An R-tree Index Using the STL Style

MingAn Zhong

A THESIS
IN
THE DEPARTMENT
OF
COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF COMPUTER SCIENCE
CONCORDIA UNIVERSITY
MONTREAL, QUEBEC, CANADA

February 2004
© MingAn Zhong, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91161-6
Our file Notre référence
ISBN: 0-612-91161-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

An R-tree Index Using the STL Style

Ming An Zhong

Indexes are critical for performance of database systems. Trees are effective indexes
that handle both single-dimensional and multi-dimensional data. The R-tree is a
commonly used multi-dimensional tree index for the spatial data and geographic

information system (GIS).

By using design pattern and following the C++ STL style, the R-tree index structure
in this thesis is designed and implemented using generic programming techniques.
The components are designed to be the STL style containers so that they have a

uniform and clear interface and can be used like a standard container.

The R-tree structure can adapt to different data types, user-defined key types, and

support user-defined queries.

Acknowledgements

I thank my research advisor, Greg Butler, for his exceptional guidance. He was

always available for discussion and motivation.

I also thank the member of our search group with whom I worked closely. Among
them, I must particularly mention JinXue Zhou and Bin Nie for their help and

cooperation.
I thank all my friends at Concordia University for their friendship.
I am grateful to my parents and my family for their encouragement.

Finally, this work is dedicated to my wife, LiPing Wang, for her eternal patience,

support and assistance, and most importantly, her love.

Content

Chapter 1 INtrOdUCHION.ceeveiiiiie ettt e et eeee e 1
1.1 The Problem and Related WoOrKcooooiiiime e, 1
) O N (T & o) O 1+ R 1
L12 Reated WOIK . ..oiiieiiieeeie e e e e e, 2
B2 0UE WOTK oo ettt e, 3
1.3 GOoal Of the TRESIS....c.iiieeeiieiee e et e e e e 4
1.4 Contribution Of the ThESIS. ..uu.m it 4
1.5 Layout Of the TRESISccoiiuiiiiieiiei ettt eeee e e v eree e e e e 5
Chapter 2 BacKGrOUNoociiiiiitiiiieeieeieee ettt e 6
2.1 Multidimensional Data and Database INdeXcoomveoveinreeeee e e eeeevoreeneeeeiaan, 6
22 RATCC oo 7
22 SHUCLULE ... e e 7
2.2.2 AIGOTIHRIMS ..eetiiiiiiie e et e e e e 9
2221 SCAICH ..o e, 10
2.2.2.2 INSCITION .ottt et te e e e e e e e e eraneeeeessnaans 10
2.2.2.3 DEIEHON .o, 12
2224 SPLE i et r e e 14

2.3 Templates, Generic Programming and STLocoooiviiiicieeir e 15
2.3 1 TEMPLALES ..ottt s ee e 15
2.3.1.1 Function templatescccceceiuiaviriieeieiiesecr et 16
2.3.1.2 Class TemPIAtESccovceeiiriiiieie ittt 17
2.3.2 Generic Programimingcccoccuevveineriiiieniie e 18
2.3.3 Why Generic Programming?ccoccooiiievioiiinnieieeiieeee e 18
2.4 The STL SEYIE ..oviiiiiiiiiee ettt et 19
2.4. 1 Why Use the STL?...uiiiiiee it ee et e e e e 19
2.4. 1.1 €OAE REUSE .ot eee e e e 19
2.4.1.2 SMAller COES o.oovveiiiiiiiiiiiiieeeeee e 20
2413 FICKIDIIIEY ..c.veeeiie et es e 21
2414 BHICIENCY ...ttt 21
2.4.2 The STL COMPONENLSecvveiieieeiieieetieie et eeeeee e e e eeee e eseeeenen 22
2,421 CONLAINETS v e 24
2422 TEETALOIS 1ottt et e e e e e e 26
2.4.2.3 AIZOTItRIMS .ecoviiiiiiiii it e 28
2.4.2.4 ATLOCALOTS ...eurvieniie it e e e e eeee e e et 28
2.4.2.5 AdAPLOTS....coiiiiiiiiiiiic et 29
2.4.2.6 FUNCHON ODJECEScviiiiiiieiiiiieis e 30

2.5 DI PAEIT .ovvvieie e et ee e 31
2.5.1 COMPOSIEE.cvieeeenie ettt te et ettt et e ete e st ae et e eeeenens 32
2.5.2 Casting Method.ccccooiiiiiiiiii i 34

2.5 3 PLOXY -ttt e ettt 35

2.5.4 SINGLELON....cumiiieiieeiiee ettt 36
2.5.5 SeTIAlZET...ccoviiiiiiii i 37
2.6 Indexing Frameworksciiiiiiiiiiiiiiii et 38
2.6.1 The GiST Frameworkccccociiieiiiiiniiiiiiiiice e 38
2.6.2 An Framework of Indexing Structure of KIAc.oooviviiiiiiiiice, 39
2.7 Some Existing R-tree Implementationsc..ccevvvieveniieimnineeiiiceniineneennans 41
Chapter 3 The R-Tree Desighlccc.oiveeiiiiiiiiiieie et 43
BL1 USE CASE.. ..ottt et ettt e e et e e e e s renraa e e e 43
3.1.1 EXPErt DEVEIOPET ...cnevviieiiiiiie ettt 44
3.1.2 Database DEvVELOPETcccueeieeiiiirieiiieie e ee e 44
3.1.3 Database AdminiStrator.........ccoiieieereiiiiieieeriieaeee e e e 44

T B G0 1 L P PO OO 44
3.2 Relation between Index and Database Data...........c.ccocveverieiiecnniieniir e, 44
3.3 The Original DESi N ..c.coccveeiiiiiiiie ettt e eaas 46
3.4 Issues Encounterd in the Design and Implementation...............cccocoveevvennennne. 47
3.4.1 Different Designs by Using Composite Pattern............cccocveeevveveriennenn.n. 47
3.4.1.1 Maximize the Component Interface?cc.occeevriivivieniieecnce, 47

3.4. 1.2 Type CastiNcoovveiiriiiiiiiiieiii ettt sve e 49
3.4.1.3 Tag DispatChingccooveeriiiiriiiiisiie et 51
3.4.2 Say No to Composite Pattern?..........cccocveeviiininniin e 53
3.4.3 Container-Independent Code...........cceeecieiriiieniiiiiiie e 54
3.4.4 STL Vector Container or C-Style AITayccccoveveviveiieiieicecce e, 55
3.5 The SOIUIONeeeiiiiiie ettt ce et e e s eaben e s aaes 56
3.5.1 Basic COMPONENLSccouiiiiiiiiiiiiieiecir ettt site et eseaeeaeesareesneeaaaees 56
3.5.2 Class DIagram..........cooceeiiiiiinii et 57
3.5.3 The DESIZN....ciiiiiiiiiiiiiie ittt 58
3.5.3.1 Keys: Point and Rectangle............ccccoovveniiinniiniiinreee e, 58
3.5.3.2 Page COMAINETS. ... ccovireiiieeriieirerieie ettt st sabe v e 59
3.5.3.3 RTree CONtAINercovvviiiiiiiiiiieiit et et ene e 62
3.5.3.4 Class TEIALOTeeiiieriiiiiiee et etee e tee et e eetae e e e eae e enaeesneeas 63
3.5.3.5 ClasS CUISOTcvieiiieiiiii ittt ettt 64
3.5.3.6 Basic Predicates and Predicate Bindercccccccooevnvvenieniicennnnn. 65
3.5.3.7 Proxy MechaniSm............ccooeriiiiiiniiianiieniesin e esiie e 66
3.5.3.8 SerialiZationc.ceeviieiiieiiiiie it 72
3.5.3.9 QUETIES ...ceeeveie ettt et ettt e etae e ee st st eas 73
3.5.3.10 Activity Diagram of InSertion..........ccocccvevvvivvnriesvieiniecieece e 76
3.5.3.11 Activity Diagram for Deletioncccccoeeciiiiiiiiiniiiie e 77
3.5.3.12 Issue about Split Algorithmccooeeviviiiiiiiice e 78
Chapter 4 Implementation and Evaluationc.cccvivvvveiiieiie e 79
4.1 ITMPIemMENtAtioN.cciiiiiiiiiii i ae et e 79
4.1.1 Implementing R-tree INdeX.........cccoevirriiiiiiniiiiinie e 79
4.1.2 Using R-tree INdeXcooooiiiiiiiiiiiiiee et 79
A2 TSN, ...ttt et ettt e e e et e ettt a e e e rae e e erens 79

4.2.1 Correctness TeSHINEZ.covvecvieiiiaeiieie ettt 79

4.2.1.1 Black-boxX TeStINGccceevvrairieriieiiieriie et 80
4.2.1.1 White-boX TeStINZ......ccccuvririieriiiieriieriiee e 81

4.2.2 Performance TeStiNgccccccvviiiiiiiriie et 82
4.2.2.1 Experimental Environment..........ccccoceeoeviieenenvrieneeeeiieee v 82
4.2.2.2 Bxperiment Datasets.........cccoveriiriirenienierereniesieesre e eve e v 83

4.2.2.3 Testing Procedure.cccevieiiiiiirenii e 84
4.2.2.4 Experimental Results.........c.ccooeriiciniininiiiii e, 84
Chapter 5 CONCIUSIONS.......eoviiiiiiiiiiirt ettt ettt e eneeeeeen 89
Appendix A Definition of Class POINt............ccoecieniiiiiiiiice e 90
Appendix B Definition of Class Rectangleccccoeeeiiieiioiiiiiiiiic e, 92
Appendix C Definition of Class Pageccccovveiieiiiiiecicieeececeeecee e, 95
Appendix D Definition of Class LeafPageccccecoovceniiiiiriceiicic e 96
Appendix E Definition of Class IndexPage............ccooveveeiieeeiiicieeecieee e, 98
Appendix F Definition of Class RTT€e..........ccecuverriiiiiieiiiiiec e 100
Appendix G Definition of Basic Predicate and Class Predicatec.cuc.n...... 102
Appendix H Definition of Class 1terator...........c..ocvovuveiiiiiiice e 104
Appendix I Definition of Class CUISOT..........ccceieriirierereniiiee e 105
BibliOZIaphycooiiiiii e 106

List of Figures

Figure 2-1 Structure and Planar View of an R-tree..........ccceeeveviiiieiiieiic e 9
Figure 2-2 STL OVETVIEWeiviiiiciiieiiic ettt se ettt e etee e e staeecraeees 22
Figure 2-3 Orthogonal Component StrUCLUIEoccvvvivieierarirerieecee e cvee e 23
Figure 2-4 STL CONAINETSc..ceteoiiiaiiieiitieeiee st este s ee ettt eree e eeraeesae s 24
Figure 2-5 Iterator Range..........c.coovieiiieiiiiiiiece et 27
Figure 2-6 Iterator Hierarchyccccooociiiiiiiiii e 27
Figure 2-7 Structure of Composite Pattern...........cccccovvvvrveeiiiescneciecie e 33
Figure 2-8 an Alternative Form of Composite Pattern...........cccocoeveeviiiiiiiiiieecne . 34
Figure 2-9 Structure of Casting Method Pattern............ccccoeeveeieiiiiiiiicies i, 35
Figure 2-10 Structure of Proxy Patterncccoveviiiiiiiiinenccee e, 36
Figure 2-11an Instance of ProxXyccccccviiiiiiinicin e 36
Figure 2-12 Structure of Singleton Pattern..........cccooevievciiiiceniiciiiene e, 37
Figure 2-13 Structure of the Serializer Patterncccovvvevviveniieieniiie e, 38
Figure 2-14 The Components Layout of Gaffar’s Design........c.c.ccovvvevviciciirennnennnn. 39
Figure 2-15 Main Classes of Gaffar’s Designcccoceeviuiiviieiiiiiciiee e, 41
Figure 2-16 Main Classes of SpatialIndeX..........occvevieeiieioeiiiecieecee e 42
FIgure 3-1 USE CaSeceiueiriiiiiiiiieciit ettt 43
Figure 3-2 the Relation between Index and Database Data...........c..cccccoveeveevrenene.. 45
Figure 3-3 One Design to Maximize the Component Interface...............cc..ccooeuneee.. 48
Figure 3-4 LeafPage and IndexPage Containers.........coocevveveiecreeieeceeececereene, 50
Figure 3-5 Ambiguity of Function Declarationcccceevovviviieiiiceciiiecee 52
Figure 3-6 Index Structure Using a Type WIapper........ccoeevevvieeciieiieeeeeces e, 53
Figure 3-7 the Size of 2-d Spatial Objects and LeafPage Capacities......................... 56
Figure 3-8 System Layoutccoouiiiiiiiiiiiiiie et 57
Figure 3-9 Class Diagram...........ccoccoiiiiiiiiiiieniieniene ettt 57
Figure 3-10 Interface of Class Pagecoocvviiviiiiiiieiiecce e 60
Figure 3-11 Structure of IndexPage and LeafPagecccoeeevvviveeieeeecniiiiece 60
Figure 3-12 Interface of IndexPage and LeafPage..........cc.coeeveveeeiciiiiciiccicien 61
Figure 3-13 Effect of Different Shape on Page Capacity..........ccccoovvvvivveiviiencneennn 62
Figure 3-14 R-tree Structure and Interface..........cocooovveeiieceniiiiiiiiciee e 63
Figure 3-15 Iterator Structure and Interfaceccocceevviieeiviiciiiicceeee e 64
Figure 3-16 Binary Predicate Interfaceccooveeiiieiiieecece e, 65
Figure 3-17 Interface of Predicate Binderccooovvevviieiioiiiiici e 66
Figure 3-18 Sequence Diagram of Proxy Mechanismcc..ccoovvvevivicinininneenn.. 67
Figure 3-19 Reference-Counted Smart POINtErSccoeeeeviieiieiiiiiiiieeeeeeeeeen. 68
Figure 3-20 Simple Interface of Class Smart Pointeroccoevveiveveiiieceeenen, 68
Figure 3-21 Interface of Class Cache.........ccocoeovviiviiviiiniiiiiecc e, 70
Figure 3-22 Index Structure on DisK........cccooviriieiiiiiiiiiie e, 72
Figure 3-23 Using Serializer Pattern..........coecvevvireriecnniiieceeceeceeee e 73
Figure 3-24 Serialize and Deserialize Operations of IndexPageccoeuveennn.. 73
Figure 3-25 Function RTree::find_if...........ccooiriiiiiiiiii e 74
Figure 3-26 INSEIt ACHVILY «.oc.ooviviiriiiiiiir ettt 76
Figure 3-27 Erase ACHVILY......ccoccvviiiiriiiiitinii it estie ettt 77
Figure 4-1 Interface for search index frameworkccocvvvvevveiiiciiiicciieei 80
Figure 4-2 Dataset Used for EXperimentscccocvvvirieveeneiice e, 83
Figure 4-3 Effects of Different Key Implementations on Tree Performance............. 85
Figure 4-4 Performance Comparisons at Different Page Size.................coceevvveennnnne. 86

vi

Figure 4-5 Performance Comparisons between KIA and the GiST R-tree. 87

List of Tables

Table 3:1 Different Queries Using Predicatesocvvvveveecreevieiverceeeeiie e 75
Table 3:2 Split Algorithms from GiST........ccoieviiiiiiiiiciieecece e 78
Table 4:1 Performance Comparisons at Different Page Sizecccccocvveivienenn.e. 86
Table 4:2 Test Results of Real Dataset..........ceeceueeiveiuieiiieeececeeiceeeeeeeee e 87

vii

Chapter 1 Introduction

The index structure is an important component of a modern database management
system. A large variety of tree-structure indexes have been developed and applied to
database management systems. Among them are those based on the hierarchical
approach such as B+-tree, K-D-B-tree [Rob81], R-tree [Gutt84], SS-tree [White96],
SR-tree [Kata97], and X-tree [Berc96]. An efficient implementation of an index
structure is crucial for any database system to enhance the processing efficiently and

make the database more applicable accordingly.

An investment in an efficient index to the database is usually a good idea. That is the
reason that a specialized handcrafted index is a classical choice to achieve the
maximum efficiency possible. Specialized access methods are usually hand-coded
from scratch. The developers are required to know the substantial knowledge of the
underlying file system to build the index structures correctly and efficiently. It costs
time and needs more effort for implementation and maintenance. Compared with the
handcraft codes, the framework technology is adapted to the implementation of a
family of index structures due to its ability to promote the reuse of design and source
code. As a result, frameworks can significantly reduce the cost of providing a new

index.

1.1 The Problem and Related Work

1.1.1 The Problem

The Generalized Search Tree (GiST), realized by J.H. Hellerstein and his group

[Heller95], is a framework supporting an extensible set of queries and data types. The

GiST framework enables an access developer to build any kind of balanced index tree
on any kinds of data by implementing some specific methods for insertion, deletion,
and search [Doel02]. GiST tries to address all possibilities in the same piece of code
by generating flexible code with some hot spots that can be easily adjusted to develop
different applications. This unfortunately leads to an even more generic and complex
code that is bigger and less user-friendly. Furthermore, the source code itself has poor

object-oriented style since the C programming language largely influences it.

With the advancement of the framework technology, the problems are recognized and
addressed. The Know-It-All (KIA) project [Butler02] is investing methodologies for
the development, application, and evolution of frameworks. A concrete framework for
database management systems is under development. This will help getting closer to
the goal of producing a framework that achieves the advantages of specialized code

and framework reusable code.

1.1.2 Related Work

The Know-It-All project has been underway at Concordia University since 1997. The
aim of this project is to research methodologies and models for framework
development, application, and evolution to develop a framework for database
management system, and to apply this framework to advanced database applications
for bioinformatics. It provides support for all data models, integrated and

heterogeneous databases, and eventually sustains incomplete and uncertain data.

The tree index framework is one of KIA’s subprojects, including traditional B+-tree
and multi-dimensional trees such as R-tree and its variants. It supports multiple

queries such as exact match query, range query, similarity queries, and some user-

defined queries. The indexes are designed to follow good object-oriented design and

use design patterns. Languages used are mainly Java, and C++.

[GaffO1] introduces a design of a generalized index framework, a sub-framework of
KIA project. By designing in the STL style and applying a wealth of existing STL
components, the author produced a design which is capable of producing tree-based
index that are adaptable to different data /or key types, different queries, and different

database application domains.

1.2 Our Work

In the design of [GaffOl1], the page and index container are designed to be STL
containers for which iterators are the only way to allow different algorithms to work
with the containers. The built-in allocators hide the memory allocation and

deallocation and the object persistence is achieved by using a specialized allocator.

As we know that “a framework is a set of classes that embodies an abstract design for
solutions to a family of related problems” [John88], the framework usually defines the
overall structure of all applications derived from it, their partitioning into classes, the
key collaborate, and the thread of control. The implementation of a framework is still

a very important part to be reused.

When analyzing the design of Ashraf Gaffar’s framework, we found some obstacles
for implementation. Since page is designed to be a generalized page, it has to be able
to handle pair of key and data reference for leaf nodes, and pair of key and page
pointer for non-leaf nodes. As a result, unsafe type casting would be used very
frequently. In addition, it is not possible to make STL containers persistent by only

using a specialized allocator, which will be discussed in Chapter 3.

Our solution is using STL generic programming and object-oriented design patterns to
redesign and implement the R-tree structure. First, two kinds of nodes, i.e. index page
(non-leaf node) and leaf page (leaf node), are designed to be STL style containers and
derived from the base class page, an abstract interface class. A proxy is used to create
the page from the non-volatile storage on demand, and maintain reference to the
created page. Since the containers are designed to be template classes, and of STL

style interface, they are user-friendly, readable and reusable.

1.3 Goal of the Thesis

The goal of this thesis is as following:

o Prove the concept of the index sub-framework of the Know-It-All project;

o Using the STL components, design and implement the reusable components of
tree structures to be STL style containers that can be used for other multi-
dimensional tree structures;

o Develop a generic R-tree that can adapt to different key types, and data
reference types and support different queries;

o Conduct correctness testing on the components and performance testing on the

R-tree implementation.

1.4 Contribution of the Thesis

The main objective of this paper is to describe the design and implementation of the
R-tree index structure using generic programming. It also involves correctness and

performance testing for R-tree structure. The major concerns are:

o Design LeafPage and IndexPage containers to be STL-style containers;

o Adopting STL generic programming to implement the R-tree index structure;

o Using design patterns;

o Using proxy (smart pointer) to load a page on demand, and to maintain the
reference to the loaded page.

o Providing basic predicates, predicate binder and Cursor to support different

queries and user-defined qlieries;
1.5 Layout of the Thesis

The thesis is organized as follows. We begin with an introduction with an overview of
the work. In Chapter 2, we represent background on the reusable tree-based index
structures, generic programming features, and some existing R-tree implementations.
Then the R-tree design is presented in Chapter 3 in detail. In Chapter 4,
implementation of R-tree is describes and a comparative performance study of these
implementation is presented. Finally in Chapter 5, the conclusions on the contribution

of this thesis are summarized.

Chapter 2 Background

This chapter will briefly review the R-tree index structure and its algorithms. We will
simply introduce the STL components and some design patterns since they are

involved in the design and implementation of the R-tree index.
2.1 Multidimensional Data and Database Index

Traditional Database Management systems (DBMS) are very effective in storing and
retrieving business and accounting data. The DBMS is organized to optimize queries
on this kind of data. A traditional DBMS can efficiently process a query like “find me
the top ten companies that recruit computer science students from Concordia”. The
DBMS will use its index to narrow down its search and efficiently return the query
result. However, if we change the query slightly to include some spatial information,
giving us “find me the top ten companies that recruit computer science students from
Concordia and are within 20 miles of Sir George Williams Campus”, the conventional
DBMS will be quickly sent into a tailspin since the one-dimensional index cannot

efficiently handle a multi-dimensional spatial query.

Modern database systems are commonly developed to manage and process spatial or
geometric data, that is, data related to space. They are designed with capabilities for
representing, querying, and manipulating spatial data. Such systems provide the
underlying database technology needed to support applications such as computer
aided design (CAD), and geographical information system (GIS). Therefore it is very

important to be able to retrieve objects efficiently according to their spatial locations.

An efficient implementation of search index is crucial for any database system. An
index is a database object that can greatly increase database performance, enabling
faster query, and modification on the data. Spatial location usually involves multiple
dimensions (e.g., 2-D or 3-D). Traditional indexing structures are not suitable for
spatial indexing since the key space is multidimensional and range query is required.
Structures using one-dimension ordering of key values, such as B-trees, are useless
due to the multidimensional search space. Structures based on exact matching of

values, such as hash tables, do not work because they do not support range queries.

With the ever-increasing demands for the manipulation of spatial data, spatial
database systems evolve and several multidimensional data structures have been
proposed such as quadtree [Fink74], kd-tree [Bent75], and R-tree [Gutt84]. Among
them, the R-tree has been established as one of the most important data structures for
indexing spatial data. Since its introduction in 1984, the R-tree and its later refinement
the R*-tree [BKS + 90] have gained wide acceptance in the academic database
community as the preferred spatial indexing method. They can be used for indexing
both point and spatial data (data with spatial extends) and is the only
multidimensional indexing structure known to has been incorporated as an access

method into commercial data management system [Chak99].

2.2 R tree

2.2.1 Structure

The R-tree is a height-balanced and multi-dimensional generalization of B-tree with
all index records in its leaf nodes [Gutt84]. It is used as an indexing structure to speed
up the retrieval of spatial objects. The decision on which node to visit is made based

on the evaluation of spatial predicates, so the tree must hold some sort of spatial data

on all nodes. A spatial database consists of a collection of tuples representing spatial
objects, and each tuple has a unique identifier, which can be used to retrieve needed

spatial objects.

The R-tree has two types of nodes: leaf nodes and non-leaf nodes. An entry in a leaf
node is a tuple of the form (I, dataReference) where dataReference refers to a
database record that contains the actual object, which possibly has an arbitrary shape
and [is a k-dimensional minimum bounding rectangle (MBR) of the indexed spatial
object.
I=(lp, L, Iz, ..., ko, Iy)

Here [; is a closed bounded interval [a, b] describing the extent of the object along
dimension i and k is the number of dimensions. Each entry in a non-leaf node is a
tuple (1, child-pointer) where child-pointer is a pointer to a lower level node in the
tree, and / is the MBR that covers all the rectangles of the lower level child node

pointed by child-pointer.

The R-tree satisfies the following properties:

o Every node except the root node contains between m and M entries where m
< M/2, where M and m are the maximum and minimum number of entries in
a node;

o For each leaf entry, key I is the smallest rectangle (MBR) that spatially
contains the n-dimensional data object represented by the indicated tuple;

o For each non-leaf entry, key I is the smallest rectangle that spatially contains
the rectangles in its child nodes;

o The root node has at least two children unless it is a leaf;

o All leaves appear at the same level.

Figure 2-1 [Gutt84] shows the structure of a 2-dimentional R-tree, and its

corresponding planar view, respectively.

[R8 [Re Rio|[R11[R12] |[Ri3|Ri4] |IR15[r18] }[R17|R18]R19]

vy v v

To Data Tuples
P T T T el L T e e e
:m :R‘* RiL]) :
o et e e g =
[, R3 ' Trg) | rR5§ g
L ‘ f b S:,
e A R B
Iy 'IR10 | t : :i
Shape of [R8 ' ; by {‘34 J
Date Object _|) ‘ ' |
\F’ .) vy |
""""" —— f I
| [Ri2 L
f‘Rz"" e o it s s '-i- “““““““ T “: —— T —— |
= , by | IRT [Ri8 '
3 | ! 5 i ..._I!a l!
1 -) W am e owe T l
r__ | ‘ * | RIA !
-—-—1— ————— R | 1]
'R8 | TRie ! ! L o
N ' ; I [R f
|’ } I !] | i 9 |’
;:] ! ! ! R ':
I e BT T P e | I
! ; | |
:' ~ | .'
I|R15 J
f ! I y
] |

Figure 2-1 Structure and Planar View of an R-tree

2.2.2 Algorithms

The description of algorithms is totally from the classic sources on R-tree [Gutt84].

2.2.2.1 Search

The search algorithm proceeds by descending the tree from the root in a manner
similar to a B+-tree. Unlike a B+-tree, more than one subtrees under a node visited
may need to be searched in an R-tree. The most typical example of search is the one
where the user asks for all objects overlapping a certain area. Since the MBRs stored
in the index entries are allowed to overlap, the R-tree cannot guarantee that only one

search path needs to be traversed.

Algorithm Search
Input: T: root node of an R-tree
S: a search rectangle

Output: All tuples whose rectangle overlap S

S1 [Search subtree] If T is a non-leaf node, check each entry E on T to
determine whether E.I overlaps S. For each such entry,
invoke Search on the node pointed by E.ptr

S2 [Search leaf node] If R is a leaf node, check each entry E on R to determine

whether E overlaps with S. If so, E is a qualified record.

2.2.2.2 Insertion

The insertion algorithm adds new index records to the leaves in the similar way of
B+-tree. The leaf selection (chooseLeaf) will start from the root and will follow the
path denoted by the entries whose MBRs need least enlargement in order to contain
the MBR of the new record. The record is inserted to the chosen leaf. If the leaf node
already has M entries, then it has to split to get two nodes to accommodate the (M+1)

entries. The criterion used for split is also minimizing the area of the enclosing

10

rectangle in the inner nodes. The generated changes will propagate from the leaf node

upwards.

Algorithm Insert

Input: E: a new entry to be inserted
Output: None
I1 [Find Position for Invoke ChooseSubtree to select a leaf node L in which to

New Record]
12 [Add record to leaf

node]

I3 [Propagate changes
upward]

14 [Grow tree taller]

place E;

If L has enough space for a new entry, add E to L. Else
invoke SplitNode to obtain a new node LL and distribute
the L’s M entries and E into L and LL;

If no split occurs, invoke AdjustTree on L. Otherwise
invoke AdjustTree on L. and LL;

If node split propagation caused the root to split, create a

new root whose children are the two resulting nodes.

Algorithm ChooseSubtree selects a leaf node in which to place a new index entry.

Algorithm ChooseLeaf
Input: E: anew record to be inserted
Output: a leaf node to accommodate E

CL1 [Initialize]
CL2 {Level check]
CL.3 [Choose subtree]

CL4 [Descend to leaf

node]

Set N to be T.

If N is a leaf node, return N.

If N is a non-leaf node, let F be the entry in N whose MBR
needs least enlargement to include E.I. When there are more
qualify entries with the same least enlargement in N, choose
the entry with the smallest area of rectangle.

Set N to be the child node F which is pointed to by F.ptr
Repeat from CL2

Algorithm AdjustTree ascend from a leaf node L to the root, adjusting covering

rectangle and propagating node split as necessary.

11

Algorithm AdjustTree

Input:
Output:

L: a leaf node of an R-tree

none

AT1 [Initialize]

AT?2 [Check if done]
AT3 [Adjust covering
MBR in parent entry]

AT4 [Propagate node

split upward]

ATS [Move up to next

upper level]

Set N to be L. If split node LL is passed, also set NN to be
LL;

Stop if N is the root

Let P be the parent node of N and Ey be the N’s entry in
P. Adjust En.I so that all rectangles in N are tightly
enclosed.

If there is previously split node NN, create a new entry
with Enn.ptr pointing to NN and Enn.I enclosing all
rectangles in NN. If there is room in P, add Exn.
Otherwise invoke SplitNode to get P and PP which
include Eny and all old entries of P.

Set N to be P, and NN to be PP if a split happened.

Repeat from AT2

2.2.2.3 Deletion

The deletion algorithms first identify the leaf containing the entry and then the entry is

removed. If the leaf becomes under-populated (number of entries < m), all the

remaining entries are saved in a list and the node is removed. The changes are

propagated up the tree by updating the corresponding covering rectangles and

removing the nodes that become under-populated. Then each orphan entry in the list

will be reintroduced into the tree using the insertion procedure. The entries should be

inserted at the same level of the tree where they originally belonged.

Algorithm Delete

Input:
Output:

E: an record to be removed

none

12

D1 [Find node containing Invoke FindLeaf to locate the leaf node L containing E.
record] Stop if E is not found;

D2 [Delete entry] Remove E from L;

D3 [Propagate changes] Invoke CondenseTree, passing L;

D4 [Shorten tree] If the root node has only one child after the tree has

been adjusted, make the child the new root.

Algorithm FindLeaf find the leaf node containing the entry to be removed.

Algorithm FindLeaf
Input: T: the root node of an R-tree
E: an entry to be removed

Output: a leaf node containing E

FL1 [Search subtree] Set N to be T.
If N is a non-leaf node, check each entry F in N to
determine if F.I overlaps E.I. For each such entry, invoke
FindLeaf on the tree whose root is pointed to by F.ptr
until E is found or all entries have been checked.

FL2 [Search leaf node If N is a leaf node, check each entry to see if it matches

for record] E. If E is found, return N.

Algorithm CondenseTree

Input: L: a leaf node from which an entry has been deleted

Output: none

CT1 [Initialize] Set N to be L; Set Q, the set of eliminated nodes, to be
empty;

CT2 [Find parent entry] If N is the root, go to CT6. Otherwise, let P be the parent
of N, and let Ey be N’s entry in P,

CT3 [Eliminate under- If N has fewer than m entries, delete Ey from P and add N

full node] to set Q.

CT4 [Adjust covering If N has not been eliminated, adjust En.I to tightly contain

rectangle] all entries in N;

13

CT5 [Move up one
level in tree]
CT6 [Re-insert

orphaned entries]

Set N=P and repeat from CT2;

Re-insert all entries of node in set Q. Entries from
eliminated leaf nodes are re-inserted in tree leaves.
Entries from eliminated interior nodes are placed one
level higher in the tree so that leaves of their dependent

subtrees are on the same level as leaves of the main tree.

2.2.2.4 Split

In order to add a new entry to a full node with M entries, it is necessary to divide the

collection of (M+1) entries between two nodes. [Gutt84] introduced two version of

applicable split algorithms: quadratic-cost (O(Mz)) algorithm and linear-cost (O(M))

algorithm with respect to the maximum number (M) of entries in a node. In [Gutt84],

experiments show that both algorithms yield the same retrieval performance. Later

research [Beck90] has determined that in the conditions of more extensive trials with

wider-ranging data, the quadratic cost algorithm outperforms the linear cost one.

Algorithm QuadraticSplit

Input: L: a leaf node or non-leaf node with (M + 1) entries

Output: LL: a new leaf node or non-leaf node

QS1 [Pick first entry
for each group]
QS2 [Check if done]

QS3 [Select entry to

assign]

Apply algorithm pickSeeds to choose two entries to be
the first elements of the groups. Assign each to a group

If all entries have been assigned, stop. If one group has so
few entries that all the rest must be assigned to it in order
for it to have the minimum number m, assign them and
stop;

Invoke algorithm PickNext to choose the next entry. Add

it to the group whose covering rectangle will have to be

14

enlarged less to accommodate it. Resolve ties by adding
the entry to the group with smaller area, then to the one

with fewer entries, then to either. Repeat from QS2.

Algorithm PickSeeds selects two entries to be the first elements of the groups.

Algorithm PickSeeds

Input: L: a node with (M + 1) entries

Output: a pair of entries

PS1 [Calculate For each pair of entries E1 and E2 , compose a rectangle J
inefficiency of grouping including E1.I and E2.1.

entries together] Calculate d = area(J) — area(E1.I) — area(E2.]);

PS2 [Choose the most ~ Choose the pair with the largest d.

wasteful pair]

Algorithm PickNext selects one remaining entry for classification in a group.

Algorithm PickNext
Input: Groupl: a node with previously distributed entries from L

Group2: new node with previously distributed entries from L
Output: an entry
PN1 [Determine cost of For each entry E not yet in a group, calculate d1 = the
putting each entry in area increase required in the covering rectangle of Group
each group] 1 to include E.I. Calculate d; similarly for Group 2;
PN2 [Find entry with ~ Choose any entry with the maximum difference between

greatest preference for E1 and E2.
one group]

2.3 Templates, Generic Programming and STL
2.3.1 Templates
Templates, also called parameterized types, are among the most powerful features of

C++ since they provide a generic way to develop reusable code. Templates are

15

mechanisms for generating functions and classes based on type parameters. They
provide us with behavior parameterization, code optimization, and information

parameterization.

C++ requires programmers to declare variables, functions, and most other kinds of
entities using specific types such as char, int, float, double, etc. However, a lot of code
looks the same for different types. Especially when implementing algorithms, or data
structures, the code looks the same despite the type used. “Templates are a good
candidate for coping with combinatorial behaviors because they generate code at
compile time based on the types provided by the user” [Alex01]. Templates allow
developers use a single data structure or algorithm to handle many different types of
parameters, instead of implementing the same behavior again and again for each

specific data type.

C++ provides two basic types of templates: function templates and class templates.
They are functions or classes that are written for one or more types not yet specified.

Specified types are passed as arguments explicitly or implicitly later.

2.3.1.1 Function templates

Function templates are generic functions that can be used with arbitrary types. They
are implemented like regular functions, except they are prefixed with the keyword
template by angle brackets “< >”. They provide a way to parameterize the arguments
or return types of a function, so that they can represent a family of functions. Function
templates provide a functional behavior that can be called for different types. The
definition of a template function depends on an underlying data type. For example:

template <class T>
T max(const T& a, const T& b)

16

return a> b? a: b;

}

The first line is the template prefix, which tells the compiler that template parameter T
is a data type that will be explicitly specified later with an actual type. Template
functions are used in exactly the same way as regular functions. The compiler
automatically instantiates the needed versions of max function in terms of the given

actual type. The STL algorithms are implemented as function templates.

2.3.1.2 Class Templates

A template class is a class that depends on an underlying data. They provide a way to
parameterize the types within a class. The definition of a template class starts with a
template prefix:

template <class T>

class vector

{

b
Inside the class, the template parameter T can be used as the name of a data type.
When the class is instantiated into a concrete class, an actual data type (such as int
and double) will be substituted for T. For example, to create a dynamic array-like data
structure, we now just need to instantiate the class with an actual data type:

vector<int> intVect;

vector<double> doubleVect;

Function and class templates are particularly useful in the Standard Template Library
(STL), since they make the generalization possible without sacrificing efficiency.

Without templates, there were only two approaches for creating generic components

17

in C++; one is to implement the data structure as a C struct with void pointers to hold
the data; another is to implement the data structure using a C++ class hierarchy and
use inheritance and virtual functions. However, neither of these approaches could
provide the efficiency required for a component in a standard library that would be

put to general use.

2.3.2 Generic Programming

Generic programming is “programming with concepts” [Mus03]. [HypDic] defines
generic programming as “a programming technique, which aims to make programs
more adaptable by making them more general.” Generic programming is a sub-
discipline that deals with finding abstract representations of efficient algorithms, data
structures, and other software concepts, and with their systematic organization. The
goal of generic programming is to express algorithms and data structures in a broadly

adaptable, interoperable form that allows their direct use in software construction.

Generic programming offers the ability to parameterize functions and classes with
arbitrary data types. This new technique allows us to focus on the nature of algorithms

rather than on their implementations for special types.

2.3.3 Why Generic Programming?

Generic programming makes it possible to write programs that solve a class of
problems once and for all, instead of writing new code over and over again for each
different instance. Generic programs are natural candidates for incorporation in
library form, and the increased reliability, due to the fact that they are stripped of

irrelevant detail which often makes it easier to construct.

18

Generic programs often embody non-traditional kinds of polymorphism; ordinary
programs are obtained from them by suitably instantiating their parameters. In
contrast with traditional programs, the parameters of a generic program are often quite

rich in structure.

2.4 The STL Style

The Standard Template Library (STL), which is developed by Alexander Stepanov
and Meng Lee, is a general-purpose C++ programming library accepted by the
ANSVISO committee as part of the C++ Standard (ISO/IEC (1998)). It makes heavy

use of the template mechanism for parameterize components.

2.4.1 Why Use the STL?

2.4.1.1 Code Reuse

The STL promotes software reuse. The meaning of reusable is roughly “widely
adaptable but still efficient”. The purpose of the STL has been to explore methods of
developing and organizing libraries of generic and reusable software components
[Kern98]. Relatively, the STL is a small library which achieves a remarkable degree
of reuse through its basis in the principles of generic programming and use of C++

templates. Thus it has a particularly clear shape.

The STL itself is a collection of reusable components. The most used data structure,
array, queue, list, etc., are implemented, debugged and tested by experienced
programmers. Designing with existing components can significantly reduce the period
of the software development and increase the reliability of the products. The time
needed for implementation of many large systems might be dramatically reduced by

codes simply imported from the STL.

19

The STL are type independent that means you can create vectors of char, integer, float,
double or any other user-defined classes or types. The container classes are
independent of the memory model that keeps the code portable across the numerous
memory models found on the various operating systems in use today. The way the
author of the STL kept the code memory model-independent was through the use of

allolcators.

The STL is written in such a way that different algorithms can work for different
containers, without the need to duplicate the code and rewrite the same algorithm
again and again for every data structure and object type. In addition, programs using a
standardized library are more portable since all compiler producers will be oriented

towards the standard.

2.4.1.2 Smaller Codes

The STL provides approximately fifty different generic algorithms and about a dozen
major data structures. This separation helps reducing the size of source code and
decreasing some of the risk that similar activities have dissimilar interfaces. If it were
not for this separation, for example, each of the algorithms would have to be re-
implemented in each of the different data structures, requiring several hundred more
member functions. Based on the STL, the programmer can then focus on the problem
at hand instead of implementing and debugging their own codes that other developers

have already coded hundreds and thousands times.

The STL hides complex, tedious and error prone details. For example, using the

default allocator in the STL container, you can use different standard containers

20

without any coding with allocator. You do not have to worry about allocating and

freeing memory.

2.4.1.3 Flexibility

In STL, the iterators decouple algorithms from containers. This orthogonal structure
brings the STL its power, flexibility, and extensibility. The developers, who are
implementing new algorithms utilizing one of the STL iterators, are guaranteed that
their algorithms will work with existing containers as well as those that have not yet
been developed. Another advantage of the separation is that such algorithms can be
used with not only STL containers, but also conventional C++ pointers, strings and
arrays. Because C++ arrays are not objects, algorithms encapsulated within a class

hierarchy seldom have this ability.

The other three STL components also contribute to the flexibility; function objects
encapsulate a function as an object; adaptors provide an existing component with a

different interface; allocators encapsulate the memory model of the machine.

2.4.1.4 Efficiency

All the STL components themselves are written with the most efficient
implementation possible, and strict attention to time complexity of algorithm is paid.
Therefore, they allow the system itself to be efficient. The users do not have to write
their classes and algorithms that cost much time to write, debug and test. Furthermore,
there are no run time losses since the evaluation of templates is carried out at compile

time.

21

The STL in particular provides a low-level approach to application developments.
This low-level approach can be useful when specific programs require an emphasis on

efficient coding and speed of execution.

2.4.2 The STL Components

The uniform design of the interfaces allows a flexible cooperation of components and
also the construction of new components in the STL-conforming style. Since the STL
“provides a set of well-structured generic C++ components that work together in a
seamless way”, it “ensures that all the template algorithms work not only on the data
structure in the library, but also on built-in C++ data structures” [Step95]. The STL is
therefore a universally usable, flexible, and extensible library, which offers many
advantages with respect to quality, efficiency, and productivity. Plus, it has an
elegant, consistent, and easy to comprehend architecture. The successful concept has
already been copies, as the Java Generic Library shows [Brey02]. Figure 2-2 [Sanc00]

illustrates an overview of the STL.

Container Iterators Generic Function Adaptors
Classes Algorithms Objects
stack [
© e

queue |BIsH]
© |

P
fm,
Stor J reverse

T rgre

! iterators |-
Allocators Namespaces

fk«” ME
‘,} using '

{namespa ces‘q

Figure 2-2 STL Overview

istre 3m.-
iterator

istream

a . o
T
i

ostream-

0st re‘am- Hecatar Tsi

22

The STL provides a set of reliable and well-proven components that can be broadly
classified into six categories: template-based containers, generic algorithms, iterators,
functors (function objects), adapters, and allocators [Wise95]. The first three
components, namely container, algorithm, and iterator, can be considered the
foundational and core components of the library. The other three components, i.e.

allocators, adaptors, and function objects, are used for support.

Containers are data structures that manage collections of elements and are responsible
for the allocation and deallocation of those elements. Unlike traditional data structures,
STL containers have only constructors and destructors along with a minimal set of

operations for inserting and deleting elements.

Algorithms, used for processing elements in containers, are decoupled from the
specific type of container that the algorithm might currently be working with. They

can only interact with containers by accessing the corresponding iterators.

Iterators are objects to provide a way to access the elements of an aggregate object
(container) like points without exposing its underlying representation [Gamm95].
They act as the glue that allows algorithms to be applied to containers. The design of
separating containers and algorithms leads to a very clear orthogonal component
structure [Wise95] that is shown in Figure 2-3. It facilitates the use of generic

algorithms on almost all containers that conform to STL conventions.

Algorithm z Iterator >z Container

Figure 2-3 Orthogonal Component Structure

23

Function objects, or functors, are objects which behave like functions but have all the
properties of objects. They can be generated, passed as arguments, or have their state

modified.
2.4.2.1 Containers

Containers are objects that store other objects. They deal with the allocation and
deallocation of memory through constructors and destructors, and control insertion
and deletion of the stored objects [Step95]. The STL provides different kinds of
containers that are all formulated as template classes. Each container offers unique
advantages. The most efficient container type for a specific task depends on the way
an application manipulates its data and the nature of operations it wants to perform on
the objects. The STL containers are divided into two broad families: sequential

containers and sorted associative containers (Figure 2-4).

Container

Sequence Associate

container container
Y
vector list deque set map
(| (4 1
\
\ 3 2s
i ~
—
multiset 1 multimap
{) 2
1
1 1

Figure 2-4 STL containers

24

Sequence containers

Sequence containers include vector, list, and deque, which contain elements of a

single type organized in a strictly arrangement [Kern98].

Vector provides a dynamic array structure with access to any element. It
expands at the end as necessary to accommodate additional elements.

Inserting and deleting elements at the end is fast.

deque provides a dynamic array structure with random access, fast insertion
and deletion of elements at front and back. It is very slightly slower

than vector because of an extra level of indirection.

list provides linear time access to a sequence of varying length. There is no

random access to the elements. Insertion and deletion anywhere is fast.

Associative containers

Associative containers include set, multiset, map, multimap. They allow for the

efficient retrieval of data based on their keys since they are implemented as red-black

trees.

set<T, Compare> supports unique Ts, and provides for fast retrieval of the
Ts themselves.

multiset <T, Compare> allows duplicate Ts, and provides for fast retrieval of
the Ts themselves.

map<Key.,T,Compare> supports unique keys, and provides for fast retrieval of

another type T based on the keys

25

multimap<Key,T,Compare> supports duplicate keys, and provides for fast retrieval

of another type T based on the keys.

2.4.2.2 Iterators

Containers are only storage cabinets to put objects in. They do not provide built-in
access to their elements. Although, using an index and the subscript operator can
access the elements of a vector, but this is not true for other containers such as list.
Stated differently, using the subscript operator and indexes is not a generic way to

access an element in a container.

In order for a STL algorithm to work on any STL container in a uniform manner,
some truly generic means of accessing the elements in a container is required. For this
purpose, STL provides objects called iterators that can “point at” an element, access

the value stored there, and move from one element to another.

Iterators are pointer-like objects that STL algorithms use to traverse the sequence of
objects stored in a container. Iterators are of central importance in the design of STL
and give the STL its most flexibility because they act as intermediaries between
containers and generic algorithms. They decouple the components so that new
algorithms can be written without concern for how data sequences are stored, and they
enable containers to be written without having to code a large number of algorithms
on them. Each STL container also declares its own group of iterator types that can be

used to define iterator objects and at least two methods that return iterators:

begin() returns an iterator positioned at the first element
end() returns an iterator positioned at the position following the last element

An iterator may either point to an element of this container, or beyond it, using the

special past-the-end value illustrated in Figure 2-5.

26

range [begin, end)

begin() rangs [first, last) end()
J first() iterator ++ last() ’
| |
S /\4 L .)

tJ | element \

S

~ — P .

\:‘/ N N
|| elemient ' (element
/ \ A 5

w5 Container

Figure 2-5 Iterator Range
Iterators are the cornerstone of the STL design and give the STL its most flexibility.
Instead of developing algorithms for a specific container, five categories of iterators
are developed to makes it possible to use the same algorithm with a variety of
different containers. Requirements for a given iterator category are specified by a set
of valid expressions for iterators in that category as well as precise semantics
describing their usage. In addition, iterators must satisfy complexity requirements,

which ensure that STL algorithms will work correctly and efficiently.

The STL provides a hierarchy of iterator categories as shown in Figure 2-6. Iterators
at the top of the hierarchy are the most general and powerful; those at the bottom are

the most restricted and have fewer requirements.

. { Random Access)

b= N i RS
. S —
++' ~ Bi-directional
* V
== 1= Forward
++

e
\\\A

== I= *C Output) (Input)

Figure 2-6 Iterator Hierarchy

27

2.4.2.3 Algorithms

The STL algorithms are template functions to perform operations on containers
through iterators. Instead of taking containers as arguments, they take iterators that
specify part or all of a container. Thus not only can the functions work with different
types of standard containers, but also work on custom containers, as long as they have

iterator types satisfying the assumptions on the algorithms [Step95].

The STL provides a rich set of generic algorithms that fall into four broad categories,

based loosely on their semantics [Muss96]:

¢ Nonmutating sequence algorithms: operate on containers without modify them.
Examples: find, equal, and search;

e Mutating sequence algorithms: modify the contents of the container on which
they operate. Examples: copy, fill, shuffle, remove, and swap;

¢ Sorting-related algorithms: rearrange the elements’ positions based on sorting
criteria. Examples: sort, and partial_sort;

¢ Generalized numeric algorithms: obviously conduct numerical manipulation

of the data in the container; Examples: accumulate, and inner_product;

2.4.2.4 Allocators

Allocators are components responsible for memory management. Allocators
encapsulate information about memory allocation model the program is using. They

provide a low-level interface that permits efficient allocation of many small objects.

A container is given an allocator when it is constructed. Whenever an element is

inserted or removed, a container uses its allocator to allocate and deallocate the

28

memory automatically without knowing anything about the memory model of the
computer. Different memory allocation models take different approaches to obtaining
memory from the operating system. The allocator class encapsulates information
about pointers, constant pointer, references, constant reference, size of objects,
difference types between pointers, allocation and deallocation functions, as well as

some other functions.

The STL provides different allocators and you can even create your own custom
allocators. However, default allocator supplied with STL implementation is sufficient

for most programmers’ needs.

2.4.2.5 Adaptors

An adapter in our daily life is a component that modifies the interface of another
component. In computer science, an adaptor is a template class that provides an
existing class with a new interface. The intent of the adapter (pattern) is to convert the
interface of a class into another interface clients expect. Adapter lets classes work
together that couldn’t otherwise because of incompatible interface [Gamm95]. The
STL adapters are defined as template classes that taken a component type as a
parameter. The STL provides container adaptors, iterator adaptors, and function

adaptors.

Container Adaptors

It is usually needed to create a new container from an existing and general container.
We can use the container adaptors to create a new container by mapping the interface
of the container to that of the new container. Since most of the functionality is already

provided by the existing container, we can do it without much additional effort. The

29

STL provides three container adaptors that are stack, queue, and priority queue

container adaptors.

Iterator adaptors

The iterator adaptors are STL components that can be used to change the interface of
an iterator component, and to extend the functionality of an existing iterator. The STL

provides three iterator adaptors that are reverse, insert, and raw storage iterators.

Function Adaptors

Function Adaptors are template classes that provide an existing class with a new
interface. They help us construct a wider variety of function objects without directly
constructing a new function object type with a class (or struct) definition. The STL
provides three categories of function adaptors: binders, negators, and adaptors for

pointer to functions [Kern98].

2.4.2.6 Function objects

Although pointers to functions are widely used for implementing function callbacks,
C++ offers a significantly superior alternative to them, namely function objects (also
called "functors"). Function objects are entities that can be applied to zero or more
arguments to obtain a value and/or modify the state of the computation [Muss96].

Object of any class that overloads the function call operator (operator()), satisfies this

definition and behaviors like a regular function.

Using functors instead of a function pointer is more resilient to design changes
because they can be modified internally without changing their external interface.

Functors give us the ability to separate methods from objects.

30

A functor can also have data members that store the resuit of a previous call, while
ordinary functions have to work with a global or local static variable, which have
some undesirable characteristics. In addition, compilers can enhance the performance
further by inline of a call made through a function object. In contrast, it is nearly
impossible to inline a function call made through a pointer. Therefore, using function
objects rather than function pointers allows the STL to generate more efficient and

flexible code.

The STL provides many different predefined function objects for the most common
cases, including arithmetic operations, comparisons, and logical operations. It is
possible to perform very sophisticated operations simply by combining these

predefined function objects and function object adaptors.

More introductions have to be given to the predicate for this thesis is much related to
it. Predicates are functions or functors that return a Boolean value. A predicate cannot
change the state due to a call. A copy of the predicate should also have the same state
as the original one. A predicate should always return the same result for the same
value. When an algorithm takes an Unary Predicate pred as its argument and iterator
it of the container, the operation pred(*it) should work correctly. Similarly, a Binary

Predicate should work correctly in the form of binary_pred(*itl, *it2).

2.5 Design Pattern

“... describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice” [Gamm95]

— Christopher Alexander

31

Patterns were originally conceived by Christopher Alxander and presented in his book
"A Pattern Language" to provide structure for a theory of living architecture. Eric
Gamma [Gamm95] describes design patterns as “descriptions of communicating
objects and classes that are customized to solve a general design problem in a
particular context.” Shortly, design patterns are general solutions to frequently

occurring architecture/design problems in contexts.

In software engineering, patterns attempt to describe successful solutions to common
software problems by experts in software architecture and design. They make hidden
design knowledge explicit and available, provide the best solution to the common
problems so that people can get a head start on their own problems, and provide a
common point of reference during the analysis and design phase of a project. This
section simply introduces some design patterns associated with our design and

implementation.

2.5.1 Composite

The intent of composite pattern is to compose objects into the tree structures to
represent part-whole hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly. The structure of the composite pattern is

illustrated in Figure 2-7. [Gamm95]

The Component declares the interface for objects in the Composition and for
accessing and managing its child components. In addition, it implements default
behavior for the interface common to all classes. The composite stores child

components, defines behaviors for components having children, and implements

32

child-related operations. The leaf represents leaf objects in the Composition and

defines behavior for primitive objects in the Composition. [Gamm95]

Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

T

| |

Leaf Composite
K IN
for all g in children |
—— Operation() O g.Operation();
Operation() Add(Component)
Remove(Component)
GetChild(int)

Figure 2-7 Structure of Composite Pattern

By using this pattern, we can build complex objects by recursively composing similar
objects in a tree-like manner and allows the objects in the tree to be manipulated in a
consistent manner. The key to the composite pattern is an abstract class that represents

both primitive and their containers.

Although the composite class implements the Add and Remove operations for
managing children, we still have a question that which class should declare these
operations in the Composite hierarch. If we define the child management interface at
the root of the class hierarchy, we can treat all components uniformly. However, it
cost us safety since clients may try to add and remove object from leaves, which is
meaningless. If we define child management in the Composite class, we get safety
because any attempt to add or remove object from leaves will be caught at compile-
time. However, we lose transparency because of the different interface between leaves

and composites.

33

One approach proposed by [Gamm95] is to declare an operation Composite*
GetComposite() in the Composite class. Component provides a default operation that
returns a null pointer. This operation is redefined in the Composite to return itself
through the this pointer (Figure 2-8). Actually, this is the same story with casting

method pattern introduced below.

client Component
'y
SomeOperation() o GetComposite() : Composite sk O return 0;
J Operation()
! Add(Component) —
Composite* aComposite=new Conposi [N Remove(Component)
Leaf* al.caf = new Leaf: GetChild(int)

Component™® a Component;
Compasite* test:

aComponent = aComposite; [I

if(test=aComponent->GetComposite())
: Leaf Composite
test->Add(mew Leaf); [\
aComponent = aLcaf; Operation() GctCompositc() : Composite % O return this;
Operation()

if(test=aComponent->getComposite()) Add(Component) -
{

test->Add(new Leaf): #/ will not add leaf Rcmove(Componem)
H GetChild(int)

Figure 2-8 an Alternative Form of Composite Pattern

2.5.2 Casting Method

The intent of Casting-method pattern [Scot92] is to represent an operation to
dynamically and quickly obtain a type-safe reference to a subclass in an inheritance

hierarchy. The structure of the casting method is illustrated in Figure 2-9.

The Casting method pattern uses inheritance to allow subclasses to return references
to themselves. This pattern is applicable when there is a need to obtain a downcast
class reference from a base class, or run time type information is not available, or real

time constraints require the fastest and safest solution possible.

34

efem

Client] Element
setblem () : RealEleml % -~ ¥ return 0;
SomeOperation() getElem1() : Realllem! %) return 0;
T getElemN() : RealElemNik -~
: AN
RealElem1* rl; b
RealilemN* ¢N; RealElemi
rl = element->getElementi();
if(rd 1= ||
',f(” =0 | getElem1() : RealElem! %
© rl->Dohi(); 4 LRoO

. i/

! ¢
i

else !

s

13

T g N
N = glement <>getElementN(); RealElem

El
|
if(xN1=0) l‘
rN->doActionN(); I\
i

getElemN() : RealElemN %
{1 Action()

return this;

Figure 2-9 Structure of Casting Method Pattern

Although the syntax of casting method pattern is rather simple and easy to understand,
it executes faster than any other technique except blind cast. However, it is difficult to
add new elements since every time a new element is added, the base class must be
modified by adding a new GetElementN() method. Moreover, all users of any classes
derived from the base class must be recompiled whenever any new element class is
added. Therefore, it is well applicable for cases with a small and stable number of

subclasses.

2.5.3 Proxy

The intent of the Proxy pattern is to provide a surrogate or placeholder for another
object to control access to it [Gamm95]. Classes for proxy objects are declared in a
way that usually eliminates client object’s awareness that they are dealing with a
proxy. The proxy maintains a reference that lets the proxy access the real subject. It
controls access to the real subject and may be responsible for creating and deleting the

subject. The proxy structure of the proxy pattern is illustrated in Figure 2-10

35

[Gamm95]. Figure 2-11 shows a possible instance diagram of a proxy structure at run-

time.

Subject
Cligot ey
Request()
realSubject
RealSubject | Proxy S
realSubject->Request();
Request() Request() (3t e

Figure 2-10 Structure of Proxy Pattern

aClient) B

aProxy Y
[' aRealSubject |
realSubject © :l J

e e e

TN

subject © y :1

\ L/

Figure 2-11an Instance of Proxy

Proxy is a very general pattern that occurs in many other patterns, but never by itself
in its pure form. It is applicable whenever there is a need for a more versatile or
sophisticated reference to an object than a simple pointer. In the implementation of
the tree structure, a smart reference is replaced for a bare pointer that performs

additional actions when a node object is accessed.

2.5.4 Singleton

The Singleton is probably the most widely used design pattern. Its intent is to ensure
that a class has only one instance, and provides a global point of access to it
[Gamm95]. It’s important for some classes to have exactly one instance, and it must

be accessible to clients from a well-known access point. The Singleton class hides the

36

operation that create the instance behind a class operation, a static member function
called Instance(), to guarantee only one instance is created. The clients access the
singleton exclusively through the Instance member function. The structure of the

singleton pattern is illustrated in Figure 2-12. [Gamm95]

Singleton

static uniquelnstance
singletonData

static Instance() (>~f-——-===-- return uniquelnstance
SingletonOperation()
GetSingletonData()

Figure 2-12 Structure of Singleton Pattern

2.5.5 Serializer

The intent of serializer pattern is to read arbitrarily complex object structures from
and write them to varying data structure based backends[RIE97]. It lets clients
efficiently store and retrieve objects from different backends, such as flat files,
relational databases and RPC buffers. Participates are the Reader/Writer, the Concrete
Reader/Concrete Writer, the Serializable interface, the Concrete Elements, and

different Backends. The structure of the serializer pattern is showed in Figure 2-13.

The Reader part of the pattern builds an object structure by reading a data structure
from a backend. The Writer part of the pattern writes an existing object structure as a
data structure to a backend. The Reader and Writer hide the Backend and external

representation. Both parts together constitute the Serializer pattern.

One advantage of this pattern is that the application class itself has no knowledge

about the external representation format that is used to represent their instances. As a

37

result, introducing a new representation format or changing an old one would not

require changing any class in the system.

E

Hent

Serializable

Reader

Writer

readFrom{Reader}
write TofWriter}

A

int readini(}
string readSiring(}

\;alueT)'peN readVakieTypeN(}
Seriglizatde readObject()

writelnifing
writeString(slring)

writeVaise TypeN(Value TypeN)
whiteObject(Serializable)

Senalizable readRoot(} writeRool{Senakzable}
ConcreteElementAl [ConcreteElemantB) *
ConcreteReaderA ConcreteReaderB
| ConcreteWriterA I CloncreteWriterB
I |
BackendA BackendB

Figure 2-13 Structure of the Serializer Pattern

2.6 Indexing Frameworks

2.6.1 The GiST Framework

The theory and implementation of the GiST (Generalized Search Tree) framework
was realized by Joseph. M. Hellerstein and his group at the University of California,
Berkeley [Heller95]. It is an indexing framework that subsumes most of the prior
indexing research in Database and Geographic Information Systems. The GiST
framework enables an access method developer to build any kind of balanced index
tree on any kind of data by implementing some specific method for insertion, deletion
and search. Thereby it unifies disparate structures such as B+-trees, R-trees, and RD-

trees in a single piece of code.

38

The GiST allows users to develop indices over any kind of data, supporting any
lookup over that data efficiently. To make a GiST work, the users just have to figure
out what to represent in the keys, and then write the following four special methods,
which include Consistent, Union, Penalty, and PickSplit, for the key class that help

the tree do insertion, deletion, and search.

2.6.2 An Framework of Indexing Structure of KIA

Under the framework of Know-It-All [Butler02] are some sub-frameworks that
include the framework of indexing structure. In 2001, Ashraf Gaffar [Gaff01]
designed a framework for database indexes using STL components. Figure 2-14 is the
component layout of his design. “These components will provide the necessary index

structure, and manage the access and storage of the index”” [Gaff01].

Pair <key, data reference

('7_:
'.’ N3) defanly R)
t }A\,::>.»\1I0cator \'/‘:Dm;.nmr)

\

find { 3 ;
result++ ;
result++ ;

™
: X specialized e

4’1 Allocator

algorithm

SN

Application
Program

iterator ‘\9/

Index

Figure 2-14 The Components Layout of Gaffar’s Design

39

The index is a container of template type page that is passed as template type in the
implementation phase. This makes the index independent of the page type so that the
index can work with any page type. The page is also a container of pairs of key and
data references. Again the page is independent of the type of key and data reference
by having them as templates. Therefore, the page can work with any key type and

data reference type that are passed to it.

The only way to interact with the container is through its iterator, which provides
controlled access to the element of the container. The application therefore has to use

an index iterator to iterate through pages, one page at a time.

An applicable database system should have the ability to save the data on non-volatile
storage, like a hard disk or other mass storage media since the system is normally too
large to fit entirely in memory. To manage the storage of the elements, the container
will use a “specialized allocator that takes the responsibility of retrieving the page
from the storage into memory for access and controlling the different objects
accessing the same page simultaneously... This will ensure data integrity by applying
a suitable access and locking policy” [GaffO1]. Figure 2-15 [Gaff01] shows the class

diagram of the index system.

By using the STL components, [GaffO1] produced a generalized index framework that
is adaptable to different data/key type, different query, and different database

application domains.

40

uscp Tree

atlocator

Endex

Tree Tree Tree
algorithm functor| [Iterator
pige us¢ p page
allocato
Page Page Page

algorithm| [funcror| [Ferator

Figure 2-15 Main Classes of Gaffar’s Design

2.7 Some Existing R-tree Implementations

The R-tree has been implemented hundreds times after the original R-tree theory was
developed. Its most popular variants (R*-tree, X-tree) are proposed for index data in
low or high-dimensional spaces. Some implementations of the R-tree are developed
by C language and thereby not easy to read and reuse. These include the original
algorithm and test code by Antonin Guttman in 1983, the implementation by Timos

Sellis’ group [Rtreeportal], and the GiST (version 1.0).

Some implementations are object-oriented designed. The Spatial Index Library is a
well-developed package by University of California [UCalifornia]. It provides a
general framework for developing spatial indices. The relationship of the main classes
is illustrated in Figure 2-16. It applied the composite design pattern with maximizing

the component interface, which will be discussed in Chapter 3.

141

INode <<interface==

+getlevel()long
+ [sLeaf(): bool
+ IsIndex(): boal

I

RTree

Node

+ level: usnsigred long
<<use>> + Identifier: long*

----------- % +Data: byte**

+MBR. Region*

I

Leaf

Index

Figure 2-16 Main Classes of Spatiallndex

42

Chapter 3 The R-Tree Design

The design of R-tree in this thesis is mainly based on the framework developed by

Ashraf Gaffar [GaffO1]. Some problems in this framework are addressed or improved.

3.1 Use Case

The index is a part of the database. The R-tree is a balanced tree structure that can be
customized to suit different application, applied to insert, delete and query data in the

database. Figure 3-1 shows the diagram of use case.

-O

/ \\
/ \
Expert Developer

~
N,

Y
N,
S A
/«/ _ \ s N
{ design) implement)
. d
S o AN rd
e, ‘\T/ .
s \ /
/ ereate and modify /
//\,‘_ index AN / e
VN \ / o ™
A e \ \ / /(define scheme
a0 N N P e N N
Vs ! . . N T . S \
. 4\ provide new queries K N - . (\
T SN e A T ~ :
e R —— ~ i 7~ build data >~
_ T - reference /7T
L ~me{ PrOvide new data™__ . e B
™. \ type v /S N AN / - /,/ \
™~ \\._‘W//” // Database AN o ~. e / \
Database Developer ., < AN \/ !
N —_— /7 { buildindex) DBA
\ e 3 .] \ . 4
w7 setindex N/ N
\\ parameters
\\\\\\\\\\ // i
i - “\\ ////m\
\ insert k delete L search)
S . _// \\\\\ o
— \T__- ‘ 7,
“ e

Client

Figure 3-1 Use Case

43

3.1.1 Expert Developer

Expert developer is an experienced programmer who designs the database system to
satisfy domain expert requirements and then implements the design using a

programming language.

3.1.2 Database Developer

Database developer is a domain expert who is responsible for customizing an existing
database system and setting the parameter to suit the system platform and the
application variables. Database developer makes the database system to be able to
support a new data or query type, or a completely new index structure with new

access method by modifying some components or replacing some parts.

3.1.3 Database Administrator

Database administrator (DBA) is responsible for building the database system that

includes building the scheme, the physical tables and the indexes used to access them.

3.1.4 Client

Client is the application that is using the system to search, insert data into or delete

data from the database.

3.2 Relation between Index and Database Data

The index is a major component of a database system. Instead of providing us directly
with data, it tells us where the data is. The index is built on the physical data
indirectly through a data reference file, which consists of a pair of key and data

reference and constitutes the data level of the index. The separation of data reference

44

from physical data allows multiple indexes to be created on the same dataset and
guarantees that changes in the tuple physical locations will not affect the existing

indexes. Figure 3-2 [GaffO1] shows the relation between the index and the database

data.
Database
Metad d b'h l ~I
etadata {describe «f dccess i
(scheme) Data Index
System e ACCOSR -
%’Jam Tuples <access Data |
i
] Reference
{logs) i N Primary| Becondary
! index Index

Data
ALcess

Aftributes

Figure 3-2 the Relation between Index and Database Data

In order to build an index, we start with physical data, build the reference file. The
data access component will be responsible for binding the reference to the data tuples

on the physical storage. Consequently the index is created.

Answering a query will start from the index for a certain key using some comparison
criteria. We will find the way through the index down to the index leaf level, where
the index data is stored. We then refer to the physical database access mechanism to

get the real data we are looking for.

45

3.3 The Original Design

The original design is the framework of indexing structure by [Gaff01]. By using the
STL components, [GaffOl] produced a generalized index framework that is adaptable

to different data/key type, different query, and different database application domains.

However, there are some problems in the framework for developing tree-like indexes.
Firstly, a tree-like index has two kinds of pages, namely index page and leaf page.
Only the leaf pages are visible to the users. The application program uses index

iterators to interact with the leaf page without awareness of the existence of the index

pages.

[Gaff01] tries to use a special allocator to take responsibility of the management of
the container’s access and storage. STL itself does not provide any functionality for
the serialization of its elements since the container’s elements are stored in memory.
Since the STL containers can be parameterized with customer allocators, it seems that
a special allocator can allocate its elements on persistent storage simply.
Unfortunately, the constructors of the container class do not provide an argument to
pass the name of the file the elements should be stored in. The customer allocator
class only allows allocating and freeing memory, constructing and destroying a given
object [Strou97, 1SO98]. The constructor of STL containers cannot check the
allocator for previously stored elements. Therefore, it is not possible to convert an
STL container into a persistent one just by supplying a special allocator class to its

constructor.

46

In our R-tree implementation, a proxy class is used to be responsible for writing the

container’s elements to and reading the element from the secondary storage.

3.4 Issues Encounterd in the Design and Implementation

3.4.1 Different Designs by Using Composite Pattern

Most tree structures have two types of nodes i.e.leaf node and non-leaf node. We need
a uniform interface so that the common operations can be used on any instance
without knowing its exact class. It is very natural that we use the composite design
pattern to design and implement the tree structure. The main idea of the composite
design pattern is to provide a uniform interface to instances from different classes in
the same hierarchy, where instances are all components of the same composite

complex object.

3.4.1.1 Maximize the Component Interface?

There are many issues to be considered when implementing the tree structure by
Composite Design Pattern. One is “maximizing the component interface by defining
as many common operations for composite and leaf classes as possible” [Gamm95].
It is not possible to put all attributes and operations in the base class because leaf and
non-leaf node have different attributes and operations. For example, a leaf node has
entries that are pairs of key and data reference, while a non-leaf node posses entries

consisting of pairs of key and child pointer.

Figure 3-3 illustrates a possible design of the tree structure. The Page class is
designed to be an interface that declares common attributes and methods. The
inheritance class IndexPage and LeafPage implements the methods respectively in

their own scope.

47

| Key, DataRef

|
_______ Page |
I o L

: -Keys: Container<Key>
|

-Parent: Page*

Treey _ _ _ _ _ _ —— -level : unsigned short

-root: Page* +isLeaf() : bool
-size: size_type +begin(): iterator
+begin(): iterator +end(): iterator
+end(): iterator «usesy |[Tinsert{Key, DataRef): iterator
-+insert(pair(Key, DataRef)): iterator +insert(Key, Page®): iterator
+ind(Key): Cursor [T77777 +Hind(Key): iterator
+ind(Predicate): Cursor +find(Predicate): iterator
+erase(iterator):void +erase(iterator) ; void
-adjustTree(Page*) : void +parent():Page*
-condensTree(Page*) : void +parent(Page*):void "
- chooseSubtree(Key): LeafPage* +empty() : bool

+underflow() : bool

+size(): size_type
+full() : bool
+pageKey{): Key
+getChildPtr(): Page*
+getDataRef() : DataRef

r
i Key, DataRef

1 Key, DataRef | i
L ovee o s s e o b e e e - - ——
LeafPage IndexPage
-DataRefs: Container<DataRef> -Children: Container<Page*>
+is[eaf() : bool +isLeaf() : void
+insert(Key, DataRef): iterator +insert(Key, Page*): iterator 1
+erase(iterator):void() +erase(iterator):void
+getDataRef() : DataRef +getChildPtr(): Page*

Figure 3-3 One Design to Maximize the Component Interface
The iterator is defined to be the iterator of container<Key> so that the iterator is the
same for IndexPage and LeafPage class. Functions in Page class are declared as
virtual functions. We implement insert, erase method in the sub-classes since they
perform some operations on the container of child pointer or data reference. To access

the elements of container of child pointer or reference, two more special functions:

virtual Page* getChildPointer(int n) {...} // for IndexPage

virtual dataRef getReference(int n) {...} //for LeafPage

48

are declared in the base class, and implemented in its subclass respectively. In this
way, not only the Page interface is maximized and uniformed, but also the number of

functions declared in the base class is reduced.

So far so good, the uniform interface is simple and easy to use. It seems that the user
class can perform its algorithms to insert, search and erase the element in these classes
by using the iterator. However, this design has serious problems. Firstly, the iterator is
container<Key>::iterator. Although the user can use the iterator to perform some
operations on the elements of contain<Key>, it does not have the access to the
container of child pointer in index page or data reference in leaf page. Then, if we try
to apply some user-defined algorithms on these classes by iterators, problems occur.
Since we do not have the access to the container of child pointers or data references,
the algorithm can not work absolutely if the algorithm relates to child pointers or data
references. For example, given two iterators of a leaf page, say itl and it2, I just
simply want to swap their value as I usually do in STL containers. Then this leaf page
is in a mess after the operation std::swap(*itl, *it2) since only the key values have

been exchanged.

Moreover, this design separates all the attributes into two classes, i.e. the base class
and the derived class. It obviously breaks the concept of STL container and is difficult

to reuse in applications.

3.4.1.2 Type Casting

To follow the STL style and make the iterator meaningful, we have to design our own
container classes by putting all attributes and methods in them. In any case, we design
two containers, namely IndexPage and LeafPage (Figure 3-4) that are derived classes

of the interface Page.

49

LeafPage

1
: Key, DataRef
]
|

-Entries: Container<Key, DataRef>
-Parent. Page*
-level:size _type

-+begin):iterator
-+end():iterator
+insert(Key, DataRef): iterator
find(Key)iterator

+find(Key, DataRef):iterator
+erase(iterator):void
+parent():Page*
+parent(Page*)
+ull() : bool
+underflow() : bool
+empty() : bool
+size():size_type
+pageKey() : Key
Hlevel():size_type
+level(size_type)

: void

s void

lndexPagu:

1 Key, Data Ref

-Entries: Container<Key, Page*>
-Parent:Page*
Hlevel size type

+begin{):iterator
+end():iterator

insert(Key, Page*): iterator
+Hind(Key):iterator
+find(Key, DataRet):iterator
+erase{iterator):void
+parent():Page*
+parent{Page*)
+Hull() : bool
+underflow() : bool
+empty() : bool
+size(ysize_type
+pageKey() : Key
+level()isize_type

L void

s void

+Hevel(size_type)

Figure 3-4 LeafPage and IndexPage Containers

Page ptr;

if&ptr—>isLeaf())
{

return false. Then the page pointer can be downcast to the actual type:

LeafPage* leaf = static_cast<LeafPage*> ptr;
leafpage_iterator it= leaf->find(aKey);

IndexPage* index = static_cast<IndexPage*> ptr;
indexpage_iterator it= index->find(aKey);

50

Since a page pointer may point to a LeafPage or IndexPage and the function depends
on the run-time page type, we must distinguish between LeafPage and IndexPage.
This might be fulfilled by adding a specific method isLeaf() into the base class and its

sub-classes. This method return true if the proceeding class is a leafpage, otherwise it

Using the RTTI (Run-Time Type Identification) is another way that allows

programmatically getting information about objects and classes at runtime. After

finding the actual type and check the possible type, the pointer is cast to the actual
type [Mey95]:

const type_info& objectType = typeid(page);

if (page == typeid(LeafPage)

{
LeafPage& leaf = static_cast<LeafPage>(page);
leafpage_iterator it = leaf->find(aKey);

}

else if (page == typeid(IndexPage)

{
IndexPage& index = static_cast<IndexPage>(page);
indexpage_iterator it = index->find(aKey);

}

else

{
throw exception of unknown type;

}

Down casting is dangerous and the source code is very difficult to maintain. In his
book of “effective C++”, Scott Meyers explained why we have to “avoid cast down

the inheritance hierarchy” [Scot92].

3.4.1.3 Tag Dispatching

To avoid using type cast, we have to find another way. The two containers in Figure
3-4 have alike interface except some different methods, but they are absolutely
different. For example, with the same conceptual name, their iterators are distinct;
iterator of IndexPage is container<Key, Page*>::iterator while that of LeafPage is
container<Key, DataRef>::iterator. In the class Page, we distinguish them as
indexpage_iterator and leafPage_iterator respectively. Therefore, each function in

these classed must be declared in class Page showed in Figure 3-5.

51

Page

+ begin(): indexpage_iterator
+ begin(): leafpage_iterator

+ insert(Key): indexpage_iterator
+ insert(Key): leafpage_iterator
+ erase(indexpage_iterator):void
+ erase(leafpage_iterator):void

Figure 3-5 Ambiguity of Function Declaration

In C++, function overloading cannot be applied for those take same parameter but
return different type. Class Page will cause function overloading ambiguity. Since
virtual functions cannot be parameterized [ANSI97], in order to solve this problem,
we have no choice but simply change the functions’ name. Take begin() as an
example, we can write:

leafpage_iterator leafpage_begin()

indexpage_iterator indexpage_begin()
Therefore, in the base class Page, each function has to be declared for leaf page and

index page respectively.

Another way is using tag dispatching technology. It is a way of using function
overload to dispatch based on properties of a type. A good example is the
implementation of the std::advance() function in the C++ Standard Library [Abra01].
We define two tag classes:

Struct indexpage_tag{ };

Struct leafpage_tag{ };
Then, the function begin() can be re-written as the following:

leafpage_iterator begin(indexpage_tag)
indexpage_iterator begin(leafpage_tag)

52

The remaining functions can also be defined similarly. A tag is simply an empty class
whose only purpose is to convey some property for use in tag dispatching and similar
techniques. It costs very tiny and this approach can be used to implement the R tree
index. However, it still violates the STL concept, and it is difficult to understand for

generic programimers.

3.4.2 Say No to Composite Pattern?

Suppose we have a type wrapper class, called magicValue, which could hold arbitrary
types. Then the index structure could be simplified. We only need one page container
rather than two sub-classes derived from the interface class Page. Then for those
IndexPage with pointers pointing to leaf pages, the magicValue is LeafPage*; the
remaining IndexPage’s mageicValue would be assigned with IndexPage*; and the
LeafPage would store data reference in magicValue. Therefore, the tree structure

could be very simple as shown in Figure 3-6.

- T 3
m=====7" | I '
i i i |
| Key, DataRef I } Key :
| | I
Tree b CUSES» Page e JI
-root: Page* o -Entries: Container<Key, magicValue>
-size: size_type -Parent:Page*
+begin(): iterator -level size type
Hend(): iterator +begin():iterator
+Hnsert(pair{Key, DataRef}): iterator +end():iterator
+Hind(Key): Cursor +insert(Key, Page*): iterator
+find(Predicate): Cursor +ind(Key)iterator
+erase(iterator):void +find(Key. wagicValue):iterator
-adjustTree(Page®) - void +erase(iterator):void
-condens Tree(Page*) : void +parent():Page*
-chooseSubtree(Key): LeafPage* +parent(Page*) : void
+full() : bool

+underflow() : bool
+empty() : bool
+size():size_type
+pageKey() : Key
+Hevel():size type
+Hlevel(size_type) : void

Figure 3-6 Index Structure Using a Type Wrapper

53

In [Sim99], a new technique called Chameleon Objects for providing a generic, type-
safe wrapper class is presented. According to the author, this class can hold arbitrary
data types and can be used to pass these objects between different program units while
maintaining type safety. An arbitrary variable v of type T can be assigned to an
instance of value, and therefore the value object itself can be assigned to any instance
of type T, just as it were v itself. If the caller tries to assign a value object to a variable

of a type other than T, it will throw an Incompatible_Type_Exception.

Although the magic functionality was bought with an increasing amount of memory,
runtime, and space overhead, Chameleon Objects provide us a kind of “dynamic
runtime polymorphism” not for function calls, as provided by inheritance and the
virtual function mechanism, but for the data type of an object [Sim99]. Unfortunately,

it can only work on Edison Design Group for their compiler front end at present

3.4.3 Container-Independent Code

At first glance, algorithms appear to work independently of container type. Some of
us may strive to write container-independent code. For example, in the
implementation of the R-tree index, we might think about generalizing the notion of a
container so that we can use the container class with the default vector container, but
still preserve the option of replacing it with some other containers later — all without

changing the code that use it.

However, in practice, the possibilities for writing container independent code are
more restricted than one might expected. First, the code would have to be restricted to
the common interface presented by all the containers that you wish to support. In

addition, the semantics of one container might still invalidate the code. In his book,

54

Effective STL, Scott Meyers lists several reasons and some examples to explain that
we have to choose the container carefully instead of container-independent code. He
said “this kind of generalization, well-intentioned though it is, is almost always

misguided”.

3.4.4 STL Vector Container or C-Style Array

In STL, “Arrays are generalized into containers and parameterized on the types of
objects they contain.” [ScotO1]. Almost every STL book strongly encouraged C++
programmers to use standard vector template--a dynamically expandable array,
instead of C-style arrays. Using a vector is easier and safer than using an array,

because a vector is a better abstracted and better-encapsulated form of container.

What about using the C style array? It is no doubt that the user must make sure that
someone will later delete the allocation. Without a subsequent delete, the operation
“new” will yield a resource leak. Second, the “delete” must be used once and exactly
only once, and a correct form of delete (delete or delete []) must be used, otherwise
the results will be undefined--some programs will crash at runtime, and others will

silently blunder forward [Scot01].

As a replacement for ordinary arrays, the STL provides class std::vector that provides
the semantics of dynamic arrays. Thus, it manages data to be able to change the
number of elements. However, this results in some overhead in case only arrays with
static size are needed. For example, the keys in the R-tree index structure are mainly
rectangle and point. Since the vector itself consists of three data members, e.g. iterator
start, iterator end, and iterator end_of_storage, the memory overhead are significant

for the implementaion of 2-d point and rectangle. As a result, the page capacity is

55

decreased (Figure 3-7) which will considerably affect the performance of the tree

structure.
—+- point ~o~rectangle ——point —o—rectangle
60 / 400
50 30
4 o 2300 \\
> — <250
ii o : S20 D;\c;\
20 4 - / g .
100
10 -
50
0 T T 0 . :
array 1vector 2 vectors array 1 vector 2 vectors

Figure 3-7 the Size of 2-d Spatial Objects and LeafPage Capacities

3.5 The Solution

3.5.1 Basic Components

The R-tree will be built using STL components which will provide the necessary
index, and manage the access of the index. The tree is a container that stores objects
of type page. It provides some necessary operations for insertion, search, and update.
For any STL containers used in the R-tree design, the default allocators are used for
the memory allocation and deallocation of their elements. Instead using a special
custom allocator for object persistence, a proxy is used to control the access to the
index pages and leaf pages. Figure 3-8 is the components layout of the R-tree, which

is improved from the original design of [Gaff01].

56

seurch | S b
» 1 :
” i 3
: 1
1
H Drefult :
H H
; Altacator [yt emeni
'
i ¥
resalive | i ;
esaftes ¢ i i
[' iterate¢ | g H
i H ARIER I :
H H s ¥]
if iteent ! { | ¥ s — i
¥ £ H
H g
Application Index : Page i
Abgorithm [T H * ;
s : =
¢ i
H s
/\/ A ;
4 4
. : . ;
Application : H
Frogrsm H H
H H
M ;
Algerithn t | A H
£ ; — h
: :
: :
H
H i
| S— o e s e s e
The part of the fadex pages thatas
pinted = the memory for access
flus
tosd
pin pag
. ™ Proxy Hurd Disk
flush _pagy
£
Edl

T —

Figure 3-8 System Layout
3.5.2 Class Diagram
Following the STL style, we design the R-tree by using the design patter of composite
and casting method. The relationship of the main classes is illustrated in the class

diagram (Figure 3-9).

<<Use>>
RTree o e o Page e
| algorithm E ? I
~ functor
i LeafPage - - IndexPage kO~
| iterator 5
container } —_container |
' {‘algorithm |
! functor |
Proxy —
Disk

Figure 3-9 Class Diagram

57

3.5.3 The Design

3.5.3.1 Keys: Point and Rectangle

Keys are used for indexing multidimensional dataset. In the R-tree, only two kinds of
keys i.e. point and rectangle are used to present the feature vector of the spatial data.
In Figure 3-9, the keys are designed to be custom data types that must be given to the
RTree container. The RTree container can also receive other user defined types of

spatial objects.

A point respresents a location in the n-dimensional space. All dimensions are stored in
an array or vector. A rectangle specifies an area in the n-dimensional space that is
enclosed by its lower-left point and upper-right point. For example [Kata97], from a
2D color image, we can use a criterion to extract a color histogram to be used as an
effcient key that is much smaller than the image. Then the four histograms are
concatenated to give a 36-dimensional feature vector. Using points and rectangles in
the 2d dimensional space is the simplest example. In this thesis, we will focus on the

2-d dimensional objects.

Class Point

Class Point is designed like a standard container that has a standard interface. Since
the STL vector has some space overhead, we have implemented the point class in two

ways; one uses C-style array, and the other one uses STL vector.

Class Rectangle

The STL vector provides the semantics of dynamic arrays, which results in space

overhead. To represent the two points, we can use two vector<T>, or one

58

vector<pair<T, T> >. Considering the fixed dimension, it is better to use array to
represent the multidimensional coordinates. We provide the array-base Rectangle
class with our final R-tree implementation while the vector-based Rectangle

implementations are supplied for comparisons.

STL containers do not store the objects that you pass to them. They make copies
(using copy constructor) and store those instead. Not only do the containers copy
objects when adding and retrieving them, but also when the containers need to
reorganize (erase or sort) themselves. In order to avoiding the copy of object, swap
functions are implemented for both class point and rectangle by simply exchanging
the pointer to the array or invoking the built-in swap function of the std::vector

container.

Topological Relationships

Topological relations describe purely qualitative properties that characterize the
relative positions of spatial objects. Examples of topological relationships are equal,
meet, cover, coveredBy, disjoint, overlap, within, etc. These relationships can be
simplified to be equal, contain, overlap, and within. Actually most spatial index
structures should supported these four kinds of basic queries. Thus, several methods

to judge these topological relationships are included in the class Rectangle.

3.5.3.2 Page Containers

The class Page is only an abstract class that declares the interface for accessing and
managing the derived classes in the composite design pattern. No default behavior is
implemented in this class since it is only an interface. Figure 3-10 illustrates the

interface of class Page.

59

Page
HgetleafPage():LeafPage* e [= = return NULL;
+getindexPage(kIndexPage* — | — =)

Flevel(k:size_type

+parent(): IndexPage*
+parent(IndexPage®) : void
+pageKey() : IndexPageKey

Figure 3-10 Interface of Class Page
Both class IndexPage and LeafPage, derived from class Page, are designed to be STL
style containers and must conform to all STL interface characteristics. According to
our application, we decided using a contiguous-memory container (also known as
array-based container) which stores their elements in one or more chunks of memory.
This kind of container might be the STL vector or C style array. Following the STL
style programming, we choose the standard vector which is implicitly included in the
class of index and leaf page. Figure 3-11 and Figure 3-12 shows their structures and

interfaces respectively.

parent

Ao
/ Key Key Key
- - - Unusgd Space
Child Child Child
level . . .
pointer ‘|- pointer pointer
) 1
begin() begin()+1 end()-1 end()
parent (a) IndexPage
4
I8
/
/ Key Key Key
i Unused Space
Data Data Data
Reference . | Reference Reference
begin() begiﬁ(')-*— 1 end()-1 end()

(b) LeafPage

Figure 3-11 Structure of IndexPage and LeafPage

60

|

I
| | ' |
| | | |
:DataRct’, LealPageKey, IndexPageKey : :I)alaRcf, LeafPageKey. IndexPageKey)
1 { | :
i I |

LeafPage IndexPage |
sy e e e e e e e [l
-parent: IndexPage® - - 4 -parent: IndexPage™ e

-entries:std:vector<value_type> -entries:stdzivector<value_type>

Flevelisize_type

+level():size_type -
+getleaPage(): LeafPage*

retim this;

+level():size_type

parent():indexPage* <= — ——= actindexPage(): (ndexfPage*

+parcnt(IndexPage*) : void Hparent():IndexPage*

+insert(value_typed)iterator +parent{IndexPage®) : void

Hnsert{lter, iter) : void Hrinseri{value_type&):iterator

+find(LeafPageKey&)iterator value_type: N, frinseri{lter, Tter) :void l
+{ind(DataRef& yiterator - +find(IndexPageKey& yiterator value_type:

std::pair<LeatPageKey,

+find(iterator) : DataRef | +find(Page* yiiterator __| std::pair<TndexPageKey,

DataRef>>

erase(iterator) vold -+ find(iterator): Page* Page*>
Herase(iterator, iterator) : void erase(iterator) : void
+size(): size_type +erase{iterator, itcrator) @ void
begin():iterator +size(): size_type

end(): iterator +begin)iterator
+rom()aeference +end(): iterator
+hack():reference +fromi():reference

operator [1(): reference --back():reference

+empty() @ bool +operator [1(): reference

+full() : bool +empty() : bool

+underflow() : bool +full() : bool

+pageKey() : IndexPageKey +underflow() : bool
+swap(iterator, iterator) : void +pageKey() : IndexPageKey

+swap(iterator, iterator) : void

Figure 3-12 Interface of IndexPage and LeafPage
The value_type is pairs(key, child pointer) for class IndexPage or pair(key, data
reference) for class LeafPage. The iterators of both classes are redefined from their
implicit vectors. Therefore, not only they provide the class-specified functions such as

begin(), end(), insert() and find(), but also they show us uniform interfaces.

The casting method design pattern is used to get the real page type at real-time. To
implement this pattern, two essential functions, i.e. getIndexPage() and getLeafPage(),
are implemented in class IndexPage and LeafPage respectively. The former return a
reference to the current index page; the latter return a reference to the current leaf

page. Therefore, when getting the actual page type by using the method level()
(leafpage’s level is zero), we can obtain the reference of a IndexPage or LeafPage
object by calling one of these two special functions. Once we get a reference from a

derived class, we can use the object as usual.

61

The IndexPage always received the rectangle (MBR) as its key. The LeafPage stores
both points and rectangles. Currently, most R-tree implementation stored point in the
form of rectangle by degrading a rectangle to a point. However, this leads to space
overhead, and increases the execution time. Considering the different size of objects
of Point and Rectangle, we designed the LeafPage to be able to hold either Point or
Rectangle object so that if the dataset is a collection of points, we can store points in
the LeafPage. Therefore the LeafPage can store about two times more point objects
than rectangle objects (Figure 3-13). In the extrem, the leaf page is able to take only 2
points with 500 dimensions when the page size is per default 8kb. In the other word,

the maximium dimensionality is internally limited to about 500.

LeafPage(key=Poiny) primary type: dpuble 8 bytes

data reference: int 4 bytes

> —=a— LeafPage(key=Rectangle)

G smartPtr<Page> 12 bytes

]

e -+-av - IndexPage(key=Rectangle) smartPtr<IndexPage> 12 bytes

2,, Page Size 8 kb

©

a

Container of LeafPage and IndexPage:
std::vector<Pair>

0 50 100 150
Dimensionality

Figure 3-13 Effect of Different Shape on Page Capacity

Since the size of key type has considerable effects on the number of entries a page can
holds, we also designed some variant points and rectangles for evaluation by using

STL std::vector or C-style array.

3.5.3.3 RTree Container

Based on the implementation of IndexPage and LeafPage, the R-tree structure is
created. The R-tree is initialized with an empty LeafPage container (root page) that is

pointed by root, the only data member in RTree container. With the insertion of new

62

data entries, the tree will dynamically grow. With the deletion of data entries, the tree
will shrink automatically. The structure and interface of the RTree container is

illustrated in Figure 3-14.

root
Key | iKey iKey | IndexPage iKey: IndexPageKey
v 2 \ N fevel = 2 (Minimium Bounding Rectangle)
7 7y Key: LeafPageKey
o & (Point or Rectangle)
o !
A
-~ I
~Tikey | iKey iKey '] iKey | iKey iKey | IndexPage
o \ vy / level = 1
<
%@o / \ \ / / i
P ! \ 4
f Key | Key Key Key | Key Key | LeafPage
rowETaE] e ra DR [DWE| - DA faye] =g

Raf Rel Ref Ref Ref Ref
mmmmmmm -t
rDmaRcf, |
| LeafPageKey., :
: IndexPageKey, |
RTree | Page !

-root: Page*

+height(ysize_type

+sizef)size_type

+begin():iterator

+end(): iterator

+insert(value_type&) :void
+Hind(LeafPageKey&)iterator
+Hind(LeafPageKey&, Cursor&) : void
+ind_if{Predicate&, Cursor&) : void
+erase(iterator) : void
+erase(LeatPageKey&) void
-insert(IndexPageKey,Page®) : void
-chooseSubtree(LeafPageKey&): LeafPage*
-adjustKey(Page*) :void
-adjustKeyErase(Page*) : void
-adjustTree(Page® Page*y : void
-condense Tree(Page*) : void
-spli(Page™*, Page*) : void

Figure 3-14 R-tree Structure and Interface

3.5.3.4 Class iterator

The RTree container provides an internal bidirectional iterator that allows access to
elements in leaf pages within the RTree container. Unlike the B+ tree, entries in R-

tree are not ordered. The iterator only provide an traversal method for data records in

63

the tree. In order to determine the position a query method finds, we need the page
pointer to the leaf page, and the LeafPage iterator to the interested entry. Thus,
iterator keeps these two parameter as data members and increment and decrement

operation on the iterator. Figure 3-15 illustrates the iterator structure.

.

———-!parent -

Key
" Data LeafPage

Ref
s

Leaflage® i Leafpageniterator
!

iterator

Figure 3-15 Iterator Structure and Interface

When implementing a persistent R-tree, Class iterator carries a smart pointer of
LeafPage rather than a bare pointer to the LeafPage. This guarantees that the iterator
would not be left with a dangling pointer since the page might be fall out of cache and
be deleted from the memory. However, LeafPage::iterator will not stay valid if the

page is flushed from the cache. Therefore, instead of using LeafPage::iterator, we

should use the slot number.

3.5.3.5 Class Cursor

The cursor provides an interface for iterating over the results of querying a database.
It is created by the application when search for a data. The cursor is bi-directional and

read-only. It provides a way to remember the current position and can generate the

next one.

Class Cursor uses a std::vector container to store RTree::iterator. An appplication

should first create a cursor and a predicate passing to the generic search function

64

CRTree:find_if. This function will use the predicate as a filter to iterate from the root
downward to the leaf. Qualified positions, for which the given predicate returns true,

in leafpages will be passed as results to the cursor object.

3.5.3.6 Basic Predicates and Predicate Binder

According to the topological relationship of spatial objects, we provide four basic
binary predicates i.e. equal, overlap, contain, and within. These four predicates are all
callable entities [Alex01], which are objects supporting operator(). They simply
forward the action to appropriate functions of the keys. For each of the predicates,
overload of function-call operator (operator()) makes the predicate be able to adapt to
different cases, no matter what the first parameter is an leafpage_value_type or
indexpage_value_type, and the second parameter is a point or rectangle object. Figure

3-16 shows the interface of binary predicate equal.

template<typename IndexEntry, typename LeafEntry>
struct equal : public std::binary_function<IndexEntry, LeafEntry, bool>
{
typedef typename LeafEntry::first_type LeafKey;
typedef typename IndexEntry::first_type IndexKey;
template<typename EntryType, typename KeyType>
bool operator()(const EntryType&, const KeyType&) const;
bool operator()(const LeafEntry&, const [ndexKey&) const;

Figure 3-16 Binary Predicate Interface

As soon as the basic predicates are ready, we can convert types of these predicates to
another. Such conversion is well known as binding [Alex01] that is a powerful feature.
The STL provided two binders, i.e. std::bind1st and std::bind2nd. The binder can store
not only callable entities, but also part (or all) of their arguments as well. This can
greatly increase the expensive power of predicate because it allows packaging of

predicates and arguments without requiring glue code.

65

We design the binder as a template class—class Predicate (Figure 3-17). Although it
has a name of Predicate, it is actually a predicate binder. It has two predicate holders
that take two basic predicates for index page and leaf page respectively. It can adapt
to both leaf page and index page due to the overload of call operator. When applied, it
receives two binary predicates and a key as parameters, and returns an object of unary

predicate.

template<typename BinFunl, typename BinFun2, typename KeyType>
class Predicate {
private:
BinaryFunl mPredHandlel; //** for indexpage
BinaryFun2 mPredHandle2; //** for leafpage
KeyType mKey;
public:
Predicate(const BinFun1&, const BinFun2&, const KeyType&);
Predicate(const Predicate&);
~Predicate();
bool operator=(const Predicate&);
bool operator()(const IndexPage::value_type &) const;
bool operator()(const LeafPage::value_type &) const;

Figure 3-17 Interface of Predicate Binder

3.5.3.7 Proxy Mechanism

Current database is huge and the size of the index is possibly much bigger than the
memory. It is not possible and not needed to put all the index structure in the memory
although the index page and leaf page is mean to be small enough to fit into memory.
The R-tree index applies a Proxy mechanism to manage controlled access to the

storage of the index structure. Figure 3-18 shows the proxy mechanism.

The root page is always kept in the memory until the R-tree is destroyed. When an
access to a non-root page is requested, the smart pointer will check if the demanded
page is already in the memory. If positive, it returns a smart pointer that holds the bare

pointer to the page. Otherwise, it checks if there is a reference to the page at once. The

66

smart pointer will obtain the page object if such a reference resides in the cache. If not,
the cache will ask the PhysicalProxy for such a page, for which a new one is created
by the Factory and then serialized from the (secondary) storage. At the moment, the

smart pointer is able to meet the demand of the page.

aClient scache PhysicalProxy [Fagtory Storage
i i i ' i i i
] 1 t | 1]
- - | i) i
use t I t]
T] 1]
]] t]
- | | I I
> check | | : |
T A 1 1 I
=7 ifin memory | i 1 !
o I I 1
read 1 i 1
¥] 1
] I ¥
t] t
false) P 1 1 1
(F _>+ check i |
-~ if in cache| | i
i] I
read ! !
S ey 1
N ore. H 1
(falsc) createNew !
]
]
1
il
i
1
H
1
1
i
page !
/\w_ __________ 1
page i |
_____________ I I
smarPoimt<Page> i 1 H
1] 1
“““““““ ' 1 1
i 1 i
t 1 H
1 1 t
] 1 i
1 i +

e
H
i
i
t
t
t

Figure 3-18 Sequence Diagram of Proxy Mechanism

Smart Pointer

In the R-tree index structure, a smart pointer is used for many purposes. It counts the
number of references to the real page so that the page can be freed automatically
(garbage collection) when there are no more references. When the tree algorithm
demands a non-root page, the smart pointer loads the persistent page from the
physical storage in case the requested page is in neither the memory nor the cache.
Figure 3-19 illustrates three reference-counted smart pointers pointing to the same

page. Figure 3-20 is the interface of class SmartPtr.

67

page

A 2 4

smart pointer

Page *

RefCount *

smart pointer

Page *

RefCount *

A 4

smart pointer RefCount

Page * I—"
RefCount *

Figure 3-19 Reference-Counted Smart Pointers
The reference counting is used with the smart pointer. It tracks the number of smart
pointers that point to the same page. When that number goes to zero, the page is
deleted. The smart pointer hides the underlying gap between the transient and
persistent objects. By using smart pointer, the persistent objects can be accessed like

the objects in the memory without awareness of the smart pointers.

template <class T, class Cache>
class SmartPtr {
private:
T* ptr;
RefCounts* refCounts;
long id,;
public:
T& operator*();
T* operator->();
void SetID(long);
bool is_null();
long GetCounter();

void dirtied();
)
struct RefCounts {
RefCounts();
bool dirty;
long totalRefs;

long strongRefs;

)

Figure 3-20 Simple Interface of Class Smart Pointer

68

However, misusing the smart pointer will cause serious problems. For example, an
indexpage P has several child pointers that are smart pointers. Its child pages also
keep parent pointer to P. If we apply the smart pointer to the parent pointer, circularity

arises -- a not-releasable loop would be created due to back-reference.

To solve circularity of reference counting, a weak pointer is imported. It is very
similar to the smart pointer except that it does not contribution to the reference
counting. Once a page is destroyed, all weak pointers pointing to the page will be set

to NULL automatically.

The design of smart pointer is very flexible and easy to use. For our R-tree
implementation, only few codes need to be adjusted to make the index structure
persistent. For example, we use smart pointer for child pointers, and use weak pointer

for parent pointers.

Cache

The index structure is used to retrieve data records effciently. Of course we need to
find a way to make efficient use of the index structure that is too large to be held
entirely in the memory. Using main-memory buffers (also called cache) is a great
approach that can possibly obtain better performance for the tree structure. We always
keep the root page in the memory until the tree is destroyed since every search
through the tree requires access to the root page. We also crate a page buffer to hold
some number of pages. As we read pages in from the disk in response to the user
requests, the buffer is filled up. Then, when a page is requested, we access it from the

cache if we can, thereby avoiding a disk access. If the page is not in cache (usually

69

called page fault), then we read it into the cache from the physical storage, replacing

one of the pages that were previously there.

The global cache management includes two components that are allocation and
replacement. The allocation distributes global buffer space among concurrent
transaction and the replacement take responsible of the buffer access and page
replacement operation. A singleton is used to manage the cache instance so that only

one instance can appear.

Mostly, the performance of the R-tree structure depends on the efficiency of the
caching strategy. The FIFO (First-In-First-Out) is used as the replacement strategy
that will be implemented simply using a STL vector. Figure 3-21 is the cache

interface.

template <class K, class T, class StorageType>

class Cache {

public:
typedef PhyProxy<T,StorageType> PhyProxyType;
typedef SingletonHolder<Cache<K,T,StorageType> > CacheType;
typedef SmartPtr<T,CacheType> PointerType;
typedef std::map<K,PointerType>::iterator iterator;

private:
long MaxElement;
PointerType Root;
std::vector<K> keyindex;
std::map<K,PointerType> container;
PhyProxyType* proxy;

public:

size_t size() const;

bool empty() const;

void SetProxy(PhyProxyType*);
PointerType GetPointer(K);
void insert(K, PointerType)
PointerType CreateNew(defaultIDKeyType)
void DeleteObject(long);

long GetRootID();

bool isRoot(PointerType);
PointerType GetRoot();

void SetRoot(PointerType);
bool HasRoot();

void erase(iterator);
StorageType* GetStorage();

Figure 3-21 Interface of Class Cache

70

Physical Proxy and Storage

An applied index structure for the database management system must be persistent so
that the index can be recreated later. A physical proxy is used for page memory
allocation and deallocation— serialize or deserialize the page objects from or to the
storage. When it is demand to access a page that is not in both the memory and the
cache, the physical proxy creates a page instance, reads the data from the phsical

storage and intials the page’s data members with the data

A secondary storage such as hard disk takes a relatively long time to seek a specific
location, but once the read head is positioned and ready, reading and writing a stream
of contiguous bytes proceeds very rapidly. To avoide too much access to the
secondary storage, a better approach is accessing a large block of contiguous location
on disk at a time. The size of a block depends on many factors such as the
characterixtics of the disk driver, and the amount of memory available. Generally the

page size is set to be the size of a block.

Class Storage mainly takes responsible of the management and access to the index file
on disk. When a new page object is required to be written, the Storage allocate a block
for it on the disk. If a page object is deleted from the index structure and the deletion
is demand on the file, the Storage collects the block used by the page and reallocate it.

Figure 3-22 is an illustration of index structure on disk.

71

‘r«f{ Root Page Address

p Page ID

A A

PageType(IndexPage)

Parent Page Address

Entry |
,,,,,,,,,,,,, Entry 2

= Page 1D -~

PageType(IndexPage)

Parent Page Address

Entry 1

o Page 1D g -

PageType(IndexPage)

Parent Page Address

Eniry |

= 2 Page 1D

PageType(LeafPage)

Parent Page Address

Entry |

vee

Figure 3-22 Index Structure on Disk

3.5.3.8 Serialization

The serializer pattern is used to make the LeafPage and IndexPage persistent (Figure
3-23). Class Page is inherited from class Serializable, in which virutal method
serialize and deserialize are declared. These two functions are then simply
implemented in IndexPage and LeafPage to make the concrete pages persistent.

Sample code listed in Figure 3-24 shows these two operations of IndexPage.

72

f Streamable

Page

ir Streamable -+ :

i

LeafPage ™

+serialize(...)
+deseriatize(...)

Serializable
+serialized...) 1
+deserialize(...) - "
reader writer

ZA

o

streamReader

streamWriter

P
m_j_,,:— Streamable : l—L

IndexPage™

+serialize(...)
+deserialize(...)

—

backend

Figure 3-23 Using Serializer Pattern

}

void serialize(writer<Streamable>& out){
serializable<Streamable>::serialize(out);
out << mLevel;
out << mParent;
out << mEntries;

void deserialize(reader<Streamable>& in){
serializable<Streamable>::deserialize(in);
in >> mlLevel;
in >> mParent;
in >> mEntries;

Figure 3-24 Serialize and Deserialize Operations of IndexPage

3.5.3.9 Queries

73

A search process will find all the entries on leaf pages that are qualified with the
query demand and make the predicate return true. We design a generalized search
method in the RTree container. Since keys can overlap, the query will descend
multiple subtrees within the tree structure. The underlying data structure is a STL

std::stack, which is used to remember which pages still have to be visited. The process

starts by initially pushing the root pointer on the stack. A page that has not yet been
examined is popped off the stack and all entries in the page that qualify for the query
demand are in turn pushed onto the stack. If a leaf page is popped off the stack, its
qualified entries are inserted into the cursor, which holds all query results. The whole

process is repeated until the stack becomes empty. Figure 3-25 describes the process.

template<typename Predicate>
void find_if(Predicate& pred, Cursor& aCursor)
{
stack<page_pointer> path;
path.push(root);
while(!path.empty()){
page_pointer p = path.top();
path.pop();
if (p is index page)
{
for(IndexPage::iterator it = p->begin(); it !=p->end(); ++it)
if(pred(*it)) path.push((*it).second);
}else
{
for(LeafPage::iterator it = p->begin();it != p->end(); ++it)
if(pred(*it)) aCursor.insert(iterator(p, it));

Figure 3-25 Function RTree::find_if

An R-tree index should support multiple queries such as exact match query, range
query, similar query, and so on. A STL-like algorithm usually receives a single
predicate object and performs on a container. Instead of writing specific code as usual,

we use a generic search function that takes one predicate and then returns the

searching results.

Different queries use different predicates on index page and leaf page. Take exact
match query as an example. The basic predicate used for index page levels is contain

while equal is used for the leaf page level. Based on our binder, the class Predicate,

74

we are able to handle predicates of several kinds such as equal, contain, overlap, and

within. The exact match query could be like:

void find(const Key& k, Cursor& aCursor)
{

Predicate<contain<...>, equal<...>, Key> pred(contain<...>(), equal<...>(), k);

find_if(pred, aCursor);

Table 3:1 lists some common queries on the RTree container by using predicate

binder and invoking the function find_if.

Predicates used on

Queries IndexPa | LeafPag
ge e
Exact Match Query: Given a point or rectangle S, find the data _
_ contain equal
point or rectangle that exactly equals S.
Point Query: Given a point P, find all data rectangles that
) contain | contain
contain P.
Rectangle enclosure query: Given a rectangle R, find all data .
. contain | contain
rectangles that completely contain R.
Rectangle Intersection query: Given a rectangle S, find all data
overlap | overlap

rectangles that intersect with S.

Table 3:1 Different Queries Using Predicates

75

3.5.3.10 Activity Diagram of Insertion

After an insertion, the page may become full. In this case the R-tree index will split

the page into two pages. Figure 3-26 shows the activity diagram for insertion.

/insert(pair<Key, DataRef>)

M chooseSubtree(pair. first, O)\
\°

\//page L found

page L is full?

I PR A
—={ insert pair into page L)

Qplit L, get new page Lg

('set N=L. NN = LL\

e N

{/ N
{ ser N=P, N=pp | PO
< /

f—

— _— .\\
create new page P]
.,W/

(insert N and NN into P\

Gp]it P, get new page PP ?)
e

(set P be root \
\\ /
/ 3 \/ \J NN P \
insert NN into P insert into
<\mmwww_//\ /Yes \// \ww

Figure 3-26 Insert Activity

76

3.5.3.11 Activity Diagram for Deletion

After a deletion, the page may become underflow. In this case, the index will take out
all the entries of the underflowed page, and reinsert these entries into the index.

Figure 3-27 shows the activity diagram for deletion.

ferase(iterator)

-~
H get leafpage pointer L, and leafpage iterator lt)

g MWM“"\\
update page key
!
n
&

/Noy/.

T \» -
(set NbeP }
rd

{ update page kcy}——%
\ , \

/
/

Yesl/ /_,— ~.
N hY

. . \ { po ,() A o

-/push N into Q and erase N from P) \Q Is empty S
\ -y

/Yes

\/

(root has only one child?)
\ /
N

N/

/No

W/ Yes

=

-'/Kmake the child the new root)

(Px Qu10p(). Q.pop())

N -

insert P's entrics into tree)———

/

-

'

~.

Figure 3-27 Erase Activity

77

3.5.3.12 Issue about Split Algorithm

Previous work on the R-trees [Garc98, BSK90] has shown that the split procedure is
perhaps the most critical part during the dynamic R-tree construction and it
significantly affects the index performance. The quadratic split algorithm proposed by
Antonun Guttman [Gutt84] has a quadratic cost. The pickSeed algorithm calculates
the inefficiency of grouping enries and choose the most wasteful pair as the seeds.
The criteria used here is area enlargement which has to invoke Rectangle’s funciton
Joint() to create a temperary MBR and area() to calculate the area. To improve this,
we apply the Euclidean distance between two point objects as the split criteria for the

leafpages whenever the key type for leaf page is Point.

The GiST uses a different algorithm which is much faster than the quadratic split
algorithm. After picking seeds, this algorithm only simply assigns the remaining
entries to the group with less area enlargement. We apply the algorithm (Table 3:2) to

our R-tree implementaion.

Point Entry Rectangle Entry
For each pair of entries E; and E,, | For each pair of entries E; and E,,
calculate their distance d. compose a rectangle J including E; I
[Pick and E;I. Calculate d = area(J) —
Seeds] are(E; 1) —area(Ey D).

Choose the pair with the largest d to be the two seeds.

Assign one seed to Groupl and another to Group2.

For each remaining entries E,
[Assign Calculate d; = area increase required in the covering rectangle of
Entries] Groupl to include E.I. Calculate d; similarly for Group2.

Assign E to the group with less area enlargement (d)

Table 3:2 Split Algorithms from GiST

78

Chapter 4 Implementation and Evaluation

4.1 Implementation

4.1.1 Implementing R-tree Index

The R-tree index is implemented according to the design discribed in chapter 3.

Appendix A~I are interfaces of the main classes.
4.1.2 Using R-tree Index

The R-tree design and implementation is only one of the subprojects of search tree
framework in the Know-It-All project. The optimizer will choose an apporpriate index
structure according to the actual application. Because our R-trees is implemented to
be a STL-like container so that it can be replaced with other search trees such as

B+tree, SS-tree, SR-tree, and X-tree.

A search tree framework, TreeIndex, simply takes the tree as a template parameter so
that the Treelndex can invoke all the functions provided by the R-tree container

through its reference (Figure 4-1).
4.2 Testing

Testing is the process of executing a program or system with the intent of finding
errors [Myer79]. Its purposes are quality assurance, verification and validation, or
reliability estimation. For the testing of the R-tree implementation, the correctness and

performance testing are two major areas of testing.
4.2.1 Correctness Testing

Correctness is the minimum requirement of software, the essential purpose of testing.

79

tempate<typename T, typename DataRef,
typename LeafPageKey = Point<T>, typename IndexPageKey= Rectangle<T>,
typename PageType= Page<lLeafPageKey, IndexPageKey, DataRef>
typename SearchTreeType = RTree<PageType> >
class Index {
public:
typedef LeafPageKey key_type;
typedef SearchTreeType::iterator iterator;
typedef SearchTreeType::Cursor Cursor;
private:
SearchTreeType theTree;
public:

iterator find(const LeafPageKey & k) { return theTree.find(k); }
void ExactMatchQuery(const LeafPageKey &k, Cursor& aCursor) {theTree.find(k, aCursor); }

Cursor RangeQuery (const Rectangle& s) { // or point
typedef SearchTreeType::Predecate<Contain, Contain, Rectangle> Predicate;
Predicate pred(Contain(), Contain(), s);
Cursor aCursor;
theTree.find_if(pred, aCursor);
return aCursor;

Figure 4-1 Interface for search index framework

Correctness testing will need some type of oracle to tell the right behavior from the
wrong one [Myer79]. The tester may or may not know the inside details of the
software module under test, e.g. control or data flow. Therefore, either a white-box or

black-box point of view can be taken in our testing.

4.2.1.1 Black-box Testing

In black-box testing, test data are derived from the specified functional requirements
without regard to the final program structure [Myer79]. We treats the R-tree
implementation under test as a black box -- only the inputs, outputs and specification
are visible, and the functionality is determined by observing the outputs to
corresponding inputs. In testing, various inputs are exercised and the outputs are
compared against specification to validate the correctness. No implementation details

of the code are considered.

80

It is obvious that the more we have covered in the input space, the more problems we
will find, and therefore we will be more confident about the quality of our
implementation. However, exhaustively testing the combinations of valid inputs is
impossible. We only take some cases to test our R-tree index. In addition, some
special test cases such as illegal inputs, large inputs, and with values smaller or larger

than the specified ranges.

We mainly focus on testing insertion, deletion and find operations. After the lower-
level components are tested with the selected values, the higher-level components are

tested on the basis of the lower-level ones.

4.2.1.1 White-box Testing

A good testing plan not only contains black-box testing, but also white-box
approaches. In white-box testing, software is viewed as a white-box, in which the
structure and flow of the software under test are visible to the tester. Testing plans are
made according to the details of the software implementation, such as programming

language, logic, and styles [Myer79].

Since our R-tree index is implemented using the STL components that are meant to be
largely independent of each other, we can do the unit tests easily. We can test a
function or a code segment individually. The lower-level components such as Point,
Rectangle, IndexPage container, LeafPage container, smart pointer, cache, and storage
are tested independently, which guarantees they work well. For each component, test
cases are planed for both simple cases and all boundary conditions. These testing will
be conducted first on the low-level components and then high-level components. For
our R-tree implementation, class Point and Rectangle are created and tested in the first

step. When testing the LeafPage or IndexPage container, class Point and Rectangle

81

are passed as template parameters. For the containers, it is necessary to test all the
built-in functions such as insert, erase and find. Based on the testing on these
containers, we are able to do the tests on the RTree container for the function insert,

erase, find, and find_if.

4.2.2 Performance Testing

Performance has always been a great concern about indexing structures of database.
The goal can be performance bottleneck identification, performance comparison and

evaluation. Performance evaluation of an indexing structure usually includes:

o Access Types — access types that are supported efficiently. Examples: exact
match query or range query;

o Search Time — time to find a specified data item or set of items;

o Insertion Time — time to insert a new data item or set of items

o Deletion Time — time to delete an item or set of items;

o File Utilization ratio — the ratio of the amount of free nodes by the amount of

allocated nodes.

Our performance testing mainly contains insertion, search (exact query and range

query), and deletion.

4.2.2.1 Experimental Environment

All experiments have been conducted on a SUN SunFire 280R server, 2 UltraSparc-
III+ processors, 4 Gb main memory, and one hard disk with 36 Gb, running the

Solaris 9 operating system. The compiler used is GNU g++ 3.2.

82

The standard timing functions of C++ do not measure I/O time. They are not suitable
for benchmark in a multi-threaded environment [Rijk99]. Therefore, we use the real

time clock (wall time).

The size of a page is set to 8192 bytes to meet with the disk block size of the
operating system. Except where noted, all benchmark were done with the page size of

8,192 bytes and the cache size of 512 that is the number of pages the cache can holds.

4.2.2.2 Experiment Datasets

We conducted experiments on both the synthetic and real point datasets (Figure 4-2):

1. Synthetic 2-d point dataset: This dataset is included in the GiST package
(version 1.0). It contains 10,000 2-d points that are uniformly distributed with
the range for each dimension being (0, 1,000).

2. Real 2-d point dataset: This is the 2-d point dataset of the Sequoia 2,000
benchmark. It contains locations of 62,556 California places extracted from
the US Geological survey’s Geographic Names Information system (GNIS).

The points are geographically distributed over a 1,046km by 1,317km area.

"

"

(a) Synthetic Dataset (b) Real Dataset

Figure 4-2 Dataset Used for Experiments

83

4.2.2.3 Testing Procedure
A test program is written to perform our tests that are arranged sequentially. Starting
from an empty tree, we construct a tree by inserting all the data, perform different

queries on the tree, and then delete some entries from the tree.

4.2.2.4 Experimental Results

4.2.2.4.1. Efficiency of Different Key Implementations

As discussed in Chapter 3, vector-based and array-based keys (Point and Rectangle)
have different sizes and hence a page container can hold different number of keys. We
conduct an experiment to evaluate their effects on the performance of the R-tree. This

will help us in choosing an appropriate key implementation.

The synthetic 2d point dataset is used to perform our test. Each time we replace the

different key implementations, compile and run the testing program. The tests include:

o Tree construction: create a tree by inserting 10,000 points

o Exact match query: for each of the randomly chosen 100 points, find
the entries that exactly match.

o Deletion: for each of the randomly chosen 1,000 points, erase the

entries from the tree

The test program is executed ten times, over which the results are averaged. Therefore,
each final result is an average over dozens or hundred of test points. The results are
summarized in Figure 4-3. Here, the vector-based class Point is used as the key of
LeafPage; vector-based (1) and vector-based (2) uses one-vector-based and two-

vector-based class Rectangle as the key of IndexPage respectively.

84

O array-based 01 vector-based (1) m vector-based(2) o)
10000 g
< 9000
(=]
S 8000 &
S 7000 ©
S Q
2 6000 5
& 5000 b
Q.
8 4000 o~
@ 3000 =
S 2000 S P
E 1000 & g 8 &
I —{
0 T T
insertion exact match query deletion

Figure 4-3 Effects of Different Key Implementations on Tree Performance

The measurement has demonstrated that using array-based implementation can
greatly improve the tree performance. The cause is that array-based keys do not
import the overhead from vectors so that the pages can hold many more entries than
those of using vector-based keys. This possibly improves the tree fan-out. In addition,
since the STL container copies the object you pass, the construction of a vector for
vector-based keys costs time and greatly contributes to performance degradation. As a
result, we prefer the array-based key implementation, which has been used in the final

R-tree implementation.

4.2.2.4.2. Test on Different Page Size

The synthetic dataset from the GiST is comparatively small. To make the R-tree of
significant size (at least 3 levels), we choose different smaller page sizes and test the
performances. Fixing the cache size at 512 pages, we adjust the page size to 1 kb, 2kb,
4 kb, and 8 kb, then compile and run the test program. The GiST is also tested at the

same condition on the same synthetic dataset. Figure 4-4 illustrates the test result.

85

Response time per operation (microseconds)

Page Size 1k 2k 4k 8 k

. . KIA 157 213 330 484
msertion ;

GiST 180 225 376 502

exact match KIA 125 145 290 289

query GiST 498 296 386 486

] KIA 413 756 1610 1870
deletion -

GiST 644 312 370 513

600

500 +

300

msec/per insert

200
100

The KIA R-tree is slightly faster than the GiST R-tree for insertion. The exact match
query of KIA R-tree is also faster than that of the GiST R-tree. The reason is that KIA
R-tree keeps lots of the index pages and some leaf pages in the memory that
accelerate the query, whereas the GiST R-tree only keeps a path in the memory. In
terms of the deletion, the GiST R-tree has much better performance than ours. We

will discuss the cause later in this chapter.

Table 4:1 Performance Comparisons at Different Page Size

400

msec per query

1K 2K 4K

page size

Figure 4-4 Performance Comparisons at Different Page Size

600
500
400
300
200

100

4.2.2.4.3. Test on Real Dataset

msec per delete

4K

page size

2000

1800 -

1600 1
1400 {--

1200 A
1000 1
800 -
600 -

400

200 4

Tests on point dataset of Sequoia 2000 benchmark are performed.

o Tree construction: create a tree by inserting 62,556 points;

o Exact match query: for each of the randomly chosen 100 points, find

the entries that exactly match;

o Range query: for each of the randomly chosen 100 points with

coordinate of (x, y), create a query rectangle (square) whose left

bottom point is (x, y) and right upper point is (x + 1, y + 1) where | is

the side length of the square. The area of the query rectangles varies

from 0.001%, 0.01%, 0.1%, and 1% relatively to the area of the data

space.

o Deletion: for each of the 6,256 points (10%), erase the entry.

The test program is executed ten times and averages over them are taken as the results

which are summarized in Table 4:2 and Figure 4-5.

exact range query
microsec insertion match deletion
query 0.001% 0.01% 0.1% 1%
KIA 654 657 891 1138 2321 7339 3620
GiST 743 1256 1474 1893 3926 13013 1275
Table 4:2 Test Results of Real Dataset
4000 = 14000
3500 1 O KIA B GiST % 12000 4 . KA GIST
% 3000 - & 10000
g 25007 £ s000 -
< 2000 - 5 |
% 1500 1 e £000
2 1000 - g 40001
500 | & 2000 4
|—[:| E 0
O . T
insert exact delete . 001% 0.01% 0.10% 1%
rqrzl;c;; area of query rectangle/area ofthe data space

Figure 4-5 Performance Comparisons between KIA and the GiST R-tree

The KIA R-tree inserts records slightly faster than the GiST R-tree and the exact

match query is performed much faster than the GiST R-tree. However, in terms of the

87

deletion, the GiST R-tree runs about 2.5 times quicker than ours. The cause is that in

the GiST:

1. “Node deletion is not implemented. Instead, empty nodes are simply left in the
tree” [Libgist]

2. “Bounding predicates are not shrunk when leaf items are deleted”.[Libgist]

The GiST’s code also proves this. We tested our R-tree under the condition that the
condense function is not used. Then the average time of single point deletion is 557

microseconds for the KIA R-tree and 1,271 for the GiST R-tree.

88

Chapter 5 Conclusions

As a proof of concept for the index sub-framework of the Know-It-All project, the R-
tree index design and implementation is developed using STL generic programming
and design patterns. This thesis starts with a review and analysis of the original
design of the index framework proposed by [GaffOl]. After investigating many

possible approaches, one approach is selected for our final design and implementation.

The R-tree in this thesis utilizes the casting method pattern to present the composite
relationship between the abstract interface (class Page) and sub-classes i.e. class
LeafPage and IndexPage. The class IndexPage, LeafPage, and RTree are designed to
be STL style containers so that they conform to the standard interface of STL
containers. To make the index structure persistent, a proxy mechanism is used to load
a page from the physical storage on demand and write a page to disk as needed. This
R-tree is user friendly, easy to be used, and can holds both point and rectangle
datasets. Four basic predicates and a predicate binder are provided so that our R-tree

supports many queries such as exact match, range, and other user-defined queries.

The experiments demonstrate that our R-tree implementation is comparable with that
of the GiST. The insertion is slightly faster and the exact match query is faster than
the GiST. However, the deletion needs more time than that of the GiST since the
GiST does not erase the empty node, nor adjust the bounding rectangle, which both

cost much time.

The measurements also show that it is better to use the C-style array in the class Point
and Rectangle since the std::vector<> has some space overhead. The construction and
deconstruction of vector, and the space overhead will degrade the performance of the

R-tree.

89

Appendix A Definition of Class Point

1.Using one vector
template<typename T>
class Point

{
public:
typedef Point Point;
typedef size_t size_type;
typedef T value_type;
typedef std::vector<value_type> container;
typedef typename container::iterator iterator;
typedef typename container::const_iterator const_iterator;
typedef typename container::reverse_iterator reverse_iterator,
typedef typename container::const_reverse_iterator const_reverse_iterator;
typedef typename container::reference reference;
typedef typename container::const_reference const_reference;
private:
container mCoords;
public:
Point();
Point(const size_type)
Point(const size_type, const T*)
Point(const Point&);
virtual ~Point();
Point& operator = (const Point&);
bool operator ==(const Point&) const;
bool operator != (const Point&) const;
T coord(size_type) const;
void coord(const size_type, T);
reference operator{](const size_type);
const_reference operator[](const size_type) const;
size_type size() const;
bool empty() const;
void clear();
iterator begin();
iterator end();
reverse_iterator rbegin();
reverse_iterator rend();
1§
2.Using array

template<typename T>
class Point

90

public:
typedef CPoint Point;
typedef size_t size_type;
typedef T value_type;
typedef T* iterator;

typedef const T* const_iterator;

typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef T& reference;

typedef const T& const_reference;

typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
private:
value_type* mCoords;
public:
Point();
Point(const size_type)
Point(const size_type, const T*)
Point(const Point&);
virtual ~Point();
Point& operator = (const Point&);
bool operator ==(const Point&) const;
bool operator != (const Point&) const;
T coord(size_type) const;
void coord(const size_type, T);
reference operator{](const size_type);
const_reference operator[](const size_type) const;
size_type size() const;
bool empty() const;
void clear();
iterator begin();
iterator end();
reverse_iterator rbegin();
reverse_iterator rend();

91

Appendix B Definition of Class Rectangle
1. Using one vector

template<typename T>
class Rectangle
{
public:
typedef Point<T> Point;
typedef size_t size_type;
typedef std::pair<T,T> value_type;
typedef std::vector<value_type> container;
typedef typename container::iterator iterator;
typedef typename container::const_iterator const_iterator;
typedef typename container::reverse_iterator reverse_iterator;
typedef typename container::const_reverse_iterator const_reverse_iterator,
typedef typename container::reference reference;
typedef typename container::const_reference const_reference;
private:
container mCoords;
public:
Rectangle();
Rectangle(const size_type);
Rectangle(const Point&, const Point&);
Rectangle(const Rectangle&);
virtual ~Rectangle(){ };
size_type size() const;
bool empty() const;
T low (const size_type) const;
T high(const size_type) const;
void low (const size_type, const T&);
void high(const size_type, const T&) ;
Rectangle& operator=(const Rectangle&);
bool operator==(const Rectangle&) const;
bool operator!= (const Rectangle&) const;
void clear();
bool equal (const Rectangle&) const;
bool contain(const Rectangle&)const;
bool within (const Rectangle&) const;
bool overlap(const Rectangle&) const;
double overlapArea(const Rectangle&) const ;
void joint(const Rectangle&);
Point center() const;
double area() const;

92

|5

double margin() const;
iterator begin();

iterator end();
reverse_iterator rbegin();
reverse_iterator rend();

2.Using two vector
template<typename T>
class Rectangle

{
public:

typedef Point<T> Point;

typedef size_t size_type;

typedef T value_type;

typedef std::vector<value_type> container;

private:

public:

container mLow;
container mHigh;

Rectangle();

Rectangle(const size_type);
Rectangle(const Point&, const Point&);
Rectangle(const Rectangle&);

virtual ~Rectangle(}{ };

size_type size() const;

bool empty() const;

T low (const size_type) const;

T high(const size_type) const;

void low (const size_type, const T&);
void high(const size_type, const T&) ;
Rectangle& operator=(const Rectangle&);
bool operator==(const Rectangle&) const;
bool operator!= (const Rectangle&) const;
void clear();

bool equal (const Rectangle&) const;
bool contain(const Rectangle&)const;
bool within (const Rectangle&) const;
bool overlap(const Rectangle&) const
double overlapArea(const Rectangle&) const ;
void joint(const Rectangle&);

Point center() const;

double area() const;

double margin() const;

93

IR

3.Using array
template<typename T>
class Rectangle

{
public:

typedef Point<T> Point;
typedef size_t size_type;
typedef T value_type;

private:

public:

size_type mDimension;
T* mLow;
T* mHigh;

Rectangle();

Rectangle(const size_type);
Rectangle(const Point&, const Point&);
Rectangle(const Rectangle&);

virtual ~Rectangle(){ };

size_type size() const;

bool empty() const,

T low (const size_type) const;

T high(const size_type) const;

void low (const size_type, const T&);
void high(const size_type, const T&) ;
Rectangle& operator=(const Rectangle&);
bool operator==(const Rectangle&) const;
bool operator!= (const Rectangle&) const;
void clear();

bool equal (const Rectangle&) const;
bool contain{const Rectangle&)const;
bool within (const Rectangle&) const;
bool overlap(const Rectangle&) const;
double overlapArea(const Rectangle&) const ;
void joint(const Rectangle&);

Point center() const;

double area() const;

double margin() const;

94

Appendix C Definition of Class Page

template<typename DataRef,

typename LeafPageKey,
typename IndexPageKey>
class CPage
{
public:

public:

typedef size_t size_type;

typedef CPage<LeafPageKey, IndexPageKey, DataRef> page_type;
typedef CIndexPage<LeafPageKey, IndexPageKey, DataRef> indexpage_type;
typedef CLeafPage<LeafPageKey, IndexPageKey, DataRef> leafpage_type;

typedef page_type* page_pointer;
typedef indexpage_type* indexpage_pointer;
typedef leafpage_type * leafpage_pointer;
CPage() {};

virtual ~CPage(){ };

virtual size_type level() const;

virtual indexpage_pointer getlndexPage();
virtual leafpage_pointer getlLeafPage();
virtual indexpage_pointer parent() const;
virtual void parent(indexpage_pointer);
virtual IndexPageKey pageKey()

95

Appendix D Definition of Class LeafPage

template<typename DataRef,
typename LeafPageKey,
typename IndexPageKey
>
class LeafPage: public Page< DataRef, LeafPageKey, IndexPageKey >
{
public:
typedef LeafPageKey key_type;
typedef size_t size_type;
typedef CPage<LeafPageKey, IndexPageKey, DataRef> page_type;
typedef CIndexPage<leafPageKey, IndexPageKey, DataRef> indexpage_type;
typedef CLeafPage<l.eafPageKey, IndexPageKey, DataRef> leafpage_type;

typedef page_type* page_pointer;
typedef indexpage_type* indexpage_pointer;
typedef leafpage_type * leafpage_pointer;

typedef std::pair<key_type, DataRef> value_type;

typedef std::vector<value_type> container;

typedef typename container::iterator iterator;

typedef typename container::const_iterator const_iterator;

typedef typename container::reverse_iterator reverse_iterator;

typedef typename container::const_reverse_iterator const_reverse_iterator;

typedef typename container::reference reference;

typedef typename container::const_reference const_reference;
private:

IndexPage* mParent;

Container mEntries;
public:

LeafPage();

LeafPage(const LeafPage&);

virtual ~LeafPage();

virtual size_type level() const;

virtual LeafPage* getl.eafPage();

virtual Page* parent() const;

virtual void parent(Page*);

iterator insert(const value_type& x);

iterator insert(iterator pos, const value_type& x);

template<typename Inputlnterater>

void insert(Inputlnterater first, InputInterater last);

iterator find(const value_type&);

iterator find(const key_type&);

iterator find(const DataRef&);

template<typename Predicate>

96

iterator find(iterator first, iterator last, const Predicate& pre)

iterator erase(iterator) ;

void erase(iterator, iterator);
void clear();

DataRef find(iterator pos) const;
key_type pageKey();
size_type size() const;

bool empty() const;

bool underflow() const;

bool full() const;

iterator begin();

iterator end();

reference front();

reference back();

97

Appendix E Definition of Class IndexPage

template<typename DataRef,
typename LeafPageKey,
typename IndexPageKey
>
class IndexPage: public Page<DataRef, LeafKey, IndexPageKey, >
{
public:
typedef std::vector< std::pair<Key, Page*> > Container;
typedef Container::value_type value_type;
private:
IndexPage* mParent;
Size_type mlLevel,
Container mEntries;
public:
IndexPage()
IndexPage(indexPage*, const unsigned short)
IndexPage(const IndexPage&)
virtual ~IndexPage();
virtual size_type level() const;
virtual void level(const size_type);
indexPage* getIndexPage();
virtual Page* parent() const;
virtual void parent(IndexPage*);
iterator insert(value_type&);
iterator insert(iterator pos, value_type&);
template<typename Inputlnterater>
void insert(Inputlnterater, InputInterater);
iterator find(const value_type&) const;
iterator find(const Key&);
iterator find(Page*);
template<typename Predicate>
iterator find(iterator, iterator, const Predicate&);
Page* find(iterator) const;
iterator erase(iterator);
size_type erase(value_type&);
void erase(iterator, iterator);
void clear();
Key pageKey();
size_type size() const;
bool empty() const;
bool underflow() const;
bool full() const;

98

iterator begin();

iterator end();

reference front();

reference back();

iterator findLeastEnlarge(const Key&);
iterator findLeastOverlap(const Key&);

99

Appendix F Definition of Class RTree

template<typename DataRef,

typename LeafPageKey,
typename IndexPageKey,
typename PageType = Page<DataRef, LeafPageKey, IndexPageKey>

>
class CRTree

{
public:

private:

public:

typedef PageType page_type;

typedef typename page_type::leafpage_type leafpage_type;
typedef typename page_type::indexpage_type indexpage_type;
typedef typename page_type::DataReference DataRef;

typedef typename ikey_type::Point Point;

typedef lkey_type key_type;

typedef page_type* page_pointer;

typedef indexpage_type* indexpage_pointer;

typedef leafpage_type* leafpage_pointer;

typedef typename indexpage_type::iterator indexpage_iterator;

typedef typename indexpage_type::const_iterator indexpage_const_iterator;
typedef typename indexpage_type::reverse_iterator indexpage_reverse_iterator;
typedef typename indexpage_type::value_type indexpage_value_type;
typedef typename leafpage_type::iterator leafpage_iterator;

typedef typename leafpage_type::const_iterator leafpage_const_iterator;
typedef typename leafpage_type::reverse_iterator leafpage_reverse_iterator;
typedef typename leafpage_type::value_type leafpage_value_type;
typedef leafpage_value_type value_type;

typedef size_t size_type;

typedef typename kia::contain<indexpage_value_type, leafpage_value_type> Contain;
typedef typename kia::equal <indexpage_value_type, leafpage_value_type> Equal;
typedef typename kia::overlap<indexpage_value_type, leafpage_value_type> Overlap;
typedef typename kia::within <indexpage_value_type, leafpage_value_type> Within;

page_pointer mRoot;
size_type mSize;

CRTree();
~CRTree();

class iterator;

class Cursor;

iterator begin();
iterator end();
size_type size() const;

100

bool empty();

size_type height();

void insert(const value_type&);

void find(const key_type&, Cursor&);
iterator find(const key_type&);

void find(const value_type&, Cursor&);
template<typename Predicate>

void find_if(Predicate&, Cursor&);
void erase(iterator);

void erase(const key_type&);

private:

page_pointer chooseSubtree(const IndexPageKey&, const size_type level);

template<typename KeyType>

void adjustKey(const KeyType&, page_pointer);

void adjustKeyErase(page_pointer N);

template<typename KeyType>

void adjustTree(const KeyType&, page_pointer, IndexPageKey&,
page_pointer, IndexPageKey&);

void condenseTree(page_pointer);

void insert(indexpage_value_type&);

double dist(const IndexPageKey&, const IndexPageKey&)

double dist(const Point&, const Point&);

template<typename PointerType>

void split(PointerType, IndexPageKey&, PointerType, IndexPageKey &);

101

Appendix G Definition of Basic Predicate and Class Predicate

template<typename IndexEntry, typename LeafEntry>
struct equal : public std::binary_function<IndexEntry, LeafEntry, bool>
{

typedef typename LeafEntry::first_type LeafKey;

typedef typename IndexEntry::first_type IndexKey;

template<typename EntryType, typename KeyType>
bool operator()(const EntryType&, const KeyType&) const;

bool operator()(const LeafEntry&, const IndexKey&) const;

5

template<typename IndexEntry, typename LeafEntry>
struct contain : public std::binary_function<IndexEntry, LeafEntry, bool>
{
typedef typename LeafEntry::first_type LeafKey;
typedef typename IndexEntry::first_type IndexKey;
template<typename EntryType, typename KeyType>
bool operator()(const EntryType&, const KeyType&) const;
bool operator()(const LeafEntry&, const IndexKey&) const;

IR

template<typename IndexEntry, typename LeafEntry>
struct overlap : public std::binary_function<IndexEntry, LeafEntry, bool>

{
typedef typename LeafEntry::first_type LeafKey;
typedef typename IndexEntry::first_type IndexKey;

template<typename EntryType, typename KeyType>
bool operator()(const EntryType&, const KeyType&) const;

bool operator()(const LeafEntry&, const IndexKey&) const;
b

template<typename IndexEntry, typename LeafEntry>
struct within : public std::binary_function<IndexEntry, LeafEntry, bool>

{
typedef typename LeafEntry::first_type LeafKey;

typedef typename IndexEntry::first_type IndexKey;

template<typename EntryType, typename KeyType>
bool operator()(const EntryType&, const KeyType&) const;

102

bool operator()(const LeafEntry&, const IndexKey&) const;

IR

template<typename BinFunl, typename BinFun2, typename KeyType>
class Predicate{
public:

typedef IndexPage::value_type IndexValueType;

typedef LeafPage::value_type LeafValueType;

private:
BinaryFunl mPredHandlel; /1** for indexpage
BinaryFun2 mPredHandle2; /I** for leafpage
KeyType mKey;

public:

Predicate(const BinFunl&, const BinFun2&, const KeyType&);
Predicate(const Predicate&);

~Predicate();

bool operator=(const Predicate&);

bool operator()(const IndexValueType&) const;

bool operator()(const LeafValueType &) const;

103

Appendix H Definition of Class iterator

class iterator

{

private:
leafpage_pointer mPtr;
size_type mSlot;

public:
iterator();
iterator(leafpage_pointer, leafpage_iterator);
DataRef operator * () const;
bool operator ==(const iterator&) const ;
bool operator !=(const iterator&) const ;
iterator& operator=(iterator&);
iterator& operator++ ();
iterator operator++ (int) ;
iterator& operator-- () ;
iterator operator-- (int) ;
iterator operator+(int n);
iterator operator-(int n);
leafpage_pointer getPointer() ;
leafpage_iterator getlterator();

104

Appendix I Definition of Class Cursor
class Cursor {
public:
typedef CRTree:iterator treelterator;
typedef vector<Treelterator> Container;
typedef Container::iterator iterator;
private:
int mCurrent;
Container mResults;
public:
Cursor();
Cursor(const Cursor&);
~Cursor(){ }
size_type size() const;
void insert(LeafPage*, Leaflterator*);
void insert(treelterator);
void erase(iterator);
bool empty() const;
iterator begin();
iterator end();
bool isBegin() ;
bool isEnd();
Cursor& operator=(const Cursor&);
bool operator==(const Cursor&) const;
bool operator!=(const Cursor&) const;
void clear();
LeafPage* getleafPtr();
Leaflterator* getleaflter();
treelterator operator® () const ;
Cursor& operator++() ;
Cursor operator++(int) ;
Cursor& operator--();
Cursor operator--(int);

105

Bibliography

[Abra01] David Abrahams, “Generic Programming Techniques”, http://

www.boost.org/more/generic_programming.html, 2001.

[Alex01] Andrei Alexandrescu, “Modern C++ Design: Generic Programming and

Design Pattern Applied”’, Addison-Wesley, 2001.

[ANSI97] ANSVISO, “Working Paper for Draft Proposed International Standard for
Information Systems — Programming Language C++”, American National Standards

Institute (ANSI), Nov. 1997.

[Beck90] N. Beckmann, H. P Kriegel, R. Schneider, B. Seeger, “The R*-tree: An
Efficient and Robust Access Method for Points and Rectangles”, Proc. of the ACM

SIGMOD Conf., 1990, 322-331.

(Bent75] J.L. Bentley, “Multidimensional Binary Search Trees Used for Associative

Searching”, CACM 18, 9(1975), 505-517.

[Berc96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel, “The X-tree: An
Index Structure for High-Dimensional Data”, Proc. of the 22nd Int. Conf. on Very

Large Databases, pages 28-39.1996.

[Brey02] Ulrich Breymann, “Designing components with C++ STL: A New Approach

to Programming”, Addison Wesley, 2002.

[Butler02] Greg Butler, Ling Chen, Xuede Chen, Ashraf Gaffar, Jinmiao Li, Lugang
Xu, “The Know-It-All Project: A Case Study in Framework Development and
Evolution, Domain Oriented Systems Development: Perspectives and Practices”,
Kiyoshi Itoh, Satoshi Kumagai, T. Hirota (eds), Taylor and Francis Publishers, UK,

2002.

106

[Chak99] Kaushik Chakrabarti, “Supporting Spatial Index Structures as Access

Methods in a DataBase System”, (Master Thesis), University of Illinois, 1999.

[Doel02] Mario Doeller, Harald Kosch, “Enhancement of Oracle’s Indexing
Capacities through GiST-implemented Access Methods”, Institute of Information

Technology, 2002.

[Fink74] R.A. Finkel, J.L. Bentley, “Quad Trees, a data structure for retrieval on

composite keys”, Acta Informatica, 4(1974), 1-9.

[Gaff01] Ashraf Gaffar, “Design of a Framework for Database Indexes” (Master

Thesis), Department of Computer Science, Concordia University, 2001.

[Gamm95] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design

Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995.

[Garc98] Y.J. Garcia, M.A. Lopez, S.T. Leutenegger, “On Optimal Node Splitting for

R-trees”, In Proc. of the 24th Int. Conf. on Very Large Databases, 334-344, 1998.

[Grand02] Mark Grand, “Patterns in Java: A Catalog of Reusable Design Patterns

Hlustrated with UML”, (2nd Edition), Wiley, 2002.

[GschO1] Thomas Gschwind, “PSTL- A C++ Persistent Standard Template Library”,
6" USENIX Conference on Object-Oriented Technologies and Systems, page 147-158,

Jan. 29-Feb. 2, 2001, San Antonio, TX.

[Gutt84] Antonin Guttman “R-Trees: A Dynamic Index Structure for Spatial

Searching”, Proc ACM SIGMOD Int. Conf. on Management of Data, 47-57, 1984.

[Heller95] Joseph. M. Hellerstein, Jeffrey F. Naughton, Avi Pfeffer, “Generialized

Search Tree for Database System”, Proc. 21st Int. Conf. Very Large Data Bases, page

562-573 1995.

107

[HypDic] Hyperdictionary: http://www.hyperdictionary.com.

[John88] Ralph E. Johnson, Brian Foote, “Design Reusable Classes”, Journal of

Object-Oriented Programming, 1(2), pp 22-35, 1988.

[Kata97] Norio Katayama, Shin’ichi Satoh, “The SR-tree: An Index Structure for
High-Dimensional Nearest Neighbor Queries”, In Proceedings of ACM SIGMOD

International conference on Management of Data, page 369-380, 5 1997.

[Kern98] Brian W. Kernighan, “STL Tutorial and Reference Guide”, Addison-Wesley,

1998.
[Libgist] libgist v1.0/doc/libgist v.1.0 Release Notes, Berkeley.

[Meyers92] Scott Meyers, “Effective C++”, Addison-Wesley Publishing, 1992.

ISBN 0-201-56364-9.
[Meyers95] Scott Meyers, “More Effective C++”, Addison-Wesley Publishing, 1995.
[MeyersO1] Scott Meyers, “Effective STL”, Addison-Wesley Publishing, 2001

[Muss96] David R. Musser, Gillmer J. Derge, and Atul Saini, “STL Tutorial and
Reference Guide: C++ Programming with the Standard Template Library”, Addison-

Wesley, 1996.

[Muss03] David R. Musser, "Generic Programming", Rensselaer Polytechnic

Institute, http://www.cs.rpi.edu/~musser/gp/, May 19, 2003.

[Myer79] Myers, Glenford J., “The art of software testing”, Wiley, c1979. ISBN:

0471043281

[Rieh98] Dirk Riehle, Frank Buschmann, “Pattern Languages of Program Design 37,

Addison-Wesley, 1998.

108

[Rijk99] Amaut de Rijk, “Improving the R*-tree Storage Allocation Algorithm”

(Master thesis), Delft Universiy of Technology, 1999.

[Rob81] J. T. Robinson, “The K-D-B-tree: A Search Structure for Large
Multidimensional Dynamic Indexes”, In Proc. ACM SIGMOD Int. Conf. on

Management of Data, 10 — 18, 1981.
[RtreePortal] www.rtreeportal.org

[Sanc00] Arturo Sanchéz-Ruéz, “Standard Template Library”, University of

Massachusetts Dartmouth, http://vega.cocse.unf.edu/~asanchez/ms-stl/web, 2000.

[Sim99] Volker Simonis, “Chameleon Objects, or how to write a generic, type safe

wrapper class”, Willhelm-Schickard-Institute fur Informatik, 22 Nov 1999

[Step95] Alexander Stepanov, Meng Lee. “The Standard Template Library”, Hewlett-

Packard Company, Palo Alto, 1995.

[Strou97] Bjarne Stroustrup, “The C++ Programming Laguage”. Addison-Welsey,

3" edition, 1997.
[UCalifornia] http://www.cs.ucr.edu/~marioh/spatialindex/readme.html

[Van02] David Vandevoorde, Nicolai M. Josuttis “C++ Templates: A Complete

Guide”, Addison Wesley, Nov12, 2002.

[White96] D. A. White, Ramesh Jain, “Similarity Indexing with the SS-tree”, In
International Conference on Data Engineering (ICDE), page 516-523, New Orleans,

LA, March 1996.

[Wise95] G. Bowden Wise, “An Overview of the Standard Template Library”,

http://www.cs.rpi.edu/~wiseb/xrds, 1995.

109

