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ABSTRACT

IMPLEMENTATION OF A VOICE ACTIVITY DETECTION AND COMFORT NOISE
GENERATION ALGORITHM

Jing Liang

Voice activity detection and comfort noise generation (VAD-CNG) algorithms are widely
employed in packet voice communication systems to reduce transmission bandwidth. Full-
duplex voice communication systems are typically interactive, requiring a very short end-
to-end delay. Therefore, an effective implementation is critical to make any VAD-CNG

algorithm a practical solution in a real-time embedded system.

In practice, algorithms are generally implemented on programmable digital signal
processors (DSPs) due to the availability of such processors at a very low cost. The family
of digital signal processors TMS320C54xx from Texas Instruments (TT) has been the most
widely used one in wireless communications, voice over IP gateway, consumer electronics

and broadband communications.

This thesis is devoted to the investigation of effective implementations of a modified
version of a well-established fixed-point data-dependent VAD-CNG algorithm of Nortel
Networks. In this study, the algorithm to be implemented is first described in detail. Then
the target platform, a TMS320C5402DSK DSP board, along with its real-time operating
system (DSP/BIOS) and its associated analysis tools, is introduced. Two implementation
schemes are presented in this thesis. The first one is a direct implementation of the
modified algorithm on the DSP board. The second one is an implementation, wherein some

optimizations that target the reduction of the implementational complexity of the algorithm



are introduced. Several DSP/BIOS real-time analysis tools provided by the DSP board and
some speech samples are used to test the performance of the implementations.
Experimental results are presented to show the effectiveness of the optimizations for the
modified VAD-CNG algorithm. These results show that over 80% of the reduction in the
implementational complexity is achieved through the proposed optimizations, making it
possible to incorporate such a VAD-CNG algorithm into a practical real-time voice
communication system. A real-time audio codec system is built in the laboratory to
demonstrate the real-time implementation of this algorithm. This demonstration system

should also serve as a useful experimental tool for further investigation on this topic.

v
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CHAPTER 1

INTRODUCTION

1.1 Principle of VAD-CNG Algorithms

Many vocoder algorithms, especially low bit-rate speech coding algorithms, have been
developed to meet the significantly increased demand for digital wireless as well as other
packet voice communication systems [1]. Among these algorithms, ITU-T
Recommendation G.729 (toll-quality under 8 Kb/s) [2] and its complexity-reduced

version G.729A [3] are the most popular ones.

In voice communication, voice signals are generally classified into three non-
overlapping types that are (1) active speech that carries very important information; (2)
audible non-speech (inactive) that carries less useful but not necessarily useless
information; and (3) silence (not audible) that carries no useful information [5]. Based on
a well-known fact that in a full-duplex conversation, as high as 60% of the conversation
in any one direction is inactive speech or background silence, voice activity detection
(VAD) and comfort noise generation (CNG) algorithms [5]-[13], also called silence
suppression algorithms, have been developed in order to avoid the transmission of packet
signals during silent or inactive periods to reduce the transmission bandwidth. The use of
these algorithms can lead to a higher number of users and an increase in the data

throughput in packet voice communication systems.



A block diagram of a packet voice system using both VAD and CNG is shown in
Figure 1.1 [4]. The input speech is passed to the VAD module that decides whether the
speech is active or inactive. If the current frame is active, this frame of data is passed to a
low bit-rate speech encoder and encoded and packed by it before being sent; if it is
inactive, the transmission of this signal packet is suppressed and perhaps, a silence
insertion descriptor (SID) packet, which contains several characteristic parameters of the
background noise, is formed by a CNG encoder and sent to the far-end. A discontinuous
transmission (DTX) algorithm is introduced to determine the frequency of the SID packet
transmission during periods of inactive speech. At the receiving side, a CNG decoder uses
the SID packets to generate comfort noises to fill in the gaps that the original silence or

noise should occupy.

Speech ;
'Y Encoder l '
Input

Speech |
Speech Decoder |
CNG | Communic ati on
Encoder Channel Synthesized
.| CNG __I Speech

VAD > Decoder
DTX

Encoder Decoder

Figure 1.1. VAD/DTX/CNG block diagram [4]

Generally, the VAD at the encoder determines when speech is present and the CNG
decoder fills in the gaps in the received packets by generating noise using the SID packets

to make the synthesized speech neither irritating nor uncomfortable. Substantial reduction



in the transmission rate as well as in the transmission bandwidth is achieved through VAD-
CNG algorithm during inactive periods, since the bandwidth used for transmitting the SID

packets is negligible in comparison with the original bandwidth requirement.

1.2 Nortel VAD-CNG Algorithm

The Nortel fixed-point VAD-CNG algorithm [6] consists of three parts, namely, VAD,
DTX and CNG, and employs linear predictive coding (LPC) and energy analysis to carry
out the VAD. The output of the VAD module is either 1 or 0, indicating, respectively, the
presence or absence of voice activity. If the VAD output is 1, a speech codec is invoked to
code/decode the active voice frames. On the other hand, if the VAD output is 0, the

DTX/CNG algorithms are used to code/decode the non-active voice frames.

1.2.1 VAD Algorithm

The Nortel VAD algorithm makes a voice activity decision on a frame-by-frame basis
every 10 ms in accordance with the frame size of input speech, which is sampled at the rate
of 8 KHz and segmented into frames of 80 samples. In this algorithm, a set of four
parameters, namely, the peak energy, minimum energy, LPC gain, and the spectral non-
stationarity, is extracted and based on these parameters, power likelihood, LPC gain
likelihood, and non-stationarity likelihood, as well as a composite likelihood are calculated
to make the voice activity decision. The block diagram for this VAD algorithm is shown in

Figure 1.2 [18].



»0dB

L Peak |y peakActive
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Figure 1.2. VAD block diagram [18]

1.2.1.1 LPC Analysis

The LPC analysis, which is widely used in voice signal processing algorithms [14]-[17], is
employed is this VAD-CNG algorithm. The LPC analysis estimates, or gives the linear
prediction of, a speech sample based on the assumption that the speech sample is modeled

as the output of an all-pole glottal filter, given by [17]

H(z)=—— 1.1)



where a,(i =1,2,---, p) are the linear prediction coefficients, and p is the prediction order,

which is taken as 10 in this algorithm. This all-pole model is also known as an

autoregressive or AR model [15]. Hence, the speech signal s(n) can be estimated as [17]

§(n) = —i a,s(n—i) (1.2)
i=1

where §(n) is the predicted signal. The estimation residual signal, or the prediction error

signal e(n), is defined as
e(n) = s(n) — s(n) = s(n) + i a,s(n—i) (1.3)

and can be regarded as the output of the following prediction error filter or inverse filter

A(z):
Az)=1+ fa,.z—k (1.4)

with speech s(n) as its input. The least-mean-square (LMS) method is used to choose q; to

minimize the mean energy in the error signal over a frame of speech data, or the mean-

squared prediction error defined as [17]
E=Yé(n) (1.5)

It can be proved that the minimum mean-squared prediction error (MMSPE) could be

obtained by solving the p-th order linear systems of equations [17]:

5



Ra=-r
where,
a= (anaza”"ap)T
r =[r(l),r(2),--~,r(p)]T
and
r©  r@® - r(p-)
. r(:l) r(:O) a r(p:— 2)
r(p=1) r(p-2) - 10O

The autocorrelations (i) are calculated using the following equation:

N-i-1

r@)= Y. s, (n+Ds,(n) ,
n=0

i = Oslazy'”:p

(1.6)

(1.6a)

(1.6b)

(1.6¢)

(1.7)

where s, (n), (n=0,1,---,N —1) are the windowed speech samples and N is the window

size. The redundancy in this symmetric ( R(i,k) = R(k,i)) and Toeplitz (all elements along

a given diagonal being equal) matrix R allows one to use the more efficient Levinson-

Durbin recursive procedure [15,16] instead of solving the matrix equation directly. One can

refer to [15]-[17] for more details regarding the computation of R, r, a, and the reflection

coefficients k,(i =1,2,---, p), or the negatives of the reflection coefficients, the partial

correlation (PARCOR) coefficients.



1.2.1.2 Prediction Gain and Non-stationarity

As shown in Figure 1.2, the short-term input speech is passed through a highpass filter to
eliminate its direct current (DC) component and low-frequency hum, and then windowed
by using a Hamming window of size 30 ms (or 240 samples). The LPC analysis is then
applied to get the autocorrelations r, the best linear prediction coefficients a, and the
prediction error e, where a and e are obtained from the Levinson-Durbin recursive

procedure.

The prediction gain is defined as the prediction error normalized with respect to » (0),

that is [4],

r(O))

predictionGain =10log,,(—= (1.8)
e

A very large prediction gain implies that there are very strong spectral components or
there is considerable spectral tilt. In either case, it is an indication that the signal is voice or

that it is a signal that may be hard to regenerate with comfort noise [5].

Based on the common assumption that the background noise is relatively more
stationary than the active speech signal from the point of view of the long-term average [5],
the spectral non-stationarity is one of the best ways in identifying a speech from a noise and

it is defined as [4]

r,(0)+2a’'r+a"Ra

nonstationarity = 10log,, ( )
v, + ar,

) (1.9)



where r,(i),(i =0,1,2,---, p) are obtained as the moving average values of r(i) (see
Section 1.2.2.1), r, is their vector form as in (1.6b), and R, is their matrix form as in
(1.6¢). The LPC coefficients a,,(i =1,2,-+-, p) are obtained from 7, (i) through Levinson-
Durbin recursion, whereas @, is their vector form as in (1.6a). The denominator of (1.9)

corresponds to the optimal prediction error obtained by filtering the windowed long-term
averaged speech signal through the corresponding optimal LPC inverse filter, and the
numerator corresponds to a prediction error obtained by filtering the same averaged speech
signal through the LPC inverse filter which corresponds to the current frame’s LPC
analysis [4]. The spectral distance between these two prediction errors is measured in this
way and a large value of this distance is an indication that the signal spectrum is changing
rapidly [5]. It is also an indication of an active speech according to the assumption

mentioned above.

1.2.1.3 Energy Analysis

Short-term energy is widely used in the VAD because of its efficiency and simplicity. The

Nortel algorithm tracks both the peak energy and the minimum energy.

The peak energy is tracked by using a simple non-linear first-order filter, where the
input is the speech energy (in dB) with a filter coefficient that is a function of the VAD
state. In the original Nortel’s floating-point algorithm, it is defined by the following

difference equation [5]:

y(n) = max(u(n),(1—a)y(n—1) + au(n)) (1.10)



where u(n) is the current value of the speech energy (“rOdB”), y(n) is the peak energy
(“peakActive™), and «is chosen from a set of two possible constants. The larger value is
used, if the current speech frame is declared active, otherwise the smaller one. The

calculation is simplified in the fixed-point algorithm as [6]

u(n) Jif u(m)zy(n-1)

y(n)= , (1.11)
yin-D-a ,if u@r)<y(n-1)

Similar to the peak tracker, the minimum energy (“minlnactive”) is tracked with the

same function (1.10) except that the input is negative of the energy (in dB) [5,6].

If the speech energy is much less than the peak energy, the background noise is most
likely inaudible or it is low enough to be declared as inactive; if the speech is much larger

than the minimum background noise energy, this frame is declared as active [5].

1.2.1.4 Likelihood

In the Nortel algorithm, likelihood, a probability measure used by soft decisions, is applied
when the hard decisions with fixed thresholds cannot make the decision with regard to a

frame being active or inactive.

From the parameters obtained from the energy and LPC analyses, three likelihoods,
namely the power likelihood (L;), the prediction gain likelihood (L;), and the non-

stationarity likelihood (L3), are computed as [5]:



0, x<th,

L, =11, x=th , j=123 1.12)
x—th, .
, oOtherwise
| thy —th,

Each likelihood is calculated based on the value of the parameter x and a pair of
thresholds thy and th; (“minThresh”, “pgThresh”, or “nonstatThresh”), where thy is the
minimum threshold and th; the maximum threshold. In this way, a crude probability or
likelihood of an active speech segment for a particular parameter is produced. By adding

these three likelihoods together a composite likelihood L (“softActivity”) is formed as

L=L +L,+L, (1.13)

Further details regarding the use of these likelihoods in the VAD decision rules may

be obtained from [4-6].

1.2.2 CNG Algorithm

The CNG algorithm is designed to extract the noise parameters, to form the SID packets at
the encoder, and to generate comfort noise by shaping the Gaussian noise spectrum with
the decoded SID parameters at the decoder [18]. There are three factors that should be
considered when the CNG is designed: (1) The background noise suppressed during the
inactive periods should be reproduced at the receiver with a substantial fidelity to make
the synthesized speech neither irritating nor uncomfortable. (2) The CNG operations
should not affect the achievement of substantial bandwidth savings. (3) The SID
parameter encoding should be efficient and at the same time, maintain the subjective

quality of the generated comfort noise [5, 18].
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1.2.2.1 CNG Encoder

The CNG encoder executes two tasks: (1) updates and extracts the set of characteristic

noise parameters and (2) forms the SID packets whenever necessary.

During the inactive periods, the background noise power and the spectrum (the
autocorrelation vector) are updated by averaging the short-term energy and spectrum with a

non-linear filter given by [5]

y(m) =1~ p)y(n-1)+ Bu(n) (1.14)

where u(n) and y(n) are, respectively, the current the updated parameters. The filter
coefficient f is not a constant; it is a variable that is chosen from a set of two values

depending on the difference between the current and smoothed parameters [5].

An SID packet includes the codewords of the quantized comfort noise power level

and the log area ratios (LARs) of the reflection coefficients &,(i =1,2,---, p), which are

the by-products of the Levinson-Durbin recursion. The comfort noise power level is
simply quantized by its logarithm (dB). The noise spectrum information needs to be
quantized before it can be packed into the SID packet and transmitted to the decoder.
However, direct quantization of the prediction coefficients is not desirable [6]. The
reflection coefficients are quantized instead. “While the reflection coefficients
k(i =12,---, p) are less sensitive to quantization than a,, (i =1,2, .-, p), k,(: =1,2,---, p)
still cause difficulties when their magnitudes are near unity (i.e., reflection coefficients can

be quantization-sensitive when they represent narrow-bandwidth poles)” [17]. With
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appropriate nonlinear transformations expanding the region near |k,(i =1,2,---, p)| = 1, the
reflection coefficients are converted to LARs defined as [17]

1+k,
1-k,

i

LAR, =In , i=12,,p (1.15)

for the quantization. The LAR is quantized using the mid-rise quantizer whose input-output

characteristic is expressed by [17]

x =(- 5 )A, i=23,,L (1.16a)
y; = (i—%)A, i=12,-,L (1.16b)

where L is the number of output levels and A is a fixed quantizer step size. Since p, the
order of the prediction filter, is chosen as 10 in the algorithm, ten scalar quantizers with

different values for L and A need to be designed for the ten LARs [6].

1.2.2.2 CNG Decoder

The CNG decoder performs the following four tasks: (1) unpacking of the received SID
packets, (2) dequantization of the parameters (comfort noise power level and LARSs) in the
SID packets, (3) computation of the excitation gain based on the power level and CNG
spectral parameters from decoded LARs, and (4) generation of the comfort noise by

shaping the Gaussian noise spectrum with the decoded SID parameters.

As shown in Figure 1.3 [18], in order to produce the comfort noise, the Gaussian white

noise is generated, scaled by the excitation gain calculated from the power level, and
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passed through a LPC synthesis filter constructed using the LPC coefficients

acng, (i =1,2,---, p) that are computed from the dequantized LARs.

SID Packet l
Y
Excitation Gain LAR_S
Decoding
Gaussian Noise ’é > LPC Synthesis |Comfort Noise
Generator Filter

Figure 1.3. Comfort noise generation scheme [18]

The inversely quantized LARs are converted into CNG reflection coefficients

kcngi (l = 192’ °t ’p) using [6]

LAR; _1

i=12,,p (1.17)

keng, =
TR’

The CNG synthesis filter coefficients acng,(i =1,2,---,p) are recovered from the
reflection coefficients keng,(i =1,2,-+, p) by the recursion given by

a? = keng, (1.18a)

a® =a% +kalP, 1<j<i-1, i=12,p (1.18b)

J ivi-j 2

and the filter coefficients are given by
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acng, =a?, j=12,---.p (1.18c)

1.2.3 DTX Algorithm

The DTX algorithm determines whether or not an SID packet needs to be sent to the
receiver for each inactive frame. The SID packet should be sent at rates as low as possible
to save the transmission bandwidth, whereas the comfort noise generated at the receiver

should be perceptually equivalent to the background noise at the transmitter [18].
In the Nortel algorithm, the SID packets are sent under the following conditions [4]:

(1) Every time a change from an active to an inactive speech is detected, an SID
packet should be transmitted to the decoder to update the parameters that are

employed to generate the comfort noise.

(2) During the inactive speech periods, an SID packet is sent every time when the

number of counted silence frames reaches 50.

(3) During the inactive speech periods, an SID packet is sent when the difference of

the energy level between the current and the previous residual signals exceeds 1

dB.

Through the DTX algorithm, the transmission of the SID packets will not affect the

bandwidth efficiency or the quality of the restored background noise.
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1.3 Modified Nortel YAD-CNG Algorithm

With an objective to achieve a reduction in the average computational complexity with
very little or no loss in the performance, as well as to improve the performance and
efficiency of the processing, some modifications have been introduced recently to the
Nortel VAD-CNG algorithm through an investigation carried out in our laboratory [4]. The
experimental results have shown that there is a reduction of more than 40% in the average
computational complexity through these modifications, while the overall performance
remains very close to that of the original Nortel algorithm. The modifications are discussed
below briefly. However, interested readers are referred to Chapter 3 of [4] for more

details.

For the sake of convenience, we will henceforth refer to the Nortel fixed-point VAD-
CNG algorithm as the “original algorithm”, whereas the modified algorithm in [4] as the

“modified algorithm”.

1.3.1 Revisions to Decision Rules

The original algorithm calculates all the LPC-related parameters, the prediction gain, the
spectral non-stationarity, and the composite likelihood before making the VAD decisions,
whether or not they are actually required, and thus, some unnecessary calculations are

involved. Actually, a significant amount of the decisions are made by the energy-related
parameters. Furthermore, even when the decisions are made by the LPC-related

parameters, not all of these parameters are involved.
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Hence, the calculations of these parameters, which are carried out during the processing
of the signal in every frame in the original algorithm, are calculated only when they are
needed in the modified algorithm. This modification reduces the amount of computations,

and yet it has no negative influence on the performance of the algorithm [4].

1.3.2 Use of a Rectangular Window

A rectangular window is introduced in the modified algorithm to replace the Hamming
window in the original algorithm. Generally speaking, a rectangular window is not suitable
for speech signal processing [16]. However, if we are interested in voice activity detection
alone, it is possible to use a rectangular window, since we do not need to restore the
active speech signal. The spectral information obtained using a rectangular window may
be less accurate than that using a Hamming window, but the VAD performance resulting
by the use of a rectangular window can still be close to that of the original algorithm. By
doing so, we can not only avoid the use of the window function, thus leading to a
considerable reduction in the multiplication operations, but also make use of the overlap
between the successive signal blocks to further reduce the computational load of the
autocorrelation coefficients r(i),(i =1,2,---, p) [4]. The test results have shown that an
overall performance very close to that of the original algorithm can be achieved by the
use of the modified algorithm employing a rectangular window after introducing some

appropriate modifications [4].

1.3.3 Simplification of the Highpass Filter

It is well known that the frequency range from 200 to 5600 Hz contributes most to the

speech perception, and this range matches the frequencies of the largest auditory sensitivity
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and highest speech energy [17]. To remove the undesired low frequency components,

such as the DC component and the low-frequency hum, a highpass filter given by [4]

(475/512) = (950/512)z™" +(475/512)z (1.19)

H =
w(®) 1-(976/512)z™" +(467/512)z7*

which is the same as the one used in G.729 except for the scaling factor [2], is employed in
the original algorithm. However, in VAD applications, it is the DC component that we
want to remove most. Therefore, we can use a relatively simple first-order filter to replace
this second-order one to reduce the computational load. The filter used in the modified

algorithm is given by [4]

1-z71

1-(127/128)z™"

H,(2)= (1.20)

By comparing the frequency responses of the filters given by (1.19) and (1.20), we see
that the second-order filter used in the existing Nortel algorithm has a larger cut-off
frequency than that of the first-order filter, which means that the second-order filter can
remove more low-frequency components. As for the DC component, however, the

performance of the first-order filter is the same as that of the second-order filter [4].

1.3.4 Reduction in Frequency of SID Packets Transmission

As mentioned in Section 1.2.2.1, the CNG encoder updates the extracted noise parameters
(the noise power and the autocorrelation vector) by a non-linear filter (see (1.14)) and
forms the SID packets for every frame during the inactive periods. Also, as mentioned in

Section 1.2.3, the SID packets are not sent in all frames during the inactive periods. It
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means that unnecessary computations are involved in the preparation of an SID packet
that is not transmitted during the current frame. In the modified algorithm, the extracted
noise parameters are updated and an SID packet is formed only when it is required to be
transmitted to the decoder. In this way, the unnecessary calculations are avoided.
Considering that the background noise is relatively more stationary than an active speech
signal from the point of view of the long-term average, and in view of using the running
average scheme, the frequency of this updating can be appropriately reduced with little

effect on the performance of the algorithm.

1.3.5 Other Modifications

Besides the modifications mentioned above, some other modifications, such as the
adjustments of some constants, coefficients, and thresholds, are carried out to improve the
performance of the modified algorithm and correct the improper processing in the original

one [4].

1.4 Motivation and Scope of the Thesis

An algorithm needs a real-time implementation, rather than just simulations, to show its
practical value. Not only is its performance important but also its implementational
complexity when it is implemented, considering the real-time requirement and the

product cost.

In this research, the modified algorithm is implemented on a TMS320C5402DSK DSP
board to build a real-time system. Considering that the VAD-CNG algorithm is designed to

be used as a part of a packet voice communication system, which consists of many integral
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parts, such as the coder, decoder, echo canceller, and voice enhancement, and all these
parts need to work together in real-time, there exists a need to reduce the complexity of
this algorithm as much as possible. To achieve this objective, some optimizations are
carried out to further reduce the implementational complexity of the modified algorithm.
The need for the complexity reduction arises not only from the requirement of a real-time
implementation, but also from the fact that the reduction in implementational complexity
always leads to a reduction in the CPU frequency requirement, power, and memory space,
i.e., a lower complexity means a lower product cost. Several DSP/BIOS real-time analysis

tools are used to test the effects of the implementation and the optimizations.

The optimizations for reducing the complexity are carried out at the implementation
level rather than at the algorithm level. Specifically, the implementational optimizations,
such as replacing some computationally intensive C routines with assembly routines,
making use of the assembly-optimized functions from the DSP Library and intrinsic
functions, and reorganizing the memory, rather than modifying the algorithm itself, are

undertaken.

1.5 Organization of the Thesis

In Chapter 2, an overview of the TMS320C5402DSK DSP board is given. The direct
implementation of the modified algorithm is presented in Chapter 3. In Chapter 4, certain
optimizations to the implementation are proposed and some tests are carried out to evaluate
the effects of the optimizations. Based on the optimized implementation, a real-time
demonstration system using real I/O peripheral devices is built in Chapter 5. Finally,

conclusions as well as suggestions for future work are presented in Chapter 6.
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CHAPTER 2

AN Overview OF TMS320C5402 DSP KiT

Due to advances in VLSI technology, programmable DSP devices are becoming
increasingly available, affordable, and, therefore, popular in the industry for the design of
DSP products [35]. TMS320C54xx from Texas Instruments (TT) is a widely applied family

of DSP devices.

The modified algorithm is implemented on a TMS320C5402DSK (DSP starter kit)
board, which is a DSP-developing tool from Texas Instruments (T1), providing a low-cost,
standalone 54x development platform that enables DSP designers and programmers to
evaluate and develop applications for the C54x DSP. The DSK also serves as a hardware
reference design [19]. We will now descn'Be its hardware, softiware and real-time analysis

tools in this chapter.

2.1 Hardware Overview

The hardware of TMS320C5402DSK includes:

TMS320VC5402 DSP

e CY37128 CPLD (complex programmable logic device)

e External memory

e Microphone/speaker interface

e IEEE-1284 DB-25 compatible parallel-port type host interface
e Power supply
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e RS-232 UART (universal asynchronous receiver/transmitter) data interface
e Telephone DAA (data access arrangement) interface

e JTAG (joint test action group) emulation and host port interface

The hardware tools of this kit specifically used in the implementation are discussed in

the following sections.

2.1.1 TMS320VC5402 DSP

The TMS320VC5402DSP is a fixed-point digital signal processor (DSP) in the TMS320
DSP family, which is designed to meet the specific needs of real-time embedded
applications. It combines an advanced modified Harvard architecture (with one program
memory bus, three data memory buses, and four address buses), a 100 MHz central
processing unit (CPU) with application-specific hardware logic, on-chip memory (4K
words of ROM and 16K words of DARAM (dual-access RAM)), on-chip peripherals, and
a highly specialized instruction set [20, 21, 22]. The CPU consists of (1) a 40-bit
arithmetic logic unit (ALU), including a 40-bit barrel shifter and two independent 40-bit
accumulators, (2) a 17-bit x 17-bit parallel multiplier coupled to a 40-bit dedicated adder
for nonpipelined single-cycle muitiply/accumulate (MAC) operations, (3) a compare,
select, store unit (CSSU) for the add/compare selection of the Viterbi operator, (4) an
exponent encoder to compute the exponent of a 40-bit accumulator value in a single cycle,
and (5) two address generators, including eight auxiliary registers and two auxiliary register

arithmetic units.
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2.1.2 CY37128 CPLD

The DSK uses a Cypress CY37128 CPLD to implement the required logic of the board and
to provide control and status interfaces for the DSP software [19]. The CPLD provides the

following functions:

e Reset control

e DSP memory-mapped control/status registers

e Peripheral decoding (UART and control registers)

e LED (light emitting diode) control and DIP (dual in-line package) switch status
e Host and DSP interrupt control

e Data transceivers control

User options

The CY37128 CPLD is a 3.3 V (5 V tolerant), 160-pin device that provides 128
macrocells, 128 1/0O pins, a 10 ns pin-to-pin delay, and 125-MHz maximum clock
frequency. The device is EEPROM-based and is in-system programmable via a dedicated

JTAG interface (a 10-pin header on the DSK) [19].

2.1.3 External Memory

Besides the on-chip memory, the DSK provides 64K x 16-bits (word) of SARAM (single-
access RAM) and 256K x 16-bits of FLASH memory. The difference between SARAM
and DARAM is that each DARAM block can be accessed twice per machine cycle and the
CPU and peripherals, such as a multi-channel buffered serial port (McBSP) and host-port

interface (HPI), can read from and write to a DARAM memory address in the same cycle,
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whereas each SARAM block can be accessed only once per machine cycle [20]. The DSK
also provides two expansion connectors to expand the memory and can address up to 16

64K words [19].

2.1.4 Microphone/Speaker Interface

Two 3.5 mm audio jacks are used as microphone and speaker interfaces and connected to
the McBSP1 of the TMS320VC5402DSP through a TLC320ADS50, which is used as a
codec to digitize the input analog speech signal. The McBSP1 is a high-speed, full-duplex
multi-channel buffered serial port, which allows continuous data streams between the

TMS320VC5402DSP and the TLC320ADS0 [24].

2.2 Software Overview

The DSK application-related software can be divided into (1) a host software, which
supports C54x DSK board control, DSP application loading and execution, device
configuration, status display, communication between the host and DSK, and board
confidence tests, and (2) a DSP target software, which provides application programming
interface (API) functions to develop applications that can control and operate the on-board
peripherals [19]. Both the host software and the DSP target software are integrated into the
Code Composer Studio (CCS), a graphic interface development tool providing a fully

integrated development environment (IDE) supporting TI TMS320 DSP platforms [25].

2.2.1 Code Composer Studio

The CCS integrates all the host and target tools in a unified environment, including the

DSP/BIOS kermnel, editor, code-generation tools, debugger, and Real-Time Data Exchange
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(RTDX) technology, in order to simplify the DSP system configuration and application

design. As shown in Figure 2.1 [26], the CCS consists of the following items:

e Code-generation tools, including a C/C++ complier, an assembler, and a linker

e CCS integrated development tools, including an editor, a configuration tool, a
project management tool, and a debugger

e DSP/BIOS kemel and its API [27], which control and operate the on-board
peripherals

e RTDX API, which handles the real-time data exchange between the host and DSK

—
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Figure 2.1. Block diagram of CCS [26]
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CCS supports iterative program development cycles. We can create the basic
framework for an application first, test it using analysis tools and then modify the
framework, if necessary. A sample DSP development cycle includes the following steps,

with the possibility of a step or a group of steps being iterated [26]:

1. Use the configuration tool to create objects for the program to use.
2. Save the configuration file to generate files to be included in the program.

3. Write a framework for the program using the editor. C, C++, assembly, or a

combination of the languages can be used.
4. Create a project for the program using the project management tool.

5. Compile and link the program using the complier, assembler, and linker to generate

executable code.
6. Test program behaviors using the debugger, DSP/BIOS analysis tools, and RTDX.

7. Repeat steps 1-6 until the program runs correctly. It is possible to add functionality

and make changes to the basic program structure.

8. When production hardware is ready, modify the configuration file to support the

production board and test the program on the board.

2.2.2 DSP/BIOS

DSP/BIOS is a scalable real-time kernel of CCS. It is designed for applications that require
real-time scheduling and synchronization, host-to-target communication, or real-time
instrumentation. DSP/BIOS provides preemptive multi-threading, hardware abstraction,

real-time analysis (which will be discussed in Section 2.3) and configuration tools [26].
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2.2.2.1 Configuration Tool

The Configuration Tool is a visual editor with an interface similar to the Windows Explorer
[26], as shown in Figure 2.2. It allows one to create and configure the DSP/BIOS objects
statically used by the program. These objects include software interrupts (SWI), hardware
interrupts (HWTI), /O streams, and event logs. This tool can also be used to configure
memory, thread priorities, and interrupt handlers. The objects created and properties set are
used by the DSP/BIOS API at run-time [19]. When this configuration file is saved, the
configuration tool creates an assembly source and header files and a linker command file to
match the settings. When the application is built, these files are linked with the application

programs [26].

System , s
g Global Settings <add comments here>
4 MEM - Memory Section Manager IDATA !
I svS - System Settings i 1
@ HOOK - Module Hook Manager 30
@ Instrumentation veader
» LOG - Event Log Manaber PO _DSS, rxPrime
STS -~ Statistics Object Manager ; 0x00000000
-8 scheduling 0x00000000
71-£ 8 CLK - Clock Manager i _SWI_andnHook
-8 PRD - Periodic:Function Manager —vadcng_SWI
@‘ HWI - Hardware Interrupk Service Routine Manager 0xD0000001
@-$F SWI - Software Interrupt Manager
[-&2 T5K - Task Manager
. l’,"j 1DL - Idle Fanction Manager
(£33 Synchronization
&1-{Jl Input{Output
RTDX - Real-Time Data Exchange Settings
-3 HST - Host Channel Manager
L. B3 pTA fromHost
B3 RTA_toHost
-2, PIP - Buffered Pipe Manager
5, [
: &R, DSS_E
--=§= 510 - Stream Input and Output Manager
H--% Chip Support Library

Figure 2.2. Configuration tool
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2.2.2.2 Thread Scheduling

Many real-time DSP applications must perform a number of functions at the same time,
often in response to external events such as the availability of data or the presence of a
control signal. The functions performed, as well as when they are performed, are both
important. These functions are called threads in DSP/BIOS, which include any independent
stream of instructions executed by the DSP, such as interrupt service routines (ISR) or

function calls [26].

DSP/BIOS enables applications to be structured as a collection of threads, each of
which carries out a modularized function. Multithreaded programs run on a single
processor by allowing higher-priority threads to preempt the lower-priority threads and by
allowing various types of interaction between the threads, including blocking,

communication, and synchronization [26].

DSP/BIOS provides support for several types of program threads with different
priorities. Each thread type has different execution and preemption characteristics. The

thread types (from highest to lowest priority) are as follows:

e Hardware interrupts (HWI), which includes clock (CLK) functions
e Software interrupts (SWI), which includes periodic (PRD) functions
e Tasks (TSK)

e Background thread (IDL)

HWIs have the highest priority among the four thread types and are triggered either by

on-chip peripherals or by devices external to the DSP in response to external asynchronous
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events that occur in the DSP environment. They should be used for application tasks that
need to run at very high frequencies. An HWI function (also called an ISR) is executed
after a hardware interrupt is triggered in order to perform a critical task that is subject to a
hard time deadline. Using the Hardware Interrupt Service Routine Manager in the
Configuration Tool, we can configure the ISR for each hardware interrupt in the DSP. An
ISR can be written using assembly language, C, or a combination of both; however, it is

usually written in assembly language for efficiency [26, 28].

The SWIs are patterned after the HWTs, with the HWIs triggered to call ISRs, whereas
the SWIs triggered to call the SWI functions from the program. Software interrupts provide
additional priority levels between the HWIs and TSKs. The SWIs handle threads subject to
time constraints that preclude them from being run as TSKs, but whose deadlines are not as
severe as those of HWIs are. SWI objects can be created and configured either dynamically
by using DSP/BIOS API or statically by using the Software Interrupt Manager in the

Configuration Tool [26].

TSKs have higher priority than the background thread and lower priority than the
software interrupts. Tasks differ from software interrupts in that they can be suspended
during the execution until necessary resources are available. TSK objects can also be

created and configured either dynamically or statically [26].

Background thread executes the idle loop (IDL) at the lowest priority in a DSP/BIOS
application. After main returns, a DSP/BIOS application calls the start-up routine for each
DSP/BIOS module and then falls into the idle loop. The idle loop is a continuous loop that

calls all functions for the IDL objects, which is created and configured by using the Idle
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Function Manager in the Configuration Tool. The idle loop runs continuously except when
it is preempted by higher-priority threads. Only functions that do not have hard time
deadlines, such as communication between the target and the DSP/BIOS analysis tools,

should be executed in the idle loop [26].

2.2.2.3 Memory Management

The Memory Section Manager of the Configuration Tool manages named memory
segments that correspond to physical ranges of memory. It allows one to specify the

memory segments required to locate the various code and data sections of a DSP/BIOS

application [19].
TABLE 2.1. NAMES OF MEMORY SEGMENTS
Segment Description
IDATA Internal (on-chip) data memory
EDATA External (off-chip) data memory
IPROG Internal (on-chip) program memory
EPROG External (off-chip) program memory

USERREGS Page 0 user memory (28 words)
BIOSREGS Page 0 reserved registers (4 words)

VECT Interrupt vector segment

The standard memory segment names used by DSP/BIOS are listed in Table 2.1. It is
also possible to create one’s own memory segments with different names and properties,

delete memory segments, rename memory segments, or change the properties of the
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existing memory segments, such as the starting address, the length, and whether a

memory segments is used as data space or program space.

2.2.2.4 Input and Output Management

Input and output for DSP/BIOS applications are handled by the stream, pipe and host
channel objects, which are created and configured in the Configuration Tool. We now
describe the pipe (PIP) and host channel (HST) modules, which are used in the

implementation.

Pipes are designed to manage block I/O (also called stream-based or asynchronous
I/O). Each PIP object, which is created and configured by Buffered Pipe Manager in the
Configuration Tool, maintains a buffer divided into a fixed number of fixed length frames,
specified by the “numframes” and “framesize” properties. All /O operations on a pipe deal

With one frame at a time [26].

As shown in Figure 2.3 [26], a pipe has two ends. The writer end is where the program

writes the frames of data. The reader end is where the program reads the frames of data.

Figure 2.3. PIP module [26]
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Data notification functions (“notifyReader” and “notifyWriter”) are performed to
synchronize the data transfer. These functions are triggered when a frame of data is written
or read to notify the program that data is available or a frame is free. When a frame of data
is written into an allocated frame, the writer end calls PIP_put assembly macro to put the
frame into the pipe. The function notifyReader is then triggered to notify the program that
the data is available and the reader end should call PIP_get assembly macro to read the
data; Similarly, when a frame of data is read out from the pipe, the reader end calls
PIP_free assembly macro to clear and recycle back this frame to the pipe. The function
notifyWriter is then triggered to notify the program that a frame is free and the writer

should call PIP_alloc assembly macro to allocate the next empty frame.

The Host Channel Manager manages the HST objects, which allow an application to
stream data between the target and the host. The Host channels are configured for input or
output, where input streams read data from the host to the target and output streams transfer

data from the target to the host [26].

The input and output channels are, respectively, bound to the corresponding input and
output files on the PC host by using the Host Channel Control dynamically, as shown in

Figure 2.4.

hput_HST 7673608 0KB Running Input C:\MiNusamplei\combl12 .pcm
output_HST 767360B 0KB Running Output - C:AjNusamplehcombl 2testemod. dat

Figure 2.4. Host channel control
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Each host channel is internally implemented using a PIP object. To use a particular host
channel, the program uses HST getpipe assembly macro to get the corresponding PIP
object and then transfers data by calling the PIP_get and PIP_free operations (for input) or

PIP_alloc and PIP_put operations (for output) [26].

2.3 Real-time Analysis Tools

Real-time analysis is the analysis of data acquired during real-time operation of a system.
The intent is to determine easily whether or not the system is operating within its design
constraints, is meeting its performance targets, and has scope for further development.
DSP/BIOS provides explicit and implicit ways to perform real-time program analysis.
Communication between the target and the DSP/BIOS analysis tools is performed within
the background idle loop. This ensures that the DSP/BIOS analysis tools do not interfere
with the program’s processing. If the target CPU is too busy to perform the background
processes, the DSP/BIOS Analysis Tools stop receiving information from the target until
the CPU is available. These mechanisms are designed to have minimal impact on the
application’s real-time performance [26]. The analysis tools, Execution Graph, Statistics
View, and CPU Load Graph used in the implementation are described in the following

sections.

2.3.1 Execution Graph

The Execution Graph is a special graph used to display the information about SWI, PRD,
TSK, SEM (Semaphore) and CLK processing. The Execution Graph window, as shown in
Figure 2.5, shows the execution information as a graph of the activity of each object. CLK

and PRD events are shown to provide a measure of time intervals within the Execution
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Graph. Assertions are indications that either a real-time deadline has been missed or an

invalid state has been detected.

Em EH EH COITTITTITIITTT171]
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Figure 2.5. Execution Graph

2.3.2 CPU Load Graph

Figure 2.6. CPU Load Graph

The CPU load is defined as the percentage of instruction cycles that the CPU spends
performing application works. The CPU Load Graph, as shown in Figure 2.6, illustrates the
CPU load in real-time. All CPU activity is divided into a work time and an idle time. To

measure the CPU load over a time interval T, we need to know how much time during that
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interval is spent doing the application works (z,) and how much of it is the idle time (¢,).

From this, the CPU load is calculated as follows [26]:

!
CPUload = 1x100% = —*— x100% (2.1)
T t +t.

w H

2.3.3 Statistics View

Figure 2.7 shows the values of STS (statistics) objects, which are created and configured by
using the Configuration Tool. The first line shows the number of times an SWI is triggered
and the number of instructions performed during this SWI’s execution. DSP/BIOS supports
such statistics automatically. This is called implicit instrumentation. We can also use the
explicit instrumentation to gather other real-time statistics to study the performance of
different parts of an application by bracketing appropriate sections of the program with the
STS_set and STS_delta operations as

STS_set (&stsObj, CLK gethtime()):
The segment of the code under test

STS delta(&stsObj, CLK gethtime()):;

9063 5065101810 inst 914620 inst 558507.20

9069 2513458733 ints 4558560 ints 277809.98

Figure 2.7. Statistics View

The STS_set saves the value of the CLK gethtime as the content of the previous value
field (the set value) in the STS object. The STS_delta subtracts this set value from the new

value passed by the second CLK gethtime. The result is the difference between the time
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recorded before the code segment started and after it is completed; i.e., the time taken to
execute it. For a CPU with certain frequency (100 MHz), this time corresponds to a certain

number of instructions (multiplying the time by 100 M).

In Figure 2.7, Count is the number of times an SWI is triggered or a code segment
executed, Total is the arithmetic sum of the instructions executed for an SWI or a code
segment, Max is the maximum number of instructions used to execute an SWI or a code
segment, and Average is the average number of instructions executed for an SWI or a code

segment.

The Statistics View is the main tool to check if an implementation meets the real-time

requirement and reveal the implementational complexity.

2.4 Conclusion

TMS320C5402DSK  provides a development platform for DSP designers and
programmers. Its hardware and software structures are designed to support the
development of real-time embedded applications. The integrated development environment
(IDE) makes the development much easier and faster. The real-time analysis tools can

provide the analysis of data acquired during real-time operation of an application.
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CHAPTER 3
DIRECT IMPLEMENTATION OF THE MODIFIED

ALGORITHM

In this chapter, the modified algorithm is implemented directly on a TMS320C5402DSK
DSP board using an on-board test vector, and then using the host channels (HST module)
and the pipes (PIP module), provided by DSP/BIOS. To evaluate the performance of the

implementations, the real-time analysis tool, Statistics View, and a speech sample database

provided by the standard TIA/EIA/IS-727 are employed.

3.1 C Modules of VAD Algorithm

To schedule the program threads in the implementation (see Section 2.2.2.2) and prepare
for the optimizations in the next chapter, it is necessary to analyze the main C modules of
the modified algorithm and find which modules consume the most computational

resources.

As described in Section 1.2, the VAD-CNG algorithm consists of three parts, namely,
VAD, CNG and DTX, which correspond to the vad and cng modules in the program,
whereas the DTX part is integrated into the vad module. The vad module, which makes a
voice activity decision on a frame-by-frame basis every 10 ms (millisecond), consumes
about 69% of the computational resources of the entire algorithm, while the cng module

consumes 31% (see Section 3.5). Our research will focus on the vad module.
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The ppVadlnit, ppCnglnit and ppVadCfg C modules are executed only once in the
program to perform the initialization and configuration of the program before processing
the input data and contribute nothing to the complexity of the algorithm because there is no

real-time requirement for them.

It will be shown in Section 3.5 that the VadAnalysis module (ppVAnal.c), which
performs almost all of the tasks of the vad module except the reading of the input data,
accounts for more than 99% of the complexity of the vad module. The C modules of vad,
actually of VadAnalysis, is shown in Figure 3.1 and described below briefly. Please refer to
[6] for more details. Notice that the vad module includes not only the VAD algorithm, but
also one part of the CNG algorithm, the CNG encoder, which updates the noise parameters

and forms the SID packets at the encoder.

The input speech is passed through a highpass filter by calling the hpfilter module
(iir_df2.c). Then the LPC analysis is applied to the highpassed signal. The LPC analysis
involves two C modules, autocorr (autocorr.c) and levdurb (levdurd.c), which execute the

autocorrelation calculation and Levinson-Durbin recursion functionalities of the VAD

algorithm.

The VAD decision is implemented with the following modules:
e lintodb (lintodb.c), which converts a linear value to its dB format, calculates the
logarithm of +(0) (“rOdB”) and the prediction gain (“predictionGain”).
e d Ir(d_lr.c), calculates the non-stationaity (“nonstationaity”).
e softDecision (ppVAnal.c), calculates the likelihoods and makes the VAD

decision.
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Figure 3.1. Flowchart of the vad module
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The energy coefficients are updated with two modules, peakTrack (peaktrack.c), which
tracks the peak energy (“peakActive”), and minTrack (mintrack.c), which tracks the

minimum energy (“minlnactive”).

If a frame of data is determined as inactive (active = 0), the CNG encoder is applied to
update the noise parameters and form the SID packets. The noise parameters should be
updated with the following modules:

e analysis (analysis.c), which is an all-zero inverse LPC filter, calculates the
residual signal e(n).
e v magsq (v_magsq.c), calculates the energy of a frame of samples.

e cng update (cng.c), updates the noise parameters.

If a SID packet should be sent (sendSID = 1), the SID packet should be prepared using
the following modules:
® cng quantize (cng_quan.c), quantizes the noise parameters.

e sid pack (sid_pack.c), packs the LAR coefficients to form the SID packet.

After the implementation, we will try to find the most computation-consuming modules

in vad and apply certain optimizations on them in the next chapter.

3.2 Test Vectors and Complexity

To test the performance of the implementation, some voice vectors with different signal-to-
noise ratios (SNRs) generated from the database of the standard TIA/EIA/IS-727 are used
as the input to the algorithm during the test. Two metrics, complexity and average
complexity, are introduced to evaluate the performance of the implementation.
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3.2.1 Test Vectors

Standard TIA/EIA 1S-727, TDMA Cellular/PCS - Radio Interface - Minimum Performance
Standards for Discontinuous Transmission Operation of Mobile Stations, is designed to
give the performance requirements for VAD to be used with enhanced full-rate vocoder
with CNG, which is applied to mobile stations operating in the DTX mode [29]. This
standard provides 10 speech data files and 4 background noise files which can be used to
generate binary 16-bit pulse-coded modulation (PCM) test data files with different SNRs
through the software tools provided by the standard. For our tests, 6-dB, 12-dB, 18-dB and

infinite-dB SNR voice files are generated as test vectors.

If the test vector is loaded to the EDATA segment of the DSP board, a very short test
vector is employed because of the space limitation of the on-board memory. The EDATA
is a 32K-word segment on external SARAM; therefore, a 4-second 12-dB test vector
(32000 words) is generated and stored in an assembly file, samples.asm, which will be

loaded on the EDATA segment.

3.2.2 Complexity and Average Complexity

To evaluate the performance of the implementation, two metrics, complexity and average

complexity, are introduced.

Complexity is defined as the maximum number of million instructions that might be
executed per second for a program or function. The unit of complexity is million
instructions per second (MIPS). In the Nortel algorithm, the sampling rate is chosen as

8000 HZ and the frame length as 80, which means the algorithm processes the data of one
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frame every 10 ms for full-duplex transmission. So the complexity of this algorithm should

be calculated as

Max

1ot Max*10™* MIPS (3.1)
ms

Complexity =

where Max is the maximum number of the instructions executed in a cycle, which could be

found in the Max column of the Statistic View window of the CCS.

Similarly, the average complexity defined as the average number of million instructions

executed per second for a program or function and the unit is also MIPS. It is calculated as

Average

10t " Average*10™* MIPS (3.2)
ms

Average Complexity =

where Average is the average number of the instructions executed in a cycle, which could

also be found in the Average column of the Statistic View window of the CCS.

3.3 Implementation Using an On-board Test Vector

The modified algorithm is first implemented using a 4-second on-board test vector as the
input data. This test vector is stored in an assembly file, samples.asm, which will be loaded

to the EDATA segment on the off-chip memory of the DSP board.

3.3.1 Implementation Process

In a full-duplex transmission system, both the vad and cng modules are executed once
every 10 ms, since the sampling rate is chosen as 8000 Hz and the frame length as 80.
Using the scheduling module of the Configuration Tool, two periodical SWIs, vad_SWI
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and cng SWI, with the same priority are created to trigger the vad and cng modules,
respectively. Both the periods of these two SWIs are set to 10. By default, the PRD
Manager uses the CLK Manager (both in the Configuration Tool) to drive the execution of
periodical SWI. The CLK Manager makes a clock interrupt, which is a HWI, trigger a PRD
tick each ms. The SW1Is will be triggered each time the PRD ticks reaches 10. In this way,

these two periodical SWIs run their functions, vad function and cng function, every 10 ms.

The total size of all program sections is 12.446K words, whereas that of all data
sections is 36.591K words. Therefore, it is impossible to load the entire program to the on-
chip memory (16K-word DARAM and 4K-word ROM). The .text section, which includes
the executable code, is placed in the EPROG segment on the off-chip memory. The .data
section, which includes the 32000-word test vector, is loaded to the EDATA segment on
the off-chip memory. The other sections are placed in the IPROG or IDATA segments on
the 16K DARAM according to whether they are program or data sections. IPROG and
IDATA are two 8K-word memory segments defined on the on-chip DARAM while
EPROG and EDATA are two 32K-word segments on external SARAM. 4K-word
memory space of EPROG is mapped onto the on-chip ROM. Please refer to Figure 4.2 (a)

for the memory map of the implementation.

The ppVadinit, ppCnglnit and ppVadCfg modules are included in the main function,
which performs the initializations and configurations, and then falls into the infinite idle

loop till vad_SWI or cng_SWI is triggered.

Five STS objects are created using the Statistics Object Manager in the Configuration

Tool to use the explicit instrumentation (see Section 2.3.3) to gather real-time statistics to
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study the performance of the modules we want to analyze. The Statistics View of this

implementation is shown in Figure 3.2.

vad_Swl 57874690 inst inst .
cng_Swi 15070980 inst 259366 inst 37677.45 |

VadAnalyze STS 56872092 inst 263918 inst 142180.23 ||
hpfilter_STS 11825810 inst 29566 inst 29564.53 |
1| autocorr STS 32240214 inst 92412 inst 8080254 |
levduwb_STS 4638242 inst 18736 inst 17596.41 |
analysis_S5TS 22687440 inst 31770 inst 31770.00 1

Figure 3.2. Statistic View of the implementation using an on-board test vector

From Figure 3.2, we can show by using (3.1) that the complexity of the vad module is
26.64 MIPS and that of the cng module 25.94 MIPS. Also, the complexity of the entire
modified algorithm can be shown to be 52.58 MIPS and the average complexity 18.24

MIPS by using (3.1) and (3.2) respectively.

3.3.2 Limitation of This Implementation

Because of the space limitation of the on-board memory, a very short test vector is used in
this implementation. But this VAD-CNG algorithm is very data-dependent, i.e., the
complexities and average complexities could vary significantly if different test vectors are
used. Figure 3.3 is an example of the data-dependency of this algorithm. Another 4-second
test vector is used in the implementation and quite different complexities and average

complexities are obtained, compared to those obtained from Figure 3.2.

To overcome the data-dependency and obtain more accurate complexities and average
complexities, a relatively longer test vector rather than a 4-second test vector should be

used, and this test vector should be stored on the host instead of on the board. Therefore,
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the algorithm will be implemented in the next section using the host channels (HST

module), which are described in Section 2.2.2.4.

inst 209438 inst 12216385 |
2391200 inst 5978 inst 5978.00 |}

|| VadAnalyze_STS 47862952 inst 206930 inst 119657.38 |
hpfilter_STS 11825836 inst 29566 inst 2956459 |
32021752 inst B0380 inst 80255.02 1
" B 1085316 inst 18680 inst
analysis STS 158850 inst

Figure 3.3. Statistic View of the implementation using another on-board test vector

3.4 Implementation Using Host Channels

In this section, the modified algorithm is implemented using the HST and PIP modules
provided by the DSP/BIOS. Instead of using the actual device to send and receive analog
speech signals, the HST uses pipes internally to receive the input data flow from one host
file and send the output data flow to another. The HST method is chosen because of two
reasons. (1) It is very convenient to modify the program when we want to use some
peripheral devices other than the host PC. When we are ready to modify the program to use
the peripheral devices, we can retain the code that manages the target’s end of the pipe and
rewrite the code of the functions that handle the device /O to manage the other end of the
pipe. (2) Longer test vectors could be used because they are stored on the host instead of on

the board. More accurate test results could be obtained from this implementation.

Using the Host Channel Manager of the Configuration Tool, two HST objects
input HST and output HST are created and bound to the input file and output file

respectively, as shown in Figure 3.4. The input file contains a 6-minute 12-dB speech test
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vector (28.8 x 10° words) and is stored on the host to provide the input data for the

application. The output file is another host file to store the output data of the application.

TMS320C5402DSK
DSP Board

[ vad_SWI & cng_SWI

A
PIP_get| . [PIP_free PIP_alloc| w PIP_put
input_PIP output_PIP

A

[ input_HST} [output_HST]

output host
channel

input host
channel

Coware | [ outpure |

Figure 3.4. Block diagram of implementation using host channels

These two HST objects will trigger the SWI, vad_SWI, by clearing the mailbox for
vad_SWI, when a full frame of data for the input channel and free space of a frame for the
output channel become available. The SWI object is posted when the mailbox value
becomes zero. The mailbox for vad_SW1 is set to 3 (0011). The smallest bit of the mailbox
is cleared when the input channel contains a full frame and the second smallest bit is

cleared when the output channel contains an empty frame. In this way, vad_SWI is posted
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only when there is a full frame available in the input channel and an empty frame available

in the output channel. And eng_SWI is triggered each time the program exits vad_SWI.

These two HST objects use two pipes, input_PIP and output PIP respectively by
calling the HST_getpipe assembly macro to get the address of the internal PIP object used
by each HST object. These two pipes are created dynamically and internally in the vad and

cng modules respectively.

To synchronize the input and output data transfer, some assembly macros described in
Section 2.2.2.4 are used. The call to PIP_get gets a full frame from the input pipe and the
call to PIP_alloc gets an empty frame from the output pipe. Then, this full frame of input
data is processed with the modified VAD-CNG algorithm and the results written into the
empty frame obtained from the output pipe. After the whole frame is processed, PIP_put is
called to put the full frame back into the output pipe and PIP_free is called to clear and

recycle the input frame so that it can be reused the next time.

The memory arrangement is just the same as that of the implementation using an on-
board test vector except that the .data section is loaded to the IDATA segment instead of
the EDATA segment because there is no more test vector needed to be stored on board. In
this case, the total size of all the program sections is 12.536K words, whereas that of all the
data sections is 5.714K words, i.c., 18.250K words memory space is needed in this

implementation.
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3.5 Performance Analysis

The real-time analysis tool, Statistics View, described in Section 2.3 is used to test the
performance of the implementation. A 6-minute 12-dB voice test vector generated from the
database of the standard TIA/EIA/IS-727 is used as the input to the algorithm during the

test.

To compare the performance, both the original and the modified Nortel algorithms are
implemented using the host channels with the same input file. The test results are

calculated and shown in Table 3.1.

TABLE 3.1. COMPLEXITIES AND AVERAGE COMPLEXITIES OF THE ORIGINAL AND

MODIFIED ALGORITHMS (12-DB SNR INPUT)

Complexity Average Complexity
Module/ Original | Modified Original | Modified
. Reduction Reduction
Algorithm algorithm | algorithm o algorithm | algorithm o
(MIPS) | (MIPS) %) (MIPS) | (MIPS) 6
vad 40.34 | 26.65 34 33.33 14.07 58
cng 2625 | 2598 1 6.54 6.30 4
VadAnalyzer 40.11 26.42 34 33.10 13.84 58
VAD CNG
] 66.59 | 52.63 21 39.87 | 20.37 49
algorithm

Table 3.1 shows that for the vad module, the complexity has been reduced by 34%
from 40.34 MIPS to 26.65 MIPS and the average complexity by 58% from 33.33 MIPS to
14.07 MIPS through the modifications, whereas there is a small change in the complexity
or the average complexity of the cng module after the modifications. This is because in [4],

most of the modifications have been aimed at the vad module, or more accurately, its sub-
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module VadAnalyzer, which has a 34% complexity reduction. For the entire VAD-CNG
algorithm, the reduction in complexity is 21%, and that in average complexity is 49% after
the modifications. These results are consistent with the test results that have been obtained

in [4] from simulations of the original and modified algorithms on a PC.

For the TMS320C5402DSP DSK, which has a 100M Hz CPU and can execute 10°
instructions per second, theoretically speaking, all the algorithms with complexities less
than 100 MIPS could run on it in real-time. In this sense, both the original and the modified
algorithms meet the real-time requirement. But, considering that the VAD-CNG algorithm
is not designed to be used alone and should be a part of a packet voice communication
system, which consists of many integral parts, such as the coder, decoder, echo canceller,
and voice enhancement, and all these parts need to work together in real-time, there exists
a need to reduce the implementational complexity of the modified algorithm as much as

possible through some optimizations.

From the Total column in Figure 3.5, it is seen that the vad module consumes about
(5.07 x 10%) / (5.07 x 10° + 2.27 x 109) = 69% of the computational resources of the entire
algorithm. Thus our research will focus on the vad module. The VadAnalysis module,
which is the major part of the vad module, accounts for (4.99 x 10%)/(5.07 % 10%) = 98% of
the vad module. From the complexity view, VadAnalysis accounts for more than (264200 /

266484) = 99% of the MIPS consumed by vad.
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36037 5070055168 inst 266484 inst 140690.27 ||
36037 2271514506 inst 253792 inst 63032.84 ||

36037 4987483412 inst 264200 inst 138398.96 |
36037 1068636164 inst 29928 inst 2965386 i
36036 2894069106 inst 97334 inst 8031050 |
19310 338588654 inst 18982 inst 17534.37 |

1 204 i i :

Figure 3.5. Statistic View of the implementation of the modified algorithm

To find the most computation-consuming modules in vad, the MIPS consumed by
vad_SWI should be broken down further to individual constituent sub-modules of the vad
module. The real-time analysis tool, Statistics View, is applied to each module described in
Section 3.1. From the test results shown in Table 3.2, it is clear that the most MIPS-
hogging modules are autocorr (9.73 MIPS), cng quantize (5.03 MIPS), analysis (3.20
MIPS), hpfilter (2.99 MIPS), cng _update (2.67 MIPS), and levdurb (1.90 MIPS), which

have a total complexity of 25.52 MIPS.

Actually, the cng quantize and cng_update modules, which are used to implement the
CNG encoder functionality, belong to the CNG algorithm even though they are included in
the vad module. The cng update module calls the levdurb module, and levdurb is the major
part of it. Therefore, if the complexity of levdurb is reduced, that of cng_update is reduced
too. The cng quantize module includes a lot of sub-modules and should be optimized in
conjunction with the dequantization module in the cng module. Thus, its optimization is
left as part of a future work to be carried out. Therefore, the optimizations carried out in the

next chapter will target the autocorr, hpfilter, levdurb and analysis modules.
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TABLE 3.2. COMPLEXITIES AND AVERAGE COMPLEXITIES OF C MODULES OF VAD

Module Complexity Average complexity
name (MIPS) (MIPS)
hpfilter 2.99 2.97
autocorr 9.73 8.03
levdurb 1.90 1.75
lintodb 0.16 0.13
d lr 0.47 0.44
SoftDecision 0.16 0.13
peakTrack 0.04 0.01
minTrack 0.06 0.03
analysis 3.20 3.18
v_magsq 0.68 0.65
cng update 2.67 2.58
cng quantize 5.03 4.60
sid_pack 0.05 0.03

3.6 Conclusion

The modified algorithm has been implemented directly. using an on-board vector as the
input data. This test vector loaded on the DSP board should be very short because of the
space limitation of the on-board memory. Because of the data-dependency of this VAD-
CNG algorithm, the experimental results obtained from this implementation are not very

accurate.

In order to obtain more accurate test results, the original and the modified algorithms

are implemented using the host channels. Longer test vectors could be used because they
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are stored on the host instead of on the board. The test results on the direct implementation
show that the modified algorithm has a 21% reduction in the complexity and a 49%
reduction in the average complexity compared to those of the original algorithm. These
results are consistent with the test results that have been obtained in [4] from the

simulations of the original and modified algorithms on a PC [4].

The test results also demonstrate that both the original and modified algorithms can be
implemented in real-time on the DSP board. But, considering that the VAD-CNG
algorithm is not designed to be used alone and should be a part of a vocoder algorithm,
which should work in real-time, there exists a need to reduce the implementational
complexity of the modified algorithm as much as possible. Therefore, some measures
such as rewriting, in assembly language, some of the routines that consume large
computational resources and making use of the assembly-optimized functions in the DSP
Library and the intrinsic functions available on the board, should be undertaken to further
reduce the implementational complexity. These optimizations should target the most

MIPS-hogging modules.
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CHAPTER 4

OPTIMIZED IMPLEMENTATION OF THE MODIFIED

ALGORITHM

In this chapter some optimizations are introduced in the direct implementation of the
modified algorithm to reduce its implementational complexity and then, some tests carried

out to evaluate the effects of these optimizations.

4.1 Introduction

As mentioned in Chapter 3, since the modified algorithm is not designed to be used alone
and should be a part of a packet voice communication system, which consists of many
integral parts, such as the coder, decoder, echo canceller, and voice enhancement, and all
these parts need to work together in real-time, there exists a need to reduce the
implementational complexity of this algorithm as much as possible. Therefore, some

optimizations are carried out to further reduce the implementational complexity.

The following section describes five measures that will be taken to achieve this end.
These optimizations target the most computation-consuming modules in the vad module,
which are autocorr, hpfilter, levdurb and analysis. The optimizations are carried out at the

implementation level rather than at the algorithm level.
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4.2 Optimizations of the Direct Implementation

The five optimizations carried out on the direct implementation are: (1) performing the
program-level optimization by using the optimizer provided by the compiler of the Code
Composer Studio (CCS), (2) rewriting the major parts of the most computationally
intensive sub-module in vad in assembly language, (3) using intrinsic functions in one of
the routines that consumes the most computational resources, (4) making use of the
assembly-optimized functions in the DSP Library (DSPLIB) to replace some of the

general-purpose functions in the algorithm, and (5) reorganizing the memory.

4.2.1 Performing Program-level Optimization

The TMS320C54x C/C++ compiler accepts American National Standards Institute (ANSI)
standard C as well as C++ source code and produces assembly language source code for
the TMS320C54x device. The compiler tools include an optimization program (optimizer)
that improves the execution speed and reduces the size of C/C++ programs by performing
such tasks as simplifying loops, rearranging statements and expressions, and allocating

variables into registers [32].

The way to invoke the optimizer is to use the cl500 shell program specifying the —o n
option on the c1500 command line. The n denotes the level of optimization (0, 1, 2, and 3),

which controls the type and degree of optimization [32]:

—00
e Performs control-flow-graph simplification

e Allocates variables to registers
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o Performs loop rotation
e Eliminates unused code
o Simplifies expressions and statements

e Expands calls to functions declared inline

—ol
Performs all —00 optimizations, plus:
¢ Performs local copy/constant propagation
¢ Removes unused assignments

¢ Eliminates local common expressions

—02
Performs all —o1 optimizations, plus:
e Performs loop optimizations
e Eliminates global common subexpressions
¢ Eliminates global unused assignments

e Performs loop unrolling

-03
Performs all —02 optimizations, plus:
e Removes all functions that are never called
e Simplifies functions with return values that are never used

e Inlines calls to small functions
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e Reorders function declarations so that the attributes of called functions are known
when the caller is optimized

e Identifies file-level variable characteristics

Program-level optimization is applied to the algorithm by using the —pm option with
the —o3 option. With program-level optimization, all the source files are compiled into one
intermediate file called a module, which is passed to the optimizer and code generator of
the compiler. Since the compiler can see the entire program, it performs several

optimizations that are rarely applied during file-level optimization [32]:

e If a particular argument in a function always has the same value, the compiler

replaces the argument with that value and passes the value instead of the argument.

e If a return value of a function is never used, the compiler deletes the return code in

the function.

e If a function is not called directly or indirectly by the main program, the compiler

removes the function.

Program-level optimization can be controlled by using the —op option. Specifically, the
—op option indicates if a module’s external functions can be called or the module’s external
variables can be modified in other modules. The number following —op indicates the levels

described as follows [32]:

Use this option  If the module

—op0 Has functions that are called from other modules and global variables
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that are modified in other modules

—opl Does not have functions that are called by other modules but has

global variables that are modified in other modules

—op2 Does not have functions that are called by other modules or global

variables that are in other modules
—op3 Has functions that are called from other modules but does not have

global variables that are modified in other modules

The —op2 option is used in the algorithm. So the compiler should be set as in Figure
4.1.

o External FuncA/ar Refs

Figure 4.1. Setting the complier
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Since the compiler recognizes only the C/C++ source code but not any assembly code
that might be present, the —pm —03 —op2 option will exclude the C/C++ functions called
from an assembly function and the variable modifications to C/C++ functions in an
assembly function [32]. In order to keep these functions in the program, the
“FUNC_EXT CALLED Pragma” is introduced to specify to the optimizer to retain these
C functions or any other functions called by these C functions by adding “#Pragma
FUNC_EXT CALLED (function name);” before any declarations or references to these

functions.

This optimization is applied to the entire algorithms. Table 4.1 gives the complexities
and the average complexities of the different modules of the modified algorithm. This table
shows that the efficiency of the code for the entire algorithm, as well as for each module or
sub-module, has improved significantly through this optimization. The implementational
complexity of the modified algorithm is reduced by 39% from 52.63 MIPS to 31.93 MIPS,

and the average complexity by 45% from 20.37 MIPS to 11.18 MIPS.

4.2.2 Rewriting Some C Routines in Assembly Language

The TMS320C54x C/C++ compiler accepts C or C++ source code and produces assembly
language source code. Unfortunately, the efficiency of the assembly code produced by the
complier from C/C++ is not comparable to that of the assembly code written directly.
Hence, it is valuable to write the most computationally intensive parts of the algorithm in
the assembly language, called mixed programming, to get a better program efficiency, even

though the assembly programming is not as convenient as programming in the C language.
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TABLE 4.1. COMPLEXITIES AND AVERAGE COMPLEXITIES REDUCTION THROUGH
PERFORMING PROGRAM-LEVEL OPTIMIZATION (12-DB SNR INPUT)

Complexity Average Complexity
Module/ Before After Before After
. Reduction Reduction
Algorlthm optimization | optimization o optimization | optimization o
(MIPS) (MIPS) %) (MIPS) (MIPS) %)
vad 26.65 16.02 40 14.07 7.55 46
cng 25.98 15.91 39 6.30 3.63 42
autocorr 9.73 5.24 46 8.03 3.88 52
levderb 1.90 1.50 21 1.75 1.37 22
hpfilter 2.99 1.96 34 2.97 1.93 35
analysis 3.20 1.37 57 3.18 1.35 58
Modified
52.63 31.93 39 20.37 11.18 45
algorithm

From Section 3.5, it is known that the most computation-consuming C module in the

vad module 1is autocorr, which calculates the autocorrelation coefficients

r(i),(i=0,12,---, p). The two most computationally intensive parts in this sub-module, the
ones that calculate r(0)and r(i),(i =1,2,:--, p), are rewritten in the assembly language.

The source code can be found in the assembly files autor0.asm and autori.asm in Appendix

B.

The computation of the autocorrelation coefficients involves a lot of
multiply/accumulate (MAC) operations (see Section 1.2.1.1). In the modified algorithm,
r(0) is obtained from the summation of 240 32-bit products, since the window length is

chosen as 240. These products are calculated by multiplying 16-bit windowed speech

samples (see (1.7)). When these MAC operations are programmed in the C language,
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overflow control is necessary since the maximum number of bits that may be required to
represent the summation of 240 32-bit products is (32 +log, 240 ) = 40 without overflow

[35]. The overflow detection is performed from time to time during the accumulation.
When an overflow error is detected, the products are recalculated and rescaled (by %) to
get a scaled summation. This kind of overflow can be avoided when programming in the
assembly language, since the assembly instructions can control the two independent 40-
bit accumulators directly. These accumulators can contain the summation of up to 256 32-
bit numbers without overflow. In this way, the overflow detection as well as numerous
repeating computations is avoided. Similarly, the rescaling of the products is not needed

in the computation of r(i),(i =1,2,--, p), since the overflow will not happen during the

accumulation. The 40-bit summation is normalized to 32-bit by using an exponent
encoder that can compute the exponent of a 40-bit accumulator value in a single cycle, and

a barrel shifter to execute the shift.

The assembly instruction set can directly control the on-chip devices, such as the
multiplier, accumulator, barrel shifter, exponent encoder, and auxiliary register. This is the
reason why the assembly language is much more efficient than C, as well as other high-
level languages. For example, although multiplication and accumulation are two distinct
operations, each normally requiring a separate instruction cycle, the two operations can be
executed in a singe cycle if the MAC unit (consisting of a multiplier and an accumulator)
can be controlled directly. At a time when the multiplier is computing a product, the
accumulator accumulates the product of the previous multiplication. If N products are to be
accumulated, N - 1 multiplies can overlap with accumulation. Thus, it takes a total of N + 1
instruction execution cycles to compute the sum of products of N multiplications [35]. If N
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is large, pipelined MAC operations can be executed at a speed of nearly one MAC
operation per instruction cycle. The barrel shifter, used in scaling the variables and
parameters, is more efficient than the conventional shift register since it can execute shift
by several bits in a single cycle. The exponent encoder can compute the exponent of a 40-
bit accumulator value in a single cycle. Furthermore, in assembly programming, the
intermediate results can be directly assigned to the on-chip registers rather than the memory

to improve the speed of accessing these intermediate results.

Through this optimization, the complexity of the autocorr module is reduced by 94%
from 5.24 MIPS to 0.30 MIPS, while the average complexity reduced by 93% from 3.88
MIPS to 0.27 MIPS. These test results show that the assembly programming is an efficient

way to reduce the implementational complexity of the modified algorithm.

4.2.3 Using Intrinsic Functions

The CCS provides some intrinsic functions that are written in assembly language and can
be called by routines coded in C/C++ language [32]. Therefore, it is very convenient to use

intrinsics in C program and get a more efficient code at the same time.

The intrinsics are used in levdurb, a computationally intensive module. These intrinsics
and their corresponding C54x assembly language instructions are listed in Table 4.2. The

functions executed by calling these intrinsics are also described.

The experimental results show that through this optimization, the complexity of the
levdurb module is reduced by 13% from 1.50 MIPS to 1.30 MIPS, while the average

complexity has been reduced by 12% from 1.37 MIPS to 1.20 MIPS.
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TABLE 4.2. INTRINSIC FUNCTIONS USED IN ALGORITHM

Assembly
Intrinsic
Instruction

Description

short _abss(short src); ABS

Creates a saturated 16-bit absolute wvalue.
_abss(0x8000) => Ox7FFF

long labss(long src); ABS

Creates a saturated 32-bit absolute value.
1abss(0x8000000) => Ox7FFFFFFF

) RND Rounds src by adding 2"°. Produces a 16-bit
short_mnd(long src); ADD saturated result.
short _sadd(short srcl, ADD Adds two 16-bit integers, producing a saturated
short src2); 16-bit result.
long lsadd(long srcl, ADD Adds two 32-bit integers, producing a saturated
long src2); 32-bit result.
long _smac(long sro Multiplies opl. and op2, shifts the result left by
short 051 short op2); > MAC 1, aI}d adds it to src. Produces a saturated
’ ’ 32-bit result.
short _smacr(long src Multiplies opl and op2, shifts the result left by
short 051 short op2); > MACAR 1, adds the result1 5to src, and then rounds the
’ ’ result by adding 2™
long smas(long src Multiplies op1 and op2, shifts the result left by
= > MAS 1, and subtracts it from src. Produces a 32-bit
short op1, short op2); result
short _smpy(short srcl, MPYA Multiplies srcl and src2, and shifts the result
short src2); left by 1. Produces a saturated 16-bit result.
long lsmpy(short srcl, MPY Multiplies srcl and src2, and shifts the result
short src2); left by 1. Produces a saturated 32-bit result.
short _smpyr(short srcl, MPYR Multiplies srcl and src2, shifts the result left
short src2); by 1, and rounds by adding 2"to the result.
Shifts srcl left by src2 and produces a 16-bit
short _SSI.II(ShOI‘t srel, SFTA result. The result fls saturated ?f src2 is less than
short src2);
or equal to 8.
long lsshi(long srcl Shifts srcl left by src2 and produces a 32-bit
= > SFTA result. The result is saturated if src2 is less than

short src2);

or equal to 8.

4.2.4 Using Assembly-Optimized Functions in DSPLIB

The TMS320C54x™ DSPLIB is an optimized DSP function library for C programmers on

TMS320C54x devices. It includes over 50 C-callable assembly-optimized general-purpose
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signal-processing routines. These routines are typically used in computationally intensive
real-time applications, where optimal execution speed is critical. By using these routines,
considerably faster execution speeds can be achieved than by equivalent code written in

standard ANSI C language [33].

The hpfilter module executes the functionality of a highpass filter, and the analysis
module executes the functionality of an inverse LPC filter, which is, actually, a finite
impulse response (FIR) filter. Both the highpass filter and the FIR filter are widely-used
general-purpose DSP routines and are available in DSPLIB. The DSPLIB functions used in
the algorithm are iircas4 (cascaded IIR direct form II using 4-coefficients per biquad) and
fir (FIR filter), which respectively replace the original routine of the highpass filter and the

FIR functions.

4.2.4.1 Cascaded IIR Direct Form II Using 4-Coefficients per Biquad

This function is expressed as [33]

short oflag = iircas4(DATA *x, DATA *h, DATA *y, DATA

**dpbuffer, ushort nbig, ushort nx);

The conventions and arguments used in this function are described as follows:

DATA Data type definition equating a short, 16-bit value representing a Q15
format number

x[nx] Pointer to input data vector of size nx

h[4*nbiq] Pointer to filter coefficient vector with the following format:

h=all a21 b21bl1 ....all a2 b2I b1l
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y[nx]

dbuffer[2*nbiq]

nbiq

nx

oflag

where 1 is the biquad index (i.e. a21: is the a2 coefficient of biquad 1)
Pole (recursive) coefficients = a

Zero (non-recursive) coefficients =b

Pointer to output data vector of size nx.

Pointer to address of delay line d

Each biquad has 2 delay line elements separated by nbiq locations in
the following format:

d1(n-1), d2(n-1),.., dI(n-1), d1(n-2), d2(n-2)...dI(n-2)

where [ is the biquad index .

This array should be initialized to 0 for the first block only.

Number of biquads

Number of elements of input and output vectors

Overflow flag

- If oflag = 1, a 32-bit overflow has occurred

- If oflag = 0, a 32-bit overflow has not occurred

This function computes a cascade IIR filter of n-biquad (1 biquad in the algorithm)

sections. Each biquad section is implemented using direct-form II. All biquad coefficients

(4 per biquad) are stored in vector h. The real data input is stored in vector x. The filter

output result is stored in vector y. This function retains the address of the delay filter

memory d containing the previous delayed values to allow a consecutive processing of the

blocks.

The algorithm of this function is:
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d(n) = x(n)—al*d(n-1)-a2*d(n -2) (4.1a)

y(n) =d(n)+bl*d(n-1)+b2*d(n-2) (4.1b)

This function is called in the Apfilter module to replace the exiting highpass filter
routine and it reduces the complexity of hpfilter by 89% from 1.96 MIPS to 0.22 MIPS and

the average complexity by 90% from 1.93 MIPS to 0.19 MIPS.

4.2.4.2 FIR Filter
This function is expressed as [33]

oflag = short fir (DATA *x, DATA *h, DATA *r, DATA

**dbuffer, ushort nh, ushort nx);

The conventions and arguments used in this function are described as follows:

DATA Data type definition equating a short, 16-bit value representing a Q15
format number.

x[nx] Pointer to real input vector of nx real elements.

h[nh] Pointer to coefficient vector of size nh in normal order:
h=b0b1b2b3 ...

r[nx] Pointer to real input vector of nx real elements. In-place computation

(r =x) is allowed.

Dbuffer[nh] Pointer to address of delay buffer d
This array should be initialized to O for the first block only. Between

consecutive blocks, this buffer preserves the previous elements needed.
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Nx Number of real elements in vector x (input samples)
Nh Number of coefficients

Oflag Overflow error flag
- If oflag = 1, a 32-bit overflow has occurred

- If oflag = 0, a 32-bit overtlow has not occurred

The fir function computes a real FIR filter (direct-form) using coefficients stored in
vector h. The real data input is stored in vector x. The filter output result is stored in vector
r. This function retains the address of the delay filter memory d containing the previous

delayed values to allow consecutive processing of blocks.

The algorithm of this function is:

nh-1

ij]= > h{kIx[j—K] 0<j<nx (4.2)

This function is called in the analysis module to replace the exiting FIR filter routine
and it reduces the complexity of analysis by 85% from 1.37 MIPS to 0.21 MIPS and the

average complexity by 87%from 1.35 MIPS to 0.18 MIPS.

4.2.5 Reorganizing the Memory

The TMS320C5402DSK includes 16K words (16-bit) of on-chip dual-access RAM
(DARAM), 4K words of on-chip ROM and 64K words of external single-access RAM
(SARAM). On-chip memory accesses are more efficient than off-chip (external) memory

accesses, because there are eight different internal buses for the on-chip memory accesses
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on the TMS320C5402, whereas there is only one external bus for the off-chip memory
accesses [34]. This means that an off-chip operation requires more machine cycles than that
of an on-chip operation. As mentioned in Section 2.1.3, each DARAM block can be
accessed twice per machine cycle. Therefore, the CPU and the peripherals can read from
and write to a DARAM memory address in the same cycle, while each SARAM or ROM
block is accessible once per machine cycle for either a read or a write operation [20]. Thus,
it will have a faster execution speed, whenever it is possible, to place the program on

DARAM.

A program executed on the TMS320C5402 board is generated by CCS and loaded to
the target (TMS320C5402) to run on it. As mentioned in Section 3.4, the generated
executable program of the modified algorithm loaded to the TMS320C5402 is so large that
it is impossible to place the entire program on DARAM, before optimizations (1) to (4) are
done; the .text section, which includes the executable code, is placed on the off-chip
memory. The memory map for the direct implementation is shown in Figure 4.2(a).
IPROG and IDATA are two 8K-word memory segments defined on the on-chip DARAM,
while EPROG and EDATA are 32K-word segments on the external SARAM. 4K-word

memory space of the EPROG segment is mapped onto the on-chip ROM.

Through the optimizations (1) to (4), the code size of the generated program is reduced
from 18.250K words to 15.505K words. Therefore, it is possible to place the major part of
the program, which concerns the complexity of the algorithm, on the DARAM after
reorganizing the memory. As shown in Figure 4.2(b), the size of IDATA is decreased from

8K words to 4.5K words to give more space to IPROG increasing from 8K to 11.5K.
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This is done since the 4.5K data segment is big enough to place all the data sections
(4.225K words) of the program, whereas the 11.5K TPROG memory space is used to hold
the 11K program sections. Some parts of the .text section, the code for the ppVadinit,
ppCnglnit and ppVadCfg sub-modules, are executed only once in the program to initialize
and configure the program before processing the input data and contribute nothing to the
complexity of the algorithm. Thus, these parts (0.28K) are placed in EPROG and the rest
of the parts of the .text section are placed in IPROG. The EPROG segment is redefined to
a 4K space only on the on-chip ROM. After the reorganization, only the on-chip memories
are used to place the program and data, and all the sections concerning the complexity are
on the DARAM. The speed to read from and write to the memory is much faster, which
will lead to an improvement in performance with regard to the speed of the entire
algorithm. The reductions in the complexity and the average complexity of the modified

algorithm, as well as of each module, are shown in Table 4.3.

TABLE 4.3. COMPLEXITIES AND AVERAGE COMPLEXITIES REDUCTION THROUGH
Reorganizing MEMORY (12-DB SNR INPUT)

Complexity Average Complexity
Module/ Before After Before After
. Reduction Reduction
Algorlthm optimization | optimization o optimization | optimization o
(MIPS) (MIPS) ) (MIPS) (MIPS) )
vad 9.16 3.70 60 1.90 0.81 57
cng 15.91 5.97 62 3.63 1.36 63
autocorr 0.30 0.16 47 0.27 0.13 52
levderb 1.30 0.55 58 1.20 0.49 59
hpfilter 0.22 0.10 55 0.19 0.07 63
analysis 0.21 0.13 38 0.18 0.10 44
Modified
25.07 9.67 61 5.53 217 61
algorithm
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4.3 Experimental Results

To test the efficiency of the optimizations, some voice samples with different SNRs
generated from the database of the standard TIA/EIA/IS-727 [29] are used as the inputs to
the algorithm before and after the optimizations. The effect of each optimization has

already been described in Section 4.2. The composite effect of these optimizations is shown

in Table 4.4.

TABLE 4.4. COMPLEXITIES AND AVERAGE COMPLEXITIES REDUCTION THROUGH
OPTIMIZATIONS (12-DB SNR INPUT)

Complexity Average Complexity
Module/ Before After Before After
. Reduction Reduction
Algorlthm optimizations | optimizations o optimizations | optimizations Y
(MIPS) (MIPS) C4) (MIPS) (MIPS) C4)
vad 26.65 3.70 86 14.07 0.81 94
cng 25.98 5.97 77 6.30 1.36 78
autocorr 9.73 0.16 98 8.03 0.13 98
levderb 1.90 0.55 71 1.75 0.49 72
hpfilter 2.99 0.10| 97 2.97 0.07 98
analysis 3.20 0.13 96 3.18 0.10 97
Modified
52.63 9.67 82 20.37 2.17 89
algorithm

From Table 4.4, it can be concluded that the complexity of the modified algorithm is
reduced by 82% from 52.63 MIPS to 9.67 MIPS and the average complexity by 89% from
20.37 MIPS to 2.17 MIPS. The complexity of the vad module is reduced by 86% and that
of the cng module by 77%. The auotcorr module, whose major parts have been rewritten in

the assembly language, has its complexity reduced by 98% from 9.73 MIPS to 0.16 MIPS.
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The levderb module, which uses the intrinsic functions, has its complexity reduced by 71%.
The hpfilter module, which calls the iircas4 function from DSPLIB, has its complexity
reduced by 97% from 2.99 MIPS to 0.10 MIPS. Finally, the analysis module, which calls
the fir function from DSPLIB, has its complexity reduced by 96% from 3.20 MIPS to 0.13

MIPS.

The test results in Table 4.4 are obtained using a 12-dB SNR test vector as the input.
Tables 4.5, 4.6 and 4.7 show the corresponding complexities and average complexities
before and after the optimizations for 6-dB, 18-dB and infinite-dB SNR inputs.

TABLE 4.5. COMPLEXITIES AND AVERAGE COMPLEXITIES REDUCTION THROUGH
OPTIMIZATIONS (6-DB SNR INPUT)

Complexity Average Complexity
Module/ Before After Before After
. Reduction Reduction
Algorlthm optimizations | optimizations o optimizations | optimizations o
(MIPS) (MIPS) ¢4 (MIPS) (MIPS) C4)
vad 27.04 3.75 86 15.42 1.14 93
cng 2647 6.01 77 13.24 2.95 78
autocorr 8.13 0.17 98 8.02 0.13 98
levderb 1.92 0.55 71 1.76 0.49 72
hpfilter 2.99 0.10 97 2.97 0.07 98
analysis 3.20 0.13 96 3.18 0.10 97
Modified
53.51 9.76 82 28.66 4.09 86
algorithm

70



TABLE 4.6. COMPLEXITIES AND AVERAGE COMPLEXITIES REDUCTION THROUGH
OPTIMIZATIONS (18-DB SNR INPUT)

Complexity Average Complexity
Module/ Before After Before After
. Reduction Reduction
Algorithm| optimizations | optimizations o optimizations | optimizations 3
(MIPS) (MIPS) ) (MIPS) (MIPS) 4
vad 26.50 3.78 86 15.58 1.18 92
cng 26.45 5.98 77 15.62 3.44 78
autocorr 9.84 0.17 98 8.03 0.13 98
levderb 1.91 0.56 71 1.76 0.49 72
hpfilter 2.99 0.10 97 2.97 0.07 98
analysis 3.20 0.13 96 3.18 0.10 97
Modified
) 52.95 9.76 82 31.20 4.62 85
algorithm

TABLE 4.7. COMPLEXITIES AND AVERAGE COMPLEXITIES REDUCTION THROUGH
OPTIMIZATIONS (INFINITE-DB SNR INPUT)

Complexity Average Complexity
Module/ Before After Before After
. Reduction Reduction
Algorlthm optimizations | optimizations Y optimizations | optimizations o
(MIPS) (MIPS) 6 (MIPS) (MIPS) )
vad 26.26 3.62 86 13.42 0.66 95
cng 25.98 5.92 77 14.51 3.20 78
autocorr 9.64 0.16 98 7.95 0.13 98
levderb 1.95 0.65 67 1.74 0.49 72
hpfilter 3.00 0.10 97 297 0.07 98
analysis 3.22 0.13 96 3.18 0.10 97
Modified
52.24 9.54 82 27.83 3.86 86
algorithm
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From Tables 4.4 to 4.7, it can be concluded that this VAD-CNG algorithm is very data-
dependent, i.e., the complexities and average complexities could vary significantly if
different test vectors are used, just as discussed in Section 3.3.2. Combining the test results
from different SNR test vectors, we conclude that the optimizations reduce the
implementational complexity of the algorithm by 82% from 53.51 MIPS to 9.76 MIPS and

the average complexity by 86 % from 27.02 MIPS to 3.69 MIPS.

44 Summary

In this chapter, five optimizations have been carried out on the direct implementation of the
modified algorithm on TMS320C5402DSK DSP board. The experimental results show that
significant improvement has been achieved for the performance of the algorithm in terms
of the execution speed. As a consequence of these optimizations, the complexity and the
average complexity have been reduced by 82% and 86%, respectively. With these
optimizations, the modified VAD-CNG algorithm can be incorporated into a practical real-

time voice communication system.
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Chapter 5

A REAL-TIME DEMONSTRATION SYSTEM

A real-time audio codec system with silence suppression is built in our laboratory. This
chapter describes the details of this system in terms of the hardware interfaces and software

structures.

In the implementation using the host channels, digital data from the files on the host are
processed through the use of SWI and the results stored in the files on the host. In this real-
time audio system, the digital data will come from sampled analog signals and the output
data converted to analog signals. Therefore, a real-time system with real /O peripheral
devices is built. This system can also be used to demonstrate the improvements achieved

through the optimizations proposed in the previous chapter.

5.1 Overview of the Real-time System

The real-time system consists of three parts, an audio source, a DSP board and a speaker, as
shown in Figure 5.1. The analog speech signals from the audio source are passed through
the A/D converter of the codec on the DSP board to be sampled and digitized to 16-bit,
8000 Hz linear PCM data. These digital signals are processed frame by frame by the real-
time application, and the output digital data converted to analog signals through the D/A
converter and passed to the speaker, which can be used to provide a subjective evaluation

of the performance of the modified VAD-CNG algorithm.
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TMS320C5402

Real-time DSP application
(VAD-CNG algorithm)

A
Digital Digital
signals signals

Analog Codec Y Analog
source conveter conveter

Figure 5.1. Block diagram of the real-time system

5.2 Hardware Interfaces and Dataflow

The hardware connection of this system is shown in Figure 5.2. The digital speech samples,
which are stored on the host, are played with a media player, Cool Editor 2000, to be used
as the audio source to generate the analog speech signals. This audio source, rather than a
microphone, is used because these generated analog signals can be duplicated, i.e., the
same analog signals can be obtained repeatedly as long as the same digital speech samples
are used and the same volume is set. This is absolutely essential for the tests to be carried
out later. The analog input (microphone interface) of the DSP board is connected to the
speaker output of the sound card of the PC to receive the analog speech signals generated.
The analog output (speaker interface) of the DSP board is connected to the speaker to
transmit the output analog signals. The microphone and speaker interfaces (via 3.5 mm
audio jacks) of the DSP board are connected to a TLC320AD50 codec that is used to

generate 16-bit digital data before the processing and analog signals after the processing.
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The TLC320AD50 codec is connected to one of the Multi-channel Buffered Serial Ports

(McBSP1) [19].
TMS320C5402
[ vad_SWI& cng_SWI ]
Buffer Buffer
input_PIP output_PIP
[ Serial Port ISR }
DRR | | DXR
McBSP1
Digital Digital
signals signals
A D
D Codec A
T A 4
microphone speak
interface interface
Host PC
Digital
speech Analog Analog

Cool signals signals
samplei Sound
Editor ™ card | Speaker
2000

Figure 5.2. Hardware connection and dataflow of the real-time system

As shown in Figure 5.2, the analog signals are sampled and converted to digital signals
by the A/D converter on the DSP board through a hardware interrupt (HWTI), the serial port
interrupt service routine (ISR). The 16-bit, 8000 Hz digital data from the codec flows from

the McBSP1 through the input pipe, input PIP, to the application (vad_SWI and
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eng_SWI), where the digital data are processed frame by frame and sent back to the serial
port ISR through the output pipe, output_PIP, and then transmitted to the speaker through

the codec after being converted to analog signals by the D/A converter.

The serial port ISR copies each new 16-bit data sample in the data receive register
(DRR) to a frame of input PIP. When the frame is full (80 samples), the ISR puts the
frame back into input_PIP that will be read by vad_SWI. The function also writes a frame
to output_PIP each time the ecng_SWI is triggered and the serial port ISR writes a 16-bit
word from this frame to the data transmit register (DXR) each time. The empty frame is

recycled back to the output_PIP for reuse after the whole frame has been transmitted [30].

5.3 DSP Scheduling

This application is scheduled with a HWI (HWI_SINT10) and two SWIs (vad_SWI and

cng_SWI).

5.3.1 HWI in the Application

A hardware interrupt (HWI) HWI_SINT10 is triggered every 1/8000 second to call the
McBSP1 ISR, DSS isr, a standard assembly ISR of McBSP1 provided by TI that can be
found in dss_aisr.s54 (see Appendix C), which handles receiving data from and sending
data to the codec at the rate of 8000 samples per second. If an input_PIP frame is full, the
ISR calls the PIP_put assembly macro to put the frame back to the pipe. If an output_PIP
frame has been transmitted, the ISR will call the PIP_free assembly macro to clear and
recycle back this frame to output PIP. The ISR also calls DSS_rxPrime to allocate the

next empty frame from input_PIP after it has done filling up a frame and DSS_txPrime to
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get the next frame from output_PIP if available after it has done transmitting a frame (see
Section 5.3.2). The HWI_SINT10 is the default McBSP1 receive interrupt [35] and is

defined as in Figure 5.3.

T —_—_—

Stack Pointer

Figure 5.3. Defining HWI_SINT10

5.3.2 SWIs in the Application

There are two SWIs in this application, vad_SWI and cng SWI. The vad_SWI SWI is
triggered through two pipes object, input_PIP and output PIP, which are defined as in

Figure 5.4 and Figure 5.5, respectively.

input_PI¥ Properties

_S\A/I_annHook

Figure 5.4. Defining input PIP
77



0x00000000 .

Figure 5.5. Defining output PIP

Both the input and the output pipes have a 4-frame (80 words per frame) buffer defined
in the IDATA memory segment. The buffer of the input pipe is used to temporarily store
the input data before they are processed, whereas that of the output pipe is used to
temporarily store the output data before they are transmitted to McBSP1. The notifyReader
function SWI_andnHook of the input_PIP will clear the first bit in the mailbox for the
vad_SWI when a full frame is put into the input_PIP, whereas the notifyWriter function
SWI andnHook of the output PIP will clear the second bit in the mailbox for the
vad_SWI when an empty frame is available in the output_PIP. The mailbox for vad_SWI
is set to 3 (0011). As mentioned in Chapter 3, the SWI is posted when the mailbox value
becomes zero. In this way, vad_SWI is posted only when there is a full frame available in
input_PIP and an empty frame available in output PIP [30]. Since the sampling rate is
8000 Hz and the frame length is 80, vad_SWI is triggered every 10 ms to execute the vad
module. The vad module calls PIP_get macro to get a full frame of data from the input pipe
and this frame of data are processed to obtain the VAD decision and the SID packet, if

necessary. After the processing, PIP_free macro is called to clear and recycle the input
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frame so it can be reused in the next time. The eng SWI SWI is posted each time the
program exits vad_SWI. Thus, it is also triggered every 10 ms. It uses the outputs of the
vad module as inputs to execute the cng module. The cng module calls PIP_alloc macro to
get an empty frame from the output pipe. It generates the output speech signal by copying
the input speech samples, if the VAD output is 1, or by synthesizing the comfort noise, if

the VAD output is 0. At the end of cng SWI, PIP_put macro is called to put the full frame

back into the output pipe.
VAD CNG Algonthm
PIP_alloc PIP_put
PIP_free PIP_get
PlPAV PIP_get
PIP_put PIP _free
[ DSS_rxPrime] [ Serial Port ISR DSS txPrlme

Figure 5.6. DSS_rxPrime and DSS_rxPrime

The notifyWriter function for input PIP, DSS rxPrime, and the notifyReader function
for output_PIP, DSS txPrime, are C functions that can be found in dss.c (see Appendix
C). As shown in Figure 5.6, DSS_rxPrime calls PIP_alloc to allocate an empty frame from
input_PIP that will be used by the ISR to write the data received from the codec.
DSS rxPrime is called whenever an empty frame is available in input_PIP and the ISR is
done with the previous frame. DSS txPrime calls PIP_get to get a full frame from

output PIP. The data in this frame will be transmitted by the ISR to the codec.
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DSS _txPrime is called whenever a full frame is available in output_PIP and the ISR finish
transmitting the previous frame. Obviously, both DSS txPrime and DSS_txPrime will be

called every 10 ms.

5.4 Experimental Results

Two real-time analysis tools described in Chapter 2, namely, the Execution Graph and
CPU Load Graph, are employed to demonstrate the performance of this real-time system
and the improvement achieved through the optimizations proposed in the previous chapter.
The real-time system is built based on both the direct and optimized implementations. The
same digital speech test vectors are used and the same volume set to make sure that the
same analog signals could be obtained, which are the input to the DSP board. In this way,

we ensure that the test conditions are the same.

5.4.1 Execution Graph

The Execution Graphs of the real-time system based on the direct and optimized
implementations are shown in Figure 5.7, and they are obtained using the same test
conditions. By comparing these two graphs, it can be concluded that before the
optimizations, the vad_ SWI and cng SWI are triggered every 10 ms exactly and the
average time spent to execute these 2 SWIs is about 2~3 ms, while this runtime is always
less than 1ms after the optimizations. This runtime reduction implies that the

implementational complexity of the algorithm has been reduced significantly.
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(b)

Figure 5.7. Execution Graphs of the real-time system based on (a) direct
implementation and (b) optimized implementation

5.4.2 CPU Load Graph

By comparing the CPU Load Graphs before and after the optimizations (see Figure 5.8), it
can be concluded that the average CPU load is reduced from about 50% to 10% and the
peak value from 86% to 21% through the optimizations. This shows clearly that the CPU

load has been reduced significantly through the optimizations.

As mentioned in Chapter 3, this algorithm is very data-dependant. If we change the
volume but still use the same digital speech samples, a different CPU load is obtained as
shown in Figure 5.9. This is due to the fact that when the volume is changed, the input

analog signals to the DSP board are different. Thus, after the sampling and the A/D
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conversion, the digital data obtained are also different. With different inputs, different CPU
loads are obtained, which implies a change in the execution time, thus illustrating the data-

dependency of this algorithm.

(b)

Figure 5.8. CPU Load Graphs of the real-time system based on (a) direct
implementation and (b) optimized implementation
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|CPU Load Graph

(b)

Figure 5.9. CPU Load Graphs of the real-time system with different volume based on
(a) direct implementation and (b) optimized implementation
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Chapter 6

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

6.1 Conclusion

VAD-CNG algorithms are widely employed in packet voice communication systems to
reduce transmission bandwidth by suppressing the inactive part of the speech. As an
integral part of a vocoder system, the implementational complexity is critical when it is
implemented with DSP processors, considering the real-time requirement and the product

cost.

In this study, we have focused on a modified version of a Nortel VAD-CNG algorithm
to investigate effective ways of implementing it on a DSP board and optimize the
implementation in order to reduce the complexity. The modified algorithm has been first
directly implemented on a TMS320C5402DSK DSP board using host channels. The test
results showed that the modified algorithm could be implemented in real-time on this DSP
board. Since a VAD-CNG algorithm is designed to work as a part of a vocoder algorithm,
one should aim at further reducing the implementational complexity of the modified
algorithm. To this end, five optimizations targeting the most computationally intensive sub-
modules in the vad module have been carried out to reduce the implementational
complexity of the modified algorithm. Experimental results have shown that the
complexity has been reduced by 82% from 53.51 MIPS to 9.76 MIPS and the average
complexity by 86% from 27.02 MIPS to 3.69 MIPS, where the complexity (average

complexity) is the maximum (average) number of million instructions executed per second
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(MIPS). In order to demonstrate as to how this algorithm is implemented in real-time with
real /O peripheral devices, a real-time system has been built in the laboratory. The

experimental results from the real-time system verify the effectiveness of the optimizations.

6.2 Future Research Directions

Further research can be conducted towards reducing the implementational complexity
reduction of the modified Nortel VAD-CNG algorithm for it to be incorporated into a

vocoder.

It has been our goal to reduce the implementational complexity of the modified
algorithm without or with as little a degradation in its performance. We have investigated
several measures to achieve this reduction. Using the intrinsic functions provided by DSP
boards is a convenient, but not very effective means of reducing the complexity. Using the
assembly-optimized functions in the DSP Library is both convenient and effective, but it
can be only applied to general-purpose functions with appropriate data format. Assembly
language programming, though not very convenient, can be a very effective method of

reducing the complexity and applied to the entire modified algorithm.

The MIPS consumed by the vad module, as well as by the cng module, can be broken
down to individual constituent modules. The optimizations that have been carried out in

this thesis have been targeted to the vad module in reducing the implementational
complexity of the modified VAD-CNG algorithm. The cng module could also be treated in

a similar manner and given greater attention in a future work.
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APPENDIX

This appendix includes the source code of the directly implemented modified algorithm,
the optimized implemented algorithm and the real-time implemented algorithm (all

recorded on a CD), and the description of the source code.

Appendix A. Source Code of Direct Implementation

The source code of the direct implementation of the modified algorithm is zipped into
mod_alg.zip, which could be found on the attached CD. The files included in this zip file

are listed as follow.

ANSI C files:
vad.c VAD/CNG interface simulation
ppVinit.c VAD initialization
ppVCfg.c VAD configuration
ppVAnal.c VAD operation
analysis.c Inverse LPC filtering
autocorr.c Autocorrelation function
basic_op.c Basic operations
cng.c CNG state initialization & parameter update
cng quan.c SID information quantization
d Irc Spectral non-stationarity measure
iir df2.c highpass filtering
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lar quan.c
levdurb.c
lintodb.c
mintrack.c
peaktrack.c
rctolar.c
sid pack.c
v_bwexp.c
V_copy.c
vV_magsq.c
v_set.c
ppClnit.c
ppCCfg.c
ppCGen.c
cng_gen.c
lar_deq.c
lartorc.c
lintoexp.c
rctoacng.c
sid unpk.c
squarert.c
synth.c

V_gauss.c

LAR quantization

Levinson-Durbin recursion

Conversion of linear value to dB

Minimum energy tracking

Peak energy tracking

Conversion of reflection coefficients to LARs
LARs packing

Bandwidth expansion

Array copying

Vector energy calculation

Setting an array to a single value

CNG initialization

CNG configuration

CNG operation

Comfort noise generation

LAR inverse quantization

Conversion of LARs to reflection coefficients
Exponential function

Conversion of reflection coefficients to predictor parameters
LARSs unpacking

Square root function

LPC synthesis filtering

Gaussian random number generation
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v_scale.c Vector scaling
ANSI head files:

basic_op.h Prototypes

cngh Prototypes

filter.h Prototypes

ppvad.h Structures and prototypes

typedef.h Data type definitions

udefh Definitions

vad.h Structure

vad _lpc.h Prototypes

vadengllh Low level common structure

cng_genh Prototypes

cng lpch Prototypes

cng defs.h Constants

cngsynth.h Structure

ppeng.h Prototypes

vaddefs.h Constants
Implementation files:

vadmodprofile.pjt Project file

vadmodprofile.cdb Configuration of the project

vadmodprofilecfg.cmd  Linker command file generated by the Configuration Tool
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vadmodprofilecfg.h Generated header file included by vad.c, containing
declarations of objects created with the Configuration Tool.

vadmodprofilecfg c.c Generated C file containing program code for CSL settings.
vadmodprofilecfg.s54  Assembly source code generated by the Configuration Tool

vadmodprofilecfgh54  Header file generated by the Configuration Tool, which is
included by vadmodprofilecfg.s54

vadmodprofile.out Executable program (fully compiled, assembled, and linked),
which can be loaded and run on the target

Appendix B. Source Code of Optimized Implementation

The source code of the optimized implementation of the modified algorithm is zipped into
op_alg.zip, which could be found on the attached CD. The files included in this zip file are
the same as the source code of direct implementation of the modified algorithm except that
some modifications are made in ppVAnal.c, autocorr.c, levdurb.c, analysis.c, iir_df2.c and

vadmodprofile.cdb for the optimizations. Two assembly files are added, which are

autor(.asm Calculation of 7(0)

autori.asm Calculation of r(i),(i =1,2,---, p)

Appendix C. Source Code of Real-time Implementation

The source code of the real-time implemented algorithm is zipped into rt_alg.zip, which
could be found on the attached CD. The files included in this zip file are the same as the
source code of the optimized implementation except that the following files are added to

control the sampling, A/D and D/A conversion, and codec.
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dss.c

dss.h

dss_priv.h
dss_aisr.s54
dss.h54
dss_dsk5402.s54

dsscfg.h

Receiving data from and sending data to the serial port
Prototypes and structure

Internal implementation declarations

McBSP1 ISR

Header file included by dss_aisr.s54

Serial port setting

Configuration of ISR
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