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ABSTRACT

Denoising and Compression of Digital Images using Wavelets
Nikhil Gupta

This thesis concentrates primarily on two problems that concern noise corrupted
images and looks to the wavelet domain for the solutions.

Firstly, the issue of noise reduction in digital images is addressed. Most of the pop-
ular thresholding techniques are either subband adaptive, i.e., do not adapt spatially
according to individual subband coefficients, or rely heavily on subband statistics for
adaptation, which makes them computationally expensive. A low-complexity adap-
tation of the subband-optimal thresholds according to the individual coefficients is
presented. The correlation that exists in consecutive subbands in wavelet domain is
exploited to adapt the subband optimal thresholds using the magnitude of the corre-
sponding parent coefficients. Using simulated experiments, the ability of the proposed
algorithm to preserve the edges and fine details in an image, while successfully reduc-
ing the noise from the smooth regions, is demonstrated.

Secondly, the relatively uncharted areca of simultaneous dencising and compres-
sion of images that are corrupted with noise is explored. A data adaptive subband
(wavelet) coder that performs joint denoising and compression of the input image
based on both the additive white Gaussian noise level in the image and the compres-
sion rate desired is developed. A simple uniform threshold quantizer (UTQ), with
centroid reconstruction, is adapted to have a joint noise level (data) and output bitrate
adaptive zero-zone and reconstruction. To improve the performance of this variable-
rate-coder, a context-based classification scheme that improves the quantization of
the fine detail in the image is also proposed.

The joint denoising and compression scheme is further extended for the removal of

multiplicative speckle from medical Ultrasound images using homomorphic filtering.
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ntroduction

1.1 Introduction and motivation

The phenomenal growth of the Internet, along with the ubiquitous use of digital
cameras, scanners and camera phones have made the capture, display, storage and
transmission of images, a routine experience. In addition, imaging is extensively
used in medicine, law enforcement, Internet gaming and data collected by satellites.
Inspired by the enhanced computing powers of the modern day computer and the
ubiquitous presence of sensing devices, scientists are collecting and analyzing data at
an ever increasing pace. Owing to natural human proclivity toward visual or pictorial
representation of this data, more and more of the scientific data being generated is
in the form of images.

In many fields such as astronomy, medical imaging, and computer vision, the data
that is collected is often noisy as a result of data acquisition processes or due to
natural phenomena such as atmospheric disturbances. Even acquiring an image with
the use of a digital camera corrupts the image of the scene with the noise generated
by the capturing media (such as the CCD sensors). Furthermore, noise is added to

the data when it is transmitted over transmission channels. Noise is as common to



the image data generated as the data itself.

The corrupting noise might result in degradation of the visual quality of the images
and may also mask important image information. Even if the perceived images do not
show noise degradation due to the masking effects of the human visual system, many
image analysis tasks, such as segmentation, might suffer in the presence of noise.
Thus, it becomes imperative that the level of the noise present in digital images be
reduced prior to any further processing.

Removing noise from data can be considered as the process of constructing optimal
estimates of the unknown signal or image from the available noisy data. Spatial filters
have long been used as the traditional means of removing noise from the images and
signals [1]. These filters usually smooth the data to reduce the noise, but, in the
process, also blur the data.

In general, image denoising imposes a compromise between noise reduction and
preserving significant image details. To achieve a good performance in this respect,
a denoising algorithm has to adapt to image discontinuities. In the last decade,
several new techniques have been developed that improve on spatial filters by re-
moving the noise more effectively while preserving the edges in the image. Some of
these techniques borrow ideas from partial differential equations and computational
fluid dynamics such as level set methods [2, 3|, total variation methods [4, 5|, non-
linear isotropic and anisotropic diffusion [6, 7}, and essentially non-oscillatory (ENO)
schemes [8]. Other techniques involve impulse removal filters with local adaptive fil-
tering in the transform domain to remove not only white and mixed noise, but also
their mixtures [9].

A different class of methods exploits the decomposition of the image data into the
wavelet domain[10, 11, 12, 13, 14, 15, 16, 17]. The wavelet representation naturally
provides a useful tool in the construction of spatially adaptive algorithms that can

preserve edges in an image. It compresses the essential information in a signal into



a few, large coefficients which represent image signal details at different resolution
scales and facilitates the removal of the corrupting noise. This sparse representation
of the data in the wavelet domain also makes them ideal for compression applica-
tions. In addition, the human visual system (HVS) also employs multi-resolution
decomposition to process the visual images.

It is this ability of the wavelet transform to form a bridge between theory and
applications, and provide a suitable representation for processing the image data,
that has enabled it to emerge as an important tool in denoising images.

Another aspect associated with this ever-increasing generation and transmission
of digital images is the storage media. Despite rapid improvements in data storage,
processing speeds, and digital communication system performance, this proliferation
of digital media often outstrips the amount of data storage and transmission capaci-
ties. Thus, the compression of such signals has assumed great importance in the use,
storage and transmission of digital images. However, this compression of the input
images, performed in order to reduce the amount of storage space and transmission
bandwidth required, also suffers in the presence of corrupting noise. The corrupting
noeise, being random in nature, tends to increase the entropy of the image data and
as a result, causes more distortion in the compressed images for an available quota
of bits. Despite this fact, the compression algorithms very seldom account for this
corrupting noise. In the case where the input images are corrupted, the following

scenarios are possible:

e The noisy images would be compressed as they are, which would result in in-

creased distortion in the compressed images.

e Human intervention is provided to decide which image to denoise before com-
pression, which, in view of the enormous amount of data, is practically impos-

sible.



e All the images are passed through a dencising algorithm before they are com-
pressed. Not only would this serve to increase the cost of the system, but would
also tend to add further distortion in the output as the denoising algorithms
generally do lead to some loss of information in case the corrupting noise level

is low.

None of the solutions described are perfectly satisfactory when the input data would
be corrupted with varying powers of noise. Thus, there is a need for compression

algorithms that can adaptively remove any noise that occurs in an input image.

1.2 Scope of the thesis

The discussion provided in the previous section serves to establish the fact that noise
corrupts all kinds of images: natural, scientific or medical. This thesis is concerned
primarily with the following two problems associated with images corrupted with

noise:
e Removal of noise from digital images.

e Compressing images corrupted with varying noise powers.

We investigate the wavelet domain for formulating solutions that address the
considered problems.

Since additive white Gaussian noise is the most common type of noise that corrupts
images and is also studied extensively in literature, we primarily consider this kind of
noise in this thesis. However, keeping in view the prevalence of multiplicative speckle
noise in images generated using scientic and medical processes, we also consider images
corrupted with this kind of noise.

We try to provide solutions to these problems that yield better results than the

ones already existing in the literature. In doing so, we merge theory and practice,
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and employ heuristics too. The necessary review of the existing literature for each of

the above problems is provided in the relevant chapters.

1.3 Organization of the thesis

This thesis is organized as follows. In Chapter 2, the background knowledge on
wavelet theory is reviewed. Attempt is made to present a concise, yet self-contained
review emphasizing the most relevant aspects for the topic of this thesis. We describe
the benefits of the use of wavelets over the Fourier transform for the purpose of image
denoising and compression. The multi-resolution analysis (MRA) of the input signal
using wavelets is presented. We also describe the fast version of the discrete wavelet
transform that is commonly employed in signal processing, using both orthogonal and
bi-orthogonal wavelet families.

In Chapter 3, we explain the denoising of images in the wavelet domain. The
signal notations employed throughout this thesis are explained. A detailed state-of-
the-art overview pertinent to wavelet domain denoising of images is provided in this
section. We describe denoising of images using thresholding of wavelet coefficients
and present two commonly used methods for threshold estimation, BayesShrink [11]
and SureShrink [14]. In the second half of the chapter, we present a new approach to
hierarchically adapt these pre-existing thresholds. A comparative study of the original
and the adapted thresholds is provided, via the use of simulations, to evaluate the
performance of the proposed adaptation.

Chapter 4 presents our contribution toward the joint compression and denoising
of images in the wavelet domain. We explain the adaptation of the uniform threshold
quantizer (UTQ) and its application in a subband coder in wavelet domain. We also
present a classification scheme to classify the data in order to improve the performance

of the proposed coder. Simulated experiments are provided to show the efficacy of the



proposed schemes. The proposed joint compression and denoising scheme is applied
to compress the images resulting from medical ultrasound scans. Such images are
corrupted by multiplicative noise, and with the help of experiments we show that
the proposed scheme works better than the compression methods normally used to
compress such images. We also show the advantage of our scheme as compared to a
two stage procedure, where the ultrasound image is first despeckled using a filter and
then compressed.

In Chapter 5, we conclude this thesis by summarizing the results obtained and

discuss some future work to be carried out.



Introduction to Wayvelets

This chapter presents an overview of wavelets and multi-resolution analysis. These
can be found in many books and papers at many different levels of exposition. Some of
the standard books are [18, 19, 20, 21, 22, 16]. Introductory papers include [23, 24, 25],

and more technical ones are [26, 27, 28].

2.1 From Fourier transform to wavelets

In wavelet analysis, a signal f is decomposed into a basis of functions ¥;:

For an efficient decomposition of the signal f, a suitable family of the functions v,
is required that can represent the given signal using only a few coefficients a;. These
functions, v;, should match the features of the signal to be decomposed.

Real-world signals usually are limited both in time (or space as in the case of
images) and limited in frequency (band-limited). Time-limited signals can be repre-
sented efficiently using a basis of block functions (Dirac delta functions for infinites-

imal small blocks). But block signals are not limited in frequency. Band-limited



signals can be represented efficiently using a Fourier basis, but sines and cosines are
not limited in time. The Fourier representation reveals the spectral content of a signal,
but makes it impossible to recover the particular moment in time (or the particular
space coordinates in case of images) where a certain change has occurred. This makes
the Fourier representation inadequate when it comes to analyzing transient signals.
The corresponding time-frequency tilings of the Fourier transform are illustrated in
Figure 2.1(a) along with the basis function.

In signal and image processing, concentrating on transients (such as image dis-
continuities) is a strategy for selecting the most essential information from often an
overwhelming amount of data. In order to facilitate the analysis of transient signals,
i.e., to localize both the frequency and the time information in a signal, numerous
transforms and bases have been proposed (see e.g., |20, 22]). Among these, in sig-
nal processing, the wavelet and the short time Fourier Transform (STEFT) are quite
standard.

In the STFT transform (which is also called the window Fourier transform or the
Gabor transform), the signal is multiplied by a smooth window function (typically
Gaussian) and the Fourier integral is applied to the windowed signal. For a signal

f(z), the STET is [20]
400 .
S(ry,w) = j{ flz)glz — 1)e™79"dx, (2.2)

where g(z) is the window function. Note that the basis functions of a STFT expansion
are g{z) modulated by a sinusoidal wave and shifted in time, i.e., the modulation
frequency is changing while the window remains fixed. A few of these functions
and the corresponding tilings [29] of the time-frequency plane along with the basis
functions are illustrated in Figure 2.1(Db).

This gives rise to the need of a basis consisting of functions that are both time-
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Figure 2.1: Time-frequency tilings and the basis functions for (a) the Fourier, (b) the short
time Fourier and {(c) the wavelet transforms.



limited and band-limited. Wavelets are such functions which literally mean small
waves, and have been termed so due to the requirements that they should integrate to
zero, waving above and below the axis, and that they should be localized. In wavelet
analysis, the scale can be interpreted as the inverse of frequency. The corresponding
tilling of the time-frequency plane and the wavelet bases are illustrated in Figure
2.1(c). As opposed to STFT, which divides the time-frequency plane into equal
blocks, the wavelet transform acts as a microscope {22] focusing on smaller time
phenomena as the scale decreases. This behavior permits a local characterization of

signals, which the Fourier and the window Fourier transforms do not.

2.2 Why wavelets?

Two of the main features of wavelets that are important for the applications that
we shall consider are their good decorrelation and sparse representation of signals.
Wavelets not only represent the signals sparsely by concentrating most of the energy
in a few number of coefficients, they also act as edge detectors. They cluster the
coefficients having significant amount of energy near one another. The locations of
these clusters corresponds to the location of the spatial edges in the signal.

Some of the characteristics of wavelets that make them ideal for signal represen-

tation are as follows:

e Wavelets are localized in both the space/time and scale/frequency domains.

Hence, they can easily detect local features in a signal.

e Wavelets are based on a multi-resolution analysis. Wavelet decomposition allows

us to analyze a signal at different resolution levels (scales).

e Wavelets are smooth, which can be characterized by their number of vanishing

10



moments. A function defined on the interval [a, b] has n vanishing moments if

/Q * flm)wde =0 (2.3)

for 1 =0, 1,..., n— 1. The number of vanishing moments represents how well

smooth signals can be approximated in a wavelet basis.

Furthermore, there exist fast and stable algorithms to calculate the discrete wavelet
transform and its inverse. The computational complexity of this fast algorithm is

O(n).

2.3 Wavelets and multi-resolution analysis

Multi-resolution analysis forms the basis for the development of discrete wavelets and

hence, it is introduced first in this section.

2.3.1 Multi-resolution analysis

Consider the vector space L? of the square integrable functions in R:
2 T
L :{f:/ f(x)da:<oo}. (2.4)
In a multi-resolution analysis, L? is decomposed in nested subspaces V;
LL.CVaCcViCcWhoVicVaC... (2.5)

such that

L N2, V; = {0} and U2 V; = L?, where " represents the closure of the set

concerned
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2. Forany f € L? and any j € Z, f(z) € V; if and only if f(2z) € V.
3. Forany f € L? and any k € Z, f(z) € Vp if and only if f(z — k) € V}

If a function ¢(z) € V}, along with the set of its integer translates {¢(x — %)} ..o,
forms a basis for the space Vj, it is called a scaling function or father function. For

the other subspaces V; (with j % 0) we define:
$ri(x) = 25 9(2z — k). (2.6)

2.3.2 Wavelet functions

The nested nature of the subspaces allows the decomposition of V;,; in V; and W,

the orthogonal component of V; in V-
V} D Wj = V:H-l: (27)

W LV (2.8)

The direct sum of the subspaces W is equal to L%

+o0 400

U vi= @ w,=17

j=-—00 j=—c0

N
S
&=

p—

Thus, V; is a “coarse-resolution” representation of V;y;, while W) carries the “high-
resolution” difference between V; and V1.

If any function ¥(x) € Wy obeys the translation property (Property 3, Section
2.3.1) and along with its integer translates, {(z — &)}y, forms a basis for the space
W, it is called a wavelet function or mother function. For the other subspaces W,
(with j # 0) we define:

Pip(z) = 28(2x — k). (2.10)
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2.3.3 The fast wavelet transform (FWT)

Because Vp and W, are both subspaces of Vi, we can express ¢(x) and ¥(z) in terms

of the basis functions of Vi:
P(z)=2> hp(2z — k), (2.11)
k

Y(x) =2 go(2z — k). (2.12)

Due to multi-resolution analysis, these relations are valid between V4, V; and
W; for any arbitrary j as well. In the above relations, by and g are the lowpass and
high-pass filter coefficients, respectively, that define the scaling function ¢(z) and the
wavelet function ¢(x).

We can also express a function f(z) that is written in terms of the basis functions

of Vi1 in terms of the basis functions of V; and W:
F@) =2 Nrawdie(z),
k

= f(z) = > Mudii(z) + > (). (2.13)

The transform coefficients, A,; and «;;, are defined by:
Aji = ‘/52 Re—otXji1k, (2.14)
k

Vil = \/ézgk»m)\jﬂ,m (2.15)
k

This operation has a complexity O(n) and is used to compute the discrete version
of the wavelet transform (DWT) and hence, is known as the Fust Wavelet Transform
(FWT). It is also known as the filter bank algorithm (Figure 2.2). The inverse wavelet

transform can be obtained in a similar way.
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Decomposition Reconstruction

Figure 2.2: The filter bank algorithm for orthogonal wavelets: filtering and down-
sampling of the signal I yields the low-pass signal LP and the high-pass signal HP.
Signal S is reconstructed by up-sampling and filtering with the corresponding filters.
In case of perfect reconstruction, the input and the output signals are the same

2.3.4 Orthogonal wavelets

If the ¢, and v, are orthonormal, i.e.,:

Vi LW, (2.16)
(Dia, Gip) = v, (2.17)
(Vs Yy w) = 85— 01—, (2.18)

then we can calculate the coefficients of the decomposition in (2.13) by taking the

inner product of the function with scaling and wavelet functions:

Ajel = <f7 ¢j,l> ’ (219)

Yia = {fo i) - (2.20)

Examples of orthogonal wavelets are the family of orthogonal wavelets constructed

by Daubechies [19]. The scaling function and the wavelet function for the member
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with 2 vanishing moments (also known as “D4” because the corresponding wavelet
filter has 4 taps or filter coefficients) are shown in Figures 2.3(a) and (b), respec-
tively. The Symmlet-8 is the least asymmetric compactly supported wavelet with 8
supporting moments and the corresponding scaling function and wavelet function are

shown in Figures 2.3 (c¢) and (d), respectively.

2.3.5 Bi-orthogonal wavelets

To obtain some special properties otherwise not available with the orthogonality con-
ditions, such as linear phase and symmetry, we use the bi-orthogonality conditions in

which we have two multi-resolution analyses, a primal and a dual:
e Primal: ‘/j7 I/Vja d)j,ka d’j,k-
e Dual: ‘7j, ij (gj,kv 7;3;1;-

The bi-orthogonality conditions imply:

v, LW, (2.21)

Vi LW, (2.22)

<<5j,z, ¢j,l/> = 0rv, (2.23)
<’€Zj,l; 1/)j',lf> = 0j_j1 01—y (2.24)

The coefficients of the decomposition in the bi-orthogonal wavelet basis are ob-
tained by taking the inner product of the function with the dual scaling and wavelet

functions:

Moo= {f,811) (2.25)
Y= {f, %51) - (2.26)
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Figure 2.3: Orthogonal scaling and wavelet functions. (a) Daubechies scaling func-
tion with 4 vanishing moments, (b) Daubechies wavelet function with 4 vanishing
moments, (¢) Scaling function for the least asymmetric compactly supported wavelet,
Symumlet, with 8 vanishing moments (Symmlet-8), and (d) Symmlet-8 wavelet func-

tion.
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Decomposition Reconstruction

Figure 2.4: The filter bank algorithm for bi-orthogonal wavelets: filtering and down-
sampling of the signal I yields the low-pass signal LP and the high-pass signal HP.
Signal S is reconstructed by up-sampling and filtering with the corresponding filters.
The filters used for decomposition are the dual of the ones used for reconstruction.
In case of perfect reconstruction, the input and the output signals are the same

We can still use the filter bank algorithm if we use the dual filter pair (A, §)
(related to the dual multi-resolution analysis) for the decomposition and the primal
filter pair (h, g) (related to the primal multi-resolution analysis) for the reconstruc-
tion. Such a filter bank algorithm is depicted in Figure 2.4.

Examples of bi-orthogonal wavelets are the family of bi-orthogonal wavelets con-
structed by Cohen, Daubechies and Feauveau (CDF) [30]. The primal and dual

scaling and wavelet functions for the bi-orthogonal 1-3 member of the CDF family is

illustrated in the Figure 2.5.

2.3.6 Higher dimensions

The above wavelets were defined on a one-dimensional domain. To create wavelets for
higher dimensional domains, we can perform the one-dimensional wavelet transform
independently for each dimension in any order.

In the two-dimensional case we can get the square variant of the decomposition

(see Figure 2.6) and the basis functions are the tensor products of the one-dimensional
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Figure 2.5: Scaling and wavelet functions for the Bi-orthogonal 1-3 case. (a) Dual
scaling function, (b) Dual wavelet function, (c¢) Scaling function, and (d) Wavelet
function.
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Figure 2.6: The two-dimensional wavelet transform (square variant) with two succes-
sive levels of decomposition.

basis functions. After one transform step we have:

$(z) © 9(2)[(x) ® U(2) -
¥(z) @ ¢(z)|v(z) ® Y(z)

The filter bank algorithm for the two-dimensional wavelet transform for one de-
composition level is shown in Figure 2.7. The image is decomposed into four sub-
bands, namely LL, HL, LH and HH, where LL represents the approzimation subband
containing the low-pass equivalent of the image, HL represents the detail subband con-
taining the horizontal edge information in the image, LH represents detail subband
containing the vertical edge information in the image, and HH represents the detail
subband containing the diagonal edge information in the image. At each subsequent
level of decomposition, the approximation subband is further decomposed into four

more subbands.

2.4 The wavelet transform and translation invari-

arnce

The sub-sampling of the signal in the filter bank causes the wavelet transform to vary

with translations. Only if delay or advance is a multiple of 27, with n the number
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Columns Rows

Figure 2.7: The filter bank algorithm for a two-dimensional orthogonal wavelet trans-
form of the two-dimensional signal 7 (e.g., image). The one dimensional transform is
first applied along the columns and then on each row. The resultant output has the
same size as the input signal.

of transform levels, will the wavelet transform be a delayed or advanced version of
the original transformed signal. In two dimensions, this condition needs to be true in
both the vertical and horizontal directions.

The wavelet transform can be converted into an invariant transform by removing
the sub-sampling step from the decomposition filter bank. This is called the redundant
wavelet transform or stationary, or non-decimated wavelet transform [31]. At each
resolution step the filters have to be up-sampled to keep a consistent multi-resolution
analysis. Also, the computational complexity is increased to O(pn), with p < log(n)
the number of transform levels. For the inverse transform, a mean value of appropriate

transform coefficients has to be calculated due to the redundancy in the forward

transform.
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Chapter 3

Image Denoising Using Wavelets

This chapter describes the application of wavelets in image denoising and introduces
some of the commonly employed image denoising methods. We also describe a new
method for denoising images in the wavelet domain using thresholds that are adapted

using the hierarchical information corresponding to each coeflicient.

3.1 Introduction

Image denoising represents a trade-off between noise suppression and preserving ac-
tual image features like edges and details. To remove noise without excessive smooth-
ing of important details, a denoising algorithm needs to be spatially adaptive.
Figure 3.1 illustrates the 3-level orthogonal DWT of the test image Lena. The
DWT of an image yields fairly well decorrelated wavelet coefficients. However, as
can be seen, these coefficients are not entirely independent. The large-magnitude
coefficients tend to occur near each other within subbands, and also at the same
relative spatial locations in subbands at adjacent scales and orientations, as noted,
e.g., in [32]. Note that the positions of the large wavelet coefficients indicate image
edges, i.e., the DWT has an edge detection property. Figure 3.1 also illustrates the

sparsity of the DWT of images, which makes it in particular suitable for image coding
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(a) Test image ~ Lena (b) 3-level DWT

Figure 3.1: (a) Test image Lena, and (b) 3-level dyadic wavelet decomposition of
the test image using Symmlet-8 orthogonal wavelet. The detail subbands have been
scaled for display purposes.
and compression, and denoising.

The wavelet representation, due to its sparsity, edge detection and multi-resolution
properties, naturally facilitates such spatially adaptive noise filtering. A common

procedure is: (1) Compute the DWT or non-decimated wavelet transform; (2) Remove

noise from the wavelet coeflicients; and (3) Reconstruct the denoised image.

3.2 Input signal models and notations

3.2.1 Time domain representation

A digital image can be seen as a matrix of pixels. The row and column location
of any coeflicient in the matrix defines the location of the pixel in the image. We
denote a discrete image as x = {z;;:¢=1,2,...,Nand j=1,2,..., M}, where 4

and 7 denote the spatial position and N x M is the size of the image. The boldfaced
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letters represent the matrix representations of the signals being considered.
In this thesis we consider the following additive model of a discrete image x and

noise ¢

g=x+e¢. (3.1)

The signal g is the received input. The noise ¢ is a matrix of random variables,
while the unknown x is a deterministic signal. One might also start from a fully
stochastic model, considering x as well to be a specific realization of a random matrix.

The noise considered has zero mean and is uncorrelated, i.e.,
E(e) =0, (3.2)

E(ey, cu) = 0;0(i — D)5 — k). (3.3)

Such a noise matrix is called white. If all the noise coefficients follow the same
distribution, they are said to be identically distributed. This implies that ¢}, = ¢
for all 4 and j. If Gaussian distributed noise variables are uncorrelated, they are
statistically independent. This thesis concentrates on the case where the additive noise

coefficients are independent and identically distributed (i.i.d.) and have a Gaussian

distribution (additive white Gaussian noise, AWGN).

3.2.2 Wayvelet domain representation

In the wavelet domain, a sparse representation leads to the compression of the most
essential information in a signal into relatively few, large coefficients which correspond
to areas of major spatial activity (edges, corners, peaks) in the image. On the other
hand, corrupting noise is spread over all the coefficients.

Let W and W™! be the two dimensional orthogonal or bi-orthogonal discrete

wavelet transform (DWT) matrix and its inverse, respectively. Due to linearity of the
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Figure 3.2: The subband structure for a 4-level DWT decomposition and the parent-
child relationship among the wavelet coefficients in successive subbands.
wavelet transform, the additive model (3.1) remains additive in the wavelet domain

also:

Y=X+N (3.4)

where, Y = Wg represents the matrix of wavelet coefficients of the observed image
signal. Similarly, X = Wx and N = We represent the matrix of wavelet coeflicients
of the original noise-free image and the additive noise, respectively. The detail sub-
bands are H Hy, HL; and LHy, where k is the scale varying from 1,2,...J, and J is
the total number of decompositions. The size of the subband at scale k is %X%\dg The
subband LL; is the low-resolution residue. Figure 3.2 shows the subband represen-

tation for a 4-level dyadic representation of an image.
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An orthogonal wavelet transform maps the additive white Gaussian noise, with

2

a variance ¢“, in the input image to an additive Gaussian noise, with a variance

o?, in the wavelet domain. The case with bi-orthogonal wavelet transform is more

complicated, but the variance of the transform coeflicients of the noise is constant for

each subband and can be estimated easily [33].

3.3 Noise variance estimation

2 is not known in an application, then it has to be estimated

If the noise variance ¢
from the input data. In the wavelet domain, the highest frequency subband of the
decomposition is commonly used for this estimation. In the DWT of an image, the
HH,; subband contains mostly noise and only a few significant wavelet coefficients
corresponding to the high frequency information in the original image. The median
method is used to get a robust estimate of noise. The median causes the estimate
to be insensitive to the isolated high amplitude coefficients reflecting high frequency
information. In [14], it was proposed

Median [|[{Y; : 4,7 € HH;}|]
0.6745 '

b = (3.5)
This expression above results from the relationship between the median and standard
deviation of the random variables generated using the absolute value of the normally
distributed random variables. The estimate in (3.5) is commonly used in image

denoising [11, 34] and we use it in this thesis as well.
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3.4 State-of-the-art overview of wavelet domain de-
noising

The wavelet transform, owing to its sparsity, edge detection and multi-resolution
properties, naturally facilitates edge preserving noise suppression in images. But
as is the case with noise suppression in the time domain, one question needs to be
answered in the wavelet domain as well: How to separate noise from the original
image signal?

Over the years, several different approaches have appeared in the literature as
an answer to the above question. Some of these methods are unique to the wavelet
domain, while others are adaptations of noise removal methods in time domain, where
the adaptations have been done keeping in mind the special characteristics of the

wavelet transform.

3.4.1 Image denoising using wavelet thresholding

Wavelet thresholding is one such approach that was conceived for the specific purpose
of denoising in the wavelet domain. Its popularity stems from its simplicity, where
the basic idea is that each coefficient in the orthogonal wavelet domain is thresholded
by comparing against a threshold. Thresholding implies that a coefficient is set to
zero if it is smaller than the threshold, otherwise, it is either kept or modified. While
one of the first reports about this approach was by Weaver et al. {35], Donoho and
Johnstone [36]-[14] are credited with the development of a systematic theory. They
have shown that the various thresholding schemes for denoising are asymptotically
optimal in the minimax mean square error (MSE) sense.

Two classical thresholding policies are hard-thresholding [13] and soft-thresholding
[37], where each wavelet coefficient is multiplied by a given shrinkage factor, which is

a function of the magnitude of the coefficient. In both the cases, this multiplication
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with the shrinkage factor sets the coefficients that are below a certain threshold to
zero. In hard-thresholding, the remaining coefficients are left unchanged, while in soft-
thresholding, the magnitudes of the coefficients above the threshold are reduced by an
amount equal to the threshold value. Owing to the discontinuous nature of the hard-
thresholding scheme, it yields abrupt artifacts in the reconstructed images and thus,
in image processing applications soft-thresholding is often preferred over the hard one
(e.g., [11]). Various other thresholding policies, such as the “non-negative garrote”
function [38] and the “hyperbola” function [25], have been proposed as compromises
between the classical hard and soft thresholding policies. We provide a more detailed
discussion on the thresholding techniques in Section 3.5.1.

For the wavelet thresholding to be effective, the choice of the threshold is of
primary importance, and a number of publications have been devoted to it. Most
of the methods for estimating the threshold assume that the noise corrupting the
original noise-free image is additive white Gaussian noise (AWGN). One of the earliest
well known threshold estimation methods is the unwersal threshold of Donoho and
Johnstone [13]. This threshold aims at the removal of all the noisy coefficients that
are smaller than the expected maximum of the the additive Gaussian noise in the
wavelet domain. At different resolution scales in the wavelet domain, the threshold
differs only in a constant factor that is dependent upon the number of coefficients in
a given subband.

Subsequent to the work of [13] more sophisticated thresholds that are adaptively
estimated for each level have been proposed. Donoho and Johnstone [14] proposed
the subband adaptive SURFE threshold, which was derived by minimizing the Stein’s
unbiased risk estimate {39] while using soft-thresholding. Nason [40] developed a
cross-validation method for selecting a wavelet regression threshold that produced
good estimates with respect to the mean square error. Jansen et al. [41] and Weyrich

and Warhola [42] have used generalized cross-validation in a noise reduction algorithm



based on wavelet thresholding to estimate the optimal threshold without the knowl-
edge of noise variance and have also applied it to correlated noise. The threshold
estimation methods proposed in [43, 11] derive the optimum threshold by minimiz-
ing the mean squared error in a thresholded signal. An g prior: distribution of the
noise-free wavelet coefficients is assumed in these methods. While Ruggeri and Vi-
dakovic [43] estimate the optimal threshold for using hard thresholding to suppress
noise in the signal, Chang et al. [11] have proposed a nearly optimal threshold for
noise removal using soft-thresholding. Hilton [44], taking into account the clustering
properties of the wavelet coefficients, suggested a data analytic threshold. However,
all of the above threshold estimation techniques yield a constant value for each detail
subband, and thus are spatially uniform. A better option would be to decide for each
coefficient separately whether to keep it or set it to zero using a spatially varying
threshold. One such spatially adaptive threshold with context-modeling of wavelet

coefficients was proposed by Chang et al. [45, 46].

3.4.2 Image denoising using multi-scale products

Approaches other than wavelet thresholding have also been proposed. In the real-
world signals and images, the transitions are less abrupt than those produced by the
noise. The actual edges in a signal or image produces large wavelet coefficients across
many scales, i.e., they are persistent across scales; noise, on the other hand, dies out
quickly as the scale increases. This persistent change in the wavelet transform coeffi-
cients through different scales can also be used as a criterion for selecting “important”
or “significant” coeflicients from which a denoised image is to be reconstructed.

In parallel with Donoho and Johnstone’s work, Mallat and Zhong [47] were the first
to introduce the complete multi-scale edge representation of signals using quadratic
spline wavelets. They showed the detection and characterization of the multi-scale

edges using the local maxima of the wavelet transform. Xu et al. [48] adapted this
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idea in this basic and simple algorithm for removing additive white Gaussian noise
(AWGN) from signals. They proposed using the correlation of the wavelet coefficients
across adjacent scales to distinguish significant edges from noise, and called it spatially
selective noise filtration. Pan et al. |49] examined the behavior of the AWGN in [48]
and proposed a noise level estimation technique. While Xu et al. [48] use inter-scale
products of the wavelet coefficients at adjacent scales in order to detect the edge
coeflicients, the selection of these significant coefficients has been based on the inter-
scale ratios in [50]. A method similar to [48] was used by Sadler and Swami [51]
and some theoretical justification was provided. They named their technique multi-
scale product method (MPM). Ge and Mirchandani [52] have studied the relationship
between the MPM approach and Donocho and Johnstone’s hard-thresholding rule.
They have further extended the MPM to a soft-thresholding-like method and have
suggested a technique to extract the weak features while avoiding the extraction of

noise for image reconstruction.

3.4.3 Bayesian methods for image denoising

To improve upon the ad-hoc nature of the thresholding policies, various Bayesian
approaches to wavelet shrinkage have been developed, which are less ad-hoc and have
been shown to be effective [53, 54, 55|. The shrinkers developed using the Bayesian
rules inherently have the desirable property that they can heavily shrink the small
coefficients and only slightly shrink the large coefficients.

For the development of the Bayesian shrinkage rules, it is necessary to assume an a
priori distribution of the noise-free image wavelet coefficients. The histograms of the
wavelet coefficients are sharply peaked at zero with heavy tails. Mallat [56] modeled
the prior distribution of the image wavelet coeflicients as a generalized Laplacian
distribution (also known as the generalized Gaussian distribution (GGD)). This model

is often used in image processing literature, e.g., |57, 11, 46, 58, 59, 60]. The image
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wavelet coefficients are also modeled using a Gaussian mizture, where the mixture
parameter can be a constant for each subband [61], or can be estimated for each
subband coefficient [62, 63, 64]. Gaussian scale mizture (GSM) models have also
been used in several methods, e.g., |65, 66, 67|, where each coefficient is modeled as a
product of two random variables. The spatial interactions among wavelet coefficients
have also been modeled using the Markov Random Field (MRF) prior models for
spatial clustering [68].

The Bayesian wavelet domain filtering techniques, that assume the wavelet coef-
ficients as mutually independent, result in a simple shrinking of the noisy coefficients
that is less ad-hoc than the classical thresholding, and also outperform the hard- and
soft-thresholding rules in terms of the MSE [61, 53]. Moulin et al. [58] have developed
a denoising scheme based on the maximum a posteriori estimates of the noise-free im-
age subband coefficients. Under the minimum mean squared error (MMSE) criterion,
the optimum estimate of the noise-free wavelet coefficients have been studied by Si-
moncelli and Adelson [59]. In this, they have assumed a GGD prior for the image
coefficients. Another class of Bayesian shrinkers are derived from modeling the noisy
wavelet coefficient themselves. Chipman et al. [61] have modeled these as mixtures
of Gaussians and derived the MMSE estimates of the noise-free coefficients. Locally-
adaptive wavelet domain Wiener filtering schemes are developed in [69, 65, 66, 67].
These result from the MMSE criterion when local GSM models are used as priors for
the noisy wavelet coefficients. A locally adaptive Bayesian shrinking scheme based

on the identification of the “signal of interest” has been developed in [70].

3.5 Denoising by wavelet thresholding

Wavelet thresholding is a popular and simple approach for denoising, and an overview

of the current state-of-the-art was provided in the Section 3.4.1. For denoising images
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in the wavelet domain using the thresholding of coefficients, two decisions need to be
made. Firstly, the thresholding policy needs to be decided using which the coefficients
would be thresholded. Secondly, an estimate of the threshold itself is needed in order
to apply the thresholding policy.

In this section, we first describe the different kinds of thresholding rules and then
discuss two of the most popular ways to estimate the threshold that is to be used by

the thresholding rules.

3.5.1 Hard and soft thresholding

Two of the most popular thresholding rules are: hard-thresholding, (keep or kill), and
soft-thresholding, (shrink or kill). The two thresholding schemes can be represented
diagrammatically as in Figure 3.3. In both cases, coefficients below the threshold
are set to zero. In hard-thresholding (Fig. 3.3(a)), the remaining coefficients are left
unchanged. For an estimated threshold value T, hard-thresholding of a coefficient x

can be presented as
o 0, iflz| <T
T () = (3.6)
z, if || >T
In soft-thresholding (Fig. 3.3(b)), the magnitudes of the coeflicients above the
threshold are reduced by an amount equal to the threshold. For an estimated thresh-
old T, the soft-thresholding of a coefficient z can be written as
. 0, if || <T )
T (g) = (3.7)
sign(z) (Jz| = T), if |z| > T
In soft-thresholding, the estimates are biased: large coefficients are always reduced
in magnitude; therefore, the mathematical expectations of their estimates differ from

the observed values. The reconstructed image is often over-smoothed. On the other

side, a disadvantage of hard-thresholding is its abrupt discontinuity: estimates have a
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larger variance and may be highly sensitive to small changes in the data. In practice,
especially when the noise level is high, hard-thresholding yields abrupt artifacts in the
reconstructed image. Due to this, in image processing applications soft-thresholding
is usually preferred to hard-thresholding.

A compromise between the classical hard- and soft-thresholding rules was proposed
in [25] in the form of a hyperbola function. The thresholding rule can be expressed
as:

0, if o) <T
Thyperbola(x) — | i (38)

sign(z)vz? — T2, if |z| > T
Eq. (3.8) attenuates the large coefficients less as compared to the soft-thresholding
rule and is continuous.
In this thesis, keeping in view the advantages, simplicity, and popularity, we use

the soft-thresholding scheme in our algorithms.

3.5.2 Threshold selection

In wavelet thresholding, a considerable amount of literature has been devoted to the
choice of the threshold. An appropriately chosen threshold parameter is necessary in
order to remove the noise from the corrupted wavelet coefficients. If the threshold is
too large, then the features in the reconstructed image would appear blurred or over-
smoothed due to excessive loss of information. On the other hand, if the threshold
is too small, then not enough noise is removed from the wavelet coefficients, and the
reconstructed image is still noisy.

In this thesis, we concentrate on two of the more popular methods to estimate the

threshold parameter: SureShrink and BayesShrink.

e SureShrink

For one-dimensional data, Donoho and Johnstone proposed a threshold [14]

derived by minimizing the Steins unbiased risk estimate (SURE) [39]. The
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x = Corrupted Signal

vy = Hard—thresholded
Signal

(a) Hard-threshold

by

x = Corrupted Signal
v = Soft—thresholded
Signal

{(b) Soft-threshold

Figure 3.3: (a) Hard-thresholding of a noisy signal, and (b) Soft-thresholding of a
noisy signal

33



threshold depends upon the shrinkage function used and can be generalized to
images. For the detail subband s, the threshold, 7%, to be used with the soft-
thresholding function, is chosen as the value that minimizes the Steins unbiased

estimate of the risk, SURES(T,Y),
TS = arg min SURES(T,Y), (3.9)

where Y denotes the detail coefficients from the subband s, and

SURE®(T,Y) = N, + Z:%:L [min (|Y;;], T)]* — 2 [(number of Yj,) : ¥;; < 77,
e (3.10)

Here, N, is the number of coefficients Y;; in Y, and K and L represent the size
of the subband s in terms of the number of rows and columns, respectively.
The threshold above assumes o = 1. For images with AWGN having o # 1,
the coefficients are normalized by an estimate of the noise standard deviation

before calculating the threshold with (3.10). The estimation of the standard

deviation of the corrupting noise is explained in Section 3.3.

It was shown in [14] that, in the case where the wavelet coefficient decom-
position is sparse, a hybrid method combining the universal and the SURE
thresholds is preferable over SURE. For a transformed image having N x M
coefficients that have been normalized to have a unit variance, the universal

threshold is given by

T =./2log(KL) (3.11)

This hybrid method, when combined with the soft-thresholding function, is

referred to as SureShrink in the literature [14]. If

1 i=K,j=L {<Y;J>2 :l (10g2 KL)%
- L RS 1) I Tt 3.12
Ny i:%:l Vol (KL ( )
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then SureShrink uses the universal threshold, otherwise SURFE threshold is used

for the coefficients in the subband s.

BayesShrink

Chang et al. {11] use a Bayesian mathematical framework for images to derive a
subband dependent threshold that is nearly optimal for soft-thresholding. The

rule is called BayesShrink.

The subband coefficients of an original noise-free natural image can be modeled
using a GGD prior. The distribution of the noise-free subband coeflicients,

py(y), can be expressed as:

pyly) = 2515(5) exp (~' V) , 5,0 >0 (3.13)

w2

where ['(z) = [ t*~le~tdt is the Gamma function. Under this prior assump-
tion, the nearly optimal threshold, assuming soft-thresholding can be expressed

as:

Ty = — (3.14)

where 62 is the estimated noise variance, and 6x is the estimated signal standard
deviation in the considered subband. The noise variance is estimated by using

(3.5). The estimate of the signal standard deviation is

6x = \/max (6% — 62,0) (3.15)
where
1 =Ki=L
-9 2
5 =1 j=

is the estimate of the variance of the observations, with NV, > 1 being the

number of transform coefficients Yj; in the subband under consideration. In
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case 62 > 6%, all coefficients from the subband are set to zero.

The normalized threshold, If—, is inversely proportional to 6x, the standard

deviation of the noise-free coefficients in the subband considered, and inversely

proportional to &, the standard deviation of the noise. When f; <& 1, the signal

18 much stronger than the noise, Tf— is chosen to be small so as to preserve most

of the signal and remove some of the noise. On the other hand, when f}—f > 1,
Tr

the noise dominates the signal, = is chosen to be large so as to aggressively

remove most of the noise from the signal.

3.6 Hierarchical adaptation of thresholds

The parent-child relationship between the different subband coefficients has been
exploited successfully for a long time for compression (e.g. [71]). For subbands LHy,
HL, and HHj, with scale k < J — 1, the parent subbands are defined as LHy, 1,
HLy.1 and HHy, 1, respectively (see also Fig. 3.2). Similarly, for the subbands LHy,
HL, and HHy, with scale 2 < k < J, the children subbands are defined as LH_1,
HI 1 and HH,_q, respectively. For the approximation subband LL;, the children
subbands are defined as HH;_;, HL;_; and LH;_,. For a subband coefficient, Y;;, at
the position (4, j) in a subband, the parent coefficient, P;, is the ({%1 ) {%b coefficient
in the parent subband, where [.] maps the input value to the nearest lower integer.
Since the coefficient values in subsequent subbands are correlated, a coefficient
having a relatively higher value in a parent subband, which usually represents an edge
or high frequency information, gives a fair indication that the corresponding children
coefficients would more probably have relatively higher values than not. A zero in
a parent subband indicates a zero or low value in the children coefficients. Using
this philosophy, we scale the threshold calculated for the entire subband using the

individual parent coefficients, thus yielding an adaptive threshold acting individually
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on each subband coefficient. We do the computations for all the HL subbands in
decreasing order of scales, followed by LH and HH subbands. Since a parent subband
is denoised earlier than the progeny, we use the denoised parent coefficients to get
an accurate estimate of the corresponding coefficient values for the actual image. We

define the hierarchically adapted threshold, HAT;; for each subband coefficient as

T
(a, +3 | Py )

maxi,; {|Pi])

HAT,; = (3.17)

where, 1" is the threshold calculated using BayesShrink or SureShrink, and F;; are the
soft-thresholded parent coefficients. The variable in the denominator, a > 0, has been
added to avoid the singularity that occurs when the thresholded parent coefficient is
zero. The variable § > 0 is used to vary the contribution of the parent coefficient
in the final scaling of the subband optimal threshold. The parameters o and 5 are
experimentally determined and their estimation would be discussed in Section 3.9.
In case the relative value of the parent coefficient is low (e.g., zero), the threshold
value is made higher to threshold the current subband coefficient more strongly as
the value of the original coeflicient would most likely be low and the rest of the
contribution to this coefficient is due to white noise. In case of a high relative value
of a parent coefficient, the threshold is lowered so as to retain more of the current

coefficient.

3.7 Image denoising algorithm

This section describes the image denoising algorithm, which achieves near optimal
soft thresholding in the wavelet domain for recovering the original signal from the
noisy one. The algorithm is very simple to implement and computationally efficient.
The steps to denoise the corrupted image using the hierarchically adapted threshold

are described in Algorithm 1 (also see Fig. 3.4).
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Algorithm 1 Image denoising using hierarchically adapted threshold

STEP I  Perform multi-scale decomposition [56] of the image corrupted by Gaus-
sian noise using wavelet transform.

STEP II  Estimate the threshold for each subband (except the lowpass residual)
11, 14].

STEP III For each subband coefficient, calculate the hierarchically adapted thresh-
old using (3.17).

STEP IV Apply soft thresholding to the subband coefficients using (3.7).

STEP V  Invert the multi-scale decomposition to reconstruct the denoised image .

Input Image

Wavelet Transform

Hierarchically Adapted Thresholding

|

Inverse Wavelet Transform

Denoised Image

Figure 3.4: Block diagram for image denoising in the wavelet domain using hierar-
chically adapted thresholding

38



3.8 Performance evaluation in image denoising

The objective of image denoising is to produce an estimate, X, of the unknown noise-
free image, x, which approximates it best under a given evaluation criteria. A common
criteria is the minimization of the mean squared error (MSE) of the result as compared

to the original image

1 5 1 i:]%:]\/f 9
MSE = —— |x — &||° = — (235 — &i5)" . (3.18)
NM NM 5, 79"

The signal to noise ratio (SNR) can be expressed in terms of the MSE as

x|*

2
X —X

where SNR is in dB. In image processing, another common performance measure is
the peak signal to noise ratio (PSNR), which, for 0-255 level gray-scaled images, is

defined as
2552

PSNR =10 lOglo m

dB (3.20)

As such, the objective measures defined above do not reflect the human perception
or the wisual quality of the images. Thus, a more subjective measure, as visual
inspection of the resulting images, is also required along with the objectives measures

like MSE, SNR and PSNR.

3.9 Experimental results and discussions

Experiments are conducted on ten different natural gray scale test images of vary-
ing sizes. Test images Adrplane, House, Peppers and Cameraman are of size 256 x
256 pixels. The test images Lena, Barbara, Boat, Mandrill and Goldhill are of size

512 x 512 pixels, while test image Monarch is of size 512 x 768 pixels. Ten dif-
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o

| |
Lena h[ [ 20 | 15 | 20 | 25 [ 30 | 55 | a0 | 5 | s {

Initial PSNR 34.15 [28.14 i 24.62 [ 22.14 ‘ 20.24 { 18.71 [ 17.44 l 16.36 ! 15.43 { 14.62

BayesShrink 36.82 33.40 31.48 30.19 29.22 28.47 27.85 27.3 26.81 26.34
HA BayesShrink || 37.18 | 33.8%L | 31.82 | 30.78 | 28.77 | 28.86 | 28.25 | 27.72 | 27.15 | 26.76

SureShrink 36.71 33.43 31.31 30.06 29.03 28.39 27.83 26.91 26.33 25.79
HA SureShrink 36.88 | 33.85 | 31.83 | 30.56 | 20.35 | 28.82 | 28.16 | 27.34 | 26.78 | 26.05

Table 3.1: PSNR results for denoising experiments with Lena image corrupted with
different noise powers.

| | : |

| Babera || 5 | 10 | 15 | 20 | 25 [ 30 | 35 | 20 | s | 50 |
| Initial PSNR || 3415 | 284 | 2462 | 2204 | 2024 | 1871 | 17.44 | 1636 | 1543 | 142 |
BayesShrink 35.81 | 31.06 | 28.76 | 27.36 | 26.27 | 25.37 | 2463 | 24.01 | 23.49 | 23.04

HA BayesShrink || 35.98 | 31.37 | 29.01 | 27.72 | 26.58 | 25.69 | 24.96 | 24.38 | 23.82 | 234

SureShrink 35.48 30.66 28.79 27.37 26.25 25.25 24.33 23.86 23.23 22.46
HA SureShrink 35.72 | 30.98 | 29.02 | 27.75 | 26.55 | 25.54 | 24.68 | 24.15 | 23.52 | 22.68

Table 3.2: PSNR results for denoising experiments with Barbara image corrupted
with different noise powers.
ferent levels of additive white Gaussian corrupting noise with standard deviations,
= 5,10, 15, 20, 25, 30, 35,40, 45 and 50 have been used to corrupt the test images
before the application of the denoising algorithm. The wavelet transform employs
Symmlet-8 filters at four scales of decomposition. Denoising has been achieved by
soft thresholding the detail wavelet coefficients.
To assess the performance of the proposed scheme, BayesShrink and SureShrink
| | o

|
[ Boat ” 5 { 10 { 15 ’ 20 i 25 [ 30 l 35 I 40 [ 45 ! ‘
! Initial PSNR lL 34.15 l 28.14 l 24.62 1 22.14 { 20.24 i 18.71 [ 17.44 ] 18.36 [ 15.43 ’ 14.62 l

BayesShrink 35.03 31.94 29.96 28.58 27.54 26.71 26.04 25.47 24.97 24.52
HA BayesShrink 35.31 | 32.42 | 30.32 | 28.93 | 27.87 | 27.10 | 26.41 | 25.84 | 25.42 | 24.86

SureShrink 34.55 31.90 29.86 28.57 27.57 26.54 25.75 25.16 24.76 24.39
HA SureShrink 34.81 | 82.31 | 30.24 | 28.895 | 27.92 | 26.89 | 26.12 | 25.46 | 25.08 | 24.88

Table 3.3: PSNR results for denoising experiments with Boat image corrupted with
different noise powers.
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|

i }

| Mandril 5 10 15 20 25 30 35 10 45 50
|
{ Initial PSNR H 34.15 j 28.14 I 24.62 ] 22.14J 2024 | 1871 i 17.44 ] 16.36 [15.43 | 14.62 }
BayesShrink 3549 | 31.24 | 29.04 | 27.56 | 26.43 | 2552 | 2476 | 2409 | 23.51 | 22.98
HA BayesShrink || 35.81 | 31.66 | 29.48 | 28.12 | 26.97 | 25.92 | 25.13 | 24.46 | 23.91 | 23.34
SureShrink 3550 | 31.27 | 28.96 | 27.51 | 26.43 | 2546 | 2474 | 24.09 | 23.49 | 22.99
HA SureShrink || 35.79 | 31.63 | 29.34 | 27.98 | 26.92 | 25.86 | 25.08 | 24.43 | 23.85 | 23.3
Table 3.4: PSNR results for denoising experiments with Maendrill image corrupted
with different noise powers.
( [ :
| Gownn || 5 | 10 | 15 | 20 | 25 | s0 | s | 40 | a5 | s0 |
] Initial PSNR “ 34.15 ’ 28.14 } 24.62 ] 22.14 j 20.24 [ 18.71 ] 17.44 I 16.36 ] 15.43 ] 14.62 ]
BayesShrink 35.67 | 319 | 20.84 | 2856 | 27.68 | 27.05 | 2651 | 26.03 | 256 | 25.19
HA BayesShrink || 35.98 | 32.34 | 30.35 | 29.21 | 28.23 | 27.52 | 26.97 | 26.45 | 25.91 | 25.50
SureShrink 3537 | 31.86 | 29.85 | 2831 | 27.64 | 26.95 | 26.27 | 25.61 | 2532 | 25.01
HA SureShrink || 85.69 | 32.3 | 30.38 | 28.72 | 27.98 | 27.45 | 26.74 | 26.21 | 25.72 | 25.43
Table 3.5: PSNR results for denoising experiments with Goldhill image corrupted
with different noise powers.
L | o |
| diptane | 5 | 10 | 15 | 20 | 25 | s0 | s | 40 | a5 | s0 |
] Initial PSNR “ 34.15 l 28.14] 24.62 I 22.14 ] 20.24 [ 18.71 l 17.44 [ 16.36 [ 15.43 J 14.62 I
BayesShrink 37.46 | 33.55 | 31.54 | 30.31 | 29.45 | 28.69 | 27.91 | 27.12 | 26.31 | 2555
HA BayesShrink || 37.79 | 34.09 | 32.02 | 30.75 | 29.91 | 29.03 | 28.31 | 27.50 | 26.68 | 25.93
SureShrink 3874 | 347 | 3210 | 3085 | 20.65 | 27.64 | 2597 | 25.46 | 24.99 | 2450
HA SureShrink || 38.98 | 34.92 | 32.42 | 31.13 | 20.98 | 28.03 | 26.45 | 25.94 | 25.42 | 24.89
Table 3.6: PSNR results for denoising experiments with A#rplane image corrupted
with different noise powers.
f
| | : |
] House I 5 | 1o ] 15 | 20 [ 25 | s0 | 35 [ a0 | 45 [ s0 |
[ Initial PSNR H 34.15 {28.14 { 24.62 [ 2214 I 20.24J 18.71 ! 17.44 [ 16.36 | 15.43 [ 14.62 ]
BayesShrink 36.88 | 32.86 | 30.76 | 20.35 | 28.37 | 27.60 | 26.97 | 26.42 | 2591 | 2545
HA BayesShrink || 87.12 | 33.17 | 31.14 | 20.92 | 28.93 | 28.14 | 27.56 | 26.91 | 26.47 | 25.96
SureShrink 36.94 | 3242 | 30.66 | 20.14 | 2833 | 27.33 | 26.12 | 25.77 | 2543 | 2510
HA SureShrink || 37.18 | 32.85 | 31.12 | 29.63 | 28.91 | 27.89 | 26.67 | 26.14 | 25.96 | 25.54

Table 3.7: PSNR results for denoising experiments with House image corrupted with
different noise powers.
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| | -

{ Peppers JLS]10'15]20[25|30i35240|4

|
EN
|

{ Initial PSNR ” 34.15 | 28.14 ] 24.62 ] 22.14 [ 20.24 ] 18.71 ] 17.44 ] 16.36 ] 15.43 ] 14.62
BayesShrink 3594 | 31.56 | 20.43 | 28.04 | 26.80 | 25.89 | 2495 | 241 | 2339 | 2271
HA BayesShrink || 36.31 | 31.92 | 29.92 | 28.59 | 27.53 | 26.47 | 25.52 | 24.59 | 23.92 | 23.06
SureShrink 3537 | 31.91 | 20.39 | 27.96 | 2561 | 24.73 | 2367 | 22.90 | 2246 | 2217
HA SureShrink || 35.71 | 32.43 | 30.15 | 28.74 | 26.23 | 25.24 | 24.36 | 23.57 | 23.13 | 22.86
Table 3.8: PSNR results for denoising experiments with Peppers image corrupted
with different noise powers.
| | |
{ Cameraman, ” 5 J 10 l 15 l 20 ! 25 [ 30 , 35 l 40 ! 45 [ |
( Initial PSNR ” 34.15 I 28.14 f2462 ] 22.14 [20.24 ] 18.71 ] 17.44 ] 16.36 } 15.43 ] 14.62 |
BayesShrink 3595 | 31.27 | 28.86 | 27.28 | 26.07 | 25.13 | 2435 | 23.69 | 23.11 | 22.60
HA BayesShrink || 86.45 | 31.85 | 28.57 | 27.96 | 26.76 | 25.81 | 25.02 | 24.34 | 23.82 | 23.03
SureShrink 35.38 | 30.93 | 28.81 | 26.89 | 25.68 | 24.42 | 2388 | 23.06 | 2246 | 22.09
HA SureShrink || 35.79 | 31.61 | 29.53 | 27.62 | 26.38 | 25.14 | 24.57 | 23.78 | 23.05 | 22.62
Table 3.9: PSNR results for denoising experiments with Cameraman image corrupted
with different noise powers.
| u : |
[ Monarch H 5 l 10 [ 15 [ 20 ] 25 [ 30 I 35 ’ 40 | 45 ] 50 [
( Initial PSNR H 3415 | 28.14 | 24.62 i 22.14 ] 2024 | 18.71 } 17.44 ] 16.36 [ 1543 [ 14.62 ,
BayesShrink 37.20 | 33.09 | 30.76 | 20.27 | 2826 | 27.47 | 26.79 | 26.17 | 25.60 | 25.07
HA BayesShrink || 37.62 | 33.79 | 31.43 | 20.93 | 28.95 | 28.12 | 27.42 | 26.82 | 26.12 | 25.56
SureShrink 3705 | 33.35 | 30.80 | 29.31 | 2822 | 27.49 | 2682 | 2585 | 2537 | 2461
HA SureShrink || 37.46 | 33.91 | 31.43 | 28.95 | 28.97 | 28.25 | 27.42 | 26.46 | 25.96 | 24.93
Table 3.10: PSNR results for denoising experiments with Monarch image corrupted
with different noise powers.
i n : |
l Average H 5 [ 10 l 15 ! 20 [ 25 I 30 i 35 I 40 J l 50 l
i Initial PSNR JL34.15 f 28.14 i 24.62 j 22.14 f 20.24 J 18.71 ] 17.44 } 16.36 } 15.43 ] 14.62 ]
BayesShrink 36.23 | 3219 | 30.04 | 28.65 | 27.62 | 26.79 | 26.08 | 2544 | 24.87 | 24.35
HA BayesShrink || 36.55 | 32.64 | 30.42 | 29.2 | 28.15 | 27.28 | 26.56 | 25.91 | 25.32 | 24.75
SureShrink 36.11 | 32.24 | 30.05 | 28.60 | 27.44 | 26.42 | 2554 | 2487 | 2438 | 2391
HA SureShrink || 36.41 | 32.68 | 30.55 | 28.11 | 27.92 | 26.91 | 26.02 | 25.35 | 24.85 | 24.30

Table 3.11: Averaged PSNR results for denoising experiments.
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(e) SureShrink, PSNR = 30.06 dB (f) HA SureShrink, PSNR = 30.56 dB

Figure 3.5: Performance comparison for different denoising methods with Lena cor-
rupted with AWGN having ¢ = 20 as input.
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(€) SureShrink, PSNR = 26.27 dB (f) HA SureShrink, PSNR = 26.74 dB

Figure 3.6: Performance comparison for different denoising methods with Goldhsll
corrupted with AWGN having ¢ = 35 as input.
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PSNR = 25.37 dB

5
{

(e) SureShrink, PSNR = 25.25 dB (f) HA SureShrink, PSNR = 25.54 dB

Figure 3.7: Performance comparison for different denoising methods with Barbare
corrupted with AWGN having o = 30 as input.
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(b) Noisy Mandrill, PSNR = 22.14 dB

(e) SureShrink, PSNR = 27.51 dB (f) HA SureShrink, PSNR = 27.98 dB

Figure 3.8: Performance comparison for different denoising methods with Mandrill
corrupted with AWGN having 0 = 20 as input.
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have been compared with their adapted versions, namely, hierarchically adapted
BayesShrink (HA BayesShrink) and hierarchically adapted SureShrink (HA SureShrink),
respectively.

To estimate the optimal values of the parameters « and (3, the PSNR values for the
entire dataset of ten images corrupted with ten different noise powers are calculated
over a range of values o and 3. The values of o and [ corresponding to the maximum
of the averaged PSNR over the entire dataset are then used to generate the final
results. The estimated optimal values of the parameters are o = 0.43 and § = 4.3.

The PSNR from various methods are compared in Tables 3.1-3.10, and the data
are collected from an average of ten runs. Since the main comparison is of SureShrink
with adapted SureShrink and of BayesShrink with adapted BayesShrink, the better
one among these is highlighted in bold font for each test set. The adapted thresholds
perform better than the original ones in PSNR comparison. The average increase
obtained in the PSNR varies from 0.3 dB to 1 dB.

The averaged PSNR over the entire tested dataset for the different noise powers
is given in Table 3.11. The proposed adaptation yields an average gian of 0.4-0.8 dB
over the subband adaptive thresholds over the entire range of images used.

Figures 3.5-3.8 show the output images resulting from the four considered denois-
ing algorithms as applied to the test images Lena, Barbara, Goldhill and Mandrill.
The output images produced using the adapted thresholds are visually more pleasing
than the outputs using the unadapted thresholds. The noise artifacts visible in the
smooth regions in the images for SureShrink and BayesShrink have been adaptively
reduced by a significant amount with the use of the hierarchically adapted thresholds.
Also, since the adapted algorithms utilize only one addition, one multiplication, and
two divisions more than the original algorithms for each pixel, the computational

complexity is not increased very much.
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Joint Denoising and Compression of

lmages

4.1 Introduction and motivation

While denoising acts to improve the quality of images for the purpose of viewing,
lossy compression serves to reduce image size for storage and transmission purposes
at the cost of degradation in quality. Subband (wavelet) coders (e.g., [72, 71, 60]) have
for long outperformed the discrete cosine transform (DCT)-based systems (e.g., the
JPEG standard [73]). Research has been aimed at obtaining maximum compression
at the cost of minimum possible distortion. Pixel classification, quantizer design and
source encoding have been the center of focus for improvements.

Compression exploits inter-pixel correlation to remove redundancy in the image
and reduce the number of bits required to store the information. However, white
noise is totally uncorrelated. An image corrupted with additive white Gaussian noise
when transformed to a wavelet domain gives rise to image coefficients, which are in
turn corrupted with additive Gaussian noise. In case of significant noise variance, it

becomes extremely difficult to compress such a set of data while keeping distortion
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within reasonable limits. Despite this fact, most of the available coders still do not
provide for an adaptive removal of the additive noise in the images and thus, their
output suffers in the presence of such corrupting noise.

Figure 4.1 shows the soft-thresholding of wavelet coefficients for denoising and the
quantization of the wavelet coefficients for the purpose of compression. Realizing the
similarity between the zero-zone quantization of wavelet coefficients in subband coding
schemes and the thresholding of these coefficients in denoising, lossy compression has
been proposed for denoising in several works (|74, 11, 75, 76, 77]). These are mostly
based on Rissanen’s minimum description length (MDL) principle [78] and can be
interpreted as operating at particular points on the rate-distortion (R-D) curve. Also,
as is the case in [11], the resultant compression depends upon the magnitude of the
additive noise and fails to yield good compression results with low-noise-corrupted
images.

In this chapter, we discuss the development of an adaptive subband (wavelet)
coder that performs joint denoising and compression of the input image based both
on the additive white Gaussian noise level in the image and the compression rate

desired [79].

4.2 Problem statement

Consider an input image that has been corrupted with additive white Gaussian Noise
(AWGN). The signal notations in the time and the wavelet transform domain, used
in this chapter, are the same as those introduced in Section 3.2. We denote by X
and Y the set of noise-free and noisy wavelet coefficients, respectively. The set of
wavelet coefficients, Y, is obtained by taking a J-level orthogonal wavelet transform
of the input noise corrupted image. The coefficients in X correspond to the original

noise-free image and thus, are not available to us.
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x = Corrupted Signal
vy = Soft—thresholded
Signal

Ay

x = Input Signal
y = Quantized Signal

.
,
’
-
»
.
v
.

Figure 4.1: Similarity between soft-thresholding used for denoising in the wavelet
domain and guantization used for compression
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We discuss the problem of jointly denoising and compressing (using context-based
classification and quantization with adaptive zero-zone and reconstruction levels) the
wavelet coefficient matrix Y to get a quantized estimate X of X at the COMPTESSOT
cutput while minimizing D, the sum of the distortion functions over all the (3J + 1)
subbands, under the constraint that the output bit rate after source encoding is R.

The distortion function for each subband s is defined as

X i=Kg=L 5
Dy(Xij, Xi) = (Xij - Xi') (4.1)
i=1,5=1
where K and L represent the number of coeflicients in each row and column, respec-

tively, of the considered subband s. The total distortion to be minimized is calculated

by taking the sum of all the (3J + 1) subband distortions,

3J+1
D=YS D, (4.2)
s=1

This would have been the standard optimal bit allocation problem as resolved in
[80] if the actual image signal transform X would have been available. But note that
we have the noise-corrupted signal Y instead. To resolve this problem, we estimate
a noise threshold parameter, T'g, using BayesShrink [11] as discussed in Section 3.5.2

and use this parameter in the quantizer design and context classification.

4.3 Data and rate adaptive quantizer

Centroid reconstruction UTQ is a simple, yet efficient choice as it yields a low com-
plexity approximation for the optimum entropy-constrained scalar quantizer (ECSQ)
[81]. The UTQ is completely defined by its fixed step-size A and thus has a reduced
design and description complexity where the reconstruction levels are optimized by

the centroid reconstruction. However, to find the centroid one has to assume an
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a priori distribution model for the data to be quantized. In recent literature, the
transform coefficients of the original image within each subband have been modeled
using a variety of distributions (a brief review of which is provided in Section 3.4.3).
Mihcak et al. proposed the modeling of each detail wavelet coeflicient as conditional
Gaussian random variable [65]. Chang et al. have modeled each wavelet coefficient as
a generalized Gaussian random variable [11], while Simoncelli et al. used a general-
ized Laplacian model for the subband statistics of the wavelet coefficients [59]. More
recently, Tsakalides et al. [82] have shown that alpha-stable distribution, a family
of heavy-tailed densities, are sufficiently flexible to appropriately model the wavelet
coefficients of images in coding applications .

An optimal scalar quantizer has been proposed in [82] for such heavy-tailed alpha-
stable distributions. However, no closed form expression is given for the quantizer in
[82] and it is computationally expensive. At low bit rates, the quantizer based on a
zero mean Laplacian distribution performs almost as well as the quantizer based on
the alpha-stable distribution. The closed form expressions resulting from the use of a
Laplacian distribution to model the subband coefficients leads to a simple quantizer
design and compensates well the small increase in quantization error due to the model
mismatch. Thus, in this thesis, we assume that the subband coefficients resulting from
the original uncorrupted image, {X;; ¢ =1,2,...,Kand j=1,2,...,L. Kx L =
size of subband}, are i.i.d. random variables from a Laplacian distribution. This
is equivalent to considering the |X;;| as 1.i.d. data from an exponential source for
fx(z) = xe™*, for z > 0.

However, as is the case for the problem under consideration, we do not have the
original or the desired noise-free images. Instead, we receive AWGN corrupted images,
which after the wavelet transform, do not yield the Laplacian distributed subband
coefficients. Thus, we have the noise corrupted wavelet coefficients, Y;;, in lieu of the

Laplacian distributed uncorrupted coeflicients, X;;. Hence, to estimate the mean, A,
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of the exponentially distributed coefficients, | X;;|, we calculate the log-likelihood of
A using the K x L noisy observations {Y;;, i = 1,2,...,K and j =1,2,...,L} in a

subband. For our purposes, we express the log-likelihood, I(X), of A as

i=K,j=L .
(X)) = log Ae~ A max(¥iy|=T5.0)
ja=1,5==1
=K j=L
={(A) =KLlogh—X > max(|Y;|—15,0) (4.3)
i=1,=1

By maximizing the above expression (4.3) with respect to A, the maximum likelihood

estimator (MLE), A of X is obtained as

KL

A= (4.4)
SioiS max(|Yy| — T, 0)

In [11], the threshold parameter has been used to calculate the zero-zone range.
However, a variable rate coder with such a UTQ design adds a significant amount
of quantization noise at low required bit-rates and low additive noise content. This
occurs because of the small size of the zero-zone, which causes the rest of the coeffi-
cients to be quantized coarsely. Thus, we adapt the zero-zone range dependent upon
the threshold parameter, Tz, and the number of levels required in the quantizer (Fig.
4.2).

Each of the subbands has a different energy level and variance, with less energy
being in the high resolution detail subbands. Thus, each dataset (each subband
or each class in case of classification) is quantized using a separate quantizer so as
to quantize different coefficients in different subbands or classes according to their
variance or energy. Consider a UTQ with (2L 4 1) steps that has L bins each for the
positive and the negative coeflicients. In a standard UTQ, the zeroc-zone would be
limited by

ax(|Yy5)
Az- 5T+ 1 (4.5)
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For our design, we define the zero-zone as

bo = max(Tg, Ayz) (4.6)
The rest of the breakpoints on the positive side, by, bs,...,br, are calculated as
bj=bo+jA, g=1,2,...,L (4.7)
where
A= max(‘?' —bo, (4.8)

For the negative coefficients, the breakpoints are obtained using the symmetry of the
designed UTQ, b_; = —b,.

Optimally, the reconstruction levels are obtained using the subband coefficients
resulting from the original image. However, in our case, where only the noise cor-
rupted subband coefficients are available, we calculate the reconstruction levels by
using the closed form expression made available by the assumption that the absolute
values of the subband coefficients of the original uncorrupted image are i.i.d. random

variables from an exponential distribution

(b~ TB)S"S‘U’J'_TB) ~ (bj1 — TB)e—j\(le—TB) 1 L
;= R T) - o AGriTE) + R for j=0,1,...L -1 (4.9)

which reduces to

(b; — Tp)e™N — (bjey — Tp)eoon + 1

e—jxf)j -~ e—ijj+1 )\

, for j=0,1,...L—1 (4.10)

sz

where the estimated mean, ), for each subband or class can be calculated using (4.4).
For negative coeflicients, the reconstruction levels are obtained using the symmetry

of the developed UTQ, where r_; = —r;.
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This estimation has a good appeal. At low bit rates, the zero-zone width is quite
large in a quantizer to achieve the necessary compression and thus, all the noisy
coefficients lying below the threshold are automatically set to zero. This causes much
of the noise to be eliminated from the quantized image. At higher available bit rate,
even if the actual zero-zone width falls below the threshold region, Tz, it is kept at
the threshold value to remove the coefficients which are estimated to be present only
because of the noise. The modification in the reconstruction levels brings the noise
level in the quantized output down. Also, such a scheme works better as compared
to a two stage design, where the subband coefficients are soft thresholded first and
then quantized. In such a case, a greater number of coefficients are set to zero than
is actually required.

An optimal bit allocation algorithm decides the number of levels assigned to each
quantizer. The generalized BFOS algorithm [80] minimizes the distortion D at the
outputs of all the quantizers under the constraint that the output bit rate of the
entropy source encoder is less than or equal to R. Another algorithm given by Shoham
et al. [83], uses a Lagrange multiplier to minimize the joint rate-distortion (R-D) cost
function. An entropy coder, such as the adaptive arithmetic coder, provides the final

encoded bit-rate for the minimization requirements in the above algorithms.

4.4 Optimal bit allocation

An important step in compressing the given data is to segregate the data into different
classes. Each subband in the wavelet transform domain acts as a class in case the
classification of the transform coefficients in the subbands is not done. Depending on
the importance of the data it contains, each class is allocated a portion of the total bit
budget, such that the compressed image has the minimum possible distortion. This

procedure is called Bit Allocation.
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Algorithm 2 Optimal bit allocation using the generalized BFOS algorithm

STEP I  Initially, allocate to each class or subband, s, a predefined maximum num-
ber of bits, B(s).

STEP II  For each class, reduce one bit from its quota of allocated bits, and calculate
the distortion due to the reduction of that one bit.

STEP III Of all the classes, reduce one bit from the class having the minimum
distortion for a reduction of one in STEP IL

STEP IV Calculate the total distortion, D, for all classes using (5.11).

STEP V  Calculate the total rate for all the classes as
c
i=1

where p(i) is the total probability of the i'® class or subband, which is
computed using (4.13) and B(i) is the allocated number of bits for the i
class or subband and C is the total number of classes or subbands.

STEP VI Compare the target rate R with R;. If B < Ry, then GOTO STEP 11,
else STOP.

The R-D theory is often used for solving the problem of allocating bits to a
set of classes, or for bit-rate control in general. The theory aims at reducing the
distortion for a given target bit-rate, by optimally allocating bits to the various classes
or subbands of data. One approach to solve the problem of optimal bit allocation
using the R-D theory is the generalized BFOS algorithm given in [80]. The algorithm
is described in Algorithm 2.

In the bit allocation algorithm, bits B(s) are allocated to each class or subband
and the distortion is computed. For a class or subband s having a total number of

coefficients N, (K rows and L columns) we compute the distortion as

. i=Kj=L )
Dy(Xy;, V) = (X —-Y3) (4.11)

IV EREY iJ
i=1,5=1

where Y;JQ are obtained by the quantization of the available noisy coefficients in each
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class, V;;, using the quantizer defined by (4.6-4.10) with L = 280 steps, and ;’Zu is
obtained as

Xij = sign(Yy;) max(|Yy;| — T, 0). (4.12)

When the optimality is achieved in bit allocation, the quantized output, v is equiv-

ij
alent to the required denoised and quantized estimate, Xij, of the noise-free image
subband coefficients, X;;.

The probability of occurrence of the class or subband s needs to be computed in

Algorithm 2 and we define it as

N
where N, is the number of coefficients in the class and N and M are the number of
rows and columns in the full image, respectively. In the generalized BFOS approach,
one bit is reduced at a time until optimality is achieved either in the distortion or the

target rate, or both.

4.5 Context-based classification

An extensive study by Joshi et al. [84] on various classification-based compression
algorithms demonstrates substantial gains in subband image coding applications. We
use a classification scheme similar to that used by Yoo et al. [85], but appropriately
modify it to account for the noisy coefficients and joint compression and denoising.
Since the data being classified is the output of the quantizer, or in more realistic
terms, an estimation of the quantizer output, as we do not have the quantizer output,

the overhead involved with such a scheme is quite low.
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Figure 4.3: (a) Causal template composed of 6 quantized coefficients that is used
as the classification context, (b) Classification of the predicted activity into different
classes

4.5.1 Activity computation

For this classification, the activity, M;;, of each quantized coefficient is calculated

using a causal model involving 6 coefficients (see Fig. 4.3) as
M;; = ao| Xioyj| + 1| Xija |+ @] Kimgjoa | + a8 Kimaja] +aal Xi—oj| +a5| Xy (4.14)

where X;; are the estimated quantized and denoised outputs and ay, 0 < k < 5, are
weights satisfying 3°3_, ax = 1 and are determined experimentally. This predicted
activity is then compared with calculated classification thresholds to determine the
class for V.

However, note that we do not have the quantized coefficients a priors or even the
original image subband coefficients, X;;. As in [85], we approximate the output of
the quantizer by quantizing the subband coeflicients with a uniform quantizer having
a step size close to what we finally expect. However, keeping in mind the denoising

that is to be performed in the output, the coefficients, }A{/” are used for uniform
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uantization and are obtained using (4.12). Note that }A(:j are obtained in a fashion
similar to soft thresholding [37].
The activity, M;;, for each coefficient is thus calculated using the absolute values

of uniformly quantized X;; in (4.14).

4.5.2 Classification thresholds

For threshold calculation, we follow the same algorithm as in [85, 60] but with a
modified estimation of the mean of each class. To classify subband coefficients into NV
classes, choose (Vg — 1) initial thresholds T and Ny initial classes such that Ny > N
and there are approximately an equal number of coefficients in each class.

The steps to estimate the classification thresholds {71, 75, ..., 7n_1} are described
in Algorithm 3. The activity calculated in the previous section is compared with the
class thresholds T}, to place the corresponding coefficients Y;; in different classes. The
class means estimated in STEP 1 of Algorithm 3, ;\k, can be utilized for quantizer

design as described in Section 4.3.

4.6 Final algorithm for joint denoising and compres-

sion of images

The final algorithm for the joint denoising and compression of images is presented in
Algorithm 4. The block diagram of the scheme is also presented in Fig. 4.4.

For the reconstruction of the compressed and denoised image on the receiver side,
the estimated means and the classification thresholds are used to reclassify and recon-
struct the coefficients. Then, the inverse wavelet transform of the coefficients would

result in the denoised and compressed estimate of the original noise-free image.
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Algorithm 3 Estimation of classification thresholds

STEP 1

STEP II

STEP 1II

STEP IV

Although the subband coefficients of the original image have been assumed
to be Laplacian distributed, the subband coefficients obtained from the
AWGN corrupted available image are not Laplacian distributed. Thus,

the estimates of the means, AO, /\L, . /\ No—1 are found using
- N s
As = —=—,
¥ Xyl

where Ej € class s and N, is the total number of coefficients in class s.
Set K = N().

Find &* such that
>\2Tk A27k+1
k* = arg min kil
0<k<K ,\z,

. Ny e 1 o — N4 (Ng+Nyy 1)
where 7k'—_(Nk+A%+1)’rk+1'—'1 Tk = N Nig1) and'Ak Z—~;7W;33

Ak+1

Merge classes Cy+ and Ci«.1. For k = k* do
Ck Ckv U Ck*—{—l and /\k = Ak
For k > k*, do

Cr = Cri1, Ty = Ty and Xy, = Ay

Set K = K — 1. STOP if K = N. Otherwise GOTO STEP I1.

Algorithm 4 Proposed scheme for joint denoising and compression of images cor-
rupted with AWGN

STEP 1
STEP 11

STEP 111

STEP IV

STEP V

Decompose the corrupted image in to J detail levels using DW'T.

Estimate the threshold level for the noise corrupted subband coefficients
using BayesShrink.

Perform the classification of the subband data into N number of classes
as described in Section 4.5.

Quantize each class using the data and rate adaptive quantizer described
in Section 4.3.

Use any entropy coder, such as an adaptive arithmetic coder, to generate
the encoded bit stream.
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Figure 4.4: Block diagram of the data and rate adaptive encoder for images corrupted
with AWGN.
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edical ul-

4.7 Joint denoising and compression of 1

trasound images

4.7.1 Introduction

Ultrasonography has emerged as one of the most powerful techniques for imaging
organs and soft tissue structures in the human body. It is noninvasive, portable,
versatile and relatively low-cost. Thus, today, it is being used at an ever-increasing
rate for medical diagnostics. The influence of tele-medicine has been increasing at a
fast rate and this has further fuelled the emergence of ultrasonography as an important
diagnostic tool.

However, like all coherent imaging processes, narrow-band ultrasound suffers from
speckle noise. Speckle occurs when the surface roughness of the object being imaged is
of the order of the wavelength of the coherent source radiation incident on the surface
[86] and is generated by interaction of the reflected waves from various independent
scatterers within a resolution cell [87]. In images generated as a result of these
processes, the speckle manifests itself as a random pixel-to-pixel multiplicative noise
having a granular appearance that makes it very difficult to visually or automatically
interpret the image data. Therefore, speckle removal is a critical preprocessing step
in many coherent imaging tasks, such as segmentation and classification.

The storage required for the large amount of data being generated, coupled with
the need to transmit it on the communication channels for the purpose of tele-
medicine, has created a pressing need for compression of such medical ultrasound
images. The speckle present in the image increases the entropy of the image. In the
case of a significant input noise, it becomes extremely difficult to compress such an
image while keeping the distortion within reasonable limits. In fact, for the case of
multiplicative speckle noise corrupted ultrasound images, no compression method has

been proposed that specifically accounts for the corrupting speckle while compressing
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the image.

In this section, we demonstrate the application of the proposed data and rate
adaptive quantizer and the classification scheme to such medical ultrasound images
corrupted with multiplicative speckle noise [88]. To address the multiplicative nature
of the speckle noise, we follow a homomorphic approach developed by Jain [86], which
by taking the logarithm of the image, converts the multiplicative noise into additive
noise. We then apply the proposed adaptive subband (wavelet) coder that performs
joint denoising and compression of the log-transformed input ultrasound image based

both on the noise level in the image and the compression rate desired.

4.7.2 Speckle noise model and the modified algorithm

A general model for ima“ges corrupted with speckle noise was proposed by Jain [86]
and was also used by Zong [89] and Achim et al. [90]. We describe the speckle model
in the following discussion.

Denote by v ={v;; : ¢ =1,2,...,N and j = 1,2,..., M} anoisy observation (i.e.,
the recorded speckled image) of the original two-dimensional image u = {u;;:1 = 1,
2,...,Nand j=1,2, ..., M} Let nand ¢ be the sets of corrupting multiplicative
and additive speckle noise components, respectively. The received speckle corrupted

image can be expressed as
Vi = Ui+ 0y, t=1,2,...,Nand j =1,2,..., M. (4.15)

Generally, the effect of the additive component of the speckle noise is less signifi-
cant than the multiplicative component in medical ultrasound images. Thus, in what

follows we will neglect the additive term and express (4.15) as

Vi = Ui Mg, 7= 1,27 e ,N and j = 1,2, ce ,I\/[ (416)
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A detailed study of the statistical properties of speckle noise 1 was provided by
Goodman [87]. Some of the realistic speckle noise models that have been proposed
in literature include the K-distribution [91], Gamma distribution [92], log-normal
distribution [93], and correlated speckle pattern [90], [91]. Following [93, 94], we use
a log-normal distribution to describe the speckle statistics in the time domain.

If a random variable X follows a log-normal distribution, then Iln X follows a

normal distribution with mean p and variance o2, A log-normal random variable can

M
Xiog—normal = €XP (Xnormaz\/? log — +In m) (4.17)

where M and m are the mean and median values of the distribution, respectively,

be generated using

while X, .rma 18 a zero-mean, unit-variance Gaussian random variable. For the log-

normal distribution, the mean and variance are given by

2

M = exp (u + %) (4.18)

2

Olog—normal = €XP (Z,u + 202> — exp (ZM + 02) (4.19)

A usual way to estimate the speckle noise in speckle corrupted images is to cal-
culate the mean-to-standard-deviation ratio, also termed as the equivalent number of

looks (ENL). The ENL of a speckle corrupted image can be expressed as

mean of the speckle corrupted image
standard deviation of the speckle corrupted image

2
> = ENL = constant (4.20)

For the log-normal distribution there exists a straight-forward equivalence between
the ENL in a speckle corrupted image and the median of the log-normal distribution
190].

In order to transform the multiplicative speckle noise model in (4.16) to an additive
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Algorithm 5 Modified algorithm for joint denoising and compression of ultrasound
images corrupted with multiplicative speckle

STEP I  Perform the homomorphic operation by taking the logarithm of the image.
STEP II  Decompose the corrupted image in to J detail levels using DW'T.

STEP III Estimate the threshold level for the noise corrupted subband coefficients
using BayesShrink.

STEP IV Perform the classification of the subband data into N number of classes
as described in Section 4.5.

STEP V  Quantize each class using the data and rate adaptive quantizer described
in Section 4.3.

STEP VI Use any entropy coder, such as an adaptive arithmetic coder, to generate
the encoded bit stream.

noise model, we use the homomorphic operation. Thus, taking the logarithm of (4.16)

we have

Invyj =lnu; +Inny, 1=1,2,...,Nand j=1,2,..., M. (4.21)

We rewrite expression (4.21) as follows

gij‘—“ﬂfi]‘-}‘&j, z':1,27...,]\7and,j=1,27...,M. (422)

where, g,;, T;; and g;; are the logarithms of v;;, u;; and n;;, respectively, and N x M
is the size of the image. We now consider ¢;; as an additive noise coeflicients that are
independent of z;; and follow a normal distribution .

We now apply the algorithm described in Section 4.6 to the resultant image that
is corrupted with additive white Gaussian noise. The entire algorithm for the case of
multiplicative speckle-corrupted medical ultrasound images can be thus described as
in Algorithm 5, where a homomorphic operation is performed in addition to Algorithm

4 to convert the multiplicative speckle to additive Gaussian noise (see also Fig. 4.5).
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Figure 4.5: Block diagram of the data and rate adaptive encoder for medical ultra-
sound images corrupted with multiplicative speckle noise.
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4.8 Experimental results and discussions

4.8.1 For additive White Gaussian noise

We have implemented a variable rate image coder based on classification and quanti-
zation schemes that take into account the noise level in the image while classifying and
quantizing. Test images include the 512x512 pixel size natural images Goldhill, Lena,
Barbara, and Mandrill and an 256x256 pixel size artificial computer generated image
Synthetic. The algorithm has been tested for six different noise powers corresponding
to noise standard deviations of 10, 15, 20, 25, 30 and 35. The performance of the
proposed subband coder with data and rate adaptive quantizer, which we call AQ,
has been compared with the state-of-the-art MDL principle-based joint compression
and denoising scheme (MDLQ). We also present results where classification has been
used along with AQ (C+AQ).

A 4-level dyadic decomposition of the images has been performed using the 9/7-
tap bi-orthogonal wavelet filters. Bit allocation for different classes (or subbands) has
been performed by using the generalized BFOS algorithm [80], which minimizes the
output distortion under the output source entropy constraint. An adaptive arithmetic
coder is used to produce the output bit stream. The proposed classification (4 classes)
and quantization have been applied to the detail subbands only. The approximation
subband has been modeled as a uniform distribution and a uniform quantizer has
been used on this subband. The overhead rate includes the 16 bits to specify each of
the classification thresholds and the estimated X for each class.

The weighting coefficients ¢y in the classification algorithm are estimated experi-
mentally so as to maximize the gain achieved during classification. This maximization
is using the average PSNR gain for the entire image database when classification is
employed.

In order to show that the original image wavelet subband coeflficients can be
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Figure 4.6: The Q-Q plot of the HL; subband coefficients of image Lena against
a Laplacian distributed set of data. The magnitude of the subband coefficients has
been taken for the plot.

approximated as a Laplacian distribution, the Q-Q plot of the subband coefficients
of the H L, subband of Lena is plotted in Figure 4.6. The quantile plot is an effective
and frequently used statistical tool to verify if a data set conforms to an assumed
distribution. The relatively straight line in Figure 4.6 justifies the approximation of
the subband coefficients by a Laplacian distribution.

To validate the classification algorithm, the mean and variance of the data in
one of the detail subbands of Lena and Barbara, classified to the 4 different classes,
respectively, has been presented in Table 4.1. The data in each of the 4 classes has
a mean that is approximately zerc and the variance of the classes has been classified
in an increasing order. Figure 4.7 shows the 4-level classification of the subband data
from one subband each of Lena and Barbara. The brighter regions represent areas
with greater activity and have been identified successfully.

Tables 4.2-4.6 compare the PSNR performance of the proposed data and rate
adaptive UTQ (AQ)-based coder with MDLQ at different noise standard deviations
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I | Class 1 | Class 2 | Class 3 | Class 4 |

Lena
Mean 0.431 -0.598 | 0.688 | -0.718
Variance | 544.09 | 764.06 | 1241.3 | 2818.4
Barbara
Mean 0.0533 | 0.0640 | 0.0612 | 0.4596
Variance || 110.59 | 166.78 | 913.13 | 3321.0

Table 4.1: Mean and variance of coefficients in different classes for a 4-level classifi-
cation of the H L, detail subband of Lena and the HL; detail subband of Barbara.

| Goldhill | o/ bit-rate (bpp) |
[ 1| 10/1.0703 | 15/0.7159 | 20/0.5382 | 25/0.4304 | 30/0.4304 | 35/0.3206 |
[Initial PSNR | 2812 [ 2459 | 2210 | 2016 | 1857 | 17.24 |

MDLQ 30.35 28.64 27.58 26.29 25.61 24.84
AQ 30.93 29.03 27.81 27.23 26.66 26.40
C+AQ 31.13 29.43 28.48 27.58 26.99 26.42

Table 4.2: Performance comparison (in PSNR) for the test image Goldhill corrupted
with different additive noise powers.

l Lena I o/ bit-rate (bpp) ]
| || 10/0.6775 | 15/0.5003 | 20/0.4049 | 25/0.3459 | 30/0.3006 | 35/0.2730 |
| Initial PSNR | 2812 | 2459 | 2210 | 2016 | 1857 | 17.24 |

MDLQ 31.88 30.44 29.49 28.66 27.68 26.03
AQ 32.19 30.23 29.46 28.57 27.72 27.21
C+AQ 33.12 31.41 30.40 29.44 28.75 28.03

Table 4.3: Performance comparison {in PSNR) for the test image Lena corrupted
with different additive noise powers.

| Barbara | o/ bit-rate (bpp) |
{ || 10/1.0999 | 15/0.9814 | 20/0.8859 | 25/0.7883 | 30/0.6837 | 35/0.5935 |
| Initial PSNR || 2812 [ 2459 | 2210 | 20.16 | 1857 | 17.24 |

MDLQ 28.61 27.29 25.96 24.74 24.26 23.67
AQ 28.84 27.44 26.23 25.06 24.64 23.95
C-AQ 30.34 28.49 27.36 26.29 25.03 24.50

Table 4.4: Performance comparison (in PSNR) for the test image Barbara corrupted
with different additive noise powers.
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(¢) Classified HL2 detail subband of Lena (d) Classified HL1 detail subband of Barbara

Figure 4.7: 4-level classification of one subband each of Lena and Barbare images
corrupted with AWGN having ¢ = 20 .
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Mandrill | o/ bit-rate (bpp) |

| 10/1.50 | 15/1.191 | 20/1.0389 | 25/0.9161 | 30/0.8141 | 35/0.7288 |

Initial PSNR | 28.12 | 2459 [ 2210 | 20.16 | 1857 | 17.24 |
MDLQ 26.03 | 24.35 23.36 22.63 22.03 21.52
AQ 2662 | 24.59 23.48 22.90 22.23 21.63

C+AQ 27.10 | 25.38 24.63 23.36 22.56 22.07

|
|
|

Table 4.5: Performance comparison (in PSNR) for the test image Mandrill corrupted
with different additive noise powers.

| Synthetic | o/ bit-rate (bpp) |

| || 10/0.9696 | 15/0.6066 | 20/0.4398 | 25/0.3723 | 30/0.3054 | 35/0.2741 |

| Initial PSNR || 28.12 | 2459 | 2210 | 2016 | 1857 | 1724 |
MDLQ 33.04 30.58 29.34 27.96 26.95 26.34
AQ 33.47 31.10 30.21 29.34 28.75 28.26
C+AQ 34.08 31.42 30.68 29.40 28.96 28.48

Table 4.6: Performance comparison (in PSNR) for the test image Synthetic corrupted
with different additive noise powers.

for different test images. The PSNR has been calculated using the original, uncor-
rupted image and the denoised and compressed outputs. The results of the proposed
classification (C-+AQ) have also been presented in the table. The bits per pixel at
which the outputs of the proposed schemes (AQ and C+AQ) have been generated
are the same as those produced in the output of MDLQ. The proposed scheme AQ
gives an average iraprovement of about 0.5 dB in the PSNR values. For computer-
generated images like Synthetic, an increase of almost 1 dB over MDLQ is obtained
for all noise levels. Classification results in a further increase of 0.5 dB to 1 dB over
the non-classified scheme, AQ.

The output images (Figs. 4.8, 4.9, 4.10, 4.11 and 4.12) produced by AQ are more
visually pleasing and have less amount of quantization noise added to them. The
finer details like hair in Lena, the windows in Goldhill and the edges of the geometric
shapes in Synthetic are much better preserved in the AQ outputs as compared to

the outputs of MDLQ). In the smoother regions also, lot less noise spikes are visible.
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Figure 4.8: (a)-(e) Performance comparison of various methods on Goldhill corrupted
with AWGN having o = 25. (f) Rate-Distortion curve for the proposed methods with
Goldhill corrupted with AWGN having ¢ = 25 as input.
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Figure 4.9: (a)-(e) Performance comparison of various methods on Lena corrupted
with AWGN having o = 35. (f) Rate-Distortion curve for the proposed methods with
Lena corrupted with AWGN having ¢ = 15 as input.
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Figure 4.10: (a)-(e) Performance comparison of various methods on Barbara corrupted
with AWGN having o = 15. (f) Rate-Distortion curve for the proposed methods with
Barbara corrupted with AWGN having ¢ = 10 as input.

75



o

P3NR (dB)

! H H e ,Q;Q
L ‘ ‘ o CHAQL
# &‘;gf '% ! ” = bxlrgiz {bits ae(iﬁel) Uf? R 0 !
{(e) C+AQ, PSNR =27.1dB, bpp = 1.5 (f) Rate-Distortion curve

Figure 4.11: (a)-(e) Performance comparison of various methods on Mandrill cor-
rupted with AWGN having ¢ = 10. (f) Rate-Distortion curve for the proposed
methods with Mandrill corrupted with AWGN having o = 10 as input.
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Figure 4.12: (a)-(e) Performance comparison of various methods on Synthetic cor-
rupted with AWGN having ¢ = 20. (f) Rate-Distortion curve for the proposed
methods with Synthetic corrupted with AWGN having o = 20 as input.
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(c) AQ output for sigma=20, bpp=0.3 (d) C+AQ output for sigma=20, bpp=0.3

Figure 4.13: Comparing the effect of classification on the performance of the subband
coder having the data and rate adaptive quantizer at its core.

78



The classification scheme (C+AQ) has been successful in identifying regions of high
variability, which have been quantized more finely as compared to AQ and MDLQ and
are perceptually more clear. The superior performance of the classified scheme over
AQ is visible in Figure 4.13, where the edge regions are much more clear in classified
outputs for the same operating criteria. A further improvement in the performance
can be achieved by using a better quantizer like a trellis coded one instead of the
UTQ and better classification.

Figures 4.8(f), 4.9(f), 4.10(f), 4.11(f) and 4.12(f) show the R-D characteristics
of the two proposed schemes for the four images at noise standard deviations of 25,
35, 10 and 20, respectively. At low bit-rates, good rate distortion characteristics are
exhibited at all the noise levels shown, with a decrease in the distortion occurring as
the output bit-rate is increased. However, as higher bit-rates are approached, further
improvement in the PSNR becomes negligibly small. Furthermore, in MDLQ the
minimization of the description length has been done over all step sizes and number
of quantization levels for each subband to determine the step size for each subband
quantizer. In the proposed scheme, this determination of step size is done for all
the subbands (or classes) together using the generalized BFOS algorithm {80}, thus

making the proposed scheme computationally more efficient than MDLQ.

4.8.2 For multiplicative speckle noise

We present our results using two popular 512x512 pixel gray-scale images, Lena and
Goldhill, with various levels of corrupting multiplicative noise as the test data. We
also depict the efficacy of our algorithm for medical ultrasound images by choosing an
original speckled ultrasound image showing the neonatal brain suffering from white
matter damage (leukomalacia), Brain. The natural test images are chosen so as to
have different amount of detail information. The noise used to corrupt these images

is generated using the log-normal distribution described in Section 4.7.2. One of the
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1 Lena | ENL=14 | ENL=10 | ENL=6 |

[ ” PSNR TBit—rate [ PSNR { Bit-rate ‘ PSNR | Bit-rate f

| Initial PSNR | 1790 | 8 1643 | 8 [1455 | 8 |
JPEG 21.39 | 025 [1979 | 037 | 1681 | 045
Frost + JPEG | 2398 | 0.25 | 24.68 | 037 | 2427 | 045
C+AQ 24.84 | 025 [25.38| 037 [24.93] 045

Table 4.7: Performance comparison (in PSNR) for the test image Lena corrupted
with different multiplicative noise powers.

| Goldhill | ENL=14 | ENL=10 | ENL=6 |
’ ” PSNR | Bit-rate | PSNR | Bit-rate | PSNR | Bit-rate I
[ Initial PSNR [ 1839 | 8 1691 ] 8 1497 | 8 ]

JPEG 21.95 0.22 19.86 0.38 17.39 0.34
Frost + JPEG || 23.77 0.22 23.29 0.38 21.65 0.34
C+AQ 24.58 0.22 24.45 0.38 23.54 0.34

Table 4.8: Performance comparison (in PSNR) for the test image Goldhill corrupted
with different multiplicative noise powers.

metrics used to describe the content of the speckle noise in an image is the equivalent
number of looks (ENL), which is related to the median of the log-normal distribution
[93]. We consider corrupted images with ENL values of 6, 10 and 14.

To assess the performance of the proposed algorithm, we compare it with the
compression results produced by the direct application of the JPEG compression [73]
to the speckled images. We also compare the proposed scheme with a two-stage
approach, where the image is despeckled first and then compressed using the JPEG
compression standard. For the despeckling stage we choose the filter given in [95], with
a mask size of 5x5. In a detailed comparison of the standard despeckling filters in [93],
this filter has been shown to be one of the best despeckling filters. The comparison
metric used is the peak signal to noise ratio (PSNR), where the noise considered is
present due to the corrupting speckle and the distortion occurring during compression.

As is evident from Tables 4.7 and 4.8, the PSNR resulting from the proposed

algorithm at the stated bit-rates are much better than those obtained by the direct
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Figure 4.14: Rate-Distortion curves comparing the performance of the proposed
scheme with JPEG compression and a two stage scheme wherein the speckled image
is first despeckled using Frost filter and then compressed using JPEG compression
standard. The comparison has been made for the speckled Lena image with ENL=14
and PSNR=17.90 dB. The 5x5 window has been chosen for the design of the Frost
filter.

application of the JPEG compression to the noisy images. As compared to the two-
stage compression of the speckled images, the proposed algorithm performs better to
the tune of 0.51 dB. The rate-distortion curves for the three compared schemes are
shown in Figure 4.14 for a corrupted Goldhill image with an ENL = 12. The proposed
scheme performs better than the other two schemes for the compared compression
bit-rates. The visual performance of the proposed scheme is also better than the
other two as is evident from Figures 4.15 and 4.16.

For the original ultrasound image of the neonatal brain that has been considered
(Fig. 4.17), the proposed algorithm manages to reduce the speckle in the image and
preserve the edges in the image while compressing it to extremely low bit-rates. The

visual performance of the proposed scheme is better than the other two.
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(b) Speckled Lena, ENL = 10, PSNR =
16.42 dB dB, bpp = 0.37

(d) Despeckling followed by JPEG com- (e) C+AQ, PSNR = 25.38 dB, bpp =
pression, PSNR = 24.68 dB, bpp = 0.37 0.37

Figure 4.15: Performance comparison of the proposed scheme with JPEG compression
and a two-stage scheme where the speckled image is first denoised and the compressed
using the corrupted Lena image.
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(b) Speckled Goldhill, ENL = ¢, PSNR (¢} JPEG compression, PSNR = 17.39
~ 14.95 dB dB, bpp = 0.34

() Despeckling followed by JPEG com- (e) C+AQ, PSNR = 23.5 dB, bpp =
pression, PSNR = 21.65 dB, bpp = 0.34 0.34

Figure 4.16: Performance comparison of the proposed scheme with JPEG compression
and a two-stage scheme where the speckled image is first denoised and the compressed
using the corrupted Goldhill image.
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(a) Original speckled Ultrasound image (b) JPEG compression, bpp=0.27

(¢} Despeckling followed by JPEG com- (d) C+AQ, bpp = 0.27
pression, bpp = 0.27

Figure 4.17: Performance comparison of the proposed scheme with JPEG compression
and a two-stage scheme where the speckled image is first denoised and the compressed
using the original speckle corrupted Ultrasound image, Brain.
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4.9 Summary

In this chapter we have discussed the problem of joint denoising and compression of
images. We have primarily concerned ourselves with the removal of the corrupting
additive white Gaussian noise during the process of compression. The development
of a simple wavelet domain algorithm has been presented that adapts the zero-zone
and the reconstruction levels of a centroid reconstruction UTQ according to the input
noise level and the compression rate desired by the user.

We have also presented a context-based classification scheme that classifies the
corrupted subband coefficients into different classes based on local activity. Fach
class has a different variance level and thus, is quantized differently. A class showing
more activity, i.e., having a higher variance, is quantized more finely, while a class
showing low activity is quantized coarsely, thus resulting in better preservation of
image features.

We have further extended the proposed joint denoising and compression algorithm
for the removal of multiplicative speckle noise via the use of homomorphic transform.
This adapted version of the algorithm has been successfully applied for speckle re-
moval from medical ultrasound images while compressing them.

Experimental results demonstrate that the proposed coder based on the data and
rate adaptive quantizer outperforms MDL principle-based scheme and results in a
higher PSNR and visually more pleasing images. The proposed classification success-
fully differentiates between the regions of low and high activity and leads to output
images with edges and finer details that are better preserved. We have also shown the
application of the adapted scheme for speckie removal while compressing images cor-
rupted with multiplicative speckle noise. The homorphic transform has been used to
transform the multiplicative noise into an additive noise. Experimental results show
the superior performance of the proposed scheme as compared to standard JPEG

compression and a two stage scheme, which performs despeckling and compression of
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the input images sequentially.
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Conclusion

In this thesis we have explored the processing of digital images using wavelets. Specif-
ically, we have concentrated on the reduction of noise from images corrupted with
additive white Gaussian noise and on the compression of such noisy images in a fash-
ion that simultaneously reduces any corrupting noise in the image. We have also
extended the proposed algorithm for joint denoising and compression for the case

where multiplicative speckle noise corrupts the original image.

5.1 Conclusion

To denoise an image corrupted with AWGN, we have suggested a simple and adaptive
modification of the threshold parameters that utilizes the correlation that exists be-
tween the coefficient values at different resolutions. We have validated the adaptation
by applying it to two of the most popular threshold selection criteria used for image
denoising, viz. BayesShrink and SureShrink. The following conclusions are evident

from the results presented in Chapter 3.

e The proposed scheme uses only the corresponding parent coefficient for each

subband coefficient for the purpose of adaptation as opposed to the use of
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several neighboring coefficients in the case of context-based schemes.

e Only two parameters, o and [ , are used in the scheme. Although the optimal
parameter values vary from image to image depending upon the image content,
we have experimentally determined an optimal combination for the parameters
using an extensive dataset of digital images and a number of different noise
powers. From our experiments, the values of o = 0.43 and § = 4.3 yield the

maximum average PSNR over the entire dataset.

e The images denoised using the adapted thresholds have a better PSNR and
are also visually more appealing than the images denoised using the original
thresholds. The number of noise spikes evident in smooth regions of the denoised

images is much less for our scheme.

e Since the proposed scheme utilizes only the corresponding denoised parent co-
efficient, the computational complexity of such a scheme is not much more than
that of the original threshold calculation scheme and is much less than the

context-based denoising schemes.

In order to jointly denoise and compress an image corrupted with AWGN, we have
proposed an adaptive quantizer (AQ) that adapts its zero-zone and reconstruction
levels according to the noise level present in the input images and the compression
rate required by the user. We have also proposed a classification scheme based on
context to raise the performance of the AQ based coder. The features evident from

the simulations presented in Chapter 4 are as follows.

e The proposed encoder adapts to the noise level in the input.
e It adapts to the required compression rate.

e In the case where the additive noise is very less or totally absent, it behaves
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as an ordinary subband coder compressing the input image according to the

desired compression rate.

e The bit allocation among the various subbands is done optimally using the

generalized BFOS algorithm.

e The proposed quantizer and encoder lends itself to classification. The proposed
context-based classification leads to finer quantization of image areas containing

lots of detail and thus yields better visual results.

e AQ works as good as or better than the MDI-based scheme proposed in [11].
The classified encoder (C+AQ) consistently yields much better results, both in

terms of the PSNR and the visual quality.

e The computational complexity is of the same order or less as compared to the

MDL-based scheme [11].

e We have also extended the proposed joint denoising and compression scheme
for multiplicative speckle noise. We have shown its application for the removal
of the speckle noise that commonly plagues the medical ultrasound images.
Our experiments show that via the use of homomorphic filtering technique,
the proposed scheme can be successfully adapted for such an application and
can perform better than typical compression methods like JPEG and can also
outperform two stage techniques, where the speckle corrupted images are first
denoised using a despeckling filter and then compressed using the JPEG com-

pression scheme.

5.2 Future work

One interesting aspect while denoising images in the wavelet domain is the estimation

of the noise variance. The median absolute deviation method, generally used and
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also followed in this thesis, fails to give an accurate estimation of the variance of the
corrupting noise if the input image has a high degree of high frequency content. A
more robust and accurate method would lead to a better estimation of the threshold
parameter and thus improve the performance of the denoising system.

In the proposed adaptive quantizer, we have used a uniform threshold quantizer
as the base model. The use of more sophisticated quantizers, like the trellis coded
quantizer, could lead to better quantized outputs, although at the cost of increased
computation. The trade-off between the improvement in the performance of the
scheme and the increase in computational complexity could be studied.

It would also be interesting to jointly select the noise threshold parameter and
the bin width for the quantizer and analyze their inter-dependency. Also, a collection
of wavelet bases could be used for the wavelet decomposition instead of one chosen

wavelet to allow a better representation of the signals.
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