RELIABLE MULTICAST TRANSPORT PROTOCOL
IMPLEMENTATION BUILDING BLOCKS

TiAN FANG

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOrR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

APRIL 2004
© TiaN FANG, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91028-8
Our file Notre référence
ISBN: 0-612-91028-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i

Abstract

Reliable Multicast Transport Protocol Implementation Building
Blocks

Tian Fang

In order to provide reliable IP multicast services, multiple Reliable Multicast
Transport Protocols (RMTPs) have been developed. However, because there exist
different definitions of “reliability”, no single RMTP can meet all requirements of
different applications. The research focus of RMTPs has changed from individual
protocols to the protocol building blocks. This change of focus provides impetus for
this thesis describing RMTP implementation building blocks.

The Meta-Transport Library (MTL) was designed to implement RMTPs. Nonethe-
less, due to its limits, the MTL is insufficient to be used as the basis for the RMTP
implementation building blocks.

The RMTP implementation building blocks presented in this thesis provide a
framework and a full set of common components that can be used to implement a
wide range of RMTPs.

1l

Acknowledgments

First and foremost, I would like to thank my supervisor, Dr. J. William Atwood,
for his contribution in supervising this thesis. It was largely because of his careful
supervision, insightful scholarly guidance, and financial support that made it possible
for me to complete this thesis.

My special thanks are also due to my parents and my wife who in various ways

helped me keep moving towards the completion of this thesis.

v

Contents

List of Figures

List of Acronyms

1

Introduction

1.1 Multicast vs. Unicast
1.2 Reliable Multicast Transport Protocols
1.3 Motivation

An Approach to the Design and Implementation of RMTPs
2.1 Protocol Building Blocks
2.1.1 The Reliable Multicast Design Space for Bulk Data Transfer
(RFC2887) . . . o o e e e e e e
2.1.2 Reliable Multicast Transport Building Blocks for One-to-Many
Bulk-Data Transfer (RFC3048)
2.2 Meta-Transport Library - MTL
221 MTL UseCase
222 MTLClasses o o i i it e e
223 Extended MTL

224 Inadequacies.

Analysis of RMTP Implementation Building Blocks

3.1 RMTP Implementation Framework

3.2 Building Blocks in the RMTP Application Library
3.2.1 User Building Block
3.2.2 Command Channel Building Block

viii

S W k=

3.3

3.4

4 The
4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

3.2.3 Data Channel Building Block 16

3.2.4 User Manager Building Block 17
3.2.5 Data Buffer Building Block 17
Building Blocks for the Interface with OS 19
3.3.1 Address Building Block 19
3.3.2 Delivery Building Block 19
3.3.3 Packet Building Block 20
Building Blocks in the RMTP Process 21
3.4.1 Task BuildingBlock 21
3.4.2° Task Manager Building Block 22
3.4.3 Node BuildingBlock 22
3.4.4 Node Manager Building Block 22
3.4.5 Timer BuildingBlock 22
3.4.6 Timer Manager Building Block 23
3.47 Trace BuildingBlock 23
34.8 FSM Building Block 24
3.49 Memory Manager Building Block 24
3.4.10 RMTP Process Building Block 25
Design of RMTP Implementation Building Blocks 26
User-Daemon Command Processing 26
4.1.1 Blocking Command Processing Mechanism 26
4.1.2 Non-Blocking Command Processing Mechanism 28
4.1.3 Send/Receive Command Processing 31
Daemon-User Notification Processing 32
Command Channel Building Block Design 33
Data Channel Building Block Design 34
User Building Block Design 36
User Manager Building Block Design 38
Data Buffer Building Block Design 39
Address Building Block Design 43
Delivery Building Block Design 44
Packet Building Block Design 45
Task Building Block Design 47

vi

4.12 Task Manager Building Block Design
4.13 Node Building Block Design
4.14 Node Manager Building Block Design
4.15 Timer Building Block Design
4.16 Timer Manager Building Block Design
4.17 Trace Building Block Design
4.18 FSM Building Block Design
4.19 Memory Manager Building Block Design
4.20 RMTP Process Building Block Design

5 The Comparison between the RMTP Implementation Building Blocks

and the MTL

5.1 Architecture

5.2 UserHandling,
5.2.1 Inthe Application
522 IntheProcess

5.3 Packet Handling., ..

5.4 Memory Management

5.5 Others

6 Conclusion

Bibliography

vit

64
64
65
65
65
66
66
67

68

70

List of Figures

© 00 ~I O U AW BN =

DO DD DY DD B N DD e b e e e e e el e e
S TR W N = O O 0N U W NN = O

MTL Use Case o i i ittt 9
RMTP Implementation Architecture 15
Data Buffer Usage 18
Blocking Command Processing Mechanism 27
User-Daemon Command Format 27
Daemon-User Command Reply Format 28
Command Building Block 29
Result-in-Reply Class 30
Non-blocking Command Process Mechanism 30
Command Channel Building Block 34
Data Channel Building Block 35
Register Command Format 37
Deregister Command Format 37
User Building Block 38
User Manager Building Block 39
Data Buffer Layout 40
Data Buffer Building Block 41
Data Buffer Structure L. 42
Address Building Block o oL 43
Delivery Building Block 44
Linear & Vector Type of Packet 46
Packet Building Block 0oL 46
Task Building Block 48
Task Manager Building Block 49
Node Building Block L. 50
Node Manager Building Block 51

27
28
29
30
31
32
33
34
35

Timer Building Block 00 52
Timer Manager Building Block 54
Trace Building Block 55
"FSM Building Block 56
Memory Pool Mechanism 58
Memory Usage Statistics 59
Memory Manager Building Block, .. 59
RMTP Process Main Function 61
RMTP Process Building Block 63

X

List of Acronyms

ACK Acknowledge

ALC Asynchronous Layered Coding

FEC Forward Error Correction

FIFO First In First Out

FSM Finite State Machine

IETF Internet Engineering Task Force

P Internet Protocol

IPC Inter-Process Communication

MBone Multicast Backbone

MOSPF Multicast Extensions to OSPF

MTL Meta-Transport Library

NACK Non-acknowledge

OS Operating System

OSPF Open Shortest Path First

PDU Packet Data Unit

PIM-DM Protocol Independent Multicast - Dense Mode
PIM-SM Protocol Independent Multicast - Sparse Mode
RFC Request for Comments

RMTP Reliable Multicast Transport Protocol
RMTP-II Reliable Multicast Transport Protocol - II

RMTWG Reliable Multicast Transport Working Group

TCP
TVLV
UDP
XTP

Transmission Control Protocol
Type, Version, Length, and Value
User Datagram Protocol

Xpress Transport Protocol

x1

Chapter 1

Introduction

1.1 Multicast vs. Unicast

Similar to the Transmission Control Protocol (TCP) [Pos81b] or the User Datagram
Protocol (UDP) [Pos80], most network transport protocols only provide a unicast
transmission service. Therefore, network hosts are only able to send data to one
other node at a time. We describe this unicast transmission service as being point-to-
point. If a host wants to transfer the same information to N other hosts (a situation
referred to as one-to-many) with unicast, it must send the data N times.

Two better ways to transmit data from one source to many destinations are:
provide a broadcast transport service, or provide a multicast service. With either
a broadcast or a multicast transport service, a single node can send data to many
destinations by making just a single call on the transport service.

In a broadcast transport service, a single node sends data to a specified broadcast
address. All destinations in the same subnet will receive the data. No host can refuse
to receive broadcast data.

For a multicast transport service, a single node sends data to a specified multicast
session group. Those hosts who want to receive the data need to join that group
before they can receive data specific to the group. Only hosts interested in the data
will receive the data. Multicast is a receiver-based concept; so it is the receiver’s re-
sponsibility to decide whether or not to join a particular multicast session group. The
sender to a multicast session group knows nothing about receivers. Traffic to a group

is delivered to all members of that multicast session group. It is not necessary for the

sender to maintain a list of receivers. Only one copy of a multicast message will pass
through any link in the network, and copies of the message will be made only where
paths diverge at a router. Thus multicast yields many performance improvements
and conserves bandwidth end-to-end. It is also more efficient than broadcasting one
copy of the message to all nodes on the network, since many nodes may not want the
message.

Many Internet applications are one-to-many or even many-to-many, where one
or several sources want to send information to multiple receivers at once. Some
examples are: distribution of stock prices to every individual, video and/or audio
conferencing for remote meetings, replicating multiple databases and mirroring web
site information. For these applications, which involve a single node sending infor-
mation to multiple destinations, a multicast transport service is assuredly a better
choice than a unicast transport service. By sending only a single copy of a message to
multiple destinations who explicitly want to receive the message, multicast is much
more efficient. For unicast, which requires the source to send a copy of a message to
each individual requester, the bandwidth available to the sender limits the number
of receivers.

Internet Protocol (IP) multicast services are based on raw IP [Pos81a] or on UDP.
Multicast was introduced in 1989 in the Ph.D dissertation of Steve Deering, and then
standardized as RFC 1112. Multicasting is described as follows: “the transmission
of an IP datagram to a ‘host group’, a set of zero or more hosts identified by a
single IP destination address. A multicast datagram is delivered to all members of its
destination host group with the same ‘best-efforts’ [sic] reliability as regular unicast
IP datagram. The membership of a host group is dynamic; that is, hosts may join
and leave groups at any time. There is no restriction on the location or number of
members in a host group. A host may be a member of more than one group at a
time.” [Dee89]

Deering’s work led to the creation of multicast communication in the Internet
and the creation of the Multicast Backbone (MBone) [Eri94]. Research into the
routing of multicast packets within the MBone has been carried out in order to extend
some existing unicast routing protocols. MOSPF [Moy94], Multicast Extensions to
OSPF, uses the particular mechanisms of the Open Shortest Path First (OSPF)
[Moy98] protocol to provide multicast. Protocol Independent Multicast - Sparse Mode

(PIM-SM) [EFH*98] and Protocol Independent Multicast - Dense Mode (PIM-DM)
[DEF*03] have also been developed.

From the Packet Data Unit’s (PDU) point of view, the only difference between
a multicast IP packet and a unicast IP packet is the destination address. IP ad-
dresses have been divided into five classes according to address range. Class D ad-
dress range (224.0.0.0-239.255.255.255) is reserved for the multicast purpose usage.
Class A (0.0.0.0-127.255.255.255), B (128.0.0.0-191.255.255.255), and C (192.0.0.0-
223.255.255.255) are reserved as unicast IP address classes. One multicast address
represents one multicast session group, which includes one or more senders and zero
or more receivers. A sender sends data to a multicast IP address as the destination
address for that data. In order to receive the data sent to this group, receivers must

join this multicast IP address group.

1.2 Reliable Multicast Transport Protocols

Since multicast packets are raw IP or UDP packets, they are unreliable. Reliable Mul-
ticast Transport Protocols (RMTPs) are designed to provide “T'CP-like” multicast
services.

In order to provide “reliable” transmission service on the basis of raw IP or UDP
protocol, RMTPs need to develop various mechanisms pertaining to “reliability”.
Unlike for unicast, which is point-to-point transmission, for multicast the number of
possible ways the packets can be lost or damaged is much larger. A definition of

“reliable” transmission can vary for different application requirements.

¢ Best-effort reliability

As its name indicates, this type of reliability provides the best-effort service.
UDP is a good example to provide this kind of reliability. When a corrupted
packet is received at the receiver, it may or may not be sent to the user. There
is no necessity to have Acknowledge (ACK), Non-acknowledge (NACK), or re-

send mechanisms.

e Bounded-latency reliability

Every packet is said to be “alive” only for a specified lifetime. Within this time,

the data are considered useful to the user. Otherwise, they can be discarded.

3

A video or audio stream is the best example of an application using this kind

of reliability.

Most-recent reliability

For this type of reliability, the most recent data should be guaranteed. An
application using these data is only interested in the most up-to-date data. An
example of such an application is a stock quote, wherein only the latest quote

is considered useful.

Receiver-centered reliability

In this case, the receiver determines whether or not the data should be re-sent.
Furthermore, the sender has no knowledge of the success of the delivery. It
may be a receiver’s responsibility to re-send the lost or damaged data to other
receivers. A good example is satellite transmission, which has only downstream
transmission. Since there is no upstream to ask the sender to do retransmission,

receivers themselves have to be able to guarantee the reliability.

Absolute reliability

This type of reliability means that all the data should be received by all receivers,

in order and completely, or none of the data should be used by any receiver.

Some RMTPs may provide more than one kind of reliability according to the

protocol configuration. For example, the Reliable Multicast Transport Protocol -
IT (RMTP-1I) [WBP*98a, WBP*98b] can provide bounded-latency reliability and

receiver-centered reliability for different applications.

Besides defining what kind(s) of reliability can be supported by an RMTP, the

primary challenge all RMTPs are facing is how to scale to a large number of receivers.

Some protocols use a back-channel for recovery of lost packets, while others have

found that coded data are very beneficial to achieve good throughput for numerous

receivers. RMTPs can be broken into four families according to the above factors:

e NACK only
SRM [FIM95] and MDP2 [AM99] only use NACKs to request retransmission

of lost or damaged packets.

e Tree based ACK
RMTP [LP96], RMTP-II and TRAM [KCWPO00| have a transmission tree to

aggregate ACKs. This can avoid ACK explosion for many receivers, achieving
good scalability. Moreover, this tree can also be used to reduce the overflow
from the sender to re-transfer the lost or damaged data. Some nodes on the
tree may take control of the re-transmission data to receivers further down the

tree.

e Asynchronous Layered Coding (ALC)
It is used by [RV97] and [BLMR98]. By using a sender-based Forward Error

Correction (FEC) method, no feedback from receivers or the network is required.
Therefore, higher throughput can be achieved.

o Router assist

Extra router software is required to do constrained negative acknowledgements
and retransmissions. All protocol families described above can also be combined

with this mechanism.

These protocol families are not precise and exclusive to each distinct protocol.

Some protocols may use different mechanisms belonging to different classes. For
example, RMTP-II uses both tree based ACK and NACK.

Another way to classify RMTPs is according to the number of senders [Atw]:

e 1-N Multicast

This is the usual way of multicasting. Only one node within the group, the
sender, is allowed to transmit the data. All others are the receivers or control

nodes.
o M-N Multicast

A limited subset of the nodes in the group may become the sender.

e N-N Multicast

Any node within the group may become the sender.

1.3 DMotivation

Because there are different definitions of “reliability” for different applications, there is
no single RMTP that can meet the needs of all applications. Therefore, the Reliable
Multicast Transport Working Group (RMTWG) in the Internet Engineering Task
Force (IETF) has changed its research focus from individual protocols to building
blocks for all RMTPs, referred to as “protocol building blocks”. This change of focus
provides impetus for this thesis describing RMTP implementation building blocks.

The Meta-Transport Library (MTL) was designed to implement RMTPs. How-
ever, due to its limits, the MTL is insufficient to be used easily as the RMTP imple-
mentation building blocks. This thesis presents a complete set of RMTP implemen-
tation building blocks that can be used to implement a wide range of RMTPs.

Chapter 2 summarizes the current research of the protocol building blocks and
the MTL. The analysis of the requirements of the implementation building blocks is
presented in chapter 3. Based on this analysis, chapter 4 illustrates the design for all
implementation building blocks. A comparison between the method presented in this
thesis and the MTL is shown in chapter 5.

Chapter 2

An Approach to the Design and
Implementation of RMTPs

2.1 Protocol Building Blocks

A protocol building block represents a component common to various RMTPs. By
combining protocol build blocks according to different requirements, different RMTPs
can be constructed. Several Request for Comments (RFC) and Internet Drafts have

been published concerning the protocol building blocks.

2.1.1 The Reliable Multicast Design Space for Bulk Data
Transfer (RFC2887)

This RFC [HWK*00] studies the following aspects of the reliable multicast design

space for bulk data transfer:

e Application constraints
Different applications have different requirement for the protocols. Application
constraints include the definition of “reliability” and receiver set scaling.

e Network constraints

Network administration, bandwidth, architecture, and assistant ability are net-

work constraints.

e Good throughput mechanisms

There are some mechanisms that can be used to achieve good throughput,
including ACK-based, Tree-based ACK, NACK-based, Packet-level FEC and

layered FEC mechanisms.

e Congestion control mechanisms

Since the Internet provides best-effort service, end-systems are expected to ap-
ply congestion control by themselves. Sender-controlled one group, sender-
controlled multiple groups, receiver-controlled one group, receiver-controlled
layered organization, and router-based congestion control mechanisms can be

used.

2.1.2 Reliable Multicast Transport Building Blocks for One-
to-Many Bulk-Data Transfer (RFC3048)

Based on the analysis of reliable multicast design space for bulk data transfer in RFC
2887, a framework for the standardization of bulk-data reliable multicast transport is
proposed in RFC 3048 [WVK™*01]. This framework is based on the protocol building
blocks, which are the common components for multiple protocol classes. The following

protocol building blocks are recommended in the RFC:

o NACK-based reliability [ABHM03, ABHM04]

FEC coding [LVG*02a, LVG+02b, LV04]

Congestion control [WH03, LG02]

Generic router support [Cal01, CSTO01]

Tree configuration [KWC*01]

Data security [WHO01]

Common headers

Protocol cores [LGV*02a, LGV*02b, PLL*03, KWCTO01]

2.2 Meta-Transport Library — MTL

The MTL [San96, San97] is a collection of C++ base classes developed at Sandia
National Laboratories, California. This set of classes includes many common compo-
nents used to implement RMTPs. Specific RMTP implementations can be derived
from the MTL. Moreover, the architectures of RMTP implementations are also de-

fined within the library.

2.2.1 MTL Use Case

When using the MTL as the basis for implementing an RMTP, the development is

separated into two parts [Figure 1]

Host Host
Application Application Application Application
MTL MTL MTL MTL
user library user library] user library| user library|
MTL MTL
daemon daemon
Kernel Kernel
Network ' | ’

Figure 1: MTL Use Case

The core part of the RMTP implementation work is a stand-alone process, the
MTL daemon, which implements all the functionalities of an RMTP. It communicates
with other protocol nodes to exchange protocol information or other data, and it also
handles all requests sent by any application that uses the RMTP for communication.
The daemon hides most of the protocol details from the application.

The other part of an RMTP implementation will be combined into a library, which
will be linked by any application that uses the RMTP. This part is referred as the

9

MTL user library. The purpose of the MTL user library is to encapsulate the details

for communication between the application and the MTL daemon.

2.2.2 MTL Classes

e Packets and derived classes

The information exchanged in a protocol is called a packet. The MTL packet
class simply defines a byte array and some methods to manipulate this array.
However, the MTL packet class is only an abstract class, and does not contain
any knowledge about the kinds of contents found inside the array. In other
words, no method provided by the MTL packet class will interpret the contents
in the array. The array will be treated as a whole. Other RMTP specific classes

provide the methods to insert or retrieve values from the packet.

There are two supplemental classes in the MTL used for packets. One is the
packet_pool class for memory management for packet objects and the other is

the packet_fifo class for the queuing of packets prior to processing.

The MTL packet class and the two supplemental classes are only used within
the MTL daemon.

¢ Context and context management

A context is defined in the MTL as a node in the protocol. It communicates both
with other nodes in the protocol to exchange packets, and with an application
to handle user requests and data. The MTL context class includes all node
information used in the protocol, as well as methods for state transitions, packet

parsing, and user request handling.

The MTL context management class contains and maintains all contexts. It is
also responsible for dispatching packets or user requests to their corresponding

context.

Any specific RMTP implementation has a subclass derived from the MTL con-

text class. All protocol specific functions are provided by this subclass.

Both the MTL context and context management classes are used within the
MTL daemon.

10

¢ Buffer management

An MTL buffer management class is used both within the MTL daemon and
the MTL user library. It provides a data buffer and methods to read or write

the buffer, and to move various markers within the buffer.

Any single data buffer will be referred to and controlled by two buffer managers.
One is in the user application and the other is in the context associated with

the user.

e User interface

The MTL user interface class is only used within the MTL user library. It
provides a standard set of methods for the application to request service from
the MTL daemon. Protocol- and service-specific access methods can be derived

from this class.

2.2.3 Extended MTL

The protocol building blocks are created to construct different RMTPs to meet dif-
ferent requirements. It would be very useful to have implementation building blocks,
which can be used to construct implementations of various RMTPs. The MTL was de-
signed for this purpose. However, it was only used to implement the Xpress Transport
Protocol (XTP) [C*92, S*95, S*98]. In order to validate that the MTL is suitable for
the implementation building blocks, we used the MTL to implement another protocol,
RMTP-II.

RMTP-II differs from XTP in many aspects. The differences that are related to
the MTL are listed in the following:

e Transport layer access point

In XTP, there is only one access point between the protocol and the transport
layer. All users of XTP are using the same access point to communicate with
other nodes in the network. However, in RMTP-II, every user may have multiple

access points with the transport layer depending on the user’s type.

¢ Transport layer protocol

XTP can be implemented on top of either raw IP or UDP. The protocol specifica-
tion only requires the underlying transport layer to provide framing. RMTP-II

11

is built on top of UDP. UDP port numbers are used by the protocol in various

places.

e Protocol packet

Since XTP uses only one access point with the transport layer, destination
identifiers are embedded inside protocol packets. RMTP-II relies on the source
address, source port, destination address, and destination port of a protocol
packet to identify the packet’s destination. It is not necessary to parse the

protocol packet to locate the destination.

e Node type in the protocol
All nodes within RMTP-II are in a tree hierarchy. RMTP-II not only defines

sender and receiver node types as XTP does, but also defines more node types:

top node, aggregator, and designated receiver.

e Data sequence number

The sequence number used for the data transmitted in XTP is byte based.
However, RMTP-II uses the sequence number to identify an individual data

packet.

Because of the above differences, in order to implement RMTP-II with the MTL,
we extended the MTL to meet the new requirements.

The design of the MTL does not allow multiple classes derived from the contezt
class. In order to support completely different node types in RMTP-II, a new class
is created. Originally, the context class handles packets and user requests. After
introducing the new class, the contezt class becomes only a wrapper that passes the
packets or requests to the new class.

In order to support multiple access points with transport layer, all interfaces be-
tween the MTL and the transport layer were modified to include one more parameter,
the access point.

Because RMTP-II relies on the addresses and ports of source and destination
instead of the contents to dispatch the received packets, the dispatch mechanism
inside the context manager is re-written.

With these modifications, we were able to implement RMTP-II with the extended
MTL.

12

2.2.4 Inadequacies

During the implementation of RMTP-II, we found more inadequacies of the MTL.

e Insufficient support for multiple users in an application

The MTL does not limit the number of users supported for an application. But
if multiple users exist in an application, the MTL can only support a request
from one user at a time. For example, if one user sends a request that takes a
long time to complete, other users in the application are blocked from sending

any request to the MTL daemon.

e No memory management mechanism

The MTL does not provide any general memory management mechanism. When
objects of a single type need to be allocated and freed often, the MTL pre-
allocates a pool of the objects (i.e., the packet and contezt classes) in order to
enhance efficiency and avoid memory fragmentation. Moreover, the MTL does

not provide any mechanism to retrieve the statistics of memory usage.

e Inefficient timer management implementation

In the MTL, a timer belongs to a context. In order to find the nearest timer,
the context manager will request all contexts to return their timers. This is not

an efficient implementation [Jia01].

Although we implemented RMTP-II with the extended MTL, the design of the
MTL does not fully support the requirements of some RMTPs. For example, we
created a new class to support different node types. But the new class’s functions
belong to the context class. It is redundant to have both the new class and the
contexrt class in the MTL, which is not suitable for every RMTP (i.e., XTP only
needs the context class). Due to these problems and inadequacies, the MTL, or
even the extended MTL, cannot be readily used as the building blocks for RMTP
implementations. With the experience of implementing RMTP-II with the extended
MTYL, a complete set of implementation building blocks are presented in the following

chapters.

13

Chapter 3

Analysis of RMTP Implementation
Building Blocks

3.1 RMTP Implementation Framework

An RMTP is used to transfer data from one or many senders to many receivers using
multicast. The RMTP implementation is the provider of this service. Including an en-
tire RMTP implementation within an application would make the application heavy
and difficult to write and debug. However, because of the complexity of implemen-
tation and difficulty in debugging, the RMTP implementation cannot be within the
kernel either. Within this thesis, an approach to implement the RMTP in a separate
process is developed. As shown in Figure 2, all applications are linked with a light
RMTP application library to communicate with an RMTP process, which contains
an RMTP implementation.

In this chapter, we will divide the design space for RMTP implementation build-
ing blocks into three parts. Section 3.2 discusses the building blocks in the RMTP
application library and those used between the application and the RMTP process.
The building blocks used by the RMTP process to communicate with the Operating
System (OS) are addressed in section 3.3. Finally, the building blocks used in the

RMTP process are analyzed in section 3.4.

14

Host Host
Application Application Application Application

RMTP RMTP RMTP RMTP
library library library library

RMTP RMTP

process process

Kernel Kemel

Network [I ’

Figure 2: RMTP Implementation Architecture

3.2 Building Blocks in the RMTP Application Li-
brary

The implementation of an RMTP provides data transmission service to applications.
Before actually sending or receiving data through an RMTP, an application must set
up a multicast group session based on the RMTP specification. During the transmis-
sion of data some errors may occur. The RMTP process should be able to inform the
application about those errors. At any time, an application may request the RMTP
process to retrieve any information concerning the session. These requirements lead

to the following building blocks.

3.2.1 User Building Block

The user building block defines the characteristics of a user in an application. A user
represents an endpoint within a reliable multicast group session, which is a sender, a
receiver, or a protocol node.

The user building block has the following requirements:
e It should be able to support different types of users.

15

Each individual user should be able to send commands to the RMTP process.

For a command that needs a long time to handle, the application should not be
blocked because of the command. Asynchronous command handling should be

supported by the user building block.

A user should be able to receive notification messages from the RMTP process.

e BEvery user should be able to send and receive data independently and efficiently
to and from the RMTP process.

3.2.2 Command Channel Building Block

This building block describes a command channel between a user in an application
and the RMTP process. Each user has its own command channel. A user uses its
command channel to send commands to, and receive results or notifications from the
RMTP process.

When a command, a result, or a notification, which is referred to as a control
message, is sent out by one side of the command channel, the other side should have
some way to know of its arrival. It is the command channel’s responsibility to inform
the RMTP process or its user in this instance.

According to the architecture of the RMTP implementation presented earlier, the
RMTP process is a stand-alone process. Users begin in applications that do not
have a communication channel with the RMTP process. The command channel is
the first channel that can be used to communicate between a user and the RMTP
process. In this circumstance, the command channel building block must be able to
establish the channel between a user and the RMTP process without any other means
of communication.

After the channel is established, commands, results, or notifications through the

channel must not be lost. Therefore, reliability is another requirement for command

channels.

3.2.3 Data Channel Building Block

Similar to control messages, data blocks represent another kind of information that

needs to be transferred between a user and the RMTP process. The command channel

16

between a user and the RMTP process can be used for this purpose. However, because
implementations of RMTPs provide data transferring service, there is a large amount
of data transferred between a user and the RMTP process. Control messages may be
blocked or delayed if they share the same channel with data. Having a separate data
channel addresses this problem.

Since the data channel between a user and the RMTP process can be connected
after the command channel is established, extra information can be exchanged be-
tween the user and the RMTP process to create the data channel. There is no need
to require that the data channel can be created without any communication between
a user and the RMTP process. This flexibility is not found in the command chan-
nel building block. Moreover, due to the command channel, a data channel is not
required to be able to inform its user or the RMTP process about the new data put
into the channel.

Data transferred through a command channel must not be lost. Reliability is also

a requirement for data channels.

3.2.4 User Manager Building Block

An application may have multiple users simultaneously. Each user is able to receive
notification from the RMTP process through its own command channel indepen-
dently. Managing all users and dispatching notifications to the right user is the re-
sponsibility of the user manager building block. An application can use this building
block to monitor any information from the RMTP process for all users.

An application is dynamically able to add a new user or remove an existing user

from the user manager.

3.2.5 Data Buffer Building Block

When a sender wants to send data, the data has to be put into a packet as its
payload and then be sent out. If the low-level transportation service is not reliable,
for reliability, the data sent out should be stored in a buffer until the acknowledgement
of the data reception is received. Once a packet arrives at the receiver, the payload
of the packet will be extracted and placed into a buffer until an application requests

it. The data buffer building block is designed to provide the functionality of a buffer

17

to store the data.

Either receivers or senders may use data buffers. The requirements for the data
buffer building block depend on whether it is used by a receiver or a sender. However,
any data buffer has one provider and one consumer. As shown in Figure 3, for the
data buffer used by a receiver (referred to as a receiver data buffer), the low-level
transportation system is the provider of the data buffer, and a user in an applica-
tion that wants to receive the data is the consumer. For the data buffer used by a
sender (referred to as a sender data buffer), the user is the provider and the low-level
transportation system is the consumer. A data buffer stores data after the provider
provides it and before the consumer consumes it. For a receiver data buffer, once
the consumer of the buffer consumes some data, there is no need to keep them in
the buffer. The sender buffer must keep the data, even when the data is already
consumed, until the data have been acknowledged. The data buffer building block

should satisfy the different requirements for both sender and receiver.

Provider Data Buffer Consumer
Receiver Low Layer
................... Transportation User
Sender System
Consumer Data Buffer Provider

Figure 3: Data Buffer Usage

No matter where the buffer is used, the following should be considered when

designing the buffer building block.

e Ordering

The mechanism used by the data buffer to provide the data is First-In-First-Out
(FIFO). The order of data provided to the consumer should be the same as the
order when the data are provided by the provider to the data buffer. However,

there is an exception when the provider selectively fills the data in the data
buffer.

e Re-usability

18

No matter what size a data buffer is, it is possible to use up all available space
in the data buffer. When the consumer consumes data, it should tell the data
buffer to-discard the data consumed. The space in the data buffer used by the

previously consumed data should be reusable for future data.

e Selective filling

The provider may provide data to the data buffer accompanied by a position
where it should be put in the buffer. In this case, the data buffer may receive
the data out of order. The data buffer should be able to store the out of order
data and provide them to the consumer in the correct order. Since the provider
decides the position of the data in the data buffer, there may be holes in the
buffer where no data is provided. The data buffer should be able to provide the

subset of data before any hole to the consumer.

3.3 Building Blocks for the Interface with OS

The RMTP process provides services to the application atop of the OS. This section
addresses the APIs between the RMTP process and the OS.

3.3.1 Address Building Block

In order to transfer data, a user must specify a destination address. When some
data arrive, a source address and/or a destination address are used to find the ap-
propriate user, who is waiting for the data. The address building block is designed
to encapsulate all functions applicable to an address.

RMTPs are based upon IP. Only raw IP and UDP can support multicast. The
address building block needs to support them both.

Copying from one address to another or comparing one address with another
should be provided by the address building block. Other auxiliary methods, such as

setting or getting all attributes of an address, should also be available.

3.3.2 Delivery Building Block

The delivery building block is designed to send/receive data to/from the OS. It is used
along with the address building block to provide transport functionality to an RMTP.

19

The delivery building block is conceptually located between the RMTP process and
the IP stack, and is not visible to the users of RMTPs.

For the RMTP process, the delivery building block is the only access point for
communicating with other RMTP endpoints in the protocol. Since only raw IP and
UDP can be used for multicast, the delivery building block should include support
for these two protocols.

Sending and receiving data are the two main methods provided by the delivery
building block. Usually, one pointer to one buffer is passed as a parameter to these two
methods. However, sometimes when sending data, an array of pointers to multiple
buffers is preferred. The send method should support these two types of parameters.

Another set of methods provided by the delivery building block concern joining

or leaving a multicast group session.

3.3.3 Packet Building Block

The delivery building block provides the transportation methods. However, it does
not address how to store the data that are received or that are to be sent. The packet
building block satisfies this requirement.

When an RMTP packet arrives, the delivery building block is used to receive it.
Then, the packet building block is used to store it for later processing. The packet
building block can also be used as an intermediate container when sending out data.
The data received from a user cannot be sent out directly. For example, an RMTP
packet header must be prepended to the data. The packet building block can be used
to construct the full datagram for sending.

Although the packet building block is designed as a container for the real data,
the buffer to hold the data can be created internally within the packet building block
or passed from outside. The packet building block should support these two types of
packet.

RMTPs use raw IP or UDP as a delivery service. Any RMTP PDU is encapsulated
within a raw IP or UDP PDU. However, an instance of the packet building block only
represents a part of the RMTP PDU. The OS constructs the raw IP or UDP packet
that will be sent over a network.

The packet building block is also used as the base class for the packets of various
RMTPs. However, due to different packet design in different RMTPs, the packet

20

building block should not put any restrictions on the packet format. A packet is only
a container of the real datagram received or sent. This suggests that the methods of
the packet building block are not to set or to retrieve fields within the packet. These
methods handle all data within the packet as a whole.

3.4 Building Blocks in the RMTP Process

In this section, we will discuss the building blocks used internally by the RMTP

process. These are the core building blocks of an RMTP implementation.

3.4.1 Task Building Block

In previous sections, the delivery building block and the packet building block are
introduced as the components to communicate with the OS. These two building blocks
are used by the task building block.

A task is a function entity within the RMTP process. It represents an access
point, which is ultimately used by a user in an application. At one time, a user in an
application may have multiple communication links with other nodes in a multicast
group session. The design of the task building block should be able to support multiple
tasks for a user.

When a task is used to send out packets, the RMTP will specify the access point
to be used by the user relevant to the circumstance. Even if there are multiple tasks
created for a user, based on the protocol specification, the RMTP process is able to
select the right task to do the sending. However, when a packet arrives, the task
building block should allow the RMTP process to find the corresponding task(s) to
receive it. It is worth pointing out that, in a multicast conversation, there may
be multiple users waiting for the same packet. Therefore, there may be multiple
corresponding tasks for one received packet.

Another problem to be addressed by the task building block is asynchronous
processing. When a task is used for communication, the rate of arriving packets may
be higher than that of packet reception by the user, or the rate of packet sending by
the user may be higher than that of sending through the OS. The task building block

needs to handle such a situation.

21

3.4.2 Task Manager Building Block

The task manager building block organizes all tasks. One main function of the task
manager building block is to link all tasks and provide a mechanism for locating the
appropriate task when a packet arrives. Another requirement for the task manager

building block is to manage all delivery objects referred to by all tasks.

3.4.3 Node Building Block

The RMTP process may serve multiple users at once. In order to perform actions
on behalf of different users, there should be an entity within the RMTP process to
represent a user. This entity is defined as a node.

The requirements of the node building block are to receive and interpret the
commands received from its user, to manage all tasks for commands, and to deliver

the received data to a user.

3.4.4 Node Manager Building Block

The main functions of the node manager building block are the creation, maintenance,
and deletion of nodes. It also must dispatch commands received from a user to its

corresponding node within the RMTP process.

3.4.5 Timer Building Block

A timer is widely used in any protocol implementation, especially for reliable transport
protocols. For example, when a sender sends out some data, a timer should be set for
receiving an acknowledgement. If no acknowledgement is received before the timer
has expired, an action, re-sending the data, should be performed. The action is
referred to as the timer handle.

When we set different timers for different packets, which are sent at the same
time, the values for the all re-send timers are the same. If multiple packets are lost,
the corresponding timers will simultaneously fire and all packets will be resent at the
same time. This will cause a network burst. In order to avoid this situation, a small
amount of jitter can be added to a timer. The jitter added may be an absolute value,
representing a time, or a percentage of the timer value. The jitter is used along with

the timer value when setting a timer.

22

Once a timer is fired and its handle is executed, the timer attributes define whether
to delete or keep the timer. Some timers operate only once. After they are fired, they
should be deleted. Some timers should exist indefinitely. After they are fired, they
should be reset for future timing. Both types of timer should be supported by the
timer building block.

Because most UNIX systems are not real-time systems, not all timers can be fired
at exactly the defined time. When resetting the timer after it has expired, it may be
necessary to make the timer accurate for the next time expiration according to the
requirement. The timer building block should provide a way for the user of the timer

to specify this attribute.

3.4.6 Timer Manager Building Block

All timers created in the RMTP process will be managed by the timer manager
building block. In addition to the methods used to manage all timers, there are two
methods provided by the timer manager building block. The first is to find all expired
timers and to execute their timer handles. The second is to return a time when the
nearest timer will expire. The RMTP process can use this time to decide how long it

should wait for any incoming packets or user commands [section 3.4.10}.

3.4.7 Trace Building Block

It is difficult to analyze an RMTP or its implementation while in operation because
of the high rate of data transfer. The trace building block is designed to output
some readable messages to a terminal or a file, providing a way to do offline analysis.
The readable messages are defined as trace information. The output of the trace
information can be to a terminal, a file, or some other destinations. The trace building
block should be flexible enough to support different destinations.

An instance of the trace building block should be able to support different features
or modules. Each of them can be enabled or disabled independently and dynamically.
A trace message will only be sent to a trace destination when the trace is enabled. A
new instance of the trace building block should be able to inherit all configurations

from an existing instance.

23

3.4.8 FSM Building Block

Almost all RMTPs use Finite State Machines (FSMs) as their fundamental abstrac-
tion. The FSM building block provides a general framework to create, define, and
execute various state machines.

Given that different RMTPs have different state machines, all states, events, and
transactions cannot be predefined in the FSM building block. The FSM building
block should provide a way to register all states, events, and transactions in order to
initialize an instance.

When an event occurs, the FSM building block should be able to automatically
carry out the transaction based on the current state and all information registered

during initialization.

3.4.9 Memory Manager Building Block

The purpose of a transport protocol implementation is to transport data from one
endpoint to another. Before a packet is sent out by a sender, a buffer needs to be
allocated to store the data received from the application; after a packet arrives at a
receiver, a buffer needs to be allocated to store the packet until the packet is picked
up by the application. In addition to the consumption of memory for packet buffers,
there are many other consumers of memory, such as IP addresses, nodes, and other
internal structures. The OS does provide the functions to allocate and free memory.

However, it has three disadvantages:

1. Memory fragmentation

Frequent memory allocation and deallocation are the common behaviors for any
protocol implementation. The memory allocation and deallocation functions
provided by the OS will cause memory gaps. After running the protocol a long
time, a slightly larger memory allocation may fail even though the system has

mainly small size memory fragments.

2. Efficiency

Memory allocation and deallocation are provided by the OS as system calls,
which require at least two context switches. The more frequently memory is

allocated or freed, the slower the implementation.

24

3. Difficult to get memory usage

As a protocol implementation, it is very important to know how memory is
used. Knowing the usage of memory for some kinds of the components will
help in analyzing the protocol implementation. With memory allocation and
deallocation functions provided by the OS, it is possible to get the amount of the
memory consumed by the protocol. However, a further breakdown of memory

usage is unclear.

The memory manager building block is designed to solve these problems.

3.4.10 RMTP Process Building Block

As illustrated in Figure 2, an RMTP implementation is a stand alone process. It waits
for the commands from users in applications and communicates with other endpoints
in the protocol through the OS. The RMTP process building block provides the
methods to set up and control the process.

An RMTP implementation can be executed in the foreground as a process or in
the background as a daemon. When an RMTP implementation is a daemon, it must
detach from its terminal. This ability is provided by the RMTP process building
block.

When the RMTP process is being executed, its status should be retrievable. The
RMTP process building block provides a way to dump its internal status. The trace
building block operates differently from this dump function. The trace building block
is used to provide information over a period of time while the dump function is used
to provide a snapshot of all modules within the RMTP process at a certain time.

The RMTP process building block also provides a flow chart of the process. It
cooperates with all other building blocks to construct a framework for an RMTP

implementation.

25

Chapter 4

The Design of RMTP

Implementation Building Blocks

Based on the preceding analysis of the requirements for the RMTP implementation
building blocks, this chapter presents the design of all building blocks.
The mechanisms to process commands and notifications are addressed first in

section 4.1 and 4.2. Afterwards, every building block previously specified is studied.

4.1 User-Daemon Command Processing

In this section, two mechanisms are defined allowing a user to send a command to

and receive results from the RMTP process.

4.1.1 Blocking Command Processing Mechanism

In a blocking command processing mechanism, a user must wait for the reply from
the RMTP process. Furthermore, the RMTP process cannot send the reply until it
finishes executing the command. During the processing time, the application is not
free to do other jobs.

As an example, consider an application that already includes several users who
are receiving data. When a new user is created in the application and seeks to enter
a multicast conversation, the RMTP process receives a join command from the user.
The RMTP process then asks the other endpoints already within the multicast group

session for approval of the membership. Processing this command may take a long

26

time. During the time spent waiting for membership approval, the application is
blocked and is not able to receive data from other users.

With this mechanism, after the user sends the command, the application will be
blocked until it receives the result sent back from the RMTP process [Figure 4]. The
details of sending commands and receiving results are transparent to the application.

This command processing mechanism simplifies the implementation of an application.

An Application A User RMTP Process

1
1
"
Function Call User-Daemon Command

, \
7/ N

Blocking Processing

S ——————
| YN —

\ Function Call Return Daemon-User Reply_]

&
«

—————————]

|

|

|

T)
| |
I |
| |
' |
t |

Figure 4: Blocking Command Processing Mechanism

o User-Daemon command format

All user commands to the RMTP process are defined based on the protocol

specification. A general command format is depicted in Figure 5.

1 2 3
0123456789 012345678901234567182939¢01
e S s T T St S e L e e e e Amh

| Protocol | Version] Command ID | Length |
T T e S R s s S B e
] Parameters ... |

D L T T T S T S e o e A st et T

Figure 5: User-Daemon Command Format

Every RMTP is allocated a unique protocol ID, which is found in the first byte

of the command packet. The version is the implementation version number so

27

that the RMTP process is capable of handling different versions of the imple-
mentation even for the same protocol. The command ID is one byte with a
range of 0-255. The length field defines the length of the parameters. Its value
can be zero in the case where no parameters are needed. Since the size of the
length field is one byte, the maximum length available for parameters is 255

bytes. The format of the parameters field is command specific.

e Daemon-User command reply format

When the RMTP process receives a command from a user, the process decides
what processing should be performed according to the protocol specification.
A reply is sent back to the user with the result when processing is completed.
The format of the reply is defined in Figure 6. The return code is one byte
long. Its interpretation depends on the command. If additional information is
needed in the reply, a variable length (maximum of 255 bytes) message can be
appended to the end of the reply packet. The length of the message is stored
in the second byte of the reply packet.
1 2 3
01234567890123456789012345678901
R T T e S e e e e e e e

| Return Code | Length | Message ... |
T T S s at B

Figure 6: Daemon-User Command Reply Format

There is a building block that describes both the command and the reply. The

protocol and version fields are not handled by the command building block. These two

fields will be prepended to the command message when the user sends the command.

Without the protocol and version fields, the command message has the same form

as the reply message. As shown in Figure 7, the rmip_reply class is a subclass of the

rmip_command class.

4.1.2 Non-Blocking Command Processing Mechanism

From the example presented in the preceding section, a blocking command processing

mechanism is very inefficient for commands that require a long processing time. A

non-blocking command processing mechanism is required.

28

rmtp_command

-cmd_buf[RMTP_CMD_BUF_SIZE] : char
-cmd_len : int
-cmd_proto : byte
-cmd_ver : byte
#rmtp_command(in port : byte, in ver : byte)
~rmtp_command()
get_cmd_buf() : char *
get_cmd_len() : int
put_cmd(in cmd_id : byte, in msg : char *, in msg_len : int) : bool
+send(in cmd_channel : rmtp_command_channel *) : bool

rmtp_reply

+put_reply(in code : byte, in msg : char *, in msg_len : int) : bool

Figure 7: Command Building Block

In a non-blocking command processing mechanism, no matter how much time the
RMTP process needs to handle a command, a reply is sent back to the user upon
reception of the command. The format of this reply is as same as other replies. In
this reply, a special “would block” return code is used to inform the user that the
command would block the user. When the user receives the reply, the return code
of “would block” will be returned to the application. The application is able to do
other jobs during the time that passes while waiting for the command to be finished.
Although the command channel is reliable, an immediately reply is still required
in this mechanism so that a user can combine the blocking command processing
mechanism with the non-blocking command processing mechanism.

Later, when finished processing the command, the RMTP process has to inform
the user of the result. A special reply message is used for this purpose. It uses the
same reply format described above along with a special return code. The actual result
is found in the message part of the reply packet and also in the reply format [Figure 8].
When the user receives the result-in-reply message from the RMTP process, it will
retrieve the real return code for the command from the message part and then inform
the application of the result [Figure 9].

In the non-block command processing mechanism, the application is not blocked
by any commands of a user during the time spent processing the command. Therefore,

the application can handle multiple users more efficiently.

29

rmtp_reply

0.1

mitp_result_reply

-result_reply : rmtp_reply

+rmtp_result_reply()

+put_result(in code : byte, in msg : char *, in msg_len : int) : bool

Figure 8: Result-in-Reply Class

An Application

A User

RMTP Process

Function Call

|

Blocking :/
1 "Would Block" Return

~

A
/
%

Processing

p———————

N\ Function Call Return

T

User-Daemon Command

I

“Would Block” Reply

Resuit-in-Reply.—1

]
|
|
|
|
|
l}
]
¥

Processing

Figure 9: Non-blocking Command Process Mechanism

30

However, there remains a limitation for this mechanism. When a user issues a
command to the RMTP process and receives the “would block” return code, the user
cannot issue any other commands until it later receives the actual return code from
the RMTP process.

4.1.3 Send/Receive Command Processing

Send and receive are two special commands sent by a user to the RMTP process. Ei-
ther the command channel or the data channel is used. The details for using the data
channel in order to reduce memory copying for the send and receive commands are
discussed in the data channel building block design [section 4.4]. This section focuses

on the command processing mechanisms that are used for these two commands.

e Send command

When a user needs to send data, it first sets the data into the data channel.
Since shared memory is used for the data channel, the RMTP process will not
be notified about the new data. An explicit send command has to be issued by
the user to notify the RMTP process.

The send command reply mechanism is determined by whether or not the user

needs to know that everyone received the data.

If the user does not need to know the result of the delivery, once a user issues
a send command, the user will receive an immediate reply from the RMTP
process no matter whether the data are really sent out by the RMTP process
or not. The RMTP process must guarantee that the data will eventually be
sent out and acknowledged by the receivers. The user will not be blocked by

the send command.

If the user does need to know the result of the delivery, the mechanisms used
to process the send command depends on whether the command is blocking
or non-blocking. In the case of a blocking send command, the sending user
will be blocked until the RMTP process receives the result of the delivery from
the receivers and sends the result to the user. In the case of a non-blocking
send command, the user who issues the send command will receive a reply from
the RMTP process to identify that this command would be blocked so that

31

its application can continue with other activities. Later on, when the RMTP
process knows the result of the delivery, a second reply will be sent to the user
to inform it of the actual result. These two mechanisms, used by the send
command, are consistent with the general blocking and non-blocking command

processing mechanisms.

Receive command

When a user needs to receive some data, it first sets aside enough space in the

data channel. A receive command is then issued to the RMTP process.

If there are data ready when the RMTP process receives the command from the
user, the daemon puts the data into the data channel and sends a reply back

to the user.

If there are no data ready when the command arrives at the RMTP process,
in the case of the blocking command processing mechanism, no reply will be
sent back to the user until some data later arrive. In the case of the non-
blocking command processing mechanism, a reply will be sent back to the user
immediately to inform the user that the command would be blocked. A second

reply will be sent to the user later when some data become ready.

Whether the blocking or non-blocking command processing mechanism is used

for a send/receive command is protocol specific. Moreover, in some protocols, both

mechanisms are feasible. The user building block [section 4.5] must support both

mechanisms.

4.2 Daemon-User Notification Processing

The user-daemon command processing discussed in section 4.1 is driven by a user.

However, in some cases, it is necessary for the RMTP process to drive the communi-

cation. For example, in case of an error, the RMTP process has to inform the user

about its occurrence. The RMTP process driven communication is also useful when

a user wants to monitor the behavior of the protocol. Instead of sending a command

to retrieve the information all the time, a user can wait for the RMTP process to

push the information automatically when it is ready.

32

The RMTP process pushes information to a user also through the command chan-
nel between the user and the RMTP process. In order to simplify decoding on the
user side, the same format as the reply from the RMTP process to the user is reused
for the information pushed from the RMTP process. The return code in the reply
message is a specific predefined value so that a user can distinguish it from a reply
to a command.

The functions addressed in this section are not provided by the user building
block. However, since notification processing is between the RMTP process and a
user, the user building block should be able to handle it.

4.3 Command Channel Building Block Design

A command channel is used between the RMTP process and a user in a separate
application process. There are many mechanisms in UNIX can be used to achieve
Inter-Process Communication (IPC) [Ste92, Ste98a). Some examples are named pipe
and TCP socket. Considering the requirements specified in the analysis of the com-
mand channel building block, a TCP socket based on the loopback address is used to
implement the command channel.

When the RMTP process starts, it will listen to a predefined TCP port for indi-
cation of any new command channel. The details for how the RMTP process handles
the new command channel are found in the node manager building block design [sec-
tion 4.14]. When a user wants to create a command channel with the RMTP process,
it simply needs to connect to the predefined TCP port. Then, a TCP session, which
is used as the command channel, is established. Based on a TCP session, a com-
mand channel can provide reliable and duplex communication between its user and
the RMTP process. Moreover, the message notification mechanism, which is required
by the command channel, can also be provided through the TCP socket [Ste98b].

A command channel belongs to a user. It is created and connected between its
user and the RMTP process when the user is created. It is disconnected and deleted
when its user quits.

The command channel building block provides transport service to the user build-
ing block. It is not public to the application of RMTP. All commands should be

33

encapsulated by the user and sent through the command channel. All results or no-
tifications are received through the command channel and may then be parsed and
handled by the user. |

The command channel building block is also used in the RMTP process by the
node building block [section 4.13).

Figure 10 shows the command channel building block class diagram.

rmtp_command_channel

-socket_id : signed int
-recv_msg_buf[RMTP_CMD_BUF_SIZE] : char
+rmtp_command_channek(in sock : int = -1)
+~rmtp_command_channel()

+get_socket() : int

+connect(in port : unsigned short = RMTP_PROC_PORT, in addr : struct in_addr = INADDR_LOOPBACK) : bool
+disconnect() : void

+is_connected() : bool

+send(in cmd_buf : char *, in buf_len : int) : bool
+send(in cmd_iov : struct iovec*, in emd_iov : int) : bool
+recv(in buf ; char *, inout &len : int) : bool

Figure 10: Command Channel Building Block

4.4 Data Channel Building Block Design

When there is a large amount of data to be exchanged, the command channel is not
suitable to achieve high performance in transferring the data between a user and the
RMTP process. This is due to the use of a TCP socket, wherein at least two memory
copies are necessary. One memory copy is between the sender and the socket, while
the other memory copy is between the socket and the receiver. By using shared
memory, one memory copy can be eliminated. When a user, or the RMTP process,
needs to transfer data, the sender copies the data into the shared memory. Then, a
command is sent by the sender via the command channel to inform the receiver of the
presence of data in the shared memory. After receiving the command, the receiver
can directly use the data in the shared memory instead of copying the data to its
own buffer. In this thesis, System V shared memory is used to implement the data
channel.

The data channel building block provides the methods to create, attach, and
release a shared memory. Either the user or the RMTP process may create the shared

memory and the other end of the data channel attaches to the shared memory. If the

34

user creates the shared memory, the shared memory ID is sent to the RMTP process
when the user executes registration (details are in the user building block design).
In this case, the RMTP process will attach to the data channel when it processes
the register command. If the RMTP process creates the shared memory, the shared
memory ID is sent back to the user in the reply to registration. And then the user
attaches to the data channel. In the design proposed in this thesis, a user will create
its data channels and the RMTP process will attach to them. When a user quits,
both the user and the RMTP process will detach from the data channels. However,
only the last to detach from the shared memory will delete it.

Because both the user and the RMTP process use the shared memory in a data
channel, a mutex locking mechanism should be implemented to protect the shared
memory. A System V semaphore is used here for this purpose. The semaphore is
created by the same entity that created the shared memory (in this thesis, the user).
Then the new semaphore key is sent to the other side of the data channel along with
the shared memory ID. The semaphore will be deleted in the same manner as the
shared memory.

The data channel building block [Figure 11] only provides methods for maintaining
the data channel. The manner in which the data are stored within the data channel
is not in the scope of this building block. The details for managing the data are in
the data buffer building block design [section 4.7].

rmtp_data_channel

-rdc_sem_id 1 int=0

-rdc_shm_id : int=0

-rdc_buf : rmtp_data_buffer * = NULL
-rdc_shm_buf : char * = NULL

+data_channel()

+~data_channel()

+create(in buf_size : int = RMTP_DATA_CHANNEL_SIZE) : bool
+attach(in sem_id : int, in shm_id : int) : bool

+release() : void

+is_installed() : bool

+get_data_buffer() : rmtp_data_buffer *

+control_alloc() : bool

+control_release() : bool

Figure 11: Data Channel Building Block

35

4.5 User Building Block Design

A user is an entity within a multicast group session. When a user is created, it
registers itself with the RMTP process. When a user leaves a multicast group session,
it de-registers itself from the RMTP process.

A user can be a sender, a receiver, or a any kind of node defined in an RMTP. The
type of the node is the role of the user. The different types of roles are defined by the
RMTP protocol. In order to simplify the implementation, a user can only belong to
one role. The role is decided when the user is created and cannot be changed later.
A user sends its role to the RMTP process when it registers itself with the RMTP
process.

In order to communicate with the RMTP process, a command channel will be cre-
ated between the user and the RMTP process. Moreover, both receive and send data
channels are created when the command channel is created. The register command
delivers, to the RMTP process, the role of the user as well as information relating
to the send and receive data channels [Figure 12]. After the command channel is
established, the user sends the register command to the RMTP process, allowing the
RMTP process to complete its part in the initialization of the new user (details in
the node manager building block design). When a user leaves the multicast group
session, a de-register command [Figure 13] is sent to the RMTP process. Both the
register command and de-register command use the blocking command processing
mechanism. It is worth pointing out that the protocol fields in both command mes-
sages are filled with OxFF. The protocol number, 0xFF, is reserved for commands
that are protocol independent.

After the user has successfully registered with the RMTP process, the user can
implement protocol functions by sending commands to the RMTP process. The for-
mat of commands depends on the protocol. Use of the blocking or non-blocking
mechanism for each command is implementation dependent. When the RMTP pro-
cess needs to send notifications to the user, the daemon-user notification processing
mechanism is used. How to dispatch the notifications received from the RMTP pro-
cess to the right user is addressed in the user manager building block. However, each
user must provide a method to handle such notifications. This method is also the
handler of the reply messages, which carry the results of asynchronous commands.

When a result-in-reply message is received, the actual result code and message will

36

1 2 3

0 12345678901234567890123456789¢01
o e e T T B S e e B e e e s
| OxFF | 0x01 | RMTP CMD REG | 0x14 |
e e e S B B s e Rl e o e el A ol At Rt e A
|User Role Type | Reserved
s S T S R S S S S S LA St et Sl Sl Sl
| Receive Buffer Shared Memory ID]
T s St S S T e E e e A e A A s
| Receive Buffer Semaphore ID |
e e et S i S B e LAt St ot ol s ol 3
| Send Buffer Shared Memory ID
e T s st S e e S e e e e o e et et et
| Send Buffer Semaphore ID
N T T S S T B st ot St A B L e e e e T ¥
RMTP_CMD REG = 0x01

Figure 12: Register Command Format

1 2 3
0123456789 01234567890123456789¢01
s e e T R T s S e Tt S O e B e e 2
| 0XFF | 0x01 | RMTP CMD DEREG| 0x00 |
v N W Y S H S S SN
RMTP_CMD_DEREG = 0x02

Figure 13: Deregister Command Format

37

be extracted from the result-in-reply message and passed to another method, which
then handles the result of an asynchronous command. The user can dynamically
register the result handle method after a blocking command is sent out. However,
at any time, a user can only have one result handle method registered. It is the
responsibility of the user building block and node building block to detect the error

of multiple blocking commands being sent simultaneously.

rmtp_user

-user_role : int

-user_manager : rmtp_user_manager*

-user_state : flag_t

-user_result_handle : rmtp_reply_func

-user_cmd_channel : rmtp_command_channel
-user_send_data_channel : rmtp_data_channel
-user_recv_data_channel : rmtp_data_channel
-user_notify_handle_table : hash_map<int, rmtp_replay_func>

#rmtp_user(in man : rmtp_user_manager*, in role : int)

#~rmtp_user()

+user_msg_recv() : bool

+register() : bool

+deregister() : bool

+set_result_handle(in func : rmtp_reply_func) : bool
+set_notify_mapping(in notify_code : byte, in func : rmtp_reply_func) : bool

Figure 14: User Building Block

The user building block provides a base class [Figure 14] for the protocol specific
user classes. In a specific RMTP implementation, a concrete class is created for each
node type defined in the protocol. The methods provided by the concrete class are

used by the application to execute protocol functions.

4.6 User Manager Building Block Design

In a non-blocking command processing mechanism, because a reply is sent by the
RMTP process immediately, a user will not be blocked. The user has to wait for the
second reply for the actual result of the command. Constantly polling the command
channel is only acceptable if the application has a single user. In order to support
more than one user, a new module, which listens to the RMTP process for all users,
is required. This module is the user manager building block [Figure 15].

There is only one user manager within an application. All users of the application
must be registered with the user manager. This registration is achieved by passing a

user manager object into the construct method of the rmitp_user class, that is, when

38

rmtp_user_manager

-user_man_cmd_channel_table : hash_map<int, rmtp_user *>

+rmtp_user_manager()

+~rmtp_user_manager()

+user_man_register_cmd_channel(in sock_id : int, in user : rmtp_user *) : bool
[+wait(in timeout : struct timeval *) . int

Figure 15: User Manager Building Block

a new user is created. Within the constructor of the rmitp_user class, a command
channel will be created. Then, the newly created command channel will be passed to
the user manager so that the user manager will have all command channels from all
users.

A method to wait for replies from the RMTP process for all users is provided,
by the user manager building block, to the application when needed. This method
can also be used to wait for information pushed by the RMTP process. The method
monitors all command channels for all users. When any message sent by the RMTP
process arrives through one command channel, the method, user_msg_recv, of the
user that owns the command channel will be called. After handling all messages
in all command channels, the method returns to the application with the number
of messages handled. Using this method, no user will cause the application to be
blocked. However, in some cases, the application does not want to wait for messages
from its users for ever, even if no message arrives. The waiting time for the messages
can be specified when the method is called by the application. The method waits
for messages within this time and then returns to the application even if no message

arrives.

4.7 Data Buffer Building Block Design

According to the analysis of the data buffer, every data buffer has a provider and a
consumer. Every time the provider submits some data to the buffer, the new data
should be appended after the data already existing in the buffer. There should be a
pointer, tail, pointing to the first un-used position, from where the new received data
provided by the provider will be written. Following each writing this pointer will be
moved to the next available position. Another pointer, head, is also required to point

to the position where the consumer reads data. This pointer will be moved to the

39

next un-read data in the buffer after each reading. Both head and tail pointers are

required by both the sender and receiver buffers.

unack_head head tail
{only in sender buffer)
\ 4 l

|

Empty buffer

Sender buffer: Data which have been received from the application
but not sent out

Receiver buffer: Data which have been received but not consumed
by the application

7// Sender buffer: Data which have been sent out, but no acknowledgement
7, has been received

Figure 16: Data Buffer Layout

Any reliable protocol requires that the sender keeps the data until it receives
acknowledgement of data reception. However, it is impossible for a sender to receive
the acknowledgement immediately after sending the data. In a buffer used by the
sender, head always points to the data to be sent next. If the timer for receiving the
acknowledgement expires, head should be reset to the first un-acknowledged datum,
which is pointed to by unack_head, so all un-acknowledged data will be re-sent in the
future. In the sender buffer, the data from unack_head to head are those that have
been sent out but no acknowledgement has been received. The data from head to tasl
are those that have not been sent out. The portion from tail to unack_head is the
un-used space [Figure 16}.

An acknowledgement of reception of higher sequence number data implies that
all lower sequence data have been safely received. The receiver will use tail - I as
the acknowledgement sequence number. Usually, an acknowledgement will not be
sent immediately after the receiver receives the data. Rather, it will be delayed until
the acknowledgement timer expires, or the receiver needs to send data packets to
the sender, allowing the receiver to aggregate acknowledgements. The data stored
in the receiver buffer will be consumed at a time depending on the specific receiver

application. Receiving data, acknowledging data, and consuming data are different

40

processes. The receiving data process will use, then move, the tail pointer; the ac-
knowledging data process will use tail pointer; and, the consuming data process will
use, then move, the head pointer.

A round-robin mechanism should be applied to these points, head, tail, and un-
ack_head, so that the buffer can be used cyclically.

If the protocol uses the byte number as the sequence number, as occurs in TCP
or XTP, the buffer manager building block should be able to convert the pointers in
the buffer to and from the sequence number. When there occurs a gap between the
highest sequence number previously received and lowest sequence number recently
arrived, the gap contains missing data. Then, whether to keep or discard the newly
received data is protocol specific. The buffer manager building block provides the
selective filling method to meet this requirement in the case where the newly received
data should be stored.

struct rmtp_data_buf_gap_st

+data_buf_gap_start : u_int32*
+data_buf_gap_len : u_int32 *

RMTP_DATA_BUF_MAX_GAPS

1

rmtp_data_buffer

-rmtp_data_buf : char *

-rmtp_data_buf_size : u_int32 *

-rmtp_data_buf_head : u_int32 *

-rmtp_data_buf_tail : u_int32*

-rmtp_data_buf_start_seq:u_int32*
-rmtp_data_buf_gaps[RMTP_DATA_BUF_MAX_GAPS] : struct rmtp_data_buf_gap_st
-rmtp_data_buf gap_num : u_int32 *

+rmtp_data_buffer(in buf : char *, in len : u_int32)

+~rmtp_data_buffer()

+set_start_seq(in start_seq : u_int32) : void

+read(in dest : char *, in max_len : u_int32) : u_int32

+read(in dest : char *, in max_len : u_int32, in flags : flag_t) : u_int32

+ack(in ack_size : u_int32) : bool

+ack_seq(in ack_seq : u_int32) : bool

+write(in src : char *, in len : u_int32) : u_int32

+write(in src : char *, in len ; u_int32, in start_seq : u_int32, in flags : flag_t) : u_int32
+get_head() : u_int32

+get_tail() 1 u_int32

+get_unack_head() : u_int32

+get_available_len() : u_int32

+get_data_len() : u_int32

+get_next_segment(in start : u_int32, out seq_start : u_int32 *, out seq_len : u_int32) : bool

Figure 17: Data Buffer Building Block

41

When selective filling is used, a list of gaps is maintained. Each read performed
by the consumer may extract all data in the buffer (from head to tail), including all
gaps, or just the first contiguous data segment. A method, get_nezt_segment(), can be
used to retrieve the next contiguous data segment based on a given starting sequence
number.

1 2 3
01234567890123456789012345678939¢01
T T e e B R

| buffer size
e e et e Tt T e T e e e e ot
| start_seq

e T T S S e T i s 2 e e et
| unack head
o T T S s mat at At B B e e
! head
S e ARk At I
| tail

T T T T
| gap_num

L T T R T T Tt T B e T o e e e
| gap_start

e e S B S t Tt et e e
| gap_len

T T T e S s T T Tt T S e e
| ..

o T T R St Tt o e L atant o e e e ot

<+

+
|

+

+

-+

+
+—F—Ft— = — F — + =+ — + — + = + =+ —

+

-+

! ..
T T T e R Tt St et S B e e
| gap start

U S S S e et
| gap len
e S e e et e S S

! [
l I
| |
| DATA |
| I
! !
| I

e s s e B B e e s At Sl St el At S 2

| Figure 18: Data Buffer Structure

The data buffer is used as an intermediate data container between an application
and the RMTP process. It is used along with the data channel building block to
provide fast transmission. As shown in Figure 17, no real buffer is allocated inside

the data buffer building block. The pointer to a real buffer is received from outside

42

the block when a new data buffer object (rmip_data_buffer::rmtp_data_buffer()) is
initialized. The first section of the buffer will be used to store various fields used by
the buffer, allowing those fields to be shared between its application and the RMTP
process [Figure 18].

4.8 Address Building Block Design

As described in the analysis of this building block, only raw IP or UDP can be used
as the low-level delivery protocol for RMTPs. A raw IP address includes an address
and a protocol number. A UDP address includes an address and a port number. As
shown in Figure 19, a base class is designed to set and get the address. The protocol
number in a raw IP address or the port number in a UDP address is handled in

different sub-classes.

rmmtp_ip_addr

+rmtp_ip_addr(in addr : struct in_addr = 0, in proto : byte = 0)
+~rmtp_ip_addr()

+rmtp_addr_set_proto(in proto : byte) : void
+rmtp_addr_get_proto() : byte

+copy(in from : rmtp_addr *) : void

+comp(in with : rmtp_addr *) : bool

v

mitp_addr
-addr : struct sockaddr_in

[#rmtp_addr()

+~rmtp_addr()

+rmtp_addr_get_ip() : struct in_addr
+rmtp_addr_set_ip(in addr : struct in_addr) : void
+rmtp_addr_get_ip_len() : int

+copy(in from : rmtp_addr *) : void

+comp(in with : rmtp_addr *) : bool

T

rmtp_udp_addr

+rmtp_udp_addr(in addr : struct in_addr = 0, in port : unsigned short = 0)
+~rmtp_udp_addr()

+rmtp_addr_set_port(in port : unsigned short) : void
+rmtp_addr_get_port() : unsigned short

+copy(in from : rmtp_addr *) : void

+comp(in with : rmtp_addr *) : bool

Figure 19: Address Building Block

43

4.9 Delivery Building Block Design

Since either raw IP or UDP can be used as the delivery protocol, the delivery building
block will be designed similarly to the address building block. One base class is
created to support all common attributes and methods. Two sub-classes are designed
specifically for raw IP and UDP.

When initializing a new raw IP delivery object, the protocol number must be
specified. For a new UDP delivery object, a port number may be specified. If the
port number is specified with a value other than zero, the socket for this UDP delivery
object will be bound to the specified port number. This allows an RMTP to listen
to or send packets out from a specified UDP port.

rmtp_ip_delivery

#socket_id : int

+rmtp_ip_delivery(in proto : byte)

+~rmtp_ip_delivery()

+recv(in buf : char *, in max_len : int, out from : rmtp_addr *, out dest : rmtp_addr *) . int
+send(in buf : char *, in len : int, in dest : rmtp_addr *) : int

+send(in sv : struct iovec *, in nsv : int, in dest : rmtp_addr *) int

\Vi

rmtp_delivery

mcast_addr_list : list<struct sockaddr_in>
ready :int=0
Hrmtp_delivery()
+~rmtp_delivery()
+recv(in buf : char *, in max_len : int, out from : rmtp_addr *, out dest : rmtp_addr *) : int
+send(in buf: char *, in len : int, in dest : rmtp_addr *) :int
+send(in sv : struct iovec *, in nsv : int, in dest : rmtp_addr *) : int
+join_mcast(in addr : rmtp_addr *) : bool
+leave_mcast(in addr : rmtp_addr *) : bool
+is_joined() : bool
+get_socket() : int
+is_ready() : bool

Esocket_id cint=-1

T

rmtp_udp_delivery

#socket_id : int

+rmtp_udp_delivery(in port : unsigned short = 0)

+~rmtp_udp_delivery()

+recv(in buf : char *, in max_len : int, out from : rmtp_addr *, out dest : rmtp_addr *) : int
+send(in buf : char *, in len : int, in dest ; rmtp_addr *) : int

+send(in sv : struct iovec *, in nsv : int, in dest : rmtp_addr *) : int

Figure 20: Delivery Building Block

44

With IP, a multicast group session is defined by a multicast address. The param-
eter used in the join and leave methods is an rmtp_addr object, which should return
a multicast address by calling rmtp_addr_get_ip() [Figure 20].

When a delivery object is created, even if it does not join any multicast session,
it may receive a packet, whose destination is a multicast session joined by another
delivery object in the same system. Having both source and destination addresses
returned by the recv() method allows the task manager building block [section 4.12]
to find the right task(s) to process the packet.

For the method send(), two different APIs are provided based on the analysis in

section 3.3.2.

4.10 Packet Building Block Design

A packet is used as an intermediate container for sending or receiving data. There
are two ways to allocate the space to hold the data. If the space is created internally,
a contiguous buffer of sufficient size should be allocated when a packet object is
initialized. This type of packet is referred to as being of the linear type. In some
cases, it is simple for a user to treat a packet as multiple logical segments; for example,
one segment for the header, one segment for options, and another segment for data.
No segment is contiguous with others. In order to avoid copying all segments into
one contiguous buffer before sending, another type of packet, the vector type packet
[Figure 21], is used. For this type of packet, the buffer for the data is not allocated by
the packet building block. It is allocated outside and passed into the packet building
block. The packet building block only contains an array of pointers to multiple
segments. In comparison to the linear type packet, the vector type packet is very
convenient when constructing a packet to be sent. For example, the data segment
can be filled before the size of the option segment is known, even if the option segment
should be placed ahead of the data segment. With linear type, such flexibility is not
possible because the offset of the data segment cannot be decided without knowing
the exact size of the option segment. A vector type packet can also be used when
receiving data. In this case, the received data fills the segments one by one. However,
in most cases, the size of the header or the option is not fixed. Before the data

received are analyzed, it is not possible to set the correct size of each segment in

45

order to preserve the logic of each segment. So, when receiving a packet, a linear type

packet is used.

Linear Type
Packet

Vector Type
Packet

pointer

pointer

pointer

ULL

UL

Figure 21: Linear & Vector Type of Packet

«enumeration»
rmtp_packet_type
+RMTP_PACKET_LINEAR = 1
+RMTP_PACKET_VECTOR =2

«union»
rmtp_packet_data_un

rmtp_packet

-rp_type : flag_t

-rp_refcount : int

-rp_src : rmtp_addr *

-rp_dest : rmtp_addr *

#rp_data : rmtp_packet_data_un
#rp_data_len : rmtp_packet_data_len_un

#irmtp_packet(in type : rmtp_packet_type)
+~rmtp_packet()
+is_linear() : bool

+rpd_data_buffRMTP_PACKET_BUF_SIZE] : char
+rpd_data_vec|[RMTP_PACKET_VEC_SIZE} : struct iovec

+is_vector() : bool
+send(in delivery : rmtp_delivery *, in dest : rmtp_addr *) : int
+recv(in delivery : rmtp_delivery *) :int

+get_source() : rmtp_addr *

«union»
rmtp_packet_data_len_un
+rpd_len : u_int32
+rpd_vec_num : int

+get_dest() : rmtp_addr *

+inc_refcount() : void

+dec_refcount() : void

+is_used() : bool

+add_vec_element(in buf : char *, in len : u_int32) : bool
+get_vector() : struct iovec *

+get_num_vector() : int

+get_buf() : char *

+get_buf_len() : u_int32

Figure 22: Packet Building Block

As illustrated in Figure 22, not only does the packet building block provide the

place to store the data received or to be sent, but it also provides the methods used

to send or receive data. When sending data, the user of the building block provides

the destination address. When receiving data, the source and destination addresses

are recorded within the packet object for further use.

As well, an object of the

rmtp_delivery class is passed to both methods as the access point with the OS. The

packet building block send and receive methods can choose the right format for the

parameters passed to the send and receive methods of the delivery building block

46

according to the type of the packet used.

In RMTPs, one received packet may be useful to more than one user. A packet
object should not be deleted until all users have finished processing it. The reference
count mechanism, which keeps track of the number of users using a packet, is imple-
mented in the packet building block. Each user of a packet will increase the packet’s
reference count by one. When the user of the packet finishes processing the packet,
the reference count will be decremented by one. When the reference count reaches
zero, the packet can be freed.

In an RMTP implementation, multiple subclasses of the rmip_packet class are
constructed for different packet types defined in the protocol. Every subclass provides

methods to set or extract different packet fields for its corresponding protocol packet.

4.11 Task Building Block Design

The task building block is used as an access point for a user in an application. It
contains a reference to an rmip_delivery object. Having a reference to an object
instead of an object of the rmitp_delivery class in a task allows all tasks to share the
same rmip_delivery object. The protocol specification determines whether different
tasks share one rmip_delivery object or use different objects.

As shown in Figure 23, each rmtp_task object includes two FIFO queues of packet
objects. One is the receive queue and the other is the send queue. When the rate
of processing packets is slower than that of receiving packets, the packets that are to
be processed are stored into one of those queues. Various methods are available to
handle these queues. The methods, has_more_to_send() and has_more_to_recv(), can
be used to check whether or not a queue is empty. The methods, send_packet() and
recv_packet(), append a new packet to a queue. The methods, drain_send_queue()
and drain_recv_queue(), are called when packets can be processed. Using these two
queues, the lack of synchronization between processing and receiving is resolved.

A task is not only used to send a packet, but also behaves as a handler of a packet.
If different tasks use different delivery objects, the delivery objects can be used to
differentiate tasks from each other. When a packet arrives through a delivery object,
the packet will be handled by the task that owns that delivery object. If a delivery

object is shared by multiple tasks, there should be some other means of locating the

47

rmtp_task

-rt_delivery : rmtp_delivery *

-rt_send_q : list<rmtp_packet *>

-rt_recv_q : list<rmtp_packet *>

-rt_node : rmtp_node *

-rt_priority :int

+rmtp_task(in node : rmtp_node *, in delivery : rmtp_delivery *, in prio int}
+~rmtp_task()

+get_delivery() : rmtp_delivery *

+get_node() : rmtp_node *

+has_more_to_send() : bool

+has_more_to_recv() : bool

+should_recv_packet(in delivery : rmtp_delivery *, in packet : rmtp_packet *) : bool
+send_packet(in packet : rmtp_packet *) : bool

+recv_packet(in packet : rmtp_packet *) : bool

+drain_send_queue() : bool

+drain_recv_queue() : bool

+get_prioriy() : int

Figure 23: Task Building Block

right task to handle the packet.

One technique is to use the source address, source port, destination address, and
destination port of the packet transmission. In some RMTPs, these four-tuples can
uniquely identify what task should be used to handle the packet. Another technique
is to use the contents of the packet. Since the mapping between the packet and the
task is protocol dependent, a pure virtual method, should_recv_packet(), is provided
by the task building block. The two parameters for this method, an rmip_delivery
object and an rmip_packet object, are used to check whether a task should handle the
packet.

4.12 Task Manager Building Block Design

Different data structures can be used to organize all tasks. The simplest way is to
use a linked list. When a packet arrives, the task manager will descend the list
seeking to match the packet with its task(s). Another method, which provides faster
searching, is to use a hash table. The hash function is based on the socket ID in
the rmip_delivery object referred to by the task. If all tasks are referring to the same
rmip_delivery object, all tasks will be linked together into the same bucket of the hash
table. In this case, the task manager will be the owner of this delivery object and all

tasks will refer to it.

48

After collecting all sockets from all rmtp_delivery objects, the task manager build-
ing block can provide an fd_set object to the RMTP process. The fd_set object can
be used, together with another fd_set object provided by the node manager build-
ing block, to wait for incoming packets or user requests. Listening to packets or
user requests and dispatching them are detailed in the RMTP process building block
design.

Figure 24 illustrates the class diagram of the task manager building block.

mitp_task_manager

-tm_tasks : hash_map<int, list<rmtp_task *>>
-tm_fd_set : fd_set

-tm_max_socket : int

+rmtp_task_manager()

+~rmtp_task_manager()

+rm_reg_task(in task : rmtp_task *) : void
+rm_dereg_task(in task : rmtp_task *) : void
+tm_get fd_set(out max_socket : int*) : fd_set *
+tm_dispatch(in sockets : fd_set *) : fd_set

Figure 24: Task Manager Building Block

4.13 Node Building Block Design

One node corresponds to one user. It is a one-to-one relationship. As in the design
of the user building block, the node building block will not implement any protocol
specified functions.

A node is created when a new user registers itself with the RMTP process (de-
tails are in the node manager building block design). At that time, the command
channel has already been created and connected. This command channel, along with
the information received in the register command, will be passed to the new node
for initialization. Based on the information in the registration command, two data
channels will be created and connected with the user. When the user de-registers
itself from the RMTP process, its corresponding node may be deleted. Before a node
is deleted, the two data channels and one command channel will first be disconnected
and deleted. ‘

Unlike the task manager building block, the node manager already knows the
command channel socket ID when it creates a new node. Therefore, there is no need

to register the node with the node manager. After the node is created, how to locate

49

a corresponding node to dispatch a command from a user is described in the node
manager building block. After the node manager locates the corresponding node, the
pure virtual method, recv_user(), will be called to handle the command.

Typically, an RMTP user, which is a node within the RMTP process, has only
one access point with other RMTP users in a multicast group session. Such a node
includes only one task object. However, if the user has to communicate with multiple
endpoints, which requires more than one delivery object, the node will create more
tasks. A node maintains a list of tasks belonging to it.

When a task receives a packet, the node that owns the task will be called through
the method process_packet() to handle the packet.

rmtp_node

rn_comm : rmtp_comamnd *

rn_recv_data : rmtp_data_channel *

m_send_data : rmtp_data_channel *

r_tasks : list<rmtp_task *>

rmtp_node(in chan : rmtp_command_channel *, in recv_shm : int, in recv_sem : int, in send_shm : int, in send_sem : int)
+~rmtp_node()
+recv_user() : bool
+send_user() : bool
+process_packet(in task : rmtp_task *, in packet : rmtp_packet *) : bool
+add_task(in task : rmtp_task *)
+del_task(in task : rmtp_task *)

Figure 25: Node Building Block

The node building block provides a base class [Figure 25] for protocol specific
node classes. A subclass is created for each protocol specific node. The subclass
overrides the methods, recv_user() and process_packet(), to provide protocol specific
user command and packet data handling. An instance of a subclass is created after

a register command for the subclass’ node type is received by the node manager.

4.14 Node Manager Building Block Design

In the RMTP process, only one instance of the node manager building block is needed.
This instance is created when the RMTP process is created, and deleted when the
RMTP process is deleted.

The main function of the node manager building block is to create nodes. When
the node manager is created, it will create a TCP socket, which listens to a predefined

port. The node manager will put this socket into an fd_set object, which will be given

50

to the RMTP process to wait for events. Once a new user is created in an application,
a command channel, in the user, will be created and connected to the RMTP process.
The RMTP process notifies the node manager about this new connection. After this,
a command channel is created in the RMTP process. The node manager cannot yet
create a node for the new connection because the information needed to create a
new node is in the register command (i.e., the node type). The node manager will
maintain a list for all command channels, which is updated with the new connection.
All sockets from all newly created command channels will be put into the fd_set
object. So, when a register command arrives through a command channel, the node
manager will be notified to process it using the pure virtual method process_register().
All parameters will be extracted from the register command and a new node will be
created. Then, the command channel will be de-queued from the list and the new
node will be linked into a list for all nodes. After that, the new node will handle any
commands received on its command channel.

In total, there are three types of sockets handled by the node manager. There
is only one instance of a socket of the first type, which is that socket listening for
new TCP connections. All sockets from all command channels, from which register
commands have not been received yet, are sockets of the second type. Sockets of the
third type are from all command channels whose nodes have already been created.
These three types of sockets are put into an fd_set object, which is used by the RMTP
process to wait for user requests. When there is a user request in a socket, the node

manager dispatches the request to its node to be handled.

rmtp_node_manager

-nm_socket : int
-nm_fd_set : fd_set
-nm_max_socket : int
-nm_channels : list<rmtp_command_channei *>
-nm_channels_mapping : hash_map<int, rmtp_command_channel *>
mnm_nodes : list<rmtp_node *>

nm_nodes_mapping : hash_map<int, rmtp_node *>
+rmtp_node_manager(in port : unsigned short = RMTP_PROC_PORT)
+~rmtp_node_manager()
-process_new_connection() : bool
[#process_register(in channel : command_channel *) : bool
+process_sockets(in sockets : fd_set *) : bool
+get_fd_set(out max_socket : int*) : fd_set™

Figure 26: Node Manager Building Block

o1

4.15 Timer Building Block Design

As described in the analysis of the timer building block, a timer includes: an expiry
time, which sets when it will be fired; a jitter, which is applied when setting the expiry
time; a handle, which is called when the timer expires; an interval, if necessary, for
resetting the timer after it has expired; and its flags. All these attributes are passed to
the construction method of the rmtp_timer class [Figure 27] through the parameters.
The second parameter, offset, is the difference between the current time and the
expiry time. Although the parameter is a relative time, the expiry time stored in
the rmtp_timer class is an absolute time, which is calculated by adding offset to the

current time.

qunion» «union»
rmtp_timer_owner_union rmtp_timer_jitter_union
+riou_node : rmtp_node * +rtiu_jitter : struct imeval
4tou_task rmip_task ™ +riju_jitter_percent : float
+rtou_owner : void *

rmtp_timer

-t_exp_time : struct timeval
-rt_last_exp_time : struct timeval
-rt_interval : struct timeval

-rt_jitter_un : rmtp_timer_jitter_union
-rtt_owner_un : rmip_timer_owner_union
-t_flags : flag_t

-rt_handle : rmtp_timer_handle_func
-rt_data : void *

1t_manager : rmtp_timer_manager*

+mip_timer(in owner : void *, in offset : struct imeval *, in jitter - struct imeval *, in interval : struct timeval *, in handle : rmtp_timer_handle_func, in data : void*, in flags : flag_t)
+rmip_timer{in owner : void *, in offset : struct timeval *, in jitter ; float, in interval - struct timeval *, in handie : rmtp_timer_handle_func, in data : void *, in flags : flag_t)
+~rmtp_timer()

+get_node() : rmtp_node *

+get_task() : rmip_task*

+get_ownen() : void ™

+reset(in offset : struct timeval *, in jitter © struct timeval *, in interval : struct imeval *) : void

+reset(in offset : struct timeval *, in jitter : float, in interval : struct imeval *) : void

+ire() : int

+is_fired_once() : bool

+get_next_time() : stuct imeval

[+get_last_time() : struct imeval

+11pdate_next_time() : void

+put_onlist(in manager : rmtp_imer_manager *) : void

typedefint (*rmtp_timer_handle_funcXrmtp_timer *, void *data);

Figure 27: Timer Building Block

Moreover, another parameter, data, which is of the void* type, is user speci-
fied data, which will be passed as the second parameter to the handle of the timer,
rmip_timer_handle_func. This data is useful when multiple timers share the same

handle. For instance, when using the same handle for re-sending multiple packets,

92

different packet objects can be used as data when creating different timers. Therefore,
the handle method knows which packet needs to be re-sent from the data parameter.

Every rmtp_timer object belongs to an owner. This owner can be an rmip_node,
rmtp_task, or any other object. The user of the rmip_timer object should be aware
of the type of its owner. The owner will be passed to the construct method of the
rmitp_timer class as the first parameter.

After a timer is created, it should be passed to the timer manager to be included
in a list ordered by expiry time. Determining which timer should be fired is also
handled by the timer manager building block. When a timer expires, the method,
fire(), will be called to trigger the timer handle.

After a timer expires, if it has been configured to include an interval, the method,
update_next_time(), can be called to update the timer for its next expiry time.

A timer’s next expiry time, jitter, and interval can be changed at any time by
calling the reset() method. If the timer is already on the list of the timer manager,
the timer will be re-positioned on the list after reset() is called.

As shown in the rmip_timer class diagram, other methods are available for retriev-

ing attributes of the timer; for example, the owner, the last expired time, etc.

4.16 Timer Manager Building Block Design

In order to be able to find all expired timers or the nearest timer, the timer manager
links all timers in a list in the order of their expiry times. Since the expiry time stored
in rmip_timer is an absolute time, there is no need to manipulate any other timers
when a timer is inserted or removed from the list.

The method, process(), goes through the list to find all timers whose expiry time
has passed, then calls the timer handle methods for these timer. All expired timers
are first removed from the list, then, those timers that have been configured with
interval are updated for their next expiry times and are later re-inserted into the list.

The method, get_nezxt(), can be used to retrieve the time when the nearest timer

will expire.

53

rmtp_timer_manager
-rtm_timers : list<rmtp_timer *>

+rmtp_timer_manager()
+~rmtp_timer_manager()
+insert(in timer : rmtp_timer *)
+remove(in timer : rmtp_timer *)
+process() . int

+get_next() : struct timeval

Figure 28: Timer Manager Building Block

4.17 Trace Building Block Design

Any instance of the trace building block includes multiple trace bits. Every trace
bit controls one specific trace option, which is defined for a feature in a module.
A trace bit is only meaningful to its instance of the trace building block and all
inheriting instances. With this design, different modules are able to define different
trace instances. A sub-module can create its own trace instance that inherits all trace
options from a module’s trace.

A trace instance is created by allocating an rmip_trace object. As illustrated
in the class diagram below [Figure 29], in the construct method of the rmip_trace
class, an existing rmip_trace object can be passed as the first parameter. The new
rmip_trace object will inherit all trace options of the existing object. However, if the
trace options of an existing instance are changed, the changes will not be propagated
to any previously created instance even if that instance inherited from the instance
just changed.

In the rmtp_trace class, the trace destination is specified by an opened file de-
scriptor. There are two sources from which a new rmip_trace object may get its trace
destination. The first source is to get the trace destination from an existing object.
This is achieved by passing the existing object as the first parameter, and not passing
the second parameter, to the construct method of the rmip_trace class. The second
source to obtain the trace destination is from the second parameter of the construct
method of the class. If the second parameter is specified, even when an existing in-
stance (the first parameter) is also passed, the new trace instance will use the file
descriptor, fd, as its destination.

After an object of rmitp_trace is created, the methods enable() or disable() can be

called to enable or disable one or multiple trace options.

54

rmtp_trace

-rt_fd : int
-rt_options : flag_t
rmtp_trace(in trace : rmtp_trace *,in fd : int = -1)
+~rmtp_trace()
get_fd() : int
#set_fd(in fd : int) : void
+get_options() : flag_t
+enable(in options : flag_t) : void
+disable(in options : flag_t) : void
+trace(in options : flag_t, in format : char *,in ...) : void

rmtp_trace_file

-rtf_file_name : char *

+rmtp_trace_file(in trace : rmtp_trace *, in file_name : char * = NULL)
+~rmtp_trace_file()

Figure 29: Trace Building Block

The method, trace(), can be called to write a trace message to the trace destina-
tion. However, the trace message will only be written when at least one trace option
in the first parameter is enabled in the trace instance. If none of the trace options in
the first parameter is enabled, no message will be written.

A sub-class of the rmtp_trace class is designed for each trace destination. The sub-
class is responsible for opening, and, if necessary, setting, the desired trace destination.

The destination of an rmip_trace instance can, at any time, be changed by calling

set_fd().

4.18 FSM Building Block Design

Three register methods are provided by the FSM building block: one for states,
another for events, and lastly one for transactions. The register methods for states
and events accept a name, which can be used to generate user-friendly traces, as their
parameter.

The method, do_transaction(), is called to carry out transactions based on the
current state and a given event. The second parameter to this method, data, which
includes user specified data, will be passed on to the transaction handle method. The
data parameter will not affect the behavior of the state machine.

The class diagram of the FSM building block is illustrated in Figure 30.

99

typedef unsigned int rmtp_state_t;
typedef unsigned int rmtp_event_t;
typedef void (*rmtp_fsm_trans_func){rmtp_state_t cur_state, rmtp_event_t event, rmtp_state_t next_state, void *data)

rmtp_fsm

-rf_events : hash_map<rmtp_event_t, rmtp_fsm_event *>
-rf_states : hash_map<rmtp_state_t, rmtp_fsm_state *>
-rf_cur_state : rmtp_state_t =0

-rt_alloc_state : rmtp_state_t=0

-rt_alloc_event: rmtp_event t=0

+rmtp_fsm()

+~rmtp_fsm()

+get_event_name(in event : rmtp_event_t) : char *

+get_state_name(in state : rmtp_state_t) : char *

+set_cur_state(in state : rmtp_state_t) : void

+get_cur_state() : rmtp_state_t

+register_event(in event_name : char *) : rmtp_event_t

+register_state(in state_name : char *) : rmtp_state_t

+register_transaction(in bs : rmtp_state_t, in evt : rmtp_event_t, in es : rmtp_state_t, in hdl : rmtp_fsm_trans_func) : void
+do_transaction(in event : rmtp_event_t, in data : void *) : bool

«struct» «struct»
rmtp_fsm_event mitp_fsm_trans
+rfe_event : rmtp_event_t +rif_trans_f : rmtp_fsm_trans_func
+rfe_name : char* +rit_next_state : rmtp_state_t
«structy

rmtp_fsm_state

+rfs_state : rmtp_state_t

+rfs_name : char*

+ifs_trans : hash_map<rmtp_event_t, rmtp_fsm_trans *>

Figure 30: FSM Building Block

56

4.19 Memory Manager Building Block Design

Using a memory pool is a standard technique that makes memory allocation and
deallocation more efficient. This technique is described as follows:

A large amount of memory (usually a page) is allocated at the initialization time.
When memory needs to be allocated for a structure, the real system function call
is not called. Instead, one chunk of the memory within the pool is returned to the
requester and actions are taken to unlink memory returned from the pool. When the
memory is no longer needed, and is freed, it is returned to the memory pool instead of
to the system to allow for future usage. When the memory pool is empty and memory
allocation is still required, another large quantity of memory will be allocated and
linked into the empty memory pool for future usage.

Even so, the problem of memory fragmentation is not solved. To solve this prob-
lem, we need to consider what will first cause memory fragmentation. Packet buffers
frequently need to be allocated and freed. Whenever a packet buffer is required, for
sending or receiving data, a buffer will be allocated. When the packet buffer is sent
out or processed, it will be freed. The IP address is another example that calls for
memory usage. In routing protocol implementations, there are thousands of routes
that need to be stored in the memory. Every route corresponds to an IP address.
When inserting or deleting a route to or from a routing table, memory for a route
entry and its corresponding IP address will be allocated and freed. Memory usage for
IP addresses in RMTPs is less than in routing protocols. However, since RMTPs pro-
vide continuous service to the application, as time passes, many more allocations and
deallocations for IP addresses can be expected. This kind of memory usage, which
needs to be allocated and deallocated very often, causes memory fragmentation. In
order to solve the memory fragmentation problem, the following mechanism is used
to handle the memory pool.

One memory pool is divided into multiple smaller, fixed-sized chunks [Figure 31].
All chunks in one memory pool are linked as a list. When a memory allocation is
required, first we find a memory pool whose chunks are of the same size as is required.
The first available chunk in the list from that memory pool is returned. Then, the
chunk returned is removed from the list. When a memory is freed, the memory is
returned to the memory pool whose chunk size is equivalent to that of the returned

memory. Since the chunks are linked as a list, the time for removing or appending

o7

One Memory Pool One Memory Pool

one éhunk one cihunk
one éhunk one éhunk
............ } T
.......... > ’

one chunk one ¢hunk

!
one chunk one chunk

Figure 31: Memory Pool Mechanism

a chunk into the list is of O(1). Through the use of this mechanism, the memory
fragmentation problem is solved.

In order to extract statistics about memory usage, we need to log every allocation
and deallocation of memory. Above, we introduced several memory pools of different
chunk size to solve the fragmentation problem. This mechanism can be re-used to
trace the memory usage. Since all memory allocation and deallocation is done on the
memory pool, a statistical counter can easily be added to the memory pool. However,
if there are multiple memory usages, which require the same size chunks of memory,
all memory allocation and deallocation for these usages will be performed on the same
memory pool. Therefore, it becomes impossible to know the exact statistics for every
memory usage. In order to solve this problem, a list of the request sources is added
to every memory pool to log different memory usages [Figure 32].

Figure 33 shows the class diagram for the memory manager building block. In

58

One set of memory poois

1

1

Statistics of one usage for
this memory pool set

Statistics of one usage for
this memory pool set

Statistics of one usage for
this memory pool set

Figure 32: Memory Usage Statistics

rmtp_memory_pool

-mp_free : char *
-mp_pages : list<char *>

-mp_page_size : unsigned int
-mp_chunk_size : unsigned int

#~rmtp_memory_pook()

#mp_get_chunk_size() : unsigned int
#mp_allocate_page(in page_size : unsigned int) : char *
#mp_free_page(in page : char *) : void

#mp_get_chunk() : char *

#mp_return_chunk(in chunk : char *) : void

rmtp_memory_pool(in page_size : unsigned int, in chunk_size : unsigned int)

)
i
]
|
L

rmtp_memory_request

-mr_name : char *
-mr_allocated : unsigned int =0
-mr_freed : unsigned int = 0
-mr_pool : rmtp_memory_pool *

w-

~memory_request()

mr_get_pool() : rmtp_memory_pool *
+mr_allocate_chunk() : char *
+mr_free_chunk(in chunk : char *) : void
+mr_get_chunk_size() : unsigned int
+mr_get_name() : char *
+mr_get_allocated() : unsigned int
+mr_get_freed() : unsigned int
+mr_reset_stat() : void

Ememory_request()

$]00

l :
rmtp_memory_pool_container

-mpc_page_size : unsigned int
-mpc_requests : list<rmtp_memory_request *>
-mpc_pools : list<rmtp_memory_pool *>

+memory_pool_container(in page_size : unsigned int)
+~memory_pool_container()

+new_request(in name : char *, in size : unsigned int) : rmtp_memory_request *
+free_request(in request : rmtp_memory_request *) : void

Figure 33: Memory Manager Building Block

99

order to allocate memory, an object of the rmip_memory.request class first has to
be created. All the memory allocation, deallocation, and retrieving statistics are
handled by this object. The rmtp_memory_pool class is not visible to the user of
the memory manager building block. It manages all memory pools internally as
described above. The rmtp_memory_pool_container class is used to create or free
objects of the rmitp_memory_request class. Usually, there is only one object of the
rmip_memory_pool_container class existing in a system. However, there is no restric-
tion on the number of rmtp_memory_pool_container objects. If multiple objects of
rmip_memory_pool_container exist in a system, the memory pools in different object
will not be shared, even if the chunk sizes of the memory pools are the same.

The chunk returned by the memory manager building block can be used directly
as any structure. If the memory manager building block is used to manage memory
usage for a class, both the new and delete operators for that class should be overridden

to allocate and free memory by using the memory manager building block.

4.20 RMTP Process Building Block Design

The RMTP process building block provides the central framework for the RMTP
process. Figure 34 illustrates the flow chart of the method main().
The main function first parses the options passed from the command line. In the

method parse(), the following options are processed:

e -n: non-daemon mode; stays in foreground
e -t filename: specifies the default trace file name
e -d filename: specifies the dump file name

e -p port: specifies the port number to which the node manager will listen

The parse() method can be overridden, if necessary, to allow more user options.
If -n is not specified in the options, the RMTP process should default to daemon-
mode. The RMTP process building block provides a method, daemonize(), to trans-

form the process into a daemon. This method accomplishes the following:
e Create a child RMTP process, using fork(), and make the parent process exit.

60

parse()

Y
daemonize() in daemon?

initialize()

!

rmtp_timer_manager::

&

process()

\
get_fd_set()
N|
1 Y
get_timeout()

dump() +

timeout?

process_socket()

Figure 34: RMTP Process Main Function

61

e Call setsid() to create a new session, causing the process to detach from the

controlling terminal.
e Change the current working directory to /var/tmp.

o Set the file mode creation mask to 0, which will affect the permission of the

dump file and trace files.

All setup procedures for the RMTP process will be included in the initialize()
method, which can be overridden, if desired, for specific initializations.

A loop will follow the initialization. Within the loop, the fd_set of all sockets will
be retrieved by calling the method get_fd_set(). This method will merge the fd_sets
retrieved from the task manager and the node manager. A call to select() will be
performed using the timeout value from the timer manager method get_next(). If
there is a message in one of the sockets, process_sockets() will be called to determine
whether the node manager or the task manager should handle the message, and then
let the corresponding manager to handle the message. The timer manager will have a
chance to process its already expired timers after process_sockets() or select() returns
because of timeout. Finally, the RMTP process will return to the beginning of the
loop to repeat the above processing.

During the main loop, in order to retrieve the status of the RMTP process, a new
mechanism is developed. This mechanism could operate through a special control
channel, which is separate from with the command channel and the data channel.
The control channel can be implemented using a pipe or a socket. However, when
bugs within the process make it loop infinitely, any command going through the pipe
or socket will not be processed. Using a signal (SIGUSR1 in this case) can avoid this
problem. However, by using a signal, the RMTP process can only write its status
to a dump file. The RMTP process can register a handle in initialize() for signal
SIGUSR1. Within the signal handler, a dump file will be opened and all information
for the RMTP process will be written to that file. Because the RMTP process cannot
directly dump every module it contains, the file descriptor of the dump file is passed
to the timer manager, task manager, and node manager to allow other modules to be
dumped. Writing all dump information into a file may take quite some time, so the
signal handler will first fork another child and use the new process to implement the

dump.

62

The class diagram for RMTP process building block is shown in Figure 35.

rmtp_process

-rp_help : char *

-rp_trace_fn : char*

-rp_dump_fn : char *

-rp_is_daemon : bool

-rp_trace : rmtp_trace *

-rp_node_manager : rmtp_node_manager *

-rp_task_manager : rmtp_task_manager *

-rp_timer_manager : rmtp_timer_manager *

-rp_node_manager_port : unsigned short
get_node_manager_port() : unsigned short
get_dump_file_name() : char*
get_fd_set(out max_socket : int *) : fd_set
get_timeout() : struct timeval
get_timer_manger() : rmtp_timer_manager *
parse(in argc : int, in argv : char **) : bool
daemonize() : bool
initialize() : bool
main_loop() : void

+rmtp_process()

+~rmtp_process()

+get_trace() : rmtp_trace *

+main(in argc : int, in argv : char **) : bool

+get_node_manger() : rmtp_node_manager *

+get_task_manager() : rmtp_task_manager *

+sigusr1_handle(in sig : int) : void

+set_help_string(in help : char *) : void

Figure 35: RMTP Process Building Block

63

Chapter 5

The Comparison between the
RMTP Implementation Building
Blocks and the MTL

Although the RMTP implementation building blocks are designed based on the anal-
ysis of the requirements of RMTP implementations, those blocks are similar, in some
aspects, to the MTL. In other aspects, the RMTP implementation building blocks
are superior to the MTL.

5.1 Architecture

Both the MTL and the RMTP implementation building blocks share the same ar-
chitecture [Figure 1, Figure 2]. Use of a central stand-alone process (daemon) and
a thin library linked with the application is a compromise between implementation
efficiency and simplicity. A user (mtlif or rmtp_user) is created in an application and
it communicates with the stand-alone process. It is this process that implements the
protocol details and exchanges information with other endpoints in the protocol. The

process can simultaneously handle multiple users from different applications.

64

5.2 User Handling

5.2.1 In the Application

The MTL does not provide sufficient multi-user support to applications, while, in

comparison, the RMTP implementation building blocks have many advantages.

e The MTL uses an unreliable protocol (UDP) between the daemon and the
application. The RMTP implementation building blocks use a reliable protocol
(TCP) to implement the command channel, which provides reliability for all

user commands.

e The MTL transfers a predefined C structure (user_request) for any commands.
The RMTP implementation building blocks use Type, Version, Length, and
Value (TVLV) command format. This mechanism provides backward compati-

bility even if the command format is changed later.

e The RMTP implementation building blocks support both synchronous and
asynchronous command processing. For a user, some commands can be syn-
chronous and others can be asynchronous. Unlike the MTL, the implementa-
tion building blocks are not limited to only one at a time sending an asyn-
chronous command. When multiple users are waiting for the results for their
asynchronous commands, the user manager building block provides the method,
wait(), to listen for all users. Moreover, the RMTP implementation building

blocks support pushing information from the process to a user, which does not
exist in the MTL.

5.2.2 In the Process

Inside the process, both the MTL and the RMTP implementation building blocks
define an entity to represent a user. This entity is the context class in the MTL
and the rmtp_node class in the RMTP implementation building blocks. However, the
MTL requires all users to use only one access point with the OS, which is not the
case in RMTP-II. With the RMTP implementation building blocks, any user, that is,
an rmip_node object, can have multiple access points (rmtp_task). In addition, users

can share one access point just as in the MTL.

65

The user request dispatching mechanism used in the MTL is different from that
in the RMTP implementation building blocks. In the MTL, no individual command
channel between a user, within an application, and the process exists. When, in the
MTL, the process receives a user request, it has to locate the correct contezt object
based on the contents within the request. Therefore, user identification information
has to be included within the request. For the RMTP implementation building blocks,
every user has its own command channel. When the RMTP process receives a user
request, the command channel can be used to find the corresponding rmip_node ob-
ject. Therefore, there is no need to include user identification information inside the

user request.

5.3 Packet Handling

With the MTL, there exists only one access point between the OS and the daemon.
When the daemon receives a packet sent by another endpoint in the protocol, a pure
virtual method, handle_new_packet(), in the context.manager class will be called to
process it. A concrete class, which inherits from the contezt.manager class and im-
plements handle_new_packet(), will analyze the contents in the packet and distribute
it to the correct context to process.

The RMTP implementation building blocks provide a more flexible way to handle
incoming packets. When a packet arrives, it will be given to the rmip_task_manager.
The rmtp_task-manager will search through all rmip_task objects to determine who
is interested in the packet. An rmip.task object decides, based on the access point,
the payload in the packet, source, and destination address of the packet, whether it
is interested in the packet. Since these four elements include all information related

to the packet, this mechanism is flexible enough to meet the different requirements
in various RMTPs.

5.4 Memory Management

As described in section 2.2.4, the MTL does not provide any memory management

mechanism. In order to avoid memory fragmentation, the MTL pre-allocates a pool

66

of objects at initialization. The packet and contezt classes are two examples of pre-
allocated objects. The RMTP implementation building blocks, through the memory
manager building block, resolve this difficulty.

5.5 Others

o Trace

There is no support for the trace mechanism in the MTL. The trace building
block provides a way in which to do offline analysis and debug of RMTPs and

their implementations.

e Finite State Machine

The MTL does not provide any methods to create an FSM. The FSM building
block can be used to create an FSM dynamically. Different events can be defined

and entered to run an FSM.

e Timer

A more efficient and flexible timer solution is provided by the timer building
block than that found in the MTL.

67

Chapter 6
Conclusion

Multicast is used to transmit data from one or many sources to many destinations.
IP multicast services are based on the raw IP or UDP protocol. In order to provide
“reliability” of IP multicast services, multiple reliable multicast transport protocols
have been developed. However, because of different definitions of “reliability” in
different applications, “one size does not fit all”. The research focus of RMTPs has
changed from individual protocols to the protocol building blocks. This change of
focus provides impetus for this thesis describing reliable multicast transport protocol
implementation building blocks.

The MTL was designed as a set of C++ base classes, which were used to implement
RMTPs. However, due to the limits in supporting multiple users, using multiple
access points, and memory management, the MTL is insufficient to be used as the
RMTP implementation building blocks.

After analyzing the requirements of the RMTP implementation building blocks,
we present the RMTP implementation framework. Based on the framework, all imple-
mentation building blocks are grouped into three categories: the application library,
the interface with the OS, and the RMTP process.

With the utilization of synchronous and asynchronous command processing mech-
anisms and the user manager building block in the application library, an application
can easily handle multiple users simultaneously.

In the RMTP process, all packets received from other endpoints in the protocol
are handled by the task and task manager building blocks. These two building blocks

provide a general locating mechanism, which is suitable for any RMTP, to map an

68

incoming packet to its corresponding task(s). The node building block and node
manager building block are designed to handle requests from all users in applications.
With multiple task instances in a node instance, any user can have its own access
point(s). The memory manager building avoids memory fragmentation and provides
memory usage statistics.

The RMTP implementation building blocks presented in this thesis provide a
framework and a full set of common components that can be used to implement a

wide range of reliable multicast transport protocol.

69

Bibliography

[ABHMO03]

[ABHMO04]

[AM99]

[Atw]

[BLMR9S]

[C*92]

[Cal01]

[CSTO1]

[Dee89]

B. Adamson, C. Bormann, M. Handley, and J. Macker. NACK-Oriented
Reliable Multicast (NORM) building blocks. Internet draft (work in
progress), IETF, November 2003.

B. Adamson, C. Bormann, M. Handley, and J. Macker. NACK-Oriented
Reliable Multicast protocol (NORM). Internet draft (work in progress),
IETF, January 2004.

B. Adamson and J. Macker. Multicast Dissemination Protocol version 2
(MDPv2). Internet draft (expired), IETF, October 1999.

J. William Atwood. A classification of multicast protocols. IEEE Net-
work. (to appear in 2004).

J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain
approach to reliable distribution of bulk data. Proc ACM SIGCOMM,
1998.

G. Chesson et al. Xpress Transfer Protocol Definition Revision 3.6. Pro-
tocol Engines Inc., Santa Barbara, CA, January 1992.

K. Calvert. Generic Router Assist - functional specification. Internet
draft (expired), IETF, July 2001.

B. Cain, T. Speakman, and D. Towsley. Generic Router Assist (GRA)
building block motivation and architecture. Internet draft (expired),
IETF, July 2001.

S. Deering. Host extensions for IP multicasting. Request For Comments
1112, IETF, August 1989.

70

[DEF*03]

[EFH*98]

[Erig4)

[FIMO5]

[HWK*00]

[Jia01]

[KCWP00)

[KWCH01]

[KWCTO01]

[LG02]

S. Deering, D. Estrin, D. Farinacci, V. Jacobson, A. Helmy, D. Meyer,
and L. Wei. Protocol Independent Multicast - Dense Mode (PIM-DM):
Protocol specification (revised). Internet draft (expired), IETF, Septem-
ber 2003.

D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley,
V. Jacobson, C. Liu, P. Sharma, and L. Wei. Protocol Independent
Multicast-Sparse Mode (PIM-SM): Protocol specification. Request For
Comments 2362, IETF, June 1998.

H. Eriksson. MBONE: the multicast backbone. Communications of the
ACM, 37(8):54-60, August 1994.

S. Floyd, V. Jacobson, and S. McCanne. A reliable multicast frame-
work for light-weight sessions and application level framing. Proc ACM
SIGCOMM 95, pages 342-356, August 1995.

M. Handley, B. Whetten, R. Kermode, S. Floyd, L. Vicisano, and
M. Luby. The reliable multicast design space for bulk data transfer.
Request For Comments 2887, IETF, August 2000.

Y. Jiang. Timer management in Sandia XTP. Major report, Department

of Computer Science, Concordia University, April 2001.

M. Kadansky, D. Chiu, J. Wesley, and J. Provino. Tree-based reliable
multicast (TRAM). Internet draft (expired), IETF, January 2000.

M. Kadansky, B. Whetten, B. Cain, D. M. Chiu, B. Levine, D. Thaler,
S. Koh, and G. Taskale. Reliable multicast transport building block:
Tree auto-configuration. Internet draft (expired), IETF, March 2001.

M. Kadansky, B. Whetten, D. M. Chiu, and G. Taskale. Reliable mul-
ticast transport building block for TRACK. Internet draft (expired),
IETF, March 2001.

M. Luby and V. K Goyal. Wave and equation based rate control building
block. Internet draft (expired), IETF, December 2002.

71

[LGVT02a)

[LGV+02b]

[LP96)]

[LV04]

[LVG*02a]

[LVG*02b]

[Moy94]

[Moy98]

[PLL*03]

[Pos80]

[Pos81a]

M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, and J. Crowcroft. Asyn-
chronous Layered Coding (ALC) protocol instantiation. Request For
Comments 3450, IETF, December 2002.

M. Luby, J. Gemmell, L. Vicisano, L. Rizzo, M. Handley, and
J. Crowcroft. Layered Coding Transport (LCT) building block. Request
For Comments 3451, IETF, December 2002.

K. Lin and S. Paul. RMTP: A reliable multicast transport protocol.
IEEE INFOCOMM 1996, pages 1414-1424, March 1996.

M. Luby and L. Vicisano. Compact Forward Error Correction (FEC)
schemes. Request For Comments 3695, IETF, February 2004.

M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and
J. Crowcroft. Forward Error Correction (FEC) building block. Request

- For Comments 3452, IETF, December 2002.

M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, and
J. Crowcroft. The use of Forward Error Correction (FEC) in reliable
multicast. Request For Comments 3453, IETF, December 2002.

J. Moy. Multicast extensions to OSPF. Request For Comments 1584,
IETF, March 1994.

J. Moy. OSPF Version 2. Request For Comments 2328, IETF, April
1998.

T. Paila, M. Luby, R. Lehtonen, V. Roca, and R. Walsh. FLUTE - file
delivery over unidirectional transport. Internet draft (work in progress),
IETF, December 2003.

J. Postel. User datagram protocol: Darpa internet program proto-
col specification. Request For Comments 768, IETF, August 1980.
STDO0006.

J. Postel. Internet protocol: Darpa internet program protocol specifica-
tion. Request For Comments 791, IETF, September 1981. STD0005.

72

[Pos81b]

[RV97)

[S+95]

[S+o8]

[San96]

[San97]

[Ste92]

[Ste98a)

[Ste98b)

[WBP+98a]

J. Postel. Transmission control protocol: Darpa internet program pro-
tocol specification. Request For Comments 793, IETF, September 1981.
STD0007.

L. Rizzo and L. Vicisano. A reliable multicast data distribution protocol
based on software FEC techniques. Proc. of The Fourth IEEE Workshop
on the Architecture and Implementation of High Performance Communi-
cation Systems (HPCS’97), Sani Beach, Chalkidiki, Greece June 23-25,
June 1997.

W. Timothy Strayer et al. Xpress Transfer Protocol Definition Revision
4.0. XTP Forum, Santa Barbara, CA, March 1995.

W. Timothy Strayer et al. Xpress Transport Protocol Definition Revision
4.0b. XTP Forum, Santa Barbara, CA, June 1998.

Sandia National Laboratories, P.O. Box 969 Mailstop 9011, Livermore,
California 94551-0969. Meta-Transport Library Reference Manual, 1.5
edition, December 1996.

Sandia National Laboratories, P.O. Box 969 Mailstop 9011, Livermore,
California 94551-0969. Meta-Transport Library User’s Guide, 1.5.1 edi-
tion, 1997.

W. Richard Stevens. Advanced Programming in the UNIX Environment.
Addison-Wesley, Reading, MA, USA, 1992.

W. Richard Stevens. UNIX Network Programming, Interprocess Com-
maunications, volume 2. Prentice-Hall, Upper Saddle River, NJ 07458,
USA, second edition, 1998.

W. Richard Stevens. UNIX network programming: Networking APIs:
sockets and XTI, volume 1. Prentice-Hall PTR, Upper Saddle River, NJ
07458, USA, second edition, 1998.

B. Whetten, M. Basavaiah, S. Paul, T. Montgomery, N. Rastogi, J. Con-
lan, and T. Yeh. The RMTP-II protocol. Internet draft (expired), IETF,
April 1998.

73

[WBP+98b] B. Whetten, M. Basavaiah, S. Paul, T. Montgomery, N. Rastogi, J. Con-

[WHO1]

[WHO3]

[WVK*01]

lan, and T. Yeh. The RMTP-II protocol appendices. Internet draft
(expired), IETF, April 1998.

B. Whetten and T. Hardjono. Security requirements for TRACK. In-
ternet draft (expired), IETF, April 2001.

J. Widmer and M. Handley. TCP-Friendly Multicast Congestion Control
(TFMCC): Protocol specification. Internet draft (expired), IETF, July
2003.

B. Whetten, L. Vicisano, R. Kermode, M. Handley, S. Flod, and
M. Luby. Reliable multicast transport building blocks for one-to-many
bulk-data transfer. Request For Comments 3048, IETF, January 2001.

74

