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ABSTRACT
Timed Test Suite Generation Based on Test Purpose Expressed
in MSC
Gang Liu

When testing real time system, Automating timed test suite generation has
much advantages over manual test suite generation. Formal m odels are u sually
used to describe the complex system behaviours, such as TIOA (Timed Input
Output Automaton) and MSC (Message Sequence Charts). Therefore, test suite
can be generated from the formal model of the specification. Exhaustive test are
preferred to cover all faults in a test, but it is almost impossible. Test purpose
represents the partial requirements to be tested.
In this thesis, we present a new method for automatically generating timed
test suite based on the test purpose expressed in MSC, and the specification
expressed in TIOA. A set of integrated algorithms is provided to process input
test purpose and specification to generate timed test suite. In this method, MSC is
transformed to TIOA, and the test purpose and the specification are synchronized
as one single product. This single product is then sampled to construct a grid
automaton. Finally, a traversal algorithm is applied to the grid automaton to
generate test suite. We implemented this method and experimented it with
different examples. Comparing with other methods, test cases generated by our
method have a smaller number, and they are self-evident and can be easily

represented by TTCN (Tree and Tabular Combined Notation).
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CHAPTER 1

Introduction

Testing plays a key role in software life cycle. This is because in recent years,
software systems are much more complex, and distribution and parallel calculation have
become more usual. In software engineering, a specification specifies the functionalities,
performance, execution environments and other issues regarding software products. The
implementation of the software must conform to the specification. Testing is one of the
approaches for checking the conformance between an implementation and its
specification.

In testing, test suite is applied to the i mplementation under test (IUT), and the
output interaction traces from IUT are observed and analyzed. From this analysis, a
verdict is reached to conclude whether the implementation is correct or not, with respect
to the specification.

Test Purposes are usually used to specify what to test, because it is almost
impossible to cover all the faults in a test. Test Purposes represent partial conformance
requirements in the specification. Another benefit of using test purposes is the reduction
of the number of test cases.

When testing real time systems, there exist particular difficulties due to the
system behaviors limited by time constraints. A real time system has to react to the

stimuli from the environment within a limited or specified period. Therefore, the



correctness of the system functionalities depends on not only its actions, but also the time
constraints on these actions.

In this thesis, we discuss the issues of testing real time software systems.
Especially, we focus on how to automatically generate timed test suite based on test

purpose with the given specification.

1.1 Testing Real-Time Software Systems

Real-time software is used to control safety critical systems, such as medical
device monitoring, air traffic control, power plant control and emerging multimedia-over-
internet applications. Real time applications are harder to test because they require not
only the correct output signals, but also the signals occurring at the correct time. To
ensure the correctness of the implementation, the output signals and the time should both
be checked upon testing.

The most efficient means of precisely describing complicated system behaviors is
to use formal models. Various well-known models are widely used, such as Finite State
Machine (FSM), Petri-nets and Input Qutput Automata. Most of proposed formal models
for real-time systems are time enrichment of those traditional models, with time
constraints and additional time labels, such as Timed Finite State Machine (TFSM) and
Timed Input Output Automata (TIOA)([14][17]). To test real time system described by
the formal models, the obvious means for lowering test cost is deriving test suite from the
models automatically. The observed output traces from the IUT should also be analyzed

against the models.



1.2 Automatic Test Suite Generation

Automating test suite generation is greatly preferred. Because compared to
manual test c ase generation, it has the advantages o f higher fault c overage p ower and
lower test cost.

Formal models based on state machines describe what is the system’s state, and
how a system changes its state, as well as when and where a system accepts inputs and
sends outputs. Different methods ([21] [26] [27] [29] [31]) have been developed to derive
test suite from the specification as formal models. However, these methods have the
problem of resulting in large number of test cases. That could be unacceptable in real-
world testing, especially for real time systems with complicated behaviors. To solve these
problems, one of the approaches is covering only partial functionalities of the system in a
test. These partial functionalities under test are described by Test Purposes. The test cases
are only used to ensure the correctness of the functionalities described by the test purpose.
Hence, the number of test cases could be limited. To verify the correctness of TUT, it is
necessary to verify if the IUT conforms to both the specification and test purpose.

Test purpose is also represented by formal methods. This provides the benefit of
automated processing of generating test suite. Our approach to automatically generate

timed test suite is based on test purpose, which is represented by Message Sequence

Chart (MSC)[2].



1.3 Guideline of This Thesis

Although there are already some methods for automatically deriving test suite, the
problems of those methods still exist. First, the number of generated test cases is too high,
because of state space explosion problems. Second, the time constraints are seldom
considered. Third, most of the proposed methods only consider partial works of the
whole test suite generation procedure.

In this thesis, we will provide a new method of automatic timed test suite
generation based on test purpose. We use TIOA to describe the specification, and MSC to
describe the test purpose. We synchronize the specification and test purpose into a single
product, and use Region Graph and Grid Automaton, as well as clock minimizing
algorithm, to analyze the time constraints and reduce the state space of the automaton.
We develop -an integrated set of algorithms for the whole processing from input
specification and test purpose to output test suite. We also implemented this test suite
generation method as a tool.

The remainder of this thesis is organized as follows: Chapter 2 is an overview of
testing activities. The well-known test methodology is introduced, as well as the
framework of conformance testing and test methods. We also discuss the conformance
relation between reference specification and IUT, and how test case generation is related
to formal models. The c hapter also introduces the concepts of test hypothesis and test
purpose, as well as fault coverage and fault model.

Chapter 3 presents a method and framework for timed test suite generation based
on test purpose expressed in MSC, and specification expressed in TIOA. First, the formal

definitions of related concepts are given. Then, each step of test suite generation in the



framework is explained. The detailed algorithms for each step are provided. Also the
fault coverage of our method is discussed.

Chapter 4 provides the implementation of the method we introduce in Chapter 3.
Object-oriented designing is used in the design phase. We provide the activities diagrams
and class diagrams in UML. Examples of applying our implementation are discussed.

Chapter 5 comes with the summary of this thesis and the future work. We will

discuss the possible future work related to test suite generation in that chapter.



CHAPTER 2

Overview of Conformance Testing

In this chapter we will introduce the background concepts and knowledge about
testing. A standard conformance testing methodology and framework is introduced in
Section 2.1. Sections 2.2 and 2.3 introduce formal specification methods and their role in
conformance testing. Section 2.4 discusses test hypotheses and test purpose, as well as
their importance in testing. Section 2.5 provides the FSMs fault model. Several well-

known test suite derivation methods are introduced in Section 2.6.

2.1 Conformance Testing and the Standard

The distributed real time systems communicate with the environment by
exchanging messages. The communication behaviors are based on communication
protocols. A protocol i mplementation must b e guaranteed to b e c ompatible w ith o ther
implementations. To achieve the compatibility, a detailed specification is necessary, and
therefore all implementations have to conform to the specification. To ensure the
conformance, one approach is to test the implementation. This is referred to as
conformance testing.

There are various reasons that cause implementations to fail to interact with each

other. First, the developers of the implementation could introduce errors. Second, the



specification could be incomplete, so that different implementations could have different
behaviors for the incomplete part of the specification. Third, the specification could
provide a range of choices that results in incompatibilities between implementations.
Finally, the implementation could adapt a different interpretation of the same
specification from others.

Conformance testing is the activity o f checking w hether a new implementation
conforms to a specification or not. However, different test developer could have different
principles when deciding if the implementation conforms to specification. Moreover, the
same product could be tested more than once by different test developers. Therefore, a
general principle and test procedure for conformance testing are necessary, so that the
repeated conformance testing for the same system can be minimized. International
Organization for Standardization (ISO) has developed a standard for conformance testing,

that is ISO IS-9646, “OSI Conformance Testing Methodology and Framework™([1]).

2.1.1 Conformance Testing Process

The standard (ISO 1S-9646) defines a framework for conformance testing. It
specifies the principle and general procedure of test suites generation, test execution, and
test result analysis. The representation of test suite and test verdict is also specified in the
standard. The standard does not specify tests for specific protocols, but recommends the
general procedure of testing. It assumes that the natural language is used for specification.

We will give an introduction to the framework in the following pages.
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Figure 2-1 depicts an overview of ISO 1S-9646 recommended conformance
testing process. The whole process can be classified into three phases: test suites
development, test execution, and result analysis.

Test suites development. A test suite is a set of test cases that represents the test
for a specific test purpose. First, the T est P urposes a‘re created from the specification.
Test purpose represents what to test. It focuses on one or one group of conformance
requirements specified in the specification. The conformance requirements represent the
functionalities of the system, and they can be divided into groups. The related
requirements can be described as a single test purpose to be tested.

Second, after test purposes are available, one generic test suite is generated from
each specific test purpose. A generic test suite describes the high level test actions to
achieve the specific test purpose, without considering any test methods or the execution
environment.

Finally, an abstract test suite is derived from each generic test suite. The
derivation is made by considering a particular test method and the constraints of the
applied test environment. The resulting abstract test suite is independent of any
implementation. The test cases in an abstract test suite are represented in a well-defined
test notation.

A semi-formal language to specify abstract test suite is suggested in the standard,

which is TTCN, the Tree and Tabular Combined Notation [18].

Test execution. Since the abstract test suites are independent of any real testing

environment and IUT, before they can be applied in the real testing devices, the abstract



test suite must be transformed to executable test suite. At this time, how the system under
test is implemented should be considered. For example, test case could be represented as
the parameters of a function, or the payload of a packet unit. To make the transformation,
the information about the testing environment and the IUT must be supplied. Due to the
knowledge that some options provided in the specification may be not implemented,
some test cases in the abstract test suite could be irrelevant for the implementation. So, a
selection is necessary to choose and refine the relevant test cases.

Once the executable test suites have been created and ready for execution, they
are applied to the IUT. The observed outputs from the IUT are recorded in conformance

log.

Result analysis. The recorded reactions of IUT are compared with the reactions
specified in the test suite, and a verdict report is created for the certification of the final
product. A verdict is assigned to each test case according to the recorded outputs from
IUT. A verdict is either PASS, INCONCLUSIVE or FAIL. If the outputs indicate that the
implementation conforms to the specification and the test purpose, a PASS verdict is
concluded. Otherwise, if the implementation fails to conform to the specification, a FAIL
verdict is concluded. INCONCLUSIVE verdict is concluded if the implementation

conforms to the specification but the test purpose is not achieved.

2.1.2 Test Methods

A Test Method is an abstract model used to describe how the tester interacts with

IUT. Test method specifies the accessibility of the IUT to the tester; it represents the



logical concept of test architecture. The points where the tester can control and observe
the IUT i1s called Points of Control and Observation (PCO). At PCO, test suite are applied
to the implementation and the results of the test are observed. Variant test methods are
presented in the framework: the Local Single layer test method (LS-method), the
Distributed Single layer test method (DS-method), the Coordinated Single layer test
method (CS-method), and the Remote Single layer test method (RS-method).

As it is depicted in Figure 2-2, in LS-method, an Upper Tester (UT) provides the
observation and c ontrols on the upper service boundary of IUT. A Lower Tester (LT)
provides the observation and controls on the lower service boundary of IUT. There are
two PCOs in LS-method: The upper PCO is used by UT to send and receive signal to and

from the implementation, and the lower PCO is used by LT.

Upper Tester

Lower Tester PCO

Figure 2-2: Local Single Layer Test Method

il



DS-method is used to test distributed systems. Figure 2-3 depicts the DS-method.
Upper Tester is at the same location as IUT and controls testing by upper PCO of TUT.
Lower Tester is at the remote site and communicates with IUT by the PCO of the low
layer service provider. UT and LT communicate with each other by Test Coordination
Procedures, so that they can coordinate with each other to apply correct test suite to IUT,

and record corresponding output traces.

Coordination Procedure

» Upper Tester

1 PCO

Lower Tester IUT

o |

Figure 2-3: Distributed Single Layer Test Method

There exist particular difficulties when testing with DS-method. First, the
independence between UT and LT implies possible fault coverage limitations. Second,
because of remote testing, queuing delays could cause remote tester occupy incorrect
time-related information from IUT. Third, the separated testers could face
synchronization problems. Finally, the external coordination between UT and LT could

also face failures since the external environment is not guaranteed to be error free.
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In the RS-method (Figure 2-4), there is no upper tester, and only one PCO is

available for the remote tester.

Tester

I PCO

IUT

Figure 2-4: Remote Single Layer Test Method

In CS-method, the UT and LT are separated. They coordinate and communicate

with each other by Test Coordination Procedures, as the same in the DS-method. The

difference between the two is that in CS-method, UT and LT are at the same location and

local to the IUT; the Coordination Procedures are also local and could be an internal part

of them. It is depicted in Figure 2-5.

v

Upper Tester

F X
Coordination Procedure

F

Loweyr Tester

h
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1uT
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Figure 2-5: Coordination Single Layer Test Method
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These test methods as mentioned are usually used to test one layer IUT, but they
can also be used to test multi-layer TUT. These layers can be tested as a whole, or one
layer embedded in the other layers can be tested (embedded testing).

When abstract test suites are generated from test purpose, the test method is
considered, so that the generated test suites can be adaptable for the future real test
architecture. Again, test method represents the abstract logical concept of real test
architecture. Before applying to the real test environment, the test method provides a way
for correctly selecting and refining abstract test suites.

In the following chapters, we will introduce a new method to generate test suite
based on the test purpose and the specification. According to ISO9646 framework, our

method focuses on the scope of test suite generation phase.

2.2 Formal Specification Methods

In the software life cycle, the specification, implementation and testing have a
very close relationship with each others. Figure 2-6 depicts how they can impact each

others.

Toformal
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\”\
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TES Teer 2
b —
wwww
Dexgrd goring o
i i Verification
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Implementation l.e

Figure 2-6. Software Life Cycle and Testing
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Software life cycle starts with requirement engineering. Requirements are usually
described in an informal natural language such as English, or semi-formal languages such
as UML. Requirements could be imprecise and inconsistent. Then, the requirements are
transferred to the specification, which gives the detail of what the user needs and how the
system works. The specification specifies the user requirements in a precise and
unambiguous way, but also is abstract enough and not touching the irrelevant system’s
structure and implementation details.

Due to the increasing complexity of distributed real time system, a precise and
unambiguous specification becomes more difficult to be well defined. Using formal
methods to describe the complicated behaviors of the system is necessary, since formal
methods provide the way to define a precise and unambiguous specification, and make it
possible to reason about the complexity of system behaviors. Moreover, formal methods
also make it possible to automate the process of generating functions code and test suite.

The design comes after the specification. In this phase, the system’s internal
structure and detailed functions are designed. Designing should follow the requirements
and specification. Under the conduction of the detailed design, the implementation is
realized. Executable code, software components are created.

The final implementation must be checked to verify if it fulfils the user’s
requirement. In fact, not only in the implementation phase, in every phase of software life
cycle, checking must be done to guarantee that the final product really does what the user
needs it to do. Usually, two techniques are used to verify the correctness: validation and

testing.



Validation is used to check if the specification and design represent indeed what
the user needs, or whether they respect the requirement or not. Testing is a kind of
experiment, the system under test is executed and observed. The tester controls and
observes the system under test, and verifies its correctness. Tests can be derived from the
requirement, speciﬁcatioh and design, and then applied to the implementation. The
observed results are analyzed against the requirements, specification and design.
Furthermore, testing the implementation could also find out the possible incorrectness of
the specification and design, and help in specification and design validation.

If the specification is described by the means of formal methods, the testing can
be done as early as the specification phase. Formal models can be created to explain the
system, and they are executable. The formal model’s internal behaviors can be verified,

e.g., in a finite state machine model, it can be checked if there exist deadlock scenarios.

2.3 Conformance Testing and Specification

There are two types of testing, so-called black-box testing and white-box testing.
In black-box testing, the tester has no knowledge of the internal structure of the
implementation, only the reference specification is known. In this case, the test selection,
fault coverage and test result analysis are done with respect to reference specification.

In white-box testing, the internal structure of the implementation is known. The
knowledge of the implementation structure and reference specification are together used
in testing selection, fault coverage and test result analysis.

Another type of testing is grey-box testing, only high-level module structure of

the implementation is known, but the structure details are not known.
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Conformance testing is black-box testing. The implementation is required to
conform to the reference specification. The test suite are derived from the specification,
and then applied‘to the implementation. In this way, the implementation is tested against
the specification, and the conformance between the implementation and the specification
is verified (as shown in Figure 2-7). While the specification is specified by the means of
formal models, it is possible to generate test suite automatically from formal models by
some kind of generation algorithms. Compared to the manual test suite generation,
automatic generation algorithm from formal models has obvious advantages, such as no

human introducing errors, more fault coverage, and lower test costs.

Specification Test Development

!

Test

Conformance

Implementation |«

Testing

Figure 2-7. Conformance Relationship

2.4 Test Hypotheses and Test Purpose

To achieve completely error free implementation by testing, we have to do
exhaustive testing. It means applying infinite test cases to the implementation to cover all
possible faults. It is obvious that infinite test cases is impossible. Due to the real

environment limitation and the goal of lower test cost, exhaustive testing can never be



realized, even for the white-box testing where all the details of the internal structure are
known. However, some assumptions are always true when we have some knowledge
about implementation, by which we can limit and lower the possible test cases. Those
assumptions and knowledge about implementation are called Test Hypotheses. For
example, when we test a system, we really know what the system does, and we know it
does not do something irrelevant. Moreover, when we are testing the implementation
with respect to the reference specification given in a formal model, we assume that the
system is implemented based on the adopted model. These assumptions makes a
conformance testing possible.

The purpose to use test hypotheses is to reduce the possible implementations and
test cases. One way to achieve that purpose is by using test purpose. Test purpose
specifies what functionalities of the implementation to be tested. Single or partial
requirements and functions specified in the specification are derived to be tested.
Therefore, not all the requirements, but only a finite set of functions are considered. As
we have discussed in section 2.1, ISO conformance testing framework advises that the

test suites are created from the test purposes.

2.5 Fault Model

Since we cannot cover all faults by a test, how can we say a test is good or not? It
is necessary to define a specific criteria that can evaluate the quality of a test. Fault
Model does the job. A fault model is used for describing how faults affect the behaviors

of the implementation. In a conformance testing, a test suite is said to have a complete



fault coverage with respect to a given fault model, when it either satisfies the
conformance relation, or there exists a test case in it which results in a verdict FAIL[16].

A Fault model describes the possible high level abstract faults of an
implementation. Because a single fault can create various errors in the IUT, fault model
provides the clear clues where those errors can be from. When the system is specified by
a formal model, fault model is used to describe what faults could happen based on the
formal model. Therefore, test suites can be created to cover those faults.

Most formal models used to describe the behaviors of distributed and real time
systems are based on Finite State Machines (FSMs) or Input Output Automaton
(I0A)([14]). The fault model for the FSM has the general meaning when testing is based
on FSM models. The FSM fault model includes [9]:

Output faults. The implementation machine provides a different output from the
one specified by the output function in the specification.

Transition faults. For a given state and input, the transition of The
implementation machine arrives at a different state from the one specified by the
specification.

Additional or missing transitions faults. There are additional transitions for the
corresponding pair of states, or a transition is missed in the implementation machine.
This is considered an error for deterministic machines, where only one transition is
allowed for a given input and state.

Additional states faults. The implementation machine enters into a state, which
1s not specified by the specification model.

The fault model for real-time systems will be discussed in Chapter 3.
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2.6 Test suite Generation

To cover the faults described in the fault model based on FSM, variant test case
generation methods have been developed. All these methods are based on the
assumptions that, firstly, the implementation machine is completed and it has limited
number of extra states; Secondly, the implementation FSM is deterministic, which means
that for a given input and a pair of states, there is only one transition; And finally, there
exists a reset function which can set the implementation machine to the initial state.
These test derivation methods are described as following:

Transition Tour (TT-method)([26]). By this method, the FSM is taken from the
initial state and every transition is traversed at least once. This method detects all output
faults; there is no guarantee that all transition errors are detected.

Distinguishing Sequence (DS-method)([36]). A distinguishing sequence is an
identifying state sequence. When a distinguishing sequence is applied to a FSM, it results
in different outputs for each given state. This method can detect all output and transition
errors, but it cannot be guaranteed that a DS indeed exists for a given FSM.

Unique Input Output (UIO-method)([28]). In this method, there exists a
different input sequence for each given state. When the unique input sequence is applied
to the given state, the resulting output sequence is different from the one of other states.
Again, this method cannot guarantee full fault coverage.

W-method([35]). This method includes two sets of input sequences: W-set,
which consists of input sequences that can distinguish between every pair of states; and
P-set, which consists of input sequences.that take the machine from the initial state to a

given state for a given transition. Test sequences are formed by concatenating of these
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two sets; It provides a way to test all misbehaviors of the implementation machine. The
logic of w-method is that the prefix input sequences bring the FSM to an identified state,
and then the specific transition from the state is tested. This method guarantees the
detection of all faults, but it cannot guarantee the existence of w-set for a given FSM.
Wp-method([30]). Wp-method has the same detection power as W-method. The
main advantage of the Wp-method over W-method is that the length of test suite is
reduced. Instead of using a w-set to check each reachable state, only a subset of w-set is

used. Another advantage is that Wp-method is always applicable.

Those test derivation methods are based on FSM as formal model. In
conformance testing, the formal models of the specification are used to derive test suites.
However, these methods have well known problem of state space explosion. The length
of test sequence and the number of test cases could be too high so that the test cost is too
high. That makes real world testing very difficult. Test purposes can be used to solve this
problem by testing only partial specifications, and only specific faults are targeted to be
covered. To make test generation automatic, test purposes are also required to be
expressed in formal models. For timed test suite generation, a summary of the existing

methods is given in Chapter 4.

2.7 Conclusion

Most of formal models used to describe real time system are state machines and
automata with time enhancement, such as Timed Finite State Machine (TFSM), and

Timed Input Output Automaton (TIOA). Specific time related faults should be covered
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when testing real time software. In the following chapter, We will focus on automatic
timed test case generation, and we will introduce a new method of timed test suite

generation based on test purpose expressed in MSC.
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CHAPTER 3
Timed Test suite Generation Based On Test

Purpose

A new method of deriving timed test suite is presented in this chapter. This
method is based on the timed formal models used for expressing the specification and test
purpose. We assume that TIOA is used for the specification and MSC is used for the test
purpose. Section 3.1 introduces the definition of those formal models. Section 3.2
describes the timed test case generation framework step by step. Section 3.3 gives the
detailed algorithms of every step. Finally, the time-related fault model and fault coverage

of this method is discussed in Section 3.4 and 3.5.

3.1 Definitions

In this section, we will introduce the concepts and the formal methods that are
used in our method. TIOA and MSC, as well as other theoretical ingredients:
Synchronous Product, Regions Graph and Grid Automata, are introduced, so that the

subsequent contents in our framework can be easily understood.
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3.1.1 Timed Input Output Automaton (TIOA)
ATIOAisatuple (Z, O, L I, C, T), where:

—— lis a finite set of input actions, each input action begins with “?”.

—— O is a finite set of output actions. Each output action begins with “!”.

—= L is a finite set of locations.

— I* € L is the initial location.

-~ Cis a finite set of clocks all initialized to 0 in I’.
—= T is the set of transitions

A transition can be denoted as /—4%%% 5 ' Here a transition consists of a

source location /, a destination location /', an input action ?a or an output action /a. a
2 2 b

clock guard G, and a set of clocks to be reset A . A clock guard G is a set of the time

constraints on the execution of transition. The reset clocks in the set A are set to zero
when the transition is fired.

Each clock has a value, so called clock valuation, which is denoted as v. v is a
non-negative real number assigned to the clock. The clock valuation of the set of clocks
can be denoted as a vector (v;, v v3 ...) or V(C). When time elapses by d time units
(where d is also a non-negative real number) for any clock valuation v €V(C), the
reached clock valuation is v + d. When the clock valuation satisfies a clock guard G, it is

denoted as v |= G. The symbol A represents that a subset of clocks X &C is reset to

zero, which means that each clock valuation v € V(X) is assigned the value 0, also

denoted as [X:=0]v.
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We assume that the transitions are instantaneous and all clocks in C has a
bounded domain [0, max] U{ <o}, where max is the largest value for clocks in C. Any
value larger than max should be represented as <. All clocks are set to zero in the initial

location.
TIOA is an abstract model; it can be executed by input actions, or by time
elapsing. Such execution is called operational semantics: it starts at I°, where all clocks

are set to zero, then the values of clocks increase synchronously. At any time, TIOA can
make a transition /—"2292 5] " provided that the guard G is satisfied. The fired
transition makes input or output a, clocks in A are reset to zero, and finally it arrives at

location /'.

Since TIOA can be run as time elapsing, its state should be carefully considered.

The States of TIOA is formally defined as following:

Let A=(1y, O4, L4, P4, C4, T4) bea TIOA,

-- A state of A is a pair (I, v) consisting of a location | €L,and a clock valuation v €
V(Cy).

- The initial state of A is the pair (I’4, vo), where vo= 0 for each clock x €C4 We denote

the set of states of A by S(A).

TIOA textual grammar is presented in Appendix B.

3.1.2 Message Sequence Chart (MSC)

MSC 1s widely used in modeling communication systems. MSC has enough

power to describe the message exchanging and time related events. It is formally
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specified by ITU-T({2]). The latest specification is MSC-2000, whose first version is
published in November 1999. The purpose of recommending MSC is ([2]) “to provide a
trace language for the specification and description of the communication behavior of
system components and their environment by means of message interchange” The
communication between components can be presented in a V<;ry intuitive and transparent
manner by MSC. Therefore, “the MSC language is easy to learn, use and interpret”.

MSC is a formal language with the syntax definition in both textual and graphical
representations. There are two kinds of MSC: basic MSC and High-level MSC (HMSC).
Each basic MSC describes a scenario of the interaction between the instances. The whole
MSC document is the collection of basic MSCs, which provides a clear system
specification based on instances. HMSC provides a mean to combine basic MSCs.

The main elements in a MSC are instance, message, action, timer and gate. MSC
1s composed of interacting instances. An instance can be a process, a service or a system
component. Instances interact with each other by sending or receiving messages. An
instance can have internal actions. An action is an atomic event that could happen upon
sending or receiving a message, or it can be an independent internal event.

Timer is used to calculate time elapsing. In MSC, the timer is related to the events
of start-timer, time-out and timer-stop. A time-out or a timer-stop event is always
subsequent to a start-timer event. In addition, MSC has time constraint syntax to support
the notion of quantitative time, which is very useful for describing the sequence of events
in time for a real time system. In MSC, events are instantaneous; time constraints can be

specified in order to define the time interval within which events may occur.
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A gate represents an interface between instance and environment. Any message
exchanged between an instance and the environment must pass through a gate.

In our method, we only consider a simplified Message Sequence Chart, which is
enough to achieve our goal of describing a test purpose. Therefore, based on the
assumptions we make for using MSC as the representation of test purpose, we derive a
simplified MSC grammar from the basic MSC defined in MSC-2000. This simplified
MSC is called SIMPLE MSC. SIMPLE MSC is compatible with the original basic MSC,
and its grammar is given in Appendix A.

The following is a mathematic definition of our simplified SIMPLE Message
Sequence Chart:

A MSC M is a structure:
M=(P, S R A O T, Ty, Y), where,

—— P is a finite set of instances;

~— S'is a finite set of sending message events;

= R is a finite set of receiving message events;

—— A is a finite set of local events, such as local actions, timer start, time-out, timer stop;
~= O is the ordering of S, R and A. We assume they have a total ordering relation among

them, that means we know which event happens first and which happens next by O;

—— Tis a finite set of timers;
—— Ty associates each timer related event with its timer;

~= Y associates each pair of dependent events with its timing restriction, and associates

each action with its duration.
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The instances in MSC can be any system components that communicate with each
other by sending or receiving message (S, R). For the aim of test case generation, we try
to simplify the situations by considering only one instance to be tested in one test purpose.
Other instances are regarded as part of implementation environment. We also assume that
the ordering of events is fixed. Time restriction between events can be represented by

time constraints variables or timer related events.

3.1.3 Synchronous Product (SP)

The implementation under tested must satisfy the specification and the test
purpose at the same time. Therefore, we must compose a merged product, which
represents both the specification and the test purpose, so that test suite can be generated
from a single product. This product is called Synchronous Product. Synchronous Product
is represented also as a TIOA. We first convert MSC to TIOA, then merge two TIOAs
into a single one as Synchronous Product.

The definition of Synchronous Product is given as following:

LetA=(Iy, O4, Ly, 4, C4, T4 ) be a specification and

TP = (I7p, O1p, L1p, lOTp, Crp, T1p) be a timed test purpose. The synchronous product of
A and TP is the TIOA SP:

SP = (Isp, Osp, Lsp, ’sp, Csp, Tsp) such that:

— Isp=14 Ulrp and Osp= O4 UOgp.

— Lspc LaxLzp.
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— Usp= (4, rp).

—~ Csp=Cy U Crp.

Lsp and Tspare the smallest relations defined by the Sfollowing two rules:

(I,12) € Lop A 1 —L02GA 5 T Ty A [, — 0800222 1otes Trp =

(01, 12) € Lsp A (I, ) —U8%G04 5 (11" 15) € Tsp

(I,02) € Lsp A h—LA2GA 5 1t Ty A [, — 082020 o 1 Trp =

(I, 12') € Lsp A (1) —AeG&Guhiods i 1)) e Top

The definition also illuminates the basic idea of how the Synchronous Product is
constructed from two TIOAs. SP’s input set and output set are the union of specification
and test purpose input set and output set. In addition, the clock set is the union of clock
sets of the specification and test purpose. The location set of SP are formed by the
combination of locations of the two original TIOAs.

The two rules mentioned above determine the SP ‘s transitions; they are explained
in section 3.3 where we will provide the detailed algorithm of constructing Synchronous
Products. We can sée that some transition executions in the specification are not allowed
in the synchronous product, because the time constraints for these transitions in the
specification and the corresponding one in the test purpose cannot be simultaneously

satisfied.

3.1.4 Regions Graph and Grid Automaton

Firstly, the Regions Graph([15]) is defined as:
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Let A = (I, O Lu 1, Cy T4) be a TIOA. The regions graph of A is an automata

RGz(ZRG ’SRG’S(I)(G9TRG) where:

~ D =1, VO, UR?

- S =LV e L AaveV(C,)}

- S8 ={I%:[vo]), where vo(x) = 0 for all xe C,,

— RG has a transition s—425', from S =(l,[v]) to s'={',[V']) on action {?,1})a iff

there is a transition | —3%%% 51" sych that v =| G and v'=[1 = 0]v.

-- RG has a delay transition s—2—s', from s ={l,[v]to s'={I',[v']) on time increment

d>0,iff [V]=[v+d]

The regions graph of the TIOA describes the time behaviors of the automaton.
The locations of the TIOA are divided by clock valuations. The states of the automaton
can be described by two dimensions: where and when (represented by location and clock

valuation).

Here an important property of regions graph is that each state of the regions graph
has a delay transition labeled with the symbol d, which is the time delay between states.
The value of d is in the interval /0, /. The number of the states of a simple regions graph
for a TIOA could be very large if the number of clocks in the set Cy4 is a little high. For
example, 3 clocks can make the number of regions graph’s states rise to almost one

thousand. However, we can derive a sub-automaton by sampling regions graph with a

delay —1——1, where n is the number of the clocks in the set C4. The resulting sub-
n+
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automaton is called Grid Automaton([16][8][15]). Grid automaton is a sampled region
.. : . 1
graph that has delay transitions labeled with the time delay 1 The proof of the
n+
existence of the grid automaton is given in [15].

Test Purpose )
» in MSC '

Convert from MSC
10 TIOA

Specification
i TIOA

“Test Purpose
iy TIHOA

Construction of Synchronous Product
(TIOA)

Synchronous
Product

Construction of Grid Automaton

Grid

Automaton

Genagration of Test Cases

¥
{ Test Cases l

Figure 3-1. Timed Test Case Generation Framework

3.2 Framework

We present a framework for timed test suite generation based on the test purpose

expressed in MSC and the specification expressed in TIOA[42]. The Figure 3-1 depicts
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the framework. There are four main phases distinguished in the process: premium TIOAs
generation, synchronous product construction, sampling and test suite generation.

Premise TIOAs generation. At first, the MSC of test purpose and TIOA of
specification are given in textual representation. The first step in this phase is parsing the
MSC and TIOA text, and transferring them to internal structure representations, so that
they can be understood and analyzed by the program. Parsing is done by using Flex and
Bison.

Once MSC is transferred to an internal structure, it is converted to a TIOA. The
basic idea of converting is that each receiving message in MSC can be translated to an
input action in TIOA, and each sending message can be translated to an output action;
the state between each pair of exchanging messages can be identified as the location in
TIOA. The timer events and the time constraints in MSC can be described by the
replacing clocks of TIOA. A critical problem of the resulting TIOA is that the number of
clocks could be unnecessary larger than what we need. Therefore a process is needed to
minimize the number of clocks for the resulting TIOA.

At the end of this phase, the test purpose is represented also in TIOA, so that the
specification and test purpose have the same representation and can be synchronously
composed and analyzed.

Synchronous product construction. The implementation must conform not only
to the specification but also to the test purpose. The synchronous product represents the
requirements of both the specification and test purpose. As in the definition given in the

last section, locations, input and output actions and the clocks of synchronous product are
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the combination of two TIOAs that represent both of test purpose and specification. The
detailed algorithm is given in the next section.

Sampling. Once the synchronous product is ready, it is then transferred to a
regions graph and the regions graph is sampled by the time granularity. T he resulting
product is a Grid Automaton. The basic process is as follows: time is regarded as an input

of the automata. Then the first thing is to figure out the time delay length, which is made

by sampling the time with a fixed granularity. The granularity used here is , Where

n+l
n is the number of clocks in the TIOA. The initial state of GA is formed with the initial

location of synchronous product TIOA, where the clock valuation is set to zero. Next step
is decomposing all states reachable from the initial state with repeating ——I—I delay
n+

transitions. For each state, we add all its related delay transitions. The same process is
repeated starting from the target state of the transitions we just created, until no state left.

Test suite generation. In this last phase, the test suite are derived from the Grid
Automaton. Note that the time has been transferred to the label of the transition. So, by
traversing the GA, we get test cases with time delay included. We use a depth-first
traversal to generate timed test suite. We have different traversal strategies to fulfill
variant fault coverage power. We will discuss that in section 3.3.5 and 3.5.

The test suite generated by our method are executable and can be easily
represented in TTCN([18]).

The sequence of a test case consists of input actions, time and output actions.
When the IUT is tested with a timed test case, a usual activity is that the tester applies the

input action, and observes that if the correct output comes from the IUT in a correct

33



period. For example, when the test sequence “?a, 1/3, 1/3, !b” is applied to IUT, firstly,
“a” 1s input, and after two 1/3 time units, the output “b” is expected. To conclude a
verdict, if the outputs or final state does not satisfy the specification, the verdict is “fail”;
if they satisfy both the specification and test purpose, the verdict is “pass”. However, if

they satisfy the specification but not the test purpose, the verdict is “inconclusive”.

The algorithm for each phase is given in the next section.

3.3 Algorithms

3.3.1 Converting MSC to TIOA

MSC is converted to TIOA, so that a synchronous product, which is represented
by TIOA, can be created. In section 3.1, we presented the definition of TIOA and MSC.
The detailed description of converting algorithm based on those definitions is introduced
as follows.

A SIMPLE MSC is derived from the formal specification of MSC-2000 by
simplifying the grammar of MSC-2000. The aim of simplified MSC is to provide a base
for describing the scenarios of test purposes, while not bothered by heavy and
complicated syntax. The SIMPLE MSC is derived based on the following assumptions:

1) We assume that the Implementation Under Test is a process instance in

MSC, and it is deterministic, which means that all actions (events) are
deterministic. Other instances communicating with the instance under
test are regarded as test environment.

?2) All local actions, except timer events, are ignored in our algorithm.
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3) We only consider R eceiving and S ending M essage e vents and timer
events. A timer can be started, stopped, and time-out. We initialize a
clock when a timer is started.

4) Time constraint can also be expressed by time interval syntax in MSC,
which follows the event it’s measuring. The syntax is like:

[alias name] <message event> [time <time interval> <alias name>].
Time intervals can be defined for any two events within an MSC
document. The textual representation of an MSC indicates the potential
pairs of events only. Such a pair of event is indicated by connecting the
interval boundaries of two events. The algorithm following also

concerns this kind of time interval.

To translate an SIMPLE MSC M = (P, S, R, 4, 0, T, Ty, Y) to a TIOA 4 = (1, O,
L I, C T), the exchanging message events can be processed as follows: Received
messages set R and sent messages set S can be renamed as TIOA input I and output O
actions sets respectively.

Then, we can create an initial location /° before any event happens and a final

location If after all events finish in MSC. Next, for each event e € (§ U R), we create a

corresponding location /'. It means that after the event e happens, the process reaches the
state ['. All of those /' form the set L in TIOA. Then, we examine the set O starting from
location /0. Every event e included in the set O or S or R gives rise to a transition ¢. It is
repeated until we arrive at the end of the instance. The T set of TIOA is formed by those

L.
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Next, we rename the timer set T in MSC to clock set C in TIOA. From Ty we
know the timer related events. And again we scan the set O to determine the
correspondence of timer events and the transitions. For each start-timer event, we create a
location /', and a transition ¢ from last event's corresponding location [ to ['. The
corresponding clock is set to zero at transition ¢ (Note that at the initial location 2, all
clocks are set to zero). When a corresponding time-out event is reached, a location /x is
created. For each event between the start-timer and corresponding time-out events, a
transition #x arriving at [x is created for the corresponding location. We then label each #x
with clock guard by considering timer’s value. With the set ¥, the time constraint on a
single event or a sequence of events is also transformed to a clock in TIOA. The
transition of each event within the time constraint is labeled with the corresponding clock
guard.

The pseudo code is the following:

Input: MSCM =P, S,R, A4, O, T, Ty, Y)
Output: TIOAA=(1,0,L, ", C, T)
Definitions of Variables:

E : the set of all events in the instance of MSC;
Et : the set of all timer related events;

Ets : timer setting event;

Eto : timer time-out event;

Etp : timer stop event;

Label(e): the message event e ‘s parameter.

Last(L) : last created location in L;
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Tc = (tmax, tmin) : the time constraint.

Y={(es,ee,tc)| es is the starting event, ee is end event, tc is the time constraint}: the
association of two events and a time constraint.

TCL : the set of the transitions within time constraints.

TRL : the set of the locations under the monitoring of timer.

STR : the set of starting timers;

STEPO: Create Initial location

Create initial location Iy,

Add all event e to E in the deterministic ordering;
Add all timer related events to Et;

STR €0;

STEPI1: Construct transitions and locations
While E = 0 do
read the next event ec E ;
if (theevent ec R or e€ §) do
create a location | and a location I';
add l to L,'-
add I' to L;
create a transition t from l to'I' .
create a reset clocks set Afort, A €0;

create a guard G for t, G €0;
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label the transition t with label(e);
addtto T;

end if

if(e==y.es)do
create a clock ¢ and reset clock v(c). = 0 ;

addcto A;
Create a set TCLy €0;

end if

if (e==y.ee)do
for (each transition ty € TCLy ) do
add v(c) > ytctwinand v(c) < ytctmxto G
end for
delete TCLy ;

end if

if (e€ Etand e==ets) do
create a location I .
addlto L;
create a transition t from last(L) to I;

label the transition t with @;

create a reset clocks set A for t;
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create a clock c, v(c):=0;
addcto A and C;

add timer rt to STR;

add [ to TRL;

continue,

end if

if(ec Etand e == eto) do

Create a location I, ;

Add I, to L;

For (each location | € TRL ) do
Create a transition t from [ to I,
Addtto T;
Label the transition t with “!timeout”’;
create a clocks guard set G for t;
add v(c) > v(rt) to G;

End for

STR := STR\ rt;

Delete TRL,

Continue;

end if

If (STR != 0) do
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For éach (rt € STR ) do
Add v(c) <v(rt) to G of last(T);
End for

Endif

E:=E\e;

End while

3.3.2 Clock Minimizing

A main problem in timed test suite generation is that timed automaton could be
exponential with high number of clocks. One of the reasons of causing extra clocks is that
the specification is usually written in high level language and later translated to timed
automaton, the different timer events and time variables appear in the original language
are translated to different clocks in timed automaton. However, these clocks are rarely
active at the same time. Hence, the number of clocks can be reduced.

Another potential chance to reduce number of clocks is based on the fact that
some clocks are simultaneously reset and therefore they are equal at some locations, since
they all proceed at the same speed rate.

Based on these two situations, a method is proposed in [4] to reduce the number
of clocks by combining t wo algorithms. The first algorithm is to detect active clocks:
Since in some locations some clocks are never active, those clocks can be ignored. The
second algorithm is to detect equal clocks: in the locations where equal clocks can be

regarded as the same clock, the repeated clocks can be eliminated. After each of those
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detection, a renaming follows so that clocks are renamed ina new way by which the
number of clocks decreases.

We will present the Renaming function at first, followed by Reducing Active
Clocks Algorithm and Reducing Equal Clocks Algorithm. The Renaming function is used

as a sub-function for the later two algorithms.

(1) Renaming function

Definitions of Variables:

CO: the set of clocks in original TIOA;
CR: the set of clocks replacing CO;

cr(x,1) : the clock replacing the clock x at the location I;
v(x) : the valuation of clock x;

cat(l): the set of clocks that appear in the guard G of the outgoing transition from

location I;

Definition of Rule Renaming:
Rule(t) is defined for transition t = | —8%%4 4.
For x,y e CO, if cr(x,l'y == cr(y,I') then it is required that

xX=yorx,yeai.

Definition of Renaming function Rename(CR):
for each (transition t =1—"2%24 51) 4o

replace each x € cat(l) with z = cr(x,l) by following Rule(t);
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for each (z € CR) do
if (cr(y,l'Yy==2z) do
if(yei)do
set z to zero, z:=0;
else
assign v(cr(y,1')) toz, := v(cr(y,1l')) ;
end if
end if
end for

end for

(2) Reducing Active Clocks Algorithm

The algorithm of reducing active clocks is described as follows:

Definitions of Variables:

Act(l) : the set of the active clocks at location I;

AL : the set of all locations that own active clocks;

Cat(l) : the set of clocks that appear in the guard G of the outgoing transition from
location I;

L : the set of the locations of the TIOA;

Maxact(AL): the largest number of active clocks in all locations;
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STEPI: Initialization
For (all e L) do
act(l):=cat(l) ;
if act(l) # 0 then
addlto AL,

end if

end for

STEP2: Detecting active clocks
For (each | € AL ) do

For (each outgoing transition | —12%% 51') do

For (each clock x € act(l')) do
If x¢ Aand x ¢ act(l) do
Add x to act(l)

end if
End for
End for

End for

STEP3: Clocks Renaming

Calculate Maxact(AL);

Create renaming clocks set CR which owns Maxact(AL) clocks;

Apply renaming function Rename(CR) to TIOA;
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(3) Reducing Equal Clock Algorithm
Definitions of Variables:
Equ(l) : the set of pairs of equal clocks at location I;

Maxequ(L) : the max number of equal pairs in all locations;

STEPI: Initialization
For (each 1 € L) do
equ(ly =LxL;

end for

STEP2: Detecting Equal Clocks Pair
For (each transition | —3%%2 51') do
For (each pair (x,y) € equ(l') ) do
If(xeldand y ¢ A) then
equ(l') = equ(')\(x,y),
end if
end for

end for
For (each transition | —3%%2_51') do
For (each pair (x,y) € equ(l') ) do
If ((x,y)e equ(l)and x,y & A ) then

equ(l") = equ(')\(x, ),
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end if
end for

end for

STEP3: Renaming Clocks
Calculate the Maxequ;
Create clock set CR which owns Maxequ clocks;

Renaming equal clock pair with the same clock by applying Rename(CR);

3.3.3 Synchronous Product Construction

When we test the implementation against test purpose, we also have to verify if
the implementation satisfies the specification. The Synchronous Product represents both
the requirements from the test purpose and specification. In our algorithm of
Synchronous Product Construction, the inputs are two TIOAs, the output is a single

TIOA as synchronous product:

INPUT: A specification TIOA S = (Is, Os, Ls, s, Cs, Ts)
A test purpose TIOA TP = (I1p, Orp, L1p, P1p, Crp, Trp)

OUTPUT: A synchronous product TIOA SP = (Isp, Osp, Lsp, ’sp, Csp, Tsp)
Definitions of Variables:
RL is the set of reachable locations;

HL is the set of handled locations;
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STEPI: Initialization
Psp € (s, U1p).

Add Psp to Lsp

Cspé' (Cs UCrp).

RL €

HL €0

STEP2: Construct the Locations and Transitions of SP

While (RL\HL /= 0)

Get a location | = (14, 1) from RL\HL.

Add [ to HL.

If (L4222 s ol ETgandl,

Add ('}, ;) to RL.

Add (I [;)—aGuin_y

End if

{2}a,G1, At

If Lh——"222 s i'eTs and 12

Add (1’1, 1’ ;) to RL.

— MaGalz o pp v T1r ) then

se(l1',12) to Tsp

—ha Gtz o ole Trp then

Add (11,12) {240,G1&G 2, A1uAz

end if

end while

>se(l1',12') to Tsp.
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Two steps are identified in this algorithm. The first step is initializing SP. The
initial location of SP is constructed by combining the initial locations of the specification
and test purpose TIOAs. The clock set of SP is the union of the clock sets of the
specification and test purpose TIOAs.

The second step is to construct the iocations and transitions of SP. Two sets are
used to process the algorithm: the RL set stores the SP locations that are reached, and the
HL set stores the locations that are already being handled. The RL set is initialized with
the SP initial location [’sp, and HL set is empty. To construct the Synchronous Product,
one of the locations in RL but not in HL is derived to create more locations and
transitions, and then put in HL. This procedure is repeated until the RL and HL have no
difference. The starting point is the initial SP location. The following two rules are used

to create SP’s transitions and locations:

(1) I,l'e La , and [>,12'e Lp , if the transition /i —1%%A4 5 1" exists in Ty and

transition [»—826222 5 1t doesn’t exist in Typ, then there exists a transition

(ll,lZ)——M—) a(l',02) in Tp.

(2) However, if [,—{22%24 5 1" does exists in 77p, then a transition

I, 12) —AeG&Gainl: o (10 [5') exists in Tsp. the result SP transition’s guard is the union
g

of G, and G, from the 4 and TP respectively, as well as the clock reset.

3.3.4 Sampling - Deriving Grid Automaton

A Grid Automaton (GA) is created from Synchronous Product. The system under
test stays in a state for a finite or infinite time period. To test whether the system obeys

the time constraint or not, we try to observe the time period during which the system is in

47



a particular state by dividing the state with a delay clock value, so that when we generate
test cases, the clock value can be obtained. The Regions Graph of Synchronous Product
provides operational semantics. The GA is a sub-automaton of the Regions Graph; it
consists of a chosen set of representatives for each state of the Regions Graph and
accordingly instantiate the delay transition d.

The algorithm to construct a GA by sampling the Synchronous Product can be

1

summarized as follows: First, the granularity value is calculated as —=» Where k is the

number of clocks in TIOA. Then, an initial state is created with the initial location of
input TIOA. All the clocks are set to zero at initial state. Finally, we create all reachable
state from this initial state with repetitive k'T] delay transition. From each reachable state

(1, v), we create transition (/,v)—32 5(I',[4:=0]v) for each transition / — 2G4 5 i

TIOA, if v satisfies G. Afterwards, we repeat the same process until all reachable states

are covered.

INPUT: A synchronous product SP=(Isp, Osp, Lsp, losp, Csp, Tsp).

OUTPUT: A sub automata GA

Definitions of Variables:
RS: the set of reachable states
HS: the set of handled states

granularity: the granularity value;
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STEPI: Initialize the Variables
s" € Psp 0)
RS € s

HS €0

granularity € F:T

STEP2: Creating the GA States and Transitions
While (RS\HS # 0) do
Get a states = (I, v)  from RS/HS
Add s to HS
For (each transition] —3%%2 5 1'in TIOA) do
If (vI=G) then
add (I,v)—222("'[1=0Wv) to GA if it does not exist; Add (I’,
[A:=0]v) to RS if it does not exist
end if

end for
granularity

Add (I,v)—E=="—(l,v + granularity) to GA if it does not exist;

Add (1, v+granularity) to RS if it does not exist

end while

49



3.3.5 Traversal

After the Regions Graph of Synchronous Product is sampled, a sub-automaton
(GA) is derived. By traversing the resulting GA, the test cases can be obtained. There are
many traversal algorithms with variant fault coverage power. They are described in
section 3.5. Here, we provide two traversal algorithms: all-paths coverage traversal
algorithm and all-states coverage traversal algorithm.

(1) All-paths coverage traversal algorithm. This traversal algorithm guarantees
that all paths are covered. It also implies that all states and transitions of GA are covered.
The algorithm begins with the GA as input, and ends with a set of test cases as outputs.
The first step is initializing all the variables. VS is the set of visited states, 7C is the set of
test case, VS is the set of neighbor states of the being visited state, Sgpset stores all states
of GA.

In the second step, a state is chosen from Sgp (at the beginning, the initial state is

chosen). The chosen state s is then put into VS, indicating that it has been visited. Then, a
set NS is created and all the neighbors of s are put into NS. For each neighbor of s in NS,
the transition’s label (it could be an input/output action a, or a time delay d) is
concatenated with TC. If a state without outgoing transition is reached, a test case rises
from all passed transition in TC. This procedure is executed recursively until all the paths

have been covered.

INPUT: A sub-automaton of the region graph of SP.

OUTPUT: A set of timed test cases.
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Definitions of Variables:
VS: the set of visited states
TC: the set of test cases

NS: the set of neighbor states

Ssp. the set of GA states

STEPI: Initialization
VS <0
IC <0
NS €0

Ssp € all states of GA

STEP2: Traversing the GA
While (Ssp\ VS !=0)
/* at the first time, the initial state is chosen */
Choose a state s from Ssp\ VS ;
Add s to VS;
NS €& all the neighbors of s;
While (NS # 0)
Choose and remove a state s1 from NS such that s —% 5 s1e Toa.
Concatenate {?,!}a with TC.
Add all the neighbors of sI to NS.

If (s1 has no outgoing transition) then
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Print TC.
TC € TC\{?,/ja.
end if
end while

end while

(2) All-states coverage traversal algorithm. This algorithm guarantees that all
states o f G A are covered. T he difference from all-path c overage algorithm is that this
algorithm doesn’t cover all transitions paths, therefore it has much less coverage power.
The advantage is that this algorithm generates a smaller number of test cases.

The algorithm is relatively simple. The first step is to initialize all the variables.
- The second step begins from initial state sO. The deep-first strategy is applied: a neighbor
is chosen and the transition label is added to the test case. This is recursively repeated
until an already visited state or no-outgoing-transition state is reached, and gives rise to a
new test case. Then, the next neighbor state is chosen; the same process runs again until

all states are visited.

INPUT: A sub-automaton of the region graph of SP.

OUTPUT: A set of timed test cases.

Definitions of Variables:

VS: the set of visited states

TC: the set of test cases
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NS(s): the set of neighbor states of s

Ssp. the set of GA states

STEPI: Initialization
VS €0
TC <0

NS(s0) €0

STEP2: Traversing the GA
Choose initial state s0 from Ssp;
Add s0 to VS;

NS € NS(s0);

While (NS # 0)

Choose and remove a state sl from NS such that s—1% 5 s1 € T4
if (Ssp\ VS == 0)
return,
end if
Concatenate {?,!}a with TC;
If (s1 has no outgoing transition or sl € VS ) then
Print TC.
TC € TC\{?,!})a.
Continue;

else

53



Add sl to VS;
NS € NS(s1);
Go to while loop to do the recursion;
TC € TC\{?,/}a.
end if

end while

3.4 Time-Related Fault Model

When testing real time systems, comparing to non-time systems, the extra task is
to identify the time-related faults. In our method, the regions graph not only represents
the system functional behaviors, but also provides an intuitive means to identify the
possible time-related faults that the implementation can have. Besides the faults which
could exist in the non-time related state machines (the output faults, transition faults,
additional and missing transitions, and additional states faults, which we have described
in Section 2.3), the extra time-related faults are given in [8]. Four types of time-related
faults are identified: clock reset faults, time constraint restricted faults and time constraint
widening faults. We give a simple description for each of them as follows:

Clock reset faults. There are two kinds of clock reset faults. When the
implementation does not reset a clock that is reset in the specification, and the
implementation reset a clock that is not reset in the specification. The reset faults change
the order of clocks. When the clock is reset in the implementation while it is not allowed
in the specification, the number of states of the implementation regions graph will

increase, therefore some extra states can be reached. When the clock is not reset, but it is
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required to be reset in the specification, the number of states of the regions graph of the
implementation will decrease.

Time constraint restricted faults. An implementation is said to be faulty if it
refuses to receive an input under the time constraints specified by the specification. This
fault will lead to reducing the number of the regions graph’s states. However, if the
implementation restricts the time constraint of the output, it is not considered as a fault,
since the output is controlled by the implementation, and the restricted time constraint
still falls in the interval of the time constraint given in the specification.

Time constraint widening faults. An implementation can have time constraint
widening faults by increasing the upper bound or/and decreasing the lower bound of the
time constraint given in the specification. Four types of these faults can occur: first, the
transition is fired at the time greater than the fixed clock value given by the specification.
Second, the transition is fired at the time smaller than the fixed clock value given by the
specification. Third, the transition is fired at the time greater than the upper bound of the
time c onstraint required by the s pecification; finally, the transition is fired at the time
lower than the lower bound of the time constraint required by the specification. The
widening faults leads to larger number of the implementation regions graph states than

the one of the specification regions graph.

3.5 Fault Coverage

In section 2.6, we introduced various test case derivation methods. Those methods
can also be applied as traversal algorithms, as what it is done in [8]. We try to cover all

the paths of the grid automata in the traversal algorithm, which we presented in section
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3.3. By covering all the paths, the number of test cases could be very high. Sometimes it

1s impossible to test every possible path. The solution depends on how powerful the fault

coverage is needed. There are various coverage strategies with different coverage power.

The criteria is described as follows:

0)

@)

3)

“

Coverage of all paths. Every path in grid automata is covered, this
criteria _has most powerful fault coverage because all possible
situations are examined by test cases. The negative side is that the
number of test cases is too high, so it is sometimes impossible to
examine every path.

Coverage of all transitions. This has less power of fault coverage
than all paths coverage, because the paths traversed are the subgroup
of (1), not e very possible situation is examined by the resulting t est
cases.

Coverage of all states. All states of GA are covered by the test cases.
Again, this has less power of fault coverage than (1) and (2). Only
states are covered, it is not guaranteed that all transitions are covered.
Coverage of paths to get all verdicts PASS. This focuses on the
paths to get verdict PASS, the verdicts FAIL and INCONCLUSIVE
are ignored. The number of generated test cases could still be very
high, and it is not guaranteed that every state can be covered. This
method can be applied when the aim of test purpose is only to verify if

the system under test can properly execute the normal tasks.
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5) Coverage of only one path to get one verdict PASS. When the test
purpose is only to examine one particular property of the system, one
path is chosen to be covered, so that a PASS verdict can be reached.
This approach generates only one test case and has the least power of
fault coverage.

(6) Coverage of paths to get all verdicts FAIL or INCONCLUSIVE.
Only paths leading to FAIL or INCONCLUSIVE verdict are covered.
It has the same power as (4).

)] Coverage of only one path to get verdict FAIL or
INCONCOUSIVE. Like (5), only one path is chosen to examine the

situation when system under tested is fail or in an inconclusive state.
3.6 Conclusion

We provided a new method for timed test suite generation. This method is based
on test purpose expressed in MSC and specification expressed in TIOA. The four main
phases in the framework of ‘this method are discussed. We also gave the detailed
algorithms for each phase. The fault coverage criteria related to traversal algorithm is also
discussed, as well as the timed fault model.

In next chapter, we will provide the detailed implementation of the algorithms of

this method.
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CHAPTER 4

Implementation of Algorithms

We have introduced the framework of our method for timed test suite generation
based on test purpose expressed in MSC and specification expressed in TIOA. We have
implemented this framework with C++ programming language. In this chapter, the design
of the implementation is presented, and several examples are given to illustrate how our
method works. More specifically, Section 4.1 provides the information about the
development tools we used for developing the program. Section 4.2 presents the UML
activities diagram, which depicts how the program is constructed intemally. Section 4.3

presents the UML class diagrams. An example is given in Section 4.4.

4.1 Development Tools and Environment

We used object-oriented techniques to realize the implementation of our method.
The program is designed with the Unified Model Language (UML)([23] [24]). The
logical processing is depicted by the Activities Diagrams. The identified classes and their
relations are described with Class Diagrams. The program is written in C++ language,
which is a popular object-oriented language. Most of data structure operations utilize the
Standard T emplate Library (STL), which now is a standard library i ncluded in formal

C++ foundation libraries.
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4.1.1 Bison and Flex

A specific parser is used to parse the source code in a specific language. We used
the tools Bison and Flex to construct the parsers of MSC and TIOA languages.

Flex is a tool of generating programs that recognize the lexical text, so called
scanner. The elements of the parsed language are depicted in regular expression language.
Flex can recognize those elements and generate C programs by reading the pattern
expression written in a lex file.

Bison is a grammar parser generator. It can convert a language grammar
description into a C program that is used to parse the source file of that language. Usually
Bison and Flex are used together. A lex file, which describes the language elements, and
a yacc file, which describes the grammar, are needed by Flex and Bison respectively to
generate program that parses the source code of a given language. Bison and Flex are the
advanced tools that succeed the old popular parser generation tools yacc and lex.

Appendix C provides SIMPLE MSC lex and yacc files. TIOA lex and yacc files
are provided in Appendix D. The grammar of SIMPLE MSC and TIOA are provided in
Appendix A and Appendix B, respectively. We can see that the grammars described in
yacc files of SIMPLE MSC and TIOA are the same as what they are in Appendices A
and B.

Lex and yacc files are applied on Flex and Bison tools, and transformed to the
language parser as C source code. For our program, two text files are needed as inputs,
the test purpose file in MSC and the specification file in TIOA. The parsers generated by
Flex and Bison parse these two files and transform them to internal MSC and TIOA

classes (which are given in section 4.3) respectively. As an example, in section 4.4 we
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will provide the MSC and TIOA files for the test purpose and the specification of a
telephone system.

The source code of the implementation is developed for Linux and Solaris
operating systems. In the next section, we use activities diagram to describe the internal
structure of the implementation program.

b4
(mput RASL and THOA text mes)
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Aarse MEC F11n wnd rse TIOA file an
transiate §v 1o MSO transtate v e TIOA
vlagsans o lnbeon
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romatore MSC olasses
vir T olsmses ;
N.

Smimize the olock Wintmizne the clovk
paaealrey aovf TIGA veasdseor  af TTOA

i J

Constrast
Senchironous Product

lerive GA by
\aeompling &P

Traverse GA to
LONBrBLE LOsl chEes

Figure 4-1 Activity Diagram
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4.2 Activities Diagrams

Figure 4-1 describes the activities of the program. It is derived from the
framework we gave in chapter 3. MSC and TIOA text files are read by the program, and
then transformed to the internal structures (C++ class). The structure representing MSC is
then converted to TIOA. The two TIOAs are filtered by a clock minimizing algorithm to
reduce the number of clocks. Then, they are merged and a synchronous product is
constructed. It is followed by a sampling algorithm, which samples the synchronous
product and results in a Grid Automaton. Finally, test suite are generated by traversing
the Grid Automata.

The final output is a file depicting the generated test sequences. Appendix E gives

the output test cases for the example of a telephone system introduced in Section 4.4.

4.3 Class Diagrams
]
g | —
i
! ™
t I
' !
! 1
|
| | I ] 1
MEC and MSC
Translator e o e e e e s TioA

Figure 4-2. Package Diagram
As it is depicted by package diagram in Figure 4-2, the classes are organized as

four packages: TIOA, MSC and MSC Translator, Clock Minimizing, and Sampling. The
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Class Diagrams depict the structure of the classes and their relations. The following is the

class diagrams for each of these packages.

4.3.1 TIOA Classes

Figure 4-3 depicts the TIOA classes hierarchy, which represents the internal
structure of the Timed Input Output Automaton. The TIOA classes are mainly composed
of three top classes: TIOA, Location, Transition. TIOA represents the automata, it is
composed of locations of type Location. The transitions are included in the locations as
the outgoing transitions of type Transition. For each of these three top classes, two sub-
classes are created to represent the elements of Timed Input Output Automaton and Grid

Automaton respectively. The detailed description is as follows:

TIOA class represents the whole TIOA, it has two child classes:

. TIOA_States: this class is for Timed Input Output Automaton; it has a list
of type Locations member, which includes all the locations of the TIOA. The function
constructSynchProd realizes the synchronous product construction algorithm.

o TIOA_grid: this class is for Grid Automaton. It has a list of
TIOAG_Lcation member, which includes all the Grid Automaton’s locations. The

function traverse realizes the traversal algorithm.

Location class represents the locations in an automaton; it also has two child

classes:
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o TIOA_Location: this class represents the TIOA locations. It includes the
members of a location name and a list of outgoing transitions.

o TIOAG_Location: this class represents Grid Automaton states. It has a
list of clock valuation member, which represents the clocks values when the machine is

in the given state. A list of outgoing transitions is also included in this class.

Transition class represents the transitions in an automaton. It has two child classes
representing the transition of TIOA and GA respectively. The Label member in
Transition class represents the input or output actions, or the GA’s time delays. The two
child classes of Transition are:

o TIOA_Transition: This class is for the transitions of TIOA. It includes
the time guards and reset clocks members. Time guards are represented by the instances
of class TIOA_Constraint. Reset clocks are represented by the list of the instances of
class Clock. The class Clock represents the clocks in TIOA, its lower boundis 0 and
upper bound is the value assigned in the member domain. The member destination is the
transition’s destination location in TIOA.

. TIOAG_Transition: This class is for the transitions of Grid Automaton.
Because time guards and reset clocks are converted to locations and time delays in GA,
there is no time constraint and clock in GA. The transition’s destination state is

represented by the member destination.
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Figure 4-3. Class Diagram of TIOA
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4.3.2 MSC and MSC Translator Classes

Figure 4-4 is the class diagram of MSC. The text MSC is transformed to an
internal structure, which is represented by class Instance in our design. As we have
described in section 3.1, the instance of MSC represents a process. The class Instance
here is the same as what it means in MSC. The Instance class is composed of event list
and time constraints. The events happened in MSC are classified into two categories:
MsgEvent and TimerEvent. MsgEvent represents the message exchanging between the
instance and environment. TimerEvent represents timer events. The time intervals and
time constraints are identified as TimeConstr class, the member beginevent and endevent

indicate the range of time interval.

Instance
-char *name
-EventList eventlist
-TimeConstrList timeconstriist)
i

i ] ) L S
Event TimeConstr
-enum Eventlype type -Event beginevent
-char *allasname - -Event endevent
-TimeConstr *timeconstr] ! 1 Hioat min
-float max
M@gfvant TimerEvent
Fenum MsgType msgtypel -enum TimerEventType timertype
-char *msg -char *timername
-char “client -float min
Wfloat max

Figure 4-4. Classes of MSC
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A class MSCTranslator is designed to realize the MSC-TIOA converting
algorithm as it is depicted in Figure 4-5. The function franslate translates the instance of

Instance into an instance of TIOA_States. This class decouples the link between MSC and

TIOA classes.

Instance T!OA _States

Figure 4-5. Classes of MSC Translator

4.3.3 Clock Minimizing Classes

As it is depicted in Figure 4-6, three classes are designed to do the job of
minimizing TIOA clock, which are used by TIOA member function minimizing. The
ClockMinimizer class has two subclasses to realize the clock minimizing algorithm:

. ActiveMinimizer realizes the active clocks reduction algorithm.

o EquMinimizer realizes the equal clocks reduction algorithm.

The static function Minimizing in class ClockMinimizer reads an instance of
TIOA States as input parameter, then uses the functions in ActiveMinimizer and

EquMinimizer to reduce the number of clocks in TIOA.
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Figure 4-6. Class Diagram of ClockMinimize

4.3.4 Sampling Class

A class GACreator is designed to create Grid Automaton by sampling Synchronous
Product TIOA. GACreator has one static function sampling, which realizes the sampling
algorithm. It reads an instance of T/OA_States as input parameter and writes an instance
of TIOA_grid as return. Figure 4-7 represents their relationship. The reason to create a

standalone sampling class is to reduce the coupling between TI0OA4_States and TIOA grid.

TIOA States
et TIOA Locaion ~ine GACreator TIOA _grid
WW&&&C%WM) '@{QT]Dmmmtm"‘w
s clockrinimized) +static THOA,_grid *sarmpiing()] lraverse()
+TIOA Siates]y

Figure 4-7 Class Diagram of GACreator
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4.4 Case Studies

In this section, we will provide several examples on which our method is applied.
These examples with different clock numbers, state space and test purposes illustrate how
our method works and what elements have impacts on the resulting test cases. We also
look at other works related to timed test suite generation, and compare them to our

method.

4.4.1 An Detailed Example

This example is a telephone system ([3]), which accepts two digits dial and issues
a connection. The specification and test purpose are given as TIOA and MSC
respectively. The resulting test cases of applying our implementation on this example are

provided in Appendix E.

4.4.1.1 Specification

Figure 4-8 is a graphic TIOA specification of the telephone system. The user of
this system hangs off the phone and composes two digits, then the connection is setup by
the system. The system has time constraints for every actions made by the user. When the
user hangs off the phone, the first digit must be input within one time unit, and the second
digit has to be issued also within one time unit after the first digit is input. Any action that
fails to meet the time constraints will cause an error output and the clock is reset to zero,
and the system is set to the initial state. After the two digits are input successfully, the
system has to issue a “Connect” in two time units, then it is in the conversation state until

the user hangs on the phone and the system goes back to the initial state. When the

68



system enters the initial state, the clock is set to zero and the system is waiting for the

user hanging off the phone. Once the phone is hung off, the clock is again reset to zero.

MHangOn, x:=0

Error, x=1, x:=0

Digit1, x<1, x:=0

igit2, x<1, x:=0 IConnect, x<=2

{Error, x=1, x:=0
Figure 4-8. The TIOA Specification of Telephone System

The corresponding textual TIOA specification of the telephone system is as
follows:
SYSTEM TELE;
CLOCKS
x2

END CLOCKS;

TRANSITIONS

10 ?HangOff  (x:=0) 11
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11 ?Digitl (x:=0) (x<1) 12
2 ?Digit2 (x:=0)(x<1) I3
3 !Connect (x<=2)l4
4 ?HangOn (x:=0) 10
12 [Error (x:=0) (x=1) 10
11 [Error (x:=0) (x=1) 10
END TRANSITIONS;
END SYSTEM;
This textual TIOA representation of the specification is input to the program. The

TIOA parser parses and transforms it to the internal 7704 class.

4.4.1.2 Test Purpose

Figure 4-9 depicts the graphic test purpose in MSC. The test purpose tries to test
the normal actions of the telephone system. It is a subset of functions of the specification.
The system clock is reset to zero when the phone is hung off, and the first digit has to be
input within one time unit and the second digit has to be accepted at exactly one time unit.
Then, the system clock is reset to zero. Within one time unit, a “Connect” must be output,
meaning that a connection is setup by the system. In this test purpose, more restricted
time constraints is applied to the system under test, and they are compatible with the
specification. The differences with the specification are: 1) it is required that the second
digit is dialed exactly at one time unit after the first digit is dialed; the specification
requires that the second digit must be dialed within 1 time unit; 2) the connection must be

issued in one time unit instead of two time units in the specification.
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Telephone_system

FHangOff
?Digit1
?Digit2
IConnect
-

Figure 4-9. A Test Purpose in MSC for Telephone System

The corresponding textual MSC test purpose for the telephone system is as

follows:
MSC Telephone_System;
INSTANCE IUT : SYSTEM Telephone ;

E1IN HangOff FROM ENV time [1, 1] E3 ;

E2 IN Digit] FROM ENV time [0, 1) EI ;

E3 IN Digit2 FROM ENV time [0, 1] E4;

E4 OUT Connect TO ENV ;

ENDINSTANCE;

ENDMSC;
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This textual MSC representation of test purpose is input to the program. The MSC
parser generated by the Flex and Bison parses and transforms it to the internal MSC

classes.

4.4.1.3 Results

The example is applied to our program. We will see how every steps works for
this example.

First, the test purpose is transformed to a TIOA, which is shown in Figure 4-10.
We can see that the transformation creates three clocks (“c0”, “c1”, “c2”), which are used
to describe the three time constraints from the textual MSC representation. It is obvious
that clocks “c0” and “c1” are reset at the same time at location /0. And after the transition
is fired from 2, “c0” and “c1” are never active. In addition, “c2” is not active until the
location /3 is reached. Therefore, these three clocks are not all necessary and only one

clock is required.

Mangff, Migitl, Migite, !Connect,
¢0:=0, ¢l:=0 ) c0¢=1, cl<l | c0=1, ¢2:=0 | e2¢=1

0

Figure 4-10. Test Purpose as TIOA before Clock Minimizing

Then, the clock minimizing algorithm is applied on the test purpose TIOA. The

resulting one has only one clock y (Figure 4-11).
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PHangOff, Digitl, Migit2, {Connect,
=0 y<1 ~ y=1, y:=0 ‘ y<=1

1 WK'\ *@
- "y

Figure 4-11. Test Purpose as TIOA after Clock Minimizing

The Synchronous Product represents the specification and test purpose
requirements simultaneously. It is constructed based on two TIOAs. Figure 4-12 depicts
the synchronous product of the telephone system. The clocks x and y are included in the
resulting product, which represents the clock valuations from the specification and the

test purpose respectively.

PHangOf f
% :=0

Herror
x=1, x1=0

Foy S
o -

(o) ~(I1 ~(19)
2HangOff, o’ 9Digitl, igit?, “r’!Conmect,
12170 y:=0 x<1, ¥4, x:=0 %41, y=1, 5:=0, y1=0  x{=2, <=1

{Connect,
x{=2
PHangOn
%=

X PDigitl, Wigit?,
?Hi?igft <1, xr=0 x<{1, x:=0

Error
x=1, x:=0

{Brror
x=], x 00

Figure 4-12. Synchronous Product
The Synchronous Product is then sampled by the sampling algorithm. The

resulting Grid Automaton has totally 163 states. Part of the GA is depicted in Figure 4-13.
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The locations in Synchronous Product are transformed to the states in GA; each state of
the GA is described by the valuations of two.clocks (where “~1” means the clock value is

infinite, when the value is beyond the constraints). States are separated by the transition

with the time granularity Ll =1/3, where n=2 is the number of clocks. The GA
n+

provides a intuitive view of the telephone system’s behavior with time progressing.

Figure 4-13. Grid Automaton

Finally, the GA is traversed with the traversal algorithm. Test cases are composed
of the labels of the transition passed by. The criteria we discussed in section 3.4 of

Chapter 3 gives the fault coverage power of different traversal strategies. Figure 4-14
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provides partial test cases generated by using all-states coverage algorithm. All test cases

for the example are presented in Appendix E.

BREGEBeRFERRR R

HangOfT. ?Digit]. 143, 173, 1/3, Error, 7HangOff. {Error.

ERERREE PR EER TR

BEERFE e e gy

HangOff. 2Digit]. 173, 173, 173, Eror, YHangOT, 173, 2Digit]. 173, 1/3. 173,

Digit2. 1Connect. 7HangOn. THangOff, 7Digit]. 7Digit2, 'Connect.
i s 23 b e i1

EE LS 22222 S E 1

THangOff. MDigit]. 1/3. 123, 173, 1Emor. PHangOfY, 1/3, ?Digit]. 173, 1/3. 1/3.
TDigit, 'Connect, ?HangOn, ?HangOff, ?Digit]. 7Digi2. 1/3. 'Connect.
?HangOn. ?HangOft. ?Digit], 2Digit2. 'Connect. ?HangOn,

RS LT
EE 22 L L L 2 23
?HangOft. ?Digitl. 1/3. 1/3, 1/3. !Eror, 2HangOfY, 1/3. 7Digit]. 173, 1/3. 143
?Digit2, 'Connect. PHangOn. ?HangOff, ?Digitl. 7Digit2. 1/3. 'Connect.

THangOn. THangOff. ?Digitl. ?Digit2, 'Connect. 1/3. THangOn. ?HangOff.

7Digit], MDigit2, Connect, ?HangOn,
EEEEEF LS T RT3

PE SNy

Figure 4-14 Some Resulting Test Cases

The test cases generated by our method are self-evident. For example, the first test
case ?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. !Error in Figure 4-14 means
that the phone is hung off and followed by an input Digit1; after three 1/3 time units ( one
time unit), an Error should be output by the system. Then, if a Hangoff is input at this
time, an Error should be output by the system again. A verdict “fail” can be concluded if
the system has misbehavior. For example, if after three 1/3 time units following input
Digitl, there is no Error being output by the system, the system is considered to be fail.

The total generated test cases are provided in Appendix E.
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4.4.2 Other Examples

We will provide other examples which are experimented with our method. These

examples have different numbers of clocks, clock valuation ranges and numbers of states.
4.4.2.1 10-Digit Telephone System

The 10-digit telephone system([39]) is basically the same as the previous 2-digit
telephone system. The time from hanging off the phone to the dial tone output must be
within 1 time unit. The time between each digit input is within 2 time units, and the total
time to c omplete the 1 0-digit inputis 12 time units. A fter the 10 digits are input, the
connect should be setup within 3 time units. Any action missing the time constraints can
cause an error output and the system is reset to initial state. Figure 4-15 illustrates the

specification as a TIOA.

PError x:=0 y:=0 x=2 or y=l§

o PHangOF T : JdialTone higitQ higicl A 0igic?

Wigits
| x 2o}, y<12
x<2
Py oy vy oem
xﬂxr:zg x.‘ ngié 0 Wigitd
%x=d or ywm x:=0, y<12
) x<2
?{!gﬁg()ixg Higith
X, oy x:=0), v<{12
113 sonpect kb Ty 20 gl 1k Dig 4 !I!’ _ dightd % @il (1 E’ y X<2
x ), 3?.“(3‘&2‘-"370, <12 Xm0, y<A2T T x 020, y U2 x 0w0, y<OY

%<2 x<2 x<2 x<2
Figure 4-15 Specification of 10-digit Telephone System
The test purpose is depicted in Figure 4-16. The test purpose requires that the time
between each digit dialed should be within 1 time unit, instead 0f2 time units in the

specification. This also implies that the total time of 10-digit dialing will be within 12
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time units. The results by applying our method on this system are summarized in Table 4-

1.

Telephone__system2

“THHarngOTr

IEHalToNne

ZOigito

TGt

PGt

" FLIIgte

TConnect

Figure 4-16 Test Purpose of 10-digit Telephone System
4.4.2.2 Multimedia System

The multimedia system([41]) is responsible to receive multimedia data and send
back the acknowledge. Once the system obtains the image data, it resets all clocks and
requires that the sound data is received within 2 time units and an acknowledge is sent
out within 5 time units. Then, the system is again reset to initial state. Any misbehavior
resets the system to initial state with an error output. Figure 4-17 illustrates the system

behavior.

lreset
*® =0 wi=

PError
x 2=, v,
y=i

Figure 1-17 Specification of Multimedia System
The test purpose is to test if the system can complete the task within a more

limited time constraints. Instead of 5 time units in the specification, the system is required

77



to send out acknowledge within 2 time units in this test purpose, as it is depicted in

Figure 4-18. The results are showed in Table 4-1.

DALt e systern

Pirmage
“PEmOtarect : {O. 2)
¥
o cobo st H
- . —— — — s s

Figure 4-18 Test Purpose of Multimedia System
4.4.2.3 Synchronization Protocol

A simplified synchronization protocol([40]) is depicted in Figure 4-19 as TIOA.
The protocol controls how the media data is received and displayed. Five clocks are used
to express the time constraints. Since the data starts to be sent, the data should be ended
within the duration [7, 11]; the first display should be started within the duration [8,10],
and ended within [9, 12] . After the first display, the same cycle runs again, and once

display is ended, it goes back to a state for waiting for the next media data.

DisplayBnd
¢=xh¢=1

- PhataStart - PDataknd @ 8C=x3¢=1D @

x1:=0,x2:=0  TEXEGIL ponieplayStart
ad =g, x4 o=

Figure 4-19 Specification of Media Synchronization Protocol
The test purpose is just to test the first synchronization cycle with a more limited

time constraint. As it is depicted in Figure 4-20, the first data display should starts within
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the duration (8, 9), instead of [8,10] in the specification. The results are summarized in

Media_synchronization_system

Table 4-1.
ENV
?DataStart
PDataEnd
- IFirstDisplayStart
- IFirstDisplayStart

Figure 4-20 Test Purpose of Media Synchronization System

Table 4-1 depicts the results by applying our method on all these examples

System Name Number of GA States Number of Test Cases
2-digit Telephone System 163 138
10-digit Telephone System 3707 1563
Multimedia System 297 259
Synchronization System 208 89

Table 4-1: Summary of the Results

From the results table, we can see that these examples with different clock

number, state space and clock valuation range can result in different number of GA states

and the final test cases.
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4.4.3 Related Works

Various research groups have proposed different approaches for testing timed
systems based on finite state machine models. In this section, we will summarize some of
their work and compare them to our approach.

The authors of [32] provide a theoretical framework for testing timed automaton.
They use methods of untimed models to generate test suite from timed automaton. The
region graph and GA are also used in their framework. But the clock values are restricted
as integer values in timed automaton. Meanwhile, due to using granularity of 2™ to derive
GA, where n is the number of clock region composed of specification and
implementation TIOA, the resulting test cases is too large to be executable.

The authors of [37][38] propose an architecture to test real time protocols
implementation by TIOA. The approach firstly transforms the specification in TIOA to
an equivalent untimed one by using timer operations. Then, the Wp—method is applied to
the resulting TIOA to generate test suite. The region graph is also used to analyst the time
domain constraints. The advantage of this approach is that it solves the state explosion
problem. The drawback is that this approach could produce non-executable test suite, and
could introduce undesired non-determinism.

The authors o f[ 9] present a test suite generation method based on a restricted
class of timed automaton. In this restricted timed automaton, an action is associated with
a correspondent clock. Whenever a transition is executed on the action, the correspondent
clock is reset to zero. The test suite generation of this approach is based on a equivalent

class graph. This graph is a partition of the system time space. There are two steps in the
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test suite generation method. First, the equivalent class graph is constructed from the
timed automaton. Then, the test cases is selected based on a symbolic reachability analyst.
The advantage is that this method generates a small number of test cases. The drawback
is that it doesn’t ensure a full fault coverage.

The authors of [21] introduce a framework for testing timed system. The approach
is based on a constraint graph(CG) as the description of specification. The test cases are
generated by considering the satisfaction of some test criteria for real time system.
However, this approach has the drawback that the constraint graph is not general since
that it has the restrict on the duration of time delay. The time delay between input and out
events is limited by a minimum and maximum value, following some classification of
timing requirements. Moreover, the generated test suite do not cover all the potential
faults in an implementation of CG.

Compared to those approaches, our method provides a more integrated framework,
and fewer test cases are generated. Moreover, the test suite generation strategy are
flexible. The tester could use different traversal algorithms to achieve various coverage

power.

4.5 Conclusion

We provided the implementation for the processing of timed test suite generation.
We used activities diagram and class and package diagrams to describe the design.
Several examples were given to illustrate how our implementation works. We also looked
at other researchers’ works, and compared them to our approach. In next chapter, we will

discuss the unsolved problems and possible improvements regarding our method.
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CHAPTER 5

Summary and Future Work

S.1 Summary

The testing methodology described in ISO 1S-9646 provides a unified framework
to conduct the conformance testing process. In this thesis, we mainly focused on the
scope of test case generation. While the exhaustive test is preferred for detecting all
possible faults, it is impossible because the tests can be infinite and the test cost is too
high.

One of the techniques to reduce the number of tests is Test Hypothesis. A test
hypothesis indicates that we do know some facts about the implementation under test,
and these facts imply that something about the implementation are true. The test purpose
is based on the test hypothesis that the implementation does implement some behaviors
that are required. Conformance testing is the activity of verifying if the implementation
conforms to the specification. The test purposes in conformance testing describe partial
conformance requirements in the specification.

To automatically generate test suite, it is necessary to use formal methods to
describe the specification and test purpose in precise and unambiguous manner,
especially for real time distributed systems. We provided a method to generate timed test
suite based on the test purpose expressed in Message Sequence Chart and the

specification expressed in Time Input Output Automaton. The reason why we adopt these
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two formal models is that MSC is a very intuitive language; it provides the natural means
to describe the message exchanging behaviors of distributed systems. Also, MSC is
widely used as a tool in the networking software engineering. Nevertheless, MSC lacks
the power to describe the internal complex behaviors. The traditional well-known
mathematic automaton model provides precise description of the complex behaviors.
TIOA is based on automaton model with the time e xpression, it has enough p ower to
describe complex timed behaviors.

Several methods have been developed to derive test sequence by traversing the
non-time automaton (we have described them in section 2.3). For timed automaton,
regions graph and grid automaton are introduced in [14] and [16]. They provide a way to
analyze the time-related fault models of the automaton. Moreover, the system’s state is
identified by the clock value, and the time progressing is expressed as transitions between
the states. Therefore, it unifies the expression of the function and the time behaviors in an
intuitive way.

In our method, the test purpose in MSC is converted to TIOA. Then, a
synchronous product is constructed from test purpose TIOA and the specification TIOA.
It represents the conformance requirements of both. The Synchronous Product is
transformed to a Grid Automaton. Test cases are generated by traversing the Grid
Automaton. Two types of fault models are identified: non-time-related faults describe the
faults caused by states or transition errors of the implementation automaton, and time-
related faults describe the faults that caused by time constraints errors of the
implementation. The fault coverage power is decided by applied coverage traversal

strategy. The criteria of our method’s fault coverage power was given. We also provided
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the implementation of our method. Several examples are given to illustrate the whole

process.

5.2 Future Work

Several problems still remain open in our method. Our method provides a way for
partial procedure in the scope of test suite generation of the ISO Conformance Testing
Framework. To achieve complete test processing in a more automatic level, more works
 should be done:

SIMPLE MSC Improvement. The MSC grammar we used in the method is only
a small subset of the standard one. It lacks enough power to describe more complicated
internal and external system behavior. For example, SIMPLE MSC only has the
capability of expressing a deterministic actions sequence. The actions taken by the -
system is determined in SIMPLE MSC. They are in a fixed time sequence ordering.
While in the most real-time distributed systems, the ordering of actions is not determined,
and the action taken is decided by run-time condition. The general ordering scenarios are
considered in MSC-2000, in which actions can be taken in various ordering; and the run-
time conditions can be used to make the decision of which action is taken.

Moreover, to simplify the situation, only one process is considered in our solution
(or the whole system under test is regarded as one process). We only consider the
exchanging messages between the system under test and the outer environment. In the
real world, multi-processes systems are very common. To test multi-processes system,
one solution is to separate the different processes, and test each of them as a standalone

one. But this solution cannot solve the problems of the coordinated processes, in which
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some actions are taken to collaborate with each other. An improved solution is to develop
a tester that can test internal processes behaviors and the whole system behaviors
simultaneously. Especially for the coordination scenarios, as it depicts in Figure 5-1,
tester could stimuli the system by sending a message from environment to IUT, and
observe the exchanged messages between the internal processes.

In the scope of our method, this requires the MSC describes the multi-processes
messages exchanges and their coordination. Ideally, the entire MSC standard grammar

should be considered.

Tester |t

System Under Test

Figure 5-1. Multi-processes Testing

Test suite expression. Until now, the test suite generated by our implementation
are expressed in a free format. As it is suggested in [18], Tree and Tabular Combined
Notation (TTCN) is expected to be the representation of test suite. In TTCN, a test case

describes a test sequence, which can be sent or received by the tester. A test case is
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expressed as a tree. Each path from the root to a leaf in a test cases tree is an observation.
The observation leads to a testing verdict of either a PASS, or a FAIL, or an
INCONCLUSIVE. Furthermore, TTCN provides the constructs to group test cases, and
parameters can be declared to express the input and output values. Test cases can also be
translated to abstract data structure in ASN.1, so they can be easily transformed to
executable format.

Fault coverage and traversal algorithms. In the implementation of our method,
two fault coverage strategies are realized in traversal algorithm: all path coverage and
states coverage. The number of test cases generated by all path coverage algorithm are
too large in our example; it is almost impossible to execute every test case to cover all the
faults. While all states coverage algorithm can only cover a small part of fault model.

One of possible improvements of our work is to create another fault coverage
purpose that describes how powerful the fault coverage is needed exactly. By considering
the fault coverage purpose, the improved algorithm can adapt the correct traversal

strategies. Therefore, a reasonable length of test case can be achieved.
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APPENDIX A. SIMPLE MSC Grammar

<message sequence char>:=

<mschead> <mscbody> <endmsc>

mschead ;=

msc <msc name>";'

<endmsc> =

endmsc ;'

<mscbody> :=

<mscstmt>

<mscstmt> =

<mscstmt> <stmts>

<stmts> =

<instheadstmt> <eventlist> <instendstmt>

<instheadstmt> :=
instance <instance name>";’

| instance <instance name> ":' <instancekind>";'
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<instancekind> =

<kinddeno> <kind name>

<kinddeno> :=
system
| block
| process

| service

<instendstmt> :=

endinstance ";'

<eventlist> :=

<eventlist> <instevent>

<instevent> :=

<event name> <event> time <duration> <event name>";'

| <event> time duration <event name> ;'

| <event name> <event>";'

| <event>
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<event> :=
<msgevent>

| <timerevent>

<msgevent> :=
out <msgid> to <address>

| out msgid from address

<msgid> =
<message name>

| <message name> (" <paralist> ")’

<paralist> := /* empty */
| <para>

| <paralist>",' <para>

<para> =
<parameter name>
| <number>

| <string>

<address> =
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<address string>

| env

<timerevent> =
<starttimer>
| <stoptimer>

| <ttimeout>

starttimer :=

starttimer <timer name>

| starttimer <timer name> <duration>

| set <timer name>

| set <timer name> <duration>

<duration> :=
'[' <aumber> ", <number>"']'
| '(' <number>",’ <number> ')’
|'[' <number>",' <number> "]’

| '(' <number> ", <number>")'

<stoptimer> :=

stoptimer <timer name>
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<timeout> ;=

timeout <timer name>
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APPENDIX B. TIOA Grammar

<tioafile> =

<systemhead> <systembody> <systemend>

<systemhead> :=

system <system name>";’'

<systemend>:=

end system ;'

<systembody>:=

<clockstmt ><transitionstmt>

<clockstmt>:=

<clockhead ><clockbody ><clockend>

<clockhead>:=

clocks

<clockend>:=

end clocks ;'
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<clockbody>:=

<clockitems>

<clockitems>:=

<clockitems ><clkitem>

<clkitem>:=

<clock name> <number>

<transitionstmt>:=

<tranhead ><tranbody ><tranend>

<tranhead>:=

transitions

<tranend>:=

end transitions ;'

<tranbody>:=

<tranitems>

<tranitems>:=
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<tranitems ><titem>

<titem>:=

<location name> <label ><guard > <location name>

<label>:=

<transition lable>

<guard>:=

<guard ><guarditem>

<guarditem>:=

(' <resetitem >')'

| '(" <constritem >')'

<resetitem>:=

<clock name> "' '=' <number>

<constritem>:=

<clock name> <op > <number>
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<op> =

o
>
<
>

I ..t
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APPENDIX C. Lex and Yacc Files for

SIMPLE MSC

Simple MSC lex file:

o

{

#include <stdlib.h>
#include "mscparser.cpp.h"

#define YYSTYPE char *

%}

oP

%
[Mm] [Ss] [Cc] {return MscC;}

[Ee] [Nn] [Dd] [Mm] [Ss] [Cc] {return ENDMSC}}

[Ii] [Nn] [Ss] [Tt] [Aa] [Nn] [Cc] [Ee] {return INSTANCE;}

[Ee] [Nn] [Dd] [Ii] [Nn] [Ss] [Tt] [Aa] [Nn] [Cc] [Ee] {return
ENDINSTANCE; }

[Oo] [Uu] [Tt] {return OUT;}

[Tt] [00] {return TO;}

[Ii] [Nn] {return IN;}

[F£] [Rr] [Oo] [Mm] {return FROM; }
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[Ss] [Tt] [Aa] [Rr] [Tt] [Tt] [Ii] [Mm] [Ee] [Rr] | [Ss] [Ee] [Tt]
{return STARTTIMER; }

[Ss] [Tt] [0o] [Pp] [Tt] [Ii] [Mm] [Ee] [Rr] {return STOPTIMER; }
[Tt] [1i] [Mm] [Ee] [Oo] [Uu] [Tt] {return TIMEOUT;}

[Tt] [Ii] [Mm] [Ee] {return TIME;}

[ss] [Yy] [Ss] [Tt] [Ee] [Mm] {return SYSTEM; }

[Bb] [L1] [Oo] [Cc] [Kk] {return BLOCK;}

[Pp] [Rr] [Oo] [Cc] [Ee] [Ss] [Ss] {return PROCESS; }

[Ss] [Ee] [Rr] [Vv] [Ti] [Cc] [Ee] {return SERVICE;}

[Ee] [Nn] [Vv] {return ENV;}

l[a-zA-Z"] [a-2A-20-9_"1* {msclval=strdup (msctext) ; return
WORD; }

[0-9]+ {msclval=strdup (msctext); return NUMBER; }

[ \t\n\rl+ ; /* ignore white space */

Mk _xknk/wo . /% jgnore comments */

AN AN {msclval=strdup (msctext); return STRING; }

. {return *msctext;}

o
oL

SIMPLE MSC Yacc file:

o

{

#include <stdio.h>
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#include <string.h>
#include "ptypes.h"

#include "parsemsc.h"

char msg[100];
char temp[100];
extern FILE *mscin;

Duration dura;

#define YYSTYPE char *

extern "C" {

int msclex(void) ;

int mscparse (void) ;

void mscerror (const char *str)

{

fprintf (stderr, "error: %$s\n",str);

int mscwrap ()

{
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return 1;

oe
—

$token WORD NUMBER MSC ENDMSC INSTANCE ENDINSTANCE OUT TO

IN FROM STARTTIMER STOPTIMER TIMEOUT

%token SYSTEM BLOCK PROCESS SERVICE ENV STRING TIME

o
o®

message_sequence_ char:

mschead mscbody endmsc

mschead:

MSC WORD *';' {}

endmsc:

ENDMSC ';' {}
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mscbody :

mscstmt

mscstmt :

mscstmt stmts

stmts:

instheadstmt eventlist instendstmt

instheadstmt:

INSTANCE WORD !';'

{

instancename ($2) ;

}

I INSTANCE WORD ':' instancekind ';'

{

instancename (32) ;
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instancekind:

kinddeno WORD

kinddeno:
SYSTEM
| BLOCK
| PROCESS

| SERVICE

instendstmt:

ENDINSTANCE ;' {}

eventlist:

eventlist instevent

instevent:

WORD event TIME duration WORD
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eventlabel ($1, dura, $5);

}

| event TIME duration WORD °';'

{

eventlabel (NULL, dura, $4);

}

| WORD event ';'
dura.min = 0;
dura.max = 0;

eventlabel ($1, dura, NULL);

}

| event ;'

event:
msgevent

| timerevent

msgevent :

OUT msgid TO address

{
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msgevent ($2, false, $4);

msg[0] ="0";

| IN msgid FROM address

{
msgevent ($2, true, $4);
msg[0] = '\O';

}

msgid:

WORD

{
$$ = $1;

}

| WORD '(' paralist ')

{
sprintf (temp, "%s(%s)", $1,
strcpy (msg, temp) ;
$$ = msg;

}

paralist: /* empty */
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| para {sprintf(msg, "$s", $1); $$=msg;)}
| paralist ',' para

{

ne

sprintf (temp, "%s,%s",3$1, $3);
strcpy (msg, temp) ;

$8=msg;

para:
WORD {$$=$1;)
| NUMBER {$$=$1;}

| STRING {$5=%1;}

address:

WORD { $3%

$1;}

| ENV { 3

strdup ("env") ; }

timerevent:
starttimer {}
| stoptimer { }

| timeout { }
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starttimer:

STARTTIMER WORD

{

dura.min 0;

dura.max 0;

tsevent (82, dura);

}

| STARTTIMER WORD duration

{

tsevent ($2, dura);

duration:
"[' NUMBER ',' NUMBER ']'

{

"nie

sprintf (msg, %s,%sl", 82,
$s=msg;

dura.min = atoi (82);

dura.max atoi ($4) ;

dura.closemin true;

dura.closemax = true;

112

$4) ;



}

| '(' NUMBER ',' NUMBER ']’
{

sprintf (msg, " (%s,%sl", $2,

$S=msg;
dura.min = atoi($2);
dura.max = atoi ($4) ;

dura.closemin = false;

dura.closemax

true;

}

| '[' NUMBER ',' NUMBER ')'

{
sprintf (msg, "[%s,%s)", $2,
$S=msg;
dura.min = atoi($2);

dura.max atoi(s4) ;

dura.clogsemin = true;

dura.closemax false;

}

| '(' NUMBER ',' NUMBER ')

{
sprintf (msg, "(%s,%s)", $2,
$S=msg;

dura.min = atoi($2);
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dura.max = atoi($4);
dura.closemin = false;

dura.closemax

false;

stoptimer:

STOPTIMER WORD

timeout:

TIMEOUT WORD { toevent ($2); }

o\
oe

void parseMSCFile (char *filename)
{
msg[0] = '\O';
mscin = fopen(filename, "r");
mscparse () ;

fclose (mscin) ;
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APPENDIX D. Lex and Yacc Files For TIOA

TIOA lex file:

o°

{

#include <stdlib.h>
#include "tioaparser.cpp.h"

#define YYSTYPE char *

}

o

o
o°

[Ss] [Yy] [Ss] [Tt] [Ee] [Mm] {return SYSTEM; }

[Cs] [L1] [Oo] [Cc] [KKk] [Ss] {return CLOCKS;}

[Tt] [Rr] [Aa] [Nn] [Ss] [Ii] [Tt] [Ii] [0o] [Nn] [Ss] {return
TRANSITIONS; }

[Ee] [Nn] [Dd] {return END;}

[a-zA-Z7] [a-2zA-Z0-9_"]* ({tiocalval=strdup(tioatext); return
WORD; }

[0-9]+ {ticalval=strdup (tioatext); return NUMBER; }

[ \t\n\r]+ ; /* ignore white space */

w/xkw _kwx/uw . /% jgnore comments */

[?!] [a-2A-Z7] [a-2A-20-9 ~]* {ticalval=strdup (tiocatext) ;

return LABEL; }
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. {return *tioatext;)

o
oe

TIOA yacc file:

{

#include <«<stdio.h>

o°

#include <string.h>
#include "parsetioa.h"
char opsymbol [5] ;
extern FILE *tioain;

#define YYSTYPE char *

extern "C" {
int tiocalex(void) ;

int tiocaparse (void) ;

void tiocaerror (const char *str)

{

fprintf (stderr, "error: %s\n",str);

int tiocawrap{)

{

return 1;
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(W)

[
——

%token WORD NUMBER END SYSTEM TRANSITIONS CLOCKS LABEL

oe
o

ticafile:

systemhead systembody systemend

systemhead:

SYSTEM WORD !'; ' { setSysName (52); }

systemend:

END SYSTEM ';'!

systembody:

clockstmt transitionstmt
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clockstmt :

clockhead clockbody clockend

clockhead:

CLOCKS

clockend:

END CLOCKS ';'

clockbody:

clockitems

clockitems:

|

clockitems clkitem

clkitem:

WORD NUMBER

{ setClock($1l, atoi($2));}
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transitionstmt:

tranhead tranbody tranend

tranhead:

TRANSITIONS

tranend:

END TRANSITIONS ‘';'

tranbody:

tranitems

tranitems:

tranitems titem

titem:

WORD label guard WORD { setTran($1, $2, $4); )
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label:

LABEL {$5=51;)

guard:

guard guarditem

guarditem:
"(' resetitem ')

| *(' constritem ')

resetitem:
WORD ':' '=' NUMBER { setClkReset ($1);}
i
constritem:
WORD op NUMBER { setConstr($1, $2, atoi($3)); }
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op:

o°
oe

sprintf (opsymbol, "%s%s",

$$ = opsymbol;

sprintf (opsymbol, "%s%s",

$$ = opsymbol;

e {88 = ey )
[ {88 = e )
= (88 = mens )

void parseTIOAFile (char *filename)

{

ticain = fopen(filename, "r");

opsymbol [0] = '\O';
tioaparse () ;

fclose(tioain) ;
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APPENDIX E. Output Test Cases for

Telephone System
e ke sk ke she sk sk ke sk sk sk ok ke sk
?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. |Error.
sk ke sfesle sk sfe sk sk ke e skesk ok ok
she ok s sk sle sle ke ok e sk sk ok sk sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Ermror. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?HangOff. ?Digit1. ?Digit2. !Connect.

sk sfe ok ok ofe sk sfe sfe ske sk skeosk sk sk

sk ook ste st sk skeske sk ke sk sk sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !'Connect. ?HangOn. ?HangOff. Digitl. Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. ?HangOn.

e sfe sk skeoke sk sk ke sk sk sk sk ok

ok sk sk ste sk e ste shesfe sk skesk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOff. Digitl. Digit2.
1/3. !Connect. ?HangOn. ?7HangOff. 7Digitl. ?Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. ?HangOn.

seskeoskskok sk ke sk sk ke sk skokok

soolesk skoskeoskoskoskeskeo stk ok sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOff. Digitl. Digit2.
1/3. !Connect. ?HangOn. ?HangOff. Digitl. ?Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digit1. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff. !Error.

ek sk seske sk e ske sk sk ske sk ok

o sk e sk kool skske sk sk sk sk sk ok
?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?HangOff. MDigitl. Digit2.

1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. ?Digit2. !Connect. ?HangOn. ?HangOff. ?Digit1.

s sk sk sk sk skokoskoskokeskeskoskok
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kolokseok ok kok skok kkok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. 9?Digitl. 1/3. 1/3.
1/3. ?Digit2. 'Connect. ?HangOn. ?HangOff. ?Digitl. 7Digit2.
1/3. !Connect. ?HangOn. ?HangOff. 7Digitl. Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. ?Digit2. !Connect. ?HangOn. ?HangOff. 1/3.

s sk sk ske sk sk ks sk skl ok

sl sk st skl ke sk sdeske sk s ke ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOft. 7Digitl. 7Digit2.
1/3. !Connect. ?HangOn. ?HangOff. 7Digitl. ?Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?7Digitl. ?Digit2. !Connect. ?HangOn. 1/3. ?HangOff.

skok ok sk ok sk ke sk sk sk sk ok ok

ok sk s sfe sk ok s skesle sk sk ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Eror. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. !Connect. ?HangOn. ?HangOff. Digitl. ?Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. 7Digitl. ?Digit2. !Connect. ?HangOn. 1/3. 1/3. ?HangOff.

3 sk ok ok skesk ok sk sk ok sk sk sk ok

eskosk sk skoskeok ke sk sksk sk ok sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. ?Digit2. !Connect. ?HangOn. 1/3. 1/3. 1/3. ?HangOf¥.

sk sk sk okosk sk ok skosk sk sk sk ok ok

ook sk sk sk sk ke sk sk skoske ok skok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOff. Digitl. ?Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. ?Digit2. !Connect. ?HangOn. 1/3. 1/3. 1/3. 1/3. ?HangOff.

sk sk sk ok sk sk ok sk sk sk sk sk ok

skoksk sk sk sk sk skoskoke skookok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOff. Digitl. ?Digit2.
1/3. !Connect. 7HangOn. ?HangOff. ?Digitl. Migit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
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1/3. ?Digitl. ?Digit2. !Connect. ?HangOn. 1/3. 1/3. 1/3. 1/3. 1/3. ?HangOff.

e she sk 3 ok sk sk sk ske sk e sk stk

ok sk skook ok okok sk ke skoskskske ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. !Connect. ?HangOn. ?HangOff. igitl. ?Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. ?Digit2. !Connect. ?HangOn. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. ?HangOff.

ko sk ok sk sk sk sk skeoskosksk

sefeskoskoskeoskok skokskok ksksk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOff. Digitl. ?Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?D1gitl. ?Digit2. !Connect. ?HangOn. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. ?HangOff.

seksk ok ok ok ek skokeskokoskok

s skeoske sk ok skokoke ke sk sk skeskok
?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2.

1/3. !Connect. ?HangOn. ?7HangOff. ?Digitl. ?Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. ?Digit2. !Connect. ?HangOn. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3.

ek kokok Rk kkkkokk

ok o ok sk ok ok stk ok ok
?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. 7HangOn. ?HangOff. Migitl. Digit2.

1/3. !Connect. ?HangOn. ?HangOff. Digitl. ?Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. MDigitl. ?Digit2. !Connect. 1/3. ?HangOn.

Aok ok ok ok sk sk ke sk skske sk

s o o sk ok ok ok sk ok ook ok ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?7HangOff. Migitl. ?Digit2.
1/3. !Connect. 7HangOn. ?7HangOff. Digitl. ?Digit2. 1Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. ?Digit2. !Connect. 1/3. 1/3. ?HangOn.

ok ok ok o vfe ok ok ok sk sk skeoskeosk sk

e ok ok 2k ook e sk sjesk sk sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2.
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1/3. !Connect. ?HangOn. ?HangOff.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2.

Digitl. ?Digit2.

!Connect. 1/3. ?HangOn.

1/3. ?Digitl. ?Digit2. !Connect. 1/3. 1/3. 1/3. ?HangOn.

st sk sk sie ke e ske ke ske sk sk skesk
seokosk skoskosk ke skeoske sk ke sk
?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error.
1/3. 7Digit2. 1Connect. ?HangOn.
1/3. !Connect. ?HangOn. ?HangOff.

1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2.

1/3. ?Digitl. ?Digit2. !Connect. 1/3. 1/3. 1/3. 1/3.
st sk ske sk ke sk sk sk sk skesk sk ok sk

seokoskosleske sk sfe sk sheoskosk sk ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error.
1/3. Digit2. !Connect. ?HangOn.

1/3. !Connect. ?HangOn. ?HangOff.

1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2.

1/3. ?Digitl. ?Digit2. !Connect. 1/3. 1/3. 1/3. 1/3.

sk slesk kiR skosk sk skeskskskesk
ok sfe ok sk sk ok skeske sk sk skeosk sk sk
?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error.
1/3. ?Digit2. !Connect. ?HangOn.
1/3. !Connect. ?HangOn. ?HangOff.

1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2.

1/3. ?Digitl. ?Digit2. !Connect. 1/3. 1/3. 1/3. 1/3.

seokoskookopskokesk koskeskosk sk ok
sk e sk e sl sk o ok sk ke st sk ok
?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error.
1/3. ?Digit2. !Connect. ?HangOn.
1/3. !Connect. ?HangOn. ?HangOff.

1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2.

1/3. Migitl. ?Digit2. !Connect. 1/3. 1/3. 1/3. 1/3.

sk sk ok ok ok ok e ok ok o sk okok ok

ok ok ok ofe ke sk ok ok ok sk sk sk okok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error.
1/3. Digit2. !Connect. ?HangOn.
1/3. !Connect. ?HangOn. ?HangOff.

1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2.

1/3. ?7Digitl. ?Digit2. !Connect. 1/3. 1/3. 1/3. 1/3.

oK ofe ok ok ok ke e ofe sk sk s sk sk

soofoskookookoskoske sk sk s sk sk skesk

?HangOff. 1/3. ?Digitl.
?7HangOff. ?Digitl.
?Digit1. ?Digit2.
!Connect. 1/3. ?HangOn.
?HangOn.
?HangOff. 1/3. ?Digitl.
?HangOff. Digitl.
?Digitl. ?Digit2.

!Connect. 1/3. ?HangOn.

1/3. 7HangOn.

?HangOff. 1/3. ?Digitl.
?HangOff. ?Digitl.
Digitl. ?Digit2.

!Connect. 1/3. ?HangOn.

1/3. 1/3. ?HangOn.

?HangOff. 1/3. ?Digitl.
?HangOff. ?Digitl.
Digitl. ?Digit2.

!Connect. 1/3. ?HangOn.

1/3.1/3. 1/3. 7HangOn.

?HangOff. 1/3. ?Digitl.
?HangOfY. ?Digitl.
Digitl. ?Digit2.

!Connect. 1/3. ?HangOn.

1/3.1/3.1/3. 1/3.

1Connect.
?HangOf.

1/3. 1/3.
?Digit2.
!Connect.
?HangOf.

1/3. 1/3.
7Digit2.
!Connect.
?HangOff.

1/3. 1/3.
?Digit2.
!Connect.
?HangOff.

1/3. 1/3.
Digit2.
!Connect.
?HangOff.

1/3. 1/3.
7Digit2.
!Connect.
7HangOff.
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?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl.
1/3. Migit2. !Connect. ?HangOn. ?HangOff. ?Digitl.
1/3. !Connect. ?HangOn. 7HangOff. ?Digitl. Digit2.

1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. ?Digitl. ?Digit2. 1/3. !Connect.

skokoskosfoskeoskosk skokoskoskoskskok

skokeskoskoskeosieok sk sk skoskok ok

?HangOff. ?Dagitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl.
1/3. ?Digit2. !Connect. ?HangOn. 7HangOff. Digitl.
1/3. !Connect. 7HangOn. 7HangOff. ?Digitl. ?Digit2.

1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. ?Digitl. 7Digit2. 1/3. 1/3. !Connect.

seookokosk skl ook ko koskok

sk s st sk ok ok ok ok sk ok ok ok ok

7HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl.
1/3. Digit2. !Connect. ?HangOn. 7HangOff. ?Digitl.
1/3. !Connect. 7HangOn. ?HangOff. ?Digitl. ?Digit2.

1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. ?Digitl. 7Digit2. 1/3. 1/3. 1/3. 1Connect.

sk ok sk ok skeokeskoskosk ok ok sk ok sk

skok ok stk sk ok sk ok ook

?7HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl.
1/3. ?Digit2. !Connect. ?HangOn. 7HangOff. ?Digitl.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2.

1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. ?Digitl. ?Digit2. 1/3. 1/3. 1/3. 1/3. !Connect.

sfe o sk sk ofe e sk sk ok sk sk sk sk ok

ok sk sk sfe sfe ok sk sk e sk sk sk sk ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl.
1/3. 7Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl.
1/3. !Connect. 7HangOn. 7HangOff. 7Digitl. Digit2.

1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn.

1/3. 7Digitl. ?Digit2. 1/3. 1/3. 1/3. 1/3. 1/3. !Connect.

ek o e sk s o ok sk ke ok ok

ook sk s sk sk ok ook ok sk skeoskok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl.
1/3. 7Digit2. !Connect. 7HangOn. 7HangOff. 7Digitl.
1/3. !Connect. ?7HangOn. 7HangOff. 7Digitl. 7Digit2.

1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn.

1/3. ?Digitl. ?7Digit2. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. !Connect.

sk sk ok sk g sk e ok ook ok ok

!Connect. 1/3. ?HangOn.

!Connect. 1/3. ?HangOn.

!Connect. 1/3. ?HangOn.

!Connect. 1/3. ?HangOn.

1/3. 1/3.
?Digit2.
!Connect.
?7HangOff.

1/3. 1/3.
?Digit2.
!Connect.
?HangOff.

1/3. 1/3.
Digit2.
!Connect.
?7HangOff.

1/3. 1/3.
?Digit2.
!Connect.
7HangOff.

1/3. 1/3.
Digit2.
1Connect.
7HangOfft.

1/3. 1/3.
Digit2.
!Connect.
?HangOff.
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Fokdkkokkkkkdokkk

?HangOff. 7Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. !Connect. 7HangOn. 7HangOff. ?Digitl. 7Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. 7Digitl. ?Digit2. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. !Connect.

skok o ok ok ok sk ok ok skoskok ok ok

skskok skok sk ok ok skokokoskok ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. 7Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. 7HangOff. Digitl. Digit2.
1/3. !Connect. 7HangOn. 7HangOff. 7Digitl. 7Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. ?Digit2. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3.

ok sfeskoskokosk ok dkokokkok

s 3k 3k 3k o ok ok ok ok e ok sk ok ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. 7Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?7HangOn. 7HangOff. 7Digitl. Digit2.
1/3. !Connect. ?HangOn. ?7HangOff. 7Digitl. 7Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. 7Digitl. 1/3. ?Digit2.

s ok o e sk ok sk sk e e sk Kok ok

sk ok ok ok okok sk koo

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. 7HangOff. 7Digitl. 7Digit2.
1/3. 1Connect. 7HangOn. 7HangOff. Digitl. 7Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff. |
1/3. ?7Digitl. 1/3. 1/3. ?Digit2.

e sk sfe s e sheosfe sk sk sk sk e ske sk

steskosk ek skoske ook sk sle sk sk ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. 7HangOff. 7Digitl. ?Digit2.
1/3. !Connect. ?HangOn. ?7HangOff. 7Digitl. 7Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. MDigitl. 1/3. 1/3. 1/3. ?Digit2.

e 3 ok sk o sk ok vk sesle skedke sk sk

e sk sk sk sfe sk sle sk ke sk

HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?7HangOff. 7Digitl. Digit2.
1/3. !Connect. ?HangOn. ?HangOft. Digitl. 7Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
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1/3. ?Digitl. 1/3. 1/3. 1/3. 1/3. ?Digit2.

sk sk ko ok koo sk sk ok ok sk ok

sk 3k 3k s ofe ske e e sk s sk skeskesk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. Migitl. 1/3. 1/3. 1/3. 1/3. 1/3. ?Digit2.

ok 3 ok sk sk sk sk skoskeske sk s skok

3% ok ok ok ok kR sk ok sksk sk ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2. !Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. ?Digit2.

ok sk skook dkskeskskokosksk skook
skkskokskskkok ok sk okskokok
?HangOff. 7?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOff. Digitl. Digit2.

1/3. 1Connect. ?HangOn. ?7HangOff. ?Digitl. ?Digit2. !1Connect.
1/3. 7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. ?Digitl. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. ?Digit2.

o ok sk ok ok s ok ok ok ok sk sk ok ok

Ao sk skeok ok skoksk kook sk kk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?7HangOff. ?Digit1. ?Digit2.
1/3. !Connect. ?7HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect.
1/3. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff.
1/3. Migitl. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3.

e sk s skook sk ok sk ok sk skskk

e sk 3t e ofe 3k ok 3k ok s sk ks sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. 7HangOn. ?HangOff. Digitl. ?Digit2.
1/3. !Connect. 7HangOn. ?7HangOff. ?Digitl. Digit2. !Connect.
1/3. "HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. ?HangOff. 1/3.
1/3. ?Digit1.

ok 3 ok sk ske sk sk sk sk skosk ke sk
3k o s ok ok ok ok sksfeslesiesk sk sk
?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. 7HangOff. 7Digitl. 7Digit2.
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1/3. !Connect. ?HangOn.
1/3. 7HangOn. ?HangOff. ?Digit].
1/3. ?7Digit1.

s ok ok sk ok ok ok ok ok sk ok ok koK
sk sk sk sfe ok ook s ke ske sk sk ok
?HangOff. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect.

1/3. !Connect. ?HangOn.
1/3. ?HangOn. ?HangOff. ?Digit1.
1/3. 1/3. MDigitl.

sfe st e s ke sk e sk sfe sk e sk sk ke
s sk she ofe st sk s sk sk ok se sk sk ok
?7HangOff. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect.

1/3. !Connect. ?HangOn.
1/3. ?HangOn. ?HangOff. ?Digit1.
1/3. 1/3. 1/3. MDigitl.

sk sfe sfe siesle ke e st ske sk sk sk sk sk

sk sk sk sk ok sk sk sk sfe sk sk ke sfe sk

?HangOff. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect.
1/3. !Connect. ?HangOn.
1/3. 7HangOn. ?HangOff. ?Digit1.
1/3. 1/3. 1/3. 1/3. ?Digitl.

kK skok sk skeskosk skesk sk sk sk

se st sk ot e s ok sk sfe sk sfe ok e ok

?HangOff. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect.
1/3. !Connect. ?HangOn.
1/3. ?HangOn. ?HangOff. ?Digitl.
1/3. 1/3. 1/3. 1/3. 1/3. ?Digitl.

sesk sk ok sk sk sk sk sk sk sk ok
ok ok o sk ok s sk ke sk sk ok sk sk ok
?HangOff. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect.

1/3. !Connect. ?HangOn.
1/3. ?HangOn. ?HangOff. ?Digitl.
1/3. 1/3. 1/3. 1/3. 1/3. 1/3.

o ok ook ok sk ok ok skske sk sk sk ok

ok ok sk ok sk ske sk sk skosk sk sk sk sk

?7HangOff. 7Digitl. 7Digit2. !Connect.
?Digit2. !Connect. 1/3. 2HangOn. ?HangOff. 1/3. 1/3.

1/3. !Error. ?7HangOff. 1/3. ?Digitl. 1/3. 1/3.
?HangOn. 7HangOff. 7Digitl. 7Digit2.
7HangOff. Digitl. 7Digit2. !Connect.
?Digit2. !Connect. 1/3. 2ZHangOn. ?HangOff. 1/3. 1/3.

1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
?HangOn. ?HangOff. Digitl. Digit2.
?HangOff. 7Digitl. 7Digit2. !Connect.
?Digit2. !Connect. 1/3. 2HangOn. ?HangOff. 1/3. 1/3.

1/3. 'Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
?HangOn. ?HangOff. ?Digitl. 7Digit2.
?7HangOff. ?Digitl. ?Digit2. !Connect.
?Digit2. !Connect. 1/3. 2HangOn. ?HangOff. 1/3. 1/3.

1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
?7HangOn. ?HangOff. ?Digitl. ?Digit2.
?HangOff. ?Digitl. ?Digit2. !Connect.
?Digit2. !Connect. 1/3. ?HangOn. ?HangOff. 1/3. 1/3.

1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
?HangOn. ?HangOff. ?Digitl. ?Digit2.
?HangOff. ?Digitl. ?Digit2. !Connect.
Digit2. !Connect. 1/3. ?HangOn. ?HangOff. 1/3. 1/3.
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?HangOff. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect.
1/3. !Connect. ?HangOn.
1/3. 7HangOn. ?HangOff. ?Digitl.
s sk s skok skok ok sk skokokoke

skt st sk ke skoskodke Skske sk sk ke sk

?HangOff. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect.
1/3. !Connect. ?HangOn.
1/3. 7HangOn. ?HangOff. ?Digit1.
sk she sk sk sk e sfe e sk skoske sk ke ok

skskeskskskoskesk sk sk ek

?HangOff. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect.
1/3. !Connect. ?HangOn.

1/3. 7HangOn. ?HangOff. ?Digit1.

e s sk s s sfe s s e e o sk e s

s sk sk sfe ok sk ke ske sk sk sk sk sk

?HangOff. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect.

1/3. !Connect. ?HangOn.
1/3. ?HangOn. ?HangOff. ?Digitl.
ke ke sk e ske sk sfe ok s she sl sfeshe e

s sk skoskeoske sk steskeoske skosle skeske ok

?HangOff. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect.

1/3. !Connect. ?HangOn.
1/3. ?HangOn. ?HangOff. ?Digit1.
ek sfeske sl sle e sk s sk ke sheske ok

sk sk skl sfe sk sk sk sk ke ook sk

?HangOff. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect.

1/3. !Connect. ?HangOn.
1/3. 7HangOn. ?HangOff. ?Digit1.
s sk sk sk ok sk sk ok sk sk sk sk ske ok

sk st sk ke sk ksl sk sk ke sk sk ok

?HangOff. ?Digitl. 1/3. 1/3.
1/3. Migit2. !Connect.

1/3. !Connect. ?HangOn.

1/3. !Error. ?HangOff. 1/3. ?Digitl.
?HangOn. ?HangOff. ?Digitl.
7HangOff. Migitl. Digit2.

?Digit2. !Connect. 1/3. 7ZHangOn. 1/3.

1/3. !Error. ?HangOff. 1/3. 7Digitl.
7HangOn. 7HangOff. ?Digitl.
?HangOff. 7Digitl. Migit2.
?Digit2. !Connect. 1/3. 1/3.
1/3. !Error. ?HangOff. 1/3. ?Digitl.
?HangOn. ?HangOff. ?Digitl.
?HangOff. 7Digitl. ?Digit2.
?Digit2. 1/3. Connect.
1/3. !Error. ?HangOff. 1/3. ?Digitl.
?HangOn. 7HangOff. ?Digitl.
7HangOff. ?Digitl. Digit2.
?Digit2. 1/3. 1/3.
1/3. !'Error. ?HangOff. 1/3. ?Digitl.
?HangOn. ?HangOft. ?Digitl.
?HangOff. ?Digit1. ?Digit2.
1/3. !Error.
1/3. !Error. ?HangOff. 1/3. ?Digitl.
?HangOn. ?HangOff. ?Digitl.
7HangOff. ?Digitl. Digit2.
1/3. 1/3.
1/3. 'Error. ?HangOff. 1/3. ?Digitl.
?HangOn. 7HangOff. ?Digitl.
?HangOff. ?Digit1. ?Digit2.

1/3. 7HangOn. ?HangOff. 1/3. !Error.

1/3. 1/3.
Digit2.
1Connect.

1/3. 1/3.
Digit2.
1Connect.

1/3. 1/3.
7Digit2.
!Connect.

1/3. 1/3.
Digit2.
!Connect.

1/3. 1/3.
7Digit2.
!Connect.

1/3. 1/3.
7Digit2.
!Connect.

1/3. 1/3.
Digit2.
!Connect.
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e ok ok o sk ok sk sk ok ook ok

sk sk sk sk ok sie sk ok ste sk skeske sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2.
1/3. IConnect. ?7HangOn. 7HangOff. Digitl. ?Digit2. !Connect.
1/3. ?HangOn. ?HangOff. 1/3. 1/3.

sk e s sk ofe s sk sk sk sk sk sk
ke sk sk ks ske sk skske sk sk sk ok
?HangOff. ?Digitl. 1/3. 1/3. 1/3.- !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?7HangOff. ?Digitl. 7Digit2.

1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn.
1/3. 7HangOff.

e ok e skok koo ok ok ok sk sk ke

sfe sfe s s ok sk sk sfe s sk ek ske ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. 1Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. ?HangOn. 1/3. 1/3.

hekeosk stk sk sk skoskeoskosk sk

eskookok skok skokosk kokskskok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. 1Connect. ?HangOn. ?HangOff. Digitl. Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digit1. ?Digit2. !Connect. 1/3. 1/3. ?HangOn.

sfoskoskok koo sk sk sk skesk ok

e sfook sk skoskeskok skoskosk koo

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. 7HangOff. Digitl. ?Digit2.
1/3. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. !Connect. 1/3. 1/3. 1/3.

seskoskoskoskokokskokkokokoskok

K ok ok sk ok ok sk ok sk sk sk skosksk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. 7HangOff. ?Digitl. ?Digit2.
1/3. 1Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. 1/3. !Connect.

e ok ok oke sfe sk sk ks sk sk sk sk sk

okskoskokosk ok sk sk skoskesk sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !'Emor. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. Digit2.
1/3. 1Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. 1/3. 1/3. !Connect.

skokok kokokoskoksk sk skoskosk ok
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i

HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?7HangOn. ?7HangOff. ?Digitl. Migit2.
1/3. 1Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. 1/3. 1/3. 1/3.

Aok sk kok koo sk kok sk ko

sookosksfeokoskskosk sk ks sk ok ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOft. ?Digitl. Digit2.
1/3. !Connect. ?HangOn. ?HangOff. 7Digitl. 1/3. ?Digit2.

okskosk skosk sk sk sk ok skookosk ok ok

s stk ook ok otk skeok sk ok

?7HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?7HangOn. 7HangOff. 7Digitl. 7Digit2.
1/3. 'Connect. ?HangOn. ?HangOff. ?Digitl. 1/3. 1/3. 'Error.

ok sk ok skokok ok ok ok ok

Aok sk e ek kok sk sk sk sk sk ok

7HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. 7HangOft. 7Digitl. 7Digit2.
1/3. 'Connect. ?HangOn. ?HangOff. ?Digitl. 1/3. 1/3. 1/3.

skokokok ok kok sk dkok ok ok

sk sk sk sk skeok s e ke sk ko ok

7HangOff. ?Digitl. 1/3. 1/3. 1/3. !Ermror. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. - !Connect. ?7HangOn. ?HangOff. 7Digitl. 7Digit2.
1/3. !Connect. 7HangOn. ?HangOff. 1/3. ?Digitl.

sfe s sfe s ok sfe sk ok ok sk sk skoe ok

sk sk ok s ofe e sk s s ke ke sk ke ok

7HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. 7Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?7HangOn. ?HangOff. 7Digitl. 7Digit2.
1/3. !Connect. ?HangOn. ?HangOff. 1/3. 1/3. !Error.

sk sk sk sk o ole sk sfe ok sfe ok s ok ok

ok st ok s ok e ok sk ok sk ok ok e ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?7HangOff. 1/3. 7Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?7HangOff. Digitl. ?Digit2.
1/3. 'Connect. ?HangOn. ?HangOff. 1/3. 1/3. 1/3.

sfe st sk sfe ok s sk sk ske ke sk skesle ok

3k o ok sk ok ofe ok sk ok ko sk ok ok

7HangOff. ?Digitl. 1/3. 1/3. 1/3. !'Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?7Digit2. !Connect. ?HangOn. 7HangOff. ?Digitl. ?Digit2. 1/3. !Connect. ?HangOn.
1/3. 7HangOff.
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ok 3k ook shesiskosk skoskodkok skosk

sk sk ok ok ok o skok e sk ok kol

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3.

Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. 1/3. !Connect. ?HangOn.
1/3. 1/3. 7HangOff.

ok ok ok s ke o ok e sk sk skosk ok

s ofe sfe ke ke sk e ske sk sk sk sk sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. 1/3. !Connect. ?HangOn.
1/3.1/3.1/3.

s sk ok s o e sk skoske sk ok ok

e ke o ok sk ok ook st sk o ok e ok

?HangOff. ?Digitl. 1/3. 1/3.

1/3. 1Error. ?HangOff. 1/3.
1/3. 7Digit2. !'Connect.

?Digitl. 1/3. 1/3.
?HangOn. ?HangOff. 7Digitl. ?Digit2. 1/3. !Connect.
1/3. 7HangOn.
stk ok ok o ok ok ok ok sk ok ok okeok
ok sk ok sfe sk ok skok sk sk sk sk ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. 1/3. !Connect. 1/3.
1/3. ?HangOn.

ok 3k sk ok ok ok ok sk sk ok sk sk

s ok ok ok sk s s sk e s skoskeok ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. ! Connect. ? HangOn. ?HangOff. ? Digitl. ? Digit2. 1/3. ! Connect. 1/3. 1/3.
1/3.

o sk ste sfe ok sfe sk sl sk e ke sk sk ok

ok sk ok ke e sk sk sk e skoske sk sk ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOff. ?Digitl. ?Digit2. 1/3. 1/3. !Connect.
ok s e sfe ok e ok sk ok sk e sk ok ok

e sk e sfe ok sfe o ek skoske sk ke sk

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. 7Digit2. !Connect. 2HangOn. ?HangOff. ?Digitl. ?Digit2. 1/3. 1/3. 1/3. !Connect.
e ok sle sfe s sk sk skesk sk sk sk ok

ok ok sfe sk ok sk ok sk sk e sl seske ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3.
1/3. ?Digit2. !Connect. ?HangOn. ?HangOff. ?Digit1. ?Digit2. 1/3. 1/3. 1/3. 1/3.
sk skeoke sk ke sk sk sk sk sk sk ks ok
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sk skoof ok skook skok skok ok sk ok

?HangOff. ?Digitl.
1/3. ?Digit2. !Connect.

sfe s sk sfe sk sk e e sk sk sk sk sk sk

sk ok sfe sk ok e sie sk sk sk skeoske sk sk

?HangOff. ?Digitl.
1/3. 7Digit2. !Connect.

e sfe sk ok ok o sk sk ske sk sk ok sk

sk sfe sk ske sk sk sk skeofeske sk sk sk sk

?7HangOff. ?Digitl.
1/3. ?7Digit2. !Connect.

ok 2 ok o ok o e sk ke sk sk e ok

sk ok o s st sk ke s s s ke s ke o

?HangOff. ?Digitl.
1/3. ?Digit2. !Connect.

ke s sfe sfe sfe she sk she sk e sk she ske sk

sk sk ste sk s sfe sk sk s sk ske sk

?HangOff. ?Digitl.
1/3. ?7Digit2. !Connect.

sk sk ok sk sk ok sk skeoleske ske sk sk ske

sk oo sk kst sk sie sfe sfeskeoke s

?HangOff. ?Digitl.
1/3. 7Digit2. !Connect.

sk sheste s sk o sk sk sl sk sk skeskok

¢ e ok ok sfe ke sk sl sk ke sk ke s sk

?HangOff. ?Dagitl.
1/3. ?Digit2. !Connect.

ek s sk sk e ok ok s ok sfe o s ok

s sk ok ofe sk sk sk sksk sk sk sk ok

?HangOff. ?Digitl.
1/3. MDigit2. !Connect.

ok ok 3k ok ok 3k 3k ske sk sk ok ke sk k

s st s s s ok sk s ek sk e ok

?HangOff. ?Digitl.
1/3. ?Digit2. !Connect.

s sk sk sk sk ok e skeosk sk sk sk sk

1/3. 1/3.
?HangOn.

1/3. 1/3.
?HangOn.

1/3. 1/3.
?HangOn.

1/3. 1/3.
?HangOn.

1/3. 1/3.
?HangOn.

1/3. 1/3.
?HangOn.

1/3. 1/3.
?7HangOn.

1/3. 1/3.
?HangOn.

1/3. 1/3.
?HangOn.

1/3. !Error. ?HangOff. 1/3. ?Digitl.

9HangOff. ?Digitl. 1/3. ?Digit2.

1/3. !Error. ?HangOff. 1/3. ?Digitl.

?HangOff. ?Digit. 1/3. 1/3. ?Digit2.

1/3. !Error. ?HangOff. 1/3. ?Digitl.

?HangOfft. ?Digitl. 1/3. 1/3. 1/3. !Error.

1/3. !'Error. ?HangOff. 1/3. ?Digitl.

?HangOff. ?Digitl. 1/3. 1/3. 1/3. 1/3.

1/3. !Error. ?HangOff. 1/3. ?Digitl.

?HangOfft. 1/3. ?Digitl.

1/3. !'Error. ?HangOff. 1/3. ?Digitl.

?HangOff. 1/3. 1/3. ?Digitl.

1/3. !Error. ?HangOff. 1/3. ?Digitl.

?HangOff. 1/3. 1/3. 1/3. !Error.

1/3. !'Error. ?HangOff. 1/3. ?Digitl.

?HangOff. 1/3. 1/3. 1/3. 1/3.

1/3. !Error. ?HangOff. 1/3. ?Digitl.

1/3. ?HangOft.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.
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K3k 3 sfe sk ok sk sk sk skeoke ke skesk

?HangOff. 7Digitl. 1/3.

1/3. ?Digit2. !Connect. ?HangOn.

R e s sk ske sfeokoske sk sk skeoskok

ok ofe sk ok ok ke sk sk sk sk sk sk

?HangOff. 7Digitl. 1/3.

1/3. ?Digit2. !Connect. ?HangOn.

sk o sfe sk sk ke ste sk sheske sk sk sk ok

skosfe sk skook e sk e sl skeskeose sk

HangOff. ?Digitl. 1/3.

1/3. ?Digit2. !Connect. ?HangOn.

seskeskoskokodk sk ok sk

ook sk sk skeske sk sk sk kok

?HangOff. ?Digitl. 1/3.
1/3. ?Digit2. !Connect. 1/3.

e sk sk skesfe ok ok ok sk sk sk skok ok

s ok e ok ok ske sk sk skskskok ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3.

1/3. 'Connect.
skt sk e sk e sk ok sk ok sk sk ok

3ok ok sk ok ok ok ok sk skokok skok

?HangOff. ?Digitl. 1/3. 1/3. 1/3.

1/3. 1/3. 1Connect.

s sk sk ok ok s s sk skske sk sk

sk ke e shoskeok s ok sk sk skoskok

?HangOff. 7Digitl. 1/3. 1/3. 1/3. !Error.

1/3. 1/3. 1/3. !Connect.

ok ok ok ok ok ke sk sk sk sk sk sk skeok

ok sk sk ok ko kol sk sk sk sk skeook

?HangOff. ?7Digitl. 1/3. 1/3. 1/3. !Error.

1/3.1/3.1/3. 1/3. 1/3. 1/3. 1/3. !Connect.

e sfe 3k s ok ok sfe ke ste sk ke sk sk ok

st ke sk ok o ok ok e sk e ke sk sk ok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. !Error.

1/3. 1/3. !'Error. ?HangOff. 1/3.
1/3.1/3. 7HangOff.

1/3. 1/3. !Error. ?HangOff. 1/3.
1/3. 1/3. 1/3. 7HangOff.

1/3. 1/3. !Error. ?HangOff. 1/3.
1/3.1/3. 1/3. 1/3.

1/3. 1/3. !Error. ?HangOff. 1/3.
'Error. ?HangOff. 1/3. ?Digitl.
!Error. “HangOff. 1/3. ?Digitl.

?HangOff. 1/3. ?Digitl.
?HangOff. 1/3. ?Digit1.
?HangOff. 1/3. ?Digitl.

1/3.1/3.1/3.1/3. 1/3. 1/3. 1/3. 1/3.

sok ok ok ok sk sk ok sk sk sk skosk ok

2% ok 3k ok ok ok ok o ok sk skosk sk ok

Digitl.

Digitl.

?Digitl.

?Digitl.

1/3. 1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3. 1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

7Digit2.

Digit2.

?Digit2.

?Digit2.

?Digit2.
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9HangOff. ?Digitl. 1/3. 1/3. 1/3. \Error. ?HangOff. 1/3. ?Digitl. 1/3. 1/3. 1/3. 1/3. 1/3.

1/3. 1/3. 7Digit2.

s ke sk sk ke ofe sk sk ke ske sk sk skesk

3k o ofe sk sk sfe ok ok e sk skok skok

?HangOff. ?Digitl. 1/3. 1/3. 1/3. 'Error. 7HangOff. 1/3. ?Digitl. 1/3. 1/3. 1/3. 1/3. 1/3.

1/3. 1/3. 1/3.

sfesk ok e sfe s e sk sk sk skskeok

3k sk sk sk sk sk ok 2k ok ok ke ske sk sk

?HangOff. ?Digitl.

Sk sk ske sk sk sk sk ke ske skosk sk ok

e sfe sk sfe sk e ke s sk sk sk sk ok

?7HangOff. ?Digitl.

sfe sfe sk sfe sk sk sk sk sle e skok ok

sk sfe sfe sfe sl sk sk ke e sk sfe sl sfe sk

?HangOff. ?Digit1.

s sfe sfe sfe ke sk sk ke she she sk sk sk sk

sfe sk sfe ske ske e e ke sk she sk sk sk sk

?HangOff. ?Digit1.

s sk sfe sfe s sk sl ke ke sfe sk sk sk ok

sk sk sk skooke skeosk sk sk s sk sk s sk

?HangOff. ?Digitl.

s ofe sfe ok ske ok sk ok sk sk skok sk ok

sk sk sfe ske ke sk ske sk sk skosk sk sk

1/3.1/3. 1/3.

1/3. 1/3. 1/3.

1/3. 1/3. 1/3.

1/3.1/3. 1/3.

1/3.1/3. 1/3.

9HangOff. ?Digitl. 1/3. 1/3.

1/3. MDigit1.

34 ske sk sfe sie sk sfe ske ke skeote skeskeok

a5 ofe sk sfe ok sk sk ok ofe sk skeske skok

?HangOff. ?Digitl.

sk sk ok shesk e sk skosk skokok

sfe sfe sk ske sfe skeske sk sk sfe ske skesk sk

7HangOff. ?Digitl.

s sk sk ok ke sk ok sk ke sk sk skoskok

s sfe sk sk ok skl ok ke s s sk skok

?HangOff. ?Digitl.

sk s ok sk ok sk sie ke sk skeosk sk sk ok

1/3.1/3.1/3.

1/3.1/3.1/3.

1/3.1/3. 1/3.

Error. 7HangOff. 1/3. 1/3. ?Digitl.

'Error. 7HangOff. 1/3. 1/3. 1/3. 7Digitl.

!Error. ?HangOff. 1/3. 1/3. 1/3. 1/3. ?Digitl.

'Error. ?HangOff. 1/3. 1/3. 1/3. 1/3. 1/3. ?Digitl.

'Error. ?HangOff. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. ?Digit1.

1/3. 'Error. ?HangOff. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3.

'Error. ?HangOff. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3.

Error. 1/3. 2HangOff. ?Digitl.

!Error. 1/3. 7HangOff. 1/3.
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e dkosook sk ke stk skeske sk sk

?HangOff. ?Digitl.

sk sk sk sfe sfe sk sleoskoskeoskok skok sk

sk sk sk sk skeok ok sk sk sk sk sk

?HangOff. ?Digit1.

sesfeskoskskeokok sk ke sk skoskesk

shesfeskoskosdeskoske sk skesk skoskesk

7HangOff. ?Digitl.

sk sfe sk skoskeskoke sk sk sk ok skesk

Skskeosk skosk sk skeosk sk sk sk sk ok

?HangOff. ?Digitl.

3k ok ok sk ok ok sk e sk sk sk skske ok

koK skokoskoskokosk sk sk skok sk

7HangOff. ?Digitl.

ke ok ok ok of ok sk ok ok sk sk skok ok

sk sk sk ok sfe ok ook sk skok sk

?HangOff. ?Digitl.

sk sk sk sk sk skolesk sk keosk

ok ok sk ok sfe ok oke ok sk sk sk sk ok

7HangOff. ?Digitl.

e sk skookosko sk ok sk skookskoksk ok

sk sk sk sieokosk sk sk skosk ko

?HangOff. ?Digitl.

sk sk ook ok ok sk skeokok ok

o ok ok sk ok sk skok sk sk ok sk sk ok

?HangOff. 1/3. ?Digitl.

soskok ko ok ook okokosk ok

sfeske sk sl sk sk okoskoksk sk okok

7HangOff. 1/3. ?Digit1.

ke s s ok st sk ol sk s stk ok ok

ok ok ok sk ok ok sk skeskskeske sk ke ok

?HangOff. 1/3. 1/3. ?Digitl.

sk sk ok ok ofe ok ok ok ok ok ok sk ok ok

ke s ok ok ofe ok ok sk ok ok sk sk ok

?HangOff. 1/3. 1/3. 7Digitl.

1/3.

1/3.

1/3.
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Error.

'Error.

Error.

\Error.

1Error.

|Error.

\Error.

1/3.

{Error.
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Error.
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1/3.

1/3.
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?HangOfT.

1/3. 7HangOff.

1/3. 1/3. 2HangOff.

1/3.1/3. 1/3. ?HangOff.

1/3.1/3. 1/3. 1/3. ?HangOft.

1/3.1/3. 1/3. 1/3. 1/3. HangOff.

1/3.1/3.1/3. 1/3. 1/3. 1/3.
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sk st sk sfe sfe ske sfe skeske sk sk skoske ok

st sfe ok ok sfe ofe e s sfe ke seskeskoke

?HangOft. 1/3. 1/3.

e sfe sie e sfe ke ske sk ke sk ks ok

skt ok e ok g skokokeoskok

?HangOfft. 1/3. 1/3.

e sfe sk ske sk sk sk sk sk sk ok skesk ok

s ok ke s ofe ok sk ks sk e eske ok

?HangOff. 1/3. 1/3.

sfe sk sk sk sk sk okosko sk sk skeskosk

sfe ske 3 sfe ske ok ke sfe sk sk e sk ske ok

?HangOft. 1/3. 1/3.

s skeoske sk sk skoskeskesk ke skskeok ok

s ok sk ok ok kol sk sk sk sk skok sk

?HangOff. 1/3. 1/3.

sk sfeskookook skosksk sk sk sk skeskosk

Sk ok ok sk ok sk sk ke sk ok sk sk sk sk

?HangOff. 1/3. 1/3.

sk sk e sfe sk ok ke skesk sk skoskeoske ok

s sk e ok ke ok ok sk sk ok

9HangOff. 1/3. 1/3.

sk skosk ok ok skokok sk ok sk kokok

sfeok ok sk sk ok skeok sk skosk skoskosk

?HangOff. 1/3. 1/3.

sk skoskeoskokokoskok ok kok ok

koo skooke sl sk skoskskosk skskok ok

?HangOff. 1/3. 1/3.

sekeskskokokkokokkokdkskok

sskosk sk sk skockoske sk sk sk skok sk

?HangOff. 1/3. 1/3.

sk sk sfe sk e sk sk ks sk ok ok

kil sk dgokokokskokkok

?HangOfft. 1/3. 1/3.

ok ok ok o sk ok sk ok skok sk okok

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

1/3.

'Error.

!Error.

!Error.

!Error.

'Error.

Error.

|Error.

\Error.

|Error.

Error.

Error.

?HangOff. !Error.

9HangOff. 1/3. ?Digitl.

?HangOff. 1/3. 1/3. ?Digitl.

?HangOff. 1/3. 1/3. 1/3. ?Digit1.

?HangOff. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. Digitl.

?HangOff. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3.

1/3. "HangOff. ?Digitl.

1/3. ?HangOff. 1/3.

1/3. 1/3. ?HangOft.

1/3. 1/3. 1/3. 2HangOff.

1/3.1/3.1/3. 1/3. 7HangOff.
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sk 3o 3k sk sk ok sk sk ki sk ke skosk

?HangOff. 1/3. 1/3. 1/3. 1Error. 1/3. 1/3. 1/3. 1/3. 1/3. 7HangOff.

e sk s ok e ok s ok sk ok sk sk ok

sk ok sk ok ok skoskookok ok sk skoskosk

?HangOff. 1/3. 1/3. 1/3. 'Error. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 7HangOff.

sfe sk sfe sk s sk s s o ok e sk e sk

sk sfe sfe sk sheskesk ksl sk ke sk ok

?HangOff. 1/3. 1/3. 1/3. Error. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 7HangOff.

skskskosk sk ok sk skoskok sk sk koK

sk sk sk ks sk sk skosk sk sk skoskok

?HangOff. 1/3. 1/3. 1/3. 'Error. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3. 1/3.

sfe sfe sk sk sfe sfe e ok sk ke sk sk sk sk

sk skook o e skt ko sk sk ok ok

?HangOff. 1/3. 1/3. 1/3. 1/3.

sheokeoskokskok ok kkokokkkk

she sk sk sk ok sk skosksk sk sk sk skeok

1/3. 7HangOff.

sk st sk skeoske ok ek sk sk sk skok

ook ok ok sk ok ok sk ok kokokok ok

1/3. 1/3. ?HangOff.

sk skook sk skosk sk sk ok kskok

ok ofe ok ok sfe ok ok ok sk sk sk sk ok

1/3. 1/3. 1/3. 7HangOff.

s sfe ok sk ok ok ok sk ok sk ke sk sk

dokokkok ko kkokokok ok

1/3.1/3. 1/3. 1/3. 7HangOff.

sk sk ok sk s sk koo sk sk ok skskok

skskestesk ook sk sk skokosk sk ko

1/3.1/3.1/3. 1/3. 1/3. ?HangOff.

sk sk sk sk sk ok sk sk skokok

sk sfe sk sk sk sk sk skeskokoske ok ok ok

1/3.1/3.1/3.1/3. 1/3. 1/3. ?HangOff.

sk sfe sk ok sk koo skosk ok sk sk skok
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