Linking CORAL to MySQL and PostgreSQL

Guang Wang

A Thesis
In
The Department
of
Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montréal, Québec, Canada

April 2004

©Guang Wang , 2004

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91132-2
Our file Notre référence
ISBN: 0-612-91132-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

Abstract

Linking CORAL to MySQL and PostgreSQL

Guang Wang

A Graph Database System is developed at Concordia University. In this system, CORAL
is used as the deductive engine. Since MySQL and PostgreSQL are selected to manage
the persistent data, connections between CORAL and MySQL as well as PostgreSQL
need to be established.

This thesis mainly proposes a solution for these connections. Firstly, CORAL’s
architecture is analyzed. Its relational database interface is described. Class diagrams,
object diagrams, and interaction diagrams are drawn to illustrate CORAL’s rules and to
identify the requirements. Then, classes are designed as an extension of CORAL’s
structure to communicate with MySQL and PostgreSQL. Data type conversion rules are
defined based on the characteristics of each database system. Classes and parent classes
are described in detail and patterns applied in these classes are discussed for the
reusability of the design. Additionally, databases for MySQL and PostgreSQL are created
and the extended CORAL system is tested. Finally, a CORAL client process is designed
and implemented so as to integrate the TGL translator, which translates from the
GraphLog graph database language to CORAL, with client-server mode CORAL and
communicate with the underlying relational databases.

The implementation of this solution uses C++ in a UNIX environment.

i1

Acknowledgement

My thanks go out to all those who helped me during my thesis period! Especially:
Grateful thanks to Dr. Gregory Butler for his patience and invaluable guidance.

Thanks to the thesis examiners for their precious advice to improve this work.

Thanks to Mr. Stan Swiercz, who helped me a lot while I was in the jungle of
compilation errors.

Thanks to my colleagues, including Yue Wang, Christopher Baker, Ju Wang, Fang Lin,
and Ligian Zhou, for their kindly help during different steps of my work.

Finally, special thanks to my wife, Zhaoxia Sang, for her selfless support and endless

love!

1v

Table of Contents

LiSt Of FIGUIESucuueeiieiiienineeiistensnietecnsseeessssnesnessssenssssssessssssncessnnsssssssssnssssasses viii
LiSt Of TADIES c.cuueerivneiiireiciiecrieiseiistniensnissinensntessssnessessssenssssssesssessessacssssssnnssnns ix
Chapter 1 INtroducCtion........ueeieiirerieccisssnseeiesscssssaesnsssssessessossssssssersssssssensansssssnse 1
L1 MOTIVALION . c..eeiiiiiiiiiiiiiiii et 1
1.2 Contribution of the Thesis ..o 2
1.3 Organization of the ThesiS....c...cocvvviniiiiiiini e 3
Chapter 2 Backgroundccueveenreierenscnsserscssssesssesnssssssessssosssssssnsossssssssssssssssasss 4
2L CORAL ..ottt et e 4
2.1.1 System archifeCTUIecoivuiiiiiiiii et 4
2.1.2 Runtime data ManagemeNt...........ceeriieariiieeeriieeeeeeeereeee e enie s e s sareeeseeesensreeas 6
2.1.3 Extensional database INterface.............coocviiiiiiiiiiiiniiiiii e 7
2.1.4 Client-server MOAEL.......cccoiiiiiiiiiiiiic it 8
2.1.5 OptimiZation SITAEZIEScocuiiiiiiiiiiiiiiiii i e 8

22 IMYSQL oo ettt ane e 10
2200 HISTOTY einiiteeeeet ettt et sttt 10
222 C AP oo et 11
2.2.3 Supported data LYPE........cocueerriiiiriiiriertee ettt 11

2.3 PoStIeSQL ..o e 12
2301 HISEOTY ittt et 12
232 C APL oo et 13
2.3.3 Supported data LYPE........c.eoivieirieerieiiiieiee et 14

2.4 DeSIEN PAtIEIM....coiiiiiiiiiiiiiii ettt ettt e e s e s 14
2.4.1 ADSHIaCt fACIOTY ..couviiiiiiiiiiciccit ettt e e sr e 15
242 FaCAAE ...t e 16
2.4.3 Command.........ccooiiiiiieiii e e 16
244 TEETALOT .ttt ettt e et e et e e e bt e e bt e bt e b e b e b e 17
2.4.5 Template MEthOdccvviieiiiiiiiiie et eee e e e earae e ee e 18
Chapter 3 ReqUIreImeEntcucvvereerenseesensncssiorsessansnisesssessssssssssssasssssssesssesssssees 19
3.1 Requirement DefInitioncccoooiiiiiiiiiiiiiiiicenie et 19
3.2 Functional Requirement and Specification............coooiiiiiniiieniiieee e 21
3.2.1 Connection establiShmentcoccoiiiiiiii e 22
3.2.1.1 Open databaseccoueoeiiiiiiiiiiiie e 22
3.2.1.2 Open MySQL database..........ccceouiiiiiiiiiiiiiicec et 24
3.2.1.3 Open PostgreSQL database..........cccoeeiiiiiieeiieiii i 25

3.2 1A Map tabIe ..o 26
3.2.1.5 Map MySQL tablecccoooiiiiiiiiiiciieece et 28
3.2.1.6 Map PostgreSQL table.........coovviiiiiiiiieiiiecceciee e 29
3.2.1.7 Join mapped tableccccooviiiieiiiie e e 30

3.2.2 RElAION PIOCESSvteiiieiiteiiereie ettt ettt e e et et e e b e sebeeseneeeennes 32
3221 QUEry table.cc..ociiiiiiicee e 32
3.2.2.2 REtrIEVE TUPIE SEL....ceivmiieeiiiiee et ettt et eeeanee e es 34

3223 INSEIT tUPIE ..ocviiiiiciic e 35

3.2.2.4 DEICte tUPIE ..ot 36
3.2.3 EXecute COMMANG......c.cocuiiiieiirietierie ettt enae e 38
3.2.3.1 Execute COMMANG.......cocouiiiiiiiiiiiiie ettt 38
3.2.3.2 Execute MySQL command.............ccverriiieiieereriieeiee e 40
3.2.3.3 Execute PostgreSQL commandccccooueviiomieniiniiceniciinece e 41
3.2.4 Transactional SUPPOTL........cc.eecuiriiiiiiiiiienieirteei ettt e 42
3.2.4.1 Commit database........c.eevuieiiriiniiiiciieicciiere et 42
3.2.4.2 Rollback databaseccceeuirvimiiiiiiniini et 44
3.3 Non-functional Requirement and Specificationc.ccecccevrnceincienncenienieeeeeen 46
3.3.1 Computer hardware and software requIrement...........c.ccoceveveereecieneesceneenne 46
3.3.2 System performance and reusabilityccceoeveiiiiirniniicceene e 46
Chapter 4 DESIZN......uicceriecceicreecrsniecsnicsaeessanessseessarsssnssssssssssssssnssssasssssssssssassssans 47
4.1 ArchiteCture DESIZI ..co.viiiiiiiieiiieie ettt 47
4.1.1 CORAL SYSEEIM SHUCLUIEeciuvieieeiriieeiteeieie e e steeciee et e e asbeessereebeeebeeeeneeas 47
4.1.1.1 Classes for creating CORAL workspaces, relations, and tuples............... 47
4.1.1.2 Classes for managing CORAL workspaces and relations 49
4.1.1.3 Runtime workspaces and relations Structure.............ccoeveeevieinienenvieconnens 49
4.1.1.4 Relational database Interfacecccoevereiiiniiriiniece e 51
4.1.2 Classes for MySQL and PostgreSQLcccoiiiiiiiiiee e 54
4.1.2.1 Classes for MYSQL......couioiioiieiieeieeeeseee ettt 55
4.1.2.2 Classes for Post@reSQLcooiiiiiiiieie e 56
4.1.3 Behavioral modeling.........ccccooviiiiiiiiieiieeec et 56
4.1.3.1 Establish database CONNECIONScociiiiuieniieiirieeeeeeeee e 57
4.1.3.2 Establish table CONNECHONScoeeiiivieeiiieiiiiiiieeeee e 58
4.1.3.3 Create relations based on RDB relationsccocooeeniiiciininiinen, 59
4.1.3.4 RelatION PIOCESS ...oouveriireeiiieteeeiie ettt s saas s e ennees 60
4.1.3.5 Execute cOmmand.........cccceiiiiiiiiiiiiiiiie e e 62
4.1.3.6 Transactional SUPPOTIT........cccoveriiriiriiiienie et 63
4.1.4 Design patterns USEdc.coooiiiiiiiiiiieiiiccrcec et 63
4.1.4.1 Abstract factory Pattern.......c.ccceevriirieriiieieie e 64
4.1.4.2 Fagade PatteIncocoevviiiiiiiiiieiieiieiene et 64
4.1.4.3 Command PALETT......cooiuiiriiiiiee ettt 65
4.1.4.4 JEErator PALEIT...c..eeviieirieieeiiee ettt s s e e 66
4.1.4.5 Template method Patternc..eeeereerrriieriiie et 67
4.2 Major Classes SpecifiCatioNScoooviieiiiiiiiiiiiie et e 67
4.2.1 RDB SYStem ClaSSES ..iiiieiieeeee ittt et 68
4.2.1.1 The RABSYStEm Classccceriiiririiieiieenitceieee e 68
4.2.1.2 The RdbMysqlSystem class.........coocvveeiieriieiieiniiniiiin e 69
4.2.1.3 The RdbPostgresqlSystem Classcooceieiiiiiiiiiiiiiii e 69
4.2.2 RDB database ClaSSEscccceevieeimiieriieiiciieie ittt 70
4.2.2.1 The RAbDatabase Classc.ccceveeirieriirciiieiiiii e 71
4.2.2.2 The RdbMysqlDatabase Classcccccovviiiiiii e 71

vi

4.2.2.3 The RdbPostgresglDatabase Class...........cccooveiiviiiiiiiiiiiiieiee 72

4.2.3 RDB QUETY CIASSES ...cneeeiiiiiiiiiciiee ettt 73
4.2.3.1 The RAbQUETY Class........ceevriiiiiiiiiiiiiicciiiiieeee e, 74
4.2.3.2 The RAbMySqlQUETY Class.......cccevviiriieriiiiiieiiiiiecien e 74
4.2.3.3 The RdbMysqlQueryResult classcooeevniiniiniiiiinicci, 75
4.2.3.4 The RdbPostgresqlQuery Classccccvveiniiniiiiniiniiiin e, 76
4.2.3.5 The RdbPostgreSQLQueryResult classc.ccovviviviiiinnin, 76

4.2.4 RDB INSEIt ClASSES ..cvveuiiiitieiiinieeniiiiieceec e 77
4.2.4.1 The RABINSEIt Class.........coooiiiiiiiiiiiiiieieeieee e 77
4.2.4.2 The RdbMysqlInsert class...........ccoceiiiiiiiniiiii 78
4.2.4.3 The RdbPostgresqlInsert classccceeeeiimiieninniineceeeieeee e, 78

4.2.5 RDB delete Classes.......cooviiiiiriieiiieiiiieeeertceieeie et 78
4.2.5.1 The RABDEIEte Classc.ceeveerivinineiieiie e 79
4.2.5.2 The RAbMysqlIDelete Classcooverriierieeriireinieciieecire et 79
4.2.5.3 The RdbPostgresglDelete class.........ccccooviiiiiiiiiiiiiiiiiiiiiccecn, 79

4.3 Database DESIZN ...couverurerierieriieieeetee ettt sttt st ettt ettt anneas 80
CRAPLEE S TSt uuuviiernreririnniinsssnicnisnescssssniesssssisssssnssissssessssassossssssssssssssssossssssssssses 81
5.1 Test REQUITEMENTc..oiiiiiiiiiiiiiiiiiicc e 81
5.2Test MEthOdS.ccoooiviiiiiiie e 82
S.3TESTCASES ettt ettt ettt ettt e st e e e e e e e eberaae s 82

5.3.1 Connect CORAL to MySQLooiiiiiiieccee e 82

5.3.2 Connect CORAL to PostgreSQLc..cooieciiiiiiniiiiiieccecereereeee s 83

5.3.3 Create CORAL mapped tables based on MySQL tablescccccoverneinneen. 84

5.3.4 Create CORAL mapped tables based on PostgreSQL tables.............cc..c...... 85

5.3.5 Create CORAL joined table............cooeiiiiiiiiiiiieiicecee e 86

5.3.6 Query mapped tables........cooviiiiiii e 87

53T INSEIL TUPIE oottt 88

5.3.8DeIete tUPIE ..o e e 89

5.3.9 Execute COMMANG.......coocueiiiiiiiiiiiieciiie et 89

5.3.10 Transactional SUPPOTT......c...oooiiiiiiiieiiic et 90

Chapter 6 APPHCALION.......cuuviieiricvinirrnicsesisssiesssssossansssssssssesssssssssssssssssssssasossens 92
6.1 SYStEM ATCRITECIUTE...cuuviieiiiireiiiie et e etee e eteeetve e et ar e e e b e s ensteaeasasnaeensaaeans 93
6.2 Integrating CORAL with the TGL Translator............cccccocvviiiiiiivinivieiecreccee e 95
6.3 Optimization EXPErMENt.........cccoiviuiiiniciiniiriicenietcee et 96

Chapter 7 ConcluSioncocceveccnicsnesienssensacssssacssssssssssssssssasssassassssssssssasssnesasssns 98

REFEIEINCES ...oveernenreericirriirerneinstinsirnseessssissstsssisssnsssssssassssnsssesssssossssssssssassssassssssses 99

APPEIAIX cuueeerriinnrnnrerensisssssneseessssssssesscssssssssssssesssssssssestessssssssssssssssssssssssssssssssssssss 101
A. University Data Model Schema (script files) for MySQL.........ccocinivniinirnneneens 101
B. University Data Model Schema (script files) for PostgreSQL..........cccocvenreniens 105

vii

List of Figures

Figure 2-1 CORAL System Architecture [1].......ccccocvriininiiiiiiniiniiiecc e 6
Figure 2-2 Abstract Factory Pattern [6]c.ccooovereroieriiiieeieeeee et 15
Figure 2-3 Facade Pattern [6]cccoouviriiiioieeeeeee et 16
Figure 2-4 Command Pattern [6]ocoviriiiiiiiiiiiee et 17
Figure 2-5 Iterator Pattern [6].......ccooiiiiriiiiieiieeeecceee e e 17
Figure 2-6 Template Method Pattern [6]occoeoiiiiiiiiiiii e 18
Figure 3-1 Use Case DIagrami.........cccceeueiieiiiiiieieeeeee et s 20
Figure 4-1 CORAL Workspace ClasSesccouvieruiiiieeireeieeeeieerieeieeeesieeveeenneesseeesenens 48
Figure 4-2 CORAL Relation Classes.......c.cocciieieeeiniiiciee et 48
Figure 4-3 CORAL Tuple CIasSes....cc.oviiriieiiiieiiieie sttt sttt 49
Figure 4-4 CORAL Workspace and Relation Management Classes..........ccoceeeveennecenennn 49
Figure 4-5 CORAL System Runtime Snapshot............cccooiviiiiiiiiiii, 50
Figure 4-6 CORAL Main RDB Classes Inheritance Hierarchy.............ccoceeveivniicnnnnnn 51
Figure 4-7 CORAL RDB Classes Dependency Relationship..........cccccoocoonei 53
Figure 4-8 CORAL RDB Classes for JOIn ACHONSc.eccvviiireivieciiieree e cvre e 53
Figure 4-9 CORAL Relational Database Interface............cccceveeeriiniiniiiviniincn e 54
Figure 4-10 Extended CORAL RDB Class Diagramcccccooceeviriiencenenieenieeee e 55
Figure 4-11 Open a MySQL Database........ccoovviiiieeieiiiieieiie ettt 57
Figure 4-12 Map a MySQL Tablecoviiiiiieiiiieeee e 58
Figure 4-13 Join Mapped Tablesc..cooiiiiiiiiiiiiecceneee e e 59
Figure 4-14 Query a Mapped Table.......ccccooiiiiiiiiiiiiiie et 60
Figure 4-15 Insert a Tuple to the Backend Tablec..cooveieiiiiiiiiiiiiiee e 61
Figure 4-16 Execute Command at the Backend MySQLc..ccoccoiiniiinn 62
Figure 4-17 Commit the Backend MySQL Databasec...coccevvieiiieiineiiinneen, 63
Figure 4-18 Abstract Factory Pattern in RDB Classesccccocevviveniiiiiiiciiincne 64
Figure 4-19 Facade Pattern in RDB ClIasses.........coceviiviiierieiniencinieniccie e 65
Figure 4-20 Command Pattern in RDB Classescccoovviiiiiiiiiniiiiieic e 66
Figure 4-21 Iterator Pattern in RDB Classesccccccoeiiiiiiiiiiinieinieeceeeccec e 66
Figure 4-22 Template Method Pattern in RDB Classes.........ccccoceciviiiniiiiiiiiiiiiieis 67
Figure 4-23 RDB System CIasseS......ccooiiiiriiiiiiiieciniii ittt 68
Figure 4-24 RDB Database Classes........cccccevveriiiieiiieniiiiniiiiiiiicccies i v 70
Figure 4-25 RDB QUEry Classes......cuuvvieriiiiiiiieieeieieee et saainae e 73
Figure 4-26 RDB INsert Classesc.cceeviiiiiiiiiiiieeeiiie et ices ettt e 77
Figure 4-27 RDB Delete Classesoveeririerieiieiieecenieenicnieeee st e 78
Figure 6-1 Graph Database System ATChiteCtUrec.cooveiiiiiiiiiiiiiiieieieee e 93

viil

List of Tables

Table 2-1 CORAL RDB Command Set.......cccccoiiiiiiiiiiniiiieciicrienee sttt 7
Table 2-2 CORAL System Level ANNOtationsc..cccovevriiiniienienieniienee e 9
Table 2-3 CORAL User Level ANNOtationsc.ceeveveeeieereriennieerienieseeereseesneseeereens 9
Table 2-4 MySQL C API Commands Used in Implementation..........cc.cceceveevernniennnnen. 11
Table 2-5 MySQL Data type to CORAL Data Type Conversion...........cccoeceeereeeeeereennen. 12
Table 2-6 PostgreSQL C API Commands Used in the Implementation........................... 13
Table 2-7 PostgreSQL Data Type to CORAL Data type Conversioncco......... 14
Table 6-1. Relative Query Execution Timecococverieniininiiniiniereeeeiee e 97

1X

Chapter 1 Introduction

Due to the intensive data that have been generated by genomics projects, data
management, fast access and data mining are at the heart of bioinformatics. While
relational databases are widely applied within the industry, there has been considerable
research into deductive and graph databases to extend the capabilities of relational
databases. Deductive databases allow a view to be defined using logical rules, and allow
logical queries against the view. Since the rules allow recursive definitions, the resulting
expressive power of the query language is greater than the relational query languages.
Graph query languages are even more expressive, while having the very important
property of a visual representation. Diagrams are an intuitive way for scientists to pose
queries to relational, object- relational, and object databases. They allow the full range of
queries, from the very simple to the very complex, to be much more easily expressed and
understood than SQL-like languages or form-based queries, which are less intuitive to

scientists.
1.1 Motivation

A graph database system is established at Concordia University (described in Chapter 6).
It is to apply the benefits of diagrammatic queries, deductive query language, and
visualization of results more broadly in genomics. In this system, CORAL[1] works as
the deductive engine to evaluate queries and deduce results. Persistent relations are
required to supply and store facts for CORAL. From version 1.2, CORAL tried to access

data stored in relational databases. Two types of relational databases, Sybase and

Commercial Ingres, were connected with CORAL and the beta code was released. Since
both of these databases are commercial products, the potential performance improvement
on the database side solely depends on the software suppliers. Most genomics projects
use the open-source MySQL and PostgreSQL DBMS, so we require CORAL to interact
with them. MySQL and PostgreSQL are two advanced DBMS under open-source
agreement and their C application program interfaces provide convenient ways to access

the data in the databases from CORAL.

1.2 Contribution of the Thesis

This thesis aims at extending CORAL’s structure so as to connect it with MySQL and
PostgreSQL. The main achievements this thesis contributes are as follows:

*Design and implementation of CORAL’s MySQL and PostgreSQL interface using
design patterns and C/C++. It gives CORAL a solution to deal with the persistent data.
*Design and implementation of a CORAL client process based on the requirement of the

Graph Database System.
*Study and comparison of some of CORAL user-level optimization strategies.
eIntegration of the CORAL client with the TGL translator in the Graph Database System.
*Design and creation of MySQL and PostgreSQL databases according to the University
Model database structure [2].

*Redesign and implementation of CORAL’s rdb_join database interface.

*Update of CORAL’s documentation with respect to the RDB-commands.

1.3 Organization of the Thesis

This thesis consists of seven chapters and two appendices. Chapter 1 introduces the
motivation and contribution of the thesis. Chapter 2 describes the related disciplines for
the thesis. CORAL, MySQL, PostgreSQL, and design patterns are introduced in this
chapter. Chapter 3 presents the requirement of the CORAL extensional database
interface. Chapter 4 illustrates the solution according to the MySQL and PostgreSQL
client interface. Chapter 5 discusses the test result on these connections. Chapter 6
demonstrates CORAL’s application in the Graph Database System. Chapter 7 concludes
the thesis. Appendix A provides the University Data Model Schema in MySQL format.

Appendix B demonstrates the University Data Model Schema in PostgreSQL format.

Chapter 2 Background

2.1 CORAL

CORAL is a powerful deductive engine. It supports recursive queries, queries with
aggregate functions, and queries with negation. It was developed at the University of
Wisconsin-Madison. This work began in 1988 and the latest version is 1.5.2, which was
released on November 26, 1997. Information about CORAL can be accessed at
http://www.cs.wisc.edu/coral/. The full version of source code, from version0.1 to

version 1.5.2, is stored at ftp://ftp.cs.wisc.edu/coral/.

There are two highlights of CORAL’s implementation: extensibility and flexibility. First,
CORAL was developed under C++ class structure. Patterns were applied in its design and
implementation. It allows programmers to enhance and reengineer the C++ class
structure so as to enrich its functions, which include new data types, operations, relations,
and indexes. Second, CORAL supports quite a few evaluation strategies. Users can

influence the optimization techniques so as to exploit the full power of CORAL.

2.1.1 System architecture

As Figure 2.1 shows, CORAL consists of three subsystems: user interface, query
processor, and data manager.
The user interface is responsible for accepting a user’s request, passing it to the query

processor, and receiving the query result.

The query processor is composed of two main parts: a query optimizer and a query
evaluation system. Such simple queries as selecting facts from a base relation will be sent
to the query evaluation system directly. Only complex queries, which are usually
declared as program modules, will be transformed to an internal representation by the
query optimizer. Several control annotations will be added to it during this procedure.
Then, the optimized program will be transferred to the query evaluation system. In the
next step, the query evaluation system takes this annotated program and database
relations as input. It interprets and executes the program under the direction of
annotations. The query result will be retrieved from the relations and sent to the user
interface.

The query evaluation system has a well defined ‘get-next-tuple’ interface with the data
manager to access the relations [3]. This high level interface works in the same way no
matter what kinds of relations it deals with.

The data manager is in charge of maintaining and manipulating the data in relations. One
advantage of CORAL’s data manager is that it allows facts to contain variables, which is
different from most other deductive database system. CORAL supports in-memory hash-
relations as well as persistent relations. Multiple indices can be created and added to the
existing relations. The persistent relations can be stored in text files, using the EXODUS
storage manager [4], or in extensional databases. The data manager performs these
functions in different ways. Relations in the text files can be “consulted” to the main
memory and converted to in-memory relations. EXODUS is a client-server model storage
manager that is independent of CORAL. Each CORAL process is a client that can access

persistent data from the EXODUS server. Relations stored by EXODUS storage manager

can be paged into the client side buffers as required. The extensional databases act in the
similar way as EXODUS but provide flexibility for CORAL users to select databases
based on their relations characteristics. It is a new function of the data manager and
supports Sybase4.6 and Ingres6.2 in CORAL’s latest version. By talking with the client

interface of a RDBMS, the data manager loads and stores relations on demand.

Query

Evaluation T—————>

System

Data Manager L ——>

EXODUS
Storage DBMS OS Files
Manager

Optimized Program

Query
Optimizer
Hard Disk

Figure 2-1 CORAL System Architecture [1]

2.1.2 Runtime data management

CORAL creates a logical memory structure to manage its runtime data. The key concepts
involved are the workspace (or database), relation, and tuple. A workspace is the highest
level logical structure that contains one or more relations. A relation is the container of
tuples. A tuple is the smallest unit to compose a relation. The name of a workspace is
unique in CORAL and the name of a relation is unique in a workspace. In addition, a
relation belongs to a unique workspace only. However, tuples may be duplicated in a
relation. They can be added to a specific relation from the persistent storage or just from

CORAL’s command line.

When CORAL starts, two workspaces, builtin_ws and default_ws, are created during the
CORAL initialization period. The builtin_ws is used to store all built-in predicates and
default execution parameters. The default_ws acts as the workspace to process user
requests. CORAL names it as the current workspace. New workspaces can be created,
deleted, and switched as the current workspace by CORAL commands. Two rules in
CORAL must be aware that the builtin_ws can not be the current workspace and there is
only one current workspace in CORAL. When CORAL terminates, all existing

workspaces will be destroyed.

2.1.3 Extensional database interface

CORAL has designed an extensional database access interface, which is under
coralroot/src/class/rdb. A command set is provided to communicate with relational
databases and manage the extensional database interface. These commands can connect
CORAL with a relational database, map relational tables as CORAL relations, and
process data interactively between CORAL and the relational database system. All of
them produce side-effects and can be used either in a rule or in a CORAL command line.

The specification of these commands follows:

Command Description
rdb_open_db | Create a CORAL database link based on a backend
relational database.

rdb_map Give a CORAL relation name to a backend table, which
works as a base relation once mapped.

rdb_join Give a CORAL relation name to a join of backend
relations

rdb_execute | Issue an arbitrary database command. Most database
commands which cannot be directly expressed in CORAL
can be processed by the pass-through mechanism.
rdb_commit | Commit all changes to the database.

rdb_rollback | Undo all changes to the database.

Table 2-1 CORAL RDB Command Set

The two major requirements for using these features are that CORAL is compiled with
RDB support and the database system is running and accessible by CORAL. CORAL’s
traditional commands, such as rel_copy, delete, and insert, are supported by this
interface. Integer, real number, and string are the only supported types for this interface.
Nulls are not well supported because they must be converted to the string "null" when
loading from relational database table. Unless specified in rules, the relational database

will be connected and managed under the current workspace of CORAL.

2.1.4 Client-server model

CORAL can be used either in standalone mode or in server mode. To start the CORAL
server, run coral with the '-s' option. Client processes use sockets to connect with
CORAL server, which is under TCP/IP protocol. The default location is the local
machine and the default port is 6006. Changing the environment variables

CORALSERVER and CORALPORT can change these default settings as required.

2.1.5 Optimization strategies

In CORAL, annotations are added at the level of each module to guide query
optimiéation and control query evaluation. CORAL has a default execution environment
setting for the module that does not specify an annotation. Such CORAL commands as
disp]ay_defaults(), set(), clear(), and assign() are used to show and manipulate these
default settings. During the compilation of a module, these default annotations will be
added to the target file, the .M file. If annotations are declared in a module, they will

override the default annotations while the module is consulted.

CORAL’s annotations are divided into system-level annotations and user-level
annotations. System-level annotations include @convert_functions, @single_scc, and
@no_preprocessing. User-level annotations consist of Rewriting Annotations, Execution

Annotations, and Per-Predicate Annotations. They are listed in Table 2-2 and Table 2-3.

Name

Function

System-Level:

@convert_functions

convert arithmetic expressions to evaluable predicates

@single_scc

turns scc-by-scc seminaive evaluation on/off
scc: Strongly Connected Component

@nested_scc_eval

Not fully implemented

@no_preprocessing

no compile time preprocessing

Table 2-2 CORAL System Level Annotations

Name

Function

Rewriting annotations

@no_rewriting

perform no transformations

@sup_magic perform supplementary magic rewriting (Default)
@magic perform magic rewriting
@factoring perform context rule rewriting

@naive_backtracking

use naive backtracking

Execution Annotations

@pipelining execute using pipelining

@ordered_search execute using ordered search

@monotonic modifies treatment of negation and grouping

@lazy_eval computes answers in a lazy fashion(returns answers at
end of each iteration)

@multiset execute with multiset semantics

@check_subsumption

do subsumption checks on all predicates

@index_deltas

Create indexes on delta relations

@return_unify

perform return-unify optimizations for non-ground
terms

@interactive_mode

return answers one at a time and prompt the user for
more answers

Per-Predicate Annotations

@make_index

index on specified adorned predicate

@allowed_adornments

adornment algorithm tries to use only these adornments

@check_subsumption

subsumption checking on specified adorned predicate

@multiset

specified adorned predicate treated as a multiset
predicate

@aggregate_selection

modifies duplicate elimination by specifying tuples to
retain.

@aggsel_per_iteration

the selection is only done once per iteration

@aggsel_multiple_answers

the selection allows multiple answers in each groupin

@prioritize

prioritize use of facts in a derived relation

Table 2-3 CORAL User Level Annotations

Although CORAL developed a number of query evaluation strategies, it still uses
heuristic programming rather than a cost estimation package to choose evaluation
methods [1]. System-level annotations are used only internally by CORAL and for
debugging purposes. However, user-level annotations can be added directly to the source
code and they give the programmer freedom to control query optimization as well as
evaluation. They can be declared at the level of each module and override the default

environment setting for the module.
2.2 MySQL

2.2.1 History

As the representative open-source RDBMS (Relational Database Management System) in
the research and business fields, MySQL is specialized at fast speed, multi-user, multi-
thread, and robust SQL (Structured Query Language) support. It is founded and
developed by MySQL AB [5].

MySQL performs as a client-server system that consists of a multi-threaded SQL server
and different types of backend clients. It supplies transactional and non-transactional
storage engines. MySQL provides reference constraints by utilizing InnoDB type tables
to guard data integrity from version 3.23.43b. However, MySQL does not support
triggers, to be implemented in MySQL version 5.1. The recommended release version of
MySQL is 4.0. Version 4.1 and 5.0 are also available at MySQL’s website

http://www.mysql.org.

10

2.2.2 C API

MySQL is written in C and C++. It provides APIs (Application Program Interface) for
such languages as C, C++, JAVA, Perl, and PHP. The C API is developed by MySQL
AB and is the basis for most of the other APIs. All the functions are included in the
libmysqlclient library and fall into three distinct categories. Client programs that use
libmysqlclient must include the header file mysql.h and must link with the libmysqlclient

library. The main functions used in the implementation are shown in Table 2-4.

Function
Closes a previously opened server connection.
Returns an error message for the most recent API
failure
Returns an array of all columns structure
Shows the length of all fields in current row of the
result set.
Retrieve the next row from a result set.
Releases the memory occupied by a result set.
Gets or initializes a MYSQL object structure.

Name
mysql_close
mysql_error

mysql_fetch_fields
mysql_fetch_lengths

mysql_fetch_row
mysql_free_result
mysqgl_init

mysql_list_tables

Returns a table name set in the current database.

mysql_num_fields

Returns the number of columns in a result set.

mysql_num_rows

Returns the number of rows in a result set.

mysql_query

Executes a SQL query

mysql_real_connect

Try to connect to a MySQL database engine.

mysql_store_result

Returns a complete result set to the client process.

Table 2-4 MySQL C API Commands Used in Implementation

2.2.3 Supported data type

While retrieving data by the C API from MySQL, the data types in the MySQL field
structure are retrieved at the same time. Because CORAL only supports three kinds of
persistent data types currently, these data must be converted into corresponding CORAL
data type as stipulated in Table 2-5. The null is a special CORAL string for an empty

attribute.

11

Type Value Type Description CORAL Type
FIELD_TYPE_ENUM ENUM field Integer
FIELD_TYPE_INT24 MEDIUMINT field Integer
FIELD_TYPE_LONG INTEGER field Integer
FIELD_TYPE_LONGLONG | BIGINT field Integer
FIELD_TYPE_SHORT SMALLINT field Integer
FIELD_TYPE_TINY TINYINT field Integer
FIELD_TYPE _DECIMAL DECIMAL or NUMERIC Real
FIELD_TYPE_DOUBLE DOUBLE or REAL field Real
FIELD_TYPE_FLOAT FLOAT field Real
FIELD_TYPE_BLOB BLOB or TEXT field String
FIELD_TYPE_DATE DATE field String
FIELD_TYPE_DATETIME DATETIME field String
FIELD_TYPE_STRING CHAR field String
FIELD_TYPE_TIME TIME field String
FIELD_TYPE_TIMESTAMP | TIMESTAMP field String
FIELD_TYPE_VAR_STRING | VARCHAR field String
FIELD_TYPE_YEAR YEAR field String
FIELD_TYPE_NULL NULL-type field Null

Table 2-5§ MySQL Data type to CORAL Data Type Conversion

2.3 PostgreSQL

2.3.1 History

POSTGRES can be found at http://www.postgresqgl.org .

12

PostgreSQL is an object-relational database management system (ORDBMS) developed
by the computer science department at the University of California, Berkeley. Its ancestor
is the POSTGRES project, which was led by Professor Michael Stoneraker in the same

university between 1986 and 1993. Information about the design and data model of

The latest version of PostgreSQL is Version 7.4. Besides supporting SQL92 and SQL99,
PostgreSQL accepts complex queries, reference constraints, triggers, views, transactional
integrity, and multi-version concurrency control. As an open-source extensible system,
PostgreSQL gives users power to create their own data types, functions, operators,

aggregate functions, index methods, and procedure languages. The released code can be

downloaded at many websites, which is listed at the PostgreSQL website. PostgreSQL

runs in a client-server mode. The default connection port is 5432.

2.3.2C API
Name Function

PQclear Frees the storage assoctated with a PGresult. Every result object
should be freed via PQclear when it is no longer needed.

PQconnectdb Makes a new connection to the database server. All parameters are
passed in as a combined string. A PGconn memory structure is created
to hold the connection information.

PQdb Returns the database name of the current connection.

PQerrorMessage | Returns the latest error message generated by an operation on the
connection.

PQexec Submits a request to the server and waits for the result. The return
object type is PGresult.

PQfinish Closes the connection to the server. Also frees memory used by the
PGconn object.

PQfname Returns the column name associated with the given column number,
which starts at 0.

Pqgetlength Returns the actual length of a field value in bytes. Row and field
numbers start at 0.

PQgetisnull Tests a field for a null value. Row and field numbers start at 0.

PQgetvalue Returns a single field value of one row of a PGresult. Row and field
numbers start at 0.

PQnfields Returns the number of fields in the query result.

PQntuples Returns the number of rows in the query result.

PQresultStatus Returns the result status of current request.

PQstatus Returns the connection status (CONNECTION_OK or BAD)

PQsetdbLogin The predecessor of PQconnectdb. Makes a new connection to the
database server. Parameters are passed in as a fixed set.

Table 2-6 PostgreSQL C API Commands Used in the Implementation

Besides its standard command-line interface for data access, PostgreSQL provides a C
API, a TCL interface, and a JDBC interface for accessing the database data in user
applications. The C API, libpq, is composed of a set of functions that allow client
programs to send queries to the PostgreSQL backend server and to receive the result of
these queries. Similar to libmysqlclient library in MySQL, libpq is also the underlying

engine for several other PostgreSQL application interfaces, such as libpg++, libpgtcl, and

13

Perl. Client programs that use libpq must include the header file libpg-fe.h and must link
with the libpq library. The main functions used in the implementation are mentioned in

Table 2-6.

2.3.3 Supported data type

PostgreSQL defines all its data types as objects and assigns a unique object ID (OID) to
each of them. These OIDs are defined in the source file postgresqgl-

7.4/src/include/catalog/pg_type.h. Main data types involved in our implementation are:

OID name OID value Data type CORAL Type
BOOLOID 16 Bool field Integer
INT20ID 21 Smallint field Integer
INT40ID 23 Integer field Integer
INT8OID 20 Bigint OR Bigserial field Integer
FLOAT40ID 700 Deoubleprecision field Real
FLOAT8OID 701 Real field Real
NUMERICOID 1700 Numeric field Real
BPCHAROID 1042 Character field String
DATEOID 1082 Date field String
TEXTOID 25 Text field String
TIMEOID 1083 Time field String
TIMESTAMPOID 1114 Timestamp field String
VARCHAROID 1043 Varchar field String

Table 2-7 PostgreSQL Data Type to CORAL Data type Conversion

2.4 Design Pattern

The design pattern describes collaborating objects and classes that are customized to
solve a general design problem in a particular context [6]. It provides an easier way to
reuse successful designs and architectures. Design patterns can be classified by two
terms: purpose and scope. Design patterns can have creational, structural, or behavioral

purposes. Creational patterns deal with the object creation process. Structural patterns are

14

concerned with the composition of classes or objects. Behavioral patterns characterize the
interaction in classes or objects. On the other hand, design patterns can be divided into
class patterns and object patterns based on their application on classes or objects. Class
patterns are static and fixed at compile-time. They use inheritance to represent class
relationships. Object patterns consist of the majority of design patterns. They are used in
a more dynamic way because object relationships they deal with can only be decided at
run-time.

In CORAL’s design and implementation, many design patterns were utilized so as to
make the program extensible. The main patterns I followed in the design are: abstract

factory, fagade, command, iterator, and template method.

2.4.1 Abstract factory

AbstractFactory
Client
+CreateProductA(),
+CreateProductB()| :AbstractProductA
[i
|m————— ProductA2 ProductAl
|
! S
| 1
\]
ConcreteFactory1 1 !
ry ConcreteFactory2 ' AbstractProductB :
F——1 oo
+CreateProductA() +CreateProductA() : H
+CreateProductB() +CreateProductB() : ZP
t
t

e 2) roductB ProductB1

Figure 2-2 Abstract Factory Pattern [6]
Abstract factory is an object creational pattern to provide an interface for creating
families of related objects without declaring their concrete classes. It isolates the concrete
classes and makes exchanging product families easy. Moreover, consistency among

products is promoted by this pattern because it is easy to make product objects in a family

15

work together. However, since an AbstractFactory interface fixes the set of products that
can be initialized, it is difficult to support new kinds of products. Figure 2.2 shows the

concept structure of this pattern.

2.4.2 Facade

Facade

Subsystem Classes /

Figure 2-3 Facade Pattern [6]
Fagade is an object structural pattern to provide a unified interface to a set of interfaces in
a subsystem in order to make the subsystem easier to use. As Figure 2-3 shows, this
pattern isolates the subsystem and its clients. It hides details of the subsystem, thereby
reducing the number of objects that clients deal with and making the subsystem easier to
operate. On the other hand, this pattern does not prevent applications from using

subsystem classes directly. Thus, users can choose between ease of use and generality.

2.4.3 Command

Command is an object behavioral pattern to encapsulate a request as an object so as to
parameterize clients with different requests, queue, or log requests. Its structure is shown

in Figure 2.4. The Command pattern separates the object that invokes the operation from

16

the one that performs it. New commands are easily to be added because the existing class

structure does not have to be changed.

Invoker Command

1 * [+Execute()

Client
Receiver
+Action() \ ConcreteCommand
receiver->Action()
b e e e e e o —————— — —~———— 9
+Execute() -

Figure 2-4 Command Pattern [6]

2.4.4 Iterator

Iterator, as illustrated in Figure 2-5, is an object behavioral pattern to provide a sequential
access route to the elements in an aggregate object without exposing its underlying
structure. It supports variations while traversing an aggregate and simplifies the interface
for the aggregate. In addition, more than one traversal can be performed on an aggregate

because an iterator keeps track of its own state.

Iterator
Aggregate lien
+First()
+Createlterator() +Next()
+|lsDone()
+Currentltem()

All

ConcreteAggregate | _ _ ___ ____ ___ > Concretelterator

+Createlterator()

|
|
return new Concr'etelterator(this)

Figure 2-5 Iterator Pattern [6]

17

2.4.5 Template method

The Template method is a class behavioral pattern to declare the skeleton of an algorithm
and defer some steps to the subclasses. It permits subclass define the algorithm without
changing the algorithm’s structure. Template method is a fundamental technique for

reusing code. It calls concrete operations, concrete abstract class operations, abstract

operations and factory methods.

AbstractClass

+TemplateMethod() N .
+PrimitiveOperation1() PrimitiveOperation1()
+PrimitiveOperation2()

ZF PrimitiveOperation2()

ConcreteClass

+PrimitiveOperation1()
+PrimitiveOperation2()

Figure 2-6 Template Method Pattern [6]

18

Chapter 3 Requirement

This chapter mainly specifies the functions and behaviors CORAL needs to communicate
with MySQL and PostgreSQL. Use cases and flows of events are utilized to describe
these requirements. Each problem is defined and described in detail. Non-functional
requirements, such as hardware and implementation requirements, are also stipulated at

the end of the chapter.
3.1 Requirement Definition

As mentioned in 2.1.3, CORAL provides a Rdb command set for relational database
access and the beta version code was released as a compilation option. In order to abide
by this command set and make it work with MySQL and PostgreSQL databases, the
requirement is defined based on features of this command set and the two backend
database systems.

There are three main requirements for CORAL when it connects to MySQL or
PostgreSQL database management system. First of all, CORAL must provide an easy
way to establish the connection. Namely, by using specific CORAL commands, users can
access tables and data residing in MySQL or PostgreSQL. Second, from the user point of
view, CORAL must process the data from the backend database in the same way as the in
memory data. CORAL must use the same commands to delete, add, and query data no

matter if it is in the memory or in the hard disk. Third, for the convenience of users,

19

CORAL should work as a client program for the connected database system. In other
words, CORAL should act as the mysgl in MySQL or psql in PostgreSQL. Any DML
(Data Manipulate Language) and DDL (Data Definition Language) supported by the
database system should be executed directly in CORAL interface.

These requirements are converted to the use case diagram shown in Figure 3.1. The
actors represent roles interact with CORAL during this procedure. The use cases describe

what CORAL system does when linking to backend databases.

I |
l !
l |
I i

1

MySQL Database Database PostgreSOL Database

Figure 3-1 Use Case Diagram

20

3.2 Functional Requirement and Specification

Figure 3.1 is composed of four actors and sixteen use cases. Actor User represents a
human being or a CORAL client process that talks with CORAL. Actor Database
represents the database that CORAL can connect to. It has two children: one is MySQL
Database; the other is PostgreSQL Database. Actor MySQL Database stands for the
databases in MySQL database system requested by User from the CORAL side. Like
actor MySQL Database, actor PostgreSQL Database consists of those PostgreSQL
databases connected with CORAL.

The sixteen use cases fall into four functional groups. The first group is called connection
establishment group, which is composed of seven use cases. In this group, Open MySQL
Database and Open PostgreSQL Database are child use cases of Open Database; Map
MySQL Table and Map PostgreSQ!l Table inherit behavior and meaning of Map Table;
Join Mapped Table is a special use case because it only treats the CORAL relations
created by Map Table and does not communicate with extensional databases. The second
group is the relation process group, which consists of four use cases. Among these use
cases, Retrieve Tuple Set is included by Query Table and never stands alone, so it is
functionally connected with Query Table. From the User point of view, Insert Tuple and
Delete Tuple communicate with MySQL Database tables and PostgreSQI Database tables
in the same way as with in memory CORAL relations. Therefore, they do not have
derived use cases. Thirdly, since Execute Command can be substituted by Execute
MySQL Command and Execute PostgreSQl Command because of their generalization
relationship, they compose another functional group, execute command group. This

group mainly deals with the relational database commands not supported by CORAL.

21

Finally, the last two use cases, Commit Database and Rollback Database, form the fourth
group, transactional support group. They are used to support database transactions. All
these use cases are described in the following sections based on the group to which they

belong.

3.2.1 Connection establishment

3.2.1.1 Open database

Use Case: Open Database

ID : UCO1

Description
This use case is for identifying backend extensional databases to CORAL. By
sending connection request to the backend databases, the User can connect
CORAL with the database and store the database information as a CORAL
database in CORAL environment.

Actors
User, Database

Pre-conditions
CORAL is started and accessible to the User.

Flow of events
Main flow of events:
1. (start)The User enters the open database request through the keyboard.

2. The User commits the entry by pressing the Enter key.

22

3. CORAL receives the request and checks the command validity, which includes
command format, new CORAL database name, database system name, and
extensional database parameters.

4. CORAL sends the open database request to the Database.

5. The Database returns the execution result to CORAL. Connection is
established.

6. The connection information is stored in CORAL as a new CORAL database
under the name that the User provided.

7. (end) CORAL acknowledges the result to the User.

Alternative flow of events:

1. (start)The User enters the open database request through a running process.

2. CORAL receives the request and checks the command validity.

3. CORAL sends the open database request to the Database.

4. The Database returns the execution result to CORAL.

5. Connection is established.

6. (end) CORAL acknowledges the result to the User.

Exceptional Flow of Events:

Condition 1:

If the request is entered in a wrong format, system will display an error message

to the User. The use case terminates.

Condition 2:
If the database system name is wrong, the use case terminates with an error

message.

23

Condition 3:
If the new CORAL database name has been already used in CORAL, an error
message will be shown to the User. The use case terminates.
Condition 4:
If the User provides wrong information about the Database, such as wrong
database name, user name, password, or host location. The use case terminates
after sending an error message to the User.
Condition 5:
If the Database 1s not started or can not be accessed by CORAL, the use case
terminates.

Post-conditions
Added to the CORAL database list is a new CORAL database, which stores the
connection information.

3.2.1.2 Open MySQL database

Use Case: Open MySQL Database

ID : UCO11

Description
As a child use case of Open Database, this use case is for identifying backend
MySQL databases to CORAL. By sending a connection request to the MySQL
Database, the User can connect CORAL with the MySQL Database and store the
database information as a CORAL database in CORAL environment.

Actors

User, MySQL Database

24

Pre-conditions
Same as that of Open Database.

Flow of events
Same as that of Open Database.

Post-conditions
Added to the CORAL database list is a new CORAL database, which includes the
connected MySQL database information.

3.2.1.3 Open PostgreSQL database

Use Case: Open PostgreSQL Database

1D : UCO12

Description
As a child use case of Open Database, this use case is for identifying backend
PostgreSQL databases to CORAL. By sending a connection request to the
PostgreSQL Database, the User can connect CORAL with the PostgreSQL
Database and store the database information as a CORAL database in CORAL
environment.

Actors
User, PostgreSQL Database

Pre-conditions
Same as that of Open Database.

Flow of events
Same as that of Open Database.

Post-conditions

25

Added to the CORAL database list is a new CORAL database, which includes the
connected PostgreSQL database information.

3.2.1.4 Map table

Use Case: Map Table

ID : UCO02

Description

This use case is for mapping relational tables in the extensional databases as
CORAL relations. By means of the use case, CORAL creates special relations,
which are based on relational tables and treated as regular CORAL relations. All
facts of these relations are persistently stored in the backend databases as tuples
and can be loaded into memory if required.

Actors
User, Database

Pre-conditions
CORAL is started and accessible to the User. The connection with the Database
must be made.

Flow of events
Main flow of events:
1. (start)The User enters the map table request through the keyboard.

2. The User commiits the entry by pressing the Enter key.

3. CORAL receives the request and checks the command validity, which includes

the command format, CORAL database name, and the new CORAL relation

name.

26

4. CORAL sends the map table request to the Database. Relative database
information is retrieved from the established connection.

5. The Database returns the execution result to CORAL.

6. Mapping is made to the relational table. A CORAL relation 1s created and
added to the CORAL environment.

7. (end) CORAL acknowledges the result to the User.

Alternative flow of events:

1. (start)The User enters the map table request through a running process.

2. CORAL receives the request and checks the command validity.

3. CORAL sends the map table request to the Database.

4. The Database returns the execution result to CORAL.

5. Mapping is made to the relational table.

6. (end) CORAL acknowledges the result to the User.

Exceptional Flow of Events:

Condition 1:

If the request is entered in a wrong format, system will display an error message
to the User. The use case terminates.

Condition 2:

If the CORAL database name is wrong, which means it is not a database

connected to the Database, an error message will be shown to the User. The use

case terminates.

Condition 3:

27

If the User provided a CORAL relation name has been already used in the current
workspace, the use case terminates with an error message.
Condition 4:
If the User provides wrong information about the Database, such as wrong table
names, the use case terminates after sending an error message to the User.
Condition 5:
If the Database can not be accessed by CORAL, the use case terminates.

Post-conditions
CORAL relations are created based on the backend relational tables.

3.2.1.5 Map MySQL table

Use Case: Map MySQL Table

ID : UCO021

Description
This use case is for mapping relational tables in the MySQL databases as CORAL
relations. It is a child use case of Map Table. CORAL creates special relations,
which are based on MySQL relational tables, and treated as regular CORAL
relations. All facts in these relations are persistently stored in the MySQL
databases and can be loaded into memory, if required.

Actors
User, MySQL Database

Pre-conditions
Same as that of Map Table.

Flow of events

28

Same as that of Map Table.
Post-conditions
CORAL relations are created based on the MySQL relational tables.
3.2.1.6 Map PostgreSQL table
Use Case: Map PostgreSQL Table
ID : UC022
Description
This use case is for mapping relational tables in the PostgreSQL databases as
CORAL relations. It is a child use case of Map Table. CORAL creates special
relations, which are based on PostgreSQL relational tables and treated as regular
CORAL relations. All facts in these relations are persistently stored in the
PostgreSQL databases and can be loaded into memory, if required.
Actors
User, PostgreSQL Database
Pre-conditions
CORAL is started and accessible to the User.
Flow of events
Main flow of events:
Same as that of Map Table.
Alternative flow of events:
Same as that of Map Table.
Exceptional Flow of Events:

Same as that of Map Table.

29

Post-conditions
CORAL relations are created based on the PostgreSQL relational tables.

3.2.1.7 Join mapped table

Use Case: Join Map Table

ID : UCO3

Description
This use case is for mapping two or more backend relations into the current
workspace as a new relation. Each backend relation is a CORAL relation that has
been mapped to the relational tables by Map Table. The use case is solely an
optimization because it allows the equi-join to be performed within the backend
database rather than within CORAL.

Actors
User, Database

Pre-conditions
CORAL is started and accessible to the User. The CORAL relation has been
already created by the Map Table.

Flow of events
Main flow of events:
1. (start)The User enters the join table request through the keyboard.
2. The User commits the entry by pressing the Enter key.
3. CORAL receives the request and checks the command validity, which includes
the command format and the new CORAL relation name.

4. CORAL retrieves information about the backend relations.

30

5. The relation is created based on the existing backend relations and stored in the
CORAL environment.
6. (end) CORAL acknowledges the result to the User.
Alternative flow of events:
1. (start)The User enters the join table request through a running process.
2. CORAL receives the request and checks the command validity.
3. CORAL retrieve information about the backend relations.
4. The relation is created based on the existing backend relations and stored in the
CORAL environment.
5. (end) CORAL acknowledges the result to the User.
Exceptional Flow of Events:
Condition 1:
If the request is entered in a wrong format, the system will display an error
message to the User. The use case terminates.
Condition 2:
If the User provided a CORAL relation name that has been already used in the
current workspace, the use case terminates with an error message.
Condition 3:
If the backend CORAL relation name is wrong, an error message will be shown to
the User. The use case terminates.
Post-conditions

CORAL relations are created based on the backend CORAL tables.

31

3.2.2 Relation process

3.2.2.1 Query table

Use Case: Query Table

ID : UC04

Description
This use case is for retrieving results from the backend databases through the
CORAL relations created during Map Table or Join Mapped Table use case. The
User will use CORAL’s standard query command to operate the use case, like
querying an in-memory CORAL relation. The query result will be displayed to
the User in the way stipulated by CORAL run-time parameters.

Actors
User, Database

Pre-conditions
CORAL is started and accessible to the User. The CORAL relation has been
already created.

Flow of events
Main flow of events:
1. (start)The User enters the query through the keyboard.
2. The User commits the entry by pressing the Enter key.
3. CORAL receives the request and checks the query validity, which includes
command format, CORAL relation name, and relation attributes.
4. Includes the Retrieve Tuple Set use case, which interacts with the Database and

returns the result.

32

5. CORAL deduces the result based on the facts created by the Retrieve Tuple Set
use case.
6. (end) CORAL returns the result to the User.
Alternative flow of events:
1. (start)The User enters the query through a running process.
2. CORAL receives the request and checks the query validity.
3. Includes the Retrieve Tuple Set use case.
4. CORAL deduces the result based on the facts created by the Retrieve Tuple Set
use case.
5. (end) CORAL returns the result to the User.
Exceptional Flow of Events:
Condition 1:
If the query is entered in a wrong format, the system will display an error
message. The use case terminates.
Condition 2:
If the User inputs the wrong relation name, an error message will be shown to the
User. The use case terminates.
Condition 3:
If the User provided wrong attributes, such as wrong attribute type and wrong
attribute sequence, the use case terminates with an error message.
Post-conditions

Query result is sent to the User.

33

3.2.2.2 Retrieve tuple set
Use Case: Retrieve Tuple Set
ID : UC041

Description

This use case is for retrieving facts from the backend database and storing them in
memory. The use case is included in Query Table use case. It communicates with
the backend database and creates a set of facts based on the request from Query
Table. The facts will be used by Query Table.
Actors
Database
Pre-conditions
Query Table use case is started and the User inputs a command.
Flow of events
Main flow of events:
1. (start) The Database is called to retrieve the required facts.
2. The facts are created and stored in memory.
3. (end) The Database acknowledges the execution result.
Alternative flow of events:
None.

Exceptional Flow of Events:

If the Database can not be accessed by CORAL, the use case terminates.

Post-conditions

A fact set is created and stored in memory.

34

3.2.2.3 Insert tuple
Use Case: Insert Tuple
ID : UCO05
Description
This use case is for storing new facts of mapped tables to the hard disk while
CORAL is running. It acts as the insert command in SQL.
Actors
User, Database
Pre-conditions
CORAL is started and accessible to the User. The CORAL relation has been
already created.
Flow of events
Main flow of events:
1. (start)The User enters the insert tuple request through the keyboard.
2. The User commits the entry by pressing the Enter key.
3. CORAL receives the request and checks the command validity, which includes
command format, CORAL relation name, and relation attributes.
4. CORAL sends the insert tuple request to the Database.
5. New tuple is inserted into the relational table.
6. The Database returns the execution result to CORAL.
7. (end) CORAL acknowledges the result to the User.
Alternative flow of events:

1. (start)The User enters the insert tuple request through a running process.

35

2. CORAL receives the request and checks the command validity.

3. CORAL sends the insert tuple request to the Database.

4. New tuple is inserted into the relational table.

5. The Database returns the execution result to CORAL.

6. (end) CORAL acknowledges the result to the User.

Exceptional Flow of Events:

Condition 1:

If the request is entered in a wrong format, the system will display an error
message to the User. The use case terminates.

Condition 2:

If the CORAL relation name is wrong, which means that it is not a mapped table
from the backend database, an error message will be shown to the User. The use
case terminates.

Condition 3:

If the User provided wrong attributes, such as wrong attribute type and wrong
attribute sequence, the use case terminates with an error message.

Condition 4:

If the Database can not be accessed by CORAL, the use case terminates.

Post-conditions

New tuples are inserted into the relational tables and stored in hard disk.

3.2.2.4 Delete tuple

Use Case: Delete Tuple

1D

: UC06

36

Description
This use case is for deleting a specific fact or a set of facts from the mapped tables
and storing the result to the hard disk while CORAL is running. It acts as the
delete command in SQL.
Actors
User, Database
Pre-conditions
CORAL is started and accessible to the User.
Flow of events
Main flow of events:
1. (start)The User enters the delete tuple request through the keyboard.
2. The User commits the entry by pressing the Enter key.
3. CORAL receives the request and checks the command validity, which includes
command format, CORAL relation name, and relation attributes.
4. CORAL sends the delete tuple request to the Database.
5. The tuples are deleted from the relational table.
6. The Database returns the execution result to CORAL.
7. (end) CORAL acknowledges the result to the User.
Alternative flow of events:
1. (start)The User enters the delete tuple request through a running process.
2. CORAL receives the request and checks the command validity.
3. CORAL sends the delete tuple request to the Database.

4. The tuples are deleted from the relational table.

37

5. The Database returns the execution result to CORAL.

6. (end) CORAL acknowledges the result to the User.

Exceptional Flow of Events:

Condition 1:

If the request is entered in a wrong format, the system will display an error

message to the User. The use case terminates.

Condition 2:

If the CORAL relation name is wrong, which means that it is not a mapped table

from the Database, an error message will be shown to the User. The use case

terminates.

Condition 3:

If the User provided wrong attributes, such as wrong attribute type and wrong

attribute sequence, the use case terminates with an error message.

Condition 4:

If the Database can not be accessed by CORAL, the use case terminates.
Post-conditions

Required tuples are deleted from the relational tables.

3.2.3 Execute command

3.2.3.1 Execute command
Use Case: Execute Command
D : UCo7

Description

38

This use case 1s for executing DDL and DML commands, such as create table and
update table, on the backend extensional databases from the CORAL interface.
CORAL acts as a client process of the underlying extensional database system.
All requests will be written in the supported format and sent to the database
system through the connection built by Open Database. The command is allowed
to produce output, such as the command select. The fesult will be displayed to the
User when execution finishes.

Actors
User, Database

Pre-conditions
CORAL is started and accessible to the User. The Database has been connected
already.

Flow of events
Main flow of events:
1. (start)The User enters the command request through the keyboard.
2. The User commits the entry by pressing the Enter key.
3. CORAL receives the request and checks the command validity, which includes
command format and CORAL database name.
4. CORAL sends the command to the Database.

5. The Database executes the command and returns the execution result to

CORAL.
6. (end) CORAL acknowledges the result to the User.

Alternative flow of events:

39

1. (start)The User enters the command request through a running process.

2. CORAL receives the request and checks the command validity, which includes
command format and CORAL database name.

3. CORAL sends the command to the Database.

4. The Database executes the command and returns the execution result to
CORAL.

5. (end) CORAL acknowledges the result to the User.

Exceptional Flow of Events:

Condition 1:

If the request is entered in a wrong format, the system will display an error
message to the User. The use case terminates.

Condition 2:

If the CORAL database name is wrong, an error message will be shown to the
User. The use case terminates.

Condition 3:

If the Database is not started or can not be accessed by CORAL, the use case

terminates with an error message.

Post-conditions

The command has been executed in the Database. The result is displayed to the

User.

3.2.3.2 Execute MySQL command

Use Case: Execute MySQL Command

: UCO71

40

Description
This use case is for executing regular DDL and DML commands on the backend
MySQL database from the CORAL interface. CORAL acts as a client process of

the MySQL server. The use case is a child use case of Execute Command.

Actors
User, MySQL Database

Pre-conditions
CORAL is started and accessible to the User. The backend MySQL database
connection has been established already.

Flow of events
Same as in Execute Command.

Post-conditions
The command has been executed in the MySQL database system. The result is
displayed to the User.

3.2.3.3 Execute PostgreSQL command

Use Case: Execute PostgreSQL Command

ID : UCO072

Description
This use case is for executing regular DDL and DML commands on the backend
PostgreSQL database from the CORAL interface. CORAL acts as a client process
of the PostgreSQL server. The use case is a child use case of Execute Command.

Actors

User, PostgreSQL Database

41

Pre-conditions
CORAL is started and accessible to the User. The backend PostgreSQL database
connection has been established already.
Flow of events
Main flow of events:
Same as in Execute Command.
Post-conditions
The command has been executed in the PostgreSQL database system. The result

is displayed to the User.

3.2.4 Transactional support

3.2.4.1 Commit database
Use Case: Commit Database
ID : UCo8
Description
This use case is for committing all changes to the backend database system. The
backend database system must be set in the transactional support mode.
Actors
User, Database
Pre-conditions
CORAL is started and accessible to the User.
Flow of events
Main flow of events:

1. (start)The User enters the commit database request through the keyboard.

42

2. The User commits the entry by pressing the Enter key.

3. CORAL receives the request and checks the command validity, which includes
command format and the CORAL database name.

4. CORAL sends the request to the Database.

5. All uncommitted actions on the Database are committed and stored
permanently.

6. The Database returns the result to CORAL.

7. (end) CORAL acknowledges the result to the User.

Alternative flow of events:

1. (start)The User enters the commit database request through a running process.
2. CORAL receives the request and checks the command validity.

3. CORAL sends the request to the Database.

4. All uncommitted actions on the Database are committed and stored.

5. The Database returns the result to CORAL.

6. (end) CORAL acknowledges the result to the User.

Exceptional Flow of Events:

Condition 1:

If the request is entered in a wrong format, the system will display an error
message to the User. The use case terminates.

Condition 2:

If the CORAL database name is wrong, an error message will be shown to the
User. The use case terminates.

Condition 4:

43

If the Database can not be accessed by CORAL, the use case terminates.
Post-conditions
All uncommitted actions are committed and stored in the Database.
3.2.4.2 Rollback database
Use Case: Rollback Database
ID : UCO08
Description
This use case is for rolling back all changes to the backend database system. The
backend database system must be set in the transactional support mode.
Actors
User, Database
Pre-conditions
CORAL is started and accessible to the User.
Flow of events
Main flow of events:
1. (start)The User enters the rollback database request through the keyboard.
2. The User commits the entry by pressing the Enter key.
3. CORAL receives the request and checks the command validity, which includes
command format and the CORAL database name.
4. CORAL sends the request to the Database.
5. All uncommitted actions on the Database are undone and the Database is
rolled back to the previous committed state.

6. The Database returns the result to CORAL.

44

7. (end) CORAL acknowledges the result to the User.

Alternative flow of events:

1. (start)The User enters the rollback database request through a running process.

2. CORAL receives the request and checks the command validity.

3. CORAL sends the request to the Database.

4. All uncommitted actions on the Database are undone.

5. The Database returns the result to CORAL.

6. (end) CORAL acknowledges the result to the User.

Exceptional Flow of Events:

Condition 1:

If the request is entered in a wrong format, the system will display an error

message to the User. The use case terminates.

Condition 2:

If the CORAL database name is wrong, an error message will be shown to the

User. The use case terminates.

Condition 4:

If the Database can not be accessed by CORAL, the use case terminates.
Post-conditions

All uncommitted actions are rolled back permanently.

45

3.3 Non-functional Requirement and Specification

3.3.1 Computer hardware and software requirement

The system should run on the Unix server. The computer hardware, such as CPU,
physical memory, and hard disk, must satisfy the requirements of the CORAL, MySQL,
and PostgreSQL software packages.

The program will be developed in C++ in order to extend CORAL’s original structure.
GNU Make will be used to compile the source code. The MySQL database system and

PostgreSQL database system must be installed and running properly.

3.3.2 System performance and reusability

The system will provide a convenient way for CORAL users to manage facts, i.c.
retrieving and storing data. It will abide by all CORAL commands. For the concern of
reusability, object-oriented design will be utilized in the system development. Such C++

techniques as inheritance, polymorphism, and design patterns will be applied during the

design, as done in CORAL.

46

Chapter 4 Design

4.1 Architecture Design

This chapter presents an object-oriented design for linking CORAL to MySQL and
PostgreSQL. The structural aspects of this link are discussed, including the overall
structure and detailed design of each class. CORAL’s rules of data management are
studied and described as a prerequisite. Class diagrams, object diagrams, and interaction
diagrams are drawn to show the class relationships and the runtime system snapshot at a

given moment.

4.1.1 CORAL system structure

As an extension of CORAL’s present system, the design for linking to MySQL and
PostrgreSQL is based on CORAL’s default structure and abjdes by all CORAL rules.
Therefore, the CORAL system is studied and its methods to manage workspaces,
relations, tuples, and extensional database connections are described in this section.

4.1.1.1 Classes for creating CORAL workspaces, relations, and tuples

In CORAL, a set of classes are used to create workspaces and relations. As Figure 4-1
shows, class Cor_DatabaseStruct is designed for creating CORAL’s built-in workspace
(builtin_ws), default workspace (default_ws), and any runtime workspaces created by the

ws_create command. The Cor_CRdbDatabase class is assumed to construct the object for

47

an extensional database connection, although CORAL has not reached this step yet. Itis a

child class of Cor_DatabaseStruct. Both of them are concrete classes.

Cor_DatabaseStruct

T

Cor_CRdbDatabase

Figure 4-1 CORAL Workspace Classes
Figure 4-2 shows the high-level classes for creating and managing relations. The
Cor_Relation class is an abstract class that provides a common interface for its children
classes. Class Cor_BuiltinRelation is used to create predicate relations, which are used to
create CORAL’s predicates. Class Cor_DerivedRelation and Cor_StorageRelation are
designed for regular in-memory relations. Cor_BuiltinRelation and Cor_Derivedrelation
are concrete classes, whereas Cor_StorageRelation is an abstract class. All of them have
derived classes, which are ignored in this diagram. The fourth child class,

Cor_CRdbRelation, is for extensional database connections. It is a concrete class and a

main focus in the thesis.

Cor_Relation

T
1 [I]

Cor_BuiltinRelation Cor_CRdbRelation Cor_DerivedRelation Cor_StorageRelation

Figure 4-2 CORAL Relation Classes
CORAL uses the Cor_Tuple class to create in memory tuple objects. The Cor_Tuple

class has an attribute Cor_ArgList and some public flags. Cor_ArgList is used to hold

48

attributes of tuples. Each attribute is represented by a Cor_Arg object, which is from the
class that CORAL uses to create all its arguments in the runtime. The relationship of

these classes is shown in Figure 4-3.

Cor_Tuple Cor_ArglList Cor_CArg
+*_arg : Cor_ArgList-——-- -*args : Cor_CArgf----

Figure 4-3 CORAL Tuple Classes
4.1.1.2 Classes for managing CORAL workspaces and relations
Two main classes, Cor_SymTable and Cor_SymTabElement, are used to manage the
runtime CORAL workspaces and relations. Class Cor_SymTable is a container for
Cor_SymTabElement objects and uses a hash table to store these objects.
Cor_SymTabElement is the class to store information of a workspace or a relation. A

void pointer is defined in this class in order to point objects of any type.

Cor_SymTable Cor_SymTabElement
-**_symtab : Cor_SymTabElementj-—---- Y-*data : void

Figure 4-4 CORAL Workspace and Relation Management Classes

4.1.1.3 Runtime workspaces and relations structure

When CORAL starts, a tree style memory structure is created to hold workspaces and
relations. At first, a Cor_Symtable type object named Cor_DatabaseTable is created.
While the two Cor_DatabaseStruct type workspaces, builtin_ws and default_ws, are
created in the initialization period, the default_ws is added to the Cor_DatabaseTable as a
Cor_SymTabElement. Like default_ws, if a new Cor_DatabaseStruct type workspace is
created in CORAL, it will be inserted into the Cor_DatabaseTable, too. The only

exception is the builtin_ws that is solely managed by the CORAL system and never

49

added to the Cor_DatabaseTable. In each Cor_DatabaseStruct object, there is an attribute
called RelationTable, which is a Cor_Symtable object for holding relations. Although
CORAL defines the Cor_CRdbDatabse class intending to create workspaces for
extensional database connections, it is not utilized yet. The solution for managing these
connections will be described in 4.1.1.4.

When relations are created in CORAL, they will be stored in the workspaces they belong
to. Because the Cor_BuiltinRelation objects are for CORAL predicates, all these objects
is stored in the Cor_Symtable of the builtin_ws workspace. All other types of relations,
such as extensional database relations and in memory relations, are stored in the

Cor_Symtable of the current workspace.

CORAL:Main
Cor_DatabaseTable : Cor_SymTable builtin_ws : Cor_DatabaseStru
symtab ; Cor_SymTabElement RelationTable:Cor_SymTabt
I
[symtab : Cor_SymTabElement
default ws : Cor_DatabaseStruct :|
[
| l |
I Py [PN Y
RelationTable : Cor SymTable rdb_open_db list_rels :|
1
symtab:Cor_SymTabElement
[]
il Qlioatd { Ohicctn
rdb_relation ; Cor dbRelation memory_retation:Cor_DerivedRelation

Figure 4-5 CORAL System Runtime Snapshot
Figure 4-5 illustrates a runtime snapshot of the CORAL system. At the moment this

object diagram is drawn, the CORAL system has been initialized, i.e. default_ws,

50

builtin_ws, and all predicates have been established. At least one or more regular
workspaces have been created and at least one extensional relation, rdb_relation, and one
in-memory relation, memory_relation, have been constructed.

4.1.1.4 Relational database interface

From version 1.2, CORAL tried to access data stored in relational databases. A class
hierarchy has been used to interact with relational databases and CORAL’s in-memory
structure. CORAL called these classes RDB classes and named them starting with Rdb.
They consist of thirteen classes. The relations among these classes are illustrated in
Figures 4-6, 4-7, 4-8, and 4-9. Although Cor_CRdbManger, Cor_CRdbRelation, DList,
and Cor_DBEntry are not RDB classes, they are drawn in the figures because of their
important roles related to the RDB classes. Their functions will be discussed with RDB

classes, too.

RdbError

RdbManager RdbSystem RdbCursor RdbCompilableDML i RdbD:
Cor_CRdbManagerj DList Cor_DBEntry RdbQuery Rdbinsert RdbDelete
-

Figure 4-6 CORAL Main RDB Classes Inheritance Hierarchy
Figure 4-6 describes the generalization relationship of the main RDB classes. Class
RdbError is located at the highest level. This class is used to manage all possible errors

generated by RDB classes.
The RdbManager class and Cor_CRdbManager class perform a key role to control data

interaction between CORAL and extensional databases. Both of them are concrete

51

classes. RdbManager is used to manage RdbSystems and Cor_CRdbManager is used to
store connections to RdbDatabases. Cor_CRdbManager inherits all features of
RdbManager. It has an object of DList, which is a template class that can contain
Cor_DBEntry objects. The Cor_DBEntry object records the extensional database
connection names and the information about the connections. It acts as the
Cor_CRdbDatabase and solely controlled by Cor_CRdbManger.

Class RdbSystem represents particular DBMSs. It is an abstract class. Each specific
DBMS should be managed by a concrete class derived from it. All database connections
to this DBMS must be solely created and controlled by this class.

Class RdbDatabase is the most important class among all RDB classes because it works
as the functional center to treat all requests related to the extensional databases. It is an
abstract class and provides a virtual interface for child concrete database classes that deal
with the extensional databases. RdbDatabase does not belong to the CORAL database
hierarchy and it is managed by RdbSystem.

Class RdbRelation stands for all connections to extensional tables. Each RdbRelation
object stores such information as the backend relation name, a collection of column
names, and the database in which it resides.

Class RdbCompilableDML is a concrete class for any database statements that can be
“prepared” and stored temporarily. These statements include insert, delete, and all
queries. Class Rdblnsert, RdbDelete, and RdbQuery are derived from it. These three
classes are for inserting a tuple, deleting a tuple, and querying on specific tables in the

backend databases. They are all abstract classes and have concrete child classes for any

DBMS that CORAL supports.

52

Class RdbCursor is an iterator class that will be used during queries on the backend

tables. It stores some state of the query. Figure 4-7 describes its relation to the RdbQuery.

Rdbltem RdbCursor

¥
|
i
3
1 L

RdbDelete Rdbinsert RdbQuery

Figure 4-7 CORAL RDB Classes Dependency Relationship
Figure 4-7 introduces another RDB class, Rdbltem, which is a collection of types of
attribute that the RDB interface supports. Three data types are currently supported by
CORAL. They are integer, real number, and string. RdbDelete, Rdblnsert, and RdbQuery
are dependent on Rdbltem because all objects of these three classes deal with Rdbltem
type objects. This class is designed according to the Cor_Arg class, which is much more

complex and belongs to the CORAL kernel.

Cor_CRdbRelation| RdbJoin RdbRelation

RdbJoinCondition|

Figure 4-8 CORAL RDB Classes for Join Actions
Two more RDB classes, RdbJoin and RdbJoinCondition, must be mentioned because
they are extremely important while mapping extensional tables to CORAL relations. As
Figure 4-8 shows, class RdbJoinCondition records the equal join condition between any
two different or same relations. Class RdbJoin is based on RdbRelation and

RdbJoinCondition. These objects store the information of relations that are involved in

53

the join and their join conditions. The Cor_CRdbRelation objects are created based on the

RdbJoin. One Cor_CRdbRelation may be dependent on one or more RdbRelations.

RdbManger | Manage | RdbSystem | Manage |RdbDatabase| Manage | RdbCompilableDML

Manage

RdbRelation

Figure 4-9 CORAL Relational Database Interface
In Figure 4-9, five RDB classes are shown. During CORAL runtime, only one
RdbManager object will be created (as the parent of Cor_CRdbManger), which will
manage one or more RdbSystem classes. Each RdbSystem object is for a specific DBMS
that CORAL can link to. One or more RdbDatabase objects will be created based on the
RdbSystem they reside in and stored in the RdbSystem. Each RdbDatabase object will
contain one RdbCompilableDML, which is the start point of RdbQuery, Rdblnsert and
RdbDelete. The RdbRelation objects are based on the RdbDatabase they belong to and as

components of the corresponding Cor_CRdbRelation objects.

4.1.2 Classes for MySQL and PostgreSQL

In order to connect CORAL to MySQL and PostgreSQL, classes are designed to extend
CORAL’s current class structure. The overall class diagram is in Figure 4-10. Twelve
concrete classes are added to perform specific tasks for communicating with extensional
databases. All these classes follow CORAL’s rules mentioned above and the C API of
MySQL and PostgreSQL. These classes are divided in two groups, one for MySQL and

the other for PostgreSQL.

54

RdbError

[y
l |

RdbManager RdbSystem RdbCursor RdbCompilableDML RdbRelation RdbDatabase
ol RdbMysqlSystem IRdbP ISy RdbQuery Rdbinsert RdbDelete iDatabase | {RdbP
RdbMysqlQuery RdbPostgresqiQuery ysqil RdbP [t RdbMysqiDelete RdbPostgresqiDelete

RdbMysqlQueryResult RdbPostgresqlQueryResult

Figure 4-10 Extended CORAL RDB Class Diagram

4.1.2.1 Classes for MySQL

Classes for MySQL include RdbMysqlSystem, RdbMysqlDatabase, RdbMysglInsert,
RdbMysqglDelete, RdbMysqlQuery, and RdbMysqlQueryResult. Class RdbMysqlSystem
is derived from RdbSystem. It is responsible for creating a concrete instance for MySQL.
It is initialized from the RdbManager. All MysqglDatabase objects are created by this
class. Class RdbMysqlDatabase is used to establish the connection with a specific
MySQL database. Any DDL and DML operation on the backend MySQL database will
be processed by this class. Class RdbMysqllnsert and class RdbMysqlDelete perform the
tuple insert and delete tasks for the backend database. They are derived from their
abstract parent classes and perform the opposite functions from the databases’ point of
view. Class RdbMysqlQuery serves as the iterator while processing a query on the
backend relations. All facts it processes are from the RdbMysqlQueryResult collection.
Class RdbMysqlQueryResult is a special class for holding the query result set returned
from the backend database and the status of the result set. It always binds with a

RdbCursor when initialized.

55

4.1.2.2 Classes for PostgreSQL

Similar to MySQL, there are six classes, RdbPostgresqlSystem, RdbPostgresglDatabase,
RdbPostgresqglInsert, RdbPostgresglDelete, RdbPostgresqlQuery, and
RdbPostgresqlQueryResult, designed for PostgreSQL. Class RdbPostgresqlSystem is
derived from RdbSystem, too. It is used to create a concrete instance for PostgreSQL.
PostgresqlDatabase objects are initialized and stored by this class. Class
RdbPostgresqlDatabase is used to establish the connection with a specific PostgreSQL
database. Any operation on the backend PostgreSQL database will be processed by this
class. Class RdbPostgresqllnsert and class RdbPostgresqlDelete perform the tuple insert
and delete tasks for the backend database. They are derived from their abstract parent
classes. Class RdbPostgresqlQuery serves as the iterator while processing a query on the
backend relations. It retrieves all the required facts from RdbPostgresqlQueryResult.
Class RdbPostgresqlQueryResult is designed for holding the query result set returned
from the backend database and the status of the result set. It always binds with a

RdbCursor when created.

4.1.3 Behavioral modeling

This section describes the dynamic aspects of the system. It is according to the use cases
mentioned in section 3.2. All solutions for these use cases are discussed by means of

classes designed above. Since MySQL and PostgreSQL are both extensional databases
and share similar behaviors when CORAL connects to them, only MySQL is used for the

example.

56

4.1.3.1 Establish database connections
Use cases concerned are Open Database (UC01), Open MySQL Dtabase(UCO11), and

Open PostgreSQL Database(UCO012). Figure 4-11 shows the sequence when connecting

CORAL with a MySQL database.

User :Cor_CRdbManager :RdbMysqiSystem MySQL Database

|l

T T
M D
M open MySQL DB :

T

:

i
check command |
I
check C-DB Name |
t

find MySQL System
create database '

oL check MySQL database

T

]

:

!

I

[}

!

[}

[}

I

|

!

i

1

N
Database is Ready D

I GG E L EEEE L P L RS ;

[}

3

[}

[}

[}

:

1

1

t

1

i

[}

<<create>>
————————» :RdbMysqiDatabase

store CORAL DB stored i

Figure 4-11 Open a MySQL Database
First of all, the user types in request to establish a connection with MySQL database.
Cor_CRdbManager will catch the request and check its syntax. Then, CORAL will check
whether the name for this CORAL RDB database has already been used. If not,
RdbMysqlSystem will be called to create the database. After RdbMysqlSystem receives
the command, it will contact with the MySQL Database to ensure that the backend
database is exist and ready for connection. The next step is that one RdbMysqlDatabase
object is created and stored in RdbMysqlSystem. As a result, this connection is
represented by a CORAL RDB name and stored in Cor_CRdbManger. Result message

will be displayed to the user before the sequence ends.

57

4.1.3.2 Establish table connections

As described in use case Map Table(UC02), Map MySQL Table(UC021), and Map
PostgreSQL Table(UC022), backend relational tables can be mapped as CORAL
relations. Figure 4-12 illustrates the process for mapping a MySQL table to a CORAL

relation.

User :Cor_CRdbManager elatj ble:

map MySGL table :

check command

find opened MySQL DB
check whether the CORAL relation already exists

not in use U
R e ..

<<create>>

:RdbRelation

T
1
<<create>>,
i

T
<<create>>
H

:Cor_CRdbRetation

1
]
]
]
1
1
i
:RdbJoin :
)
1
|
1
1
1
1
)

i
-
)
—
/]\

Figure 4-12 Map a MySQL Table
When the user issues the map table request, Cor_CRdbManger first catches the request
and validates the syntax of the request. Then, the opened RDB database list is checked
for the CORAL RDB database name mentioned in the command. If it exists, the new
CORAL relation name will be checked by referring to the RelationTable. If the provided
relation name is not used in current workspace, Cor_CRdbManager will create two
objects of type RdbRelation and RdbJoin in preparation to create the desired CORAL
relation of type Cor_CRdbRelation. The RdbRelation object stores information about the

backend database and the table column names. The RdbJoin object stores the join

58

conditions between the relations, if there are any conditions. The Cor_CRdbRelation
object is created using the above two objects. The next step is to store the created
Cor_CRdbRelation object into the RelationTable. This step ensures that the CORAL
relation can be utilized by the CORAL system directly. Finally, a message will be return
to the user to confirm the success of the process.

4.1.3.3 Create relations based on RDB relations

When relational tables are mapped as CORAL relations, they can be joined to create
CORAL relations, as described in use case Join Mapped Table (UC03). The main steps
for this procedure are shown in Figure 4-13. It is merely an optimization behavior and has

no interaction with the backend database.

User .Cor_CRdbManager RelationTable:Cor_SymTable

T

i

]

|

> check command !
:

]

check whether the CORAL relation already exists

not in use
g

— join mapped tabies Il

<<create>>

:RdbJoin

<<create>>

:Cor_CRdbRelation

' insert

succeed

T
]
l]\

Figure 4-13 Join Mapped Tables
When the user inputs the join mapped tables command, the Cor_CRdbManager will
check the command validity and refer to the RelationTable to find the relations

mentioned in the command. If they exist, a RdbJoin object will be created using the

59

relations and their join conditions defined in the command. Then, the Cor_CRdbRelation
object will be created and added to the RelationTable. At last, the end message will be
displayed to the user.

4.1.3.4 Relation process

Once relational tables are mapped to the CORAL, they can be queried directly from the
CORAL environment. CORAL’s standard delete and insert commands can also delete or
insert tuples for the backend tables. Use cases Query Table(UC04), Retrieve Tuple
Set(UC041), Insert Tuple(UCOS), and Delete Tuple(UC06) discuss these behaviors.
Figure 4-14 describes the main activities when querying a RDB table. In this scenario,

only one result is obtained.

User RelationTable:Cor_SymTable .Cor_CRdbRelation MySQL Database

1 query request

-
T

T
' 1
) 1

al +
find relation E

query E

<<create>> E

1 :RdbMysqll Query)
i '
)))
! get_next_tuple() ! .
E '_L‘ VOpen())
U

! »
! N
+]
¥]
))
')
) 1
))
]]
' | :Cor_Tuple tuple(RdbltemList) !
! <<create>> | o __ !
" T 1
return first tuple '

S b Tt S ;

continue | get_next_tuple(} t
]) :
]] 1
1] H
) ' i
) ¢ i
] 3 1
i E Nul !

Sl el brbalt bt "
| | VClose() |
') '
) ' 1
)]]
¥]]
tok ! i

A ———— e L '
1))
1 1 '
] 1)
1 1 ¥

Figure 4-14 Query a Mapped Table

60

When a user inputs the query, CORAL will find the relation from RelationTable and use
its “get-next-tuple” interface [3] to retrieve facts. During this period, a RdbMysqlQuery
object will be created. It is an iterator to query the result set that is stored in object
RdbMysqlQueryResult. The RdbMysqlQueryResult is created when VOpen() is called. It
will be destroyed when the query finishes, namely, when VClose() is called. All tuples
from the backend database will be converted to CORAL tuples (Cor_Tuple) by
Cor_CRdbRelation. The result will be shown to the user.

The insert and delete tuple operations are similar to the query operation. When inserting a
tuple to the backend table, the corresponding CORAL relation will be located first. Then,
a RdbMysqllnsert object will be created to communicate with the backend MySQL
Database and insert the tuple into the specified table. On the other hand, when the delete
command is called, a RdbMysqlDelete object will be created to delete the tuple as

required. Figure 4-15 illustrates the behavior for insert.

User RelationTable:Cor_SymTable Cor_CRdbRelation M Database
E insert tuple ':
|
t
)
1
)
sglin

Vinsert()

T

)

! 1
o 1
|

find relation :

1

insert tuple :

El

<<create>> :

: i

1

1

)

1

1

t

1

1

1

execute insert command

Figure 4-15 Insert a Tuple to the Backend Table

61

4.1.3.5 Execute command

CORAL supports all backend database commands by acting like a client process for the
database. All the database commands can be execute by this method. Use cases Execute
Command(UCO07), Execute MySQL Command(UCO071), and Execute PostgreSQL
Command(UC072) were defined for this function. Figure 4-16 illustrates the solutions for

the MySQL database system.

User :Cor_CRdbManager :RdbMysqgiDatabase MySQL Database

T T
1 execute command |
|

check syntax

T
I
I
|
find opened MySQL DB !
i
ImmediateSgl{command) :

execute command

e

result

result

Figure 4-16 Execute Command at the Backend MySQL
As soon as a user enters the command that will be executed at the backend MySQL
database system, Cor_CRdbManager will first check the syntax of the user input. Then,
the database mentioned in the command will be found from the database list and set as
the current database. The database object has a template method called ImmediateSql,
which 1s used to execute the command at the backend MySQL. By calling
ImmediateSql(), the command input by user is passed to the MySQL server and executed.

The result is returned to the Cor_CRdbManager and finally shown to the user.

62

4.1.3.6 Transactional support

CORAL provides an abstract interface for transaction support in the backend database. In
order to support these functions while linking to MySQL and PostgreSQL, concrete
classes must be designed to provide specific methods for each database. In the thesis, the
tasks described in the use cases Commit Database (UC08) and Rollback Database
(UC09) are solved by the virtual functions, VCommit() and VRollback(), in
RdbMysqlDatabase and RdbPostgresqlDatabase. Although these two functions perform
totally different tasks on the backend database, CORAL executes them in the same

algorithm. Figure 4-17 shows the sequence when committing a MySQL database.

commit db :
|

User :Cor_CRdbManager :RdbMysqlDatabase MySQL Database
T

check syntax

find opened MySQL DB

commit()

T
)
]
]
1
]
|
[}
]
|
]
| 4
commit
e _____________ |
ok :
== |
| |
I [}
I I
i |
i I
] [}
| I
[} [}
| |

Figure 4-17 Commit the Backend MySQL Database

I

4.1.4 Design patterns used

Many patterns, such as composite and strategy, can be found in CORAL. In this thesis,
only those design patterns that have been followed during the design are illustrated.

Examples are shown in the following diagrams. As introduced in 2.4, five design patterns

63

have been used in the design. These patterns are chosen based on CORAL’s high-level
class structure and the requirement of the extensional databases.

4.1.4.1 Abstract factory pattern

Figure 4-18 shows the usage of abstract factory pattern in the RDB classes. From the
diagram we can see that RdbDatabase performs as the abstract factory, which declares an
interface for operations that create abstract product objects, RdbQuery, Rdblnsert, and
RdbDelete. RdbMysqlDatabase and RdbPostgresqlDatabase are concrete factories that
implement the operation to create concrete product objects, RdbMysqlQuery,
RdbPostgresqlQuery, RdbMysqlInsert, RdbPostgresqllnsert, and so on. RdbQuery and
Rdblnsert are the abstract products. RdbMysqlQuery and RdbPostgresqlQuery are the
concrete products. RdbSystem acts as the Client because it only calls the interface

declared by the abstract factory.

RdbDatabase
L :RdbSystem
+NewQuery()
+Newlnsert() :RdbQuery
+NewDelete() RdbQue
I 1
i~ =~ ~}:RdbPostgresqlQuery :RdbMysqiQue
|
RdbMysqiDatabase RdbPostgresqlDatabase : :
1 :Rdbinsert E
+NewQuery() +NewQuery() - e
+NewlInsert() +Newlnsert() : |
+NewDelete() +NewDelete() : % :
| | |
Lo.o :RdbPostgresgllnsert :RdbMysqlinsert :

Figure 4-18 Abstract Factory Pattern in RDB Classes

4.1.4.2 Fagade pattern
As Figure 4-19 shows, the fagade pattern provides a unified interface to all the interfaces

in the RDB classes. The Cor_CRdbManager, as well as its parent RdbManager, is the

64

facade that knows which subsystem classes are responsible for a request. It delegates a
client request to the appropriate subsystem objects. RDB objects and RDB functions of
each object can be accessed through it. On the other hand, all the RDB classes can be

called directly if required.

Cor_CRdbManager

+rdb_open_dbSolver()
+rdb_mapSolver()
+rdb_joinSolver()
+rdb_commitSolver()

——, " }+rdb_rollbackSolver()
Rdb.Join +rdb_executeSolver()

Subsystem Classes

/ RdbQuery
RdbDatabase ——-l

RdbSystem %
RdbMysglDatabase RdbMysglQuery RdbPostaresqlQuery!

Figure 4-19 Facade Pattern in RDB Classes

4.1.4.3 Command pattern

The Command pattern is used among classes for querying data from extensional
databases. Figure 4-20 describes the roles of these classes. RdbQuery acts as the
command that declares an interface for executing the ‘get-next-tuple’ operation. The
RdbMysqlQuery class defines this function and binds the GetQSResult() function of the
RdbMysqlQueryResult, which is the receiver in this case. When CORAL performs the
query on the MySQL database, it uses the ‘get-next-tuple’ interface defined in Cor-

CRdbRelation and invokes the action on RdbMysqlQueryResult.

65

Cor_CRdbRelation RdbQuery
>
1 * [+VNext())
CORAL
RdbMysqlQueryResuit|
|
! +GetQSResult() —
| RdbMysqlQuery
[___ —> RdbMysqlQueryResult->GetQSResult()
+VNext() -1

Figure 4-20 Command Pattern in RDB Classes

4.1.4.4 lterator pattern

Many Iterators are used in CORAL, such as RdbCursor and Cor_Tuplelterator. Figure 4-

21 explains the iterator pattern performed by RdbQuery. As an iterator, RdbQuery is an

abstract class that defines an interface for accessing and traversing tuples. This interface

consists of Open(), GetNext(), and Close(). The concrete iterator, RdbMysqlQuery,

implements this interface. RdbDatabase acts as the aggregate class that defines

NewQuery() for creating the RdbQuery object. The real implementation is dynamically

bound to into RdbMysqlDatabase so as to return an instance of the RdbMysqlQuery.

RdbDatabase

+NewQuery()

RdbMysgqlDatabase

Message1

+NewQuery()

RdbQuery

+Open()
+GetNext()
+Close()

T

RdbMysqlQuery

]
return new RdbMysglQuery

Figure 4-21 Iterator Pattern in RDB Classes

66

4.1.4.5 Template method pattern

Many template methods are defined in the RdbDatabase class. From Figure 4-22 we can
see that RdbDatabase defines VDisplay() and VCommit() as pure virtual functions. The
template methods, Display() and Commit() are declared to call these abstract functions
individually. As the subclass, RdbMysqglDatabase implements the abstract functions
defined in its parent class so as to display the required stuff frb MySQL or commit

MySQL database when the template methods are called.

RdbDatabase
+Display()
+Commit() VDisplay()
+VDisplay()
+VCommit()

RdbMysgqlDatabase

+VDisplay()
+VCommit()

Figure 4-22 Template Method Pattern in RDB Classes

4.2 Major Classes Specifications

In 4.1, the architecture of the main classes for linking CORAL to extensional databases
was illustrated. The interactions of these classes were discussed according to the use
cases defined in chapter 3. In this section, the concrete classes that were added to
CORAL’s class hierarchy are described in detail. Their abstract parent classes are also
drawn and partially explained in order to make the concrete classes clear. Other classes,
such as Cor_DBEntry and Cor_CRdbRelation, are part of CORAL and can be traced

from CORAL’s source code. They are ignored in this section. As classes for MySQL and

67

PostgreSQL are similar and in the same structure, explanations for PostgreSQL are

concise in order to avoid too much repetition.

4.2.1 RDB system classes

RdbSystem

-currentDb : RdbDatabase
-dbList : RdbDatabaselList
—_>f+Rabsystem() €
+~RdbSystem()
+CommitAliDatabases() : void
-DeregisterDatabase() : void
#FindDatabase() : int

RdbMysqlSystem +Implementor() : void RdbPostgresqiSystem
+IsCurrentDatabase() : bool
-pRdbMysqiDatabase : RdbMysqiDatabase +LookupDatabase() : RdbDatabase| -pRdbPostgresqlDatabase : RdbPostgresglDatabase
+RdbMysqlSystem() +OpenDatabase() : RdbDatabase +RdbMysqlSystem()
+~RdbMysqiSystem() -RegisterDatabase() : void +~RdbMysqiSystem()
+Implementor() : void +RollbackAllDatabases() : void +Implementor() : void
+OpenDatabase() : RdbDatabase -SetFocusToDatabase() : void +OpenDatabase() - RdbDatabase
+SystemName() : char +SystemName() : char +SystemName() . char

Figure 4-23 RDB System Classes
4.2.1.1 The RdbSystem class
This class is an abstract class that defines the common interface for RdbMysqlSystem
and RdbPostgresqlSystem. It can not be initialized independently and must be created
inside a RdbMysqlSystem or RdbPostgresqlSystem object. Two attributes and five main
operations of it are described because of their importance for the child classes.
Attributes:
currentDb: RdbDatabase type pointer that points to the current active
RdbMysqlDatabase or RdbPostgresqlDatabase object.
dbList: RdbDatabase type list that holds all RdbMysqlDatabase or
RdbPostgresqlDatabase objects.
Operations:
LookupDatabase(): searches for the required database object by its name and server

name. If found, returns it to caller; if not, returns null.

68

RegisterDatabase() and DeregisterDatabase(): points or de-points the currentDb to the
target database object.
CommitAliDatabase() and RollbackAllDatabase(): commits or rolls back all database
in the dbList at one time. They are invoked by rdb_commit() or rdb_rollback()
4.2.1.2 The RdbMysqlSystem class
This class is used to create an instance representing the MySQL database system. Only
one such object is created in the CORAL runtime and all RdbMysqlDatabase objects will
be managed by this instance. It consists of one attribute and five member functions.
Attribute:
pRdbMysqlDatabase: RdbMysqlDatabase type pointer used to hold the created
database object.
Operations:
OpenDatabase(): creates a RdbMysqlDatabase object based on the parameters
provided by the caller.
SystemName(): returns string ‘mysql’.
Implementor(): returns this. This function is for virtual access to current object.
4.2.1.3 The RdbPostgresqlSystem class
This class is used to create an instance representing the PostgreSQL database system.
Only one such object is created in the CORAL runtime and all RdbPostgresqlDatabase

objects will be managed by this instance. One attribute and three member functions will
be explained as follows:

Attribute:

69

pRdbPostgresqlDatabase: RdbPostgresqlDatabase type pointer

created database object.

Operations:

OpenDatabase(): creates a RdbPostgresqlDatabase object.

SystemName(): returns string ‘postgresql’.

Implementor(): returns this.

RdbMysglDatabase

-myconnection : MYSQL
-mycstatus : MYSQL
-result : MYSQL_RES
-system : RdbMysqlSystem

+RdbMysqlDatabase()
+~RdbMysqglDatabase()
+GetMyConnection() : MYSQL
+GetMyStatus() : MYSQL
+GetResult() : MYSQL
+implementor() : void
+NewDelete() : RdbDelete
+Newlnsert() : Rdblnsert
+NewQuery() : RdbQuery
+System() : RdbMysqlSystem
#VCommit() : ErrorCode
#VConnect() : ErrorCode
#VDisconnect() : EmorCode
+VDisplay() : void
+VerifyRdbTable() : EmorCode
#VGetErrorMessage() : char
#\VImmediateSqi() : ErrorCode
#VPrepare() : ErrorCode
#VRemoveFocus() : ErrorCode
#VRollback(} : ErrorCode
#VSetFocus() : ErrorCode

4.2.2 RDB database classes

RdbDatabase

#connected : bool
#cursorlist : RdbCursorList
#dbName : char
#serverName : char
|#system : RdbSystem

#compilableDMLList : RdbCompitabteDMLList

+RdbDatabase()
+~RdbDatabase()

+Commit() : ErrorCode
D +Connect() : EmorCode

+DatabaseName() : char
-DeregisterCompilableDML() : void
-DeregisterCursor() : void
+Disconnect() : ErrorCode
+Display() : void
+GetErrorMessage() : char
+immediateSql() : ErrorCode
+implementor() : void
#invalidateCompilableDML() : void
#Invalidate Cursors() : void
+NewDelete() : RdbDelete
+Newinsert() : Rdbinsert
+NewQuery() : RdbQuery
+RegisterCompilableDML() : void
+RegisterCursor() : void
+RemoveFocus() : ErrorCode
+Rollback(} : ErrorCode
+ServerName() : char
+SetFocus() : ErrorCode
+SystemName() : char
+Systemy() : RdbSystem
#VCommit() : ErrorCode
#VConnect() : ErrorCode
VDisconnect() : EmorCode
+VDisplay() : void
+VerifyRdbTable() : ErrorCode
[#VGetErrorMessage() : char
#VimmediateSql() : ErrorCode
[#VPrepare() : ErrorCode
#VRemoveFocus() : ErrorCode
#VRollback() : ErrorCode
#VSetFocus() : EmorCode

RdbPostgresqlDatabase

-myconnection : PGeonn
-mycstatus : ConnStatusType
-result : PGresult

| system : RdbPostgresqlSystem

+RdbMysqiDatabase()
+~RdbMysglDatabase()
+GetMyConnection() : PGconn
+GetMyStatus() : ConnStatusType
+GetResult() : PGresuit
+Iimplementor() : void
+NewDelete() : RdbDelete
+Newlnsert() : Rdbinsert
+NewQuery() : RdbQuery
+System() : RdbPostgresqlSystem
[#VCommit() : ErrorCode
#VConnect() : ErrorCode
#VDisconnect() : EmmorCode
+VDisplay() : void
+VerifyRdbTable() : ErrorCode
#VGetErrorMessage() : char
[#VimmediateSql() : ErrorCode
#VPrepare() : EmmorCode
#VRemoveF ocus() : ErrorCode
[#VRollback() : ErmorCode

VSetFocus() : ErrorCode

Figure 4-24 RDB Database Classes

70

used to hold the

4.2.2.1 The RdbDatabase class

This class is used to communicate with the backend database and invoke any operations
on it. Template methods, such as commit(), immediateSql(), and Display() , are provided
by this class. Fifteen pure virtual functions are defined in this class. The implementations

of them are deferred to the concrete child classes.
4.2.2.2 The RdbMysqiDatabase class
This class is used to establish the connection with the backend MySQL database. It
consists of four attributes and twenty one operations. The main attributes and operations
are introduced as follows:
Attributes:
myconnection: MYSQL type handler for MySQL database connections.
mycstatus: type handler for MySQL database connection status.
result: MYSQL_RES type handler for holding the result set from MySQL.
system: RdbMysqlSystem type pointer pointing to the system the database is in.
Operations:
RdbMysglDatabase(): constructs the object and initializes each attribute in it. During
construction, a connection will be established to MySQL through its C APL
The connection will be assigned to myconnection. All MySQL commands
called in this procedure were introduced in chapter 2.
~RdbMysqlDatabase(): destroys the connection with MySQL and releases memory
held by it.

NewQuery(): initializes a RdbMysqlQuery object for the query request from caller.

71

Newlnsert(): initializes a RdbMysqllnsert object to insert a tuple to the backend
database.
NewDelete(): creates a RdbMysqlDelete object to delete tuples from the backend
database.
VCommit(): virtual function, commits the backend database if it supports
transactions.
VDisplay(): displays the result returned from the MySQL database.
VerifyRdbTab(): checks whether the table exists in the MySQL database before
creating a Cor_CRdbRelation on the table.
VImmediateSQL(): executes the query through a connection to MySQL.
4.2.2.3 The RdbPostgresqiDatabase class
This class is used to establish the connection with the backend PostgreSQL database.
Like RdbMysqlDatabase, it consists of four attributes and twenty one operations. The
main attributes and operations are illustrated as follows:
Attributes:
myconnection: PostrgreSQL type handler for PostgreSQL database connections.
mycstatus: type handler for dafabase connection status.
result: PGresult type handler for holding the result set from PostgreSQL.
system: RdbPostgresqlSystem type pointer pointing to the system the database is in.
Operations:
RdbPostgreSQLDatabase(): constructor, uses the C API to make the connection.
~RdbPostgreSQLDatabase(): destroys the connection with PostgreSQL and releases

memory held by it.

72

NewQuery(): initializes a RdbPostgreSQLQuery object.

NewlInsert(): initializes a RdbPostgreSQLInsert object.

NewDelete(): creates a RdbPostgreSQLDelete object.

VCommit(): . commits the backend database if it supports transactions.

VDisplay(): displays the result returned from the PostgreSQL database.

VerifyRdbTab(): checks whether the table exists in the PostgreSQL database before

creating a Cor_CRdbRelation on the table.

VImmediateSQL(): executes the query through a connection to PostgreSQL.

4.2.3 RDB query classes

RdbMysqlQueryResult

-mgresult : MYSQL_RES
-nfields : int
I-nrows :int

+RdbMysqlQueryResult()
[+~RdbMysqlQueryResult()
+GetMQResult() : MYSQL_RES
+GetNFields() : int
[+GetNRows() : int

|+ SetNFietds() : void

k-,

[+ SetNRows() : void

RdbQuery

-anty :int

-adorn : BitVector

[-join : RdbJoin

+Arity() : int

+RdbQuery()
+~RdbQuery()
+Adornment() : BitVector

-Close() : ErrorCode
+ColName() : char
[#CreateStmt() : void
GetCursorlD() ; void
[+GetNext() : EmorCode
+Implementor() : void
-Open() : ErorCode
[+QualifiedColName() : char
[+RelName() : char
[+Schema() : char
#SetCursortD() : void
-SetFocus() : int
+VarQualifiedColName() : char
[#VClose() : ErrorCode
H#VGetNext() : ErrorCode
[#VOpen() : ErrorCode

Z}

RdbMysqlQuery

RdbPostgresqliQuery

RdbPostgresqlQueryResult

-pgresult | PGresuit

-nfields : int
-database : RdbMysqlDatabase |- database : RdbPostgresqiDatabase -nrows : int
[+RdbMysqlQuery() +RdbPostgresqglQuery() +RdbPostgresqiQueryResult()

+~RdbMysqlQuery()

“F+implementor() : void

+System() : RdbMysqlSystem
#\VClose() : ErrorCode
#VGetNext() : ErrorCode

#VOpen() : ErrorCode

+~RdbPostgresqlQuery()
+Implementor() : void

+System() : RdbPostgresqiSystem
#VCiose() : ErrorCode
#VGetNext() : ErrorCode
l#vOpen() : ErrorCode

pm— -

+~RdbPostgresqlQueryResult()
+GetPQResult() : PGresult
+GetNFields() : int
+GetNRows() : int
+SetNFietds() : void

+SetNRows(} : void

Figure 4-25 RDB Query Classes

73

4.2.3.1 The RdbQuery class
As an abstract class, RdbQuery consists of three attributes and twenty operations. The
SQL statement that will be executed in the backend database is created by this class. Its
attributes and main functions are described below:
Attributes:

adorn: the attributes that will be known at open.

arity: total number of attributes in the result set.

join: a RdbJoin object that maintains the set of relations, and any join conditions

between those columns.

Operations:

Adormment():states which attributes will have selection criteria on them when a

cursor is opened on the query.

Arity(): returns the number of attributes in the query.

CreateStmt(): creates the standard SQL query for the backend database.

QualifiedColName(): creates the relationName.columnName style string for the query
4.2.3.2 The RdbMysqlQuery class
This class mainly implements the virtual operations derived from the RdbQuery class. It
executes the SQL command through the connection with the MySQL database and
retrieve tuples as required. The attributes and main operations in it follow:
Attributes:

database: a reference of the RdbMysqlDatabase this query object belongs to.

Operations:

74

VOpen(): runs the query at the backend database and creates a RdbMysqlQueryResult

object to store the result set.

VGetNext(): retrieves one tuple for the result set and converts each attribute to the
data type that CORAL accepts. Currently, CORAL only supports three data
types, integer, real number, and string. As mentioned in 2.2.3, all MySQL data
type will be changed to CORAL’s data type according to Table 2-4. The result
will be returned to the Cor_CRdbRelation object and coverts to a CORAL
tuple at end.

VClose(): destroys the RdbMysqlQueryResult object created by VOpen and releases
the memory held by the MySQL result set structure.

4.2.3.3 The RdbMysqlQueryResult class

This class is used to manage the query result set created by the MySQL database. It is
composed of three attributes and seven operations:

Attributes:

mgresult: a MYSQL_RES type pointer points to the result set returned from MySQL.

nfields: the number of fields the result set has.

nrows: the position of the row that VGetNext Jast visits.

Operations:

RdbMysqlQueryResult(): constructor

~ RdbMysqlQueryResult(): releases the memory held by the result set and destroys
the RdbMysqlQueryResult object.

GetMQResult(): returns the handler to the result set.

GetNFields(): returns the value of nfields.

75

GetNRows(): return the value of nrows.
SetNFields(): assigns a new value to nfields.
SetNRows(): assigns a new value to nrows.
4.2.3.4 The RdbPostgresqlQuery class
This class mainly implements the virtual operations to create and traverse the result set
from a PostgreSQL database. The specification of it is as follows:
Attribute:

database: a handler of the RdbPostgresqlDatabase this query object belongs to.
Operations:

VOpen(): runs the query at the backend database and creates a
RdbPostgresqlQueryResult object to manage the result set.

VGetNext(): retrieves one tuple for the result set and converts each attribute to the
data type that CORAL accepts. All conversion is based on Table 2-6.The
result will be converted to a CORAL tuple by the Cor_CRdbRelation object.

VClose(): destroys the RdbPostgresqlQueryResult object.

4.2.3.5 The RdbPostgreSQLQueryResult class

This class is used to manage the query result set created by the PostgreSQL database. It is
composed of three attributes and seven operations:

Attributes:

pgresult: a PGresult type handler points to the result set returned from PostgreSQL.

nfields: the number of fields the result set has.

nrows: the position of the row that VGetNext last visits.

Operations:

76

RdbPostgreSQLQueryResult(): constructor

~ RdbPostgreSQLQueryResult(): releases the memory held by the result set and
destroys the RdbPostgresqlQueryResult object.

GetPQResult(): returns the handler to the result set.

GetNFields(): returns the value of nfields.

GetNRows(): return the value of nrows.

SetNFields(): assigns a new value to nfields.

SetNRows(): assigns a new value to nrows.

4.2.4 RDB insert classes

Rdblinsert
#rel . RdbRelation

+Rdblinsert()
+~Rdbinsert()
#CreateStmt() : void
+Insert() : ErrorCode
#Vinsert() : ErrorCode

T

l

RdbMysqlinsert

+RdbMysqglinsert()
+~RdbMysqlinsert()
-Vinsert() : ErrorCode

RdbPostgresqglinsert

+RdbPostgresqlinsert()
+~RdbPostgresglinsert()

-Vinsert() : ErrorCode

Figure 4-26 RDB Insert Classes
4.2.4.1 The Rdblnsert class
This class defines a template method, Insert(), to execute the insert request on the
backend database. VInsert() is an abstract operation that will be implemented in the
derived concrete classes. The operation CreateStmt() will be used to create the insert
query in the SQL format. It will use the rel attribute to the get the backend table name

and attributes names.

77

4.2.4.2 The RdbMysgqlinsert class
This class consists of three operations. The functions of these operations are described
below:
Operations:
RdbMysqlInsert(): constructor, initlializes the RdbMysqllnsert object and its parent
instance RdblInsert.
~RdbMysqlInsert(): destructor.
VInsert(): creates the insert query using the CreateStmt() operation and runs it at the
backend database. The result is displayed to the caller.
4.2.4.3 The RdbPostgresqlinsert class
This class performs the same functions on PosgreSQL database as the RdbMysqlInsert on
MySQL database. Descriptions of the three operations are ignored since they work in the

same way as those described in 4.2.4.2.

4.2.5 RDB delete classes

RdbDelete

#adorn : BitVector

#rel : RdbRelation
+RdbDelete()
+~RdbDelete()
#CreateStmt() : void
+Delete() : ErrorCode
#VDelete() : ErrorCode
+Adornment() : BitVector!

A

|

RdbMysqlDelete RdbPostgresqlDelete
+RdbMysqlDelete() +RdbMysqlDelete()
+~RdbMysqiDelete() +~RdbMysqlDelete()
-VDelete() : ErrorCode -VDelete() : ErrorCode

Figure 4-27 RDB Delete Classes

78

4.2.5.1 The RdbDelete class
This class consists of two attributes and six operations. The description follows:
Attributes:

adorn: stores the expected binding for the relation.

rel: a pointer to the RdbRelation object that will perform the delete operation.
Operations:

RdbDelete(): constructor, initializes its parent instance and attributes.

~RdbDelete(): destructor.

CreateStmt(): creates the delete query based on the values of adomn and rel.

Delete(): template method that calls the VDelete() operation.

VDelete(): abstract operation.

Adornment(): return the value of adorn.

4.2.5.2 The RdbMysgqlDelete class
This class consists of three operations. The description follows:
Operations:

RdbMysglDelete(): constructor, initializes its parent instance and attributes.

~RdbMysqlDelete(): destructor.

VDelete(): calls CreateStmt() in the parent class to create the delete query and
executes it on the backend MySQL database. The result will be shown to the
caller.

4.2.5.3 The RdbPostgresqiDelete class
This class consists of three operations that are described as below:

Operations:

79

RdbPostgresglDelete(): constructor, initializes its parent instance and attributes.

~RdbPostgresqlDelete(): destructor.

VDelete(): calls CreateStmt() in the parent class to create the delete query and
executes it on the backend PostgreSQL database. The result will be shown to

the caller.

4.3 Database Design

In the thesis, MySQL and PostgreSQL are used as the backend databases system. They
must be installed and run on a location that can be reached by CORAL. Corresponding
databases are created on both systems for test purposes. Currently, a user ‘gwang_1’ is
created on MySQL. The user’s working database is ‘mydb’. On postgreSQL, user ‘wang’
is activated and performs operations on database ‘pgsqldb’.

The tables created in the MySQL and PostgreSQL databases are based on a standard
University Model benchmark [2]. Twenty tables as well as the sample data are created. In
order to support transactions and reference constraints, INNODB tables are used in
MySQL. Extra indexes are created to support the foreign keys. This University Model is
also the test benchmark for the Graph Database System introduced in Chapter 6.

All these operations are performed in standard query language supported by each system
individually. The script files for creating these tables in MySQL and PostgreSQL can be
found in appendix A and appendix B. Commands for other operations, such as creating
users, creating databases, and assigning privileges, can be found in the online documents

at http://www.mysqgl.org and http://www.postgresql.org.

80

Chapter 5 Test

In this chapter, the implementation of CORAL’s interfaces to MySQL and PostgreSQL is
tested. At the beginning, the test requirement is specified. Then, test methods are
illustrated in order to make the test procedure clear. Lastly, test cases are used to describe
step-by-step test procedures and to verify the compliance with the requirements in

chapter 3.
5.1 Test Requirement

All functional requirements stipulated in chapter 2 are tested to ensure that the system can

provide these functions properly. These requirements include:

*Connections from CORAL to MySQL and from CORAL to PostgreSQL can be
established and work correctly as required;

*Tables in MySQL and PostgreSQL can be mapped correctly to the current workspace of
CORAL;

*Regular operations, such as query, insert tuple, and delete tuple, can be performed
properly on the mapped tables with CORAL’s standard commands;

*Both DDL and DML commands other than those stipulated by CORAL can be
performed precisely on the backend MySQL and PostgreSQL through CORAL,;

*Transactions can be supported if the backend database is set so.

81

5.2 Test Methods

In this these, all the requirements, design, and implementation are based on CORAL’s
structure. The test methods are selected based on this condition.

The unit test is mainly a static test by checking syntax and inspecting code. A white box
method is used to focus on the internal structure of each class. During the integration test,
the black-box method is emphasized in order to test the behavior and functionality of the

system. These system tests ensure that the system performs as required.

5.3 Test Cases

All these tests fall into ten test cases. Each test case consists of a title, ID, rationale,
description, and the reference to the requirement and solution mentioned in the previous

chapters. All conditions are stipulated following each test case.

5.3.1 Connect CORAL to MySQL

Title: Connect CORAL to MySQL

ID: TCO1

Rationale: to check whether the connection from CORAL to MySQL can be
established properly.

Description: Connect to MySQL database ‘mydb’ as the user ‘gwang_1’ identified by
password ‘sundy’. The MySQL server is running on ‘jeeves’. The created

CORAL database name is ‘mysqldb’.

82

Reference:
Condition 1:

Input data:

Condition 2:

Input data:

Condition 3:
Input data:
Condition 4:
Input data:
Condition 5:
Input data:
Condition 6:
Input data:
Condition 7:
Input data:
Condition 8:

Input data:

UCO01, UCO011,D4.2.1.2,D4.2.2.2

Pass: connect correctly

rdb_open_db(mysqldb, mysql, mydb, gwang_1, sundy, jeeves).
rdb_open_db(mysgldb, mysql, mydb, gwang_1,sundy).

Fail: connect in wrong format.

rdb_open_db(, mysql, mydb, gwang_1, sundy, jeeves).
rdb_open_db(mysqldb , , mydb, gwang_1, sundy, jeeves).
rdb_open_db(mysqldb, mysql, ,gwang_1, sundy, jeeves).

Fail: connect with wrong MySQL identifier.
rdb_open_db(mysqldb, MySQL., mydb, gwang_1,sundy,jeeves).

Fail: connect with wrong MySQL. database name.

rdb_open_db(mysqldb, mysql, mydatabase, gwang_1, sundy,jeeves).

Fail: connect with wrong username.

rdb_open_db(mysqgldb, mysql, mydb, guangwang, sundy,jeeves).
Fail: connect with wrong password.

rdb_open_db(mysqldb, mysql, mydb, gwang_1,sunday,jeeves).
Fail: connect with wrong server name.

rdb_open_db(mysqldb, mysql, mydb, gwang_1,sundy,jee).

Fail: the CORAL database already exists (create mysqldb twice).

rdb_open_db(mysqldb, mysql, mydb, gwang_1,sundy,jeeves).

5.3.2 Connect CORAL to PostgreSQL

Title:

1D:

Connect CORAL to PostgreSQL

TCO2

83

Rationale:

Description:

Reference:

Condition 1:

Input data:

Condition 2:

Input data:

Condition 3:

Input data:

Condition 4:

Input data:

Condition 5:

Input data:

Condition 6:

Input data:

Condition 7:

Input data:

to check whether the connection from CORAL to PostgreSQL can be
established properly.

Connect to PostgreSQL database ‘pgsqldb’ as the user ‘wang’ identified
by password ‘guang’. The created CORAL database name is ‘mypgdb’.
UCO01,UC012,D4.2.1.3,D4.2.2.3

Pass: connect correctly

rdb_open_db(mypgdb, postgresql, pgsqldb, wang, guang).

Fail: connect in wrong format.

rdb_open_db(, postgresql, pgsqldb, wang, guang).

rdb_open_db(mypgdb, , pgsqldb, wang, guang).

rdb_open_db(mypgdb, postgresql, , wang, guang).

Fail: connect with wrong PostgreSQL identifier.

rdb_open_db(mypgdb, PostgreSQL, pgsqldb, wang, guang).

Fail: connect with wrong PostgreSQL database name.
rdb_open_db(mypgdb, postgresql, pgdb, wang, guang).

Fail: connect with wrong username.

rdb_open_db(mypgdb, postgresql, pgsqldb, guangwang, guang).

Fail: connect with wrong password.

rdb_open_db(mypgdb, postgresql, pgsqldb, wang, sunday).

Fail: the CORAL database already exists (create mypgdb twice).

rdb_open_db(mypgdb, postgresql, pgsqldb, wang, guang).

5.3.3 Create CORAL mapped tables based on MySQL tables

Title:

Create CORAL Mapped tables based on MySQL tables

84

ID: TCO3

Rationale: to check whether the MySQL tables can be mapped to CORAL through
the database connections

Description: Map a MySQL table ‘person (ID, Name)’ to CORAL current workspace
under name ‘cperson’. The database connection used is ‘mysqldb’.

Reference: UC02, UC021,D4.2.1.2,D4.2.2.2

Condition 1: Pass: mapped correctly

Input data: rdb_map(mysqldb, cperson(person(“ID”, “Name’))).

Condition 2: Fail: input in wrong format.

Input data: rdb_map(mysqldb, cperson(person(ID, Name))).
rdb_map(mysqldb, cperson(person(ID, Name)).
rdb_map(mysqldb, cperson(person)).

Condition 3: Fail: input in a wrong MySQL based CORAL database name

Input data: rdb_map(mysqld, cperson(person(ID, Name))).

Condition 4: Fail: create cperson twice

Input data: rdb_map(mysqldb, cperson(person(ID, Name))).

Condition 5:

Input data:

5.3.4 Create CORAL mapped tables based on PostgreSQL tables

Title: Create CORAL Mapped tables based on PostgreSQL tables
ID: TCO04
Rationale: to check whether the PostgreSQL tables can be mapped to CORAL

Fail: wrong back end table name

rdb_map(mysqldb, cperson(pers (ID, Name))).

through the database connections

85

Description:

Reference:

Condition 1:

Input data:

Condition 2:

Input data:

Condition 3:

Input data:

Condition 4:

Input data:

Condition 5:

Input data:

Map a PostgreSQL table ‘person (ID, Name)’ to CORAL current
workspace under name ‘cperson’. The database connection used 1is
‘mypgdb’.

UC02,0C022,D4.2.1.3,D4.2.2.3

Pass: mapped correctly

rdb_map(mypgdb, cperson (person(“ID”, “Name”))).

Fail: input in wrong format.

rdb_map(mypgdb, cperson (person(ID, Name))).

rdb_map(mypgdb, cperson (person(ID, Name)).

rdb_map(mypgdb, cperson (person)).

Fail: input in a wrong PostgreSQL based CORAL database name
rdb_map(mysqld, cperson (person(ID, Name))).

Fail: create cperson twice

rdb_map(mypgdb, cperson (person(ID, Name))).

Fail: wrong back end table name

rdb_map(mypgdb, cperson (pers (ID, Name))).

5.3.5 Create CORAL joined table

Title:

1D:

Rationale:

Create CORAL Joined table

TCO5

to check whether the mapped tables can be joined together to create a

CORAL table. This test case is for both MySQL and PostgreSQL.

86

Description: Join two CORAL mapped tables, cperson(based on ‘person (ID, Name)’)
and cstudent(based on ‘student(ID)’), and create a CORAL table
newstudent.

Reference: UC03,D4.2.1.2,D4.2.1.3,D4.2.2.2,D4.2.2.3

Condition 1: Pass: joined table created correctly

Input data: rdb_join(newstudent(cperson(X,Y), cstudent(X))).

Condition 2: Fail: input in wrong format.

Input data: rdb_join(newstudent(cperson, cstudent)).
rdb_join(newstudent(cperson(x,y), cstudent(x))).

Condition 3: Fail: newstudent already exists in current workspace.

Input data: rdb_join(newstudent(cperson(X,Y), cstudent(X))).

Condition 4: Fail: the source relations do not exist or the names are wrong names.

Input data: rdb_join(newstudent(cpers(X,Y), cstudent)).

5.3.6 Query mapped tables

Title: Query mapped tables

ID: TCO06

Rationale: to check whether the mapped tables accept CORAL query command. This
test case is for both MySQL and PostgreSQL.

Description: Query cperson, which is mapped from table ‘person (ID,Name)’.

Reference: UC04, UC041, D4.2.3.2,D4.2.3.3,D4.2.3.4,D4.2.3.5

Condition 1: Pass: query result returned correctly.

Input data: ?cperson(X,Y).

Condition 2: Fail: input in wrong format.

87

Input data:
Condition 3:
Input data:
Condition 4:

Input data:

?cperson(X,Y.

Fail: input wrong table name.
Iperson(X,Y).

Fail: input wrong table attribute.

Icperson(X,Y,Z).

5.3.7 Insert tuple

Title:

ID:

Rationale:

Description:

Reference:

Condition 1:

Input data:

Condition 2:
Input data:
Condition 3:
Input data:
Condition 4:

Input data:

Insert tuple

TCO7

to check whether tuples can be inserted to the backend database by
standard CORAL command. This test case is for both MySQL and
PostgreSQL.

Insert tuple (“001”, “John English”) to table ‘person(ID,Name)’ through
the mapped table cperson. |

UC05,D4.24.2,D4.2.4.3

Pass: a tuple is inserted to the backend database.

insert (cperson(“‘001”, “John English™)).

cperson(“001”, “John English™).

Fail: input in wrong format.

insert (cperson(001,John English)

Fail: input wrong table name.

insert (person(“001”, “John English™)).

Fail: input wrong table attribute.

insert (cperson(“0017)).

88

5.3.8 Delete tuple

Title:

1D:

Rationale:

Description:

Reference:

Condition 1:

Input data:

Condition 2:

Input data:

Condition 3:

Input data:

Condition 4:

Input data:

Delete tuple

TCO8

to check whether tuples can be deleted from the backend database by
standard CORAL command. This test case is for both MySQL and
PostgreSQL.

Delete tuple (“001”, “John English”) from table ‘person(ID,Name)’
through the mapped table cperson.

UC06,D4.2.5.2,D4.2.5.3

Pass: the tuple is deleted from the backend database.

delete (cperson(*001”, “John English™)).

Fail: input in wrong format.

delete (cperson(“001”, “John English™)

Fail: input wrong table name.

delete (person(*001”, “John English”)).

Fail: input wrong table attribute.

delete (cperson(_,“John English”)).

5.3.9 Execute command

Title:

1D:

Rationale:

Execute command

TCO09

to check whether DDL and DML commands can be executed on the
backend database through CORAL interface. This test case is for both

MySQL (mysqldb) and PostgreSQL(mypgdb).

89

Description: Show all tuples in table ‘person’, then drop a table called ‘nouse’.
Reference: UCO07, UC071, UC072,D4.2.1.2,D4.2.1.3,D4.2.22,D4.2.2.3
Condition 1: Pass: the command is executed on the backend database.
Input data: rdb_execute(mysqldb, “select * from person”).
rdb_execute(mypgdb, “select * from person”).
rdb_execute(mysqldb, “drop table nouse”).
rdb_execute(mypgdb, “drop table nouse”).
Condition 2: Fail: input in wrong format.
Input data: rdb_execute(mysgldb, select * from person).
rdb _execute(mypgdb, select * from person).
rdb _execute(mysqldb, drop table nouse).
rdb _execute(mypgdb, drop table nouse).
Condition 3: Fail: input wrong database connection name.
Input data: rdb_execute(mydb, “select * from person”).

rdb_execute(pgsqldb, “ select * from person”).

5.3.10 Transactional support

Title: Transactional support

ID: TC10

Rationale: to check whether CORAL’s rdb_commit and rdb_rollback commands can
affect the transaction of the backend databases. This test case is for both
MySQL (mysqldb) and PostgreSQL(mypgdb).

Description: The backend database is committed or rolled back as required.

Reference: UCO08, UC09,D4.2.1.2,D4.2.1.3,D4.2.2.2,D4.2.2.3

90

Condition 1:

Input data:

Condition 2:

Input data:

Condition 3:

Input data:

Pass: the command is executed on the backend database.
rdb_commit(mysqldb).
rdb_commit(mypgdb).
rdb_rollback(mysqldb).
rdb_rollback(mypgdb).

Fail: input in wrong format.
rdb_commit(mysqldb

rdb_commit(mypgdb

rdb_rollback(mysqldb

rdb_rollback(mypgdb

Fail: input wrong database connection name.
rdb_commit(wrongdb).

rdb_rollback(wrongdb).

91

Chapter 6 Application

The work demonstrated in this thesis is mainly for the Graph Database System developed
at Concordia University. This System intends to apply the benefits of deductive query
language, diagrammatic queries, and visualized results more broadly in genomics. JAVA,
XML, C/C++, CORAL, MySQL and PostgreSQL are used to implement this system in
UNIX environment.

The Graph Database System provides a visual query mechanism to manage genomics
data. Its JAVA based interface allows scientists to construct diagrams to express the
query, which shows the entities of their interest and the relationships among these
entities. The supported graphical query language is GraphLog [7]. This system manages
the translation from a query diagram to a textual CORAL query program. Then, CORAL
is called to process the query and deduce the result. All raw data are stored in MySQL
and PostgreSQL databases and loaded to the memory as required. At last, the query result
set is also visualized as diagrams with the same icons and style as in the query and
displayed to the user.

Eventually, this system will interface directly to our Know-It-All framework for

databases [8].

92

6.1 System Architecture

As shown in Figure 6-1, this system consists of five layers, GUI, TGL Translator[9],
CORAL Client, CORAL Server and Data Storage (MySQL & PostgreSQL). The

description of responsibilities for each layer follows:

w2 TGN T
gqueryResult.xrnak - H ‘__tcnlp Query.arnd

rams

TGL, Translator

-2l

rae
COR AT, gquery x'ezéulti

: CORANIL query
~F —

CORAIL, Client

- Tize

gl Jexn

CORAL: Server

Default Worksp=ace

”2"""0 opy Relations

RIDEB Workspace

Reladiomnal tables

MySOQL PostgreSQL
Data Storage Data Storage

Figure 6-1 Graph Database System Architecture

GUI: The GUI is the system’s interface to end users. End users may draw a query in the
query editor. The GUI component translates user’s query that is defined as a diagram into
XML format and sends it to the next layer of the system: TGL Translator. TGL
(Transferable Graphic Language) is an XML format that defines the communication
protocol between GUI layer and TGL translator layer. The GUI is also responsible for
visualizing the query result set into a graph.

TGL Translator: The TGL translator is the transformation engine that transforms an

XML formatted query, which it receives from the GUI layer, to a CORAL query

93

program. A set of translations rules is defined in TGL translator to regulate the translation
from an XML formatted query to a CORAL program. The TGL translator calls up the
CORAL client. TGL translator is also responsible for transforming the CORAL query
result into XML and pass the XML-format query result to the upper GUI layer.

CORAL Client: The CORAL client is responsible for two tasks: one is to receive a
query plan from TGL translator and to send the CORAL query programs in the query
plan to the CORAL Server; the other is to receive the query result from the CORAL
server, and pass it to the TGL translator.

CORAL Server: During the CORAL server initialization, two workspaces, default
workspace and RDB workspace, are created and work interactively to manage incoming
and outgoing data. The default workspace is responsible for maintaining CORAL’s
relations and executing queries. The RDB workspace is in charge of connecting with
MySQL and PostgreSQL as well as manipulating relational data. At the RDB workspace,
a dictionary describing the mapping between relational tables and corresponding relations
in CORAL database is constructed first. Then the data in the relational tables are loaded
into CORAL’s default workspace according to this dictionary. A CORAL program sent
by a CORAL client is evaluated and executed in CORAL server and the query result is
returned to the CORAL client.

Data Storage: The data source is stored physically in MySQL and PostgreSQL

databases. The conventional data manipulations can be performed on data in these
databases. In current version, during the CORAL server initialization, the connections

between these extensional databases and CORAL are set up. All the stored tuples in the

94

target database are loaded into the CORAL server’s computer main memory as a runtime

database for CORAL system.

6.2 Integrating CORAL with the TGL Translator

For the five layers described in 6.1, the work in this thesis is mainly focusing on the last
three layers. The original TGL Translator starts a stand-alone CORAL process each time
and terminates it when completes. Facts need to be loaded in memory each time CORAL
runs. This method is inefficient, especially when loading huge amount of genomic data.
Therefore, the client-server model CORAL is utilized to avoid extra data load time.
CORAL supports client-server model. CORAL client connects with CORAL server by a
socket under TCP/IP protocol. In this system, a CORAL client was designed and
integrated with} the TGL Translator to perform the required tasks. It is invoked by the
TGL Translator and communicates with the CORAL server. From the TGL Translator
point of view, it performs as same as the previous stand-alone CORAL process.

The main functions of the CORAL client are as follows:

*Connects CORAL server with a socket;

*Sends requests received from TGL Translator to CORAL server;

*Receives result from CORAL server and stores it to the target file;

*Disconnects and terminates when receiving the EXIT signal from CORAL server.

The CORAL client terminates when the query finishes, whereas the CORAL server will

live until the user requires to shut it down.

95

6.3 Optimization Experiment

In this system, CORAL works as the deductive engine to evaluate queries and deduce
results. As mentioned in 2.1.5, although CORAL developed a number of query evaluation
strategies, it still uses heuristic programming rather than a cost estimation package to
choose evaluation methods [1]. Annotations are utilized to guide query optimization and
control query evaluation. There are system-level annotations and user-level annotations.
User-level annotations can be added directly to the source code and they give the
programmer freedom to control query’s optimization as well as evaluation.

CORAL’s user-level annotations are divided into Rewriting Annotations, Execution
Annotations, and Per-Predicate Annotations. Presently, CORAL’s Rewriting
Annotations, which include Supplementary Magic Templates [10], Magic Templates [11],
Context Factoring [12], naive backtracking [13], and Without Rewriting method, have
been tested. The test platform was a SunFire 280R with two 900MHz UltraSparc-III+
CPUs and 4GB physical memory. The operating system is Solaris 9. A standard
benchmark consisting of the University Model and a set of well documented queries were
used rather than invented our own genomic DB benchmark at this stage [2]. The test data
set was based on 100,000 person facts. The total number of ground facts was 635,813.
The 20 queries used in the test were fully documented in [9]. All tests were made on the
MySQL solely.

These five annotations were tried individually on each query and the query execution
time was recorded on the CORAL server. Then the comparative speed was calculated for
each method relative to CORAL’s default optimization strategy, Supplementary Magic.

The experiment results are listed in Table 6-1.

96

No Sup. Magic Context Naive
rewriting | magic factoring backtracking
Ql 0.92 1 0.96 0.96 0.96
Q2 0.90 1 0.93 1.01 0.96
Q4 | 139.56 1 0.89 0.89 0.89
Q6 1.08 1 1 0.92 1
Q7 4.93 1 1.01 0.96 0.97
Q8 1.03 1 1.03 1 1
Q9 1.06 1 1.14 1.10 1.09
Q10| 091 1 0.91 0.87 0.95
Q13| 0.99 1 1.01 1.02 1
Ql4i 1.13 1 1 1.13 1.13
Q17 1.02 1 0.98 1.04 1.05
Q19| 0.58 1 0.65 1 1
Q20| 1.01 1 1 0.99 0.99
Q21| 0.90 1 1 0.90 1
Q22| 60.85 1 1 1 1.08
Q23] 23.53 1 0.8 1.07 0.93
Q24 1 1 1 | 1.08
Q25| 1.11 1 1.11 1 1.11
Q26 1.1 1 1 1.1 1
Q27 49.44 1 0.94 0.94 0.94

Table 6-1. Relative Query Execution Time

From the result we can see that there is no single method that outperforms the others.
Each method works the best with a subset of the queries. For example, the Magic
Templates have the best performance in Q23; the Context Factoring runs fastest in Q6
and Q10. However, the variation relative to the default optimization strategy 1S no more
than 10%. Clearly, one of the optimization strategies should be used rather than no
strategy (the “no rewriting” strategy column in Table 1). These test results will be the

inital guidelines to design an efficient cost estimation package based on CORAL’s

methods for the requirements of genomics.

97

Chapter 7 Conclusion

In this thesis, CORAL’s extensional database interface as well as CORAL’s data
management classes have been studied and explained. The connections from CORAL to
MySQL and from CORAL to PostgreSQL have been designed, implemented, and tested
based on CORAL’s class structure and rules. A client process has been designed and
coded according to CORAL’s client-server protocols. During the design and
implementation, design patterns have been applied to the classes for connecting MySQL
and PostgreSQL. UML [15] has been used to illustrate system architecture, runtime
behavior, and interaction of these classes.

As an application of these solutions, the Graph Database System has been introduced and
its architecture has been demonstrated. Integration of the CORAL client with the JAVA
based TGL translator has been explained in order to specify the roles of the CORAL
client. CORAL’s optimization methods have also been tested on the Graph Database
System in order to find a better way to process genomics data.

The future work of the thesis may focus on adding new data types to both CORAL and
the extensional databases, i.e. MySQL and PostgreSQL, based on the characteristics of
genomics data. The update of CORAL system, both its class structure and methods, is
also a big future work. Moreover, to design an index for the result set retrieved from the

extensional database is also a potential improvement for CORAL’s data management.

98

References

[1] R. Ramakrishnan, D. Srivastava, S. Sudarshan, P. Seshadri, “The CORAL Deductive
System”, VLDB Journal, vol 3, no. 2, pp. 161-210, 1994.

[2] K. C. Chan, P. W. Trinder, R. Welland, “Evaluating Object-Oriented Query

Languages”, Computing Journal, vol 37, no. 10, pp. 858-872, 1994.

[3] R. Ramakrishnan, D.Srivastava, S. Sudarshan, P. Seshadri, “Implementation of the

CORAL Deductive Database System”, SIGMOD Conference, pp. 167-176, 1993.

[4] M. Carey, D. DeWitt, J. Richardson, and E. Shekita, “Object and file management in

the EXODUS extensible database system”, In Proceedings of the International

Conference on Very Large Databases, pp. 91-100, August 25-28, 1986.

[5]. M. Widenius, D. Axmark, MySQL Reference Manual, O’Reilly & Associates,

Incorporated, June 2002.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1995.

[71 M. P. Consens, F. Ch. Eigler, M. Z. Hasan, A. O. Mendelzon, E. G. Noik, A. G.

Ryman, and D. Vista, “Architecture and Applications of the Hy+ Visualization System”,

IBM Systems Journal,vol 33, no. 3, pp. 458— 476, 1994.

[8] G. Butler, L. Chen, X. Chen, A. Gaffar, J. Li, L. Xu, “The Know-It-All project: A

Case Study in Framework Development and Evolution”, Domain Oriented Systems

Development: Perspectives and Practices, Taylor and Francis Publishers, UK, 2002.

99

[9] L. Zou, “GraphLog: Its Representation in XML and Translation to CORAL”, Master
Thesis, Dept. of Computer Science, Concordia University, 2003.

[10] C. Beeri and R. Ramakrishnan, “On the Power of Magic”, Procs. of the ACM
Symposium on Principles of Database Systems, pp. 269283, 1987.

[11] R. Ramakrishnam, “Magic Templates: A Spellbinding Approach to Logic
Programs”, Procs. of the International Conference on Logic Programming, pp. 140-159,
1988.

[12] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman, “Argument Reduction
Through Factoring”, Procs. of the Fifteenth International Conference on Very Large
Databases, pp. 173-182, 1989.

[13] R. Ramakrishnan, D. Srivastava, and S. Sudarshan, “Rule ordering in bottom-up
fixpoint evaluation of logic programs”, Procs. of the International Conference on
VeryLarge Data Bases, pp. 359- -371, 1990.

[14] R. Ramakrishnan, P. Seshadri, D. Srivastava, S. Sudarshan, The CORAL User
Manual, A Tutorial Introduction to CORAL, Computer Sciences Department, University
of Wisconsin-Madison, 1993.

[15] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide,

Addison-Wesley, 1998.

100

Appendix

A. University Data Model Schema (script files) for MySQL

How to run:
Shell> mysql —u gwang_1 —p < University-INNODB.sql
When loading data from file:
Shell> mysql —u gwang_1 —p < University-INNODB.sql --local-infile=1

University-INNODB.sql

##Tips: For FOREIGN KEY CONSTRAINT, the foreign key values must be in the first place of index. For
example, in table works_in, although compound indexes have been created for primary keys ID and Dept, a
separate index must be created for Dept in order to make it the first place of the index.

INNODB supports transaction and reference constraint from version 3.23.34. It is the default
setting from version 4.0.

1. Select default MYSQL DB

use mydb;

2. Initialize the database

drop table if exists resides,second_supervisor,first_supervisor,lives_in,assessment;
drop table if exists prerequisites,run_by,takes,supervises,majors_in,teaches,works_in;
drop table if exists address,course,dept,visiting_staff,tutor,student,staff,person;

3. Create tables

create table person

(
ID varchar(10) NOT NULL,

Name varchar(50),
PRIMARY KEY (ID)
)
TYPE = InnoDB;
create table staff
(
ID varchar(10) NOT NULL,
Salary int,
PRIMARY KEY (ID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE
)
TYPE = InnoDB;
create table student
(
ID varchar(10) NOT NULL,
PRIMARY KEY (ID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE
)

TYPE = InnoDB;

create table tutor

(

101

ID varchar(10) NOT NULL,
PRIMARY KEY (ID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE

)
TYPE = InnoDB;

create table visiting_staff
(
1D varchar(10) NOT NULL,
PRIMARY KEY (ID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE

)
TYPE = InnoDB;

create table dept
(
No varchar(10) NOT NULL,
Name varchar(50),
PRIMARY KEY (No)

)
TYPE = InnoDB;

create table course
(
Code varchar(10) NOT NULL,
Title varchar(50),
Credit int,
PRIMARY KEY (Code)

)
TYPE = InnoDB;

create table address
(
AID varchar(10) NOT NULL,
Street varchar(50),
District varchar(20),
City varchar(20),
PRIMARY KEY (AID)

)
TYPE = InnoDB;

create table works_in
(
ID varchar(10) NOT NULL,
Dept varchar(10) NOT NULL,
PRIMARY KEY (ID,Dept),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE,
INDEX (Dept),
FOREIGN KEY (Dept) REFERENCES dept (No) ON DELETE CASCADE

)
TYPE = InnoDB;

create table teaches

(
1D varchar(10) NOT NULL,
Course varchar(10) NOT NULL,

102

PRIMARY KEY (ID,Course),

FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE,
INDEX (Course),

FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE

)
TYPE = InnoDB;

create table majors_in
(
1D varchar(10) NOT NULL,
Dept varchar(10) NOT NULL,
PRIMARY KEY (ID,Dept),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE,
INDEX (Dept),
FOREIGN KEY (Dept) REFERENCES dept (No) ON DELETE CASCADE

)
TYPE = InnoDB;

create table supervises
(
StaffID varchar(10) NOT NULL,
StudentID varchar(10) NOT NULL,
PRIMARY KEY (StaffID,StudentID),
FOREIGN KEY (StaffID) REFERENCES person (ID) ON DELETE CASCADE,
INDEX (StudentID),
FOREIGN KEY (StudentID) REFERENCES student (ID) ON DELETE CASCADE
)
TYPE = InnoDB,;

create table takes
(
ID varchar(10) NOT NULL,
Course varchar(10) NOT NULL,
PRIMARY KEY (ID,Course),
FOREIGN KEY (ID) REFERENCES student (ID) ON DELETE CASCADE,
INDEX (Course),
FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE

)
TYPE = InnoDB;

create table run_by
(
Course varchar(10) NOT NULL,
Dept varchar(10) NOT NULL,
PRIMARY KEY (Course,Dept),

FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE,
INDEX (Dept),

FOREIGN KEY (Dept) REFERENCES dept (No) ON DELETE CASCADE

)
TYPE = InnoDB;

create table prerequisites

(
Course varchar(10) NOT NULL,
PreCourse varchar(10) NOT NULL,

103

PRIMARY KEY (Course,PreCourse),

FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE,
INDEX (Precourse),

FOREIGN KEY (Precourse) REFERENCES course (Code) ON DELETE CASCADE

)
TYPE = InnoDB;

create table assessment
(
Course varchar(10) NOT NULL,
AssName varchar(10) NOT NULL,
Percent double(3,2),
PRIMARY KEY (Course,AssName),
FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE

)
TYPE = InnoDB;

create table lives_in
(
ID varchar(10) NOT NULL,
AID varchar(10) NOT NULL,
PRIMARY KEY (ID,AID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE,
INDEX (AID),
FOREIGN KEY (AID) REFERENCES address (AID) ON DELETE CASCADE

)
TYPE = InnoDB;

create table first_supervisor
(
StaffID varchar(10) NOT NULL,
StudentID varchar(10) NOT NULL,
PRIMARY KEY (StaffID,StudentID),
FOREIGN KEY (StaffID) REFERENCES person (ID) ON DELETE CASCADE,
INDEX (StudentID),
FOREIGN KEY (StudentID) REFERENCES student (ID) ON DELETE CASCADE

)
TYPE = InnoDB;

create table second_supervisor
(
StaffID varchar(10) NOT NULL,
StudentID varchar(10) NOT NULL,
PRIMARY KEY (StaffID,StudentID),
FOREIGN KEY (StaffID) REFERENCES person (ID) ON DELETE CASCADE,
INDEX (StudentID),
FOREIGN KEY (StudentID) REFERENCES student (ID) ON DELETE CASCADE

)
TYPE = InnoDB;

create table resides
(
Dept varchar(10) NOT NULL,
AID varchar(10) NOT NULL,
PRIMARY KEY (Dept,AID),
FOREIGN KEY (Dept) REFERENCES dept (No) ON DELETE CASCADE,

104

INDEX (AID),
FOREIGN KEY (AID) REFERENCES address (AID) ON DELETE CASCADE

)
TYPE = InnoDB;

#4. Populate tables

insert into person values ("cs0001", "William Atwood");

insert into resides values ("eg","addr003");

OR by load data file

load data LOCAL infile '~/data/university-person.txt' REPLACE into table person fields terminated by ',
ignore 1 lines;

B. University Data Model Schema (script files) for PostgreSQL

How to run:
pgsql/bin/dropdb pgsqldb;
pgsql/bin/createdb pgsqldb;
pgsql/bin/psql -d pgsqldb -f university-POSTGRESQL.sql;

university-POSTGRESQL.sql
/*1. Create tables */
create table person
(
ID varchar(10) NOT NULL,
Name varchar(50),
PRIMARY KEY (ID)
)X
create table staff
(
1D varchar(10) NOT NULL,
Salary int,
PRIMARY KEY (ID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE
)
create table student
(
ID varchar(10) NOT NULL,
PRIMARY KEY (ID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE
)
create table tutor
(
ID varchar(10) NOT NULL,
PRIMARY KEY (ID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE
)
create table visiting_staff
(
1D varchar(10) NOT NULL,
PRIMARY KEY (ID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE
);

105

create table dept
(
No varchar(10) NOT NULL,
Name varchar(50),
PRIMARY KEY (No)
)
create table course
(
Code varchar(10) NOT NULL,
Title varchar(50),
Credit int,
PRIMARY KEY (Code)
)
create table address
(
AID varchar(10) NOT NULL,
Street varchar(50),
District varchar(20),
City varchar(20),
PRIMARY KEY (AID)
)
create table works_in
(
1D varchar(10) NOT NULL,
Dept varchar(10) NOT NULL,
PRIMARY KEY (ID,Dept),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE,
FOREIGN KEY (Dept) REFERENCES dept (No) ON DELETE CASCADE
);
create table teaches
(
1D varchar(10) NOT NULL,
Course varchar(10) NOT NULL,
PRIMARY KEY (ID,Course),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE,
FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE
)
create table majors_in
(
ID varchar(10) NOT NULL,
Dept varchar(10) NOT NULL,
PRIMARY KEY (ID,Dept),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE,
FOREIGN KEY (Dept) REFERENCES dept (No) ON DELETE CASCADE

)%
create table supervises
(
StaffID varchar(10) NOT NULL,
StudentID varchar(10) NOT NULL,
PRIMARY KEY (StaffID,StudentID),
FOREIGN KEY (StaffID) REFERENCES person (ID) ON DELETE CASCADE,
FOREIGN KEY (StudentID) REFERENCES student (ID) ON DELETE CASCADE
%
create table takes

(

106

D varchar(10) NOT NULL,
Course varchar(10) NOT NULL,
PRIMARY KEY (ID,Course),
FOREIGN KEY (ID) REFERENCES student (ID) ON DELETE CASCADE,
FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE
)
create table run_by
(
Course varchar(10) NOT NULL,
Dept varchar(10) NOT NULL,
PRIMARY KEY (Course,Dept),
FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE,
FOREIGN KEY (Dept) REFERENCES dept (No) ON DELETE CASCADE
);
create table prerequisites
(
Course varchar(10) NOT NULL,
PreCourse varchar(10) NOT NULL,
PRIMARY KEY (Course,PreCourse),
FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE,
FOREIGN KEY (Precourse) REFERENCES course (Code) ON DELETE CASCADE
)
create table assessment
(
Course varchar(10) NOT NULL,
AssName varchar(10) NOT NULL,
Percent decimal(3,2),
PRIMARY KEY (Course, AssName),
FOREIGN KEY (Course) REFERENCES course (Code) ON DELETE CASCADE
)
create table lives_in
(
1D varchar(10) NOT NULL,
AID varchar(10) NOT NULL,
PRIMARY KEY (ID,AID),
FOREIGN KEY (ID) REFERENCES person (ID) ON DELETE CASCADE,
FOREIGN KEY (AID) REFERENCES address (AID) ON DELETE CASCADE
)
create table first_supervisor
(
StaffID varchar(10) NOT NULL,
StudentID varchar(10) NOT NULL,
PRIMARY KEY (StaffID,StudentID),
FOREIGN KEY (StaffID) REFERENCES person (ID) ON DELETE CASCADE,
FOREIGN KEY (StudentID) REFERENCES student (ID) ON DELETE CASCADE
)
create table second_supervisor
(
StaffID varchar(10) NOT NULL,
StudentID varchar(10) NOT NULL,
PRIMARY KEY (StaffID,StudentID),
FOREIGN KEY (StaffiD) REFERENCES person (ID) ON DELETE CASCADE,
FOREIGN KEY (StudentID) REFERENCES student (ID) ON DELETE CASCADE
)
create table resides

(

107

Dept varchar(10) NOT NULL,
AID varchar(10) NOT NULL,
PRIMARY KEY (Dept,AlID),
FOREIGN KEY (Dept) REFERENCES dept (No) ON DELETE CASCADE,
FOREIGN KEY (AID) REFERENCES address (AID) ON DELETE CASCADE
)

/*2. Populate tables */
insert into person values ('cs0001", 'William Atwood");

insert into resides values (‘eg’,'addr003");

/*3. Create User: */
drop user wang;
create user wang password 'guang’;

/*4. Grant-Revoke privileges */

grant all on person,staff,student,tutor, visiting_staff to wang;

grant all on dept,course,address,works_in,teaches,majors_in to wang;

grant all on takes,run_by,prerequisites,assessment,lives_in to wang;

grant all on supervises,takes,first_supervisor,second_supervisor,resides to wang;

108

