene in the process of mutation, as long as the frequency
letter prior to it was less than a threshold. However, although happened at a later stage,
the mutation gene still disappeared at around 140,000 steps, leading to a convergence at

the same time.

In run 4, the copy mechanism was further controlled in mutation, which did not allow the
copy gene to replace any existing gene and the probability of the copy gene was not
allowed to be changed. From figure 4.15 we can see the number of genomes was highly

volatile, possibly indicating too frequent mutations for any meaningful evolution.

It was revealed through these experiments that when cloning was turned off or limited, it
would affect the convergence rate. The Agents would need the mutation gene as one of
the vital reproduction method, thus giving the mutation gene a better chance of sustaining

for a long period of time.

48

3500
3000
2500
2000

1500

No. Genomes

1000

0 50000 100000 150000 200000
Time Steps

Figure 4.15: No. of Genomes in Set 1.1, Run 4

4.2.2 Experiment Set 2--- Miscellaneous Runs

A group of miscellaneous tests are included in this set, in the attempt of exploring the

parameter space of reproduction.

The mutation mechanism in this set was different than that in other sets of experiments.
Unlike the random-letter-replacement in other runs, in this set of runs the gene letter
being mutated was replaced by the argument letter of the mutation gene, in order to give
the agents more control of mutation, and the agents apparently used this control to mutate

out many of the ‘G’ gene, which stands for the get-atom action.

49

Through these experiments, it revealed that as long as there was a ‘g’ as an argument of
any gene, and the mutation mechanism was available in the system for a sufficient period

of time, the agents would all end up with a huge number of ‘G’s in their genomes.

Run 1 was conducted with genomes read from the genebank, instead of with a single
ancestor genome. The majority agents had six ‘G’ genes (60%) in their genomes at the
end of the run (see figure 4.17). The fact that these genomes were read from the
genebank, therefore there was a large variety of genomes to start with, but ended up, like
those in some of the single genome runs, with many get-atom genes in their genomes, is
interesting. The letter ‘g’ not only dominated the genes, but also the arguments of genes,
as if agents learned to ensure that they would have many ‘g’ genes no matter what their
starting genome was, and any further mutation would still produce this gene. The agents

did have a high divergence at the start of the run, as shown in figure 4.16.

The lengths of the starting genomes varied, therefore it was not possible to see the effect

of evolution on this matter.

Run 2 was started with a single, smaller genome:

<kAk qCn fDb xEv fFa uGp gHx oIp hJi fKi wMw kPd xQm eRy gTa wUx>.

The mutation gene ceased to be the dominating one at step 9000, then disappeared at step
11000, at which point the genomes converged into one (see figure 4.18). Like other runs
which convergence happened early, the genomes did not have a chance to evolve much

from the ancestor genome, other than the loss of the mutation gene.

50

Run 3 was performed with the same single genome like that in other sets, and the
resultant genome was similar to that of run 1, in the sense that it had many get-atom
genes (see figure 4.19). It was quite obvious that the agents favoured the ‘get-atom’ gene.
It seemed that the agents had all turned into some atom-seeking monsters. It was
unexpected in the case of this set, in the sense that the gene being mutated was set to be
replaced by the value of the mutation argument, which was ‘q’, not ‘g’. Yet it was no
surprise that agents learned to retain their favourite gene, since they were given the

chance of controlling the mutation with the argument letter.

In run 4 the mutation mechanism was turned off, in order to see the effect of crossover in
the process of evolution. Genomes were constructed by reading from the genebank thus
giving enough variations for crossover to work with. The crossover gene disappeared at
time 11,000, and the system converged at that point (see figure 4.20). Obviously, in this

setting, crossover alone was not enough to keep the agents evolving.

In a similar run, both the mutation and copy mechanisms were turned off, and as stated in
4.1.2, one reproduction gene was not enough for the population to survive the starting
stage of runs, and agents ended up extinct at step 20,000. The extinction happened after
the population size reached the threshold of 2500, at which point the system would no
longer help to create any new agents, and the agents were left on their own to keep their

population size stable.

51

The copy mechanism was turned off in run 5, and apparently agents performed more
crossovers than other runs, since they had less choice of reproduction (no lazy
alternative). The increased number of crossovers might also have been an attempt of
preserving the genomes on the agents’ part, since it worked just as the copy mechanism

for the agents with the same genome.

No. of Genomes

0 20000 40000 60000 80000 100000 120000 140000 160000
Time Steps

Figure 4.1 6: No. of Genomes in Set 2, Run 1

40% <uCguGg gGg 1Gg gGg zMy gGg gQg ySo gGg>

13% <uCguGg gGg rGg gGg zMy gGg gGg ySo gGg>

Figure 4.17: Genome results from Set 2, Run 1

52

No. of Genomes

0 10000 20000 30000 40000 50000
Time Steps

Figure 4.18: No. of Genomes in Set 2, Run 2

13% <gGg gGg vCo gGg gGg gGg gGg gGg gGg gQg gGg gGg yMo gGg gGg xGg
zGg wSt tGg gGg>
12% <gGg gGg vCg gGg gGg gGg gGg gGg gGg gQg gGg gGg yMo gGg gGg xGg
zGg wSt tGg gGg>
10% <aGg gGg vCo gGg gGg gGg gGg gGg gGg gQg gGg ¢Gg yMo gGg gGg xGg
zGg wSt tGg gGg>
4% <gGg gGg vCo gGg gGg gGg gGg gGg gGg gQg gGg gGg yMo gGg gGg xGg
zGg wSt gGg gGg>

Figure 4.19: Genome results from Set 2, Run 3

53

450 7
400 £
350
300 £
250 1

200 1

No. of Genomes

150
100

50 +

0 20000 40000 60000 80000 100000
Time Steps

Figure 4.20: No. of Genomes in Set 2, Run 4

4.2.3 Experiment Set 3--- Runs with Fine-Tuned
Reproduction Strategy

This set of runs was a continuance of the standard runs in set 1. The frequency of
reproduction methods was fine-tuned in these runs, towards limiting the activation and
duplication of the copy gene, for the purpose of avoiding the loss of the mutation gene
and early convergence. It was revealed through numerous earlier experiments that setting
the copy gene at a low frequency was not enough to guard off early convergence, since
agents always learned to combine the copy gene with high probability letter through
mutation, and add new copy genes on top of the existing one. In this set of tests, certain
restraint was applied when a genome was being mutated. The genome was prohibited
from mutating any gene into the copy gene, and any addition of the copy gene was also
prohibited. The reason for this constraint was to not give agents the chance of getting
hold of many copy genes and being able to reproduce only by cloning, which eliminated

any possibility for open-ended evolution.

54

In one of the three runs conducted, the mutation gene was retained throughout the run and

the system did not fully converge to one genome (see figure 4.23).

In run 1 and 3, however, the mutation gene was lost and agents reproduced only by
crossover, and this led to a full convergence as well (see figure 4.21 and 4.25). Since this
happened at a fairly early stage, there were not enough variations in the genome for
crossover to have any mutating effect and the agents did not have time to evolve and shed

off redundant genes, e.g. gene ‘O’ and ‘P’ (see figure 4.22 and 4.26).

This set of experiments revealed that imposing restraint on the copy gene alone might not
be enough for ensuring open-ended evolution. It certainly helped agents to retain the
mutation gene, but is not a 100% guarantee. Since simulated agents did not favour
mutation as a reproduction method, they could always lose it during the process of
reproduction, therefore man-made mechanism might have to be added into the system in
order to ensure a small probability of mutation through out the runs. This led to the 4" set

of experiments, explained in section 4.2 4.

55

No. of Genomes

0 500000 1000000 1500000
Time Steps

Figure 4.21: No. of Genomes in Set 3, Run 1

85% <xCk bKc wGf vim qlv rGo yMt xMp hUw uQy vOv wEf tRs wSs yMc mSx yMt
vLg yMs xSx wGf yMs wld wGn>

14% <xCk bKc wGf vIm glv rtGo yMt xMp hUw uQy vOv wEf tRs wSx yMc mSx yMt
vLg yMs xSx wGf yMs wJd wGn>

Figure 4.22: Genome results from Set 3, Run 1

No. of Genomes
No. of Genomes

0 500000 1000000 1500000 0 50000 100000 150000 200000

Time Steps Time Steps

Figure 4.23: No. of Genomes in Set 3, Run 2 Figure 4.25: No. of Genomes in Set 3,
Run 3

56

87% <mlg wCd wEc xRu eKi qHt rQy dEp wiw gKr mCo yUx gIn xGf yIr xGf gKn
xGf nMf xJf yMr yUx mWg xGf xGI>

Figure 4.24: Genome results from Set 3, Run 2

100% <uHI vIg vCp xJ1 xGf aHv xMi yMo jPe qQq fCd wSu tCt jUs vLp uTn xMl yMo
wSx yMo wSr yMo kEw iCt wSx xGf>

Figure 4.26: Genome results from Set 3, Run 3

4.2.4 Experiment Set 4---Runs with Mutation Adjusted

In previous experiments, mutation was implemented as a gene, and no matter how low its
frequency was set at, the system still had a huge number of mutations, which did not
resemble the mechanism in nature. At the mean time, by being a gene, the mutation
mechanism was always at a risk of being lost in the process of reproduction, thus leading

to a halt in the process of evolution.

In this set of tests, the above problems were avoided by imposing mutation onto other
reproduction methods with a small probability (0.3%). So as long as agents were
reproducing, their genomes always had a small chance of being mutated. Six runs were
conducted with this configuration, to confirm the viability of this solution. Again these

runs differed only by the seed for the RNG.

57

Results from these tests revealed that previous analysis was correct. As long as there was
the mutation mechanism in the gene pool, the genomes would not converge, and would

retain the ability of evolving (see figure 4.27, 4.31 and 4.35).

The lengths of genomes also evolved into much shorter ones, leaving only 5 genes (see
Figure 4.30) plus 2 Variations, out of which 4 were collecting atom genes and thus
allowing agents to be able to reproduce efficiently with only one reproduction gene. Once
the majority genomes reached the 7-gene length, they did not change for the next 500,000
steps (see figure 4.28, 4.29, 4.33 and 4.36), indicating that these 7 genes were vital for the

survival of agents.

All three runs produced similar results, with the same genes left (see figure 4.30, 4.34,

4.37).

In run 2, the resultant genomes resembled the characteristics of a gene pool, in which
four distinct genomes were dominating. However, this phenomenon might not qualify for
speciation because they possessed basically the same genes, only differed in their gene-
arguments. Similar results came out from run 3, which had only 6 genes left in the

majority genome (with 5 distinct genes, as usual).

Run 4 and 5 were started with a different genome (with different seeds for the RNG),

which had the frequencies of preferred genes set to low, and ended up having the same

58

result. It indicated that the agents learned to optimize their genome into the same one no

matter what they were given to start with.

Run 6 was conducted with a modified genome, which lowered the frequency of the
regulate-mass gene. Since in this system the agents were created without any atoms, and
their regulate-mass gene was not activated enough for them to get enough atoms from the
environment in this run, very few of them had enough energy to reproduce, therefore no
sustained change in their genomes could be recorded. A low size of about 400 was kept
by the system, since it was below the threshold of minimum population of 2500. The
population started reproducing if the frequency of either the regulate-mass gene or get-
atom gene was set higher. However, if only the get-atom gene was activated, they would
reproduce at the beginning, pass the min population threshold, then would seem to stop
obtaining atoms from the environment and thus stop reproducing, end up extinct at step
2000. This result indicated that the regulate-mass gene was very important for the well
being of the agents. It allowed the agents to acquire atoms whenever needed, in order to

replicate and preserve the population.

Another interesting point noticed was that if the frequency of the aging gene was set too
high, the agents would not live long enough to reproduce, and a population size of about
only 300 was kept by the system, similar to that of run 6. No doubt this was the reason

that the aging gene was not selected in the process of evolution.

59

Results from this test set were satisfactory. They proved that open-ended evolution was
possible in a fairly simple system and that a slight probability of mutation was vital in the
process of evolution. From these test results, it was obvious that the current
implementation was a sound solution for keeping simulated agents from converging, with
just the right amount of mutation, which allowed them to adapt to their environment, and

at the same time retained the vital part of their ancestor genome.

80
70
60
50
40
30
20
10

0

No. of Genomes

0 20000 40000 60000 80000 1E+06

0 Tpme Stegs 0

Figure 4.27: No. of Genomes in Set 4, Run 1

60

Total No. of Genes
No. of distinct Genes

0 20000 40000 60000 80000 1E+06 0 20000 40000 60000 80000 1E+06
0 Tpme Stegs 0 0 TPme Stegs 0

Figure 4.28: No. of Genes in Set 4, Run 1 Figure 4.29: No. of Distinct Genes in Set
4, Run 1

96% <IDb vCo xGf xGg yMx xSx xMs>

1% <IDb vCg xGf xGg yMx xSx xMs>

1% <IDb vCo xGe xGg yMx xSx xMs>

Figure 4.30: Genome results from Set 4, Run 1

120
100
80
60
40

No. of Genomes

20
0

0 20000 40000 60000 80000 1E+06

0 Tpme Stegs 0

Figure 4.31: No. of Genomes in Set 4, Run 2

61

Total No. of Genes
No. of Distinct Genes

0 20000 40000 60000 80000 1E+06 0 20000 40000 60000 80000 1E+06
0 Tpme Stegs 0 0 TPme Stegs 0

Figure 4.32: No. of Genes in Set 4, Run 2 Figure 4.33: No. of Distinct Genes in Set
4, Run 2
42% <mQb vCl xGf yMt ySz xGe yMu xGg zMy>
26% <mQb vCm xGf yMt ySz xGe yMu xGg zMy>
17% <mQb xCm xGf yMt ySz xGe yMu xGg zMy>
8% <mQb vCm xGf yMt ySz xGe yMu xGg zMo>

Figure 4.34: Genome results from Set 4, Run 2

No. of Genomes
No. of Distinct Genes

0 200000 400000 600000 800000 0 200000 400000 600000 800000
Time Steps Time Steps

. of Distinct Genes in

Figure 4.35: No. of Genomes in Set 4, Run 3 Figure 4.36: N
Set 4, Run 3

62

85% <vCo xGf yMw xMt 1Qb xSy>
11% <vCo xGf yMw xMr 1Qb xSy>

Figure 4.37: Genome results from Set 4, Run 3

4.3 Summary and Discussion

To end this chapter, the more significant results from these experiments are summarized
and further discussed in this section. Other than reporting the results from experiments

performed, tests not yet have been done should also be considered.

The most interesting and significant result that came from these experiments could be the
discovery that simulated agents in a fairly simple environment tended to lose the
mutation mechanism, if given a choice, thus ending the process of evolution (which was
not preventable with the crossover gene alone, since this gene was less likely to be
activated and generally would not bring enough variations to the genome). The best
solution discovered so far was to impose the mutation mechanism, with a small
probability, onto the reproduction mechanism. This might just as well prove to be an
ideal implementation with an environment of arbitrary complexity. In other words, the
current mechanism should provide agents with enough adaptive capability to evolve in

any environment.

63

Clearly, mutation played a crucial part in the process of evolution. “Mutation is a vital
process from the evolutionary point of view, as it provides a continual source of genetic
novelty for selection to work upon.” [18]. However, from tests presented in this chapter,
it appeared that simulated agents regarded mutation as a lethal mechanism, since too
much of it could cause the agents to lose the vital part of their genome. That might be the
reason behind the results from earlier experiments that the higher the mutation probability
was, the faster the mutation gene was lost. In their attempt of retaining the vital part of
their genomes, the agents forsook their chance of reaching the maximum optimization

(adaptation to the environment), by choosing to copy themselves faithfully.

With mutation imposed on the agents with a low probability, in set 4, the system
achieved maximum optimization, which was expected. For energy efficiency, the agents
got rid of all redundant genes. The resultant genomes from the experiments in this set
indicated that the only genes necessary for survival in the current environment were the
ones for reproduction, for sensing the highest concentration of atoms in the environment
and moving toward it, for getting atoms from the environment, for regulating mass (the
result of run 6 in set 4 clearly indicated the importance of this gene) and for converting
these atoms into energy. All of the genes left were combined with the highest frequency
letter (except the reproduction gene, which obviously was activated enough for the
survival of the population with medium frequency). In a minimal form, the optimized
genomes focused on supporting the agents to replicate, as shown in set 4, in the most
energy-efficient manner, without having to waste any on processing useless genes. With

this configuration, the majority agents arrived at an optimized form, but with the

64

mutation mechanism built in, they would always be open for changes should the need

come up.

Many runs were conducted with this configuration, in order to prove the viability of the
above solution, and the results were satisfactory. The majority agents always ended up
with the same optimized genes, regardless of the seed for RNG, or the starting genome.
There were always a small number of agents having different genomes, indicating the

readiness of the population to change and to adapt.

Another interesting feature displayed in the results of these tests was the fact that the
genomes got much shorter compared to the ancestor genome. Tests should be conducted
for discovering the reasons behind the loss of genes, why they were not useful for the
agents, e.g. the loss of the crossover gene in almost all of the runs indicated that the
agents did not favour sexual reproduction, and as a result, the sense-pheromone gene was

also lost.

The addition of the get-atom gene in all the resultant genomes was clearly an evidence of
evolution. This optimization allowed the population to survive with only one
reproduction gene. This result was similar to that of Cosmos, by Tim Taylor, in which the
et_collect instruction was repeatedly added to the ancestor program [18]. However,
unlike the Cosmos model, where programs tended to get longer and accumulated many
junk genes [18], the agents in FormAL evolved their genomes into much shorter ones,

and got rid of any redundant genes. The probable reason behind this could be due to the

65

fact that processing genes consumes energy, and consequently there is evolutionary
pressure to get rid of useless genes and to preserve energy. Presumably, agents that
consume less energy are more likely to survive than “greedy” agents because the latter
are more likely to starve. Thus the lack of junk genes strongly suggests that there are
more selection pressure in FormAL than that of the Cosmos model, thus the organisms
have to evolve into a more economic form, and that the simulation is working as intended

~ life is not too easy if you’re an agent.

The same mutation mechanism would certainly lead to different results in genomes once
the environment changes. For example, the additions of the get-atom gene most likely
would not have appeared if reproduction were not implemented as an energy-consuming
activity. Similarly, if other activities were necessary for the agents to reproduce, then
those genes surely would have sustained through evolution. There is still a vast parameter
space for the complexity of the environment, waiting to be explored, and certainly will
produce very different results in the genomes. In the next chapter, some attempts toward

making the environment more complex are presented and discussed.

66

Chapter 5

More Experiments with Enriched
Environments for FormAL

For the purpose of discovering whether agents can learn to evolve as the environment
changes, with the reproduction strategy presented in chapter 4, another group of tests
were conducted and presented in this short chapter. In these tests, the environment was
changed toward complexity step by step, with tests run for each step in order to see each
of its effects on the resultant genomes. The reproduction mechanism was kept unchanged
from that of section 4.2.4, and so was the ancestor genome. The random number
generator was seeded by clock, and the simulations were all conducted for 1,000,000 time

steps.

5.1 Runl

In run 1, the atom distribution mechanism at the initialization period was modified.
Randomly selected amount of atoms was distributed into cells, instead of uniform
distribution. The uneven energy supply mechanism was intended to drive agents to move
and look for cells with more atoms. From the genomes at the end of the test (see figure
5.1), we can see that there are two sense-atom (‘S’) genes, compared to only one of this
gene in previous runs, which could indicate the necessity for agents to have this gene in

order to survive.

67

Freq Perc Gene
3027 91% <vCd xGg wMq wGg yMv 1Qc wSt xSx>
230 6% <vCdxGe wMq wGg yMv 1Qc wSt xSx>
9 0% <vCsxGe wMq wGg yMv 1Qc wSt xSx>

Figure 5.1: Genome results from Run 1

5.2 Run 2, 3 and 4

In run 2, 3 and 4, a killing gene was introduced. Agents were allowed to kill each other,
and obtain the victim’s atom collection. In the tests conducted in chapter 4, killing was
not implemented, and agents could only grab other agent’s parts and attach them to its
own body. This mechanism apparently did not demonstrate any evolutionary advantage
for agents, as the eating gene did not sustain in previous runs (agents learned to lose it at
around step 70,000). Since killing is a very important mechanism in co-evolutional
systems, it 1s a crucial factor to be added to the environment, with the aim of finding its
effect on the evolving agents. The atoms of the agent got eaten were transferred into the
bag of the eating agent, making it an incentive for agents to kill. With the new killing
mechanism, activated by the killing gene (represented by the letter ‘H’), a prey-predator
relation was formed. Agents were motivated to kill others since this was a source of
energy supply. The test results supported my expectation and the killing gene did sustain
in all the tests (see figure 5.4, 5.5 and 5.6). Graphs from these tests showed that agents
formed some clusters, and left the rest of the space empty (see figure 5.2 and 5.3), which

could be the result of the unevenness in energy distribution. The resultant genomes also

68

revealed that the sense-atom gene was not needed any more, probably due to the fact that
agents could obtain atoms by killing other agents, instead of getting them from the

environment.

Agents send a signal to its cell’s bag before killing another agent, and the signal is
removed once the killing is over, which is inspired by John Hancock’s remark:” The
priorities for any signal are that it should be generated quickly, relay a specific message
efficiently and then be removed when no longer needed. For these reasons, most
biological signals are relatively small chemicals that are able to be moved efficiently, or

can diffuse rapidly, to their site of action.”[7].

In run 3 each agent had a gene for detecting this hostile signal from its environment,
represented by the letterL’. This gene allows agents to detect a cell with less hostile
signals, and move toward it. Like the killing gene, this one did survive 1,000,000 time

steps of evolution as well (see figure 5.5).

I attempted to add another gene for agents to detect hostile agents, and allow them to
decide on their own whether to flee or to kill the hostile agent instead, based on its own
energy level, which was intended to be a metaphor to the scenario that the stronger eat
the weaker. Results from these tests were similar to those of run 2, 3, and 4, and the new

gene was lost. So apparently it was another useless gene.

69

Figure 5.2: Graphic Window in Run 2

Figure 5.3: Graphic Window in Run 3

70

Freq Perc Gene

9584 71% <vQb xCx xCw xCw xHf wGe wMp xGf xMp xHf xQa xHa xQa>
888 0% <vQb xCx xCw xCw xHf wGe wMf xGf xMp xHf xQa xHa xQa>
792 5% <vQb xCx xCw xCw xHf wGe wMp xGf xMp xHe xQa xHa xQa>

Figure 5.4: Genome results from Run 2

Freq Perc Gene

3619 82% <IDb zCx zCx xCp cLr xHf wMs zMs xQa zMk>
220 5% <gDb zCx zCx xCp cPr xHf wMs zMs xQa zMk>
170 3% <oDb zCx zCx xCp cLr xHf wMs zMs xQa zMk>

Figure 5.5: Genome results from Run 3

5.3 RunS5and 6

In run 5 and 6, another feature was added to the environment of agents. While obtaining
energy by converting atoms, they also accumulated a small amount of poisoning atoms in
their bag. Once the number of poisoning atoms reached a threshold, the agent died. A
new gene for disposing lethal atoms was introduced and this gene (represented by the
letter ‘N’) sustained 1 million steps as well (see figure 5.6). Before this gene was added,

all agents had died before reaching 10,000 time steps.

71

2699 65% <xCx xCx xCx mDc xHf yCw wMs vNs xMu xDa wMq wMp>
696 16% <xCx xCx xCx mDc xHf yCw wMv vNs xMu xDa wMq wMp>
347 8% <xCx xCx xCx mDc xHf yCw wMs vNs xMu xDa wMq wMI>
260 6% <xCx xCx xCx mDc xHf yCw wMs vNs xMu xDa wMw wMp>

Figure 5.6: Genome results from Run §

No. of Genomes

0 200000 400000 600000 800000 1E+06 1E+06
Time Steps

Figure 5.7: No. of Genomes in Run 5

[
0 Q
Q =
5)
o -
— [3)
° £
S @
2 a
= ©
O .
[=]
P4
0 500000 1000000 1500000 0 500000 1000000 1500000
Time Steps Time Steps
Figure 5.8: No. of Genes in Run 5 Figure 5.9: No. of Distinct Genes in Run 5

72

5.4 Conclusion

The additions of the killing, detecting signal and dumping poisoning-atom genes in the
resultant genomes in this chapter are a clear indication that the previous speculation in
Chapter 4 was valid, that with the current implementation, agents can evolve according to
the demand of the surviving conditions of the environment, the population will not
converge (see figure 5.7), and that when the environment becomes more complicated, so
does the agents’ behaviours. The trend of evolution in these runs was the same as those in
section 4.2.4 in the sense that genomes became shorter (see figure 5.8 and 5.9) and the
majority of them optimized. It took longer for agents to optimize their genomes in these

runs, probably due to the more complicated environment.

73

Chapter 6

Problems Encountered and Their
solutions

Some interesting problems were encountered during the development of FormAL. These

problems and their solutions were presented in this Chapter.

6.1 Population Explosion

At an earlier stage of the development process, a mysterious problem came up, which
resembled ‘population explosion’. The program would run smoothly for a while, and then
all of a sudden the population would start to explode, and very soon it crashed the
memory. The black clusters in the modal window (see figure 5.1) illustrate this

phenomenon.

I'realized that the problem was caused by mutation. If one of the replication genes was
mutated and placed with a high probability letter, all hell broke loose, and this agent
would start to reproduce at a disastrous speed, since this agent was also subjected to
cloning and every other type of replication. No matter how low the original probability of
mutation was set, this was still inevitable at some point, since it took only one agent to

cause it to happen. The program could not afford this kind of mutation at that time

74

because the energy consumption mechanism was not implemented, which meant that

there were no restrains on the reproduction activities.

This problem was solved by a tentative algorithm, which only allowed mutation to
happen according to the defined genebank. Only the action and argument letter of a gene
could be mutated. In another word, when an action letter was being mutated, the program
would read from the genebank and locate the probability associated with this gene and set
this new action letter to be with this probability; the argument letter could safely be
mutated into any letter; and if the probability letter was being mutated, nothing would be
done, meaning that mutation would not be executed. If a new action letter were not
located in the genebank, it would be allowed to be added as is, which worked as a noise

in the genome.

The ultimate and desired solution to this problem came with the implementation of the
energy consumption mechanism imposed on the reproduction activities. With the current
design, an agent can only reproduce if it possesses enough energy, and any letter of its
genome can be mutated. If this agent is reproducing too much, it will not have sufficient
energy after a while and thus will have to slow down. The agents who over-produce will
die of lack of resource, since reproduction is very resource-costly. If it can obtain energy
(get atoms from the environment) to support its reproduction rate, other agents will be
deprived of resources and may not be able to reproduce. Since the overall number of

atoms in each cell is constant, the population size is kept stable.

75

6.2 Memory Leak

FormAL had a memory leak problem for a long time. It would run for, say, 40,000 steps,
or 150,000 steps, or even 400,000 steps, but would always end up being out of memory
and the program would inevitably crash. Much effort was given to the debugging, and
finally the leaking point was identified in the program. It was a C++ problem, which
allowed dynamic allocation and deletion of memory. When agents died, the memory
space they occupied were freed up by deleting its dynamically allocated data member, an
object of a class called code; however, hidden inside of this class there was another data
member that was created dynamically, and was not deleted, thus the memory it occupied

was not freed.

6.3 Parts Overlapping

As mentioned in Chapter 3, parts are also allowed to divide by themselves, and new parts
are attached to the old ones as their associated parts. A complicated problem arose from
this: If new parts are allowed to grow at any location attached to the original part, how do
we make sure the new part does not grow at a space already taken by other parts? I
thought on this issue for quite a while, and came up with the idea of letting each cell keep
a list of all the spaces already taken, and update the list each time a new part is grown or
an agent moved its location. However, this algorithm proved to be too expensive and

slowed down the program tremendously. The solution is to allow a new part to grow only

76

at the direction of the old part (with exceptions of a low probability), e.g. if a part is at the
right side of the body, its subsequent parts also grow on the right side of this part.
Therefore each part has an attribute of grow-direction, set when the first part is grown

from its body. Each subsequent parts of this original part have the same grow-direction.

6.4 Growth in Single Direction

Originally, when a body was set to reproduce (which included cloning, mutation, and
crossover), all its parts (6) were checked in order to locate a free space. If a space was
found, it would be used to grow a new part; if all the parts spaces were taken, which
meant this body already had 6 parts, then a random part, based on the value of argument
of this reproduction gene, (arg - 'a’)%6, was selected to be promoted into a body, and the
newly available space was used to grow the new part. This caused another problem:
agents tended to grow in one direction and become very large in size (see Figure 5.2). 1
rearranged the location selection algorithm so that when an agent is to reproduce, a
location is selected randomly. If that location is already occupied, all the parts at that
location are promoted into bodies, and the new part will grow at the newly available
space. Parts have an added attribute, called layer, and each part can grow new part only if
its layer number is smaller than the value of argument. This way, agents have a much
smaller chance to grow large since their parts are promoted more frequently, and they

have a chance to learn to control their lengths (see Figure 5.3).

77

6.5 Agents Not Mutating

The original mutation mechanism was to replace the letter in the genome decided by the
value of the mutation argument, with the letter of the argument. This caused a problem:
when the simulation was started with a single genome, (that is, all agents had the same
genome), they all ended up with the same single genome after many long runs without
any variation, despite that millions of mutations were recorded. Since the mutation
argument was constant, therefore th¢ mutation point was constant, and this clearly did not
give the agents enough leeway to evolve. This problem was solved by randomly selecting

the mutating letter from the genome.

Figure 6.1: Population Explosion

78

Figure 6.2: Single Direction Growth Figure 6.3: Growth after Modification

at Step 45,000 at Step 45,000

79

Chapter 7
Conclusions and Further Work

Inspired by the origin and evolution of life, Artificial Life today encompasses a broad
range of research fields, as mentioned in Chapter 2, and remains one of the fastest
developing areas in computer science. Although whether it is possible to simulate life
through a computer model remains an open question, it is widely accepted that Artificial
Life models do provide a vital tool not available before, for simulating and studying
certain aspects of life. For the purpose of studying and understanding life through
simulated agents, a well-designed platform is required. FormAL was designed and

implemented for this purpose, and its structures are presented and discussed in Chapter 3.

One of the most important issues in Artificial Life is the evolution of genetic
characteristics of agents, usually through reproduction. The whole Chapter 4 and 5 is
devoted to presenting numerous experiments, conducted with FormAL, for the purpose of
tracing signs of evolution through adjustments with reproduction mechanisms and
environment. The results of these experiments clearly indicate the important role that the
mutation mechanism plays in the course of evolution, at least in simulated agents. The
moment this mechanism is lost, the system stops evolving and evolution reaches a dead-
end. The probability of mutation is crucial in the sense that if it is too high, it would not
allow the organisms to maintain the vital part of their genomes, and a rate too low would

take an unrealistically long time for the organisms to evolve. Early convergence is a

80

common problem encountered by Artificial Life models, and through my experiments, it
showed that agents learned to get rid of the mutation gene if they had a choice, and as
mentioned above, they converged quickly, thus ending the process of evolution. It was
also discovered that reproduction by crossover did not prevent early convergence, since it
needed a rich gene pool to be able to have an effect on the resultant genomes. It was
obvious that the agents preferred to reproduce faithfully, unless more complicated
environment was implemented. I discovered that even in a fairly simple environment,
premature convergence could be avoided, by imposing the mutation mechanism onto the
agents. With current configuration, the agents developed to a semi-convergence state,
with the majorities having an optimized genome. However, with the probability of
mutation, thus the probability of change, always present in the reproduction mechanism,
the organisms are always ready to adapt to a new environment should the need come up.
Chapter 5 is an extension of chapter 4, in which the conclusion in chapter 4 is further
tested, and proved valid. With the mutation mechanism always available, agents did learn

to adapt to the change and demand of their surviving conditions.

FormAL is work in progress. More complexity shall be added to the system in the future
(they are out of the scope of this thesis), making it a more heterogeneous environment for
the agents, in the hope of encouraging the evolution of diversity and complexity in the
competing agents, obtaining a gene pool so that agents could survive drastic changes in
environment conditions, and giving rise to the emergence of speciation and coevolution

(host-parasite, prey-predator).

81

It is widely accepted that life is based on the ability to accept, process, and act on
information. I believe that more complex interactions (signalling) among agents and with
the environment are needed in order to give rise to emergent properties (evolution). I
would like to see that not only the parameters of genes, but genes themselves can evolve,
meaning that new, undefined genes could emerge and perform tasks not hand-coded

previously.

More features analogous to those in nature might be accommodated in future

development of FormAL, as life itself remains the ultimate inspiration for Artificial Life.

82

References

[1]

[2]

(3]

[4]

(5]

(6]

(7]

C. Adami and C.T. Brown. Evolutionary learning in the 2D artificial life system
avida. In R.Brooks and P. Maes, editors, Artificial Life 1V, pages 377-381. MIT

Press, 1994,

R. Axtell, R. Axelrod, J. Epstein, and M Cohen. Aligning Simulation Models: A

Case Study and Results. July 21, 1995.

Eric W. Bonabeau and G. Theraulaz. Why do we need artificial life? Artificial Life,

1(3): 303-325, 1994.

N. Gracias, H. Pereira, J. Lima, A. Rosa. Gaia: An artificial life environment for

ecological systems simulation. Artificial Life V, pp. 124 134 1997 MIT press.

Peter Grogono, GuoRong Chen, JunFeng Song, Tao Yang, Lei Zhao. Laws and
Life. In Proceedings of the 7th IASTED Conference on Artificial Intelligence and

Soft Computing (ASC 2003), pages 158—163. 2003.

H. Gutowitz. Artificial-Life Simulators and Their Applications. 1995.

http://www santafe.edu/~hag/biblio.html.

John T. Hancock. The Principles of Cell Signalling. In Sanjeev Kumar and Peter

Bentley, editors. On Growth, Form and Computers. Elsevier Academic Press, 2003.

83

(8]

(9]

[10]

[11]

[12]

[13]

[14]

D. Hiebeler. The Swarm Simulation System and Individual-based Modeling. 1994.

http://citeseer.nj.nec.com/hiebeler94swarm.html.

John H.Holland. Hidden Order: How Adaptation Builds Complexity. Addison-

Wesley, 1995.

Christopher G. Langton. Preface. In Christopher G. Langton, Charles Taylor, J.

Doyne Farmer, and Steen Rasmussen, editors. Artificial Life II, volume X of Santa

Fe Institute: Studies in the Sciences of Complexity. Addison-Wesley, 1992,

F. Menezer and R. K. Belew. Latent Energy Environments.

http://www .informatics.indiana.edu/fil/Papers/pinep.ps.

Melanie Mitchell. ed 1996. An Introduction to Genetic Algorithms. The MIT Press.

Thomas S. Ray. An approach to the synthesis of life. In C.G. Langton, C.Taylor,

J.D. Farmer, and S. Rasmussen, editors, Artificial Life II, Pages 371—408.

Addison-Wesley, 1992.

L. Peterson. The Gods of Sugarscape, Digital sex, migration, trade, and war on the

social science frontier. ScienceNewsOnline, November 23, 1996.

84

[15] Moshe Sipper. An Introduction to artificial life. 1995.
http://www it.uom.gr/pdp/DigitalLib/ALife/Al_lect.htm,

http://www.cs.unibo.it/babaoglu/courses/cas/tutorials/Artificial_Life.pdf.

[16] R. Smith and M. Bedau. Emergence of Complex Ecologies in ECHO. Proceedings

of the International Conference on Complex Systems, 1997.

[17] Charles E. Taylor. “Fleshing Out” Artificial life II. In Christopher G. Langton,
Charles Taylor, J. Doyne Farmer, and Steen Rasmussen, editors. Artificial Life II,

volume X of Santa Fe Institute: Studies in the Sciences of Complexity. Addison

Wesley, 1992. Pp. 25 34.

[18] Timothy John Taylor. From Artificial Evolution To Artificial Life. PhD Thesis. May

1999. http://www.dai.ed.ac.uk/homes/timt/papers/thesis/.

[19] Timothy John Taylor. Creativity in Evolution: Individuals, Interactions, and
Environments. In P. Bentley and D. Corne, editors, Creative Evolutionary Systems,

pages 79-108. Academic Press, 2002.

[20] Timothy John Taylor and John Hallam. Studying Evolution With Self-Replicating

Computer Programs. Fourth European Conference on Artificial Life, 1997.

85

[21] John von Neumann. The Theory of Self-Reproducing Automata. Edited and

completed by Arthur Burks. University of Illinois Press, Urbana, 1966.

[22] Kai Wu. Artificial Life. Cornell’s SciTech Magazine. 1994.

http://www.rso.cornell.edu/scitech/archive/94fal/alife.html.

[23] L. Yeager. Computational Genetics, Physiology, Metabolism, Neural Systems,

Learning, Vision, and Behavior or PolyWorld: Life in a New Context. 1994.

http://www.beanblossom.in.us/larryy/polyworld.html.

86

Appendix

My Work in FormAL

FormAL was developed by a group of people, led by Prof. Peter Grogono who
established a base framework for the program to run, and others worked on different

aspects of the project, on top of the base program.

My contribution in FormAL can be divided into four parts:

1. Participated in the design phase of the project

2. Designed and implemented each and every algorithms related to the following
subjects:
Reproduction strategies, and including the design of offspring as parts
Sending, detecting and reacting to signals
Hazardous effects on agents, and agents releasing poisoning atoms
Agents being killed both as bodies and as parts, and transferring atoms
Parts dividing
Separating parts from their parents (promoting parts into bodies)
Modifying many parts of the program base to fit to my implementation

3. Solved problems in the project (see chapter 6)

4. Performed extensive and long runs of FormAL, and analysed their results

87

Default Parameter Values For FormAL

Parameter Value

Number of cells 216
(The number of cells in the universe)

Atoms/cell 60000
(The number of atoms in a cell at the beginning of the simulation)

Energy/cell 20000
(The amount of energy added to each cell during each step of the simulation)
Energy/agent 100000
(The amount of energy given to an agent at start-up)

Energy/step 4320000
(The amount of energy added to the universe during each step of the simulation)
Promote_Energy 20000
(The amount of energy given to a newly-promoted part)

Part_Energy 20000
(Energy needed to grow a new part)

Prob_A 0.001
(The value of a as a probability in the genome. z gives probability 1)
Num_Cell_Neighbours 27

(The number of neighbours of a cell)

88

Max_Init_Pop 5000
(The largest permitted value for the initial agent population)

Life_Expectancy 100
(The expected lifespan of a body depends on this constant but is also controlled
genetically)

Gene_Energy 10
(The energy used by processing one gene)

Energy_Factor 5000
(The desired energy of an agent is obtained by multiplying this factor by the argument of
the gene)

Gene_Rep_Frequency 10000
(Frequency of gene reports)

Mass_Factor 250
(The desired mass of an agent is obtained by multiplying this factor by the argument of
the gene)

Min_Energy 5000
(An agent with this amount of energy is considered INACTIVE)

Min_Size 1000
(An agent of this size is considered INACTIVE)

Part_Energy_Factor 0.25
(The proportion of its energy that a body gives to a new part)

MinPopulation 2500

(During initialization, agents are created until the population exceeds this value)

89

BirthRate 50
(During initialization, this number of agents are created at every step, until the required

minimum population is attained)

Table A.1: Default Parameter Values For FormAL

90

