Refactoring Use Case Models on Episodes

Wei Yu

A Thesis
n
The Department
of

Computer Science

Presented in Partial Fulfillment of Requirements for the Degree of Master of
Computer Science
Concordia University

Montreal, Quebec, Canada

March, 2004

© Wei Yu, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91150-0
Our file Notre référence
ISBN: 0-612-91150-0

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i1

Abstract

Refactoring Use Case Models on Episodes

Yu Wei

Use case models are used to capture functionality requirements of a system. Use
cases can be described in term of the episodes, or subtasks, that are performed. An
episode model captures the organization and relationships of the episodes in a use case.

Refactoring is an approach to reorganize the internal structure of models in order
to improve them or extend them in some way. Refactorings are behavior-preserving
transformations of the models.

This thesis looks at refactoring of use case models based on the information
captured in episode models. We present a metamodel for the use case and the episode
model in order to make precise the syntax of the models and explain the informal
semantics of the models. We detail several refactoring rules for use case refactoring,
including their verification of the behavior-preserving property. We also present a case

study based on the Video Store System.

111

Acknowledgements

I would like to express my sincere thanks to my supervisor, Dr. Gregory Butler. This
thesis would not be where it is today without his guidance, encouragement, and
dedication. Dr. Butler is a valuable asset to the teaching and researching profession, I
could not have asked for a better supervisor. I would also like to thank Ke Xing Rui for
his valuable dedication and suggestions. Thanks to my team-members and friends, Jian
Xu, and RengHong Luo for their participation, and contributions. Special thanks also to
my parents and siblings for their support and understating. Thanks also go out to my best
friend, Vaillant, for his encouragements and concerns. I would also like to take this

chance to thank my darling, Jun Li, for his support and love.

iv

Dedication

%Oﬁ%/émmdd, ﬁ@% %m&/%m% @my

Table of Contents

LIST OF FIGURES.

INTRODUCTION

IX

1.1 PROBLEM ...ttt et e e varr e e et e anas s enenreeananeas

L2 WORK oottt et e

1.3 CONTRIBUTIONS ...eiruvtrerieeerrreenreeessinseenseeanssnesessnessnsessssnsesssssanns

1.4 ORGANIZATION OF THESIS etttttueie et e eeeeeeeeeeeseeeeaenssreeesesessesesannsesees

BACKGROUND

2.1 REFACTORING......ccucirttrieiatieteriesiettitesiessessessssessessesessensesesseesensens
2.2 CASCADED REFACTORINGcocutiiiiiaiiiaiieninresreeesentnesnsneesneenneans
2.3 USE CASE METAMODELocuttiiiietieniieantieaieaereeetesesaesnessseessneens

2.3.1 Regnell’s use case metamodelccoovvevvevvieeeinecrenn,

2.3.2 Rui’s use case MetAmMOAC]coeeeeeeeeeeesereeereseeeesessssnensases

REFINED METAMODEL AND ITS SPECIFICATION

3.1 METAMODEL AT ENVIRONMENT LEVELccovviiiiiiiiiiiisiseeeneneeennnnns
311 USE Case MOdeluueeeeeeeeeearaireiereeeeesersrsrssseesssssesssss
3.1.2 Well-formedness Rules for Use Case Model............................

3.2 METAMODEL AT STRUCTURE LEVEL

3.2.1 Episode Model

3.2.2 Well-formedness Rules for Episode Model..............................

Vi

3.2.3 Specification for Episode Model..................c.ccccooeoininiinnnniininiiiiiiiicnns 26

REFACTORING RULES 29
4.1 REFACTORING PROCESSciiiuiiiiiiiiiiiiiiiiiiniinnnennesins s sasssseressssesnsesnessinsons 29
4.2 REFACTORING USE CASE MODEL ON EPISODESccccooiviiimiiiiiniiiiniienneeninenneens 30
4.3 REFACTORING RULEScoiiiiiiiiiiiiiiiic et n e e 32

4.3.1 Inclusion_generation refactOringcc..ccovuemveeeiiireeesiereeeiireeeeiteeesiseeesneens 32
4.3.2 Extension_generation refaClOVINGccccccovvereeeeeiiveesiireesissressineesineessineesans 35
4.3.3 Equivalence_generation refacCtOriNgccccoevueeeirreciuesireeeiusasesasesssesiseens 39
4.3.4 Reuse_usecase refactOriNg........c.ccouvariiiiiiiriiuiaiienieesseeeasseresanseaseeesseeasens 43
4.3.5 Delete_usecase refaCtOring..........ccouucanuiiiiiriiiniieieeiniiesiiiesiseessseesseeseeeenees 45
4.3.6 Generalization_generation refactoringcooeeeeevmaveeeiveeeeseeveeeenaneens 46
4.3.7 Precedence_generation refactoring...........ccouomeveivveeveeciviseeseeineeerenseeneenns 53
4.3.8 Inclusion_mergence refacCtOringcocuveeevvivveeeereeeireeeieieeeeeiesesseeses s 56
4.3.9 EXtension_mergence refacCtOVINGccoueuvueeiueeeeiureeiieeeeeeieeeeiveeesreeeenenns 58
4.3.10 Precedence_mergence refactOringcccccovveeeviveeveveecveeiveeiireeisenaenennnns 60
4.4 OTHER REFACTORING RULES.......cccesimiiriiniieiiniintenenieeteenientenaeseesasessassesseesseneenns 62

A CASE STUDY 63

5.1 INTRODUCTION ...oouviiiiiiitiitiiie ittt ettt s b bt stesba s bt saenaesaennas 63
S5.1.1 System deSCHIPHONcccocceecuieeiiiiiniieiteceee et 63
5.1.2 ACIOT CRAFACIETISTICSuvevvieeeiiiiieie et eete ettt 64

5.2 USE CASE AND EPISODE MODELSc.ceteterierteieeieniinennereassessessessasassessesesaressesnas 66
5.2.1 The use case diagram for VSScccccuviveniivininieieieseeeseeeese e evens 66
5.2.2 EPiSOAe MOAELScc..coceivuiviiiiiiiiaiieieeee ettt 66

vii

5.3 TUSE CASE REFACTORINGS vvuuuueeeeereeeenanarasesesteestssssassssesessasmssesseesssnmsseseermssonss 70

CONCLUSION 81
6.1 ACHIEVEMENTS OF THIS THESIS ... tteutetueeeueteruetesaeertineeenesstesenesesnnessensssrssssanesens 81
6.2 LTI T ATIONS ..ttt et et et e e e e e et e et e e e eseseeane s s e satnesaaeetanserenesennesenseranes 82
6.3 FUTURE WORK ..ottt e et ee e s et st e e s st ae s e e e e s eee e e e reanenenaans 82

REFERENCES 84

viii

List of Figures

Figure 2.1 Regnell’s use case metamodel..........oocvevieriiriieeceiiiriiniecie e 9
Figure 2.2 Rui’s use case metamodel]cceeeieriiininiiiiiiieieiene e r e 11
Figure 2.3 Use case relationship metamodelcoccoieiiiiiniiiniiiniies e 12
Figure 2.4 Actor relationship metamodelc..cooeviiiniiniiiiiiicc e 14
Figure 2.5 Task relationship metamodel..........ccccooiiviriiininoiiniininie s, 15
Figure 2.6 Goal relationship metamodel..........ccooveieiiiriiniiiniccicieeceeeee e 15
Figure 2.7 Use case model in UML 1.4cocooiiiiiiiieneniieese st 16
Figure 2.8 Metz’s refined use €ase MOdelooveeiiriiiriiniieniciiesicse e 17
Figure 3.1 Use €ase MOoouiiririiniiiiiieieersen ettt 19
Figure 3.2 Episode modelcooiiiiiiiiiiicc e 24
Figure 3.3 Episode tree for the use case “Withdrawing Cash”............c.ccccoevvvivvinivinnnnn 28
Figure 4.1 Refactoring process for use case modelingccocveveeveveereeeivivienienneneen, 30
Figure 4.2 Inclusion_generation refactoring........ccocuevvevieeuieieiericiiieieeceee e en e 34
Figure 4.3 Use case “Withdrawing cash” with its episode modelccooveverinnen.... 35
Figure 4.4 Use case diagram after applying “inclusion_generation refactoring”............. 35
Figure 4.5 Extension_generation refactoring..............ooeveiveeeivierieeieeeeeeeeeeeeeeereeereee s 37
Figure 4.6 Use case “Paying bill” with its epiSOde tree..........ccoevvieviveeieiereereseeeeeeerena. 38
Figure 4.7 Use case “Paying bill” and its extending use case “Register bill”" 39
Figure 4.8 Equivalence_generation refactoring by the developerccccceeveneenen... 41
Figure 4.9 Equivalence_generation refactoring by episode treescooveveveverennene... 42
Figure 4.10 Use cases with “equivalence” relationship............ccccoovevvvivviiiiciceeceeeenn. 42

iX

Figure 4.11 Reuse_usecase refactoring...........cooviviiieieiiiiiniiiice e 44

Figure 4.12 Use case diagram after applying “reuse_usecase refactoring”...................... 44
Figure 4.13 Delete_usecase refaCtoring........cccccvvviiiviiiiiiiiiiniiiiciii e 46
Figure 4.14 Use case diagram after applying “delete_usecase refactoring”..................... 46
Figure 4.15 Generalization_generation refactoring fOr use Cases........c.ccevvvvevevinicrcnnnen 50
Figure 4.16 Use case diagram with generalization relationshipcccccocennnrinicnnns 51
Figure 4.17 Generalization_generation refactoring for actors...........ccecvevieveniiniiencenns 53
Figure 4.18 Precedence_generation refactoring.ccoceevveiciernicenicenecniieeeieeniceneeennee 55
Figure 4.19 Use case diagram after applying “Precedence_generation refactoring” 56
Figure 4.20 Inclusion_mergence refactoring.cocceiirieriricriiiieene e neeeneeas 58
Figure 4.21 Extension_mergence refactoring......c.coccvveveneericreneninenieieneneece e 60
Figure 4.22 Precedence_mergence refactoring.......occevcveveerineiniernienisienesresee s 61
Figure 5.1 Use case diagram for the VSS ..., 66
Figure 5.2 Use case diagram after Step 1cocoiiivimiinieninienieieceiceee e 70
Figure 5.3 Use case diagram for “Web Video Inquiry” after step 2.......cccocvvvevverrnnrnnne. 71
Figure 5.4 Use case diagram after Step 3coceviriiieeienieneninienieiere e 72
Figure 5.5 Use case diagram after applying “reuse_usecase refactoring”..............co........ 73
Figure 5.6 Use case diagram for “Customer Maintenance”cccceeerverrieveeerereernenne. 74
Figure 5.7 Use case diagram for “Video Maintenance”ccoevvevueeveeeeeeeeeeenreeneennns 76
Figure 5.8 Use case diagram for the VSS after applying refactoring rules 77

Chapter 1

Introduction

1.1 Problem

When developing a system, one of the foremost things is to define its requirements. Since
the concept of use case was introduced by Ivar Jacbson [Jacobson92], it has been widely
used to capture the functionality requirements of a system. However, obtaining well-
organized use case models is not easy because the following reasons:

e Requirements are complicated for a large-scale system. The use case model
often contains redundancy when attempting to capture the complete set of
behaviors.

e New requirements are captured during the elaborating of use cases and
therefore new use cases are added to the system.

e Requirements are evolving. New behaviors are added and existing behaviors
may change. Deleting, updating, and adding use cases happen frequently.

Over time, the original design of a use case model is damaged and therefore the

cost of changing is escalating. To get well-organized use case models, refactoring gets
more and more attention from system analysts.

“Refactoring, as a concept, is a kind of reorganization. It implies equivalence; the

beginning and ending products must be functionally identical. Refactoring is a good thing

because complex expressions are typically built from simpler, more gradable

components. Refactoring either exposes those simpler components or reduces them to the
more efficient complex expression.” - [WikiO4]

“In software, refactoring is a way to restructure software to make design insights
more explicit, to develop frameworks and extract reusable components, to clarify the
software architecture, and prepare to make additions easier. Refactoring can help you
leverage your past investment, reduce duplication and streamline a program.” — Bill
Opdyke [Opdyke00]

Refactoring improves the structure of software yet does not change its behavior.
Therefore, it is also called behavior preserving transformations. How to obtain well-
organized use case models through refactoring technique is one of the popular research

topics in software analysis today.

1.2 Work

The purpose of the thesis is to apply the refactoring to use case modeling. Since
refactoring as a concept has not previously been applied to use case modeling, there is no
clear principle of what to do and how to do it. Through the project, we tried to clarify the
refactoring rules used in use case models. Given a case study, we demonstrate how to
refactor use case models step by step. With the refactoring, we restructure the use case
composition, rearrange their relationships, and reduce the redundancy.

With Dr. Butler and his PHD student Rui’s guidance, we developed a use case
refactoring tool, which includes several models’ editors and implements the refactoring
rules that are provided by Rui; we also demonstrated a case study based on the
Automated Teller Machine (ATM) with the tool’s support. For the use case refactoring

tool, Jian Xu was responsible for the use case model editor, he implemented the

refactoring rules that are related to the use case model. RenHong Luo was responsible for
the task and goal models editors, he implemented the refactoring rules that are related to
the task and goal models. I, the author of the thesis, was responsible for the episode and
event models editors, I implemented the refactoring rules that are related to the episode
and event models.

More over, the author refined the use case metamodel at the environment and
structure levels; also, I introduced some new use case refactoring rules based on the
information captured by episodes; finally, I presented a case study of the Video Store
System (VSS) to demonstrate how the refactoring changes the structure of use case

models.

1.3 Contributions

The use case refactoring is a team-work project. The author made the following
contributions for the project.

The use case metamodel at the environment and structure levels are refined based
on the analysis of Regnell and Rui’s use case metamodel and Metz’s contribution for
refining use case model. More constraints are applied and are given in OCL (Object
Constraint Language). The episode semantics are also explained in informal text.

To explain refactoring in use case modeling, the author defines several use case
refactoring rules to change the organization of use case models based on the information
captured in episode models. The rules are presented in detail, including motivation,
definition, and verification, with an example based on the Automatic Teller Machine
(ATM) to demonstrate how the rule is applied in practice. These rules focus on use case

composition and decomposition, and the reorganization of their relationships.

To facilitate the use case refactoring, we developed a tool. The tool provides not
only editors for building use case models at three levels, but also various refactorings
according to the refactoring rules provided by Rui. The author was responsible for
programming the use case models at the structure and event levels. First of all, I
participated in the discussion of the refactoring rules provided by Rui. Afterward, I
implemented an episode model editor and an event model editor using JAVA.
Meanwhile, I also defined XML schema files to standardize the format of the episode and
event models for storage. Next, I implemented Rui’s refactoring rules that related to the
structure and event levels. Most of these rules are used to change use case models at the
environment level. Finally, a case study based on the Automatic Teller Machine (ATM)
is demonstrated using the tool.

To demonstrate how the refactoring rules introduced in this thesis are applied to
change the organization of use case models, the Video Store System (VSS) is analyzed
and used as a case study for the refactorings. Through this case study, some of the
refactoring rules are applied and the transformation of use case models is presented step

by step.

1.4 Organization of Thesis

The thesis is organized into 5 chapters.
e Chapter 2: This chapter introduces the background and basic knowledge used in
the thesis. The previous work of refactoring, such as cascaded refactoring, is
presented. Regnell’s and Rui’s use case metamodels, which are the basis of our

use case tool, are analyzed in detail.

Chapter 3. In this chapter, we refine the metamodel of use case at the
environment and structure levels. The formal syntax of the refined metamodel is
given using OCL. The informal semantic of the metamodel is also explained.
Chapter 4: In this chapter, we discuss the refactorings applied in use case
modeling. Several use case refactoring rules based on episodes are explained in
detail from different perspectives: motivation, definition, verification, and
example.

Chapter5: This chapter presents a case study based on the Video Store System
(VSS). Through this case study, we demonstrate step-by-step how the refactoring
rules introduced in chapter 4 are applied to change the organization of use case

models.

Chapter 2

Background

This chapter introduces the basic knowledge that are used in our refactoring project. The
concept of refactoring is introduced. Especially, the cascaded refactoring for framework
evolution is explained. Next, the previous work on the use case metamodel, such as
Regnell and Rui’s, which forms the basis of our refined metamodel is discussed in detail.

Furthermore, Metz’s contribution of refining the use case model is explained briefly.
2.1 Refactoring

The concept of refactoring comes from mathematics when we transform an expression
into an equivalent expression with factors. The factors express the same statement yet
with clearer organization. Therefore, refactoring is a kind of reorganization that implies
equivalence [Wiki03] [Mens04].

In software, refactoring is the process of changing a software system in such way
that it does not alter the external behavior of the code yet improves its internal structure
[Fowler99]. Therefore, it is also called restructuring or "behavior preserving
transformation”. It is one of the core element of lightweight or agile methodologies such
as eXtreme Programming. It is also an effective strategy for planning the rejuvenation of
legacy software [MillerO1].

Refactoring has been successfully used in source code reorganization in software;
it makes code clearer, simpler, and elegant. In 1992, William F.Opdyke first published

26 lower-level and 3 high level refactorings in his PHD thesis [Opdyke92]. In 1999,

Lance Tokuda evolved object-oriented designs with refactorings[Tokuda99]. To make
refactoring more practical, Donald Bradley Roberts developed the Refactoring Browser
for Smalltalk in 1999 [Roberts99]. Martin Fowler focused on the refactoring process and
provided principles for practicing refactorings in his book, Refactoring: Improving the
Design of Existing Code [Fowler99], to make refactoring more practical. Dr. Butler
extended refactoring to various models of a framework, called cascaded refactoring

[Butler01], which is introduced in next section.
2.2 Cascaded Refactoring

Cascaded refactoring for the development and evolution of application frameworks is a
hybrid approach combining the modeling aspects of top-down domain engineering
approaches and the iterative, refactoring approaches of the bottom-up objected
community [ButlerO1]. It extends refactoring to a set of models that describe a framework.
The set of models in cascaded refactoring include [ButlerO1]:
e A feature model organizing common and variable features;
® A use case mode] of requirements including variation points;
¢ An architectural model with hotspots;
® A design showing collaborations and the overlapping of roles from design
patterns onto the hotspots;
e The source code, with classes, hooks, and templates.
Cascaded refactoring is the process of sequentially refactoring of each model, one
after the other, where the restructuring of the previous model becomes the rationale or
constraints for the current refactoring of a model. Cascaded refactoring relates to a set of

refactorings across the set of models. Particularly, the refactorings for use case models

include [ButlerO1]:

create_abstract_actor identifies two actors a; and a, with a common super-actor a
as their parent.

create_abstract_usecase identifies two use cases u; and u; as specializations of a
cOmmOon super use case u.

merge_actors identifies two actors a; and a, as a common actor a.
merge_behaviours identifies two use cases u#; and u; as a common use case u.
split_behavior distributes a set of scenarios for a use case u across two new use
cases u; and us.

split_actor identifies the special cases a; and a; of an actor a.
make_episode_usecase takes a use case u with an episode e and create a new use
case u; with behaviour precisely that of the episode e, a relationship link u
includes u; is added.

make_scenario_usecase takes a use case u with a scenario s and creates a new use
case u; with behavior precisely that of the scenario s, a relationship link u
uncludes u; is added.

Based on the above refactorings for use case models, Rui suggested more

refactoring rules in his PHD proposal, which forms the basis of our refactoring tool.

2.3

Use case metamodel

This section discusses the use case metamodel provided by Regnell first; followed by

Rui’s modified metamodel, which forms the basis of our use case refactoring tool. In

addition, Metz’s contribution to refine the use case metamodel is explained briefly.

2.3.1 Regnell’s use case metamodel

Use cases have been widely used in functionality requirements gathering and eliciting
since Ivar Jacobson first introduced the concept [Jacbson92]. A use case metamodel is the
basis for the software development that starts from use case recognition. Figure 2.1

shows Regnell’s use case metamodel [Regnell99].

is- has
User e, Actor | Goal
Environment \ participates-in % satisfies
describes-usage-of
Level Use Case g »| Service
ha
consists-of Context
define defines
Level Y ¥
‘ IEpisodel | Precond I I Postcond
consists-o
consists-of
Event !
Leyel

Response |

Figure 2.1 Regnell’s use case metamodel

The use case metamodel includes three levels, which reflect different abstractions
respectively. At the environment level, a use case is related to the entities that are internal
to the intended system. At the structure level, the internal structure of a use case is
revealed together with its different variants and parts. At the event level, individual
events are characterized at lower abstraction level [RuiO1].

At the environment level, the key elements are use cases and actors. The use case
is used to define the behavior of a system without revealing the entity’s internal structure.
Each use case specifies a sequence of activities that the entity can perform, interacting

with actors of the entity. An actor defines a coherent set of roles that users of an entity

can play when interacting with the entity. An actor may be considered to play a separate
role with regard to each use case with which it communicates [UMLO1]. Other elements
include users, services, and goals. A user is an instance of an actor. A service is a
package of functional entities (features) offered to the users in order to satisfy one or
more goals that the users have. A goal is an objective that users have when using the
services of a target system. Goals are often used to categorize users into actors. The
elements for each level are introduced in following paragraphs.

At the structure level, the key elements are scenarios, episodes and contexts. A
scenario is a specific and bound realization of a use case described as a sequence of a
finite number of events with linear time order [RuiO1]. A use case may be divided into
coherent parts, called episodes. These coherent episodes reveal the internal structure of a
use case, and describe the functionalities of a use case. A context defines the scope of a
use case, including its preconditions and postconditions. Preconditions describe the state
or status of the system before a use case executes; postconditions describe the status of
the system as a result of the use case completing [Armour01].

At the event level, the key elements are events. There are three types of events:
stimulus, action, and response. A stimulus is the message from users to the target system.
A response is the message from the target system to users. An action is the target system
intrinsic event which is atomic in the sense that there is no communication between the
target system and the users that participate in the use case [RuiO1]. The difference

between an event and an episode is that an event takes no duration whereas an episode

does.

10

2.3.2 Rui’s use case metamodel

Rui presented a refined metamodel in his PHD proposal, which is shown in Figure 2.2

[RuiO1].

Task | 1-* Fulils
1.>
Has
1 WX
User | » Dsancaes +| Actor | 1.* Has * | Goal
*
* 1.x
Parttpaes-in Patipates-n Satsfes
% 1.x
. 1 *| Use Case | 1" Descrbes *| Sewre
Environment Levet
1 WX
1.*
: <<istance0 £> Consstsof Has
*
Scenarb 17| Epsode 0.1 | context
1xTT . T
Structure Level Consistsof)
Consstsof
.. Defnes Defnes
* * *
Event PreCondibn PostCondibn
Event Level /\
Ba Ba Ba
Stmulis Response Acton
T 1.x j> 1.
*
Pammeter

Figure 2.2 Rui’s use case metamodel
Rui extended the metamodel with the concept of task. A task describes what the

user will do with the software system; it provides better support for user interface design

[RuiO1].

11

In addition, Rui introduced more relationships for use cases. He also defined actor
relationships, task relationships, and goal relationships, which people can use to organize
a hierarchical actor structure, task structure, and goal structure. The metamodels for use
case relationship, actor relationship, task relationship, and goal relationship are

introduced in the following.

Inclusion Precedence Similarity
Extension UseCaseRelationship < Equivalence
|2

Figure 2.3 Use case relationship metamodel

The use case relationship metamodel is shown in Figure 2.3. The relationships
among use cases are explained as follows:

e Inclusion

An inclusion relationship between two use cases means that the behavior defined
in the target use case is included at one location in the sequence of behavior performed by
an instance of the base use case. It specifies that one use case explicitly incorporate the
behavior of another at the given point. When one use case instance reaches the location
where the behavior of another use case is to be included, it performs all the behavior
described by the included use case and then continues according to its original use case.

One use case may be included in several other use cases and one use case may include

12

several other use cases. The included use case may not be dependent on the base use case.
In that sense the included use case represents encapsulated behavior that may easily be
reused in several use cases. Moreover, the base use case may only be dependent on the
results of performing the included behavior and not on structure, like Attributes and
Associations, of the included use case [RuiO1].

e Extension

An extension relationship between use cases specifies that one use case extends
the behavior of another at the given extension point. One use case extends another by
introducing alternative or exceptional processes. It defines that instances of a use case
may be augmented with some additional behavior defined in an extending use case. The
extension relationship contains a condition and references a sequence of extension points
in the target use case [Rui01].

e Generalization

A generalization relationship between use cases implies that the child use case
contains all the attributes, sequences of behavior, inclusion points, and extension points
defined in the parent use case, and participate in all relationships of the parent use case.
The child use case may also define new behavior sequences, as well as add additional
behavior into and specialize existing behavior of the inherited ones [RuiOl1].

e Similarity

A similarity relationship between use cases means that one use case corresponds
to or is similar to or resembles another in some unspecified ways. Similarity is a

relationship often noted early in use case modeling. It provides a way to carry forward

13

insight about relationships among use case even when the exact nature of the relationship
is not yet clear [Rui0O1].

e Equivalence

An equivalence relationship between use cases specifies that one use case serves
as an alias for another use case. Equivalence flags those cases where a single definition
can cover what are, from the user’s perspective, two or more different intensions. It
makes it easier to validate the model with users and customers while also assuring that
only one design will be developed [RuiO1].

e Precedence

A precedence relationship between use cases means that one use case is
sequenced (appended) to the behavior of the preceding use case [Rui01]. Precedence is a
relationship that exposes the chronological order of use cases. It is a special case of

inclusion relationship.

Actor —
Relationship Generalization

Figure 2.4 Actor relationship metamodel
The metamodel for actor relationship is shown in Figure 2.4. If two or more actors
may have commonalities, i.e. communicate with the same set of use cases in the same
way, the commonality is expressed with generalizations to another (possibly abstract)
actor, which models the common role(s). This means that the child actor will be able to
play the same roles as the parent actor, i.e. communicate with the same set of use cases,

as the parent actor, in the same way [RuiO1].

14

; Task Generalization
Inclusion r> Relationship i

Figure 2.5 Task relationship metamodel

The metamodel for task relationship is shown in Figure 2.5. The relationships
among tasks are explained as follows.

e Inclusion

A task may contain other tasks, which are called subtasks. A subtask may be
included in several tasks [RuiO1].

e QGeneralization

Two or more tasks may have commonalities, i.e. contain the same set of subtasks.
The commonality is expressed with generalizations to another task, which models the |

common task(s) [RuiO1].

Inclusion Goal Generalization
> Relationship <

Figure 2.6 Goal relationship metamodel
The metamodel for goal relationship is shown in Figure 2.6. The relationships
among goals are explained as follows.
e Inclusion
A goal may contain other goals, which are called subgoals. A subgoal may be

included in several other goals and a goal may include several subgoals [RuiOl].

o Generalization

15

Two or more goals may have commonalities, i.e. contain the same set of subgoals.
The commonality is expressed with generalizations to another goal, which models the

common goal(s) [RuiO1].

2.3.3 Metz’s refined use case model

UML is accepted by most software developers. The use case model in UML 1.4 is shown

in Figure 2.7.

Classifer

i Instarce
s Cove +classifier

{Rrem avens Bebassior}

1. +

ModelElement

fhoen Coved

UsaCase N N %
Ador +edensionPort Eda rsionPant

1 . flecation : LocatiorReterenox
“addticn | 1 1} +base tedensin |1 4| +hase +edensionPoirt
1.2
fordered}
* | +iclude vederd |+ »
Inchids | Exlend |)

zondiion: BoolxenEsgpressicn

!

W
Relstionstip

fleen Care)

Figure 2.7 Use case model in UML 1.4
To remove inconsistencies caused by the notion of use case interleaving

[MetzO1a], Metz [Metz01b] suggested a refined use case model, shown in Figure 2.8.

16

Real
RajoinPaint
: Muil
{ordered} {ordered) RejonPoint
inelusion exltensicsn
use Gase use case

1 %

base 1 1 base

Figure 2.8 Metz’s refined use case model

In Metz’s refined use case model, the attribute condition of Extend is removed
from Extend and reintroduced as an explicit class Condition. Furthermore, a metamodel
element PointOfRejoin with two subtypes RealRejoinPoint and NullRejoinPoint is
introduced to specify a reference to the single return location within the base interaction
sequence. An extend relationship will have an associated RealRejoinPoint if it represents
an alternative part; an extend-relationship will have a NullRejoinPoint if it represents
either an alternative history or a use case exception.

Inspired by Metz, we refined the use case metamodel at the environment and
structure levels, namely use case model and episode model, which are discussed in the

next chapter.

17

Chapter 3

Refined metamodel and its

specification

This chapter introduces the refined use case metamodel. The use case model, which is a
refined metamodel at the environment level, is given first. Meanwhile, more constraints
for its syntax are explained in OCL. Afterward, the episode model, which is a refined

metamodel at structural level, is presented. Similarly, more constraints for its syntax are

given in OCL. Its informal semantics is also explained briefly.

3.1 Metamodel at environment Level

3.1.1 Use Case Model

Use cases, actors, and relationships among them form a use case model. In addition to
inclusion, extension, and generalization relationships between use cases, more
relationships, such as precedence, similarity, equivalence, are introduced to our refined

use case model. The refined use case model is shown in Figure3.1.

18

Actor

o

1
Association Extension
- N N !
Generalization | . .
! L L] ExtensionPoint
UseCase guard
Precedence | .] base
1 InclusionPoint
base
Equivalence |, 1 1 1
. 1.*
Similarity Inclusion ;
Relationship

Figure 3.1 Use case model

In Figure 3.1, PointOfRejoin is removed from our model since use case
interleaving is harmful and should be avoided [Simons99] [Metz01b]. In addition, since
the inclusion relationship implies that the behavior in included use case will be inserted
into the base use case, the inserting point must be clear in the base use case. However, it
is hard to figure out the actual position of an inclusion point without discovering the base
use case’s internal structure of behavior. Therefore, the insertion points are associated
with not only the base use case and the inclusion relationship, but also the episode model
of the base use case.

The extension relationship implies that the behavior defined in the extending use
case will be inserted into the base use case based on a certain condition. Similarly, the
extension points are associated with not only the basc use case and the extension

relationship, but also the episode model of the base use case.

19

3.1.2 Waell-formedness Rules for Use Case Model

A diagram is typically not refined enough to provide all the relevant aspects of a
specification. Therefore, it is necessary to depict the additional constraints about objects
in the model. OCL (Object Constraint Language) is a formal language that remains easy
to read and write. It is developed to supply a gap between a natural language and a formal
language when they are used to describe constraints. It is also widely used in UML
[UMLO1] [Larman98} [Booch99].

For our use case metamodel, OCL is used to define its constraints. Moreover, we
can define stereotypes that are specific for our model using UML’s extension mechanism.

The following well-formedness rules apply to the use case model.

Context Actor inv:

1) Actor can only have Association relationship to UseCase
self.associations->forAll(a | a.connection->size = 2 and
a.allConnections ->exists(r | r.type.ocllsKindOf(Actor)) and
a.allConnections ->exists(r | r.type.ocllsKindOf{ UseCase)))

2) The name of an Actor must be unique within a use case model
self.alllnstance->forAll(a;, a; | aj.name = az.name implies a; = az)

Context UseCase inv:

3) The name of a UseCase must be unique within a use case model.
self.alllnstance->forAll(u;, uz | uj.name = u.name implies u; = u;)

4) Usecase can only have binary Extensions.

self.extensions -> forAll(a | a.connection ->size = 2)

5) Usecase can only have binary inclusions.

20

self.inclusions -> forAll(a | a.connection ->size = 2)

6) Usecase can only have binary Equivalences.

self.equivalences -> forAll(a | a.connection ->size = 2)

7) Usecase can only have binary Similarities.

self.similarities -> forAll(a | a.connection ->size = 2)

8) Usecases can only have binary Generalizaions.

self.generalizations -> forAll(a | a.connection ->size = 2)

9) The names of the ExtensionPoints must be unique within a UseCase.
self.allExtensionPoints -> forAll(x, y | x.name = y.name implies x = y)

10) The names of the InclusionPoints must be unique within a UseCase.
self.alllnclusionPoints -> forAll(x, y | x.name = y.name implies x = y)

Context Extension inv:

11) Extension can connect only two UseCases within a use case model.
self.alllnstances->forAll(a | a.connection->size = 2 and a.allConnections-
>forAll(r | r.type.ocllsKindOf{ UseCase)))

12) The ExtensionPoints must be included in set of ExtensionPoint in the
target UseCase.

self.base.allExtensionPoints -> includesAll(self.extensionPoint)

Context Inclusion inv:

13) Inclusion can connect only two UseCases within a use case model.
self.alllnstances->forAll(a | a.connection->size = 2 and a.allConnections-

>forAll(r | r.type.ocllsKindOf{ UseCase)))

21

14) The InclusionPoints must be included in set of InclusionPoint in the target
UseCase.
self.base.alllnclusionPoints -> includesAll(self.inclusionPoint)

Context Eqguivalence inv:

15) Equivalence can connect only two UseCases within a use case model.
self.alllnstances->forAll(a | a.connection->size = 2 and a.allConnections-
>forAll(r | r.type.ocllsKindOf{ UseCase)))

Context Similarity inv:

16) Similarity can connect only two UseCases within a use case model.
self.alllnstances->forAll(a | a.connection->size = 2 and a.allConnections-
>forAll(r | r.type.ocllsKindOf{UseCase)))

Context Generalization inv:

17) Generaliztion can connect only two UseCases or two Actors within a use
case model.

self.alllnstances->forAll(a | a.connection->size = 2 and (a.allConnections-
>forAll(r | r.type.ocllsKindOf{UseCase))) or (a.allConnections->forAll(r |
r.type.ocllsKindOf(Actor))))

18) Association can connect only Actor and UseCase within a use case model.
self.alllnstances->forAll(a | a.connection->size = 2 and a.allConnections-

>exists(r | r.type.ocllsKindOf{Actor)) and a.allConnections->exists(r |

r.type.ocllsKindOf(UseCase)))

Context ExtensionPoint inv:

19) The name of ExtensionPoint must be unique.

22

self.allInstance->forAll(p,, p2 | pi.name = py.name implies p; = p,)
20) The name can not be empty

not self.name =

Context InclusionPoint inv:

21) The name of InclusionPoint must be unique.
self.alllnstance->forAll(p;, p2 | p1.name = pr.name implies p; = p;)
22) The name can not be empty

>

not self.name =

3.2 Metamodel at Structure level

3.2.1 Episode Model

A use case can be described in terms of episodes. Each episode represents a subtask, or a
part of the dialogues in the scenario that perform the subtask [ButlerO1]. A high-level
Message Sequence Charts (MSCs) can be used to depict a use case and its episodes,
while an operator expresses sequence, alternative, iteration, or parallel relationships
among episodes [Regnell96].

The behavior of a use case is described in an episode model. Elements in the
episode model include primitive episodes and composite episodes. With the inclusion and
extension relationship between use cases, the inserting point related to inclusion or
extension relationship must be clarified within the episode model. Therefore, another
element, namely pseudo episode, is introduced in the episode model to indicate the
inclusion or extension points for inclusion or extension relationship between use cases.
For a composite episode, it takes sequence, alternation, iteration, and parallel as its

operator, episodes as its parameters.

23

Based on the above analysis, the refined episode model is shown in Figure 3.2.

UseCase
1
0.1
EpisodeModel
ExtensionPoint
guard
Episode PseudoEpisode
operand <)— K
o Zj InclusionPoint
parent| CompositeEpisode PrimitiveEpisode
operator
Figure 3.2 Episode model

3.2.2 Well-formedness Rules for Episode Model

We use OCL to explain the episode model’s constraints. The following well-
formedness rules apply to the episode model.

Context UseCase inv:

1) A use case can be refined using an episode model.
Self.EpisodeModel->size() = 0 or
Self.EpisodeModel->size() = 1

Context EpvisodeModel inv:

2) An episode model can be represented as a tree, only one composite

episode acts as the root for the episode tree.

self. Episode. CompositeEpisode.alllnstances-> isUnique(e| e.isRoot = true)
3) An episode model refines only one use case.

self.UseCase->size() = 1

24

Context Episode inv:

4) An Episode is specified as a composite episode, primitive episode, or
pseudo episode in an episode model.

self. EpisodeModel.oclType.elements(forAll(m |

m.stereotype = PrimitiveEpisode or m.stereotype = CompositeEpisode or

m.stereotype = PseudoEpisode))

Context CompositeEpisode inv:

5) There is only one episode tree in an episode model and the root is a
composite episode.

self.alllnstances->isUnique(e| e.isRoot = true)

6) A composite episode is a root node in an episode tree when its parent set is

empty.

self.parent->isEmpty implies self.isRoot = true;

7) There are 4 kinds of operators in a composite episode: sequence,

alternative, iteration, and parallel.

self.operator.type: enum {sequence, alternative, iteration, parallel}

8) A composite episode consists of one or more composite episodes,
primitive episodes, or pseudo episodes.
let ¢ = self.child
c(forAll (ce| ce.typeOfEpisode = CompositeEpisode or ce.typeOfEpisode =
PrimitiveEpisode or ce.typeOfEpisode = PseudoEpisode)

Context PrimitiveEpisode inv:

9 The name of PrimitiveEpisode can not be empty

25

IR

not self.name =
10) The name of PrimitiveEpisode must be unique.
self.alllnstance->forAll(p;, p2 | p1.name = pa.name implies p; = p2)
11) A primitive episode is an atomic episode.

self.type = atomic

Context PseudoEpisode inv:

12) The name of PseudoEpisode can not be empty
not self.name =

13) The name of PseudoEpisode must be unique.

self.alllnstance->forAll(p;, p2 | p1.name = ps.name implies p; = p;)

3.2.3 Specification for Episode Model

An episode model consists of various episodes. An episode that defines a basic activity
for implementing the behavior of a use case is considered a primitive episode. Episodes
with their operator, that define a complex activity, are considered a composite episode.
The operators allowed are sequence, alternation, iteration, and parallel. An episode that
indicates an insert point for the inclusion or extension relationship between use cases is
considered as a pseudo episode.

Based on the above analysis, episodes are classified into 6 categories:

e Sequence episode: a composite episode. The child episodes are executed one-by-
one in order; this relationship is used to describe sequential activities in a use

case.

26

e Alternative episode: a composite episode. Only one of the child episodes may be
executed based on the condition; the condition is defined in the alternative
episode. This relationship is used to describe alternative course in a use case.

e [Iteration episode: a composite episode. The child episodes are executed multiple
times according to the parameter that is defined in the iteration episode. This
relationship is used to describe repetitive activities in a use case.

e Parallel episode: a composite episode. The child episodes have no time order
constraints for each other. In other words, they can be executed in any order. This
relationship is used to describe the parallel activities in a use case.

e Primitive episode: an atomic episode. It is the fundamental element in an episode
model; it can not be divided.

e Pseudo episode: a special episode. It is used to indicate the inclusion point or
extension point in the base use case when an inclusion or extension relationship
exists between the base use case and the related use case.

Adopting the tree structure, it is easy to represent the relationship between a
composite episode and its child episodes. A parent node in the tree represents a
composite episode. A leaf node in the tree represents an atomic episode. The type of a
parent node that could be sequence, alternative, iteration, or parallel, implies the
relationship among its child nodes. For example, in the ATM (Automatic Teller Machine)

system, the episode tree of a use case Withdrawing Cash is shown in Figure3.3.

27

EH EO0: Withdrawing cash (Sequence)

[] E1l: Card and code verification (Sequence)

el: Insert card

e2: Enter code

e3: Card and code validation

] E2: Are card and code valid? (Alternative)

Y 9
= EE E3: Withdraw cash (Sequence)

M

e4: Chose an account for withdrawing cash

e5: Input an withdrawing amount

e6: Receive cash

e7:Return error message

e8: Return card
Figure 3.3 Episode tree for the use case “Withdrawing Cash”

In Figure 3.3, EO is a sequence episode; its three children episodes El, E2, and 8
are executed one by one. E2 is an alternative episode; either E3 or e7 will be executed.
E2 and E3 are also sequence episodes.

Episode composition and decomposition not only make a use case understandable
and be of manageable size, but also improve reusability. Moreover, an episode model can

be easily translated into an indented textual notation by a depth-first traversal of the tree.

28

Chapter 4

Refactoring Rules

This chapter introduces use case refactoring rules based on episode models. The
refactoring process for use case refactoring is first presented. Next, the general
refactoring is explained briefly. Finally, several refactoring rules are selected and
explained in detail from motivation, definition, and verification perspectives. In addition,
an example following each rule is given to demonstrate how the rule works in practice.

To simplify, the episode tree is described in indented textual notation. Dewey
Decimal system is used to index each sentence. Abbreviations for the type of composite
episodes are: “Seq” stands for “Sequence”, “Alt” stands for “Alternation”, “Ite” stands
for “Iteration”, “Par” stands for “Parallel”.

4.1 Refactoring process

As the use case metamodel shows, a use case is depicted at three levels: environment,
structure, and event level. The environment level shows high-level specifications of
functionalities of a system, which are described by use cases, actors and the relationships
among them. The structure level depicts the specific behaviors and interactions that take
place between the actor and system within the scope of the use case in terms of episodes.
The event level represents a lower abstraction level where the interacting messages and
events are characterized.

What use case refactoring does is to choose the correct levels of abstraction and

granularity, identify commonality, eliminate redundancy and reuse functionality.

29

In general, a top-down development and bottom-up refactoring process is used.
We start from the environment level, and gradually reveal the details of each use case at
the structure level or go further to the event level to get the initial model of a project.
Next, starting from the event level or structure level, we combine commonalities and
abandon redundancies to get clean and “slim” structure level diagrams or environment
level diagrams. The process is shown in Figure 4.1. It is an iterative and incremental

process.

Identify use cases & actors, Well-organized Envi 1
generate initial use case use case model nvironment Leve
model
developing w refactoring
A 4
Build episode Moditied
model for each use f———=—=—x=pp| episode model
case refactoring Structure Level
developing M refactoring
A 4
Build event model for === Modified Event Level
each episode refactoring event model

Figure 4.1 Refactoring process for use case modeling

4.2 Refactoring use case model on episodes

One of the significant parts of building the use case model involves breaking up use cases
in search of simpler ones and factoring out common behavior and variant paths [Scott02]
[Armour01]. In our research, we start from the episode model to discover common
behaviors and therefore break up use cases. Such refactoring will result in the following

relationships between use cases:

e Inclusion

30

With an inclusion relationship, one use case explicitly includes the behavior of
another use case at a specified point within its main course of activities. The included use
case may be connected with one or more base use cases. The inclusion mechanism is
used to factor out the common behavior, that would appear within multiple use cases.

e Extension

With an extension relationship, a base use case implicitly includes the behavior of
another use case at one or more specified points under certain conditions. The extension
mechanism is used to factor out the optional behavior that having several steps associated
with it.

¢ Generalization

Generalization works the same way for use cases as it does for classes: a parent
use case defines behavior that its children can inherit, and the children can add to or
override that behavior. The generalization mechanism is used to factor out the similar
structure of behavior in two or more use cases. These use cases share similar structure of
the behavior that may be abstracted into their parent use case. Meanwhile, the common
primitive episodes are removed to their parent use case and then are inherited by them.

e Similarity

With a similarity relationship, the related use case must share similar structure of
behavior or primitive episodes. However, the exact nature of the relationship is not clear
yet. A similarity is created temporarily and will be eventually deleted when the nature of
relationship is clear. The similarity mechanism is used to carry forward the potential

relationship that could be clarified in the future.

e Equivalence

31

With an equivalence relationship, the related use cases are behaviorally
equivalent. The equivalence mechanism is used to describe two equivalent use cases that
exist for different users.

e Precedence

With a precedence relationship, the preceding use case executes prior to the base
use case. A precedence relationship is generally factored out from an inclusion
relationship. For example, “ATM withdrawal” can be broken into two smaller use cases:
“ID verification” and “Withdraw money”. We can say “Withdraw money” use case
includes “ID verification” use case. However, such relationship is too vague to precisely
render that the use case “ID verification” must occur prior to the use case “Withdraw
money”. In such situation, a precedence relationship can describe the chronological order
more precisely than an inclusion relationship.

The precedence mechanism is used to factor out the chronological order between
use cases. It is also a special case inclusion relationship but it is more effective in
discovering chronological order between use cases than an inclusion relationship.

4.3 Refactoring rules

The use case refactoring rules that are based on the information captured in episode

models are explained one by one in following sub-sections.

4.3.1 Inclusion_generation refactoring

Motivation

Constructing an inclusion relationship is one of the efficient ways to break up use cases

into smaller use cases. When the episode model of a use case is too complicated, the best

32

way is to break up the episode tree and therefore a new use case with a sub-tree as its
episode tree is separated from the base use case. Meanwhile, an inclusion relationship
from the base use case to the new use case is generated.

The specific process is: take a sub-tree from the episode tree of the base use case;
construct a new use case with the sub-tree; generate an inclusion relationship from the
base use case to the new use case; substitute the sub-tree in the base use case by a pseudo
episode, which indicates the inclusion point for the inclusion relationship. The refactoring
helps to reduce granularity, eliminate redundancy, and improve the reusability.
Definition
Preconditions:

e A use case u with its episode tree t;

e The sub-tree t;, which describes relative independent part of functionality of u.

e None of #;’s ancestors is an alternative composite episode (this condition
guarantees that the included use case must take place when the base use case is
executed).

Parameters:

e u: the use case that is to be broken up;

e 1: the episode tree of u;

e 1, the sub-tree of 7;

Postconditions:

e The sub-tree ¢; of ¢ is replaced by a node #;’, where #;” is a pseudo episode that

indicates an inclusion point.

e A new use case u’ is generated; its episode tree is 7;;

33

e A new inclusion relationship from u to u’ is generated.

Verification

Let us analyze the semantics of the inclusion relationship. Use case u includes use case u’
means that u’ is part of u. In other words, #” implements part of functionality of u. When
u executes, u” will be invoked at a specific point that the pseudo episode #;” defines.

From the view of the episode tree, the specific point is defined in z;’, which is the
node that substitutes #;, When refactoring, ¢; is taken off from ¢ and becomes the episode
tree of u’. Following the inclusion relationship, the episode tree of use case u’ is invoked
and #;’ is substituted as what it was before the refactoring. Therefore, the
inclusion_generation refactoring is a behavior preserving transformation. The refactoring

is shown as Figure 4.2.

<<include>>
t/

Figure 4.2 Inclusion_generation refactoring
Example

In the ATM system, suppose there is a use case “Withdrawing cash” with its episode tree,

shown in Figure 4.3.

34

D

Withdrawing cash

(Seq)

1 (Seq) Card and Pin validation
1.1 A customer inserts a card
1.2 The system validate the card
1.3 The customer enters PIN
1.4 The system validate the PIN

2 (Seq) Withdrawal cash
2.1 ...

3 (Seq) Return card and receipt
31..

Figure 4.3 Use case “Withdrawing cash” with its episode model

From the episode tree, we notice that the sub-tree “Card and Pin validation” is

complicated and can be extracted as a new use case. The use case diagram after applying

“inclusion_generation refactoring” is shown in Figure 4.4.

<: '~*> <<include>> N (/>

Withdrawing cash Card and PIN validation

(Seq) (Seq) Card and Pin validation
1 Card and Pin validation (Inclusion) 1 A customer inserts a card
2 (Seq) Withdrawal cash 2 The system validate the card
2.1 .. 3 The customer enters PIN
4 The system validate the PIN
3 (Seq) Return card and receipt

31

Figure 4.4 Use case diagram after applying “inclusion_generation refactoring”

4.3.2 Extension_generation refactoring

Motivation

An extension relationship specifies one use case extends the behavior of another at the

given extension point. One use case extends another by introducing alternative processes.

35

The relationship defines that instances of a use case may be parameterized with some
additional behavior defined in the extending use case.. When an alternative course is
complicated enough to construct a new use case, an extension relationship is introduced
and the use case is broken up into two smaller use cases.

The specific process is: take a sub-tree of an alternative composite episode from
the episode tree of the base use case; construct a new use case with the sub-tree; generate
an extension relationship from the new use case to the base use case; substitute the sub-
tree in the base use case by a pseudo episode, which indicates the extension point for the
extension relationship. This refactoring helps to reduce complexity and improve
reusability.

Definition
Preconditions:

e A use case u with its episode tree ¢,

e A sub-tree #;, which is an alternative course of the use case u. In other words, #;’s
parent is an “alternative” composite episode (this guarantees that the extending
use case may take place based on the specific condition that is defined in the
“alternative” parent in the base use case).

Parameters:

e u: the base use case;

e 1 the episode tree of u;

e 1;: the sub-tree of 7, which is an alternative course of the use case u;

Postconditions:

e A new use case 1’ with its episode tree ¢; is generated,

36

e An extension relationship from u’ to u is generated.
e The sub-tree #; in the use case u is replaced by a pseudo episode named #;’, which

indicates the extension point in the base use case u.

Verification

Let us analyze the semantics of the extension relationship. Use case u” extends use case u
means that u” will take place only if the condition of extension is frue and then u” will be
inserted into the extension point where #;” defines.

From the view of the episode tree, the extending use case is inserted into the
location of ;" when the extension condition is true. In other words, the node ¢, is
substituted by the tree of #;, and therefore the episode tree of the base use case u is
restored to its original form. When the extension condition is false, t;’ remains as a
pseudo episode in the base use case. Since the branch of ¢;” will never be reached when
the extension condition is false, the behavior of the use case even is not affected whether
or not #;” is substituted by t;. Therefore, the extension_generation refactoring is a

behavior preserving transformation. The refactoring is shown in Figure 4.5.

<<extend>>

t

ti
Refactoring

Alternative Alternative

K

Figure 4.5 Extension_generation refactoring

Example

37

Suppose there is a use case “Paying bill” in the ATM system. The episode tree is shown

in Figure 4.6.
"‘*‘\\ <<include>> /”‘“‘>
Paypng hill ID wverificaNon
(Seq) (Seq) ID verification
1 ID verification (Inclusion) 1 A customer inserts a card
2 (Seq) Pay bill 2 The system validate the card
2.1 System lists registered bills 3 The customer enters PIN
2.2 (Alt) The bill is in the list? 4 The system validate PIN
2.2.1 Yes, customer choose the bill from the list
2.2.2 (Seq) No, register bill

2.2.2.1 System asks customer to input bill reference No.
2.2.2.2 Customer enters bill reference No.
2.2.2.3 System registers the bill.
2.3 Input amount to pay
2.4 Choose from with account to pay
2.5 (Alt) Check if balance is greater than payment
2.5.1 Yes, payment succeeds
2.5.2 No, return error message
3 (Seq) Return card and print receipt
31...

Figure 4.6 Use case “Paying bill” with its episode tree

From Figure 4.6, we find out that “register bill” is an alternative course of
“Paying bill” and it represents a relative independent functionality. Therefore the sub-tree
can be removed from the use case “Paying bill” and we can create a new use case called
“register bill”. The relationship from the use case “register bill” to the base use case
“Paying bill” should be “extend” since “register bill” takes place based on condition “the
bill is not in the list” (in other words, the bill is not registered). The use case diagram
with its episode trees after applying “extension_generation refactoring” is shown in

Figure 4.7.

38

T

ID wverification
<<inc|ude>7%

. (Seq) ID verification
4444444 <<extend>> /"‘ﬂ" ™ 1 A customer inserts a card
S —— 2 The system validate the card
) \ 3 The customer enters PIN
B T 4 The system validate PIN
Paying bill Register bill
(Seq) (Seq) register bill
11D verification (Inclusion) 1 System asks customer to input bill reference No.
2 (Seq) Pay bill 2 Customer enters bill reference No.
2.1 System lists registered bills 3 System registers the bill.
2.2 (Alt) The bill is in the list?
2.2.1 Yes, customer choose the bill from the list

2.2.2 No, register bill (Extension)

2.3 Input amount to pay

2.4 Choose from with account to pay

2.5 (Alt) Check if balance is greater than payment
2.5.1 Yes, payment succeeds
2.5.2 No, return error message

3 {Seq) Return card and print receipt
31..

Figure 4.7 Use case “Paying bill” and its extending use case “Register bill”

4.3.3 Equivalence_generation refactoring

There are two situations for equivalence_generation refactoring: one is generated from
the viewpoint of the developer; another is generated from the definition of the episode
tree. They are introduced in the following two sections respectively.

4.3.3.1 Equivalence_generation by the developer

Motivation

From the viewpoint of the developer, two use cases may be behaviorally equivalent. In
this case, an equivalence relationship is generated based on the developer’s consideration.
From the view of the episode model, the two use cases should have an equivalent episode

tree; therefore, the episode tree is duplicated from the one that has an episode tree to the

39

one that has no an episode tree. If both of the use cases have episode trees, the
equivalence condition is verified before generating the equivalence relationship between

them; this belongs to the second situation.

Definition

Preconditions:
e Two use cases u; and u; are behaviorally equuivalent from the viewpoint of the
developer;
e At least one of them has no episode tree defined.
Parameters:
® uy, uy: the equivalent use cases
Postconditions:
e An equivalence relationship is generated between u; and u;;

e If one of them has episode tree defined, the episode tree is duplicated to the one

that has no episode tree.

Verification

Since an equivalence relationship does not participate in any behavior of the use cases,
the behavior of the use cases have no change after the refactoring. Therefore, the

equivalence_generation refactoring is a behavior preserving transformation. The

refactoring is shown in Figure 4.8.

40

<<equivalence>> [
U4 ¢ » %))

U= U,

t Refactoring

Figure 4.8 Equivalence_generation refactoring by the developer

4.3.3.2 Equivalence_generation refacoring from the definition of the episode tree

Motivation

If two use cases have equivalent episode trees, we conclude that the two use cases are
equivalent in behavior. Then an equivalence relationship is suggested between these two

use Cascs.

Definition

Precondition:

e The episode trees of two use cases are behaviorally equivalent.

Parameters:

e uj, uz: the use cases that have equivalent episode trees.

Postcondition:

¢ An equivalence relationship is generated between u; and u;.

Verification

Since an equivalence relationship does not participate in any behavior of the use cases,

the behavior of the use cases have no change after the refactoring. Therefore, the

41

equivalence_generation refactoring is a behavior preserving transformation. The

refactoring is shown in Figure 4.9.

<<equivalence>>
Uq Uz U4 N) uz

tEt

b t Refactoring ty

Figure 4.9 Equivalence_generation refactoring by episode trees

Example
Compare Figures 4.4 and 4.6, we find out that the episode trees “Card and PIN
validation” and “ID verification” are the same. If the developer is not sure of applying

“reuse_usecase refactoring”, “equivalence_generation refactoring” can be applied. The

use case diagram after applying “equivalence_generation refactoring” is shown in Figure

4.10.
<’”—‘\> <<include>> S < R
Pa;/*i.r:g/]/b’ill D ver‘i.f_i(:ation
L<equivalance>>
C— »»»»» \> <<include>> . <—~>
Withdra;;v_i;;;/cash Card and ;;\l’;/alidation

Figure 4.10 Use cases with “equivalence” relationship

42

4.3.4 Reuse_usecase refactoring

Motivation

When two use cases are equivalent in behavior, two solutions will be suggested: one is to
generate equivalence relationship; another is to reuse. The first is introduced in
equivalence_generation refactoring. The latter one “reuse” is to replace one with the
other. The specific process is: the replacing use case takes over all relationships of the

replaced use case. Obviously, the refactoring helps to improve the reusability.

Definition

Precondition:

e The episode trees of two use cases are equivalent.

Parameters:
® 1y, Uy USe cases.

Postcondition:

e All relationships with u; are taken over by u;.

Verification

Since u; is behaviorally equivalent to u;, all behaviors implemented by u, will be
implemented equally by u; after the relationships with u; are taken over by u;. Therefore,

the reuse_usecase refactoring is a behavior preserving transformation. The refactoring is

shown in Figure 4.11.

43

[VE} uz

ur = U

Refactoring

Figure 4.11 Reuse_usecase refactoring

Example

From Figure 4.10, we notice that use case “Card and PIN validation” is equivalent to “ID
verification”. Therefore, “reuse_usecase refactoring” can be applied to reduce
redundancy and inconsistency. The use case diagram after applying “reuse_usecase

refactoring” is shown in Figure 4.12.

e
P

(Seq) Paying bill > ID werification

1 Card and PIN valication (Inclusion) <<THCJ\Ude>>
2 (Seq) Pay bill ™~

2.1... \
3 1S.¢.3'g) Return card and receipt | e <<include>> = —

M. TN e

) >
Withdrawing cash Card and PIN validation

Figure 4.12 Use case diagram after applying “reuse_usecase refactoring”
Note: the inclusion point in the episode tree of “Paying bill” has been changed

since the inclusion relationship is changed to “Card and PIN validation”. Relationship

44

“equivalence” is omitted since it is from and to the same use case “Card and PIN

validation” after applying “reuse_usecase refactoring”.
y

4.3.5 Delete_usecase refactoring

Motivation

When a use case is defined but does not participate in any relationships with other use
cases or actors, the use case is considered as a redundant use case in the system.
Particularly, more use cases will become redundant after applying reuse_usecase
refactoring. These redundant use cases can be deleted from the system. This refactoring

helps to reduce redundancy.

Definition
Precondition:

e A use case u has no relationships with other use cases or actors.

Parameters:

e u: the use case that has no relationships with any other use cases or actors.

Postcondition:

e The use case u is deleted from the system.

Verification

Since the redundant use case does not participate in any relationships with other use cases
or actors, deleting it has no effect to the behavior of the system. Therefore, the
delete_usecase refactoring is a behavioral preserving transformation. The refactoring is

shown in Figure 4.13.

45

u1 u2

u1

Refactoring

Figure 4.13 Delete_usecase refactoring

Example

From Figure 4.12, the use case “ID verification” is redundant since it does not interact
with the system. Therefore it can be deleted from the system to reduce redundancy. The

use case diagram after applying “delete_usecase refactoring” is shown in Figure 4.14.

e

. L
Paying bill Mde>>

™
.
~.
~.
.
™~
~.

/»—m—\ <<include>> \s/ e, -

>)
- -
Withdrawing cash Card and PIN validation

Figure 4.14 Use case diagram after applying “delete_usecase refactoring”

4.3.6 Generalization_generation refactoring

A generalization relationship exists between use cases or actors. They are introduced in

the following two sections respectively.

4.3.6.1 Generalization_generation refactoring for use cases

Motivation

46

A generalization relationship between use cases implies that the child use case contains
all the attributes and behavior sequence defined in the parent use case, and participates in
all relationships of the parent use case. The child use case may inherit the behaviors of its
parent, add new behaviors, and specialize the behaviors inherited from the parent.

Generalization_generation refactoring is suggested when two or more use cases
are isomorphic, share common primitive episodes, and there is an episode tree which the
episode trees of the use cases are special cases of. The generalization is complicated and
it is controversial on how to generate it. To simplify the problem, we only take common
primitive episodes as precondition; the rest are judged by the developer.

The specific process is: a new parent use case is generated based on these use
cases; the common primitive episodes are removed to the parent use case; generalization
relationships from those use cases to the parent use case are generated. The refactoring
helps to eliminate redundancy and improve the reusability.

Note: Use cases u; and u; are isomorphic is explained as follows.

Suppose u; has relationships with a set of use cases, denoted as X = {x;, X2, ... }
u2 has relationships with a set of use cases, denoted as Y = { yi, ya, ... }; there is a
mapping @: X->Y, and x; = ®(x;). Then we have that: if ul has relationship ® with x;,
then u; has the same relationship with ®(x;); if x; has relationship with x;, then ®(x;) has
the same relationship with ®(x;).

Definition
Preconditions:

e Use cases u; and u, are isomorphic;

47

e The use case u; has its episode tree #;; the use case u; has its episode tree #,. There
is an episode tree ¢, where t; and ¢, are special cases of f;
e ¢; and t; share common primitive episodes {ej, e, ..., &;};
Parameter:
® uj, u: chosen use cases;
Postconditions:
e A new use case u with its episode tree ¢ is generated,
¢ Generalization relationships from u; and u; to the parent use case u are generated,;
e Primitive episodes {ej, e, ..., ¢;} are removed from children use cases u; and u, to
the parent use case u;
e Common relationships between {u;, u,} and other use cases or actors are taken
over by u from {uy, uy}.
Verification
Let us analyze the semantics of the generalization relationship. The use case u generalizes
use cases {u;, uz} means that u; and u, could inherit attributes (primitive episodes) and
the behaviors from the use case u, add new behaviors. In addition, u; and u, could
specialize the behaviors inherited from the parent use case u.
From the view of episode model, the common primitive episodes {e}, e, ..., €;}
are removed from use cases {u;, uy} to their parent use case u; then with the

generalization relationship, {e,, ey, ..., ¢;} are inherited from the parent use case u.
Therefore, the generalization_generation refactoring for use cases is a behavior

preserving transformation. The refactoring is shown in Figure 4.15.

48

Note: the generalization_generation refactoring for use cases is too complicated
and needs to be refined since here we only check common primitive episodes as

precondition. We leave this for future research.

49

: 0

- ‘

Note:

1. Use cases uy and u, are isomorphic.

Suppose:

u, relates to use cases, denoted as set X = {x;,Xz, ..
u; relates to use cases, denoted as set Y = {y1,y>, ...

there is a mapping ®: X ->Y, and x; = ®(x;).

Then we have:

i) If uy has relationship (r) to x;, then
u; have same relationship to ®(x);

ii) if x; has relationship (r) to x;, then

®(x;) has same relationship to ®(x;).

Y

Uz

2. There exists an episode tree t,
where both t; and t; are special cases

of t.

Ei={e,€....6, € ..., en} Ex={e1,€5....6, € ..., €} 3 E, andE,are primitive episodes
sets for t1 and t2 respectively,
where EsNE;={ ey, e,,...,8}

Refactoring

>

E1 ={e,~, iey em}

Uz

Ez={ex ..., en}

Figure 4.15 Generalization_generation refactoring for use cases

Example

50

B

%

From the use cases ‘“Paying bill” and “Withdrawing cash”, we notice that they have
common primitive episodes and belong to the same family. Therefore,
generalization_generation refactoring is suggested to reduce redundancy and improve
reusability. The use case diagram after applying “generalization_generation refactoring

for use cases” is shown in Figure 4.16.

(Seq)
1 Card and PIN valication (Inclusion)
2 Process transaction (Abstract)
3 (8eq) Return card and receipt
3.1...

(Seq)
1 Card and PIN valication (Inherited)
2 Withdraw cash (Refine ‘“Process transaction™)
2.1...

3 Return card and receipt (Inherited)

(Seq)
1 Card and PIN valication (Inherited)
2 Pay bill (Refine “Process transaction’)
2.1 ...

3 Return card and receipt (Inherited)

Figure 4.16 Use case diagram with generalization relationship

4.3.6.2 Generalization_generation refactoring for actors

Motivation
When two or more actors communicate with the same set of use cases in the same way,
this commonality can be expressed with generalizations to another actor, which models

the common role(s). This means that the child actor will be able to play the same roles as

51

the parent actor, i.e. communicate with the same set of use cases, as the parent actor. The
refactoring helps to organize hierarchical structure for actors, and therefore make use
case model simpler and clearer.
Definition
Preconditions:
e Actors a; and a; communicate with the same set of use cases {uy, i, ..., uy} in the
same way. Suppose the common relationships with {u;, uy, ..., u} is
Z= {rl, 2, ..., l"k};
e Actors {ay, a;} belong to the same family.
Parameters:
® ay, ay: chosen actors
Postconditions:
e A new actor a is generated;
e Association relationships {ry, r,, ..., ri} from the actor a to use cases
{uy, us, ..., ui} are generated. This means that the actor @ communicates with the
same use cases in the same way as that of actors {a;, a,}
¢ Generalization relationships from actors a; and a; to the parent actor a are
generated;
e Relationships {7y, r, ..., r¢} from actors a; and a5 to use cases {u;, u, ..., Ui} are

deleted. These relationships could be inherited from their parent actor a.

Verification
Before the refactoring, there are common relationships {r;, r, ..., ri} from actors a; and
az to use cases {uy, uy, ..., ux} After the refactoring, these relationships are deleted.

52

However, a new actor a is generated, and it has the same relationships {r, r, ..., ¢} with
use cases {uy, uy, ..., ux} as that of actors a; and ;. In addition, generalization
relationships from actors a; and a; fo the parent actor a are generated. According to the
definition of generalization between actors, the child actor will be able to play the same
roles as the parent actor, i.e. communicate with the same set of use cases, as the parent
actor, actors {a;, a;} communicate with use cases {u, uy, ..., ux} in the same way {r;,

r2, ..., 1y} as their parent actor a does. Therefore, the generalization_generation
refactoring for actors is a behavior preserving transformation. The refactoring is shown in

Figure 4.17.

Refactoring

Figure 4.17 Generalization_generation refactoring for actors

4.3.7 Precedence_generation refactoring

Motivation
As we known, precedence relationship is a special case of inclusion relationship. A
precedence relationship can be factored out from an inclusion relationship when the

inclusion point is positioned at the very beginning of the episode tree of the base use case.

53

In other words, the included use case is always invoked in the very beginning when the
base use case is executed. In such situation, a precedence relationship instead of an
inclusion relationship is suggested to expose chronological order between use cases
clearly.

The specific process is: a precedence relationship from the included use case to
the base use case is generated; the original inclusion relationship is deleted; the pseudo
episode in the base use case, that indicates the inclusion point, is deleted either. The
refactoring helps to discover the chronological relationship between use cases in a clearer
way.

Definition
Preconditions:
e The base use case u with its episode tree t;
e The included use case u’, with its episode tree ;;
o The first child of # is a pseudo episode #;’, which indicates the inclusion point for

the inclusion relationship from the base use case u to the included use case u’;

e The inclusion relationship r from the base use case u to the included use case u’,

where the inclusion point in the base use case is ¢; .

Parameters:

oy the base use case;

t: the episode tree of use case u;

u’: the included use case;

t;": the pseudo episode in ¢, indicates the inclusion point;

r: the inclusion relationship from use case u to use case u’.

54

Postconditions:

e A precedence relationship from use case u’ to use case u is generated;

e The inclusion relationship r is deleted from the use case model,

e The pseudo episode #;” is deleted from the episode tree of the base use case u.
Verification
Let us analyze the semantics of the precedence relationship. Use case u” precedes use
case 1 means that 1’ always takes place prior to u when u is executed.

From the view of the episode tree: the use case u includes the use case u” in the
specific point before the refactoring; the inclusion point is defined by the pseudo episode
t;” in t. Since ¢;” is the first child of ¢, the use case u’ takes place prior to the other sub-
trees of the use case u. After the refactoring, the use case u’ takes place prior to the use
case u because of the precedence relationship. Since #;” has been deleted from the episode
tree of the use case u after the refactoring, the rest of the episode tree of the use case u
will be executed after u’. Therefore, the precedence_generation refactoring is a behavior

preserving transformation. The refactoring is shown in Figure 4.18.

<<include>>
u v u u
ty

<<precede>>

Refactoring

Figure 4.18 Precedence_generation refactoring.

Example

55

In Figure 4.16, the included use case “Card and PIN validation” always appear at the very
beginning of use case “Processing transaction”. To clarify the chronological order
between use cases, a precedence relationship is generated. The use case diagram after

applying “precedence_generation refactoring” is shown in Figure 4.19.

T ‘\>{ <<Precede>> < o ™~
T e e /
Processing transaction Card and PIN validation
{Seq) /1\
1 Process transaction (Abstract)
2 (Seq) Return card and receipt 1
20
(, > P N
N .
Payling bill Withdrawin cash

(Seq)

(Segq
1 Pay bill (Refine “Procegs transaction”)
1.1...

eq)
1 Withdraw cash (Rcﬁ\" “Process transaction”)

11...

2 Return card and receipt (Inherited) 2 Return card and receipt (Inherited)

Figure 4.19 Use case diagram after applying “Precedence_generation refactoring”

4.3.8 Inclusion_mergence refactoring

Motivation

If the included use case is too specific or too abstract compared with other use cases, it is
better to merge it into the base use case. As a result, the inclusion relationship is removed
since the included use case does not exist any more. The episode tree of the included use
case is inserted into base use case at the inclusion point. In other words, the pseudo
episode in the base use case is substituted by the episode tree of the included use case. If
the included use case is redundant after the refactoring, it can be deleted by applying the
delete_usecase refactoring rule. The refactoring helps to control use case granularity and

maintain similar abstract level among use cases.

56

Definition
Preconditions:
e The base use case u with its episode tree f;
e The included use case u” with its episode tree #;;
e the pseudo episode #;’, which indicates the inclusion point;
e The inclusion relationship r from u to u’.

Parameters:
e u: the base use case;
e 1’ the included use case;

e r: the inclusion relationship from u to u’.

Postconditions:
e The pseudo episode #;” is replaced by the episode tree ¢;;

e The relationship r is deleted.

Verification

Let us analyze the semantics of the inclusion relationship. The use case u includes the use

case ¥’ means that u’ is a sub-functionality of u. When the use case u is executed, the

sub-functionality will be invoked at the specific point where #;” indicates.

Before the refactoring, the pseudo episode #;" will be replaced by the episode tree

t; of the included use case u’ when use case u is executed because of the inclusion

relationship. After the refactoring, the pseudo episode #; is substituted by the episode tree

t;; the inclusion relationship is also deleted. As we see, the behavior of the use case has no

57

change after the refactoring. Therefore, the inclusion_mergence refactoring is a behavior

preserving transformation. The refactoring is shown in Figure 4.20.

u <<include>> | , u

u u
t
t;

Figure 4.20 Inclusion_mergence refactoring.

4.3.9 Extension_mergence refactoring

Motivation

If the extending use case is too specific or too abstract compared with other use cases, it
is better to merge it into the base use case. As a result, the inclusion relationship is
removed. The episode tree of the extending use case is inserted into the base use case at
the extension point. In other words, the pseudo episode in the base use case is substituted
by the episode of the extending use case. If the extending use case is redundant after the
refactoring, it can be deleted by applying the delete_usecase refactoring rule. The
refactoring helps to control use case granularity and maintain similar abstract level

among use cascs.

Definition

Preconditions:

58

e The base use case u with its episode tree t;

e The extension point #;’, which is a pseudo episode in #;

e The extending use case u’ with its episode tree #;

e The extension relationship from u’ to u;
Parameters:

e y: the base use case;

e u’: the extending use case;

e 7 the extension relationship from u’ to u;
Postconditions:

e The pseudo episode #;’ is substituted by ¢;;

e The relationship r is deleted;
Verification
Let us analyze the semantics of the extension relationship. The use case u’ extends the
use case u means that u’ will take place when the extension condition is satisfied. The
episode tree #; of u” will be inserted into the episode tree ¢ of the base use case u at the
extension point ;.

Before the refactoring, the episode tree #; of the extending use case is inserted into

t to replace the pseudo episode #;” if the extension condition is satisfied. After the
refactoring, the pseudo episode 7, is replaced by the episode tree #; of the extending use
case 1’ whether or not the condition is satisfied. However, #; will never be reached if the
condition is not satisfied in the use case u. As we see, the behavior of the use case u has
no change after the refactoring. Therefore, the extension_mergence refactoring is a

behavior preserving transformation. The refactoring is shown in Figure 4.21.

59

<<extend>>

¥

ti ti

Refactoring

Alternative

Alternative
E

Figure 4.21 Extension_mergence refactoring

4.3.10 Precedence_mergence refactoring

Motivation

When the preceding use case is too specific or too abstract compared with other use cases,
it is better to merge it into the base use case. As a result, the precedence relationship is
removed. If the preceding use case is redundant after the refactoring, it can be deleted by
applying the delete_usecase refactoring rule. The refactoring helps to control use case
granularity and maintain similar abstract level among use cases.
Definition
Preconditions:

e The base use case u with is episode tree t;

e The precedent use case u’ with its episode tree #;

e The precedence relationship from u’ to u.

Parameters:
e u: the base use case;

e u’: the preceding use case;

60

e r: the precedence relationship from u’to u;
Postconditions:
e u’is merged into u: the episode tree # is inserted into the episode tree ¢ as the first
child of the root.
e The relationship r is deleted;
Verification
Let us analyze the semantics of the precedence relationship. The use case u” precedes the
use case u means that u” always be invoked firstly when u is executed.

Before the refactoring, the use case u’ takes place prior to the base use case u
because of the precedence relationship from u’ to u. After the refactoring, the episode tree
t; of the use case #” becomes the first sub-tree of ¢ of the use case 1. As we know, the first
child will always take place at the very beginning provided that the root of ¢ is a sequence
composite episode. Therefore, the precedence_mergence refactoring is a behavior

preserving transformation. The refactoring is shown in Figure 4.22.

<<precede>>

Refactoring

Figure 4.22 Precedence_mergence refactoring
Note: Here we suppose the root of t is a sequence composite episode, otherwise
more work will be needed: construct a new sequence composite episode as the root; take

t; as its first child, and ¢ as its second child.

61

4.4 Other refactoring rules

In addition to the refactoring rules introduced in section 4.3, other refactoring
rules, such as “reuse_episode”, “delete_episode”, “reuse_event”, and “delete_event”, are
based on the information captured in the event models. Also, many basic refactoring
rules, such as “Create_UseCase”, “Create_Episode”, “Change_UseCaseName”,

“Change_EpisodeName” and so on, are fundamental bricks for composite refactoring

rules. We will not introduce these refactoring rules in this thesis.

62

Chapter 5

A case study

This chapter introduces a case study of the VSS (Video Store System). We start from the
system analysis to get an original draft use case model. Afterward, we focus on use case
refactoring. The step-by-step transformation of the use case model is demonstrated by

applying the use case refactoring rules introduced in chapter 4.

5.1 Introduction

5.1.1 System description

The VSS is a computer-based business management system. The purpose of the
VSS is to facilitate staff management of the rentals of movies, video games and related
equipments for small chain of 10 stores scattered throughout the city. The system will be
able to manage the inventory of rental items, keep track of all rental transactions, rental
history and status of each customer member.

The system should provide the following functions [Comp647]:

¢ Inventory Management: Video items will be added to inventory when purchase
and receive videotapes, games or equipments. The inventory is maintained by or
upon the authorization of the store manager. Each store maintains its own

inventory. The inventory is searchable but not updateable by all the other stores.
e Customer Maintenance: Customers details are maintained by or upon the

authorization of the store manager. Customers will receive customer membership

63

cards and a password for website access once customers satisfy the prerequisite.
The system also issue child dependent membership. Dependent members must be
associated with a primary member. All the stores share a common list of customer
members so that the customer membership, once established in one store, is valid
in all stores.

¢ Rental Service: Customers may rent videotapes, video games, and equipments
through a store staff. The system will verify the customer membership, check
condition, and record transaction details. Various rental conditions must be
applied to a child dependent member what and when the child can rent.

o Reservation Service: Customer may reserve videotapes, video games, and
equipments for a specific date. Staff will receive an on-screen reminder of such
reservations when a returned item is available.

e Inquiry Service: Staff will be able to search for movie titles on behalf of the
customer. The search will result in location identification. If the item not found in
the store, it is possible to search the other stores.

e Web Service: Once Login in the website of the video store using card and
password, the customer can search and reserve an item including videotape, game,
or equipment through Internet.

The above services VSS provide may be modified and expanded given the

intended clients desire for such modification.

5.1.2 Actor characteristics

The primary actors of the VSS are the video store staff. However, the customers

of the video store will interact directly with the web service module of the system via the

64

Internet. Therefore, actors in this system include [Comp647]:

e Manager Staff: Manager Employee or owner of the video store. Tasks
performed by these staff members cover all of the functionality provided by
the VSS, namely inventory management, customer maintenance, video rentals,
video reservation, video return, video inquiries, and promotion service.

e Staff: An employee, who is the primary actor of the system. Tasks performed
by these staff members cover the majority of the functionality provided by the
VSS, including video rentals, video reservation, video return, and video
inquiries.

e Customer: Anyone of the general public who is registered as a member of the
video store system. The customer interacts with the system directly only when
web-reservation or web-search is a task. The Staff member or Manager Staff
actor performs all the other services of the VSS on behalf of the customer.

e Dependent customer: Any child under 18 year-old of the general public who
is registered as a dependent member of a customer. The dependent customer
interacts with the system directly only when the web-reservation or web-search
is a task. The existence of dependent customer depends on the corresponding
primary customer. They use same account for payment, the rental items is
accumulated within customer and his/her dependent customers. The Staff

member or Manager Staff actor performs all the other services of the VSS on

behalf of the dependent customer.

65

5.2 Use case and episode models

5.2.1 The use case diagram for VSS

According to the above requirement description, a use case diagram is given in Figure 5.1.

—

//' Video Rental Add Customer
// 7 \\ // ______ -
P V.)

/ ,,,,,, - Video Return & S \

Dependent Web Video Resene Delete Video

Customer

Figure 5.1 Use case diagram for the VSS

5.2.2 Episode models

According the 3-level metamodel, we analyze each use case in the use case diagram and
generate its episode model to discover the use case’s internal structure of behavior. The

episode tree for each use case is shown as follows.
5.2.2.1 Video Rental

The episode tree for “Video Rental” is shown as follows:

66

(Seq)
1 The customer is identified
2 The available video item is identified by the system.
3 (Alt) The system checks if satisfying the condition
3.1 Yes: A new video loan is registered.
3.2 No: Return message.

5.2.2.2 Video Return

The episode tree for “Video Return” is shown as follows:

(Seq)

1 The customer is identified.

2 The borrowed video item is identified

3 The loan is identified through the item

4 The corresponding loan is removed

5 Calculate the rental fee.

6 (Alt) If there is a reservation for this item
6.1 Yes: return reminder message
6.2 No: continue

7 Print out the rental fee.

5.2.2.3 Video Reserve

The episode tree for “Video reserve” is shown as follows:

(Seq)
1 The customer is identified
2 A video title is identified
3 (Alt) Check if satisfying the condition
3.1 Yes: A reservation is created with the specified titie and customer
3.2 No: Return error message

5.2.2.4 Video Inquiry

The episode tree for use case “Video inquiry” is shown as follows:

(Seq)
1 The user inputs the search criteria

2 The system executes database inquiry
3 Return search result

5.2.2.5 Add Customer

The episode tree for the use case “Add Customer” is shown as follows:

67

(Seq)
1 Input the necessary information for the customer
2 Database inquiry
3 (AlY) if the customer already exist in database?
3.1 Yes: Return message
3.2 (Seq) No: Issue the card for the customer
3.2.1 Add the customer with corresponding constraints to database
3.2.2 Generate card to customer
3.2.3 Return succeed message

5.2.2.6 Update Customer

The episode tree for the use case “Update Customer” is shown as follows:

(Seq)
1 The customer is identified

2 Database inquiry
3 (Alt) if the customer already exist in database?
3.1 (Seq) Yes: Update customer’s information
3.1.1 Input the necessary information for the customer
3.1.2 Update the database
3.1.3 Return succeed message
3.2 No: Return error message

5.2.2.7 Delete Customer

The episode tree for the use case “Delete Customer” is shown as follows:

(Seq)
1 The customer is identified
2 Database inquiry
3 (Alt) if the customer already exist in database?
3.1 (Seq) Yes: Delete the customer
3.1.1 Delete the customer from the database
3.1.2 Return succeed message
3.2 No: Return error message

5.2.2.8 Add Video

The episode tree for the use case “Add Video” is shown as follows:

(Seq)
1 Input the necessary information for the video
2 Database inquiry
3 (Alt) if the video item exists already
3.1 Yes: Return message that the video already exists
3.2 (Sed) No: Add the video item
3.2.1 Add video item to database
3.2.2 Return succeed message

68

5.2.2.9 Update Video

The episode tree for the use case “Update Video” is shown as follows:

(Seq)

1 The video item is identified

2 Database inquiry

3 (Alt) if the video item exists already

3.1 (8ed) Yes: Update the video’s information
3.1.1 Input the information for the video item
3.1.2 Update the database
3.1.3 Return succeed message
3.2 No: Return error message

5.2.2.10 Delete Video

The episode tree for the use case “Delete Video” is shown as follows:

(Seq)
1 The video item is identified
2 Database inquiry
3 (Alt) if the video item exists already
3.1 (Seq) Yes: Delete the video item
3.1.1 Delete the item from the database
3.1.2 Return succeed message
3.2 No: Return error message

5.2.2.11 Web Video Inquiry

The episode tree for the use case “Web Video Inquiry” is shown as follows.

(Seq)
1 The customer login in the website
2 Input search criteria
3 The system executes database inquiry
4 Return search result

5.2.2.12 Web Video Reserve

The episode tree for the use case “Web Video Reserve” is shown as follows.

(Seq)
1 The customer login in the website
2 A video title is identified
3 (Alt) Check if satisfying the condition

3.2 No: Return error message

3.1 Yes: A reservation is created with the specified title and customer.

69

5.3 Use case refactorings

Step 1 Generalization_Generation refactoring for actors:

From the use case model, we find that actors “Staff” and “Manager Staff” share common
relationships to several use cases. Furthermore, these actors belong to similar family.
According to the definition of generalization_generation refactoring for actors, we can
apply the “generalization_generation refactoring for actors” to these two actors.
Similarly, we can also apply the “generalization_generation refactoring for actors” to
actors “Customer” and “Dependent Customer”. The refactored use case model is shown

in Figure 5.2.

O

Customer \ ~

\\\\\\\\ N O\ Add Vide
A \ :>\//,/- ~~~~~~~ - \ \5\
D NEaD
\ \\ N /)
& “\.Web Video Inquiry Uodate Vi
‘ \x Update Video
R B
RN { \1 O -
Dependent S ~ J)
Customer Web Video Reserve Del ; :/d
elete Video

Figure 5.2 Use case diagram after step 1
The actor “Dependent Customer” inherits the association relationships to “Web
Video Inquiry” and “Web Video Reserve” from its parent actor “Customer” after the

refactoring. Similarly, the actor “Manager Staff” inherits the association relationships to

70

“Video Rental”, “Video Return”, “Video Inquiry”, and “Video Reserve” from its parent
actor “Staff” after the refactoring.

Step 2 Inclusion_generation refactoring:

From the episode tree of the use case “Web Video Inquiry”, we notice that part of the
episode tree describes a relatively independent functionality. Therefore we can extract

this functionality as a sub-tree of the episode tree, shown as follows:

(Seq)
1 The customer login in the website
2 (Seq) Video search
2.1 Input search criteria
2.2 The system executes database inquiry
2.3 Return search result

According to the “inclusion_generation refactoring”, we can break up the use case into
two smaller use cases, named “Web Video Inquiry” and “Video Search”. The use case

diagram after the refactoring is shown in Figure 5.3.

T \ <<include>> . //

. (L

Web Video Inquiry Video Search

—

Figure 5.3 Use case diagram for “Web Video Inquiry” after step 2
An inclusion relationship from “Web Video Inquiry” to “Video Search” is
generated. According to the episode model, there must be at least one inclusion point
defined in the base use case “Web Video Inquiry”. The episode tree for use case “Web

Video Inquiry” is shown as follows.

(Seq)
1 The customer login in the website
2 Video search (Inclusion)

Additionally, the sub-tree is removed from the base use case “Web Video

71

Inquiry” and becomes the episode tree of the including use case “Video Search”. The

episode tree for the new use case “Video Search” is shown as follows.

(Seq)
1 Input search criteria
2 The system executes database inquiry
3 Return search result

Step 3 Equivalent_generation refactoring:
From the episode trees of use cases “Video Search” and “Video Inquiry”, we notice that
the use cases have equivalent episode trees. Therefore, the “equivalent_generation

refactoring” can be applied. The use case diagram after the refactoring is shown is Figure

54.

~ <<equivalence>> w
D (_

Video Search Video Inquiry

Figure 5.4 Use case diagram after step 3
Because the refactoring does not change the behavior of the use cases, the episode
trees for the use cases have no change after the refactoring.
Step 4 Reuse_use case refactoring:
Since use cases “Video Inquiry” and “Video Search” are equivalent, we can also apply
“reuse_usecase refactoring” to reduce redundancy and improve the reusability of the

system. The use case diagram after applying the refactoring is shown in Figure 5.5.

72

(” > <<include>> >/ -

Web Video Inquiry Video Inquiry

T

D

R S

Video Search

Figure 5.5 Use case diagram after applying “reuse_usecase refactoring”

The relationships (the inclusion relationship in this case) with “Video Search” are
taken over by “Video Inquiry”. Therefore, the inclusion point that is related to this
inclusion relationship has to be changed too. The inclusion point defined in the episode
tree of the base use case “Web Video Inquiry” is changed from “Video Search” to “Video

Inquiry”, as shown in the following episode tree of the use case “Web Video Inquiry”.

(Seq)
1 The customer login in the website
2 Video Inquiry (Inclusion)

Step S Delete_usecase refactoring:

After applying “reuse_usecase refactoring”, the use case “Video Search” has no
relationship to any other use cases or actors. Therefore, it can be deleted from the system
by applying “delete_usecase refactoring”.

Step 6 Generalization_generation refactoring for use cases:

From the episode trees of use cases “Add Customer”, “Delete Customer”, and “Update
Customer”, we notice that these use cases are isomorphic. They have similar behavior
structure and share some common primitive episode such as “Database inquiry”.
Therefore, the generalization_generation refactoring can be applied to these use cases to

improve reusability. The use case diagram after the refactoring is shown in Figure 5.6.

73

/ N \ ~~~~~~~~~~~~ //
Manager Staff

e

Update Customer Delete Customer Add Customer

Figure 5.6 Use case diagram for “Customer Maintenance”
After applying “Generalization_generation refactoring”, a new parent use case

named “Customer Maintenance” is generated. Its episode tree is defined as follows.

(Seq)
1 The system gethers the customer information
2 Database inquiry
3 Maintain the customer information

As shown in Figure 5.6, the parent use case also takes oven the common
relationship with the actor “Manager Staff”. The child use case “Add Customer” inherits
behaviors from its parent use case “Customer Maintenance” and specifies some of them.
Meanwhile, it also inherits relationship with the actor “Manager Staff” from its parent use

case. The episode tree for the use case “Add Customer” is changed as follows.

(Seq)
1 Input the necessary information for the customer (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain customer information(/nherited and specified)
3.1 (Alt) if the customer already exist in database?
3.1.1 Yes: Return message
3.1.2 (Seq) No: Issue the card for the customer
3.1.2.1 Add the customer with corresponding constraints to database
3.1.2.2 Generate card to customer
3.1.2.3 Return succeed message

Likewise, the use case “Update Customer” not only inherits the relationship with

the actor “Manager Staff” from its parent use case “Customer Maintenance”, but also

74

inherits behaviors and specifies some of them. Its episode tree is shown as follows.

(Seq)
1 The customer is identified (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain customer(/nherited and specified)
3.1 (Alt) if the customer already exist in database?
3.1.1 (Seq) Yes: Update customer’s information
3.1.1.1 Input the necessary information for the customer
3.1.1.2 Update the database
3.1.1.3 Return succeed message
3.1.2 No: Return error message

In the same way, the episode tree of another child use case “Delete Customer” is

changed as follows.

(Seq)
1 The customer is identified (/nherited and specified)
2 Database inquiry (/nherited)
3 Maintain customer(/nherited and specified)
3.1 (Alt) if the customer already exist in database?
3.1.1 (Seq) Yes: Delete the customer
3.1.1.1 Delete the customer from the database
3.1.1.2 Return succeed message
3.1.2 No: Return error message

Similarly, use cases “Add Video”, “Delete Video”, and “Update Video” are
isomorphic. They have similar behavior structure and share some common primitive
episode such as “Database inquiry”. Therefore, the generalization_generation refactoring
can be applied to these use cases to improve reusability. The use case diagram after

applying the refactoring is shown in Figure 5.7.

e ™~ 'd N
C o C o L

Delete Video Update Video Add Video

75

Figure 5.7 Use case diagram for “Video Maintenance”
After applying “Generalization_generation refactoring”, the episode tree for the
new parent use case “Video Maintenance” is generated as follows. The parent use case
also takes over the common relationship with the actor “Manager Staff”’ from its children

usc cascs.

(Seq)
1 The system gathers the video information
2 Database inquiry
3 Maintain the video information

After the refactoring, the child use case “Add Video” inherits not only the
relationship but also the behavior from its parent use case. The episode tree for the use

case is shown as follows.

Seq)
(J{The staff inputs the necessary information for the video (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain video (/nherited and specified)
3.1 (Alt) if the video item exists already
3.1.1 Yes: Return message that the video already exists
3.1.2 (Seq) No: Add the video item
3.1.2.1 Add video item to database
3.1.2.2 Return succeed message

In the same way, the episode tree for another child use case “Update Video” is

modified as follows.

(Seq)
1 The video item is identified Input (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain the video information(/nherited and specified)
3.1 (Alt) if the video item exists already
3.1.1 (Seq) Yes: Update the video's information
3.1.1.1 Input the information for the video item
3.1.1.2 Update the database
3.1.1.3 Return succeed message
3.1.2 No: Return error message

Also, the episode tree for another use case ‘“Delete Video” is changed as follows.

76

(Seq)

1 The video item is identified (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain the video information (Inherited and specified)
3.1 (Alt) if the video item exists already
3.1.1 (Seq) Yes: Delete the video item
3.1.1.1 Delete the item from the database
3.1.1.2 Return succeed message
3.1.2 No: Return error message

The Final Use Case Diagram After Refactorings

After the above refactorings, the structure of the use case model is changed, shown in

Figure 5.8.
C D
SN T B
p < N Video Rental
1
/// p
o~ 7 - i T
O e ccincludes s, ‘/\ ()
T D | e
AL e |) :
Customer Web Video Inquiry Video Inquiry 3 //7Customer Maintenance
N ; d A
: - f
b QT D)
B)
O Ao G Y -

7 N
Dependent Customer \

. /'/ N _ 7 . s

Add Video Delete Video Update Video

Figure 5.8 Use case diagram for the VSS after applying refactoring rules

The episode tree for the use case “Video Rental” is shown as follows:

(Seq)
1 The customer is identified

2 The available video item is identified

3 (Alt) Check if satisfying the condition
3.1 Yes: A new video loan is registered.
3.2 No: Return message.

77

The episode tree for the use case “Video Return” is shown as follows:

(Seq)

1 The customer is identified.

2 The borrowed video item is identified

3 The loan is identified through the item

4 The corresponding loan is removed

5 Calculate the rental fee.

6 (Alt) If there is a reservation for this item
6.1 Yes: return reminder message
6.2 No: continue

7 Print out the rental fee.

The episode tree for the use case “Video Reserve” is shown as follows:

(Seq)
1 The customer is identified
2 A video title is identified
3 (Alt) Check if satisfying the condition
3.1 Yes: Areservation is created with the specified title and customer

3.2 No: Return error message

The episode tree for the use case “Video Inquiry” is shown as follows:

(Seq)
1 The customer or staff inputs the search criteria

2 The system executes database inquiry
3 Return search result

The episode tree for the use case “Web Video Reserve” is shown as follows:

(Sea)
1 The customer logins in the website
2 A video title is identified
3 (Alt) Check if satisfying the condition
3.1 Yes: A reservation is created with the specified title and customer.
3.2 No: Return error message

The episode tree for the use case “Web Video Inquiry” is shown as follows:

(Seq)
1 The customer logins in the website
2 Video Inquiry (Inclusion)

The episode tree for the use case “Customer Maintenance” is shown as follows:

78

(Seq) _ ‘
1 The system gathers the customer information
2 Database inquiry
3 Maintain the customer information

The episode tree for the use case “Add Customer” is shown as follows:

(Seq)
1 Input the necessary information for the customer (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain the customer information(/nherited and specified)
3.1 (Alt) if the customer already exist in database?
3.1.1 Yes: Return message
3.1.2 (Seq) No: Issue the card for the customer
3.1.2.1 Add the customer with corresponding constraints to database
3.1.2.2 Generate card to customer
3.1.2.3 Return succeed message

The episode tree for the use case “Delete Customer” is shown as follows:

(Sea)
1 The customer is identified (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain the customer information(Inherited and specified)
3.1 (Alt) if the customer already exist in database?
3.1.1 (Seq) Yes: Delete the customer
3.1.1.1 Delete the customer from the database
3.1.1.2 Return succeed message
3.1.2 No: Return error message

The episode tree for the use case “Update Customer” is shown as follows:

(Seq)
1 The customer is identified (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain the customer information(/nherited and specified)
3.1 (Alt) if the customer already exist in database?
3.1.1 (Seq) Yes: Update customer’s information
3.1.1.1 Input the necessary information for the customer
3.1.1.2 Update the database
3.1.1.3 Return succeed message
3.1.2 No: Return error message

The episode tree for the use case “Video Maintenance” is shown as follows:

(Seq)
1 The system gathers the video information
2 Database inquiry
3 Maintain the video information

79

The episode tree for the use case “Add Video” is shown as follows:

(Seq)
1 Input the necessary information for the video (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain the video information (Inherited and specified)
3.1 (Alt) if the video item exists already
3.1.1 Yes: Return message that the video already exists
3.1.2 (Seq) No: Add the video item
3.1.2.1 Add video item to database
3.1.2.2 Return succeed message

The episode tree for the use case “Delete Video” is shown as follows:

(Seq)
1 The video item is identified (Inherited and specified)

2 Database inquiry (Inherited)
3 Maintain the video information (/nherited and specified)
3.1 (Alt) if the video item exists already
3.1.1 (Seq) Yes: Delete the video item
3.1.1.1 Delete the item from the database
3.1.1.2 Return succeed message
3.1.2 No: Return error message

The episode tree for the use case “Update Video™ is shown as follows:

(Seq)
1 The video item is identified (Inherited and specified)
2 Database inquiry (Inherited)
3 Maintain the video information (Inherited and specified)
3.1 (Alt) if the video item exists already
3.1.1 (Seq) Yes: Update the video’s information
3.1.1.1 Input the information for the video item
3.1.1.2 Update the database
3.1.1.3 Return succeed message
3.1.2 No: Return error message

In this case study, we applied 6 refactoring rules, which are:
generalization_generation refactoring for actors, inclusion_generation refactoring,
equivalence_generation refactoring, reuse_usecase refacotoring, delete_usecase
refactoring, and generalization_genertion refactoring for use cases. After these
refactorings, the organization of the use case model is improved. With the tool’s support,

the refactoring will be more efficient.

80

Chapter 6

Conclusion

Use case models are used to capture the functional requirements of a system. However, to
obtain well-organized use case models is not easy. This thesis shows how refactoring as a
concept is applied in use case modeling to improve the organization of use case models.

The work the author has done, the limitations and the future work for use case refactoring

are presented.
6.1 Achievements of this thesis

Based on the analysis of Regnell and Rui’s use case metamodel and Metz’s refined use
case model, the author refined the use case metamodel at the environment level, namely
the use case model, by introducing more relationships and detailing the inclusion and
extension points. Constraints applied to the model are given in OCL. Also, I refined the
use case metamodel at the structure level, namely the episode model, by classifying
different episodes and introducing control-flow to composite episodes. Similarly, some
constraints applied to the episode model are given in OCL. The semantics of the episode
model are explained in informal text.

To apply refactoring to use case modeling, the author defined more than 10 use
case refactoring rules. Most of these rules change use case models based on the
information captured in episode models. Each rule is explained in detail, including
motivation, definition, and verification. An example based on the ATM is given

following the rule to demonstrate how the rule is applied in practice. These rules focus on

81

how to restructure the composition of use cases, and rearrange the relationships between
use cases.

A case study of the Video Store System (VSS) is given to demonstrate step-by-
step how the refactoring rules provided in this thesis are applied to change the
organization of use case models.

6.2 Limitations

Although we refined the metamodel at the environment and structure levels and presented
the constraints among objects using OCL, the semantics of the model is informal. This
makes it difficult to describe the behaviors of a use case precisely. For our project, we use
a glossary to reduce inconsistency.

For some refactoring rules, such as generalization_generation refactoring for use
cases, the preconditions and/or postconditions are hard to verify. In this thesis, the
problem is simplified and only part of these conditions is illustrated.

We focused on the environment and structure levels when refining the
metamodel. The refactoring rules and the case study are also limited to these two levels.

6.3 Future work

To precisely depict the behavior of a use case, a formal language is needed to define the
semantics of the use case model, the episode model, and the event model. Future work

includes choose a suitable formal language and use it to describe use cases, episodes, and

events.
Refactoring in use case modeling is still in its infancy. We introduced some
refactoring rules. These rules focused on the decomposition of a use case and the

reorganization of relationships between use cases. More refactoring rules that influence

82

the organization of use case models are expected with future research on use case
refactoring. Furthermore, future work may include the refactoring rules’ standardization
and formalization to make the rules more accurate and unambiguous.

In our tool, we only implemented the refactoring rules that are provided by Rui.
Future work is to implement the refactoring rules introduced in this thesis. Moreover, a
user may want to go back to the previous models after he or she applied several
refactoring rules. Therefore, future work for the tool includes providing redo and undo
operations for users.

We introduced case studies based on the Video Store System (VSS) and the
Automated Teller Machine (ATM). However, a small numbers of case studies do not
fully demonstrate the effectiveness of the refactoring in use case modeling. More case

studies are needed.

83

References

[Armour01] Frank Armour, Granville Miller, Advanced use case modeling,

Addison - Wesley. 2001

[Booch99] G. Booch, 1. Jacobson, and J. Rumbaugh, Unified Modeling Language — Users
Guide. Addison Wesley Longman, Inc. Reading, MA, 1999.

[ButlerO1] Greg Butler, Lugang Xu, Cascading Refactoring for Framework Evolution,
Proceedings of 2001 Symposium on Software Reuseablity, p51-57, ACM Press, 2001.
[Comp647] Eric Atisso, Gang Cheng, Shao Zhen Fang, Gabriel Schor, Fan Wang, Ju
Wang, Tie Bang Wang, Wei Yu, Bing Zhu, Project Report of the Video Store System for
Course Comp647: Software Methodologies, Concordia University, Team2, 2001.
[Fowler99] Martin Fowler, Refactoring: Improving the Design of Existing Code,
Addison-Wesley, 1999.

[Jacobson92] Jacobson 1., Christerson M., Josson P., Overgarrd G., Object-oriented
Software Engineering: A Use Case Driven Approach. Addison Wesley. 1992.
[Larman98] Craig. Larman, Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design. Prentice Hall. Upper Saddle River, NJ, 1998.

[Mens04] Tom Mens, Martin Fowler, Chris Seguin, Don Roberts, Ralf Laemmel, Simon
Thompson, Claus Reinke, Serge Demeyer, Dirk Janssens, Program Refactoring,

http://www.program-transformation.org/Transform/ProgramRefactoring, 2004.

[MetzO1a] Pierre Metz, John O’Brien, Wolfgang Weber. Use case model refactoring:

Changes to UML’s use case relationships, http://www.tbi.th-

84

darmstadt.de/frames/organisation/personen/w.weber/public_html/Publ/use_case_model 1

efacturing-internal _report.pdf, 2001.

[Metz01b] Pierre Metz, John O Brien, Wolfgang Weber. Against use case interleaving,

http://www.wibas.de/download/Against Use Case_Interleaving.pdf, 2001.

[Miller01] Roy W. Miller, Christopher T. Collins, XP distilled, IBM developerWorks,
March 2001.

[Opdyke92] W.F.Opdyke. Refactoring Object-Oriented Frameworks. Ph.D. thesis,
University of Illinois, 1992.

[Opdyke00] Bill Opdyke, Refactoring, Reuse & Reality, Lucent Technologies/ Bell Labs,
2000.

[Regnell96] B. Regnell, M. Andersson, and J. Bergstand. A hierarchical use case model
with graphical representation. Proceedings of ECBS’96, P270, IEEE International
Symposium and Workshop on Engineering of Computer-Based Systems, 1996. Also

available at http://www.tts.Jth.se/Personal/bjornt/Papers/ECBS96.pdf.

[Regnell99] B. Regnell, Requirements Engineering with Use Cases — a Basis for
Software Development. Ph.D. thesis, Lund University, 1999.

[Roberts99] Donald Bradley Roberts. Practical Analysis for Refactoring. Ph.D. thesis,
University of Illinois, 1999.

[Rui01] KeXing Rui, Refactoring Use Case Models, Thesis Proposal, Concordia
University, Computer Science, 2001.

[Scott02] Kendall Scott, UML Explained, Addison-Wesley, p39, 2002.

[Simons99] Anthony J H Simons, Use Cases Considered Harmful,

http://www.dcs.shef.ac.uk/~ajhs/papers/harmful .pdf, 1999,

85

[Tokuda99] Lance Tokuda. Evolving Object-Oriented Designs with Refactorings. Ph.D.
thesis, University of Texas, 1999.
[UMLO1] OMG Unified Modeling Language Specification 1.4,

http://www.ift.ulaval.ca/~bui/21454 Hiv2003/OMG_14.pdf, 2001

[Wiki03] Wiki web pages, Refactor, http://c2.com/cgi/wiki?RekFactor, 2003.

[Wiki04] Wiki web pages, What Is Refactoring? 2004.

htip://c2.com/cei/wiki?WhatlsRefactoring, 2004.

86

