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ABSTRACT

On the Time Value of Ruin for Insurance Risk Models

Shuanming Li, Ph.D.

Concordia University, 2004

This thesis studies ruin probabilities and ruin related quantities, using a
unified treatment of analysis through the celebrated Gerber-Shiu (G-S) penalty
function. For different insurance risk models, a G-S function discounts a penalty
due at ruin, which may depend on the surplus before ruin and the deficit at
ruin. These insurance risk models include Sparre Andersen’s risk model, both in
a continuous and in a discrete time setting, diffusion perturbed Sparre Andersen
models, as well as risk models with a constant dividend barrier. All these models
are extensions of the classical risk model and of diffusion perturbed classical risk
model.

These G-S penalty functions, considered as functions of initial surplus, satisfy
certain integral equations or integro-differential equations, which can be solved to
yield defective renewal equations. Such defective renewal equations have a natural

probabilistic interpretation, which relies heavily on the roots to a generalized
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Lundberg’s fundamental equation that have a positive real part. These generalized
Lundberg equations are from an appropriately chosen exponential martingale.

The defective renewal equations (also called recursive formulas in discrete
models), that the expected penalty functions satisty, allow the use of the existing
techniques in renewal theory. They can be used to analyze many quantities asso-
ciated with the time of ruin, such as explicit expressions, bounds, approximations
and asymptotic formulas for ruin probabilities, the Laplace transform (or gene-
rating function in discrete models) of the time of ruin, the discounted joint and
marginal distribution of the surplus immediately before ruin and the deficit at
ruin, as well as their moments.

Finally, explicit results for the G-S discounted penalty function can be solved
when the initial reserve is zero and when the claim sizes are rationally distributed,

i.e., the Laplace transform of the claim size density is a rational function.
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Introduction

Risk Theory, based on probability theory and statistics, stochastic processes, re-
newal theory, functional analysis and optimization theory, investigates fluctuations
shown by incoming claims at an insurance company and has been one of the most
active research areas in Actuarial Science since the beginning of the 20th century.

Ruin Theory is at the heart of Risk Theory. It discusses how an insurance
portfolio may be expected to perform over an extended period of time and analyze
the excess of income over outgo, or claims paid. This quantity, refereed to as the
insurer’s surplus, may be expected to vary with time. Ruin is said to occur if
the insurer’s surplus drops to a specified lower bound. One measure of risk is the
probability of such an event over a finite or infinite time.

Much of the literature on ruin theory is concentrated on classical risk the-
ory, in which the insurer starts with an initial surplus u, and collects premiums
continuously at a constant rate of ¢, while the aggregate claims process follows a
compound Poisson process. The main research goal is the evaluation of finite and
infinite time ruin probabilities. Later, actuarial researchers dissected the surplus
process and considered more components related to the time of ruin, like the sur-
plus before ruin and the deficit at ruin. At each research stage, more insight has
been gained. Gerber and Shiu (1998a) gives a unified treatment of three of these
random variables: the surplus before ruin, the deficit at ruin and the time to ruin,
by evaluating the expected discounted penalty function. Almost all classical re-

sults, e.g., the results of Gerber, Goovaerts and Kass (1987), Dufresne and Gerber



(1988a, b), Dickson (1992) and Dickson and Dos Reis (1996), are obtained as par-
ticular cases when the discount factor is zero, and almost all the previous results
in classical ruin theory can be extended to the case with a positive discounting
factor. Lin and Willmot (1999) proposed an approach to solve the defective re-
newal equation, in which the discounted penalty function is expressed in terms of
a compound geometric tail. Lin and Willmot (2000) further used it to derive the
moments of the surplus before ruin, the deficit at ruin, and the time of ruin.

The last few decades have witnessed an almost explosive interest in more
general surplus processes, e.g, surplus models with stochastic premium income
processes, classical surplus processes under economic environment (investment
and inflation), surplus processes with dependent claim amounts and claim inter-
occurrence time, surplus processes in which aggregate claims come from some
classes of dependent or independent businesses, surplus processes with general
claim number processes, or classical risk model perturbed by an independent dif-
fusion process.

The classical risk model perturbed by a diffusion was first introduced by Ger-
ber (1970), and subsequently further studied by numerous authors, e.g., Dufresne
and Gerber (1991), Furrer and Schmidli (1994), Schmidli (1995), Gerber and
Landry (1998), Wang and Wu (2000), Wang (2001), Tsai (2001, 2003), Tsai and
Willmot (2002a,b), Zhang and Wang (2003), and references therein. The Gerber-
Shiu penalty function in the perturbed model can be decomposed as two parts:
the penalty function due to claims and that due to oscillations.

Sparre Andersen (1957) let claims occur according to a more general renewal
process and derived an integral equation for the corresponding ruin probability.
Since then, random walks and queueing theory have provided a more general
framework, which has led to explicit results in the case where the waiting times

or the claim severities have distributions related to the Erlang [e.g. see Borovkov



(1976)].

Malinovskii (1998) gives the Laplace transform of the non-ruin probability
as a function of a finite time ¢, if claim sizes are exponentially distributed with
parameter «, and waiting times have a general distribution k. Wang and Liu
(2002) extends the result to claim sizes that are a mixture of two exponential
distributions. In both cases, it is difficult to invert these Laplace transforms, even
for special claim inter-arrival times distributions.

Dickson (1998) and Dickson and Hipp (1998, 2001) consider the case where
the waiting times have a gamma(2,() distribution. They obtain an explicit expres-
sion for the Laplace transform of the ruin probability by solving a second order
integro—differential equation. More recently, Cheng and Tang (2003) complements
the work of Dickson and Hipp (2001), discussing the moments of the surplus before
ruin and the deficit at ruin in the Erlang(2) risk process. Li and Garrido (2004)
extends the Erlang(2) risk model to Erlang(n) for any integer n, in which the
expected discounted penalty function satisfies an n-th order integro-differential
equation. The latter can be solved to obtain a defective renewal equation. Gerber
and Shiu (2003a,b) and Gerber and Shiu (2004) further extend the Erlang risk
models to generalized Erlangs, in which claim waiting times are distributed as the
sum of n independent exponential random variables with possible different means.

Willmot (1999) considers the ruin probabilities for renewal risk processes
where the waiting times have a K, distribution, for which the associated Laplace—
Stieltjes transform is the ratio of a polynomial of degree m < n to a polynomial
of degree n. This general class of distributions includes, as special cases, Erlang
and phase-type distributions, as well as mixtures of these.

Stanford et al. (2000) presents a recursive method of calculating ruin probabi-
lities for non-Poisson claim processes, by looking at the surplus process embedded

at claim instants, in which claim inter-arrival times are assumed to be mixtures



of exponential and Erlang(n) distributions.

Dufresne (2001) derives the Laplace transform of the integral equation given
by Sparre Andersen, producing the Laplace transform of the non-ruin probability
for the wide class of waiting times or severity distributions that admit a rational
Laplace transform representation. Lima et al. (2002) uses Fourier/Laplace trans-
forms to evaluate numerically quantities of interests in classical and Erlang(2)
ruin theory.

Unlike the continuous model, the discrete risk models have not attracted
much attention and the literature only counts a few contributions. Yet results
on discrete risk models can be given a simpler understanding than their analogue
in continuous time. They are also of independent interest, since formulas for
discrete models are readily programmable in practice, while still reproducing the
continuous analogue results as limiting cases.

The discrete time analogue of the continuous time classical risk process is the
compound binomial risk process, which was first introduced in Gerber (1988) and
has been further studied by Shiu (1989), Willmot (1993), Dickson (1994a), De
Vylder (1996), De Vylder and Marceau (1996), Cheng et al. (2000), and Li and
Garrido (2002).

Recently, some papers discuss more general discrete time risk models, e.g.,
Cossette and Marceau (2000) considers a discrete-time risk model with correlated
classes of business, in which, the authors propose two kinds of dependence bet-
ween these classes, one is a Poisson model with i.i.d. shocks (PCS model), which
was first introduced in Marshall and Olkin (1967, 1988) and Kocherlakota and
Kocherlakota (1992), another is a negative binomial model with common com-
ponent (NBCC model). For this discrete-time risk model, Wu and Yuen (2003)
proposes a new structure of dependence (IR model) and compares the results for

the above PCL and NBCC models by assuming that there are two types of claims,



namely, main claims and by-claims, in each class. Each main claim may produce
a by-claim occuring in another class with a certain probability.

Yuen and Guo (2001) considers the ruin probability for a risk process with
time-correlated claims in the compound binomial model. It is assumed that every
main claim will produce a by-claim but that by-claim may be delayed one or two
periods. Recursive formulas for finite ruin probabilities are obtained and explicit
expressions for ultimate ruin probabilities are given in two special cases.

Cossette et al. (2003) presents a compound Markov binomial model which
is an extension of the classical binomial model proposed by Gerber (1988). The
compound Markov binomial model is based on the Markov Bernoulli process,
introducing dependence between claim occurrences.

Wagner (2001) considers a discrete risk model governed by a two state Markov
chain, in which the individual claim in each period is affected by the states of the
chain; Reinhard and Snoussi (2000, 2001) study the ruin probability and the
distribution of the surplus prior to ruin in a discrete semi-Markov risk model.

In this thesis, we consider the evaluation of Gerber-Shiu penalty functions, as
well as their applications, for different insurance risk models, both in continuous
and discrete settings.

Chapter 1 reviews the relevant results and techniques in the literature on the
classical risk model, the perturbed risk model, and the Sparre Andersen model,
both in continuous and discrete time settings.

Chapter 2 gives the mathematical preliminaries to the thesis, including the
definition of an operator for integrable continuous real-valued functions (alterna-
tively, for discrete functions on positive integers) and divided differences. The
appendices give a review of other mathematical tools also often used in the thesis.

Chapter 3 studies the evaluation of Gerber-Shiu expected discounted penalty

functions for a class of renewal risk models (Sparre Andersen models), in which



the claims inter-arrival times are K, distributed, for n € N*. First the Laplace
transform of the expected penalty function is given, through an integral formula
derived from martingale argument. Then the expected penalty function at v =0
is obtained by the initial value theorem. Third, a defective renewal equation for
the penalty function for u > 0 is derived using the renewal structure of the Sparre
Andersen risk model. With this defective renewal equation, many ruin related
quantities are analyzed. Lastly, explicit results are obtained by inverting a rational
Laplace transform, for the case when the claim size is rationally distributed.

Chapter 4 studies the expected discounted penalty function for the generali-
zed Erlang (n) risk process with a constant dividend barrier. We first show that
the expected discounted penalty function satisfies an n-th order integro-differential
equation with certain boundary conditions. Its solution can be expressed as the
expected discounted penalty function for the generalized Erlang(n) risk model
without barrier plus a linear combination of n linearly independent solutions to
the associated homogeneous integro-differential equation. The solution to the as-
sociated homogeneous integro-differential equation is uniquely determined by the
initial conditions and satisfies a defective renewal equation. Explicit results can
be obtained when the claim size distribution is of rational type.

Chapter 5 extends the classical risk process perturbed by a diffusion, and the
Sparre Andersen model with generalized Erlang(n) claim waiting times studied by
Gerber and Shiu (2003a, b). We analyze the expected discounted penalty function
and its decomposition for a Sparre Andersen model perturbed by an independent
diffusion, in which the claim inter-arrival times are generalized Erlang(n) distri-
buted (i.e., convolution of n independent exponential distributions with possible
different parameters). This leads to a generalization of the defective renewal equa-
tions for the expected discounted penalty function at the time of ruin, given by

Tsai and Willmot (2002a,b) and Gerber and Shiu (2003a,b). The limiting beha-



vior of the expected discounted penalty functions are studied, when the diffusion
coeflicient goes to zero (small diffusion asymptotics). Explicit results are given
for the case where n = 2.

Finally, Chapter 6 studies the penalty function for a class of discrete Sparre
Andersen risk models, in which claim inter-arrival times are discrete K, distribu-
ted. This class of discrete risk models is the discrete analogue of the continuous
Sparre Andersen risk models studied in Chapter 3. Due to the discrete nature of
the models, the generating function of the expected discounted penalty function
is given, through which the value of the penalty function at © = 0 is obtained
first. Then a recursive formula for the penalty function is constructed for positive
integer-valued initial surplus u. An explicit expression is obtained in terms of a
compound geometric distribution. Many ruin related quantities can be obtained
recursively or explicitly by specially choosing penalty functions, e.g., discounted
joint and marginal distributions of the surplus before ruin and deficit at ruin, as
well as their moments, the p.g.f. of the ruin time and its moments, for special
claim size distributions. Explicit results are obtained by inverting the generating
function when the claim size distribution belongs to two classes: the discrete K,

distribution and the discrete distribution with finite support.



Chapter 1

Review of the Literature

This chapter gives a brief review of literature on the classical risk model, the
classical perturbed risk model and the Sparre Andersen risk model.
In ruin theory, both discrete time and continuous time risk models are used,

requiring distinct analysis and tools.

1.1 Classical Risk Model

1.1.1 Definitions

First we review the definition of the Poisson process, the compound Poisson pro-
cess (CPP) and the classical surplus process [see Feller (1971), Gerber (1979)].

Let inter-occurrence times {W, : n € N*} form a sequence of independent
random variables that have a common exponential distribution with parameter
A > 0. Then the counting process for the number of claims {N(¢) : ¢ > 0} is
called a homogenous Poisson process with constant rate or intensity A, a special
kind of renewal process. A basic property of the Poisson process is that it has
independent and stationary increments, with distribution

()\ t)’n e—)\t

P{N(t+s) = N(s) = n} =

, $t>0,n=0,1,2.... (L.1)
Therefore E[N(t)] = Var[N(t)] = At, for t > 0, and the moment generating

8



function (mgf) Myg)(s) = E[e?N®)] = A1),

Let the individual claims {X;; 7 € N*} be i.i.d. non-negative r.v.’s, indepen-
dent of N(t), with common cumulative distribution function (cdf) P and cor-
responding probability density function (pdf) p. Assume that the k-th moment
pr = E[X¥)(u = p) is finite, fork € N*, and denote the Laplace transform of
p by B(s) = [°e*%p(z)dz. Let S(t) = SN0 X;, if N(t) > 0 (with S(£) = 0 if
N(t) = 0) be the aggregate loss in [0,¢). The process {S(t); ¢ > 0} is called a
compound Poisson process (CPP), denoted as S(t) ~ C.P.[X; P, for ¢ > 0. The
distribution of S(¢) is given by

P{S(t) <z} = i S)lzj—);ﬁci—ﬁ—)\—tP*"(a:), t,z >0, (1.2)
n=0 )

where P**(z) denotes the n-th convolution of P with itself at z [with P**(z) =
I(z > 0) and P*! = P].

Now consider the surplus process
U(t) =u+ct — S(), t>0, (1.3)

where v > 0 is the initial surplus and ¢ > 0 is the constant premium rate over
time. Here we can re-write ¢ = (1+6)\ p, where 6 > 0 is interpreted as a relative
security loading factor.
Define
T =inf{t > 0;U(t) <0} (o0, otherwise),

to be the ruin time, and
U(u,t) = P{T<t|U(0) =u} = P{J[U(s) < 0] [U(O) - u} u,t >0,
U(u) = {T <oo|U(0) =u} = P{ U we <o 'U(O) - u} >0,

to be the finite probability and ultimate ruin probability, respectively. Clearly,
U(u) = limy oo ¥(u, t).



1.1.2 Main Results on the Ruin Probability

We now give a the summary of the main results in the classical risk model.

Theorem 1.1.1. (Integro-differential equations) The probability of ruin before
time t, with initial reserve u, satisfies the following partial integro-differential

equation for u,t > 0:

%\Il(u, t)=c %\II(U, t) + AP(u) — A\U(u,t) + )\/ U(u — z)p(z)dze, (1.4)
0
while the ultimate ruin probability U(u) satisfies the following integro-differential
equation:
, A A A=
U'(u) = Z\I/(u) - U(u — z)p(z)dz — EP(U)’ u >0, (1.5)
0

with ¥(0) = 125.
Proof: See Gerber (1979) or Panjer and Willmot (1992). O

The following results show that the ultimate ruin probability ¥(u) satisfies
a defective renewal equation and admits a compound geometric representation.
Define Py(z) = 2@% and Py(z) = 1~ Py(z). P, is called the ladder-height dis-
tribution (also integrated tail distribution, or first order equilibrium distribution)

of P.

Theorem 1.1.2. (Defective renewal equation) The ruin probability ¥ satisfies the

following defective renewal equation:

1 “ Pl (u)
U(u) = 1 i Y(u—y)dhiy) + 55 w20 (1.6)
Proof: See Gerber (1979, p. 115). O

Theorem 1.1.3. (Beekman Convolution Formula) U is given by the tail of the

distribution of a compound geometric sum, that s,
U(u) = 9 i 1 ’ Py™(w) u > 0. (1.7)
1+6044\1+86 ’ -

10



Proof: See Feller (1971) or Beekman (1974). O

Another expression for ¥ can be given using a martingale approach, as in
Gerber (1979). First, the concept of adjustment coefficient, which is a root of
Lundberg’s fundamental equation, is needed. In the classical risk model defined

above, the adjustment coeflicient, R > 0, is the solution, if it exists, to Lundberg’s

equation:
/ eR?P(z)dx = E, (1.8)
0 A
or, equivalently,
/ eRedP(z) = 1+ 6. (1.9)
0
Theorem 1.1.4. If there exists a R > 0 satisfying (1.8), then
. e—Ru
= > 0. 1.1
W)= Femmr <y 2 (1.10)
Proof: See Gerber (1979). O

Although ¥ satisfies a defective renewal equation and admits representation
as in (1.7) and (1.10), usually it is difficult to obtain an explicit expression for
it in practical situations. The exception being perhaps for some special choices
claim distribution, e.g., the exponential or mixture of exponential distributions,
see Gerber (1979) and Bowers et al. (1997). In fact, explicit results can be obtained
if the claim size distribution admits a rational Laplace transform. In this case,
the Laplace transform of the ruin probability can be inverted by partial fraction
formula, see Dufresne (2001) or Lima et al. (2002).

For more general claim amount distributions, the main results for ruin pro-

bability give bounds, asymptotic formulas, approximations, and simulations.
Theorem 1.1.5. (Lundberg’s bound) For the classical risk model defined above,

U(u) <e ¥ 4 >0, (1.11)
where R is the adjustment coefficient defined in (1.8).
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This is the first bound for the ruin probability ¥. However, the adjustment
coefficient does not exist for many distributions, such as heavy tailed distribu-
tions. Several approaches have been proposed to derive general bounds for the
ruin probability. One way is to avoid reference to the adjustment coefficient, for
example, De Vylder and Goovaerts (1984) gives the following bound:

Pl(u)
2 g Ry

u> 0. (1.12)
Another way is to relax Lundberg’s equation by replacing the exponential
function by, say a new worse than used (NWU) or new better than used (NBU)
distribution [see Willmot (1997b), Cai and Wu (1997)].
A third approach is to consider a truncated Lundberg’s equation. That is,
for a given ¢ > 0, there exists a root R(t) satisfying
¢
/ eFOVP(y)dy = (1 + 6). (1.13)
0
Using R(t), Dickson (1994b) gives an upper bound for a fixed ¢:
Pi(t)
Uu) <ewB® 4 "1 g<y<t. 1.14
(u) - 0+ P (u) - ( )
In the same sprit, Cai and Garrido (1999) derives sharper two-sided bounds for

ruin probability under the above truncating Lundberg equation:

Theorem 1.1.6. For a fized t > 0 and any given 0 < u <,

Oy (u,t) e RO + Py (t) Bay(u, t) e RE + Py (¢)

01 Pt s Y s 6T ) ! (1.15)
where
ai(u,t) = O_<i_£Ll£u a(h,t), oas(u,t) = S a(h,t),
and o
1) < ETOLR) = Pu()

Jres R i)
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Proof: See Cai and Garrido (1999). a
The above theorem implies the following simplified and practical two-sided

bounds.

Corollary 1.1.1. Under the condition of the above theorem, for any 0 < u <t,

0 et RO 1 P (t) fe B 1 P (t)

_ U(u) < _ , 1.16
iR S TS (1.16)
and hence, for any t > 0,
Be-2tR0 4 Py (1) BetRO 1 Py (1)
- <VY(t) < — 1.17
6+ Pi(t) ¥ s 6+ Pi(t) (L.17)

Besides bounds, another area of research interest in ruin probabilities is that
of asymptotic formulas. One of the well-known result, which is referred to as

Cramér-Lundberg Asymptotic Formula, is given below.

Theorem 1.1.7. (Cramér-Lundberg Asymptotic Formula)

Gu o-Ru
My (R) — p(1+06) ’

U (u) U — 00, (1.18)

where R is adjustment coefficient, and Mx is the mgf of the claim amount X.

Proof: See Gerber (1979) or Panjer and Willmot (1992). O

The limitation of the above formula is that it depends on the adjustment
coefficient R, which does not exist when claim size distributions are heavy tailed
or even medium tailed. Embrechts and Veraverbeke (1982) have shown that if P

is a subexponential distribution, then

For medium tail distributions, we note that f;°e"VdP;(y) < 146, or equivalently
Mx(y) < 1+ (1 +6)p, where v > 0, and Mx(t) = oo for any ¢t > ~. Hence no

13



R exists satisfying (1.8). In this case, Embrechts and Veraverbeke (1982) shows

that ~
0y puP(u)
P(u) ~ , U — 0O.
W T @+ 9y - M OP
Additional results on the asymptotic formulas for ruin probabilities can be found
in Klippelberg (1988, 1993).

Other results on ruin probabilities are related to approximations, numerical

methods, and simulations. Since ¥(u) can be expressed as the tail of a compound
geometric sum, then techniques on the evaluations of compound distributions can
be used for ruin probabilities. Among all the contributions in this area, Panjer
(1981) is the most famous one. It gives a recursive evaluation of the compound
distribution for counting distributions in the (a,b) family. The latter includes
the geometric distribution as a special case. Approximations on ruin probability
can be found in Beekman and Bowers (1972) , Tijms (1994), Assmussen (1987),
Kremer (1987), Garrido (1988), Dickson and Waters (1991), De Vylder (1996),
and Chaubey et al. (1998). Simulations on ruin probabilities can be found in

Dufresne and Gerber (1989).

1.1.3 Gerber-Shiu Penalty Function

Recently, research has focused on two other components related to the time of
ruin: the surplus before ruin U(7~) and deficit at ruin |U(7")|. Some of the early
contributions in this direction are those of Gerber, Goovaerts and Kass (1987),
Dufresne and Gerber (1988a), Dickson (1992), Dickson and Dos Reis (1994) and
Willmot and Lin (1998).

Gerber and Shiu (1998) gives a unified treatment of the these random va-
riables, surplus before ruin, deficit at ruin and time of ruin, by evaluating the
expected discounted penalty function. It generalizes and gives a better under-

standing of classical ruin theory, since many of the early results listed above are
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particular cases of the expected discounted penalty function, when the discount
factor is zero.

For the classical risk process defined in the first section, define F3(z,y,t|u) =
P{U(T™) <z, |UT)| <y, T <t|U(0) = u}, for z,y,t > 0 and its correspon-
ding joint probability density function, f3(z,y,t|u), of the surplus just before ruin,

the deficit at ruin and the ruin time. Let § > 0 be the (constant) discount factor

over one period and define fo(z,y|u) fo Ot f3(x,y,t|u) dt as a discounted
joint p.d.f. of U(T™) and |U(T)|. If fi(z|u) = [y faola,y|u)dy, it follows that
p(:r +y)
= — >0. .
f2(x7y|u) fl(:l:'u) P(.’B) y €4 y—O (1 19)

Let w(z,y), for 2,y > 0 be the non-negative values of a penalty function. For

4 > 0, define
¢(u) = E [e*Tw(U(T™), [UM)I(T <o0) |[U@O)=u} , u>0. (1.20)

The quantity w(U(T~),|U(T)|) can be interpreted as the penalty at the time
of ruin for the surplus U(7~) and the deficit |U(T")|. Then ¢(u) is the expected
discounted penalty if d is viewed as the force of interest.

Many ruin related quantities can be analyzed by appropriately choosing spe-
cial penalty functions, e.g., if w(z1,x2) = I(z1 = z,y1 = y), then ¢(u) gives the
discounted joint density function of U(T~) and |U(T')|; if w(z1,x2) = 27 2%, then
#(u) gives the discounted joint moments of U(T") and |U(T)|; if w(zy,x2) = 1,
then ¢(u) gives the Laplace transform of T" with respect to §, and further if § = 0,
#(u) simplifies to ruin probability ¥(u).

As the ruin probability, ¢ also satisfies an integro-differential equation:
cd'(u) —(6+N)¢ +)\/¢>u—x z)dz + dw(u) =0, (1.21)

where w(u) = [ w(u,z — u)p(z)dz. A defective renewal equation satisfied by ¢

is derived by using a technique of integrating factors in the following theorem.
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Theorem 1.1.8. [Gerber and Shiu (1998a)] For § > 0, ¢ satisfies the following

defective renewal equation,
o) = [ =)oy + 6w, u20 (122
0

where g(y) = fyoo e~P@Vp(z)dz, and G(u) = [ e P Yw(z)dx, with p > 0 being

the unique positive root to the equation:
I(s) =0+ A—cs=Ap(s). (1.23)

Equation (1.23) is a generalized version of Lundberg’s fundamental equation.
It has a unique positive root p when § > 0, and a possible negative root —R (R >
0), if p is sufficiently regular. If § = 0, then p = 0, and R is the adjustment
coeflicient.

Clearly, $(0) = G(0) = w(p), and specially,

A

Pol@9l0) = S Bz +y),  fi@]0) = 2e"P(a),

o0 5
= foosd = = -_
E[e™" I(T < 00)|U(0) = 0] /0 g(y)dy =1 >

Similarly, if w(z1,z2) = I(z1 = =, 22 = y), or w(z1, x2) = I(z1 = z), for
0 < 7 < oo, then ¢(u) gives fo(z,y|u) and fi(z|u), respectively, i.e., they both

satisfy a defective renewal equation as follows.

Corollary 1.1.2. For u, z, y > 0,

foyln) = [ fleylu= 2@+ S plo +) (@ > ),
filelu) = / " (ohi— ) g(2)dz + 2o P@) (@ > ),

The above defective renewal equations for the discounted joint and marginal
densities fo(z,u|u) and fi(z|u) can be solved explicitly as in the following theo-

rem.
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Theorem 1.1.9,

P Tip(u—z)~1p(u)
fl(xlu) { E : ) 1-4(0) ! O<z=<w, (124)

0) LX) z > u,
where fi1(x|0) = Ac"te 2 P(x) and ¥(u) is defined by

1-4(0) °

P(u) = E [e?THUD [T < 00)|U(0) = u] .

Proof: See Gerber and Shiu (1997) or Gerber and Shiu (1998a). 0
There is a probabilistic interpretation for ¥ (u), which is the expected present
value of a payment of 1 that is made at the time of recovery, if ruin takes place.
Specially, if § = 0, then ¥ (u) simplifies to ruin probability ¥(u), and hence above
formula simplifies to the astonishing Dickson formula, which is given in Dickson
(1992).
As in Lin and Willmot (1999), we can rewrite (1.22) as

¢(u)=~1—_—1—§/0u¢(u—m v(z )dx+i~—{tEH( u), u >0, (1.25)

where £ is such that 1+5 = [Coly)dy =1- —p, v(z) = (1 + &)g(z) is a proper
density function and H(u) = (1 + §) G(u).

Specially, if w(z1,z2) = 1 in (1.20), then ¢(u) simplifies to the Laplace
transform of the ruin time 7" with respect to 4. To simplify notation, define
dr(u) := Ele ®TI(T < 00) |U(0) = u]. It satisfies the following defective renewal

equation:

1 o0
br0) = 1 [ orw-nvdr+ g [ vww. 20)

Using Laplace transforms, one obtains that ¢r(u) can also be expressed as the

tail of compound distribution, i.e.,

. 5 S 1 " ¥ /%N
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where V(u) = [~ v(y)dy is a survival function. Further if § = 0, ¢r(u) simplifies

to the ruin probability ¥(u), and therefore, equations (1.26) and (1.27) simplify
to (1.6) and (1.7), respectively.

Note that if we define an operator T, w.r.t. parameter r to be such that
[o o]
Tp@) = [ e pudy, w20, reC

then v(z) = %%% = (1487, p(z), and V(z) = Ty v(z) = —?ﬁ;—% = (1+8)T, P(z).

The operator T, w.r.t. a complex number r plays an important role in this

thesis. Its properties will be discussed in the next chapter.

Lemma 1.1.1. If p > 0 then the moments of V(x) are given by

o0 n 7}-—1 (-',v))j 4]
un(,o):/0 x"dV(x)zﬁ{l%—;—%::—l—;(;)i}, n=12.... (1.28)

Lin and Willmot (1999) gives a solution to the defective renewal equation

(1.25), which is in terms of the compound geometric tail ¢r(u).

Theorem 1.1.10. [Lin and Willmot (1999)] The solution ¢(u) to (1.25) may be

expressed as

1 /¢ 1
d(u) = _E/o H(u—z)d¢r(z) + mH(u), (1.29)
B L an O, 1
6w =7 | drtu-2)db@) - Ter@) + ZHW.  (130)
If H(u) is differentiable, ¢(u) can be expressed as
_ ___l ¢ U—2 "(2)dr — w _1.. U U
b(u) = 6/0 brlu—g) H'e)de = =2+ gH@), w20 (13D

This theorem can be used to derive the moments of the surplus before ruin,
deficit at ruin and the time of ruin. To begin with, defining the n-th order equili-

brium distribution (survival function) of P recursively by Py(x) = Top(0) = P(z),
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. p T > p d D Pn—1(T et “n—
Pi(z) = REQ — [P0 ong P (g) = Tpecsle) f:m ZUI% Then

5y Tetp(x) [ (y = 2)"p(y)dy
Pole) = ooy = = . (1.32)

For the distribution v(z) = 11: f;(('“g)), then Vy(z) = V(z), and

Totv(z)  T,T3'plz)
Teto(0) — T,757p(0)

i) = T,Px) _ [Py
e TP (0) Jo e PvPa(y)dy

Define g,(p) to be the mean of V,,(z), then g,(p) = ToV,(0) = ;EZ:TZES; = (n’f:f)ig’()p).

Theorem 1.1.11. For k € N*,

o] = B () ewon () = prlp)r(w) - g

E [6-5T|U(T)|k|T < 00,U(0) = U (u)

where ag(u, p) ,Hf or(x)dz, and forn=1,2,.

anlip) = s [ = inte z( )’“” 2 [" o~ wpir(a)as

j= u

Specially if § =0, and k =1,2,...,

] ) Hi+1 (1.34)

E[|UT)[FIT < 00,U(0) = u] = OB CES

where T (u) = 0 [ U(y)dy, and forn =2,3,...,

Ta(u) = 222 / (& — u)* "0 (z)da ni( )”"“f Lw(x—u)j\lf(x)dx.

=0 Hn

Proof: See Lin and Willmot (2000). m]
Theorem 1.1.12. Fork,j € N,
E{{UT )P |UT)|F|T < 00,U(0) = u}

P _ j ip, . Kl 5 ey
Y ITO) {/0 U(u—z) 2’ P(x )d.’z:+/u x k(x)dx] it )
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The following theorem in Lin and Willmot (2000) gives the moments of the

time of ruin 7.

Theorem 1.1.13. The k-th moment of the time of ruin, given that ruin has

occurred, s
Vg (u)

U(u)’
fork=1,2,..., with Uo(u) = ¥(u), and Vi(u) is recursively obtained by

E[T*|T < 00,U(0) = u] =

u > 0,

Up(u) = )\LW [/Ou U(u — z) Uiy (x)dz + /00 Up_q(z)dx — ¥(u) /Ooo \Ilk_l(:c)dx] .

Proof: See Lin and Willmot (2000). 0

1.2 Classical Risk Process Perturbed by Diffu-
sion

The classical risk model perturbed by a diffusion was first introduced by Gerber
(1970) and has been further studied by many authors during the last few years;
e.g. Dufresne and Gerber (1991), Furrer and Schmidli (1994), Schmidli (1995),
Gerber and Landry (1998), Wang and Wu (2000), Wang (2001), Tsai (2001, 2003),
Tsai and Willmot (2002a,b), Zhang and Wang (2003), Chiu and Yin (2003), Zhou
(2003), and the references therein.

1.2.1 Decomposition of the Ruin Probability

Consider the following perturbed risk process:
Ut) =u+ct—S(t)+0oB(t), u > 0, (1.35)

where o > 0, B is a standard Brownian motion, and all other assumptions are as

in the definition of the classical risk model in the first section.
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Under this perturbed model, the ultimate ruin probability ¥(u) can be de-
composed as follows:

U(u) = Wa(u) + Us(u), (1.36)

where ¥4(u) is the probability of ruin that is caused by oscillation, and ¥,(u)
is the probability of ruin that is caused by a claim. Furthermore, denoting by
®(u) = 1 — ¥(u) the non-ruin probability, then ®(0) = ¥,(0) = 0, and ¥(0) =
U,(0) = 1.

Dufresne and Gerber (1991) shows that ¥, ¥, and ¥, satisfy integro-differential

equations, and thus admit a defective renewal equation representation.

Theorem 1.2.1. & with ®(0) = 0 satisfies the following integro-differential equa-

tion:

i7;—<I>”(u) +c®'(u) = A ®(u) - )\/Ou O(u — z)dP(z), u>0, (1.37)

and ¥4 with U4(0) = 1 satisfies:
2 U
%— Uh(u) + cUh(u) = A Wy(u) — )\/0 U4(u — 2)dP(z), u>0. (1.38)
Wang (2001) further proves that ¥4 and V¥, are twice continuously differen-
tiable and derives the same integro-differential equations as above using martingale
techniques and It6’s formula.

Solving the above integro-differential equations gives the following result.
Theorem 1.2.2. For u > 0,
O(u) =0 Hy(u) + (1 —6) /Ou /Ou O(u — z) hy * ho(z)dz, (1.39)
and
Uy(u) = 1— Hi(u)+(1-96) /u U,i(u — x)hy * ho(z)dz,

0

U(u) = (1-0)[Hi(u) — Hi x Hy(u)] + (1 - 6) /Ou U, (u — x)hy * ho(z)dz,
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where 8 > 0 is the loading factor, hy(z) = ve™=I(x > 0) withv = 2c/o?, hy(z) =

%w—), H, and Hy are their corresponding distribution functions, respectively.
Consider the aggregate loss at time ¢,
L(t)y = S(t) — ct — o B(t), t>0, (1.40)
and the maximal aggregate loss
L = max{L(t); t > 0}. (1.41)
As in the classical case
®(u) = P(L(t) < u,for all t > 0) = P(L < u), (1.42)

that is to say, ® is the distribution of the random variable L.
Dufresne and Gerber (1991) shows that L can be decomposed as follows:

L=LO+LP+ 1P+ 4+ L@+ LY, @=L iftN=0), (143

where N is the number of record highs of the process {L(¢); t > 0} that are caused
by the occurrence of a claim. Let T3, ..., Ty denote the times when these claims

occur, with Ty = 0 and Ty41 = 00. Then

L = max{L(t);t < Typ1} — L(Ty), k€N, (1.44)
and
LY = L(T) - L(Tx) - LYY, ke NV, (1.45)

Note that N is geometrically distributed as P(N = n) = 6(1—6)", n € N, where 8
is the probability that there are no record highs that are caused by a claim. By the
stationarity property of the process {L(t); t > 0}, Lgl),Lgl), ..., are identically
distributed, and ng), ng), ..., are identically distributed, with h;(z), H;(z), for
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1 = 1,2 as their pdf and cdf, respectively. Also N, L(()l),L?),Lgl), ng), ..., are
independent. It follows from all this that

B(u) = 0(1—0)"H; "V« Hy"(w), w20, (1.46)

n=0
which is a generalized Beekman convolution formula for perturbed classical risk
model.

Veraverbeke (1993) gives an asymptotic estimate of the ruin probability when
both the adjustment coefficient exists or when it does not.

Wang and Wu (2000) studies the supremum distribution before ruin, which
is defined as

I(u,z) = P{ s<u§TU(t) >z, T <oo|U(0) = u}. (1.47)

Clearly, I'(u,z) = ¥(u), if u > = > 0.

I'(u, z) satisfies the following integro-differential equation for z > u > 0,

2 u

% I (u,z) + T (u,z) = ATl(u, ) — A / I'(u — z,z) p(z) dz. (1.48)
0

The relation between I'(u, z) and ¥(u) is then

1—U(u)

T(u,z) = =00

U(z), O<u<uz.

1.2.2 Expected Discounted Penalty Functions

Gerber and Landry (1998) and Tsai and Willmot (2002a) analyze the above per-
turbed risk process using a Gerber-Shiu penalty function analysis. Define for
6 >0,

ba(u) :== Ele”®TI(T < 00, U(T) = 0) | U(0) = u]
to be the penalty function due to oscillations, or equivalently, the Laplace trans-

form of the ruin time T if ruin is caused by oscillations. For a non-negative
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bivariate function w(z,y), define
¢s(u) = Ele”Tw(U(T7),|UT)) I(T < 00,U(T) < 0)|U(0) = 1]
to be the penalty function due to a claim. Then

$(u) = da(u) + ¢s(u), w20,

is the expected discounted penalty function.
Gerber and Landry (1998) shows that ¢4(u) satisfies the following integro-

differential equation:
2 6) +cdl) + A [ gulu - Dlpa)ds — (V4 8)0ulu) =0, w20, (149)
and solves it to the following defective renewal equation:
/ Ga(u — y)dy + e, u >0, (1.50)

where g(y) = h*n(y), h(y) = 25e™*% with b = 25 + p, and n(y) = 2T, p(y) =
a fyoo e~P@=¥)p(x)dz, while p is the unique positive root to a generalized Lundberg
equation: § + A\ — cs — 02 s2/2 = Ap(s).

The probabilistic interpretation of g(y)dy is that it gives the expected dis-
counted value of a contingent payment of 1, made at the time of the first record
low due to a jump, provided that this record low is between u —y and u —y + dy.

Tsai and Willmot (2002a) shows that ¢s(u) satisfies the following defective

renewal equation
os(u) = / ¢s(u — y)dy + hx (Tow)(u), u > 0. (1.51)

Therefore, ¢(u) = ¢q(u) + ¢s(u) satisfies

=/,"¢<u_y)g(y)dy+e—bu+h*(pr)(u), w20, (L52)
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Tsai and Willmot (2002a) also discusses the limiting behavior of the penalty
functions when the dispersion parameter o goes to zero. When o — 0, ¢4(u) — 0,
and ¢s(u) — Po(u), where ¢o(u) the expected discounted penalty function for
the classical risk process without a diffusion perturbation, as defined in (1.20).
Therefore ¢(u) — ¢o(u) as o — 0.

Tsai (2001) studies the discounted joint and marginal distributions of the
surplus before ruin and the deficit at ruin, provided that ruin is caused by a
claim, by appropriately choosing the function w(z,y). Tsai and Willmot (2002b)
“extends the results of Lin and Willmot (2000) and derives the expressions for the
(discounted) moments of deficit at ruin, the joint moments of the surplus before
ruin and the deficit at ruin, as well as the moments of ruin times due to claims

and oscillations.

1.3 Sparre Andersen Surplus Processes

Andersen (1957) let claims occur according to a more general renewal process and
derived an integral equation for the corresponding ruin probability. Since then,
random walks and queuing theory have provided a more general framework in
risk theory, which has led to explicit results in the case where the waiting times
or the claim severities have distributions related to the Erlang [e.g. see Borovkov

(1976)].

1.3.1 Model Description and Notation

Consider a continuous time Sparre Andersen surplus process

N(t)
Ult)=u+ct—» Xi, t>0, (1.53)

i=1
where all the parameters are same as that in the classical risk model except that

the process {N(t); t > 0} is a more general counting process, defined as N(t) =
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max{n : Wi+ Wo+- .-+ W, < t}, where the claim waiting times W; are assumed
i.i.d. with density function k(t), for ¢ > 0, with k(s) = J5° e "k(z)dz being its
Laplace transform.

Further assume that {W;; ¢ € N*} and {X;; 1 € N*} are independent and

c E(W;) > E(X;) providing a positive safety loading factor.

1.3.2 Main Results

Malinovskii (1998) gives the Laplace transform of the non-ruin probability ®(u,t) =
1 — U(u,t), if the claim size is exponentially distributed with parameter «, for a

general waiting times distribution &.

Theorem 1.3.1. [Malinovskii (1998)] Let the claim size density p be exponential
with parameter o > 0, and l%(s) be the Laplace transform of the waiting times

density k, then
o0
(5/ et d(u,t) =1 — pe~oul=p), d >0, (1.54)
0
where p is the unique solution to the following equation:
p=k[6+ca(l - p)), d > 0.

Wang and Liu (2002) extends this result to the case when claim sizes can

have a mixture of two exponential distributions, i.e.,
E(t) = [Cone™™@ P+ (1 —()e™ 2" I(¢ > 0).

The Laplace transform of the non-ruin probability is derived which is in terms of
two positive roots to a generalized Lundberg’s equation.

In both cases, it is hard to invert the Laplace transforms except for some
special waiting times distributions. Also the above models are restricted to expo-

nential claim sizes or mixtures of exponentials.
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Dickson (1998) discusses the non-ruin probability ®(u) for a Sparre Andersen
risk model in which claim waiting times are Erlang(2) distributed, with density
function k(t) = A2te *I(t > 0). It can be shown that ®(u) satisfies the following

2-nd order integro-differential equation:
A" (u) — 22 ®' (u) + N2®(u) = )\2/ O(u — z)p(x)dz, u>0. (1.55)
0

Let &(s) = J;° e7*“®(u)du be the Laplace transform of ®(u), then taking Laplace
transform to both sides of (1.55) yields,

R s ®(0) + A\ u—2Ac
P(s) = > .
6= o ri—e) =Y (1.56)

where ®(0) = %2——’5 and p is the unique positive root to the equation:

cs® —2cAs+ N[l —p(s)] =

Dickson and Hipp (1998) further shows that ®(u) has a compound geometric

representation:
o(u) = 2(0) Y [(O)"H™(w), u>0, (1.57)
n=0
where H(u) = mT T()p( )

For the same Erlang(2) risk process, Dickson and Hipp (2001) consider the
Laplace transform of ruin time 7" w.r.t. a positive parameter J, which is defined
as

d(u) = Ele®TI(T < )| U(0) =], u>0.
Same as the non-ruin probability ®(u), ¢(u) also satisfies an integro-differential

equation for v > 0,
c? ¢"(u) =2(A+08)cd’ (u) + (A +8)¢ )\2/ ¢(u—2z)p(zx)dz + N2 P(u). (1.58)

Define ¢ fo e *“d(u)du to be the Laplace transform of ¢(u), then it is
obtained by

B(s) = Cz—i—j\’%s—) s >0, (1.59)
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where v(u) = T, Tp,p(u), and n(u) = Toy(v) = [ v(y)dy, while p; and p, are

the only two positive roots to a generalized Lundberg equation:
52— 2(6 + Nes+ (A +8)2 = N p(s).
Inverting the above Laplace transform yields a defective renewal equation
)\2 U )\2 o0
d(u) = 22—/ d(u— z)y(z)dr + —c—2~/ v(z)dz, u >0, (1.60)
0 u

with ¢(0) = 29(0) = 1— B8 <)

Cheng and Tang (2003) complement the work of Dickson and Hipp (2001),
discussing the moments of the surplus before ruin and the deficit at ruin in the
Erlang(2) risk process, and derive the asymptotic expressions for the expected
penalty function for light tailed claim severity distributions and a class of heavy
tail distributions.

Lin (2003) shows that the Gerber-Shiu penalty function in Erlang(2) risk

model satisfies a 2-nd order integro-differential equation and further accepts a

defective renewal representation.

Theorem 1.3.2 (Lin (2003)). ¢ satisfies the following integro-differential equa-

tion:

{(1 + %)Z - ;D] d(u) = /Ou d(u — z)p(z)dzr + w(u), u >0, (1.61)

where T and D are the identity and differentiation operator. It can be further

solved to a defective renewal equation:

2

H(u) = %—2—/0“ d(u — z) y(z)dx + )c\—zH(u), (1.62)
where H(u) = Tp, Ty w(u).

Dickson and Hipp (2000) considers a risk process in which the claim inter-

arrival times have a phase-type (2) distribution. A phase-type distribution is such
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that its density satisfies a second order linear differential equation, i.e.,
k(t)+ A1 k'(t) + A2 k"(t) =0, ¢ >0, and A, > 0. (1.63)

For example, linear combinations and convolutions of two exponential distribu-
tions (with possibly different means) both satisfy (1.63). In this case, the Laplace
transform of ®(u) is given by

p— Ajc+ Az ck(0) + A 2 ®(0) s> 0

d(s) =
(s) Azc?s?2 — Arcs + pspi(s) + Aack(0)p(s)’ -

(1.64)
where ®(0) = 7\_2%75’ and p is the unique positive root to the equation:
ppi(s) — Ayc+ Az c? s + p(s) Az ck(0).
Inverting Laplace transforms yields a compound geometric formula for ®(u),
o0
O(u) = ®(0) > _[L(O)]"R™(w), u>0, (1.65)
where R is a distribution function (d.f.) with density r being

r(y) = Z—f’—; [ Top1 () + Az ck(0) Typ(v)]. (1.66)

Li and Garrido (2004) studies the evaluation of the Gerber-Shiu penalty func-

tion for a Sparre Andersen risk model, in which the claim waiting times are Er-

lang(n) distributed with density k,(t) = ﬁnf%lﬁ!_m, for t > 0, n € N*. Then

the Gerber-Shiu penalty function ¢(u) satisfies the following integro-differential

equation:

Theorem 1.3.3. [Li and Garrido(2004)] ¢s(u) satisfies the following equation for

u>0:
Z¢<k><u)[ e (")
_ (T) [/0 ¢>(u—x)p(x)dx+/:ow(u,ac—u)p(x)dx (1.67)
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Proof: See pages 119-120 of Li (2003). 0

The above equation can be solved to a defective renewal equation in terms of
n roots with positive real parts to a generalized Lundberg equation. Let I(s) =
(Bt —s)", for § > 0, n € N* and s € C. The equation I(s) = f—:ﬁ(s) is a
generalized form of Lundberg’s fundamental equation. It can be proved that for
§ > 0 and n € N*, exactly n out of all the roots to Lundberg’s equation, say
p1, P2, - - -, Pn, have a positive real part R(p;) > 0. Moreover, if p is sufficiently
regular, there is a negative root, say —R, then R > 0 is called a generalized
adjustment coefficient.

Using the roots py, . . ., p, and the operator T, the above integro-differential

equation can be solved to a defective renewal equation.

Theorem 1.3.4. [Li and Garrido (2004)] ¢(u) admits a defective renewal equation

representation
b(u) = /'¢u— (v)dy + Gs(u), >0, (168)

1
=(L%5/¢ (o) dy+ gy o) (169

wherens(y) = & T, T, _, -+ Tp, p(y), Gs(u) = %:l- Tp, Tp v+ Tpy w(u), & is such
that fo ns(y)dy =1— [(ﬁ”c):—ﬂ"] Hnl o < 1, Hs(u) = (1 + &) Gs(u) and

d==1

(1+£a)
vs(y) = (1 + &) ns(y) is a proper density function. Further, when § — 0% then

& — &o, such that (1+§0 fo no(y)dy =1— ne—l_ﬁlni%— < 1, if the safety loading
factor 8 is positive.
Using the penalty function ¢, the discounted marginal distribution of U(T~)

can be derived in the following theorem, which can be used to get the joint dis-

tribution of surplus before ruin and deficit at ruin.
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Theorem 1.3.5. [Li and Garrido (2004)] If p1, ..., pn are distinct, then

n-16" (1 —Pk* P(x) [ePk ® Uy (u—a)—¥
(1) 1@__ %‘E Zz_le ()[‘r’(pkk)( )= k(u)] 0<z<u,

n e—Pk T P(x) [Pt u
G ”3 M) Yo, Rl z>u,
(1.70)

filzlu) =

where Uy(u) = ¢r(u) + [ ¢r(u —1t) pr et dt.

Explicit results for ¢(u), which is in terms of the Laplace transform of the
ruin time T', can be obtained, if the claim size is rationally distributed. Since in
this case, the Laplace transform ¢r(u) can be written as a rational function which
can be inverted by partial fractions.

Dickson (2003) studies the density for the ruin time for Erlang(n) risk process
with claim sizes being exponentially distributed.

Gerber and Shiu (2003a,b) shows that if the waiting times are generalized
Erlang(n) distributed, i.e., the distribution of W is the convolution of n expo-
nential distributions with corresponding parameters A; > 0,7 = 1,2,...,n, the

integro-differential equation (1.67) can be extended as follows.

Theorem 1.3.6. [Gerber and Shiu(2003a)] Let Z and D denote the identity ope-
rator and differentiation operator, respectively. Then ¢(u) satisfies the following

equation for u > 0

{ﬁ[(ui)z—%b}} /qbu——a: 2)de+w(u),  (1.71)

J=1

where w(u) = [ w(u,z — u) p(z) dz.
Then it can be solved to a defective renewal equation
- | dw=vay+ 1@, wzo (172

. Tﬂlp(y)v G5(u) = MT Tpn 1" 'Tpl w(u)7

and p; with R(p;) > 0, for ¢ = 1,2,...,n are roots to following equation:

where g(y) = Mz, T, .

n

H[(l-l-%)—%s] = p(s), s€C, neNT,
; j j

j=1
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Dickson and Drekic (2004) studies the joint and marginal distributions of
the surplus before ruin and deficit at ruin for the above Sparre Andersen risk
process with generalized Erlang(n) waiting times, assuming that the claim sizes
are Phase-type distributed.

Willmot (1999) studies the ruin probability of a Sparre Andersen model in
which the claim waiting times are K, distributed and the premium rate ¢ = 1.
It is well known that ruin probability ¥(u) may be expressed as the tail of a

compound geometric distribution, i.e.,
U(u) = &(0) i[\II(O)]" H*™(u), u >0, (1.73)
n=1
and satisfies a defective renewal equation:
U(w) = T(0) /0 “W(u—2)dH(@) + SO AW), w0,  (L74)

The expression of H and its density function h can be recognized from the Laplace-
Stieltjes transform of the non-ruin probability ®(u).
Assume that the claim waiting times density k is from a K, distribution, its
Laplace transform is given by
7 Hn—l )\z + Sﬁ(s)
k(s) = == , 1.75

where n > 2, \; > 0,2 = 1,2,...,n and (s) is a polynomial of degree n — 2

or less. This general class of d.f.’s includes (mixtures) of Erlangs and phase-type

d.f.s as special cases. From De Smit (1995), or Cohen (1982) one has

00 E(X)-E P NS TS (o =
/ 6—sudq)(u) — n—l[ ( )n (W)] [Hz:ln ]Slezl (p S) - , (176)
0 TT5 ol Ty N~ 8) = TTicy Mip(s) + s B(—s)p(s)]
where p1, p2,...,pn—1 are all the roots with positive real parts to a generalized

Lundberg equation: l%(-—s) p(s) = 1. The existence of p; can be proved by Rouché’s

Theorem.
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For notational convenience, let 7(s) = [[}= (s — pi). Here () is such that

4(s) = B(=s)p(s), v(z;r) = Try(z) and F(s;r) = Tey(0;7) = T,T,v(0). While

_ TP(x) Iel

— T.P(0)’ (Z‘, 7’) and g(fl;, 7') are

G(z; ) is a survival function defined by G(z; r)

the corresponding cdf and pdf, respectively.

Theorem 1.3.7. [Willmot (1999)] If p1, p2, - . ., pn—1 are distinct, then
[[ ME(W) — E(X)]

B(0) =1 — e , (1.77)
and n—1 n-—1
hs) = 303966 )+ G 3 o, (1.78)
with

(=)™ iy MJEX)[L = pa(ps)]
W(0) pj ™' (pj) '

We remark that iL(S) is usually difficult to invert due to the definition of ()

0; =

except for some specially chosen (3(s), e.g.,

1. If 8(s) = B, then
n-1 n—1
h(z) =" 0;1(x; p;) + Y _miglx; pj), =20,
j=1 j=1

: _ (=1)"B[1-p(ps)]
with 7; = =555, 7r’z()p?) '

2. If B(s) = 0, i.e., k is a generalized Erlang(n) distribution, then
n-1
hz) =Y 6iqi(z; p;), x>0
j=1

Stanford et al. (2000) presents a recursive method of calculating ruin probabilities
for non-Poisson claim processes, by looking at the surplus process embedded at
claim instants. In this paper, claim inter-arrival times are assumed to be mixtures

of exponentials and Erlang(n) distributions.
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Let s,(y)I(y > 0) be the incomplete density for the surplus after the n-th
claim and 3,(s) = [;° e7*¥ s,(y)dy be its Laplace transform. Also let g be the
density of the increment between two consecutive claims, which is the difference

between premium income and claims, and G(y) be its cdf. Then g is given by

Rkt pt)dt, y>0
oW = {fooo k(t)p(t —y)dt, y<0 (1.79)

and its Laplace transform §(s) = [ e™*¥g(y)dy = k(s) p(—s). Recursively,

5ny) = / " sua(@)gly — )z, y >0,

and
8,(8) = 8n-1(s) §(s) —/ e % sn_l(a:)/ e®¥ g(—y)dydz,
0 z

while its evaluation at s = 0 gives the probability of ruin on the n-th claim, i.e.,
P(n) = P(ruin on the n-th claim) = / sn_l(x)/ g(—y) dy dz.
0 T

For Erlang(n) inter-arrival times, the above theorem gives a recursive evaluation

formula.

Theorem 1.3.8. [Stanford et al (2000)] If the claim inter-arrival times are dis-
tributed as k(t) = %ﬁl (t > 0), and claim amounts are miztures of N

exponentials with density

N
p(z) = ribie™*I(z>0), (1.80)

i=1

then

0 =3 0 () - (525 m@], sy

and




1.4 Risk Models in Discrete Time

In discrete time risk models, the surplus is examined at the end of a number
of periods of equal length (usually one year). The discrete time analogue of
the continuous time classical surplus process is based on the compound binomial
process, which was first introduced in Gerber (1988) and has been further studied
by Shiu (1989), Willmot (1993), Dickson (1994a), De Vylder (1996), De Vylder
and Marceau (1996), Cheng et al. (2000), and Li and Garrido (2002).

1.4.1 Compound Binomial Process

Consider a discrete time surplus process, in which the number of insurance claims
is governed by a binomial process N(n), for n € N. In each time period, the pro-
bability of a claim is ¢ € (0, 1), while the probability of no claim is 1 — q. The
claim occurrences in different time periods are independent events. The individual
claim amounts X7, X», ... are mutually independent, identically distributed, posi-
tive integer-valued random variables. As usual, these claim severities are assumed
to be independent of the counting process {N(n); n € N}. Let p(z),z € N* be
their common probability function and g = E(X). If u denotes the initial surplus,
then the surplus at time n is given by

N(n)
U(n)=u+n—ZXi, u € N. (1.82)
i=1

The discrete time risk model (1.82) is called a compound binomial risk model.
The compound binomial surplus process can also be used to model the case

where more than one claim can occur in each time period. Then we assume that

the total claims in each period are i.i.d. random variables taking non-negative

integer values. Let Y; be the sum of the claims in period j, then the surplus
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process U(n) with U(0) = u is

Un)=u+n-»Y, wuel (1.83)
j=1

The process in (1.83) can be viewed as the second version of the compound bino-
mial model, simply denoting ¥; = I;X;, where r.v. I;’s are i.i.d. with P(I; =0) =
P(Y;=0)=1-gand P(I; =1) = P(Y; > 0) = ¢, while X; =Y}, given that
Y; > 0.

Gerber (1988) defines the ruin time to be a defective r.v. T" such that

T =inf{n >1:U(n) < 0}. (1.84)
Shiu (1989) defines the ruin time T to be
T =inf{n >1:U(n) < 0}. (1.85)

In both cases, U(u) = P(T < o0) denotes the ultimate ruin probability and
®(u) = 1 — U(u) its survival probability, while ¥(u,n) = P(T' < n) is the finite
time ruin probability, with ®(u,n) = 1 — U(u, n) being the corresponding finite
time survival probability.

For the first definition of ruin time T, using two series, Gerber (1988) shows
that ¥(0) = gu, P[T <oo,U(T—1) ==, |UT)|=y|U(0) =0] = gp(z+y+1),
for z, y € N*, y € N, and

1—U(u)

u-1 k
0 R :273 (1) Pls-w®a-g% s <u),

where o) = k'(:) is the k-th factorial power of a, and Sy = X1 + X5 + - -+ Xk
Using different methods, Shiu (1989) derives Gerber’s results for the second

definition of the ruin time T', with ¥(0) = 1T'}q’i, and

o0

B(w) = 2(0)S ([—_qq)E () a0 s <) wew,

=0

(1.86)
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which can be expressed in the form of a compound geometric sum,

O(u) =2(0) > [L(O)"H™(w), weNT, (1.87)

n=0

where H(u) = 113{%.
Using the technique of generating functions, Willmot (1993) gives an explicit
formula for the finite ruin probability based on Shiu’s definition of ruin time, i.e.,

for u,n € NT,

®(0,n) = anz"(?l__n;)al}rgg(wl), (1.88)

B(un) = Guan() = (1 =) Y 80,1~ 1 —m) guems(m), (189

where g,(k) = P(Sy = n), and Gn(k) = r_s 9gm(k), for n € N. The generating
function ¥(z) = 320 2% ¥(u) of the ruin probability ¥(u) is given by

B(z) = — { Loap }, 1<z<l, (1.90)

1-z | 1-qpub(2)
where b(z) = i—("lﬂ_z—;, with p(2) = Y o, 2%p(z) being the p.g.f. of p.

Inverting (1.90) again gives (1.87). Explicit results for ¥(u) can be obtained
when the claim sizes are constant or geometrically distributed.

Dickson (1994a) derives some above results using very elementary methods,
and shows how these results can be used to approximate ruin probabilities in the
continuous time classical risk model.

Using martingale techniques and a duality argument, Cheng et al. (2000)
derives the discounted joint distribution functions for the surplus before ruin and
the deficit at ruin, for Gerber’s definition of ruin time in the compound binomial
model. Define f3(z,y,t|u) = P[UT - 1) = «,|UT)| =y, T = t|U(0) = u
and for a discount factor 0 < v < 1, define fo(z,y|u) =3 o) v' fa(z, y,t| u) and

fl@lv) =302 falz, | ).
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Using a duality argument, the key formula

fo(z,y]0) =qup°plz+y+1), z,y€eN,

is obtained, yielding a recursive formula for fo(z,y|u), when v € N* and z,y € N :

u—1

fale,ylu) =Y fale,y|u—2) g(z) + fale,y|0) p™I(u < @), (1.91)

7=0
where g(y) = Y oo, f2(z,y|0), and p € (0,1) is the unique solution to a discrete
Lundberg equation ¢p(r) + (1 —q) = L.

Li and Garrido (2002) considers the expected penalty function for the se-
cond version of the compound binomial model (1.83), where p(z),z € N, is the
probability mass function of Y, and p(s) =Y ..o s" p(z) is its p.g.f..

Let w(z,y) be the non-negative values of a penalty function, for z,y € N.

For 0 < v < 1 define
¢(u) = E [vTw(U(T - 1),[UTM)I(T < 00) |U0) =u] , weN, (1.92)

where ruin time 7' = min{¢t € N* : U(t) < 0}. Then ¢(u) is given recursively as

follows.

Theorem 1.4.1. [Li and Garrido(2002)]

$(0)=v ) > pw(z,y)plz+y+1), (1.93)
=0 y=0
and
1 &- 1 .
¢(u)=m§¢(u—m)l(x)+mM(u), u € N7,
where 0 < p < 1 is the root of the equation
_Bs) 1
g(s)==>=~—, (1.94)

B is such that ﬁ = 18, Uz) = v (14+8) 302y P*p(x+y+1) is a proper probability

function on N, and M(u) = v(1+ )3 02, p" ™ 2o w(z, y)p(z +y + 1).
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Now consider the compound geometric p.f. k(u) = {5 DN Ces m ﬁ) **(u), for
u € N. Then ¢(u) can be expressed explicitly as in the following theorem.

Theorem 1.4.2. [Li and Garrido (2002)]
ZM(u-z ), u € Nt (1.95)
b=
An applications of Theorem 1.4.2 is to derive many quantities associated with
ruin in a closed form. For example, the discounted joint distribution of the surplus
before ruin and the deficit at ruin can be expressed explicitly, not only with the

recursive formula in (1.91).

Theorem 1.4.3. For x € N*, and y € N

folz,y|w) = y(u) fo(z,y]0) , uweN*, (1.96)
where "
S0P k(z)  if 1<u<lz
R b i N

The discounted joint and marginal moments of surplus before ruin U(T — 1)
and deficit at ruin |[U(T")| can be obtained recursively through the penalty func-
tion ¢(u). The following theorem gives a recursive formula for factorial moments

Emy(u) = E[T™I(T < 00)|U(0) = u}, of the ruin time 7.

Theorem 1.4.4. [Li and Garrido (2002)] For u € N,

u—1
Eqy(u) = ,ulel) u—z)p1(z +Z\I/ (1.98)
z=0 Z=u
u—1 u—1
Epyy(w) = m Z Emiy(u—2)p1(2) + (n+1) Y Emy(u— 2)pi(2)
z=0 z=0
+(n+1) > Ew(2), (1.99)

z=u+1

where uy = E[Y], and p1(z) = 1_5’%5) is the equilibrium distribution of p.
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1.4.2 General Discrete Time Surplus Models

Like the continuous time surplus model, the classical discrete time binomial model
can be extended in several ways.

Cossette and Marceau (2000) considers a discrete-time risk model with corre-
lated classes of business. in which, two kinds of dependence between the classes of
business are proposed, one is a Poisson model with common shock (PCS model),
which was first introduced in Marshall and Olkin (1967,1988) and Kocherlakota
and Kocherlakota (1992), another is a negative binomial model with common
component (NBCC model). In both cases, the authors show how the dependence
affects the ruin probabilities through the value of adjustment coeflicient. This is
illustrated by numerical examples.

For the above defined discrete time model, Wu and Yuen (2003) proposes a
new structure of dependence (IR model) and compares the results with the PCL
and NBCC models above. Assume that there are two types of claims, namely,
main claims and by-claims. Each main claim in a class may produce a by-claim,
occuring in another class, with a certain probability.

Yuen and Guo (2001) considers the ruin probability for a risk process with
time-correlated claims in the compound binomial model. It is assumed that every
main claim will produce a by-claim, but the occurences of the by-claims may be
delayed one or two periods. Recursive formulas for the finite ruin probabilities are
obtained and explicit expressions for ultimate ruin probabilities are given in two
special cases.

Cossette et al. (2003) presents a compound Markov binomial model which
is an extension of the classical binomial model proposed by Gerber (1988). It
is based on the Markov Bernoulli process which introduces dependency between
claim occurrences.

Let the surplus process {U,; n € N} be defined by
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Nn
Un=u+n—2X¢, u €N, (1.100)
i=1

where {N,; n € N} is a binomial process defined as N, = Iy + I, + - - - I, repre-
senting the total number of claims over n periods, {I; k € N} is a sequence of
i.i.d. Bernoullir.v.’s with mean q € (0, 1). The sequence {X}; k € N} of individual
claim amounts are i.i.d..

In this discrete time compound binomial risk model, Cossette et al. (2003)
assumes that {I; k € N} is a stationary homogeneous Markov chain with state
space {0, 1} and with a transition matrix, making N, a Markov binomial process.
This introduces time dependency in claims occurrences.

For this compound Markov binomial risk model, recursive formulas are pro-
vided for finite and infinite time ruin probabilities. Lundberg exponential bounds
are also derived and numerical examples are given in Cossette et al. (2003).

Wagner (2001) considers a discrete risk model governed by a two state Markov
chain. The risk process receives a premium c at time n, if the Markov chain is
in state 1, while it pays a benefit 1 at time n, if the Markov chain is in state 2.
Let p;2 be the probability of a transition from state 1 to state 2 in the interval
(n,n + 1], while py; denote the probability of transition from state 2 to state 1.
Define the claim size X, as 0, if the chain is in state 1 at time n, or as 1, if the
chain is in state 2 at time n. Starting with initial surplus v € N in state 7 € {1, 2},
let

n
Ti(u)=inf{n€N‘u+nc—(1+c)ZXj<0}, u >0, (1.101)

j=1
be the time of ruin, ¥;(u) = P(r;(u) < 0o) be the ruin probability and &(u) =

E[7;(u)] be the expected value of ruin time. Recursive formulas for ruin probabi-
lities and the expected ruin times are given.
Reinhard and Snoussi (2000, 2001) study the ruin probability and the joint

and marginal distributions of the surplus prior to ruin and the deficit at ruin in a
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discrete semi-Markov risk model, by constructing a recursive system of equations.

Explicit results are given for the two states model.
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Chapter 2

Mathematical Preliminaries

2.1 An Operator of Integrable Real Functions

As in Dickson and Hipp (2001), we introduce the following complex operator of

an integrable real-valued function f :
Trf(:v)z/ e fu)ydu, reC, z>0. (2.1)
For example, if r = a + b, we have

T,f(z) = / " e @) f(y) du

4

= / e~ =2) cosb(u — ) f(u) du —i/ e %) sinb(u — z) f(u) du .
The operator T, satisfies the following properties:
L T.f(0) =[5 e fu)du = f(r), for r € C, is the Laplace transform of f.

2. T., 1., f(z) =T, T, f(z) = Inf) i@ - %ryeC, z20.

re—m1

3. If r = a+ bi (denote by 7 = a — bi, for b # 0) then

T: T, f(z) = 1/ e~ sinb(u — «) f(u)du, =>0,

T

(=l

is a real number.
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To(f * g(a)] = f * [To9(2)] + Tr9(0) - To f(z), = 2>0.

T Tof(e) = [ e (u - 2) f(u) du = — 2T, f(z) = lim DL/
lim,_,, Ts T f (), for & > 0.

T fz)=T,--- T, f(z )—hmT Tt f(z) = [° e'““"”%f(u)duz

G T (o), while T, T (0) = (2 — Y, 240, for s € C, s

(n—1)1 drm—T (r—s)™ j=1 (r—s)r+i=1>
the corresponding Laplace transform.
. If ry,79,..., 7 are distinct complex numbers, then

Trk e T’r‘zT’I‘l f(x)
— / e Tk(zE—T) / e Ti(@1-w2) f(z1) dzy - - - dx

2

k
Ic 1ZT7'Lf(x : x>0, (22)

—~ m(r)

where m(r) = []f,(r — r1). The corresponding Laplace transform is

LT, T T £(0) = (-0 [ L2 5 T e

m(s) 2 (5 — rmi(r)

. For distinct 71,79, ..., 7%, and positive integers ni, ng, ..., ng,

00 e-m(u—z)( m—1

ZZalm/ (m_qu)lx) f(u) du

=1 m=1

= Zzal,mTrTf(x)v 55207

=1 m=1

Tre T T f(z)

Tk—1

where the coefficients {a;m; 1 <1 <k, 1 <m < n;} are determined by:

stl ZZ Si’:l , secC, (2.3)

=1
that is

1 dm-m C
Alm = selC.
l,m (nl | dsm—m 11_!# 3+7't ’
S=-—7ry
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Proof: Properties 1. to 6. are trivial. 7. is proved by induction; clearly it holds

for k = 1. Assume that it also holds for an arbitrary %, then

7. TT f i 'r T"‘ f( )
T T, z) = k 1 k+1 ! k+1 !
k
T, f(=)
( Th+1 lz:; ’I"l - Tk—{—l 7Tlc Tl) ( ) — 77]/c+1(7'l)
k 1
7Tk+1/(7'z 7 T

where the last step is by a property, Zle G (G 1, of Lagrange polynomials.

—r)m (1)
To prove Property 8. note that by changing the order of integration
Tk Toe—t .. T f(x)

Tk Tk—~1

(e 0]
= nk—'ﬁT / FW) Dirgngy % -« % Ly ny) (v — ) du (2.4)
Ty TN z

Pk gnp—1g-rpx
I(n) ny
The Laplace transform of the convolution term is equal to [}, (—S—J:’”W, for s € C.

holds. Here 't ny)(2) = and * denotes the convolution product.

On the other hand, by rational functions, we have that

k
alm
|} R N1 D) Dp DI
=1 S+rl 1=1 = (stm)m
where the a; ., coefficients are given in (2.3). Hence inverting the transform gives
T T pm— 1
Dirgni) * D ymiy) * 00 * I lenl) H T Z Z a1,m — 1
=1 m=1
Substituting into (2.4) completes the proof. |

2.2 Divided Differences

An introduction to divided differences can be found in Freeman (1960).
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Definition 2.2.1. The n-th divided difference f[zo,x1,...,Zs] on n + 1 distinct
points of a function f(x) is defined recursively by flzo] = f(xo), and,

f(@o) = f(z1)

flwo, 1] = ————,

o — Ty

Zg, T1] — T

Flzo, 21,22) = flzo, 1] = flm 2]7
Tg — Tg
flavon. .. oa] = L0z @l =Sl o]
To— Tp
For distinct numbers 1, s, ..., Z,, define m,(z) = [].;(z — x;), then by

induction, the (n — 1)-th divided difference can be expressed explicitly by

flz1, T2,y .o an) = Z f@) (2.5)

— T (Ti)
If some of z; values coincide, the divided differences with respect to repeated
points in a collection can be evaluated as a derivative. For example, if a, b, c are

three distinct numbers, then

1 1 80
ﬂma”“h@ck_&—1ﬂ@—1ﬂ5ﬁ&fMQd'

The following identity will be used throughout this thesis, which can be proved
by divided differences.

Lemma 2.2.1. For any n € Nt distinct complex number xg,z1,...,2Z, and m €
Z
1
" —ks, m=-1
(z; — mo)™ 7n (o)
Z_"TTW: 0, m=0,1,...,n—2 ,
i=1 1 1, m=mn—1

where m,(z) = [, (x — @;).

Proof: Note that Y 1, (Z:r,_(z 01))7” is the (n — 1)-th divided difference of the poly-
nomial (z — x¢)™, w.r.t. the points in the collection z3, 3, ..., Tn. a
There is a close connection between the operator T, and divided differences,

which is stated in the following theorem.
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Theorem 2.2.1. For a collection of points x1, 2, ..., Tn,
TonTon s - Toy f(¥) = (1) hylz1, 20, .. ., 0l (2.6)

where hy(z) = T, f(y) = fyoo e~V f(2)dz is a function in x for a fized parameter

y. Specially, if y =0,
Ty To. - To f(0) = (=) flz1, 2o, . . ., 20, (2.7)
where f(z) = Tof(0) = [ e Y f(y)dy is the Laplace transform of f.

Proof: Using formula (2.5) and Property 7 of the operator 7 in the previous

section. O

2.3 An Operator of Discrete Functions

This section gives the definition of an operator to a real valued function with
domain in the positive integers (see Dickson and Hipp (2001) for the continuous
version of the operator).

Define 7T, to be an operator of any real valued function f(z),z € N* by
T.f(y) = Zr’” V(@ Zr (@+y), reC, yeNt. (28

Like for the continuous operator T} in Section 2.1, its discrete restriction has

many nice properties, which are helpful to simplify calculations, e.g.,

1. T.f(1) = —L where f(r) is the generating function of f.

2. Ty f(y) =Y e, f(¥)-

3. If r; and ry are distinct, then

roTry, f(y) — 1Ty, f(y),

ro —T1

T.,T., f(y) =

47



. If r; is equal to ro, then

nT, fy) -rT, f(y)

T} fy) = TTf(y) = lim T, T.f(y) = lim

1T rn—-r

dirT, hod .

= —[EM = (e—y+1)r* v f(a). (2.10)
z=y
. If r1,7r9,...,r are distinct, then
| ko k-1
_ L T’/‘if(y)
T T Tr fly) = ZW, (2.11)
7=1

where mx(s) = Hle(s —7;). While its p.g.f. transform is given by

k k =1 f(r;
sTsTy T, - .Trlf(l) = |:H 5 jn] f(s) - Z (3 _Srj> ]WL({'E;J)

i=1 j=1

IMry=r, fori=1,2,...k,

TFfy) =TT T, fly) = lim T, Tk = -@W. (2.12)
k
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Chapter 3

On a General Class of Renewal
Risk Process

In this chapter, we consider the evaluation of the Gerber-Shiu penalty function
for a class of renewal risk process, in which the claim inter-arrival times are K,
distributed. This general class of distributions includes, as special cases, Erlangs
and phase-type distributions, as well as mixtures of these. Thus our model extends
the classical risk model, the Erlang(2) model of Dickson (1998), Dickson and
Hipp (1998, 2001), Cheng and Tang (2003), Lin (2003), the Erlang(n) risk model
discussed by Li and Garrido (2004), generalized Erlang(n) risk model studied by
Gerber and Shiu (2003a,b, 2004).

3.1 Two Classes of Continuous Distributions

In this section, we consider two classes of continuous distribution on R*. The first
is the class of K, distributions, for n € N*, while the second class is the family of

’R,'; distributions. The first class is a subclass of the second class of distributions.

3.1.1 The K, Class of Distributions

Definition 3.1.1. A probability distribution is said to belong to the K, class,
n € N*, if the Laplace transform f(s) = [ e™**f(x)dx of its density function f
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has the following form

5y A +58(s) ) > max{ . — B
f(s)—————H?:1(8+)\i), R(s) > max{—A1, =N, ..., = A}, (3.1)

where A\; > 0 fori=1,2,...,n, X* =T]_, A and B(s) = Z?:—(f Bi s is a polyno-

mial of degree n — 2 or less.

The class of K, distributions is widely used in applied probability models
[see Cohen (1982) and Tijms (1994)]. It includes, as special cases, Erlang and
phase-type distributions, as well as mixtures of these. The following examples

give some special distributions in the K, family.

Example 3.1.1. The exponential distribution with density function

f(@) = Axe™%I(z > 0), A>0,

is the only member of the K; family, since f(s) = (sJﬁ

Example 3.1.2. The mixture of two exponential distributions with density func-
tion
f@)=[0 e+ (1—0e ™ (z>0), M, X>0 0<6<1,

is a member of the K, family, since f(s) = Al’\z(tfil’\)l(jﬁ\;f 2]

Example 3.1.3. Phase-type (2) distributions with density functions f satisfying
fl@)y+ AL f'(z)+ A2 f"(2) =0, A >0, A1f(0) + A2 f/(0) =1,

are members of the Ko family, since f(s) = @%‘

Example 3.1.4. The Erlang(n) distribution with density

)\nxn—l Az +
f(x):(n_l)‘e I(z > 0), A>0,neNT,

is a member of the K, family, since f (s) = (s—i;)—;
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Example 3.1.5. The generalized Erlang(n) distribution being the convolution of

n exponential distributions with possible different positive parameters Ay, Ao, .. ., Ay,
A*

is a member of the K, family, since f(s) = e

) Aie % I(z > 0), (3.2)

j=1 _7761

Example 3.1.6. Coxian distributions with density function f having the follow-

ing Laplace transform

) n i >\i . ’
f(s):zai (gs+)\i), neN", \>0, fori=1,2,...,n, (3.3)

where a; = (H;;ll(l —pj)) Pi, Pi = ﬁg, and 0 < b; < 1, with >0 b; =1,

are members of the K, family, since f (s) can be re-written as

BN Dic1 [ai bi [ Tgmiza (s + )]
JO="" G+

where b, = szl Ak
In general, the density function f of a K, distribution can be obtained by
inverting (3.1). Two cases are distinguished:

1. If A\, do, ..., A\, are distinct, by partial fraction one obtains:

n

2oy A +sB(s) a;
f(S) - H?:](s_*—)‘i) _1__:21 8+)\¢7

M =MB(=N) C e
where a; = Tz -A) Inverting it gives
= Zaie”‘” I{z > 0). (3.4)
i=1
9. If instead, some )\; are equal, i.e., f(s) = ﬁ;\?g;ff\s%;—, where A, Ao, ..., Ak

are distinct and Zle n; = n, then by partial fractions:
k

A _ /\*+Sﬂ a/zg
o= G e~ R LT
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and hence

f@) = Y e e e 2 0), (3.5)

where here A* = []F_, AJ* and
1 gm I’“I A+ 5 B(s)
(ng — 7)1 dsmi=i . (s + Ap)m

s=—A4

a;; = R seC.

=1, m#i

The mean and variance of a K, distributed r.v. X can be obtained by

; ~1 pB(0)

B0 = —F0 =) 5 -0 39
Vax) = 10 - -FOP =Y 5+ TOIZEO @y

i=1

3.1.2 Rational Distributions on R*

Definition 3.1.2. A probability distribution F' on R* is said to be belong to 'R';
(or rational distribution) if the Laplace transform of its density f is a rational

function (ratio of two polynomials), i.e.,

SN T R RN
f(s) = H?:1(S+Qi) ) §R( )> { §R(Qz): L2..., }7 (3'8)

where q1,q2, . .., qn are in pair of conjugate complex numbers with R(g;) > 0 and

B(s) = Z:':oz B; s* is a polynomial of degree n — 2 or less.

The RJT is a wide class of distributions, which includes the K, family, with
all the examples above. It also includes damped sine and cosine functions like

these:

Example 3.1.7. The distribution with density

(@) = %e'z[l — sin(42)] I(z > 0), (3.9)
17 (s%-25+13)

7
13 R D118 therefore belongs to the

has a rational Laplace transform f(s) =

R}L class.
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Example 3.1.8. The distribution with density function

(a®> +b*)R
(a — R)? +b?

e R% — 7% cos(bz) + —— ae““’sin(bx) I(z > 0),

fle) =

where R > 0,R(a) > 0, and b # 0, has a rational Laplace transform

R(a® + b?)
s+ R)[(s + a)? +b?’

f(s) =
(
and therefore belongs to R} class.

Further discussions of rational distributions can be found in Cox (1955) and

Neuts (1981, Chapter 2).

3.2 Claims Number Processes

In this section, we give the definition of a claim number process (renewal process)

and a number of associated quantities.

Definition 3.2.1. Let claim inter-arrival times W; be i.i.d. with common distri-
bution function K and density function k on RY, with 1, = > W; being the

arrival time of the n-th claim (1o =0). Then
N(t) =sup{n >0, 7, < t}, t >0, (3.10)
is a renewal process {N(t); t > 0} called the claim number process.
The distribution of N(t) for ¢ > 0 fixed can be expressed as
P{N(t) = n} = K*(t) — K*®*D(1), n=0,1,..., (3.11)

where K*" denotes the n-th convolution of K with itself.
Usually, the distribution of N(t) does not have an explicit formula, except

for some special claim inter-arrival times distributions.
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Example 3.2.1. If claim inter-arrival times are exponentially distributed with
k(z) = Ae™*?, then N(¢) is called a Poisson process, and

()\ t)n e—)\t
n!

P{N(t) = n} = . neN (3.12)

Example 3.2.2. If claim inter-arrival times are Erlang(m) distributed with k(z) =

m,m—1 ,—Ax
ATe™ e " m € N*, and then

(m-1)!
m(n+1)—1 _
At k At
P{N(t)=n}= ¥ (—)kf—— neN. (3.13)
k=nm ’

In some situations, it is convenient to convert (3.11) into an equation for the
probability generating function of N(t). Let

G(t, z) = iz"P{N(t) =n}=1+ iz"_l(z CDKT(), ~l<z<l,

n=0 n=1

be the generating function of N(t). Taking Laplace transforms yields

0

oo -8 1 1 < n—1 /*\n
G(s,z) = / e tG(t,z)dt=;+g;z (z = 1)K*(s), seC,

~

_L=ks) (3.14)

s[l — zk(s)]

It follows from (3.14) that whenever k(s) is a rational function, the Laplace trans-

form of the generating function can be expended in partial functions and hence
inverted in terms of elementary functions.

Moments, especially the mean value of N(t), play an important role in renewal

theory. The renewal function, m(t), defined as m(t) = E[N(t)], for t > 0, is given
by

m(t) = » nP{N(t) =n} = D n[K () — KX ()] = SCK™().  (3.15)
n=0 n=0 n=1
The renewal function m(¢) also satisfles a proper renewal equation
t
m(t) = K(t) + / m(t — ) k(g)ds, ¢ 30, (3.16)
0
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Taking Laplace transforms on both sides of (3.16) yields

N

k(sA)
s[1 - k(s)]’

The Laplace transform in (3.17) can be inverted by partial fractions, if kis a

m(s) = seC. (3.17)

rational function.

Example 3.2.3. If k(s) = then m(s) = &. Inverting gives m(t) = At.

(s+/\)’
Example 3.2.4. If claim inter-arrival times are distributed as a mixture of two

exponential distributions, with k(s) = 6 (s ryw ) +(1-0) (?i‘i;) , then by partial

fractions
N 1(02 — p?) 6(1 — 0)( M\ — X2)?
m(s)— S2IU,+E 2/1'2 - [0/\2+(1—9)A1]2{S—[9/\2+(1—9))\1]}’ (318)
and hence
t (02 =p) 01 =0)(M = 2)? _(a_onrongt
_ . > 3.19
m(t) ’u"*‘ 2/1/2 (1‘0)/\1_*_0)\2 ) t_07 ( )

where p = /\% + (—1/\:20—) is the mean of the inter-arrival times W and o2 = X“’g +

[y

2
gll\—ze) +6(1 - 9) (%1 + f;) is the corresponding variance.

Example 3.2.5. If claim inter-arrival times are Erlang(n) distributed with k(s) =

(s+)\)"’ then
i(s) = k(s) _ A" _ A"
sli—k(s)]  sls+2" =X $2[T5 (s — )
1 o? — u? oy
= — 4+ —F — 3.20
/J,sz—l_ 2M28 +;(S—7‘¢)7 ( )
where r; = )\[ehnkz — 1], for 1 = 1,2,...,n — 1 are n — 1 non-zero roots of
XA+ 5)® = A", the mean of Erlang(n) distribution is 4 = 2 and 0% = § is its
) p)
variance, while v; = BV A i . Therefore, by inverting (3.20), m(t) is given
Gt (T3 T4)
by
t -1 X it
m(t) = = +Y viett, 20 (3.21)
7 -
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Specially, if n = 2, then m(s) = ;2_(3)‘4,2-_27) Inverting it gives

t or—pr 1 oy, At 1
= — it t=_______1_ —2)\t‘ .
m(t) . + 5 + 1€ 5 4[ e M (3.22)

If n = 3, m(t) can be simplified to

m(t) = %?- - % + %e“%t lsin <\/_2>‘t> +V3co <\/_)‘t>] . (3.23)

Next, we discuss how the parameter n of Erlang(n) distribution affects the
claim number process, the renewal function, and the ruin probabilities, while
keeping constant the mean Erlang waiting times.

For a fixed constant y, define Wi, to be an Erlang(n; A = n/u) distributed
r.v., with k(¢;n) and K (¢; n) being its density and distribution function, respec-
tively. Also denote by N,(t) the claim number process with these Erlang(n;n/u)
waiting times, and let m,(t) be the corresponding renewal function. Then we

have the following results.

Theorem 3.2.1. Forn € N*, W,41) is smaller than W,y under stop loss order-

ing, i.e.,
Wins1) <st Winy-
. nrgn—1 k(t; t/ .
Proof: Since k(t;n) = Tt‘(neT)'u’ then k(t(;:L:l-)l) = %,/_:(171_/171)7“ It is easy to

check that there exists two numbers #;(n) and t2(n) with 0 < t1(n) < p < ta2(n)

such that E’(I'CZQ%) = 1. Further, k(t;n+1) > k(t;n) on [0,t:1(n)] U [t2(n), ), and

k(t;n + 1) < k(t;n) on (t1(n), t2(n)). That is to say, there are two sign changes
in densities, by Theorem 3.1.6 of Goovaerts et al. (1990), Wn41) <st Win)- O

Corollary 3.2.1. For fized t > 0, and n € N*,
Nosa () <ot Nu(t). (3.24)

Proof: Since P{N,(t) <m} = P{W;} >t} and W7,) <a W from Theorem
3.2.1, for any positive integer m, then (3.24) follows. a
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Corollary 3.2.2. The renewal function my,(t) for Erlang(n) waiting times is de-
creasing in n, for a constant mean p = n/X, i.e., my(t) > mpy1(t), for a fived

t>0.
Proof: Since Np41(t) <q Ni(t), by definition,
E[Nps1(t) — dl+ < E[Ny(t) —d)y, forany d>0.
Setting d = 0, we have
Mint1(t) = E[Nota ()] < ma(t) = E[Na(8)],

for fixed ¢ > 0. O
Let k(s; n) = [, et k(t; n) dt be the Laplace transform of the Erlang(n)
density, and define R, to be the adjustment coefficient, that is, — R, is the unique

negative root of the Lundberg’s equation lAc(—cs; n)p(s) = 1, or equivalently, of

(1= cs/A)" = p(s), (3.25)
if p is sufficiently regular. The we have the following result.

Theorem 3.2.2. The adjustment coefficient R, is decreasing in n, for a Sparre
Andersen risk model with Erlang(n) waiting times, if the mean n/\ = p is kept

constant.

Proof: Settingn/A = p in Lundberg’s equation (3.25), simplifies it to (1—%£s)" =
p(s). Since for negative s, (1 — %£s)" is increasing in n, then the negative root
—R, is decreasing in n, and R, is increasing in n. a

The above results show why ruin probabilities are decreasing with n when
using Erlang(n) distributions to model claim waiting times, while keeping their
mean constant [see the example in Section 8 of Li and Garrido (2004)]. This
limitation of the two parameters Erlang(n) distribution is a drawback of this risk

model.
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3.3 A Class of Renewal Risk Models

Consider a continuous time Sparre Andersen surplus process as in (1.53) by

N()
Ult)=u+ct—» Xi, t>0.

i=1

In this chapter, we assume that the claim number process
N(t) =max{n : Wy + Wo+--- + W, <t}

is a more general counting process in which the claim waiting times W; are assumed
i.i.d. distributed with distribution function K, and density function k. Denote by
k(s) = J;° e7*"k(z) dz the Laplace transform of k.

Let 7, = Z;?:l W; be the arrival time of the k-th claim. Consider the surplus
U = U(7) immediately after the k-th claim. Defining 7o = 0 gives Up = u

k k
Up=Uln)=u+cm— Y Xj=u+)> [cW;-X,], keN*

We seek a function v such that the process
{e ™ o(Uy); k € N} (3.26)
will form a martingale. Define Fo = {0, 2}, and
Fi=a{Wi,Wa, ..., Wi, X1,Xs,..., X}, k e Nt,

to be a sequence of increasing c-algebras, representing the information of the
surplus process immediately after the k-th claim. Then by definition of a discrete

martingale,
E [e 1 p(Ugsr) | Fi] =™ v(Uk), keN. (3.27)
Equation (3.27) is equivalent to
E [e7 0t Wer) o (U (1, + Wian) | Fie] = €™ v(U),
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or

e E [e7 1 y(U () + (Wig1 — Xi41)) | Fie] = e™°™ v(Uy),
which can be simplified to
E [e“sw’““ ’U(Uk + (ch+1 - Xk+1)) |7:k] = U(Uk)a keN. (3'28)
Finally, (3.28) is equivalent to

v(u) = E[e™v(u+cW - X)], (3.29)

_ / " et () B fu(u+ ot — X)) dt. (3.30)

Equation (3.30) is the sufficient and necessary condition for the process in (3.26)
to be a martingale.
By choosing v(u) = e** such that {e®7**Us; k € N} is a martingale, then
(3.30) simplifies to
v(s) = /Aﬁw—ia = p(s), s € C, (3.31)
which is a generalized Lundberg fundamental equation.
Now we can claim that {e7°™ ¢(Ux); k € N} is a martingale. To show this,
let D = e~ Tw((U(T"),|U(T)|) I(T < o), and define My, = E[D|Fy], for k € N.
It is easy to prove that {Mj; k € N} is a martingale. Since P(W; < oc0) = 1, by

the optional sampling theorem and renewal property of Uy, one obtains that
$(u) = E[Mo] = E[M] = E[E[D|F]] = E[e™" ¢(U1)]
= Ele=™¢(u+ W) — X3)]
- / e~ k() Blp(u+ ct — Xy)] dt. (3.32)

0
This shows that {e™%™ ¢(Uy); k € N} is a martingale.

In the rest of this chapter, we assume that k belongs to the K, family of

distributions, i.e.,

~ X+ 5 ()
R ACEY)
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where \* = [[., A, n € Nt \; > 0for i =1,2,...,n and 8(s) = SM2Bsiisa
polynomial of degree n — 2 or less.
In this case, the generalized Lundberg equation (3.31) simplifies to

H:'L:1()‘i +6 — cs)

v(s) := Y+ (6 — o5) 300 — o) = p(s), seC. (3.34)

The following theorem shows that (3.34) has exactly n roots on the right half

complex plane. These play an important role in this chapter.

Theorem 3.3.1. For § > 0 and n € N, Lundberg’s equation in (3.34) has only
n 1oots, say p1(8), p2(8), ..., pa(d), that a positive real part R(p;) > 0.

Proof: On the half circle in the complex plane given by z = r (for r > 0 fixed)
and R(z) > 0, we have that |y(s)| > 1, if r is sufficiently large. While for s

on the imaginary axis (R(s) = 0) we have that |y(s)] > |I%(5-1—cs)| > 1. That
is, on the contour boundary of the half circle and the imaginary axis, we have
|v(s)| > |p(s)|. Then we conclude that, on the right half plane, the number of the
roots to Lundberg’s equation equals the number of roots of v(s) = 0. Since the
latter has exactly n positive roots, we can say that equation (3.34) has exactly n
roots with positive real parts, say, p1(d), p2(9),. .., pn(9). 0O

Remarks:

1. Define I(s) := p(s) — v(s). Since (0) < 0 and lim,_,_o I(s) = 400, then for
p(z) sufficiently regular, there is one negative root to I(s) = 0, say —R(J).
We call R(§) > 0 a generalized adjustment coefficient.

2. If § — 0% then —R(6) — —R(0) and p;(d) — p;(0), for 1 < j < n, with
pn(0) = 0, where —R(0) and p;(0) are roots to equation:

Yo(s) == )\1:[%1@(:8?_(:2) = p(s), seC.

3. For simplicity, write —R and p; for —R(4) and p;(6), 1 < j <n, when é > 0.
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3.4 Laplace Transforms

In this section, we consider the Laplace transform of any function v such that the
process {e %™ v(U(7x)); k € N} is a martingale when the claim waiting times are
K, distributed. Then it will lead to the Laplace transform ng(s fo e *up(u) du
of the expected discounted penalty function ¢(u).
By (3.30)
o(u) = / " eth(t) Elo(u+ ot — X)]dt.
0

Setting y = u + ct yields

co(u) = /w e~ k(y:u)E[v(y—X)] dy. (3.35)

Taking Laplace transforms and inverting the order of integration gives

ct(s) = / / -
- /0 e Elu(y - )]/Oe'(”c_s)“k(y:u)dudy. (3.36)

First if A1, Mg, ..., A, in (3.33) are distinct, then by partial fractions,

—) Elo(y — X)] dy du

n

k = Xk-f-—Sﬁ(Sl_ — a;
He) = (s +X) Z:; G ) (3.37)

with a; = -—;\—1—;\%, this gives k(t) = > a;e ™ ¢I(t > 0). Then (3.36)

becomes

ct(s) _—_/0 cE[v Z / (S5 o= M) gy dly
- Zal/ ﬁﬁ)yE[v ]/ m)“dudy

= St [ e BB - X - e gy

i:1c3—5—)\¢

n

= Y it B - Xl
—/Oooe"syE[v(y—X)]dy}.
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Equivalently, from (3.37)

e) = Y oy T HE— e /0 Y By — X)|dy,  (3.38)

S+

where ¢; = [;°e”CeWEu(y — X)]dy, for i = 1,2,...,n. Since
/ z)dzx + / v(y — z) p(z) dz,
y

equation (3.38) reduces to

27u5777+k(—05k eV [* My—xwuﬂxw

3.39
[1-— k(5 —c¢s)p(s)] (3.39)

o(s) =

If instead, some A; in (3.33) are not distinct, k(s) = ﬁs;—n, where only
=1

AL, A2, ..., A, are distinct, and Zi:l n; = n, then by partial fractions:

~ _ )\*+55 Qij
k(s)—l—L 1(S+)\ ZZ(S+/\

and hence )
=YY e
=1 j=1 (
where
1 dri=d £ *+s0( )
Ai5 = H , seC.

s—l—)\

s=—X;

By a similar argument

-Y PR L Y o m'(?sz,\?-%y =
[1— k(8 — cs)p(s)]
H6 - cs) [ e [ oly — a)p(a) de dy
[1— k(6 — cs)p(s)]
where eim = [ y™ e (P Elv(y— X)]dy, fori=1,2,...,k<n

The following theorem shows that in both cases above, an explicit expression

o(s) =

, (3.40)

for #(s) can be obtained if v is chosen to be ¢.
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Theorem 3.4.1. If the density function k is a K, distribution with k(s) being of
the form in (3.33), then the Laplace transform of ¢ is given by

$(s) = ) - [m—%%}
ORI

where @(s) is the Laplace transform of w(y) = fy°° w(y, z —y) p(x) dz, as in (3.31),

(3.41)

v(s) is given by (3.34), and g(s) is a polynomial of degree n — 1 or less, which is

determined by the conditions:

a(ps) = @(p;) (N + (8 —cp)B(6 —cpi)l, J=12,...,n. (3.42)

Further, if p1, po, ..., pn are distinct, then

n n

q(s)=Z{w(m)[k*+(5—cpj)ﬂ(5—cpj)]{ 11 M]} (3.43)

j=1 k=1,k#£5 (p] - pk)
Proof: For simplicity, define w(y) = fyoo w(y,z—y) p(z) dz, then by the definition
of ¢, E[¢(y — X)] = [ ¢(y — z) p(z) dz 4 w(y). It follows that

1. If k(s) is given by (3.33) where M\, Ay, ..., \, are distinct, (3.39) simplifies

to )

S0 (] + R — cs)a(s)
1~ Ko =ce)300)

yields (3.41), with

$(s) = (3.44)

Multiplying both sides by v(s) = P 5 )

q(s) =

ﬁ(é + A= cs)}

i=1

being a polynomial of degree n — 1 or less. Since gﬁ(s) is finite for all s with
R(s) > 0, and we note that p; with ®(p;) > 0,7 = 1,2,...,n are zeros of the
denominator of (3.41), then they must also be the zeros of the numerator,
that is to say, condition (3.42) holds. Further, if p1, ps, ..., pn are distinct,

then by the Lagrange interpolation formula, one obtains formula (3.43).
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2. If lAc(s) = I_I;\Z—I“L—(:ﬁ%;;, with Ele n; = n, then the Laplace transform of ¢

can be obtained by (3.40):

L Y S ) + R(8 — c5) (s)
5) = < . ) 3.45
#e) L= #0 — c5) p(s)] (3.45)

Again, multiplying both sides by (s) = i 51_68) gives (3.41), but this time

with

q(s) =

k k n; j-1
g Aij €im
[o+a-eor] [S355 cmptien o]

i=1 i=1 j=1 m=0

a polynomial of degree n — 1 or less, which can also be determined by the
conditions in (3.42), and determined explicitly by (3.43) if p1, pa, ..., pn are

distinct.
This completes the proof. O
. L — A*
Remarks: If k(S) = m,
then equation (3.41) simplifies to formula (7.4) in Gerber and Shiu (2003b). More-

that is, p is a generalized Erlang(n) distributed,

over, for n = 1, this formula can be found in the discussion by D.C.M. Dickson of
Gerber and Shiu (1998a).

In the evaluation of the expected discounted penalty function, usually an
integro—differential equation satisfied by the expected discounted penalty function
is first derived and then solves into a defective renewal equation. See Gerber and
Shiu (1998a), Dickson (1998), Dickson and Hipp (1998, 2001), Cheng and Tang
(2003), Li and Garrido (2004) and Gerber and Shiu (2003a,b). Here it should be
pointed out that when (3(s) # 0, integro-differential equations do not exist for the
expected discounted penalty function ¢(u). Since otherwise there would exist a
polynomial hy,(s) of degree m such that hm(D)g(u) = [ ¢(u—z) p(z) dz+w(u),
for u > 0, where D is a differentiation operator. Then taking Laplace transforms
would give ¢(s) = %g%;]—n, with g,,—1(s) being a polynomial of degree m — 1
or less. Theorem 3.4.1 shows that h,(s) = v(s). When G(s) # 0, v(s) is not a

polynomial, contradicting the assumption that h,,(s) is a polynomial of degree m.
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3.5 Analysis when u =10

We now turn to solving on ruin related problems when » = 0. For simplicity, we
assume that pi, pa,...,p, in Theorem 3.3.1 are distinct. First by applying the

initial value theorem,

~ )
A w(s) — [)\*+(6-—g(ss)ﬁ(5—cs)]
#(0) = lim s¢(s) = lim s -
s—00 s—00 [v(s) — B(s)]
w(s) _ poy l{w(pj)[)\ +(8—cp;)B(8— ij)] Jy (ST%,%}
— lim A*+(6—cs)B(6—cs)
500 [ M, (G+Xi—cs) g_)]
s[A*+(6—cs)B(d—cs)] s

- {‘ff(ﬂj) [N+ (6 — cp;)B(8 — cpy)] Tiey prs ,,J_;pk}
(=)
N+ (6 = cp;)B(6 — cpy)
™ [lemrp (P —p5) |

= 3 i) (3.46)

j=1

When §(s) = 0, this is formula (8.1) in Gerber and Shiu (2003b).

Since w(:c) = [Fw(z,y - x)p y)dy = fo p(z + y)dy, its Laplace
transform is &(s) = [;° f;° e " w(z, y)p(z + y)d:cdy, then ¢(0) can be rewritten

as

p(0) = S 2O )b "C”J / / 457w (2, ) plo + y)dady.

el | Y f’k

On the other hand,

$(0) = E[eTw(U(T),|U(T)]) I(T < c0) | U(0) = 0]

- // 2,9) fo(z,y|0) dy do

where f, is given in (1.19). Comparing these two formulas for ¢(0) yields

- cp]),B(é - cpJ) e Pi%
fol,y10) = Z[ Tl (e =7 p(z +), (3.47)
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then

n

(z]0) / fa(z,y10) L

J

— Cp])/B((S CIOJ) e~ PiT D T
s ey (k= 73) ] P
(3.48)

and
o(v) = gly|0) = / fo(,410) d

X+ + (6 — cp;)B(6 — cpj;) /Oo p;
= e Pi%p(x + y)dzx,
c” Hk 1,k#j (ox — pj) | Jo pl v)

J= 1 L
"N (6= cp) B — cpp) |

= — T, p(y), 3.49
?L:f | [Tk G0k — p3) | s PW) (3.49)

where T, is an operator defined in (2.1) as

T, pla) = / e~ p(y) dy = / " plo +y) da.
z 0

The function g(y) is a defective density which plays a very important role in this

thesis. Its Laplace transform §(s) : fo y) dy is given by
o) = [ e olw10)dy = Tug(0)
0

_ N[ X G —eo)BO =) | o
i on HLM# ok — ;) s T, p(0)
i X" + (6 — cp)) B8 = cpy)| [ﬁ(pj) —25(8)]
— | " Tlecpns (o6 — p3) | S = pj
- H?:l(é + A — ij)
™ (s — pj) HZ:l,k;éj (o — p5)

e [ 6= )8~ epy)
P 2 [ = o) Tims sy (71 - m}

n [H A6+ N —cs)+c(s—p])]:|

e (s — py) 11k 1,k (Pk )

A+ zm—o m[(0 —cs+c(s — Pj)]m+1
(s — pj) Hk:l,k;éj (Px — pj) ,

j=1

~p(s) Z

j=1

66



where 8o, B4, - . ., Bn2 are the coefficents of the polynomial 5(s) in (3.1).

Since

n

H[(cH—)\i—cs)—}—c(s——p] Zalc (s — p))" 7,

i=1

with

n

oo=1 o1= Z(5+/\i —cs),
i=1

n

Z 0+ X —cs){(d+ A —cs), ...,an:H(éJr)\,-—cs).

1<i<j<n =1

then the first term simplifies to

2": T, [0+ X —cs)+c(s—p] _ = zn: o1t (s — pi)" !
e cm (s — pj Hk:l,k;é] (pr — =0 j=1 ™ (s = pj) Ip=s i (px — pj)
_ 0+ Ai—cs) (3.50)

c" H?:l(/)i - 5)

where equation (3.50) follows from the following identities in interpolation theory

(for n > 2):

. 1, m=n-—1,
n(s_"f) =10, m=0,1,2...,n-2 (3.51)
=1 Hk:l,k;éj (Px — pj) _ 1 m=—1
1T (pi—s)’ -

The above identities can be proved by divided differences. Similarly,

p(s) Z N+ Yoo Bnl(8 — e5 + (s — p; )]m+1]

™ (s — pj) Hk:l,k;éj (P = pj)
A 32 B (6 — cs)™t _ (s N+ (6 —cs)B(6 —cs)
I (i = 9) ] =0 |

Finally, the Laplace transform of g is

[T (6 + X —cs) —p(s)[N* + (6 — cs) B(6 — cs)]
| T (i = 9) R

g(s) =1~
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Setting w(x,y) = 1 implies

60) = BT 1< o0) [U(0) =0] = [ gly]0)dy = lima(o)

P || RUE L SLL0)}
C'nplp2 ce et Pn
1— k@) T, +4
"prpa- P
Finally,
T(0) = lLmE [e™"T [(1' < o0) | U(0) = 0]
IR I 1 (CYRE P D e Y- %
d—0 Cnplp2pn Cnplpz...pn
ey (it o)A
= 1-lim g - bo -
=0 | p*(0)pr,(0) | p*(0) P (0)
N (i 5;) — Bo
= 1- * /
p*(0) p,(0)
N[cE(W) — E(X)]
= 1- <1, 3.54
p*(0) (354
where p*(0) = [75 p:(0). The last step follows from the fact that E(W) =
—k (0) = _—.—-—[/\‘(Zi':;f_i)_ﬁd, and that p,(0) = EEOV 7T E(VIE/()‘YI)E(X)] by differentiating with

respect to & on both sides of 7 = p[pn(d)], letting & — 0 and noting that

1
[5'0Pn(5)]
limg_,o pn(5) — 0.

Remarks:

e When f§(s) = 0, i.e., all coefficents B, = 0, for m = 0,1,...,n — 2, then
(3.53) simplifies to (11.5) of Gerber and Shiu (2003b).

e (3.54) simplifies to formula (3.10) of Willmot (1999) if ¢ = 1.
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3.6 Defective Renewal Equation

3.6.1 General Case

By arguments similar to those in Gerber and Shiu (1998a), we condition on the

first time when the surplus falls below the initial level u,
bu) = /u/w/me*%(u—y)fa(x,y,tm)dtdxdy, w20,
/ / / w(z +u,y —u) fa(z,y,t|0) dt do dy
= [ [ ot fz(x,ylo)dfvdy+/:o/ooow(x+u,y—U)fz(x,ylo)dxdy
= / d(u—y) g(y) dy + H(u), (3.55)

H(w) = /w/mww+uw—unuﬁywwmw, >0,
= / / (s,t) fa(s — u,t +u|0) ds dt

- N+ (6 —cp)BE—cp)| [P oy [
- < [Tkt 4 (6 — ) _/u € /o w(s,t) f(s +t)dtds

X+ (6 = cp;)B(0 — cpy) |
< | e Hikerhny (o8 = p3) |

<.
i
i

Ty w(u).

I

J

Since fooo g(y)dy < 1, equation (3.55) is a defective renewal equation, spe-
cially if 3(s) = 0, it simplifies to (9.2) in Gerber and Shiu (2003b).
Setting w(z,y) = 1, we then obtain w(u) = P(u) =T, p(u), and,
n
N+ (3 — cp;)B(6 — cpj)
Hw =) |y
=1 ¢ Hk:l,k;éj (Px = pj)

therefore, the Laplace transform of T, ¢r(u) = E[e™TI(T < o0)|U(0) = u],

Ty Top(u) =To g(u) = / ) 9(y) dy,

satisfies the following defective renewal equation:
U o
=/0 or(u—y) 9(y) dy+/ 9(y)dy, u=0, (3.56)
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further if 6 = 0, (3.56) gives

v - [ - ga@drt [ ebd w20 (3.57)

where go(y) can be obtained by taking limits. Since lims—o p;(6) — p:(0), and
lims_ o (8) = pn(0) = 0 then

— ¢p;)B(8 = cpj)
ct Hk 1kj (or = pj)

doly) = hmg(y = hmz

:l ij p(y)

_ = —cpj(O)ﬁ(—cpj(O)) N Ty p(y)
[ O s 20) —p,-<o>]} Lo PW)+=500)
_ XY 1 pJ(O)P( ) A Top(y)
il PJ Hk Ly [e(0) = p;(0)] <" p*(0)
—cp;) T,,00) P(y)
Cn ' Z k 1 ktj [0x(0) — p;(0)]
_ M [%ﬂ,@] Z ~cpj) Tp,0) P(y)
o J=1 Hk 1,k#j [pk(O) - PJ Cn ! j=1 k 1 K#g [px(0) — 3(0)]
— e Tos0 P(y) S ( cp;) pg(O)p(y)
= =1 [Ti23 ks [ (0) = p5(0 o [Tk ks [06(0) = 25 (0)]

where the second last step follows from (3.51). Note that 1), 0yTo p(y) = Tp;(0) P(y),
while [° go(y) dy = ¥(0) < 1 is given by (3.54).

We remark that the Laplace transform of go(y) for ¢ = 1, is given by (3.11)
in Willmot (1999), but the transform inversion is rather complicated, except for

some special choices of (.

3.6.2 Some Subclasses

Now turn to special subclasses of distributions for two different choices of 3.

Alternatively, other subclasses may be considered.
1. B(s) = 0 (generalized Erlang(n) distribution).

70



In this case, the waiting time distribution is the sum of n exponential distri-
butions with parameters A\, Ag, .. ., A, and is called a generalized Erlang(n).
In particular, if \; = A > 0, for all 4 = 1,2,...,n, then it is the Erlang(n)
distribution. In general,

A T, wiu
H(u) = £l ,
(u) an 1,k#j Pk Pj)

o) = ZHk 1,k#j (or — Pj)’

_ N T,,0) P(y)
W) = G20~ o)

The above equations can be found in Gerber and Shiu (2003b), and Li and
Garrido (2004) for the A; = A case.

2. B(s) = B (mixed exponentials). Then

oo N[ B)—cBoy |

Hw) = Y Eyimynereral Ko )
[ B8 —cpp |

o) = ; " | j Ly (Pk_Pj)_T‘

( ) = )\* S Tp](OP( )
P o s lnk s 1e(0) = p5(0)]
T, Py) 558
Cn - Z [1i 1k¢y [ox(0) — p;(0)] (355)

Further, if n = 2 and the density function & is the mixture of two exponential

distributions, k(z) = e + (1 — 0)Age™*2%, then 8 = 6A; + (1 — )Xo

and
4 -
o) = (AERIOOZCOR) g g )+ BT ply), (3:59)
A
o) = 22T, 0Ph) + 1,050, (3.60)
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3.7 Discounted Distributions of Surplus Before
Ruin and Deficit at Ruin

In this section, we consider the discounted joint and marginal distributions of
U(T~) and |U(T)| using the defective renewal equation (3.55).
Theorem 3.7.1. For z > 0, y > 0, and v > 0,

Aol = [ hoaiu=2)g:) s+ Iu < 2)pe - uuty|0),  (36)
where fo(x — u,y +u|0) can be derived by (3.47).

Proof: Setting w(zy,z2) = I[{z1 = 2,31 = y), then ¢(u) in (3.55) simplifies to
f2 (33', y]u) : 0

Next, a closed form for the discounted marginal density fi(z|u) is obtained by
inverting the discounted Laplace transform of U(T~). For notational convenience,

let & be such that 1—1;15 = [ 9(y)dy = ¢r(0), and & be such that =

1+§
1o 90(y) dy = ¥(0).
Theorem 3.7.2.
M be”ﬂ””Px e (u—1x) —Y;(u)], 0<zr<u
1b ePi% P(z)[eP™ — ¥ (u)], >

A*+(8—cp;j)B(8—cp; u ]
where b; = & Jff;;ﬂ,i’ifépk-z;%, and W) 1= bo(a) + [ br(u = )y e .

Proof: If w(z,y) = e~*%, then ¢(u) = E[e™Te VT [(T < 00) |U(0) = u] is the
discounted Laplace transform of U(T~) at s. Then w(z) = [~ w(z,y—z) p(y) dy =
e~*® P(z) and hence by (3.55) we have:

1
o) = gy [ #=9+ @)gWdy + g [+ € H),

where H(u) = ijl bj e [ e~(e+s)e P(z) dx, and by, bs, ..., b, are defined as
above. Using Theorem 1.1 of Lin and Willmot (1999), we have

Bu) = /[1—¢Tu—-x>1dH(> 70

& —— (1 =¢r(w)], w20
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Substituting the expression of H(u), we obtain

{Zb / [1—ér(u—2z)]pje® / e~ it P(t) dt da
Jj=1 z

_ Zb / (1= ¢r(u— 2)] e P(a)da

+ij/0 e e %" P(z)de [l - ¢T(“)]} :

Changing the order of integration yields

sy = 28 {Zb [emermp) [1- sl tlpestaan

¢u) =

0

+ ij / e 7P P(z) /Ou[l — ¢r(u—1t)] pjertdtde
—Zb/ [1—ér(u—z)]e ™ P(z)dx
-I-ij /0 e e % P(x)dx [l — ¢T(u)]} .

As
¢(u) = Ele™TeVTIN(T < 00) | u(0) = u] = /000 e™** fi(z|u) dz

inverting and defining W (u) = ¢r(u) + fo dr(u —1) pr et dt yields the result. O
To compute fo(z,y|u) and g(y | u), one uses the relation (1.19) to obtain

(z,y|v) = ey bjehiTp(z +y) [T i(u — ) — (u)], 0<z<u
My bije i p(z +y) [e7 — T (u)], T>u

?

(3.63)
and note that g(y |u) = [;° fao(z,y | u)de
When é — 0, fo(z,y|u), fi{z|u) and g(y | u) simplify to the joint and marginal
densities of U(T'7) and |U(T)].
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3.8 Rational Claim Size Distributions

The previous section shows that the discounted joint and marginal distributions
of U(T~) and |U(T)| can be derived explicitly whenever there is an explicit ex-
pression for the function ¢r(u). One such case is when br(s) = = [T e " ¢r(u) du
is a rational function. By locating its poles, one can then determine ¢r(u) by
partial fractions. It follows from (3.56) that ¢7(s) is a rational function if and
only if §(s) = [ e *¥g(y)dy is a rational function; by (3.52), §(s) is a ratio-
nal function if and only if (s) is rational. Further, by Theorem 1.1 of Lin and
Willmot (1999), the solution ¢(u) to the defective renewal equation (3.55) can be
expressed explicitly in terms of ¢7(u). Therefore ¢r(u) is extremely important in
evaluating the expected discounted penalty function ¢(u).

In this section, we assume that the claim size density function p belongs to

’R;f, i.e., for m € NT,

Qm—l(s)
Qm(s) ’

where the abscissa of holomorphy hx of the claim size r.v. X is defined as

B(s) = with Qm(0) = Qm_1(0), and R(s) € (hx,00),  (3.64)

hx :=inf{s € R: E[e™**] < oo}

Qm is a polynomial of degree m with leading coefficient 1, and Q.- is a polyno-
mial of degree m — 1 or less. Further, since p(s) is finite for all s with R(s) > 0,
equation Q,(s) = 0 has no roots with negative real parts.

The 72;{ is a wide class of distributions, including the K, and distributions
with damped sine and cosine functions as part of their densities. The definition
and examples can be found in Section 3.1.

We now turn to deriving ¢r(u) by inverting its Laplace transform. Taking
Laplace transforms on both sides of the defective renewal equation (3.56) and

using (3.52) yields
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~ o ér(0) = §(s)

) = =300

_ M@+ i —cs) =)\ + (8 —cs) f(6 — ¢s)] — c"[1 — ¢7(0)] ie1(pi — 8)
s{I[ie1 (6 + X —cs) —P(s)[A* + (6 — c5) B(8 — c9)]} '

(3.65)

When p is a rational density as in (3.64), é7(s) can be transformed to a rational
expression and we have the following results.

Denote by gm-1(s) = [[Ti=1(s + R1) — ¢7(0)Q@m(s)]/s, a polynomial of degree

— Im—1(=1) _ Qm(=Ry) m R; -
m — 1’ a‘nd by ri = ;’?—_l,j;:i(Rj"Ri) = Qm(o) H]':Lj#i W, for 1 = ]., 2, e,

where the —R; values, with R(R;) > 0, are all the roots with negative real parts

of the equation Q,(s) =0, where

Qrn(3) 1= Qu(s) [_H(a + - cs>] ~ Qrea(s) X+ (8 = ) B = 3)].

Theorem 3.8.1. If the Laplace transform p(s) of the claim density is defined as
in (3.64), then

2 _ QTn—l(s)
Pr(s) = (s+Ri)(s+Rs) -+ (s+ Bm) (3.66)

Further, if Ry, Ry, ... Ry, are distinct, then

b =3 T (3.67)
T ;(Hm)
and,
¢r(u) =Y ref (3.68)
i=1

Proof: Substituting p(s) = Qé”;(ls;) into (3.65) and multiplying @(s) to both

denominator and numerator, then

2o Qmals) = ¢ [1 = ¢r(0)] Qm(s) ITi,(pi — )
or(s) = e ,

(6]




where Qum n(s), defined as above, is a polynomial of degree n + m with leading
coefficient (—c)™. It is easy to check that in this case, the generalized Lundberg

equation

H?:l(‘S + A —cs) _ Qm-1(s)
M+ (0 —cs)B(6 —cs)] Qm(s)

is equivalent to Qm, n(s) = 0, for R(s) > hx. It has n roots with positive real

parts, say pi, p2,...,Pn and one root with a negative real part, say —R, where
hx < —R < 0. While the equation Qm »(s) = 0 has n + m roots, which are p;,
with R(p;) > 0, for i = 1,2,...,n and —R;, with R(R;) > 0, for i = 1,2,...,m,
where R = min{R(R;), for i = 1,2,...,m}. Now we can express Qm,n(s) as

m

Qmn(s)=c" H (s + R;) H(pj —s)
i=1 i=1

substituting in the expression of éT(s) and canceling out common factors yields

() - TEs(s 4 R) —[1 = 9r(0)]Qn(s)
s TG+ R) |

Since s = 0 is a removable singularity, the above numerator must be zero if s = 0,

ie, 1—¢r(0) = &c%f(.b?_m and therefore ¢,_1(s) = I (st Ra)= {1 ¢rO&m(s) jg 4

polynomial of degree m — 1 or less.

If R, Ry, ..., Ry, are distinct, then by partial fractions

2 _ Qm—l(s) . - 7
o) = oy ) A R

i=1

—_ m— "Ri Qm _Rz R;
where r; = H;nq“;( _) 3 = 0o ) H, —1j#i (R_lﬁj Inverting the above trans-
form gives ¢r(u) = > i, e R, O

Remarks:
1. The fact that P,,_1(s) must be 0 at s = 0, shows that 1 —¢7(0) = B—lgﬁm'('—(')’)iﬂ.

Then ¢7(0) can be expressed in terms of R;, i.e. ¢r(0) = 1 — ML((T%E Of

course, formula (3.53) still holds true for ¢(0).
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2. If p(s) is defined as in (3.64), §(s) is simplified in the same fashion to

2y Qm(s) — [T (s + R)
g(S) - Qm(s) )

Then we can see that g is the same type of function as the claim density p,

(3.69)

by partial fractions.

3. ¢r(u) can also be obtained by the Theorem of Residues:

or(u) = Z{residues of esuggT(s) at singularity — R;} .

i=1

Example 3.8.1. Assuming that the claim waiting times distribution k is given
in (3.33), and claim amounts are exponentially distributed, that is p(z) = ae™*%,

z > 0 with p(s) = %, then p1,p2,...,p0 and —R < 0 are n + 1 roots of the

equation:

n

Q1n(s) = (s +a) [H(HA@- - cs)] . a[)\* F(6—cs) B - cs)] -0, seC.
Hence

oo

¢T<u)=/0“¢T(u—y>g<y)dy+/ o) dy, w0,

U

with ¢7(0) = 1 — £, Formula (3.69) gives §(s) = (2£) and thus

9(y) = (a — R)e™*¥I(y > 0).

Theorem 3.8.1 gives ¢r(s) = Eﬁ(g)) and therefore,

dr(u) = Ele™TI(T < 00) |U(0) = u] = ¢7(0) e = g;—R)e_R“, u >0,

and

U(u) = P(T < oo|U(0) =u) = tlgi_x)x&qST(u) = LOL_—QR(OEE'R(O)“, u >0,
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where R(0) is the negative root to the generalized Lundberg’s equation with 6 = 0.
To compute the discounted joint and marginal distributions of U(T~) and |U(T))|,
one needs to find ¥;(u), for j =1,2,...,n, and u >0, i.e.

(a—R) 1
a (R+p)

Therefore by Theorem 3.7.2, we have for v > 0,

Uj(u) = ¢r(u) + /0“ ¢r(u—1t)pjetdt = [Re B + pj eri¥] .

(a - R)e(Ruten 5o lepce B 0<e<u,

fu(afw) = basen
e—e% Pi) —pi(z—u bz(a_R) —(Ru+p; x
Z] 1 [ (R+pj e P]( ) (R+pj)e ( +p] ):| ) €T > u7
M 4(8—cp;)B(6—cp;)
™ [e=1,k525 (Pe—p5)"

Finally, fa(e,y|w) = fi(e | w25 yields fa(w,y]v) = ae*¥fi(elu), and

then g(y | U) = fooo f2(x7y |u)d$ = ae‘“y¢T(u) = (a, — R)e—(Ru+ay).

where b; =

Example 3.8.2. Assume that claim inter-arrival times have a mixture of expo-
nentials distribution, with density k(z) = [@Ae ™% + (1 — 0) hge™2%|I(z > 0).

Thus k(s) = Al’\z(;[f)i\ll;(rs(i)\fg’\z] Further, assume that the claim density is a parti-
a{a?+b?%)

cular member of the ’R}L family with p(z) = @ ¢ [1—sin(bz)] I(z > 0),

A _ Qa(s) _ | a(a?+b?) s2+(2a~b)s+b?+a’—ab
and p(s) = Qa(s) [a2+b2—ab] [ (s+a)[(s+a)?+b°]

Since the equation

],wherea>0,andb>0.

Qs(s) = (a2 + b —ab)(s +a)[(s+a)* +b°](6 + A — cs)(J + A2 —cs)

—a(a® + V)[s* + (2a —b)s + % + a® — abl[Adg + (A1 + (1 — 0)X2)(6 —cs)] =0

has two positive roots, say p; and ps, and three roots with negative real parts (at

least one real), say, —R;, where R(R;) > 0, for i = 1,2,3, then

/ pr(u—vy y)dy+/:o 9(y) dy,

where ¢7(0) =1 — %J)ﬁ =1- ﬁ}fjﬁ?‘) Formula (3.69) gives

(3(1 — Z?:l Ri)32 -+ (3(1,2 + b2 — RiRy — R1R3 — R2R3)S -+ a(a + b2) - R1R2R3
(s +a)[(s+a)? + b?

g9(s) =
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inverting yields

g(y) = e [n — 1 cos(by) — nzsin(by)],

where
_ a® — a2(R1 + Ry + R3) + a(Rle + RiRs + RQRS) — RiRyR3
T, - b2 )
m = ad — 3ab? + (b2 — a2)(R1 + Ry + R3) + a(R1R2 + R1Rs + R2R3) — RiRsR;
| =
b2
and

0 3a2b - b3 - 2ab(R1 + RQ + Rg) -+ b(R1R2 —+ R1R3 + R2R3)
2 = .
b2

We note that g is of the same type as the claim size density function. Theorem

3.8.1 gives

dr(u) = ¢7(0) [zle“RI“ + zpe f2v 4 4o e‘R3“], u >0,

with z3 = 1 — 21 — 29, wWhere z; = [(Q_Rl)[(“_Rl)erbZ]] [ Ry Ry ] and zp =

a(a?+b2)—R1RaR3 (R2—R1)(Ra—R1)
(a—R2)[(a—R2)2+b?] RiR3
a{a?+b2)—R1R2R3 (R1—Rz2)(R3—R2) |”

Finally
\I!J(u) = ¢r(u)+ / or(u—y) pjefi¥dy, j =12,
0

= ¢r(0)

3

—R;u -
E:Wj,ie W (1 =m0 — myo — mi3) e }, u >0,
=1

z; Ry
Ri+p;

with 7;,; = ,fori=1,2,3 and 7 =1, 2, gives

0 B 2 3 —Riu[R; iz
filz|u) = {%P(‘”)Zﬁlbﬂ'ziﬂ”ﬂe feulefir —e7i7],  0<z <,

0 5 2 —pz 3 . _R,
125()0)]3(55) 21 b€ Y i T e —e®r], 22w,

A1>\2+(5—Cp1)[0}\14—(1-—9))\2] and b2 — )\1)\2+(5—Cp2)[9)\1+(1—9))\2] )

where by = 2 (ps—p1) A(p1-p2)
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3.9 Concluding Remarks

We have shown how the evaluation of Gerber-Shiu’s expected discounted penalty
function for the classical risk model can be extended to a class of renewal risk
processes with claim waiting times that are K, distributed. This leads to a defec-
tive renewal equation for the penalty function for general claim size distributions.
Moreover, when the claim sizes have a rational distribution, explicit results can
be obtained by partial fractions.

The defective renewal equations obtained here can be used to solve other ruin
related problems; explicit expressions or bounds and asymptotic formulas for ruin
probabilities, joint and marginal distributions of the three random variables, time
to ruin, surplus before ruin and deficit at ruin, as well as their moments.

Further research could study the G-S function in the Sparre Andersen risk
model in which claims waiting times distributions belong to the class of R, which

is wider than the K, family.
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Chapter 4

A Renewal Risk Model with
Dividend Barrier

4.1 Introduction

The Sparre Anderson renewal risk model corresponds to a GI/G/1 queue in queue-
ing theory, while the classical risk model corresponds to a M/G/1 queue. Although
Andersen proposed it half of a century ago, this model remains important in risk
theory research. Some recent contributions to renewal risk models are Cheng and
Tang (2003), Dickson and Drekic (2004), Gerber and Shiu (2003a,b, 2004), Li and
Garrido (2004), Sun and Yang (2004), and Willmot and Dickson (2003).

The barrier strategy was initially proposed by De Finetti (1957) for a binomial
model. More general barrier strategies for a compound Poisson risk process have
been studied in a number of papers and books. These references include Biihlmann
(1970), Segerdahl (1970), Gerber (1973), Gerber (1979), Gerber (1981), Paulsen
and Gjessing (1997), Albrecher and Kainhofer (2002) and Hgjgaard (2002). The
main focus is on optimal dividend payouts and the time of ruin, under various
barrier strategies and other economic conditions. This chapter, instead, consi-
ders ruin related quantities by using the Gerber-Shiu function, as most work with

expected discounted penalty functions in the classical risk model and Sparre An-

81



dersen risk models without a barrier.

This chapter studies a class of Sparre Andersen risk model with generalized
Erlang(n) waiting times in the presence of a constant dividend barrier, extending
the paper of Lin et al. (2003). The analysis is focused on the evaluation of the
function ¢(u), the expected discounted penalty function at ruin, with u being the
initial reserve. The evaluation of the Gerber-Shiu penalty function for generalize
Erlang(n) risk model without a barrier has been studied by Gerber and Shiu
(2003a,b, 2004).

The definition of the Sparre Andersen risk model is given in Section 1.3 of
chapter 1. In this chapter we assume that the claim waiting time are generalized
Erlang(n) distributed with its density function k being given in (3.2). The follow-
ing is a summary of the results for the generalized Erlang(n) risk model without
a barrier. We remark that part of these results can be obtained as special cases

when 3(s) = 0 in Chapter 3.

Theorem 4.1.1. [Gerber and Shiu(2003)] Let T and D denote the identity ope-
rator and differential operator, respectively. Then ¢(u) satisfies the following

equation for u > 0

{ﬁ[(l+i)l—~—®]} /¢u——a: z)dz + w(u) , (4.1)

where w(u) = [~ w(u,z — u) p(z) dz.

Specially, setting § = 0 and w(z,y) = 1, ¢(u) reduces to the ultimate ruin
probability ¥(u).

Corollary 4.1.1. U(u) satisfies the following equation for u 2 0,

J=1
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Gerber and Shiu (2003b) and Gerber and Shiu (2004) show that the integro-
differential equation in (4.1) can be solved into a defective renewal equation using
two different methods: a renewal argument from a key formula derived from

Laplace transforms, or the use of divided differences and the operator 7, defined

by (2.1) in Chapter 2.

Theorem 4.1.2. [Gerber and Shiu (2003)]

B(u) = / Co(u— ey + Hw), w0, (4.3)

where g(y) = &%#Tpn 1, - Tp, p(y), Gs(u) = Aﬂczn—)\" Tpn Tpoy *+ + Tpy wlu),

n—-1"

and p; with R(p;) > 0, for i =1,2,...,n are roots to the following equation:

H[(“r%)—:\c—,s}:ﬁ(s), s€C, neN*.

Additional results can be found in Gerber and Shiu (2004).

4.2 Generalized Erlang(n) Risk Model with a Con-
stant Dividend Barrier

This section considers the expected discounted penalty function for a Sparre An-
dersen risk model with generalized Erlang(n) distributed waiting times under a
constant dividend barrier at level b > u. If the surplus reaches this level b, then
dividends are paid continuously at the full premium rate of ¢, until a new claim
occurs.

Let Uj, be the surplus process under this barrier strategy and assume that the
initial surplus of Uy(0) = v . Then

cdt —dS(t), Uy(t) <b,

—dS(t), Up(t)=b. (44)

dUs(t) = {
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Define Ty = inf{t : Uy(t) < 0} to be the ruin time and, for a non-negative penalty
function, w(z,y),0 < z,y < oo, define for § > 0

pp(u) = E [e™Pw(U(T)), [U(T)|) I(Ty < 00) | Up(0) = u] , 0<u<h,

to be the Gerber-Shiu discounted penalty function. Specially, if w(z,y) = 1,
define
¢r,(u) = B [e?P I(Ty < 0) | Up(0) =u] , 0<u<b, (4.5)

to be the Laplace transform of the ruin time T} with respect to 4.

Our first result shows that the integro—differential equation (2.5), with bound-
ary condition (2.8), of Lin et al. (2003), for the classical risk model with a constant
dividend barrier, can be extended to the generalized Erlang risk process.

Let kn(t; A1, A2,...,\,) be the generalized Erlang(n) density function with

parameters Ay, Aa, ..., A,. Then

kn(t; Aly)\Q;---v)‘n):Z':'H

=1 |j=1,j%i

)‘j —Ait
i Hh 4.
N - )\Z} e (4.6)

It is easy to check that the following relations hold
]C;L(t, )\1, )\2, ey )\n) = )\1 [k}n_l(t, )\2, )\37 ey )\n) - kn(t, )\1, )\2, ey /\n)], (47)

K (8 Ay Az, An) = Aalkn2(E5 sy Mgy oo o, An) —Fno1 (65 A2, Az, o, An)], (4.8)

and
Ey(t; A1, An) = A= [k1(t; An) — k2(t; A1, An)l- (4.9)

The following theorem shows that the penalty function ¢,(u) satisfies an n-th

order integro-differential equation with certain boundary conditions.

Theorem 4.2.1. Let Z and D denote the identity operator and differential opera-

tor, respectively. Then under the generalized Erlang(n) waiting times assumption,

84



ép(u) satisfies the following equation for 0 < u < b < oo

{Jljl [(1 + %) T-— )\_CJD] } Pp(u) = /Ou dp(u — z) p(z)dr + w(u), (4.10)

with boundary conditions,
Wey=0, k=12...,n, (4.11)
where w(u) = [° w(u, z — u) p(z) dz.

Proof: By conditioning on the time and amount of the first claim, one finds that

for 0 < u < b,

where
W(t) = / oot — ) p)dy +w(t), 0<t<b. (4.13)

Changing the variable in the first integral in (4.12) implies that

1 /b t—
do(u) = - / e—(%xt-“)kn( u;)\l,)\Q,...,An)yb(t)dt

¢ Ju c

+’Yb(b) ﬂ_u €~5t kn(t, )\1, )\2, ceey >‘n) dt . (414)

c

Let \* = [T, A and since e~k (t; A1, Az, - -y An) = mes kn(t; A1 + 6, Ao +
i=1 Tz (Aitd)
8,..., A+ 0), where

it A1+5,)\2+6,...,)\n+5)22[ 1 Xﬁf))} Oy .5) -0l
j=lg#i I T

i=1

is a new generalized Erlang(n) density with parameter Ay 4+ 48, X2 +6,..., A, + 9.
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Then (4.14) can be rewritten as

A* b.ot—u

+c75(b) [1 - K, <

b—u

;)\1+(5,)\2+5,...,/\n+5>j|}, (415)

where K, is the distribution function of k,. It is easy to check that the following

formula holds

A+ 6
c[p—( 1C )I] o)
_— - )\’L )\1+6 b~ t.——u
_LUW” {<_ ¢ )/u'“"‘l( 5 e 6,0 6, A 8) (t) e

b—

Cc

— () (M1 + 6) [1 G amity VOIS WS 5)] } (4.16)

Recursively, for 1 < k <n —1,
: i +6
C{H[D_( lc )I]}gbb(u)
LY LAV . b-u
ZI:EAi+5 {H<_ P )C'Yb(t) |:1“Kn—k( ;)\k+1+5,...,)\n+5):|

C
k b
Ai+4 =~ t—u
(-2 [ ;Am+5,...,An+5m<t)dt}. (.17)

C
i=1

i=1

Specially for k =n — 1,

e )\i n—1 1 ~ b—-u_
= |:221 )\Z T 5j| {(———1) Cn_2’)’b(t) |:1 - Kl( - ,)\n + 5)]
n Ai+9 bot—u
+ (" : c > k1(———é—; )\n + 5) ’)’b(t)dt}. (418)
i=1 w
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Applying the operator [D — (i\ﬂcié)I] to both sides of (4.18) finally gives

{H {D—(/\ijé)l]}m(w: (=" E%( ), (4.19)

i=1

which is equivalent to (4.10).

To verify the boundary conditions (4.11), setting u = b in (4.15) gives
op(b) = (I'I" o +5)> vp(b), while setting u = b in (4.17), successively for k =
1,2,...,n—1, and in (4.19) for k = n, gives the boundary conditions ¢l(,k)(b) =0,
fork=12,...,n. m|

We note that if b = oo, (4.10) reproduces the integro-differential equation
(D10) of Gerber and Shiu (2003a), thus the above procedure gives an alternative
proof.

If \; =\ fori=1,2,...,n, i.e., the claim waiting times are Erlang(n) dis-

Angn—1 e At

tributed with density &y, (¢, )\) T then we have the following Corollary.

Corollary 4.2.1. If claim waiting times are Erlang(n) distributed with parameter

A, then ¢y(u) satisfies the following equation for 0 < u < b < oo:

X

< ) [/ dp(u—x)p )d:c+/ w(u,x——u)p(x)dm]’(zl_go)

with boundary conditions, ng,(,k)(b) =0,fork=1,2...,n

Proof: If all A\; = A in (4.19), then

-2 - 2] (7)o

k=0

thus (4.19) can be rewritten as (4.20). O
The solution to the integro-differential equation (4.10), with boundary con-

ditions (4.11), heavily depends on the solution to the associated homogenous

87



equation in v :

where B(D) = [T}, [(1 + f—]) T - —%D] = Y r_o B D* is an n-th order linear
differential operator.

It follows from the general theory of differential equations that every solution
to the nonhomogeneous equation can be expressed as a special solution plus a
linear combination of n linearly independent solutions to the associated homoge-

neous equation. Then the general solution of equation (4.10) is of the form
do(u) = p(u) + Y _mviu), w0, (4.22)
i=1

where ¢(u) is the G-S function for the generalized Erlang(n) risk model without
a barrier, which has been studied by Gerber and Shiu (2003a,b) and Gerber and
Shiu (2004). It also satisfies the defective renewal equation (3.55) as a special
case; vi(u), for ¢ = 1,2,...,n are n linearly independent solutions to equation
(4.21). To meet the boundary conditions, we choose 71,72, ..., 7, in a way such

that the following linear equation system holds:

sPB) =0, k=12...,n

4.3 Analysis of the Function v(u)

The solution to above homogenous equation is uniquely determined by the initial
conditions v*¥)(0), for k = 0,1,...,n—1, and can be solved by Laplace transforms.
Taking Laplace transform on both sides of (4.21) yields

d(s)
B(s) —p(s)’
where d(s) := Z;‘:—g $1Y pei1 Bro®7170(0) = Z?;é d; s’ is a polynomial of

o(s) = s eC, (4.23)

degree n — 1. By Theorem 3.3.1, of all the roots to the equation B(s) = p(s),
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there are exactly n roots with positive real parts, say, pi, p2,. .., pn. If the p; are

distinct, by interpolation, d(s) = Y :_, d(p; no A=l and by divided
g=1""J k=1,k#j (0;—px)

differences

n

B(s) —p(s) = H(S — o) {Bls, p1, p2, - - -, pul — BS, p1, P2, - - -, Pul}

n n
n c
= (=1 H(s = p;) [F =T Tp, Loy Ty p(O)] ,  (4.24)
j=1
where the last step follows from relation (2.7), between divided differences and

the operator T,. Then (4.23) can be rewritten as

A Zn 1 —d(pj)
en £j=1 (s—p5) =1 kg (P —P3) (4.25)

1- %Ts TouTons - Tpy p(O)’

0(s) =

inverting yields

v(u) = / v(u—y)g(y)dy+ D &e ™,  u>0, (4.26)
0 oy
where g(y) = ;\_:TPnTPn—l Ty P(y): and
" « 3on=1 (m) n B, of—m1
¢ = _>‘_ d(PJ’) _ __)\_Zngv ( )Zk:m+1 k Py
’ ct HZ=1,ksﬁj(pk - pj) ct HZ:l,k;éj(Pk - p;)

Equation (4.26) is a defective renewal equation, since g(y) is a defective den-
sity function. If p is rationally distributed, v has a rational Laplace transform,
therefore, it can be obtained explicitly by partial fractions as follows.

Let us assume that claim size density function p belongs to 'R}", i.e., for
m e Nt :

p(s) = @m-1(s) with Qm(0) = Qm-1(0), and R(s) € (hx, 00), (4.27)

Qm(s) ’

where the abscissa of holomorphy hx of the claim size r.v. X is defined as
hx :=inf{s € R: E[e™**] < oo},
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Qm is a polynomial of degree m with leading coefficient 1, and @m—1 is a polyno-
mial of degree m — 1 or less. Further, since p(s) is finite for all s, with R(s) > 0,
equation @, (s) = 0 has no roots with negative real parts.

Substituting (4.27) into (4.23) yields

_ d(s) Qm(s)
"= B nls) - Qm )
where B(s) Qm(s) — Qm-1(s) is a polynomial of degree of n + m with leading

seC, (4.28)

coefficient (—1)"% . Hence it can be factored as

. Cn n m
B(s) Qu(s) — Qmar(s) = (-1 [Hcs - m} {H<s +R),  (429)
i=1 i=1
where p1, pa, . . ., pn are all the roots with positive real parts to Lundbeg’s equation

B(s) = p(s). Here Ry, Ry, . .., R,y denote the roots with negative real parts to the
equation B(s) Qm(s) — @m-1(s) = 0. Then (4.28) can be rewritten as

3 A" d(S) Qm(s)
WS) = o m m . 4.30
) e [Tim(pi = 8) [Tz (s + Ri) (4:30)
If p1, p2,...,pn and Ry, Ro, ..., Ry, are all distinct, by partial fractions, we have

n m

. Q4 S
s)=y ——+) ——, seC, (4.31)
SRVl ey R B e
A d(p:)Qm(pi) A d(—R;)Qm(—R;)
where a; = Ty (Rj+pi) Iz ke (e —p2)? 53 cn H?=1(Rj-l-ﬂi)JHL":Lk;éj(Rk—Rj)' Then
inverting yields
vw) =D ety Ge Y, u>0. (4.32)
=1 j=1

Formula, (4.32) is the general solution to the homogeneous integro-differential
equation (4.21), which is uniquely determined by the initial conditions {v®(0)}2=;.

One can find n linearly independent solutions v;(u),% = 1,2,...,n by spe-
cifying the initial conditions vi(k)(()) =H{k=14i—-1}, for k =0,1,2,...,n — 1.
Then

. s) = dz(s) Qm(s) s
%) = B Gn(s) - O’ €T (4.33)
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where di(s) = S3¢_ Bes* ™ = S0 Bppis™, i = 1,2,...,n. For these special
d;(s), one can use (4.32) to obtain v;(u).

To prove that the v;(u) are linearly independent, we assume that there
are constants ci,cs,...,c, such that Y ¢ vi(u) = 0, for any v > 0. Then
S civfk)(u) =0, for k=0,1,...,n— 1, and any v > 0. Setting u = 0 and
noting that vfk)(O) =[{k=14-1}, for k=0,1,2,...,n — 1, we can prove that

¢g=0foralli=1,2,...,n.

4.4 Examples

The following examples show how to obtain explicit results when claim sizes are

rationally distributed.

Example 4.4.1. In this example, we assume that the claim sizes are exponentially
distributed with parameter 3, i.e., its density p(z) = B e~#% and Laplace transform
p(s) = W—Lﬂ) The claim waiting times are generalized Erlang(2) distributed with

parameters \; and Az. Then the generalized Lundberg equation simplifies to
(M +d—cs)(A+d—=cs)(s+0) = Xp, (4.34)

which gives three roots, say, p1 > 0, p2 > 0, and —R < 0.
Let vy (u) with v1(0) = 1,v4(0) = 0 and vy(u) with v5(0) = 0, v3(0) = 1 be two
linearly independent solutions to the homogeneous integro-differential equation

(4.21). By (4.32) we have

[cpr = (M + A2 +26)])(p +»3)ep1u+ eps = a4 22 +20))(p2 + 6) pau

c(R+ p1)(p2 — p1) (R + p2)(pr — p2)
(CR+ A1+ Ao+ 25)(ﬁ — R) —Ru

- e , u >0, 4.35
c(pm + R)(p2 + R) ( )

’Ul(’u)
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and

prtp ehLu p2+ 0 eP2u
(R+ p1)(p2 = p1) (R+ p2)(p1 — p2)

/B_R ~Ru
iRm0 2 (439

The results for the corresponding generalized Erlang(2) risk model without a

vo(u) =

barrier, are given by Theorem 3.8.1 and Example 3.8.1:

¢T(u) = 18 /; Re—Ru, U2 07
and for 0 <z < u,
)\1 )\2(,8 - R) —Ru —(B-R)z
r|u) = € —p)e
fl( | ) Cz(pg —,01)(R+p1)(R+p2) [(P2 pl)
+(R+ pl)e-(ﬂz-h@)m _ (R+ pz)e—(ﬂl-i-ﬂ)z], (4_37)
and for z > w,
>\1 /\2 ﬁ'i‘Pl ~(p1+8)z p1u ﬁ— R —(p1+B)z ,—Ru
Tiuw —_ e € - € €
flz|w) Apa—p) |R+m R+p

_BAP it BB —uetregre| (438)
R+ P2 R+ P2

The relation

z, ylu) = xup(a-:—l—y): e PV fi(z, |u
ful,vl) = ule | EEEE = B i, L)

gives
«mw=/wMamwm=m*%ﬂw=w—Me“wM. (4.39)
0

Then
o1, (w) = ¢r(u) + crva(u) + c2 v2(u), (4.40)

where c;, ¢y are to determined by solving equations
v (B) + v () = —P(b), i=1,2.
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Let fy1(x | u) be the discounted marginal distribution of Uy(T3), and gs(y | u)
be the density of deficit at ruin [Uy(T3)|. Then

fop(z|u) = fiz|u) + 2z v1(u) + 22 v2(u), 0<u, z<b, (4.41)

where 71, z; are to determined by solving the equations

o ) () — _Ofi(z]|u) L
21U ( )+22U2 ( ) aui u:b, ? 1)27
and
g(yw) =gy lu) + Goiu) + Gvafu),  0<u<d, (4.42)
where (7, (» are to determined by solving equations
Q ) — 09z |v) .
Cl U1 (b) + C? ) (b) - o u=b’ = 17 2.

Setting ¢ = 1.1, Ay = 1.0, Ay = 1.0, 8 = 0.5 and é = 0.03 implies that the

generalized Lundberg’s equation reduces to
(1.03 ~ 1.15)%(s +0.5) = 0.5,
which has three roots, say p; = 0.1199, p; = 1.4024 and —R = —0.1496. Then

vi(u) = —1.6937¢ 0146w 1 3143201199 _ ().4495 1 4024%,
vo(u) = 0.8375¢701496u _ 17033 01199% 4 0.9558 14024, u >0,

while
¢r(u) = 0.7008 70140 4 > 0. (4.43)

For 0 <z <,
fi(z | u) = e70149640, 6923 ¢ ~0-304= 1 (.1455 ¢ 7190247 — 155207001997,

and when z > u,

fl(x | U) — 6——0'6199'1[1.4822 60.119911. . 0.83786—0'1496’“]
+e—1.9024:1:[0'1455 6—0.1496u . 07899 61.4024'11].
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By setting the constant dividend barrier to b = 10 and solving the boundary
conditions, we obtain ¢; = 0.02936, c; = 0.01381, and for 0 < u < 10,

b1, (u) = 0.6626 ¢ 014%¥ 1 0.06753 ™1199* — 026978 e11021¥, (4.44)
Ifo<z<u,

for(z|u) = e7014964[0.6546 70504 4 0137619027 — 1.4675 700197
+e01199u]0 0667 e 7035042 1 0.0139 ¢ 190242 _ (0,1496 ¢ 0-61997],

Ifu < z < 10,

foa(z|u) = e 01964003768 ¢703504% 4 0.1376 7 9024* — 0.7533 701997
+e01199%[0. 0667 e 7035947 1 0.01402 ¢ 7199247 1 1.3326 ¢ 001997

—0.7899 ¢14024u ,—1.9024z
It is easy to check that Uy(73) has a probability mass at b = 10, given by
P(Up(T;7) = 10) = 1.0837 70149 — 1.1521 ¢~076%% 4 01211 €119,
Finally, for 0 < u < 10,
9y | u) = 0.5e709¥[0.6626 e~014%% 1 0.06753 €219 — 0.26978 " 49%4¥],

Example 4.4.2. In this example, we assume that the claim waiting times are
generalized Erlang distributed with parameters n = 3, A\; = A2 = 0.5 and A3 = 2.

With these values, the claim waiting times density function is given by

2 2 1
ks(t) = 56_2t — §€—O'St + -3—t e 05t t>0,
with mean E(W) = 4.5 and ks(s) = G‘{L‘ﬁ%' We assume that claim sizes

are distributed as a mixture of two exponential distributions with p(z) = 0.5 x

0.26792% + 0.5 x 0.25e¢7025% (s) = 828 = (sigf";;?s;i%?;s) and p = 4.5. Further

assuming that ¢ = 1.1 gives a positive loading factor of § = 0.1.
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In this example, we focus on the joint and marginal distributions of the
surplus before ruin and deficit at ruin with a constant dividend barrier, therefore
we assume that ¢ = 0.

First the following generalized Lundberg equation
B(5)Q2(s) — @1(s) = (1-2.25)*(1~0.555)(s+0.2)(s+ 0.25) —0.2255 — 0.05 = 0
has five roots on the whole complex plane, i.e.:
p1 =0, pop =0.7393, p3 =1.7949, —R; = —0.0278 and — Ry = —0.2291.
Now let v;(u) with v™(0) = I(k = i — 1), for k = 0,1,2 and ¢ = 1,2,3, be
three linearly independent solutions to the homogeneous equation (4.21). Then
inverting (4.33) gives
vi(u) = 1.0999 +0.3107 1% — 1.3063¢ 2% — 0.1152¢”* + 0.0109€”*,
vp(u) = —1.6133 —0.4421e 1% 4 1.5224 7 2% 4 0.5876 ¥ — 0.05453 ¥,
vs(u) = 0.5916 + 0.1604e~"1% — 0.5149 e F2¥ — 0.2956 ¢ * + 0.0585 " “.

By Theorem 3.8.1, W(0) = 1 — &7 = 0.8726, and

W(u) = 0.08709 =1 4 0.0017e ">, u > 0.
By Theorem 3.7.2, for 0 < z < u,
filz|w) = p(w){e—0.0278u[_0.2825 1 0.2682£00278 _ () 0174 ¢~0-73932
+0.00301 e~ 179492] - =022 (00055 + 0.00037 =027
—0.00022 7073982 1 0.000044 e~ 79497]
—(.9275 £0-7393u ,~0.7393z | () 394 £17949u 6—1.794935}7
for x > u,
fAlzlu) = P(x){0.3244 +0.4224 ¢ 71 7949(@-u) _ 9904 £ =0-7898(z )
_~0:0278u [0.2825 +0.0174 707392 _ (0.0029 e—1.7949 z]
—e~022914[0,00055 + 0.000218 ¢~ *7%% — 0.0000435 ¢ 740 *] }
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Since fo(e, ylu) = fulw| wHEHL, then

glyluv) = /Ooo folz, ylu)da
= 025y [0_1195 £~025u _ () 9895 o~0-2778u _ () 000056 ¢~1-2184u
—0.00439 1017 L 534 x 1070 ¢~ 2274u
-+0.0003689 e ~>9727* — 0.0005515 e *42! U}
02 {0.1056 02U _ () 0895 ¢=02TT8u _ 4 79 » 0~5¢~11684u
~0.003707 =71 — 0.0005515 ¢ 4291
0.438 x 10° €722 400003026 ¢~ 20727 .

Setting the constant dividend barrier at b = 10, then gives for 0 <z < u:

falwlu) = P(z){-0.1237 - 03177 ¢ 008

+0.1501 e~0-2291v _ (.316 x 10 50 7393u

1 00278 [0'1171 1 0.3014 ¢~00278u _ () 1496 ¢~0-2291u
+0.2995 x 107% %739%% _ 0.3 x 107! el~7949u]

4 g0-2291a [0.0002516 1 0.000067 e~02291u 4 ().0000714¢ 00278 4
++0.2807 x 10—860'7393"]

70Tz _,6306 — 0.7420 €701 4 2.4679 0P
+0.00104 %79 4+ 0.5 x 107! 61-7949u]

7179402 0,1816 + 0.0486 00778 — 0007480702

+0.8643 x 1075 e°-7393“] }
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and foru <z < 10:

fa@lu) = P(){0.2007 — 031777007 4 0.1501 e 02201

_0.316 x 10-507398u | (9.7 % 10~ 111-7949u

100278z {0'1171 1003324 00278y _ () 1496 ¢~0-2291
+0.2995 x 10750792 _ 0.3 x 107! 61.794911}

402201z [0.00025 +0.00031 e02291% | (). 000071e 00278
+0.2807 x 10—860-7393u}

707882 _9,6396 — 0.7403¢ 70T + 2.4679 ¢ 021
—0.0869 %7394 L 0.5 % 10~° 61.7949u]

417949z [0.1816 1 0.0486 00278 _ () 00748 ¢ 02291 u

+0.8643 x 1072 07393 4 .032 61.794911,] }

Note that Up(T, ) has a probability mass at z = b = 10, given by

10

P{Ub(Tb_) = 10} = \Ilb(u) - /Ou fb,l(x | u)d:c + fb,1($ | u)dx.

Finally,

alylu) = 025y [_0'0791 4 0.0963 ¢~02291% _ (.0224 ¢~0-0278u _ () 00055 ¢ 04791 %
—0.2825 0278 — 0.000056 e~ *1** — 0.0044 ¢
+0.00037 ¢~29727¥ 4 0.1195 e-°-25“]
+e7 02 [—0.07827 + 0.0953 702291 % _ (0,0222 ¢~%-9278% 40,1506 02"
—0.00371 7097 — 0.28257%278* — 0.00055 ¢ =42
£0.0003 e=20227¢ _ (000047 ¢~ 11684 U} .
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Chapter 5

A Class of Renewal Risk
Processes Perturbed by Diffusion

5.1 Introduction

The classical risk model perturbed by a diffusion was first introduced by Gerber
(1970) and has been further studied by many authors during the last few years;
e.g. Dufresne and Gerber (1991), Furrer and Schmidli (1994), Schmidli (1995),
Gerber and Landry (1998), Wang and Wu (2000), Wang (2001), Tsai (2001, 2003),
Tsai and Willmot (2002a,b), Zhang and Wang (2003), Chiu and Yin (2003) and
the references therein.

In this chapter, we consider the expected discounted penalty function for a
Sparre Andersen risk process perturbed by a diffusion. As in Gerber and Shiu
(2003a,b) we assume that claim inter-arrival times have a generalized Erlang(n)
distribution. OQur motivation is to keep the additional variability generated by the
perturbing diffusion, as in Dufresne and Gerber (1991), but for a wider class of

aggregate claim processes than compound Poisson.
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5.2 Model Description and Notation

Consider a time—continuous Sparre Andersen surplus process perturbed by a dif-

fusion
N(t)

Ut)=u+ct—Y Xi+oB(t), t>0,
i=1

where v > 0 is the initial reserve. The X; are i.i.d. random variables with common
probability distribution function (d.f.) P and density p, representing the i-th claim
amount. Let g = E[X*] be the k-th moment of X and p(s) = [;°e™*" p(z) dzx
the Laplace transform of density p.

The ordinary renewal process {N(t); ¢t > 0} denotes the number of claims
up to time ¢, with N(¢) = max{k > 1: Wi + .-+ W}, < t}, where the i.i.d. claim
waiting times W; have a common generalized Erlang(n) distribution, i.e. the W;’s

are distributed as the sum of n independent and exponentially distributed r.v.’s
Sp=Vi+Vot - +V,, n € Nt, (5.1)

where the V; may have different exponential parameters A; > 0.

Finally, {B(t);t > 0} is a standard Wiener process that is independent
of the compound ordinary renewal process S(t) := Zf;(f) X; and the dispersion
parameter o > 0.

Further assume that {W;; ¢ € Nt} and {X;; ¢ € N} are independent and
cE(W;) > E(X;), that is ¢y ., /\i > 1, providing a positive safety loading
factor.

Now define
T =inf{t >0 : U(t) <0} (oo, otherwise),
to be the ruin time and
U(u) = P(T < oo |U(0) =u), u>0,
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to be the ultimate ruin probability. Further, define
P4(u) = P(T <00, UT)=0|U(0) =u), w20,

to be the probability of ruin caused by the oscillations in U(t) due to the Wiener
process B(t), while

Us(u) = P(T < o0, U(T) < 0|U(0) = u), u >0,

is the probability of ruin caused by a claim. We have that ¥(u) = ¥4(u) + ¥4 (u),
with W4(0) = 1, and ¥,(0) = 0.
Next, for 6 > 0 define

pa(u) = E[e™ T (T < 00, U(T) =0)|U(0) =u], with ¢q(0) =1,

to be the Laplace transform of the ruin time 7" due to the oscillations. Now let

w(z,y), for z,y > 0, be the non-negative values of a penalty function and define
8u(u) = B[ w(U(T), [UT)]) I(T < 0o, U(T) <0) | U(O) =u], w20,

to be the expected discounted penalty function if the ruin is caused by a claim.

Then
P(u) = da(u) + ¢s(u), u >0,

is the expected discounted penalty function.

Our first result gives integro—differential equations for ¢, and ¢q.

Theorem 5.2.1. (Integro—differential equations)
Let Z and D denote the identity operator and differential operator, respec-

tively. Then ¢(u) satisfies the following equation for u > 0 :

{ﬁ [(1 + /\%) T- )\%D - %'Dﬂ } ¢s(u) = /Ou ¢s(u—z) p(z) det+w(u), (5.2)

j=1
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where w(u) = [ w(u,z — u)p(z)de and ¢4(0) = 0, while ¢4(u) satisfies the

following similar (homogeneous) equation for u > 0 :

{JIZII [(1 + %) - XC;D - ;—;DZ} } pa(u) = /0“ da(u — z)p(z)de , (5.3)

with ¢4(0) = 1.

Proof: First fix the number j = 0,...,n — 1, of exponential r.v.’s of the sum

Sji=Vi+Vo+---+V;in (5.1), with Sop = 0, and define
e j(u) = Ele T w(U(T™),|UT)|) I(T < 00, U(T) < 0) | S; =t, Ut) =],

with ¢so(u) = ¢s(u) and ¢5;(0) = 0, for j = 0,1,...,n — 1. Then consider
the infinitesimal interval from S; to S; + d¢. Conditioning, one obtains for j =

0,1,...,n — 2 that

bos(v) = e P(Viss > dt) B [po(u+ cdt + o B(d1))]

+P(Vips < dt) E [$ajir (u + cdt + o B(dE))] } w>0. (5.4)
Also e7%% = 1 — §dt + o(dt), while
P(Vjp1 > dt) =1 — A\jpadt + o(dt) , P(Viy1 < dt) = Ajy1dt + o(dt)
and
E [¢s;(u+ cdt + oB(dt))] = ¢s;(u) + [cd), ;(u) + %2¢;"j(u)]dt + o{dt) .

Substituting these formulas into (5.4), subtracting ¢ ;(u) from both sides, inter-
preting dt and o(dt) terms and canceling common factors, we obtain as dt — 0,

that for j =0,1,...,n —2:
2
g /
)‘j+1¢s,j+1(u) = (>\j+1 + 6) ¢s,j(u) - C¢>/s,j(“) - ?%',j(u)
2
o
= [N +8)I—cD~ 7D2]¢s,j(u) : (5.5)
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where again Z and D denote the identity and differential operators. Similarly for

j=mn—1, we have

[()\n+5)I—cD———D2]¢sn 1 [/ bs0(u — ) p(z) dz + w(u )] .(5.6)

It follows from successive substitutions, that for 1 <m <n —1,

o m(u) = {ﬁ[(l + %) - )\—]D - KDQ] } Bo0(u) . (5.7)

J=1

Now let m = n — 1 in (5.7), use (5.6) and note that ¢,o(u) = ¢(u), to obtain

{ﬁ[(w%)z—rjp—ﬁﬁ} /(psu—x z)dz + w(u) .

=1
Finally note that ¢,(0) = 0, since P(T < 00, U(T) <0|U(0) = 0) = 0.

To verify the homogeneous equation for ¢4(u), define for j =0,1,...,n—1:
paj(u) = EleT DT <00, UT)=0) | Sj=t,U(t) =u], u2>0,

with @ao(u) = ¢a(u) and ¢4;(0) = 1, for j = 0,1,...,n — 1. Using arguments
similar to those used for (5.5) and (5.6), we have for j =0,1,...,n —2:

2
Ajr1d,i41(u) = [()‘jﬂ +8)I—cD- %92] $a,5(w) (5.8)
and
o? “
[()\n +6)[—cD— 7@?}%,”_1(@ = / baolu — 2)pl@)dz . (5.9)
0
Then
ﬁ[<1+-§—>l’ D——’D2 (l)d(u):/uqﬁd(u—x)p(az)dw u>0.
i % N2 A U=
Also note that ¢4(0) = 1, since P(T' < oo, U(T) =0|U(0) = 0) = L. 0
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Note that equation (5.2) yields (D10) of Gerber and Shiu (2003a) when o = 0,
as well as equation (2) of Li and Garrido (2003) for the special case when A\; = 3,
a constant for all j =1,2,...,n and ¢ =0.

The solution to the integro—differential equations (5.2) and (5.3) are closely
related to the roots of a generalized Lundberg equation. This is discussed in the

next section.

5.3 A Generalized Lundberg Equation

Let 7, = Zle W; be the arrival time of the k-th claim. Consider the surplus
Uy = U(r,) immediately after k-th claim. Defining 7o = 0 gives Up = u, and for
k=12,...,

k
U, = U(Tk) = u-+cy _ij +O’B(Tk)

j=1
k
= ut+ Y [cW;— X;+0BW))] .
j=1
We seek a number s such that the process {e 07+sUs; k = 0,1,2,...} will form
a martingale. Here this martingale condition is equivalent to
E [6—5W1+CSW1+SGB(W1)—SX1] — E [e—(5—cs)W1+sOB(Wl)]E[e—sxl] =1. (510)

Since

3202

E [e—(é—cs)WH-saB(Wl)] - E{E [e—(é—cs)Wl-!—saB(Wl) | WI]} - E [6—(6—cs)W1+ 2 Wl] ,

and W is generalized Erlang(n), then (5.10) simplifies to

n

E [6_(5_03_%%32)%] o(s) =[] B [e“@‘“-%sg)"j} ps)=1, seC.
(5.11)
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Let v(s) := [[j— [(1 + %) - ,\"CJ s — 5’;\27 52} , then (5.11) is equivalent to

v(s) = p(s) , §>0,neNtandseC, (5.12)

which is a Generalized Lundberg Fundamental Equation.

Remark: Equation (5.12) simplifies to (4.2) of Gerber and Shiu (2003b) when

o = 0 and to the generalized Lundberg equation in Li and Garrido (2003) for the

Erlang(n) risk process, i.e. ¢ =0 and A\; = 3, a constant for all j = 1,2,...,n.
We can prove the following about the roots of this generalized Lundberg

equation.

Theorem 5.3.1. For § > 0 and n € N*, Lundberg’s equation in (5.12) has exactly
n roots, say p1(6,0), p2(8,0), ..., pu(d, o) with a positive real part R(p;) > 0.

Proof: Since the factors (1 + ;\‘5—) — ;‘C; s — % s? = 0 have exactly two solutions

51:_55_1/ +(’\’+6) < 0and s, = U—CQ—H/ +('\J+6) > 0, we see that the

product y(s) = Hj=1 [(1 + A—j) — )\—j s — 5\27 52] has exactly n positive zeros.
On the half circle in the complex plane given by z = r (for 7 > 0 fixed) and
R(z) > 0, we have that |y(s)| > 1, if r is sufficiently large. While for s on the

imaginary axis (R(s) = 0) we have that |y(s)| > [T}, 2%

contour boundary of the half circle and the imaginary axis, |y(s)| > [p(s)|. Then
we conclude that, on the right half plane, the number of the roots to Lundberg’s
equation equals to the number of roots of v(s) = 0. Since the later has exactly n
positive roots, we can say that p1(6, o), p2(d,0), ..., pn(d,0) are the only roots to
Lundberg’s equation that have a positive real part, although others may exist. O

Remarks:

1. Define I(s) := p(s) — v(s). Since I(0) < 0 and lim,_,_o I(s) = +00, then for
p(z) sufficiently regular, there is one negative root to l(s) = 0, say —R(d, o).
We call R(6,0) > 0 a generalized adjustment coefficient.
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2. If § — 0% then —R(d,0) — —R(0,0) and p;(6,0) — p;(0,0), for 1 < j <n,

where —R(0,0) and p;(0, o) are roots to the following equation:
= _ T 2l
Y0,0(8) .—1—11[1 )\js 2)\1'8 ] p(s), seC.

3. If 62 — 0 then —R(5,0) — —R(4,0) and p;(8,0) — p;(4,0), for 1 < j < n,
where —R(4,0) and p;(8,0) are roots of equation:

Ys0(s) 1= H[(l + )\%) — )\i s] =p(s), seC. (5.13)

=1 ’
4. For simplicity, write —R and p; for —R(J,0) and p;(4,0), 1 < j < n, when

0>0and o> 0.

5.4 Main Results

We are now ready to solve the integro—differential equations (5.2) and (5.3). First,
as in Gerber and Shiu (2003b), we use the concept of divided differences. For
distinct numbers rq,79, ..., 7k, the k-th divided difference h[ry, 7o, ..., 7%, s] of a

function h is defined recursively as follows:

h(s) = h(r)+ (s —r1)h[r,s],

h[rla 8] = h[’l"l,’f‘z] + (8 - 7’2) h[T‘l,Tz, S] )
hlri, 72, .. Tk-1,8] = hlr,re, ..., 1)+ (s =) h[r,r2,. .., Tk, 8] .
Note that if h(s) is a polynomial of degree n, then h[ri, 72, .. ., ¢, s] is a polynomial
of degree n—k, while h[ry, 72, . . ., T, 8] is the coefficient of s™ in h(s). The following
result also holds:
. h(r;)
hiry,re,...,Tk] = J , 5.14
[ra, 72 g ;W,’c(rj;rl,rz,...,rk) (5.14)



where mg(s; 71,72, ..., TE) = Hle(s —r;) is a polynomial. Finally, note that if two
functions have the same values at points ry, 79, ..., 7, then they must also share

the same m-th divided differences for m < k.
Next, as in Li and Garrido (2004), we define the operator T, of a real-valued

function f, with respect to a complex number r as:

T,f(:c)z/ooe'r(y'”)f(y)dy, z>0.

Using the operator T, and divided differences, one obtains the following relations

to the roots of Lundberg’s equation .

Theorem 5.4.1. For u > 0, there exists a polynomial «y in terms of the differential

operator D such that

(=11 [01, P2y -+ Py D] () = /O“qss(u—y)n(y)dyw(u), (5.15)

(—=1)™lp1, p2, -+ - Pn> D] pa(u) /Ou pa(u—y)n(y)dy,  u>0,(516)

where p1, pa, ..., pn are the n roots of the generalized Lundberg equation (5.12)
with positive real parts, n(y) = T, Tp,_, -+ Tp,p(y) and G(u) = T, - - - Tp,w(u),

where w is from (5.2).

Remark: Equation (5.15) and (5.16) are integro—differential equations of order
n for ¢, and ¢4, respectively, since by (5.14)

n

v(ps) (s)
1 P2y 5 Py 8| = +
’Y[pl P2 P ] Zﬂ_;z(p]?pl)p%apn) (p] —'S) '”n(SQPl:p%---»pn)

=1
is a polynomial of degree n.
Proof: See Section 10 of Gerber and Shiu (2003b). 0
To solve equations (5.15) and (5.16) we take Laplace transforms, first on both
sides of equation (5.15), to get:

{(=1)"lp1, p2, - s 8] = (5)} $ols) = G(s) + gna(s),  s€C, (517)
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where A(s) = Tyn(0) = Ty T), - - - Tp,p(0) and G(s) = T,G(0) = TiT}, -+ - Tpyw(0)
are Laplace transforms of 7 and G, respectively, ¢,—1(s) is a polynomial of degree
of n— 1 or less, with coefficients in terms of §, ¢, A;, p;, for i =1,2,...,n, and the
derivatives of ¢, at 0, ¢§’“’(0), for k=0,1,2,...,n— 1.

Since ¥[p1, p2, - - -, Pn, 8] is a polynomial of degree n and the coefficient of s"
is equal to that of s™ in 7(s), which is (—1)”2":—;*, where \* = []_; A, then
Ylp1, p2, - - -, Pn, S| can be factored as

o?™s+a))(s+as) - (s+an
7[P17P27-~:Pn75]=(_1)n ( 1)( 2"A*2) ( )7 SG(C, (518)

where the ay,as,...,a, come in pairs of conjugate complex numbers. Equation

(5.17) can thus be rewritten as

. 2™ X* 7j(s) }
S 1-
O L e % eew
_rx G(s) + gn-1(8)
(s+a1) - (s+an) (s+a1) --(s+an)
2n )\* G(S) )
= , e C,(5.19
a2n(s+al)(s+a2).--(s+an)+;(s+ai) s € C(5.19)
where the coefficients b; are given by b; = 2" gn1 (e for: =1,2,.

o?n [H] 1 ]#1(‘11_& )]’
Similarly, taking Laplace transforms on both sides of equation (5.16) yields

{(_1)n,}/[p1, P25 Pny 8] ( )}¢d( ) Qn—l(s) , seC R (520)

where @,_1(s) is a polynomial of degree < n — 1, with coefficients in terms of 4,

¢, N, pi, fori=1,2,...,n and gbfik)(O),k:O,l,Z,...,n—-l. Then

da(s) |1 o (s+ai)(s+ag) - (s+ an)]
B 2" A Qi (8)
= (s an) (5 + a) Z Gy SEC62

: 2" M Qp_1(-ai) .
where the coeflicients ¢; = P T’ fori=1,2,...,n
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These can be solved for ¢, and ¢4 by inverting Laplace transforms. The
following Theorem shows that ¢, ¢4, and ¢ all accept renewal equation represen-

tations.

Theorem 5.4.2. ¢,, ¢4 and ¢ satisfy the following renewal equations

Bulu) = /qssu— Wy + HE) + 3 be ™, w0, (522)

i=1
o) = [ e )o@y e w20, (5.23)
o(u) = / du—y)gly)dy+H u)—}—Z(cZ—l—b v u>0,(5.24)
i=1

where a;, b;,c;,n and G are as above, g(y) := h * n(y) = hy * -+ % hy * 0(y),

H(u) := h*G(u) = hy % -+ x by % G(u), with hi(y) = U;\}'ze_‘“y, fori=1,2,...,n

and * denotes the convolution product.

Proof: Inverting the Laplace transforms (5.19) and (5.21) gives the renewal equa-
tions (5.22) and (5.23). Since ¢(u) = ¢s(u) + ¢a(u), add (5.22) to (5.23) to obtain
(5.24). O

Remarks:

1. When n = 1, equation (5.22) yields (17) of Gerber and Landry (1998), while
equation (5.23) gives (2.10) of Tsai and Willmot (2002).

2. Since ¢,(u) and @g(u) go to 0 as u goes to 0o, we can conclude that $(a;) > 0,
fori=1,2,...,n

Moreover, the following lemmas give expressions for g and H that are useful in

applications, as well as to study the limiting behavior of ¢s and ¢4 when o — 0.

Lemma 5.4.1. For ¢ > 0, the function g can be expressed, for y > 0, as

AN o e VT T, Ty p(0) = Ty, Ty, Tpy D(y
g(y)=< ) T P(0) £ b P(Y) (5.25)

(—1)n1xt(as; a1, a9, .. ., an) ’

2n
g
1=1
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while its Laplace transform g is given by

[v(s) = (s)]

9(s) = 1= (-1)"r=m (5.26)
g( ) ( ) [szl(pz _8)] 7[p17P27---;Pm S]
2" X [v(s) — B(s)]
= 1‘( > " 7 . seC. (527)
o?" [Hi:1(l)i - 5)] [Hi:1(5 + ai)]
Therefore, for y > 0
9(y) = hx1(y) = 9009) = 5 Tou60) Ton-160)* Tor00) PY)
as 02 — 0.
Proof: Since
7 ‘ e 02 2
h = e
(s) 11 g Gt a)
= 2 ! ) seC,
i=1 n 17T ai;alaa2a'~'7an)(5+ai)
then
AN L e~ uY
- >0. 5.28
h(y) ( o2n ) £ (1)) (ag; aa, aa, WAk Y2 (5.28)
Also

Y
/ e~ W—z) n(z) dx
0

implies

hxn(y

(

9(y)

= (

ADY
0-2 n

/ g% W-z) n(zx) dx—/ e_‘“(y‘z)n(w) dz
0

o0 o
_ e—aiy/ d:c _ / a,(z y) diL‘
0 Y

= _aly T—az 77(0) T_az (y) b y > 0 (529)

2" \* e~ %Y T_5,m(0) — T_g,;n(y)
; >0,

02”>Z( D17’ (ai; a1, a9, . . ., Gn) y=

Ty T—ai Tpn B 'Tpl (O) - T—ai Tpn Ch Tp1 p(y)

(=117’ (as; 01, a9, .. ., Gn)
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Now, the Laplace transform of ¢ is given by

g(S) - (H (SU_+_/ZI )TsTpn".Tﬂlp(0)7 SG(C,
n __é\_,__
n a /2 A
= 1 3 o0 Py 5 b 27 ,
(=1) (E(Hai))p[m P2, Pny S| y (2.7)
02/2 R
= .—1’” ’ 1t n,3+ - 3 g ooy Pny
(1) (g (3+a1){7[m P2, s puy 8]+ (B =)o, P2, -, Py 8]}
P(s)—(s) " .
_ o1, p2y -+ -5 Pn, 8] + TeaGp) _ g _ (=1)"v(s) — p(s)]
7[:017p2; . '7p'n78] H?Zl(pl - S)’y[pl,pz’ . 7pn,3] ’

this proves (5.26). Similarly, to verify (5.27) use (5.18). Finally, as > — 0:

n

v(s) — 7s0(s H{ ; s], seC,

j=1 J
pi(6,0) — pi(6,0), forz=1,2,...,n, and

—c)"
'Y[phpZ: ey Pry 3] — 75,0[,01(6, 0), ,02(5, 0), .. ,Pn<6; 0); 3] = ( )\*) .

The first two limits follow from (5.13). The last line represents the n-th order
divided difference of a polynomial, vs0, of order n; hence a constant equal to the
leading coefficient of the polynomial.
Accordingly,
N [vs(s) —p(s)]
ot {HL[M(& 0) — 3]}
(_1)n£ - ¢ [vs0(s) — p(s)]
L TS s - m(6.0)

c_n{’YJ,O[pl(57 0)7 sy Pn((S, 0)7 S]

~(¥50 = B)[p1(6,0), - -, pa(6,0), 5] }
)\*

= ('_1) —p[p1(5 0) ..,pn(570),8]

)\*
= (-1)? "L TG0 Ty (5,0)P(0)

g(s) — 1- seC,
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then, we have

*

9(y) = oly) == ;,;Tpn(a,m - Tps0)P(Y) y>0.

This completes the proof. a

Similarly, the following lemma holds for the function H.

Lemma 5.4.2. For 2 > 0, the function H can be expressed, for y > 0, as

i = (G ) S e ey 6
while its Laplace transform H is given by
- o A T Ty w
1(s) = his) G5) = 1= 1)5’{; e 7(21’81 . seC.  (531)
Therefore, when o2 — 0
H(u) = hx G(u) — Ho(u) := %\;Tpn(sm o Theoyw(u), w>0. (5.32)
Remarks:
1. Since

[ sy = 40) = tmote

= [1 - (2:3;) T (p‘h—(gfuﬁi(; )1(5 T
ooy M+ 8 -1
1‘( )(H;;lpixnz;lai)

then equations (5.22), (5.23) and (5.24) are defective renewal equations.

o <1,

2. As 02 — 0, then v[p1,p2,...,pn,s] — (—/\C,,)" and hence, both ¢,—1(s) and

Qn-1(s) — 0. This means that b; and ¢; — 0, for ¢ = 1,2,...,n, and in turn,

ds(u) — ¢o(u), where ¢ satisfies following defective renewal equation:
o) = [ dulu—1) o) dy+ Holw) . 0,
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while ¢g(u) = [ da(u —y) g(y) dy + Y1y cie™®* — 0. We can thus finally
conclude that ¢(u) = da(u) + ¢s(u) — ¢o(u), as 02 — 0, where ¢o(u) is the
expected discounted penalty function for a Sparre Andersen risk process with

claim waiting times distributed as the sum of n independent exponentials

with parameters A1, Az, ..., A, [see Gerber and Shiu (2003b)].

5.5 Determination of Initial Conditions

ds(u) and @q(u) are uniquely determined by the 2n-th order integro—differential
equations (5.2) and (5.3), if initial conditions #$(0) and ¢fik)(0) are given for
k=0,1,2,...,2n — 1. In fact, as we will see, it is sufficient to know these initial
conditions for k =0,1,2,...,n — 1, to solve equations (5.15) and (5.16).

Taking Laplace transforms on both sides of the integro—differential equation

(5.2) yields

2oy o [9(s) +g(s)]
¢s(3) = [7(5) —]’3(8)] y seC R
where 7(s) = [[_, [(1 + 3\‘5;) - /\Ljs — %82] — Zizo ex s* and
-1 2n
as)=> ¢ > exd® ), seC,
§=0  k=j+1

is a polynomial of degree 2n — 1. Since (;ASS(S) is finite for all complex number s

such that R(s) > 0, we have that
o(pi) = —q(ps) i=12,...,n. (5.33)

Changing the order of summation, this becomes

2n—1 2n
Z ¢gm)(0) Z €k pi'c_m_l = —w(pi) , i=12,...,n. (5.34)
m=0 k=m+1
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To determine the qﬁgk)(O) values for k =0,2,...,2n — 1, another n conditions are

needed. Setting u =0 in (5.7) yields

i ) c o?
{H[(1+)\—j)I—B\;D~2—)\jD2]}¢S(u)

j=1

=0, m=12...,n-1.(535)

u=0

Then (5.34) and (5.35), together with ¢,(0) = 0 yield a system of 2n x 2n linear
equations that can be solved for the unknowns ¢>§k)(0), k=0,1,...,2n — 1.
Similarly, the QS{(lk) (0) values, £ =0,1,2,...,2n — 1 and ¢4(0) = 1, satisfy the

following linear system:

2n-1 2n
S8 Y et ™ =0, i=1,2,...,n, (536)
m=0 k=m+1
i ) c o?
{H[(1+X})I”A_jp_’27jp]}¢d(“)‘u=o — 1, m=1,...,n—15.37)

5.6 Examples

This section illustrates how to obtain the above results explicitly for the special

case when n = 2. Then

1 o? o? !
v(s) = (M +06)—cs — =52 |{(Aa+6) —cs — =s*| = g ex s,
A1z 2 2
k=0
2
o“(A1+Aa+28)
_ (utd)(Aatd) __c(MatAa+26) N (e — _ o2
where eg = e 0 61T T o, 0 627 7 e 83 T aw and

€4 = %\;. Then 7[p1, p2, s] can be simplified to

Vo1, p2,8] = eqs® + [es+ealpz + p1)]s + €2 + es(pr + p2) + ea(pf + prp2 + p3)

= es(s+a1)(s+az2),

where p; and po are the only positive roots (i.e R(p;) > 0) of the equation v(s) —

p(s) = 0, while a; and a2 are roots obtained as in (5.18).
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By (5.34) and (5.35), here ¢§k)(0), k =0,1,2,3, satisfy the following system

of linear equations:

0 = (0) )
~&(p1) = GH(0)(e® +espr +eapl) + ¢;(0)(es + eapr) + 4V(0) €*
~&(p2) = SL(0)(e* +espa+eap) + ¢y (0)(es + eapa) + ¢V (0) €,
2
0 = cdi(0)+ 5940,
. T,,T, MA2T,, Toyw
which solves for ¢5(0) = 0 and ¢,(0) = = +e:2(pfi‘;£(i) T = éc;zi:f (p”11+$))] Hence

_ _ Ty Tpw(0) . _ AA1 22T 5 Tpyw(0) (az—a1)
a(s) = ead(0) = oy while b = g (G iwan a0d b = gy

Then the defective renewal equation (5.22) simplifies to
AM AT, Ty, w(0) (721 — e792%)
[2c0? + 04 (o1 + p2)] (az — a1)

— [ ) oy + Hw) +
Similarly, the defective renewal equation for ¢4 simplifies by first finding the

initial conditions ¢ (0), k = 0, 1,2, 3, obtained from (5.36) and (5.37) as solutions
of

1 = ¢4(0),
—(er+ezprt+espi+espl) = ¢3(0) (€% +espr+eapd)
$3(0) (es+eapr) + 87 (0) ¢ ,
—(er+esprtespitespd) = ¢5(0)(e?+ €32+ €4p3)
+34(0) (ea + ea p2) + 95 (0) e,

2

5 = cdu(0)+ 594(0).

. . 5] —4c0?
Solving yields ¢4(0) = 1 and ¢}(0) = [20% (u+Aptd) - 4f20,,§+a4((p;1+fpl2))]a i+ portop)]

ot [402+2602(p1+p2)+2 a2 ()\1+)\2+5)+0 p1p2] . s
Hence Q1(s) = g5 + Dl Forter] , which in turn implies
that

[4c 4+ 2c0? (p1 + p2) +20% (M + Ao +0) + o*p1pa)
[2c02 + o4 (p1 + p2)]

€y = —ai +

(a2 —a1)
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and
[(a2 —a)c+ a1 — az]

(a1 — az)

Then the defective renewal equation (5.23) reduces to

Cy =

(aze™%2% — gre™m1%)
u—1y dy +
/ d)d ) Y ((12 _ a/])
4c +2co?(pr+p2) +202 M+ A +0)+o plpz] (e7m¥ — g=02%)
[20 0'2 + 0'4 (pl -+ p2)] (a2 hd al) ’

The following example shows how to evaluate g, H and obtain explicit results for

¢s and ¢4 when claim sizes are exponentially distributed.

Example 5.6.1. (Exponentially distributed claim size)

In this example we assume exponential claim sizes, p(r) = Be P2, x > 0.
Hence p(s) = +ﬁ, where ¢ > £152 A +/\ to provide a positive safety loading factor.
For simplicity, set w(z,y) = 1, which yields w(u) = P(u) = e~#*. Furthermore,

let p; and py be the positive roots to Lundberg’s generalized equation:

! o? a® 4 _ B
7(3)“)\1)\2 (>‘1+5)—05“‘?3][(Az-l-(s)—cs———s =

2 s+3’

for s > —f, and where a; and ay are such that es(s + a1)(s + a2) = ¥[p1, p2, 5].

Then

. . Tp1 p(y) - sz p(y) . /Be_ﬁy
n(y) - TP2 Tm p(y) - p2 . pl - (,01 =+ ﬂ)(p2 + ﬁ) ) ) Z 0 )
Gu) = Ty Ty, Top(u) = To Ty, Ty, p(u) = Ton(u)
00 e—-ﬁu
R E e e TR ELE

= _ 4)\1)\2
o) = ax e 10) = B+ BB~ a0 (B~ @)
[ﬁe‘ﬁy L BB = ar)e™ — (B~ az)e_azy} , y=20

(az — a1) -

andH(u)=h1*h2*G(u)=h1*h2*[ﬁﬁﬂl] =ﬂ;—), for u > 0.
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Then the Laplace transforms of the ruin time due to oscillations, ¢4, and of
the ruin time due to a claim, ¢, satisfy the above defective renewal equations
which give g and H explicitly.

Furthermore, here p(z) is an exponential distribution, hence $a4(s) and qAﬁs(s)
can be transformed to rational expressions. Therefore, ¢4 and ¢, can also be

obtained explicitly by partial fraction. By (5.17):

. 1 1
G(s)+qi(s)  (mtB)(pa+A)(s+h) + (p1+8)(p2+08) (35 +p1+p2)

Mery o281 =s) — eals +a1)(s + @) = GrmmETS
_ | 401 A ] eraemls t (B + o+ o2+ B) ]

1 2co? + o (pr+p2)] | (s+a1)(s+az)(s+ B) — ;4—(;%@—)

i YYD .
e 5+ (2,_2 +p1+ p2+06)
2c0‘2+04(p1+p2) (S+R1)(S+R2)(S+R3)

_ AN Ao ] 23: 0; e
| [2co? + o*(p1 + p2)](p1 + B)(p2 + B) | = (s + Ri) ’

where the —R; are roots (i.e. R(R;) > 0, for i = 1,2, 3) to the equation:

$S(3) =

4B Az
s+ay)(s+az)(s+8) — =0
(ra)lstalet D) o B+ D)
2¢ _ 2c _ 2c .
and 6, = by AL ia) 0, = ?R_;%, while 5 = 2ttt Rs o

(Re—Ri1)(R3—R1)?’ (R1~R3)(R2—R3) "

ps(u) = E[e™TI(T < 00,U(T) < 0)|U(0) = u]

- [ P }iO‘e”Ri“ u>0
2o+ %o + ot Bt ) 250 M2

i=1
Similarly,
5 Q1(s)
Ga(s) = I
{7[,01, p2, 8| — 77(3)]
(S + ﬁ) [S + 4°2+2C"2(P1+P2)+202(>\1+z\2+6)+g4p1p2]

seC,

2co24+04(p1+p2)

[(s +a1)(s +az)(s + ) — zﬂ(Tff-%%—zTﬁ)]

4 2 2 2 2 5y 5] 4
(s + ﬂ) [s 4 & +2¢a?(p1+p2)+20% (M1 +A2+8)+0% p1p2

_ 2co?+o*(p1+p2) ] _ 23: Gi
(8 + Rl)(s + RQ)(S + Rg) py (S -+ Rl) ’
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2 2 2 4
_p. _p. 4% +2c0” (p1+p2)+207 (M) +A2+8)+0" p1 oo
( Rz+ﬁ)" R+ Eyon e Ypeume

TT5- 1,0 (Ri—Ri)

w ,fori = 1,2, 3. Accordingly

where (; =

da(w) = E[e*TI(T < 00, U(T) = 0)|U(0) = u] = Z Ge B w>0.

Finally, setting ¢ = 1.1, A\; = 1.5, \s = 3, f =1, 6 = 0.1 and o = 1, then equation

v(s) — p(s) = 0 has five roots in the whole complex plane:
p1=0.2554, po=18713, Ry =0.2901

and Rp; = 3.6183+ 0.42197, Rs;=3.6183—0.4219¢.
Then for u > 0,
ds(u) = 5169 =201 _ 5169 ¢ ~36183% co5(.4219u) — 1.3339 72918 sin(.4219u) ,
da(u) = 261672901 1 7384 ¢ 36183 co5(.4219u) + 1.5593 730183 sin(.4219u)

P(u) = 7785 e~ 0 1 2915 ¢=36185u ¢0g( 4219u) + .2254 €315 sin(.4219u) .
When ¢ = 0, then the p; and R; values change to:
p1=0, pp=18395, Ry =0.07516

and Ry = 3.5822+40.43217, Rs=3.5822— 0.43211
and hence the different ruin probability components become:
U, (u) = 6248 ¢~07510% _ 6248 ¢~3-5822 0g(.4321u) — 1.4207 e~>8%%% sin(.4321u) ,
Wa(u) = 3224 07510% 1 6776 ¢~35822 cos(.4321u) + 1.4811 35822 5in(.4321u) ,

D(u) = 9472075168 1 (528 ¢ 735822 cog5(.4321u) + .0604 e 7> 5%*** sin(.4321u) .

Figure 5.1 shows these ruin probabilities for different values of u, as well as their
decomposition into the ruin probabilities due to claims and those due to oscilla-

tions. From the graph, we see that ruin probability due to oscillations is a strictly
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decreasing function (from 1 to 0) of the initial surplus .. Moreover, when u is
small, it decreases sharply, while it decreases slowly when u is large. By contrast,
the ruin probability due to claims increases quickly at first but then decreases

slowly after that.

1%, e pUiny prob. due to claims |
1 - yuin_prab. due to osccilations
Teal e total ruin prob.

Figure 5.1: Decomposition of the ruin probability

Finally, Figures 5.2-5.4 show, as expected, that the ruin probability due to
claims is decreasing in the dispersion parameter o when u is small and increasing
in o when u is big, while that due to oscillations increases with o. This results in

an ultimate ruin probability that increases with o.
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Figure 5.3: Ruin probability due to oscillations for different o
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i sigma=0.5

——— sigma=0.7/5
I 1] S| ma=1.l

s|gma=1.25

D.B- —  sigma=1.5

U.E'_

0.4: P, T,

0.2+ . . . . ; . B
0 2 4 3 a 10 12 14

Figure 5.4: Ruin probability ¥(u) for different o

Example 5.6.2. To illustrate the effect of the waiting time distribution, we com-
pare here the decomposed ruin probabilities for different Erlang(n) claim waiting
times.

Let n = 1,2,3 but hold the mean waiting time fixed at n/A = 1. The first
waiting time density is thus exponential, Ae™* I(¢ > 0), for A = 1, producing
Poisson(At) claim counts. The second and third waiting time densities are given
by M2te=M I(t > 0) and %Btze_’\t I(t > 0), for A\ =2 and A = 3, respectively.

All other parameters are as in Example 5.6.1, with exponential claim size
density, p(z) = Be™P*I(z > 0), for §=1. Alsoc=1.1and o = 1.

For n = 1, the ruin probabilities can be found by equations (6.4) and (6.17)
in Dufresne and Gerber (1991):

U,(u) = 0.6509e 008377 — 06509731362 4 >0,
Wg(u) = 0.3047 007 1 0.6953 g~ 31362u

U(u) = 0.9557¢ 008377 | (0443 ¢~31362

For n = 2, ruin probabilities are obtained as in Example 5.6.1, but for Ay = Ay = 2
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and by setting 6§ = 0. These are:

Uy(u) = 0.6214e70078% _ (.6214 734953 ¢05(0.5202u)
—~1.1021 734953 5in(0.5202u) , u >0,
Tg(u) = 0.3236e700768% 1 0.6764 ¢~3495%" cos(0.5202u)
+1.1342 7349534 5in(0.5202u) ,
T(u) = 0.9449¢ %078 4 0,05501 e =493 cos(0.5202u)
+0.03204 34953 5in(0.5202u) .

Finally, the ruin probabilities for n = 3 can be found in a similar fashion:

Ty(u) = 0.6103e~0082%% _ (0.4389 ¢~44441n — (,1711 35649 c0s(0.7984u)
—1.32427 3549 5in(0.7984u) ,  u>0.

Ualu) = 0.3209e 00824 4 04508 e~+4441% 1 0.2193 635049 c0s5(0.7984w)
+1.3631 ¢3-504% 5in(0.7984u) ,

I

W (u) 0.9402 ¢~0-9825% 1 .0191 ¢~ 44441 1 .0482 ¢73-504%% c05(0.7984u)

40.0397 e~3754% 5in(0.7984u) .

These ultimate ruin probabilities are plotted in the following graphs. Note the
significant impact on ¥(u) when relaxing the Poisson assumption (n = 1). Ruin

probabilities for Erlang waiting times (n = 2, 3) are substantially smaller.
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0.11

Figure 5.6: Ruin probabilities due to claims, Erlang(n) waiting times, n = 1,2, 3.
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0.25

0.21

0.15-

Figure 5.7: Ruin probabilities due to oscillations, Erlang(n) waiting times, n =
1,2,3.

5.7 Concluding Remarks

We have shown how the evaluation of Gerber-Shiu’s expected discounted penalty
function for the classical risk model perturbed by a diffusion can be extended to
a perturbed Sparre Andersen risk process with generalized Erlang(n) distributed
claim waiting times.

The techniques we use provide a way to solve a high order integro—differential
equations that often arises in ruin theory. The defective renewal equations ob-
tained here can be used to solve other ruin related problems; explicit expressions
or bounds and asymptotic formulas for ruin probabilities, joint and marginal dis-
tributions of the three random variables, time to ruin, surplus before ruin and

deficit at ruin, as well as their moments.
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Chapter 6

A Class of Discrete Time Sparre
Andersen Risk Processes

6.1 Introduction

Problems associated with the calculation of ultimate ruin probabilities, for the
continuous time risk model, have received considerable attention in recent years.
These include studies of the distribution of the ruin time (finite-time ruin pro-
babilities), the surplus before ruin and the deficit at ruin, as well as moments of
these variables.

We explore analogue problems, but in the discrete time risk model. A recur-
sive formula for the expected discounted penalty due at ruin is given, using the
tool of generating functions, instead of the Laplace transform used for the conti-
nuous time model in Chapter 3. This discounted penalty depends on the deficit at
ruin and the surplus just before ruin. Hence, our recursive formula yields the joint
distribution of the three random variables time to ruin, the surplus just before
ruin and the deficit at ruin.

Given the discrete nature of our model, probability generating functions
(p.g.f.) are used throughout to analyze the time of ruin and its associated random

variables. The joint distribution for the compound binomial model is derived in
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Cheng et al. (2000) using martingale techniques and a duality argument. Li and
Garrido (2002) gives a recursive formula for the expected discounted penalty func-
tion for the compound binomial risk model. This chapter extends the classical
compound binomial risk model to a class of discrete Sparre Andersen risk model.

These results can give a better understanding of their analogues in the con-
tinuous time model, but they are also of independent interest. They fill a gap in
the scant literature on discrete time risk theory models. Our formulas are readily
programmable in practice, while they can still reproduce the continuous versions

as limiting cases.

6.2 Model Description and Notation

Consider the discrete time Sparre Andersen risk process
N(n)
Un)=u+n-— ZX“ n=12...,
=1

where u € N is the initial reserve. The X; are i.i.d. random variables with
common probability function (p.f.) p(z) = P(X = z), for z = 1,2,..., denoting
the i-th claim amount. Denote by u, = E[X*] the k-th moment of X and by
p(s) = 3.2, s'p(i), s € C its p.g.f.. The counting process {N(n); n € N} denotes
the number of claims up to time n and is defined as N(n) = max{k : W1 +
Wa + -+ + Wy < n}, where the claim waiting times W; are assumed i.i.d. with
common probability function k(z) = P(W = z), for = 1,2,.... Denote by
k(s) = 32, s'k(3), s € C its p.g.f.

We assume that {W;;i € Nt} and {X;;¢ € Nt} are independent, and
E(W)=(1+0)E(X) = (1+6)u, in order to have a positive loading factor.

Now define (the possibly defective) random variable 7' = min{n € N* :
U(n) < 0} to be the ruin time,

U(u)=PT <oc|U(0)=u), uweEN,
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to be the ultimate ruin probability and
P(u,n)=PT=n|U0)=u), n=123,...,

to be the ruin probability at time ¢.

Consider fs3(z,y,t|u) = P{UT —1) =z, |[UT)| =y, T =t{U(0) = u},
z € N,y € N*, the joint probability function of the surplus just before ruin,
deficit at ruin and ruin time. Let v € (0,1) be the (constant) discount factor
over one period and define fo(z,y|u) = Y ooy V' f3(z,y,t| u) as a discounted joint
p.d.f. of U(T — 1) and |U(T)|. Similarly, denote by f(z|u) = >.'24 fa(z,y|u).
The usual conditional probability formulas give the following relation:

fz(w,yIU)=f(vaU)p(};(—Zi%D~, sEN, ye N,

Let w(z,y), z,y = 0,1,2,... be the non-negative values of a penalty function. For

0 < v < 1, define
¢(u) = E [vTw(U(T - 1), |[UT)) (T <o0) | U@O) =u] , ueN. (6.1)

The quantity w(U(T — 1), |U (T)|) can be interpreted as the penalty at the time
of ruin for the surplus U(T — 1) and deficit |U(T)|. Then ¢(u) is the expected
discounted penalty if v is viewed as a discount rate.

The main objective for the rest of the chapter is to evaluate the expected

discounted penalty function ¢.

6.3 On Martingales and a Generalized Lundberg
Equation

Let 7, = Z?___l W; be the arrival time of the k-th claim and Uy = U(7x) be the
surplus immediately after k-th claim. Defining 79 = 0 gives Up = u, and for

k=12,...,

k k
U, =U(m) =u+7 —ZXj =u+Z[VVj - Xj].

j=1 J=1
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We seek a number s € C such that the process:
{v* s7U%; k € N} (6.2)
will form a martingale. Here the martingale condition is equivalent to
E[W 571 = B [(v/s)" s%1] = E [(v/s)"] E [s¥1] =1,
which is

k(v/s)p(s) = 1. (6.3)
Equation (6.3) is a generalized version of Lundberg equation.
In the rest of this chapter, we assume that the claim inter-arrival times have
a discrete K, distribution, i.e., the p.g.f. of k(z), z € Nt can be expressed as
ey = ST =00 + S5 5 = 1Y
[[2:(1 - sq) ’

where 0 < ¢; < 1, for ¢ = 1,2,...,m, and the coefficients £, B3, . .., Bm-1 are such

(6.4)

that &'(s) > 0, s € (0,1), to guarantee that k(z), z € NT is a p.f.. The mean and

second factorial moment of the claim inter-arrival times r.v.’s are thus given by

EW)=k(1) =1+Z (1%%) * H’.’ifll—qi)’

(6.5)

i=1

0y 282+ B Yoty s
E[W(Q)] =k (1) = Hm (1 _;.()1 %)
i=1 t

+E(W);(liiqi)+z<lziqi) , (6.6)

i=1

where 2 = x(x — 1) is the second factorial power of .
This class of distributions includes, as special cases, the shifted geometric,
shifted or truncated negative binomial, as well as linear combinations (including

mixture) of these. Below are some examples.
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1. If k(s) = (%Q_;—‘f])), 0 <q<1,then k(z) = (1 — ¢1)¢¢ " I(z > 1) is a shifted or

truncated geometric distribution.

2. If k(s) = %—.ﬁn—ilﬁ—;gg, 0 < ¢; < 1 then k is shifted distribution which is

the convolution of m geometric distributions k;(z) = (1 — ¢;)¢fI(z > 0).
Furthermore, if ¢; = q, for all ¢ = 1,2,...,m, then k is a shifted negative

binomial distribution with k(z) = (™*7*)(1 — ¢)™¢* I (z > 1).

z—1
3. If lfc(s) = —“I}f%l[fﬁggg]: then k(x) = k1 * ko % -+ * kp,(z) with ki(z) = (1 —
¢:)gF (x> 1), that is to say, k is the convolution of m shifted geometric

distributions, furthermore, if ¢; = ¢, for all ¢ = 1,2,...,m, then %k is a

negative binomial distribution starting from m, i.e.,

z—1

k(ﬁc)=(1—Q)’”<m_l>q”“’", z=mm+1,....

4. If k(z) = %("&:_1) ¢“I(z > 1) with 0 < ¢ < 1, then £k is a truncated
negative binomial distribution. Accordingly k(s) = lfl(ﬁ)(;;m 1(_1(:;';)‘1,2;”, which

can be rewritten as

L (i V1. {14

where 3; = % kmz—jl("CI)Hl (le) (?)

Specially, if q1, g2, . . - , gm are distinct, by partial fractions, & can be expressed
as a linear combination of m geometric distributions with parameters g; :

m

k(z)=> 6i(1-g)g¢™", «=12..., (6.7)

i=1

where 6; are such that Y .-, 6; = 1 and given explicitly by

_ Sy Be(l/gi — DF + T, (1 - QJ')‘
(1= ) [T (1 — 05/00)]
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Under the assumption that /Ac(s) is given by (6.4), the generalized Lundberg equa-
tion k(v/s) p(s) = 1 simplifies to

As): = (6.9)

k(v/s) )
_ [lis (s —va) ] =p(s), seC.

v [sm”l M, —a)+ Z;nz_ll ,8m=1=7 (v — )7

The roots of the equation above play a key role in this chapter, and are discussed

in the following theorem.

Theorem 6.3.1. For 0 < v < 1, and m € Nt equation (6.9) has exactly m roots,
say p;(v),1=1,2,...,m with 0 < |p;| < 1.

Proof: Consider a unit contour {I": |s| = 1} in C. Since |k(v/s)| < k(Jv/s|) =
s|) = 1p(s)| on T. By

lAc([v|) < 1 on contour I', then |m| > 1= p(1) = p(

Rouché’s Theorem, equations —~— = 0 and =1~ = p(s) have the same number

k(v/s) k(v/s)
of roots within the unit circle. By (6.9), the former has m roots within the unit

circle, then Lundberg’s equation has m roots within the unit contour I', say,
p1(v), p2(v), . . ., pm(v). It is easy to check that s = 0 is not a root to (6.9), we
have that 0 < |p;| < 1, fori=1,2,.... O

Remarks:
1. Define I(s) := p(s) — E@l/_s) Since I(1) < 0 and lims_, {(s) = 00, then
if p(z) is sufficiently regular, I(s) = 0 has one root greater than 1. Hence

denote by R(v), which can be called a generalized adjustment coefficient.

2. R(v) — R(1), as v — 17, and p;(v) — p;(1), for 1 < j < m, where R(1)

1 A
and p;(1) are roots to s p(s).

3. For simplicity, R(v) and p;(v) are denoted by R and pj, for 1 < j <m and

O0<v<«l.
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6.4 Probability GGenerating Function

Conditioning the time and amount of the first claim, one obtains that for u € N:

$(u) = Ep™(Uh)] = L™ g(u+ Wi — X1)] = > v k() El(u+ ¢ — X1)].

t=1

Now define ¢(s) = 322 s“¢(u) to be the p.g.f. transform of ¢, then by (6.10),

= Yo =3 s> vk Elp(utt — X))

= Z s¥ Z Py k(y — u) E[¢(y — Xl)]
u=0 y=u-+1
= ZvyE X0l S s/0)" Ky — )
u=0
= > Bl — X)) 3 (0/5) k(e (6.10)

If 1,92 .., qm are distinct, then k(¢) has the form in (6.7). Substituting it into
(6.10) yields

g%(s) _ 291 1_qz ZsyE ]Zv/s

= Zm? 9’[1(1__(3}5(”; f) {Z s Elply = X0)] - f}( %) Elg(y - Xl)]}

— k(w/s) Z Blo(y - X)) - Z T (6.11)
where b; = 30 (quz) Y B[¢(y — X1)]. By definition of ¢(u),

Elp(y — X1)] = :Elcb(y - z)p(x) + ;;1 w(y — 1,z —y) p(x). (6.12)

For simplicity, let w(y) = Z;o:yﬂ w(y — 1,z — y) p(z). Substituting (6.12) into
(6.11) yields ) .
5s) = T ) — T T | 6.3
(1 —k(v/s)p(s)]
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where d)(s) = Yooy 8Yw(y). Multiplying both denominator and numerator by

v(s) = e /s), (6.13) can be rewritten as

L Qm-— 1(3)
~ LU(S) [sm e, (= q1)+2 ,Bjsm 14 (v s)]]

o= H(6) — 5(0) ’
where Qm-1(s) = [[T=;(s — v )] {Z;L M] is a polynomial of degree m—1

(6.14)

(s—vqi)
or less. Since @(s) is finite for all s such that 0 < [R(s)| < 1, the numerator on

the right hand of (6.14) must be zero whenever the denominator is zero. Then

Qm-1(8) can be determined by the linear system for j = 1,2,...,m,

Qu_1(p;) = @(p;) { [ mlHl—qz +Zﬂp]m1 "lv- p])]}

Further, if py, p2, . . ., pm are distinct, by the Lagrange interpolation formula, one

obtains

Qm-i(s) = Z 10(p)) [ I1 “—”_f—’i] (6.15)

k=1,k#j (pJ pk)

where ¢; = v [pjm‘l 2,1 —g)+ 50 Bep™ 7t (v — pj)t], forj=1,2,...,m
We remark that if some ¢; are equal, formula (6.14) still holds, and (6.15) still
holds for the case where p1, ps, .. ., pm are distinct, by the continuity property.

6.5 Analysis when u =0

We now turn to finding ruin related quantities when u = 0. For simplicity, we

assume that the p1, pa, ..., pm are distinct. First
~ Qm 1(3)
UJ(S) - [s —1
: W[ 10, (1—ga)+ 72 By (v—s)T]
$(0) = hmgb = lim
O = ot = EORL0]
E;'n=1 c; w(p;) [H;cn::l,k;éj pjp-_kp,c]

™ H:Zl q;
TN ¢ w(p;) (
= ™ . 6.16)
[g v Qz} ; Pj Hk:l,k;éj (pj — Px)
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Since w(y) = £, 0wy — Lz — y)p(a) = Y2, wly — 1,6) ply + 1), and
then

o0

G(s) =Y s'w(y) Zzsyw(y 1, t)p(y+t) = ZZ s"Mu(z,y) p(z+y+1),

y=1 y=1 =1 =0 y=1

therefore, (6.16) can be rewritten as

[ o ] e T T o (@, y) pla +y + 1)
o= {11 vqi] Z pi Tims s (Pi = 1) ' (6.17)

On the other hand,

$(0) = EBl"w(U(T ~1),[UT)NIT < 0)|U(0) = 0]
= DD w@y)fa(zy|0) (6.18)

=0 y=1

Comparing these two formulas yields

pi cipiplz+y+1) +
fa(z,y]0) = , zr€eN yeNT, 6.19
[H“ z] =1 T 1k;é](:0 ~ Pk) ( )

SO

fi(@]0) = folz,y]0) =

]S -en o

where P(z+1) = P(X >z +1) = > y=ss+2 P(y), finally,
i | N6 Tanopiple+y+1)
f2 z,Yy | O 2 me )
Z H (v ; Hk:l,k;ej (pj — px)

_ Pi T (y-}-]_) .
- [E qi] ZHk 1k;£]( - ox)’ y €N, (6.21)

9(y) == g(y|0)

where T, is an operator defined by
[e. ¢}
Top(y) = > " Vp() =Y r"plz+y), 7€C, yeN*©.
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Further discussion on T} can be found in Section 2.3 of Chapter 2. The function
g is a defective density function. It plays a very important role in this chapter.
Define g(s) = Y 72, s¥ g(y) to be the generating function of g, then we have the

following Lemma.

Lemma 6.5.1. The generating function of g is given by

[T (s —vas) —vp(s)ls™ TIy (1 — @) + 75 B5s™ 179 (v = s)]
(ITE2, %2) T2 (s = i) '

g(s) =1-
(6.22)
Proof: Since §(s) = sTs g(1), then

i) = |[[2| 3 gstelur
- ™
i1 V9] ST Hk:l,k#j(pj — Pr)
8 Tsp(2)—p; Tp; p(2)

B T m Ci 8 P AN R el N
! [ =P ]

=1 V3] 5 H;cnzl,kﬁ (pj — Pk)

B _1'11 v Jzz; H?:Lk;éj(Pj — P)
_ ﬁ pi ] {2”‘: ¢; B(s)
Brale g U B (s = pi) Tlkzs s (P3 — i)

i_ _ ¢j sp(py) )}

=1 Pi Pj Hk 1k¢J(PJ
ﬁ pi { vp(s) [p;™ A T (1 — a0) + 05 Bepy™ (v — py)']
vgq 1 (s = pj H?:l,k;éj(pj - Pr)

s [Tima(pi — v i)
pi(s = pj) TTima ki (pj — pr) } (6:23)

—~~

||M3

=
—

J

M

J=1
By a well known formula in interpolation theory,

. ]_, ’I’L‘—"m_lv
(p]—s) praned 0 n=071727"-7m'“2,, (624)
n=—1.

j=1 HZL:IJC#J’ (pj — px) _, 1
T (s=pi)?

m
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we have

= ml _1—1 = pj—S s|m™1 (1=
> T, (1 - _@; )+ 5" I (1~ )

j=1 S_pﬂ )Tz 1k?éJ(p] (p; — 8) I iz 1k;ég(p.7 Pk)

Z_UH —q) ZZl =0 tsml l( )(Pj—s)l

(pj—s H?:l,k#j(pj — Pk)

-+ )

In the same fashion

f: o[ Bep™ T (v — py)f]

j=1 S‘pj) Hk 1,k#j p pk)

:Uz_:ﬁtz (pj — )+s]m‘—[(v~s)+(3_pj)]t]

(s — o)) Iz 1k;é](p — Pk)

SO 1R e (6.26)
H;L(S - pi)
and
Zm: [[i(p; —va) zm: Zt 0 Im— th
=1 pi(s — PJ) [Tis Jo#j (pj — =1 pi(p; — ) T k;é](pﬂ Pr)
S e
= pi(pj )Hk 1 k;ég(p] j=1 ch =1 k:;é](pj pe)

where g9 = 1, 09 = Y 10 (—v ), 03 = ZlSKjvaz QGiQjs -y Om = [ ooy (—v @)
Again, by (6.24), formula (6.27) simplifies to

- [T (e — v ai) _1 [L (va) _ [Timi(s —va)
Z pi(s — pi) [Tie 1k;é](pa pr) S [ - (628)

[T pi [T, (s — i)

Substituting (6.25), (6.26) and (6.28) into (6.23) finally proves that (6.22) holds.
|

J=1
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Using Lemma 6.5.1, one obtains

¢7(0)
i
i

Finally,

v(0)

where the last step follows from ¥'(1) = E(W) and pl,(1) = Wﬁ

HPz

v4q;

Pi

v—1-

I
s

lim Efv TI(

1— lim
v—1-

ER"I(T < 00)|U(0) = 0] = ) _ g(y) = lim g(s)

—vg) —v [T, (1 —¢) + 200" B (v — 1)1]

1=1 1—vq,)[1

[T (1=

Hz:l (1 - pi

)()J]<L

where the last step follows from the definition of k(s).

< 00)|U(0) = 0]

pi)

(6.29)

H

[m—1

pi
TV

iz ( 1—qu)[1 - k(v)]]

(1= pi)

[1 k(v)]

1
m—1

| i1 1

1
p

pi
pi(l

lim

w1 (]

I

@)
i(1) ]
)
)

)

1—
1—p;

pi(1) |
1-p(1)

1]

fc'(n}

P (1)
[E(W) — E(X)], (6.30)

EW) which

is obtained by taking derivatives w.r.t. v on both sides of Lundberg’s equation

k(/pm(©)) B(pm(v)) = 1, letting v — 17, and noting that lim,_,1- pm(v) = 1.

6.6 Recursive Formula for ¢(u)

6.6.1 General Case

In this section, a recursive formula for ¢(u) is given by renewal argument, which

can be used to analyze other ruin related problems.
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recursion ¢(0) is given in (6.16) by
y)plz+y+1)

_ R RN e Zz?_q pi"w(z,
#(0) = [H qu} > TT7 s oy (05 — )

=1 j=1

For u > 1, by similar arguments as in Gerber and Shiu (1998) for the continuous
case, we condition on the first time when the surplus process drops below the

initial surplus v :

u

s) = 353wt plu—y) fala,y,1l0)
y=1 z=0 t=1

L3 S ule - u)fs(a v, H0)

y=u+1 =0 t=1

= IS sw-n)hylo)+ S S wla+u,y —u)fale,yl0)
y=1 =0 y=utl z=0
= Y ¢lu—y)g(y) + H(u), ueN, (6.31)

w(z + u,y — u) f2(z,y|0) = Zwayf2x—~uy+u|0)

y=1 z=u

an 1,k#j ,03 Z 2w$y)p($+y+1)

m
Zp w(z+1)
r=

Tpw(u + 1), u € NT. (6.32)

=
£

I
NIE
NE

L~
1l
>4
+
-
8
Il
] @

s
[
i
I~

I
—
Sl»

Hk 1 k;ég(p.i

@
I
—
=

I
=
Sle

Cj
=1 HZL:M;&J‘ (pi — pr)
(6.31) is a recursive formula for ¢(u) with the starting point ¢(0). Specially, if

2
L

@
il
A

I
—:
N

w(z,y) = 1, then ¢(u) simplifies to the p.g.f. transform of ruin time 7" w.r.t. dis-

count factor v, which is now defined as
ér(u) ;= EpT I(T < 00) |U(0) =u], wueN.
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In this case w simplifies to w(u) = Yoo, . p(x) = P(u) = Tip(u), and H(u)

simplifies to

Hu) = d T,,Tip(u+1)
( 1;[ l] ch 1k;é](p.1 Pk) Pt
= Tig(u) = Z g(u), (6.33)
=u+1
then ¢r(u) has the following recursive formula,
¢r(u) = ér(u—y)gy)+ > gly), uweN*. (6.34)
y=1 y=u+1

The ruin probability ¥(u) can thus be obtained by taking limit for ¢r(u) when

v— 17, 1e

U(u) = lim EpTI(T < 0)|U(0) = u]

v—1"
= > Vu-y)al)+ > al), weN, (6.35)
y=1 y=u+1
where
- Ay e =gy +1)
g1(y) = lim g(y) = lim — =
) v=lt W v=l” [qul] an=1 ki (P5 = PE)

R TAOINES ¢ p]um(yﬂ) [Tm, (1 —@)Tiply + 1)

1 Kt j [pi(1) —

the last step follows from the fact of lim, ;- pm(v) = 1.

6.6.2 Special Waiting Time Distributions
Now we consider some special cases of waiting time distributions by choosing k(s).
1. k(s) = ﬂl—q (Geometric), then the generalized Lundberg equation k(v/s)p(s) =

(1-s9)

1 becomes

vs(l"_”;’) =p(s), wvel(0l), (6.36)
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which has exactly one root in (0,1), say p, under positive loading factor

assumption, lim,_,;- p = 1. Then the recursive formula
u
pw)=> $u—y)gly) +Hw), u>1
y=1
has a starting point given in (6.17) as

$(0) = H(0) = f’—‘lq‘—") S Fule,yp(e+y+ 1),

=0 y=1

i = p(1-v) —1-1= — 0
specially, ¢r(0) = 1— and ¥(0) = 1-H[E(W) - E(X)] =1- 775

vq(1-p)
While
1-— l—g
gly) = B%—q)Tpp(y+1)=Tqprp(w+y), (6.37)
z=1
1- 1—q¢ o~ L.
Hu) = ( . Q)pr(y+1)=Tq > P w(w).  (6.38)
r=1+u

2. If k(s) = S[<1('fj>s(;1‘)g;>_§§s‘l>, with 0 < g; < 1, for 4 = 1,2, then

p1p2[(1 = qi)(1 — g2) — B

_ Ty, Tpip(y + 1
9(y) v @2(p1 — p2) Tl )
T N-T 1
. [ﬂpl ,02] ppy +1) = Toply +1) (6.39)
q1 G2 pL— P2
prpl(1—q)(1 —g2) — f]
Hiw) — T,T,wu+1
( ) vq1Q2(,01—P2) i ( )
. [ﬁ o pQ] Tpw(u+1) = Tpw(u+1) (6.40)

The starting point of the recursion is

mmw—%xbﬂﬁ_M+ﬂwﬁv)
v g1 g2(p1 — p2) '
2ol ‘5;322&5? - L BYP1s ). (6.41)

#(0) = HO) =

+
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Specially, if w(z,y) = 1, then by (6.29) and (6.30),
_ (1 —0)[1 = v(g1g2 + B)]
¢r(0) = 1-—7 (== (6.42)

ew = - (L) B

When m = 2, two special cases are particularly important, these are:

elf = —agll-q)+(1—-a)g(l—g¢)], 0 < a < 1, then k is
a mixture of two shifted geometric distributions with density k(z) =

o (1—q)g@f '+ (1—a)(l—g)gs ' I(z > 1) and 0 < ¢; < 1, for ¢ = 1,2.

olfgy =g =qand = — 1(2_‘7)(1)‘1, with 0 < ¢ < 1, then k is a trun-

cated negative binomial distribution with density k(x) = {1(—1()—)2—](:5 +

)¢*I(z > 1).

3. If lAc(s) = TIHT%&%%’ ie, 3; =0 fori=1,2,...,m—1. Then in this case,

k is the distribution of the convolution of m geometric distributions, but

shifted to the right by 1. Thus

ay) = v sz (1~ ) z’": 7 Typ(y +1)
i1 V4 j=1 H?:l,k;éj(ﬂj — Pk)
pl 1 — qz
= v H o | TonTom- o Top(y + 1), (6.43)
Similarly,
P qi)

The starting point of the recursion ¢(0) is given by

Pi 1"q'z < pm lT w(l)
0)=H(0) =
#(0) © v L}i[ vae |54 ch:l,k;éj(pj Pk)

- o H pz(]- - qu —2‘2}(/)])
v | =1 H?:l‘k;éj(/)j — Pk)

m

(6.45)
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Specially, by (6.29) and (6.30),

=1

m 1— ; m—1 il
v(0) = 1—<H qf) L ‘*‘“—15(%21)

i=1

[E(W) — E(X)]. (6.47)

We remark that this is the discrete version of the continuous generalized

Erlang(m) process.

6.7 Explicit Expression for ¢(u)

In this section, we show that the discounted penalty function ¢(u) can be expressed
explicitly in terms of a compound geometric d.f.’s. First rewrite (6.31) as

1 U
1+&

y=

d(u) = M (u), u>1, (6.48)

1
1<l>(u—y)l(y)+ 7%
where &, is such that ﬁ = ¢7(0), l(y) = (1 + &)g(y) is a proper d.f., M(u) =
(1+ &) H(u) and ¢(0) = ﬁK(O) = H(0), specially, if w(z,y) =1,

1

ITe L(u), u>1, (6.49)

¢r(u) =

g el i) +

where L(u) = 3702, l(y) is the tail of [.

Define a compound geometric d.f. by z(u) = T%EZ Yo (ﬁ) **(u), for

u € N, with 2(0) = %, where * denotes the convolution. Then it is easy to

show, using generating functions, that ¢r(u) can be expressed as the tail of the

compound geometric d.f. z as follows:

__u=°°z - & 3 = n_*"u u
o) = 2 = 3 50 e (g) Tw wzo @2

Remarks:
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1. Since the support of I(y) is N, then I**(u) = 0, if n > u, therefore z(u) can
be expressed as a finite sum by z(u) = ﬁﬁ S o (ﬁ)n P(u).

2. L*(u) = 0, if n > u, then ¢r(u) can be expressed as the sum of finite terms

by

_ fv . ]' " *7
or(u) =1-— T ; (H&) L*(u), u € N. (6.51)

The following theorem shows that, for general w(z,y), the expected dis-
counted penalty function ¢(u) can be expressed explicitly in terms of the com-

pound geometric d.f. z(u).

Theorem 6.7.1.

Bu) = =3 Mlu=y)or),  u20 (652)

Proof: Let ¢(s) = 3220, s*p(w), I(s) = Soey ¥ Uy), 2(s) = 222, s¥2(y), and
M(s) = S o 8% M(u) be the generating functions of ¢, [, z, and M, respectively.

Then multiplying s* to both sides of (6.48) and summing over u from 0 to co yields

) M(s
i) = —MO_ wes) < 1. (6.53)
[14+& —Us)]
A . & . . 2 . £ M(s) _ & - .
Now 2(s) = T T implies that ¢(s) = ——[1+£U—i(s])_£iu_ = 2(s) M (s). Inverting
gives (6.52). O

6.8 Distribution of the Surplus Before Ruin and
the Deficit at Ruin

In this section, we study the discounted joint and marginal distributions of surplus

before ruin U(T — 1) and deficit at ruin |U(T)|.
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Theorem 6.8.1. Forx >0,y >1,and u >1:
hl@yle) = Y fale, ylu—2)g(2) + I(u < 2) folz — u,y +u|0), (6.54)
z=1

Azle) = Y flu—2)9() + 1<) Y, fle—u, 1]0), (655)

I=u+1

gylu) = > glylu—2)g(z) + g(y +u|0), (6.56)

where the starting points fo(z, y|0), fi(z|0) and ¢(y|0) are given by (6.19),
(6.20) and (6.21), respectively.

Proof: Setting w(z1,z2) = I(z1 = z,y1 = y), w(z,22) = I(z1 = z) and
w(zy,22) = I(y1 = y), respectively, in (6.31) gives the above recursive formulas.
0

Define Z = U(T — 1) + |U(T)| + 1 to be the claim causing ruin and let
h(z|u),z > 2 be its probability distribution, then

Theorem 6.8.2. For u > 1 and z > 2,

h(z|u) =Y h(z|u—1y) g(y) + I(z > u+2) p(z) Au), (657)
where ( |
— O Pi i Cj 1— p;—u—l
Afu) = Ll} vq,} ; (= ) s ot (Pi — ) (6.58)

While the starting point is given by

ARy cj(1—p7)
H v ql} E (1= p3) ITis s (05 — Pr) (6.59)

Jj=1

h(z]0) = p(2) A(0) = p(2)

Proof: If setting w(z,y) = I(z +y + 1 = 2), then ¢(u) simplifies to ~(z|u), and
recursive formula (6.31) simplifies to (6.57). O
As an application of Theorem 6.7.1, we show that fo(z, y|u), fi(z|u), g(y | u)

and h(z|u) all find explicit expressions in terms of the compound geometric p.f. z.

142



Theorem 6.8.3. For z € N, and y € N*,
146 ( T2 pi m  GP] " Yoo P} #(n)
( 3 )(Hl’lllvqi)p(m +y+1)255 HJZLl,k#j (PJ'_JPk) ’ 0<u<ua,

ﬂ H:r; Pi m ¢ prg—u 2z=u—w Py z(n)
( €v ) (H;iquz')p(x +y+ 1) Zj:l f‘[;cn=1:k¢j (pj—.;k) U2
(6.60)

f2(xa y|U) =

Proof: Rewrite (6.54) in Theorem 6.8.1 as

ng T, ylu—2)1(z)+ 1+ &) (u< z)folr —u,y+ul|0)

z=1

folz,y|u) 1+§U

By Theorem 6.7.1, fa(x, y|u) can be rewritten explicitly by

Falwyl) = 125“21<u—nsx)fQ(w—u+n,y+u—n|0)z(n>
v n=0
1+§v 1/% Hu—n< " p(z +y+1) ¢ pf " 2(n)
( §v nz: o= 2; H?:l,k;éj(pﬂ Prk) '

Changing the order of summation, the above expression simplifies to (6.60). O.

Corollary 6.8.1. For z € N,

(bte) (Tt ) Pa) Yo, 2 Bimati s g <y <o

& 7= Tlizi ke (Pi—pK)
fiz|u) = _ et A (6.61)
1_+§JL H:l Pi m Cj Py Zn:u—-:ﬂ Py z(n)
() () P@) i s Grman o+ 4>
Proof: Integrating (6.60) over y from 0 to oo gives formula (6.61). 0
Remark: If m = 1, then (6.60) simplifies to
fo(z, y|0) LY 0 P “z(n) 0<u<z
folz,y|u) = 1+¢v ’ : (6.62)
(il? Y | 0) Zn—-u z p (n)’ u>z

which can be found in Li and Garrido (2002). Specially, if setting v = 1, then the
joint distribution of U(T" — 1) and |U(T)| is given by

1-Y(u
(z,ylu) = ol 10 Vsuse (6.63)
f2 z,y 0 \I/(u-_ar:)—\ll(u)7 u> T ’
TISU(0)

which is Dickson’s classical formula in the discrete model.
For the distribution of the claim causing ruin Z = U(T — 1)+ |U(T)| + 1, we

have the following result.
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Theorem 6.8.4. Foru € N, and u+2 < 2,

Bz ) = (1+£v>(HILpi) icJEn-o(l— T am) (6.64)

€ [ va pi) [T 1k (Pi — Pr)

J=1

for2<z<u+2,

Bz |u) = (1+€v> ( [Tz, o )p(z)icj D ommupa—s (1= 5" 1)2(")‘(6.65)

&u H;L v = (1= pj) Hk:l,k;ﬁg(pj — Px)
Proof: Using Theorem 6.7.1 with
m i ¢ (1 u—l)
M(u) = (1+ &) [T &] () 12 2 u+2) L7 sy 0

Specially, if m = 1, we have the following Corollary.

Corollary 6.8.2. If the claim waiting times are geometrically distributed with

k(z) = (1 —q)¢*I(z > 1), then

wi-p)(i=0) o
P T T ), w2

h(z]u) = € vaspti-g u 17 einei . (6.66)

TP(Z) En:u-l—Z—z #Z(n), 2<z<u+2
Further, if v = 1, p = 1, and p/(1) = 3%, then

h(z|u)— —L_qu(z)Zn O(z_u+n—1) ( )7 u+2§z,

Q0 p(2) nsraos(z —utn =1 2(n), 2<2<u+2,
(6.67)

where 0 < 6 is the security loading factor.

6.9 Explicit Results for Two Classes of Claim
Size Distributions

Theorem 6.7.1 shows that the expected discounted penalty function ¢(u) can be
expressed explicitly in terms of the compound geometric p.f. z(u), with 2(0) =
é7(0), and 2(u) = ¢r(u — 1) — ¢r(u), for u > 1, that is to say, if ¢r(u) can be
obtained explicitly, then so can ¢(u). One such case where ¢7(u) finds an explicit

expression is when it admits a rational generating function. It follows from (6.34)
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that ¢r(s) is a rational function if and only if §(s) is a rational function, while
3(s) is rational function if and only if 5(s) is a rational function. Another case for
which ¢7(u) has an explicit expression is when p(s) is a polynomial (or p(z) has

a finite support), sin'ce, in this case, qAST(s) also has a rational generating function.

6.9.1 K, Claim Size Distribution

From (6.34), the generating function of ¢r(s) is given by

(0 - (s)
7(8) = T 40o) (6.68)

T (5 — v @) = 5() B (5) — (TTmy 22 ) [1 = d2 (O] T (5 = p2)
(1 = s{ILZ: (s — v @) — B(5) Brn-1(s)} ’
where B, 1(s) = v[s™ [T, (1 — qi) + Z;n:—ll B;s™ 77 (v — s)7] is a polynomial
of degree m — 1, with leading coefficient By,—1 = v[[[[~;(1 — @) + Z;n:_ll(~1)j,8j.

In this section, we assume that p(z) is K,, distributed for z, n € N¥, i.e., its

generating function is given by

B(s) = —n(s) m(s)<min{i,i,.--i}, (6.69)

e, —sa;) o a’ an

where E,(s) is a polynomial of degree n with E,(0) = 0, E,(1) = [Ti=,;(1 — o),
and 0 < o; < 1, for i = 1,2,...,n. In this case, qBT(s) can be transformed to a
rational function, which is given in the following theorem.

Define Fim (s) = [[T7% (s~ @) [zt (1~ 5 64)] ~ Ba(s) B (s) to be a poly-
nomial of degree n + m with leading coefficient (—1)"(IT_, ;). Then it is easily
verified that the roots to the generalized Lundberg equation (6.3), p1,p2,- .., Pm
with 0 < |p;| < 1, are m roots to the equation Epn(s) = 0. Let Ry, Ry, ..., Ry
with |R;| > 1 be the remaining n roots of Ep,(s) = 0. We remark that there is a

relation among the roots pi, pa, ..., pm and Ry, Ry, ..., Ry, i€,
m n n
[Liiiva
Pi Ri| = =7—. (6.70)
[E {I E 1 Lo




Theorem 6.9.1. For above defined 5(s), the generating function of ¢r(u) is given
by

A _ TWn—-1 (S)
Pr() = 7= I — ) e —3)
where wy-1(s) = (T (R — 5) — (TT2 2)[1 — ér(O)] [Ty (Los — $)}/(1 = 9)

is a polynomial of degree n — 1.

(6.71)

Further, if R; are distinct, then by partial fractions,

A 'ri
¢r(s) = ; Rizs) (6.72)
Accordingly,
T —u
¢r(u) = ; (E) R, u €N, (6.73)
specially,

¢r(0) =1 — <I=I1 U’Lq) Tll_lz éj{az _11), (6.74)

where r; = (Hk ) 11R&Zk) (H;1 1]#}5] ) fori=1,2,.

Proof: Substituting (6.69) into (6.68) and multiplying [, (1 — s a;) to the both

denominator and numerator yields,

Bpm(s) = (T 22) [1 = 62 (0)] TI% (s = o) T (1 = s.)
(1 —8)Emn(s) '
Now that Enn(s) = ([T ail[ITim, (s — pi)][[Tii (Ri — s)], substituting it into

(6.75) and canceling out common factors gives
iy < =) - (T2 22) [1 = 6rO)] Ty (1/ai — o)
s) = s .

’ (1 -8 L (Ri—s)

Since s = 1 is a removable singularity of (f)T(s), the above numerator must be zero

dr(s) = (6.75)

(6.76)

if setting s = 1, then there is an alternative expression for ¢r(0) given by (6.74).

Also wy1(s) = {TIi (B — s) = (T2, 521 — ¢r(O)] Ty (/s — )}/ (1 = 5) is

a polynomial of degree n — 1.
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Finally, if R;, Rs, ..., R, are distinct, by partial fractions, we can prove that
(6.72) holds. Inverting it gives (6.73). O
Remark: If p(s) is given by (6.69), the §(s) can be simplified to

oo (IL) () - -feteily om

Example 6.9.1. In this example, we assume that the claim waiting times are K,

distributed with the generating function of the claim density is given in (6.4), the
claim amount is geometrically distributed with p(s) = (1 — @) a® ' I(z > 1) and

p(s) = (31(1_821 Then in this case, the equation

m
Epna(s) = [H(s - vqi)] (1-sa)—s(l—a)By-1(s) =0
i=1
has m roots, say pi1, p2,...,pm With |p;] < 1, and one root R > 1. It is easily
checked that the relation [[;2, *% = a R holds.

By (6.74), ¢7(0) = 7%, and

1-— aR
R(1 — )

¢r(u) = =¢r(O)R™, ux0

(6.77) gives g(s) = ¢T(O)-(§1(l_;—z)), and inverting gives g(y) = ¢1(0)p(y). Then we
can use the recursive formula ¢(u) = >0, ¢(u — y) g(y) + H(u) to compute
the expected discounted penalty function, or use the explicit formula ¢(u) =
) Loymo M (u—y) 2(y), with 2(0) = 1—¢7(0), and 2(u) = ¢r(u—1)—¢r(u) =
¢T(O)%R““ = %(Z)T(u). As an application, the discounted joint density of

U(T — 1) and |U(T)| is given for 0 < u < x,

l1-aR T ¢ pf[Rp;" — pj R
folz,ylu) = ——plz+y+1 I , 6.78
S o R? ( ); (R~ pj) Hk:l,k;éj (pj — px) ( )

for u >,
u[Rcc+1 z+1]

Pl yl) = S pla -y + )Y (6:79)
J=1

(R— PJ Hk 11«;@(!’1 Pr)
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Example 6.9.2. In this example, we assume that the claim waiting times are
shifted negative binomial distributed with k(z) = z (1 — ¢)?¢*~*I(z > 1), and
k(s) = (31@:—;—'(11)%. Claim amounts have a mixture of two geometric distributions with
pz) =91 —a)a¥ ' + (1 -9)(1 —az)ai ™, forz >1and 0 < 9, a1, a2 < L.

Then j(s) = Llmel0ealt¥0=ol with § = ¢ ap(1 — o) + (1 - 9) a1 (1 - a).

Since the equation
E2o(s) = (s—v 0)*(1—sa))(l-sag)—v(1—q)* *[(1—ai1)(1—ag)+B(1—s)] =0,

has two roots, say pi1, p2 with |p;| < 1, and two roots, say Ry, Ry with |R;| > 1. It
is eagy to check that the relation py p2 R1 Ry = %“% holds.
By (6.74) and the above relation

1 (Bi—1)(R:—1)
Rl R2 (1 — Otl)(]. - 012) ’

¢r(0) =1- (6.80)

and for u > 0,

(1 - Ry a1)(1 — Ry a2)(R2 _ 1)R1—(u+1)
(1 - a)(1 — a2)(Rz — Ry)
(1= Rpar)(1 — Rpon)(Ry — )R ™™

- (1 —a1)(1 —a2)(R2 — Ry) (6.81)

¢r(u) =

(6.77) gives

s [(al oy — gig)s + RR_TL% — (1 + 042)}

g(s) = (1—sa)(l—saz) ’

inverting yields
gy)=acd  +ead™,  y>1, (6.82)

where

c _ (R1R2 ] g — 1) + Oél[Rl + R2 e Rle(al + 052)]
! RiRy(a1 — o) ’
(R1R2 Q1 O — 1) -+ Oéz[Rl + Ry — R1R2(a1 -+ az)]

G2 = .
? RiRy (a2 — o)
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If setting v = 1, and w(x,y) to be zy, = and y, respectively, then ¢(u) simplifies
to the joint and marginal moments of U(T —1) and |U(T')|, which can be obtained
by the recursive formula ¢(u) = >=/_, ¢(u —y) g(y) + H(u).

Nowlet g=3%, 9 =06, a1 =3, a3 = 3, v =1, then E(W) =2 > E(X) =
1.8 means a positive loading. The equation E32(s) = 0 gives four roots, p, =

1, po = 0.2183, Ry = 1.1344 and R, = 2.6917. This gives

U(u) = 0.7731 x 1.13447% + 0.00342 x 2.69177", u >0,

a(v) 0.2041Y ' +0.125604 ",  y>1.

Table 6.1 gives the joint and marginal moments of the surplus before ruin
and deficit at ruin, together with the mean of the claim amount causing ruin. It
shows that: (i) the joint moment given ruin occurs is increasing in w; (ii) the first
two moments of U(T — 1) and |U(T')| are increasing in u, while the effect of u on
the first two moments of U(T — 1) is greater than that of |U(T)|; (iii) the mean
of the claim causing ruin is increasing in u, and greater than the mean of claim
amount r.v.’s; (iv) finally, the effect of u on all these quantities is greater for small
u, and smaller for big initial surplus values u.

Table 6.2 gives the covariance and correlation coefficient of the surplus before
ruin and the deficit at ruin, given that ruin occurs. It can be seen that the covari-
ance is increasing in u, and the two random variables are positively correlated,

while the smaller correlation coefficient mean that they are weakly correlated.

6.9.2 Claim Amounts Distributions with Finite Support

In this section, we assume that the claim amount distribution has a finite support,

ie,for N >2:

p(n) = P(X = n) = p,, n=12...N. (6.83)



Table 6.1: Moments for the surplus before ruin and deficit at ruin for different u

A B C D E F
1.9107 | 0.9904 | 1.8784 | 2.8557 | 5.2716 | 3.8688
2.95803 | 1.53196 | 1.89591 | 4.53027 | 5.37623 | 4.4279
3.53798 | 1.82529 | 1.90329 | 6.02392 | 5.42065 | 4.7286
3.86556 | 1.98875 | 1.90645 | 7.17367 | 5.43939 | 4.8952
4.05238 | 2.08156 | 1.90785 | 8.00108 | 5.44744 | 4.9894
4.15964 | 2.13462 | 1.90838 | 8.57300 | 5.45077 | 5.0430
4.22144 | 2.16502 | 1.90862 | 8.95754 | 5.45238 | 5.0736
4.25669 | 2.18245 | 1.90879 | 9.21084 | 5.45301 | 5.0912
4.27691 | 2.19274 | 1.90889 | 9.37486 | 5.45347 | 5.1016
4.28879 | 2.19854 | 1.90913 | 9.48004 | 5.45368 | 5.1077
10 | 4.29552 | 2.20187 | 1.90917 | 9.54631 | 5.45399 | 5.1110
11 | 4.29957 | 2.20366 | 1.90942 | 9.58805 | 5.45424 | 5.1131
12 | 4.30171 | 2.20491 | 1.90932 | 9.61360 | 5.45411 | 5.1142
13 | 4.30269 | 2.20535 | 1.90935 | 9.62939 | 5.45403 | 5.1147
14 | 4.30409 | 2.20612 | 1.90966 | 9.63979 | 5.45443 | 5.1158
15 | 4.30447 | 2.20586 | 1.90899 | 9.64538 | 5.45502 | 5.1149

© 00 IO Tt W~ QO|Ia

A: joint moments of U(T — 1) and U(T), given that ruin occurs

B: mean of U(T — 1), given that ruin occurs

C: mean of |U(T)|, given that ruin occurs

D: second moment of U(T — 1) about the origin, given that ruin occurs
E: second moment of |U(T')| about the origin, given that ruin occurs

F: mean of the claim amount causing ruin, given that ruin occurs

Table 6.2: Covariance and coefficient of correlation between the surplus before
ruin and the deficit at ruin for different u

0 1 2 3 4 5 6 7

0.05036 | 0.05356 | 0.06391 | 0.07411 | 0.08109 | 0.08599 | 0.08921 | 0.09085
0.02785 | 0.02716 | 0.02905 | 0.03075 | 0.03149 | 0.03189 | 0.03209 | 0.03202

0.09121 | 0.09151 | 0.09173 | 0.09185 | 0.09189 | 0.09192 | 0.09216 | 0.09349
0.03173 | 0.03156 | 0.03148 | 0.03139 | 0.03132 | 0.03131 | 0.03104 | 0.03178

u
G
H
U 8 9 10 11 12 13 14 15
G
H
G

stands for the covariance, H stands for the coefficient of correlation.
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Then
p(s) = Dn(s) :=prs+pes®+---+pns, —1<R(s)<1, (6.84)

is a polynomial of degree N. For example, the binomial distribution, the discrete
uniform, and the hyper-geometric distribution all have a finite support.

Define V(s) := Dn(8)Bm-1(s) — [[i=1(s — v ) to be a polynomial of degree
N +m—1, with leading coefficient Vy ym_1 = pn Bm-1, where Bp,_1 = v[[[ =, (1 —
¢) + E;.”:_ll(——l)j B;] is the leading coefficient of polynomial Bp,_1(s). Of all the
N+m—1roots to the equation V(s) = 0, p1, p2, - . ., pm are m roots with 0 < |p;| <
1. Let Ry, Ry, ...Ry_1 with |R;| > 1 be the remaining N — 1 roots. Therefore,
V(s) can be factored as V(s) = Vim—1 [[I121(s — pi)] [TIX5% (s — Ry)]. Setting

s = 0, it is easily shown that

(=" Vv (fl ) (NH R) = ﬁ( %). (6.85)

Then (6.68) can be rewritten as
, Vem-1 [1iG (s = Bi) + [T, (521 = ¢2(0)]

r(s) = Vivim-1(1 = 8) Tty (s — R)

Since s = 1 is a removable singularity of ¢r(s), then we have

} [il—[(l_ ] :h RiR:1 (6.87)

, (6.86)

1 — ¢7(0) = —Vivimet [H

vg;
and (6.86) simplifies to
~ FN_Q(S)

or(s) = ms—),

N Y Ri—8)-TIN T (Ri—1) . .
where Fy_s(s) := i (& (i_gm B s a polynomial of degree N — 2. By

1< R(s) < 1, (6.88)

partial fractions,

(6.89)

or(s) = Z(

i=1 i=1 ’L
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where r; = [[}7 0, (n%%) . Inverting yields

N-1
_ i —u +
ér(u) = i§=1: <E> R, weN*. (6.90)
Finally, if p(s) is given by (6.84), then g(s) simplifies to

§(s) =1+ Vnim-1 (H i ) 1:[(5 -R)=1- ] RiR_. 2 (6.91)

1 Vi

Isolating the coefficient of s” gives g(n), forn=1,2,...,N -1, e.g,,

N-1 1
g(1) = L1 E]; (6.92)
92 = - > &le, (6.93)
g(N -2) = (—1)N‘3[ ] %] '_ R, (6.94)
N-1
g(N -1) = (—1)”‘2]—[% (6.95)
=1 "

Example 6.9.3. In this example, we assume that claims waiting times are K,
distributed with k(s) given by (6.4), and constant claim amounts at 2, i.e.,
P(X = 2) = 1 with p(s) = s%. Then V(s) = s® Bm-1(s) — [[i21(s —vq) is a
polynomial of degree m + 1 with leading coefficient Vipt1 = Bm-1 = v[[[1=,(1 —
qi) + z;nz_ll(—l)j B;]. It can be factored as

V(s) = Vimsi(s — R) [ [ (s — ), (6.96)

i=1
where pi1, pa,...,pm with |p;] < 1, and R > 1 are m + 1 roots to the equation
V(s) = 0. By (6.87)

m ) m i ]
$0(0) = 1 = Vinsa ([ | qu.)(R —1) = Vo [] quz ==
=1 =1 = 1t
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and
b() = (R) B = (O R = B, wel

Specially, if v = 1, then
T(w) = [R()]"™,  weN,

where R(1) = lim, ;- R.
In this case, g(1) = ¢7(0) = %, and g(i) = 0, for i = 2,3,.... Then the

expected discounted penalty function ¢(u) admits a simple recursive formula:

¢(u) = d(u— 1)g(1) + H(u) = ¢(“R‘ D4iH@, uwent (6.97)

and the starting value for the recursion is H(0). Explicitly, z(0) = 1—¢7(0) = %,

and z(u) = ¢r(u — 1) — ¢r(u) = (B52)R™, v € N*. Then for u € N*,

= ZH(’U, —y)RY+ H(u). (6.98)

y=1

¢(u) =

Since in this example, U(T" — 1) only takes value of 0, and |U(T')| only takes value

of 1, then by Theorem 6.8.3, the joint distribution is given by

f2(0,1]0) = (H ) ) 0y o)
f200, 1]u) = (H pl)ZH CJR_ , u € Nt
qi k=1,k#j (pj — pr)
Example 6.9.4. In this example, we assume that the claim waiting times have
a negative binomial(2,¢) distribution, with k(z) = z (1 — ¢)*¢*'I(z > 1) and
k(s) = %%; The claim sizes are uniformly distributed with P(X = 1) = P(X =
9) = P(X = 3) = 1 and with p(s) = &%) Then V(s) = p(s)Ba(s) — (s -
vq)? = ﬂ—g—‘l)—z(s2 + 5%+ s*) — (s — vq)? is a polynomial of degree 4 with leading
coefficient ”—(l—g—qﬁ. It can be factored as V(s) = ﬂl;—qﬁ(s —p1)(s—p2)(s—Ri)(s —
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Rjy). We remark that the relation p, po RiRy = — (iﬁg)zz holds by setting s = 0 in

the above factorization.

(6.87) together with above relation gives

N (1—q)2p1p2 _R1+R2—1
or(0) =1+ 30 (Bi—=1)(R:—1)= RR
and for u € N¥,
_ Ra-1 i) | Bi—1 (g
br(u) = g B 4 i B, (6.99)
Together (6.92) and (6.95) give that

2) =— d ) = for ¢ > 3. 1
mE e Y9 R o4 e@=0 frizs (6100)

Thus the recursive formula for ¢(u) simplifies to

¢(0) = H(0),
¢(1) = ¢(0)g(1) + H(1),
p(u) = du—-1)g(1) +6(u-2)g9(2)+H(), uv22

where in this example, H(0) = a0 1) + w(0,2) + (p1 + p2)w(l, 1)],

3vq?

H(1l) = ﬂ%lqg—q)zw(l, 1), and H(u) =0, for u > 2.
#(u) can also be evaluated explicitly by

LS H(u—y) )+ H), w1, (6.101)

o) = T30 2

1 — R Ry
1=¢7(0) — (R1-1)(Re-1)?

where and

(B —1)(Re — 1)
R; — Ry

2(u) = dpp(u — 1) — pr(u) = [R; ! — Ry,

Thus (6.101) simplifies to

Ry | _ Rl < .
H(u—y)RyY + H(u—-y)RyY + H(u). (6.102
" 2 A B g 3 ) Y H W, (6102

#w) = 5
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Since H(u) is not zero only at u = 0 and v = 1, the above formula is equivalent

to
R+ Ry
¢(0) = H(0), ¢(1)=H(Q)+ WH(O),
o(u) = Rfl_R;h {HOE ™ - R + HO[Rr* - B]}, w22

Setting w(z,y) = I(z+y+1=2),for z=2,3,..., and v = 1, implies that
¢(v) simplifies to the distribution function h(z|u) of Z = U(T—1)+|U(T)|+1.In

particular, z = 2, H(0) = (1"1)2”;’;3(”””2) = —Rlle and H(z) =0,fori=1,2,....
Then
R—(u+1) . R—(u+l)
h(2|u) = -2 2 > 0.
ery=B T s
Similarly, z = 3, H(0) = —%”—2—, H(1l) = _E’lR—z and H(i) =0, for ¢ > 2. Then
1+ p1+ p2 1 p-(ut1) —(u+1) 1 _ -
h(3 =————"R — ——|Ry{" — Ry™ > 0.
(lU) Ry — Ry [1 R2 ]+R1__R2[1 &]’ uZ

Finally, for z > 4, h(z|u) =0, for all © > 0.

If instead, we set v = 1 and w(z,y) = zy (alternatively z, or y), then ¢(u)
simplifies to E[U(T—1)|U(T)|I(T < oo) |U(0) = u] (E[U(T-1)I(T < o0) |U(0) =
ul, or E[|U(T)|I(T < 00) |U(0) = u]), and

E[U(T — DIU(T)|I(T < 00) |U(0) = 4]
= E[U(T — 1)I(T < o0) |U(0) = 4]
_ (ot ) [BL ™Y - R+ (R - RyY)
- Ry — Ry ’
E[JU(T)I(T < o0) |U(0) = ]
_ B+p+p) B — RO 4 (R - RyY)
N Rl - Rz '

Now setting ¢ = 0.35, implies that E(W) = 1 = 2.077 > E(X) = 2 and

equation
_ (1-9? o, 3, 4 2 _
V(s)-——~3 (°+8°+s)—(s—q)*=0
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has four roots, say, p1 = 1, po = 0.2449, R; = 1.0708 and Ry =

—3.3158. The

following table gives the moments of U(T'—1) and |U(T)|, as well as the covariance,

foru=20,1,2,...,10.

Table 6.3: Moments and covariance of the surplus before ruin and the deficit at

ruin for different «

u | Joint Moment | E[U(T — 1)|T < oo] | E[JU(T)||T < od] Cov

0 0.3836 0.3836 1.3081 -0.1182
1 0.5856 0.5856 1.2072 -0.1213
2 0.5207 0.5207 1.2396 -0.1248
3 0.5417 0.5417 1.2291 -0.1241
4 0.5349 0.5349 1.2325 -0.1244
) 0.5371 0.5371 1.2314 -0.1243
6 0.5364 0.5364 1.23176 -0.12432
7 0.5366 0.5366 1.23165 -0.12430
8 0.53656 0.53656 1.23169 -0.12432
9 0.53657 0.53657 1.23168 -0.124312
10 0.53656 0.53656 1.23168 -0.124310

Joint Moment stands for E[U(T — 1)|U(T)||T < 0.

156



Conclusion

The aim of this thesis was to show that ruin probabilities, and other ruin related
quantities for the Sparre Anderson risk model, can be given a unified treatment
through the Gerber-Shiu (G-S) function. The recent actuarial research literature
already proves how the G-S function plays such a unifying role for the classical
compound Poisson risk model. We hope that the results derived here will clearly
show the general applicability of G-S functions.

The thesis studies expected discounted a penalty (G-S) functions and their
relation with the time of ruin, the surplus before ruin and the deficit at ruin, for
a variety of continuous and discrete-time risk models. In continuous-time, the
G-S function is obtained for the compound renewal (Sparre Anderson) risk model
with K,-distributed claim inter—arrival times. In the special case of generalized
Erlang(n) waiting times, the model is extended to accept a constant upper divided
barrier or is perturbed by a diffusion.

Finally, the applicability of G-S functions is further extended in discrete-time
Sparre Anderson risk model. A general approach based on recursive formulas,
easily implemented on computers, should bring ruin theory very close to practice

with this model.
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Appendix A

Mathematical Tools

A.1 Laplace Transform

The Laplace transform is one of the most efficient methods of solving certain
ordinary, partial differential equations, and integro-differential equations. The
effectiveness of the Laplace transform is due to its ability to convert the above

mentioned equations into algebraic equations (see Poularikas, 1996).

Definition A.1.1. Let f(t) be a real-valued function that is defined fort > 0,
and denote by f(s) its Laplace transform (L.T.), which is defined as

F(s) = L{F(B)} = / Tet(d,  seC, (A1)

if the above integral converges.

Basic properties of Laplace transforms:

L L{a f(t) +bg(t)} = a L{f()} +bL{g(t)} = a f(s) + bi(s).

2. L{e*tf(t)} = f(s—a), acC.

3. L{fxg(t)} = f(s)§(s), where * denotes the convolution operation.
4. LU} = 5" f(5) — "7 f(H0) = "2 f/(+0) — ... — fO7V(+0).
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5. L{J f(z)de} = 12,

6. L{(-1)"t" f(t)} = f™(s), neN™.

7. LU/t = [ f(r) dr.

8. limy—eo 5 f(s) = f(0+) (Initial-Value Theorem).

9. limsg s f(s) = f(+o00) (Final-Value Theorem).

A.2 Generating Function (z-Transform)

The (ordinary) generating function is a powerful tool in insurance modeling

(see Panjer and Willmot, 1992). It will be used throughout Chapter 5.

Definition A.2.1. The generation function of a discrete function f(z),z € N
(or a sequence of real or complex number), is the function f (2) defined by the

POWET SeTLES
f@) =6{f@}=)_ " flx), z€C, (A-2)
z=0
if the series converges. Further, if { f(z); * € N} is a probability distribution,

then f (2) is called probability generation function (p.g.f.).

Remarks:

o f(1/2)=320,27" f(z) is called the z-transform of f.
e There is a one-to-one correspondence between a sequence { f(z); = € N}

and its generating function f (2). If f (2) is given, f(z) can be obtained

from by R
_ f®(0)
f(.’E) - a;' ) S N>
or by a path integral on the complex plane,
_ 1 [f)
f(:c)—27”, zmﬂdz, z €N,
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where the path encircling the origin with poles of f(2) being outside of
it.

The following properties are very important in deriving and inverting gene-
rating functions.

Basic Properties:

A

1. G{a f(z) +bg(z)} = aG{f(2)} + bG{g(2)} = a f(2) + b4(2).

2. G{f(z +n)} = 2" f(2).

3. G{z f(2)} = 2 f'(2).

4. G{f % g(x)} = f(2)§(2), where fx g(z) = T, f(z — ) g(y) is the

convolution of f with g.

5. If {f(x); x € N} is the probability distribution of a r.v. X, then

« fO)=1.
o G{F(z)} = %_A(;), where F(z) = 32 ., f(y) is the survival func-
tion of X.

e B[XW] = %’i@—‘z:l, where t® = 2(z - 1)(z —2)- - (x —k+1) is

the k-th factorial power of z.
In insurance modeling, one often has to deal with positive-valued random
variables, e.g., claim waiting times, claim amounts and claim causing ruin. In
this situation, let f(z),z € NT be the probability distribution of a positive-

valued discrete r.v., then its probability generating function is defined by
Flz) = Zzz f(z), z€C, (A.3)
=1

with f(0) =0, f(1) = 1.
Now let function ¢ with domain N be such that g{z — 1) = f(z), ¢« € N¥,

then the relation between their generating functions is f(2) = 23(2); on the
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other hand, if the generating functions of two functions f and g satisfies
f(z) = 29(2), then f(z) = g(z — 1). Then the generating function of a
function with domain N*, can be analyzed through that of a function with

domain N, shifted to the right by one unit.
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Appendix B

Renewal Theory

B.1 Renewal Equation

Definition B.1.1. A renewal equation is an integral equation of the following

form i
Z2(z) = 2(z) +4 / Z( - y)dF), >0, (B.Y)

or, equivalently,

Z(z) = 2(z) + ¢ F * Z(x), (B.2)

where 0 < q < 0o is a constant, F is a probability distribution on [0, c0) with

F(0) < 1, z and Z are defined on [0,00) and are locally bounded.

The renewal equation in (B.1) is called proper if ¢ = 1, defective if 0 < ¢ < 1,

and excessive if ¢ > 1.

Renewal equations play an important role in probability models for insurance
risks. Many ruin-related quantities in classical risk model, Sparre Anderson
risk models and perturbed risk models satisfy a renewal equation. Specially
ruin probabilities in the classical and Sparre Anderson risk models satisfy a
certain defective renewal equation, and hence all admit a compound geometric

tail representation.
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However, renewal equations are rarely tractable, neither analytically nor nu-
merically. Closed form solutions to renewal equations are only available in
some special cases, e.g., if both 2z and F' have a rational Laplace transform.
Then the Laplace transform of Z can be given a rational expression, which
can be inverted by partial fractions. Hence, in the literature, the main pro-
bability results for general renewal equations are either inequalities (bounds)

or asymptotic formulas.

The rest of this section reviews some results for renewal equations, in par-
ticular, the elementary and key renewal theorems, which standard methods
for deriving asymptotic formulas in different applied probability models in-

cluding insurance risk models.

Theorem B.1.1. Assume that 0 < ¢ F(0) <1 and that
o0
Uy(z) = Zq" F™(z) < 00, z >0,
n=0
then the renewal equation (B.1) has a unique solution
Z(z) = Uy * z(z), z > 0. (B.3)
In particular, if ¢ = 1, the proper renewal equation has a unique solution
Z(z) = U * z(z), z >0,

where U(z) = 00, F*™(z) = 1+ M(z), and M(z) = Y 2, F**(z) is called
the renewal function.
If0 < q < 1, the defective renewal equation in (B.1) has a unique solution

1
Z(x) = 1—_-—qu * Z(w), T 2 0,

where Gy(z) = Y oo (1 — q)g"F*™(x) is a compound geometric distribution

Sfunction.
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Proof: See Resnick (1992). O

Theorem B.1.2. For the proper renewal equation in (B.1), i.e., ¢ = 1,
suppose that p = fooo zdF(z) < oo, then

1. (The Elementary Renewal Theorem) If 2o = limg 00 2(),

lim Z3) _ %0,
z—00 X 123
2. (The Key Renewal Theorem) If z is directly Riemann integrable and F’

is not lattice,

lim Z(z) = l/Oooz(ac)ala:.

00 1%

Proof: See Feller (1971). O

The key renewal theorem gives the limit of the solution to a proper renewal
equation, which can then be used to derive asymptotic formulas for defective

and excessive renewal equations.

Definition B.1.2. (Adjustment Coefficient) Assume that F' is a c.d.f. on
[0,00), with F(0) < 1. A constant R is called the adjustment coefficient as-
sociated with q and F' if it satisfies the following equation
0 1
Bl = [ M) = (B.4)
0 q

where X is a r.v. with distribution function F'.

The concept of adjustment coefficient is often used in risk theory and plays

a critical role in studying the behavior of renewal equations.

We note that if the adjustment coefficient R exists, it is unique, since E[e®*]
is strictly monotonic in s. If ¢ > 1, R always exists, and R < 0 if ¢ > 1, while
R=0ifqg=1.1f0 < g < 1, R may not exists, but R is positive when it does

exist, for sufficiently regular F'.
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Theorem B.1.3. If F' is not lattice, and assume that there exists an ad-
justment coefficient R, and e®®z(z) is directly Riemann integrable, then the
solution, Z, to the renewal equation in (B.1) has the following asymptotic

formula
~ fo Z(y)eRydy e'Rz
q Jo" yefvdF (y)

Z(:L‘) , T — 0. (B.5)

Theorem B.1.3 gives a standard method for deriving exponential asympto-
tic formulas for defective and excessive renewal equations, especially that

defective renewal equations often arise in risk theory and queuing theory.

Besides asymptotic results for the solutions to renewal equations, another
research interest is to study the two sided bounds. The following theorem

gives exponential bounds for defective and excessive renewal equations.

Theorem B.1.4. Suppose that ¢F(0) < 1 and that the adjustment coefficient
R exists, then the solution, Z, to the renewal equation in (B.1) admits the

following two-sided bounds

I(z)e R < Z(z) < u(z) e 77, z >0, (B.6)
where
eRy 0 eRy
{@) ™ = sup L@M and  [u(2)] ™ = inf i#‘y‘)

The adjustment coefficient R may not exist for defective renewal equations,
e.g., it does not exist when F is a heavy or medium tailed distribution. There
are two ways to generalize Lundberg’s equation (B.4) to heavy and medium

tailed distributions.

One is to replace the exponential function by a general life distribution B with
B(0) = 0, such that [;°[B(z)]"*dF(z) = ;. Then upper or lower bounds can

be obtained by assuming B to be in some reliability class of distributions.

182



See Cai and Wu (1997), Lin (1996), Willmot (1994, 1996, 1997a, 1997b) and
Willmot and Lin (1997).

The other method is a truncated Lundberg’s equation, which can be satis-
fied by general distributions. There are two versions of truncated Lundberg
equations, the first version is obtained by replacing the exponential function
by a truncated exponential function min(e®, e**) that satisfies the following
equation: .

t
/ ™ VdF (y) + e F(t) = -,
0 q

for a given t > 0 and k. The second version is obtained by replacing the
exponential function by a truncated exponential function efty[(0 <y < t)

that satisfies

¢ 1
| emrarw ==,
0

q
for a given t and R:;. The bounds based on the roots to these two trun-

cated versions of Lundberg equations can be found in Cai (1998) and Dickson

(1994b).
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