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ABSTRACT
On-line Adaptive Control of Dynamic Systems Preceded by Hysteresis via

Neural Networks

Weihua Chen

This thesis deals with on-line adaptive control of a class of dynamic systems
preceded by backlash-like hysteresis nonlinearities via dynamic neural networks. A three
layer recurrent neural network called the diagonal recurrent neural network (DRNN) is
applied to construct the hysteresis inverse compensator (DRNNC) to remove the effect of
hysteresis. An on-line learning algorithm called the dynamic back propagation (DBP)
algorithm is developed to train the DRNN. Based on the cancellation of hysteresis effect,
an adaptive tracking control architecture, which is constructed through the combination
of sliding mode and Gaussian network (GNNC), is then proposed. The diagonal
recurrent neural network compensator (DRNN) and Gaussian network controller
(GNNC) are trained at the same time since DRNN requires fewer weights, and less
training time, and still preserves the dynamic characteristics, which allow the DRNN
model to be used for on-line application. The performance of this control structure is

illustrated through simulations with example system.
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Chapter 1

Introduction

In this chapter, a brief introduction of hysteresis and a literature survey regarding
hysteresis modeling are presented. Contributions and organization of this thesis
subsequently follow.

1.1 The phenomenon of hysteresis

Hysteresis is a property of a wide range of physical systems and devices, such as
electro-magnetic fields, mechanical gear transition, electronic relay circuits, thermostats,
and shape memory alloy [4]-[13]; numerous other examples could be added. The term
hysteresis typically refers to the input-output relation between two time-dependent
quantities that cannot be expressed as a single-valued function [20], see the loops as

depicted in figure 1.1.

VA

\/,7 U

Figure 1.1 Hysteresis loops of inputs versus outputs



Hysteresis nonlinearities are among the key factors limiting both static and dynamic
performance of systems that are responsible for undesirable inaccuracy or oscillations,
and even leading to instability [6]. For example, harmful effects of backlash in gears
prevent accurate positioning and may lead to chattering and limit-cycle-type instabilities.
This increases wear and tear on the gears, which, in turn, increases backlash. Escapes
from this problem are various designs of anti-backlash gears. However, their cost is high
and they introduce extra weight and friction. On the other hand, in a non mechanical
fashion, real-time computations can be employed to remove the harmful effects of
backlash, without cumbersome and expensive anti-backlash gears [20]. There is an
increasing usage of piezoelectric actuators in precision machining, because they have fast
response, high stiffness, and no friction. However, because it presents a highly nonlinear
input/output behavior, a piezoelectric actuator shows hysteresis behavior. For high-
accuracy position and tracking systems, hysteresis will cause undesired chatter and error.
Hysteresis in these systems is a consequence of the impurities properties of the materials.

Generally, common types of hysteresis nonlinearity include relay, backlash and
hysteron, as illustrated bellow.

e Relay

The simplest example for hysteresis nonlinearity is given by a switch or relay in

electronic circuits, as depicted in figure 1.2.
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Figure 1.2 Relays
In figure 1.2, x represents input and y represents output.
e Backlash
Backlash is also one of the simplest forms of hysteresis. Typical examples for this
kind of hysteresis are given by gear trains and position tables. A widely accepted

characteristic of backlash is shown in figure 1.3, where x is the input and y is the

output.
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Figure 1.3 Backlashes

e Hysteron
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Examples of more complex hysteresis phenomena are given by electro-magnetic,
piezoelectric actuators and shape memory alloys, etc. The nonlinear characteristic of

hysteron is shown in figure 1.4, where xis the input  and y is the output.

Figure 1.4 Hysteron

1.2 Properties of hysteresis

It is well known that a property of hysteresis is “memory behavior” [3], [9]. The so
called “memory behavior”, implies that the outcome of a hysteresis is not only based on
the current value, but is also related to the previous history. This can be shown in figure
1.1. When the input value alternates between increasing and decreasing, the response
curve does not continue to follow the original path; instead, it draws a new effect-delayed
curve.

In this thesis, we only focus on hysteresis with the rate-independence, says that the
form of the hysteresis diagrams is independent of the speed with which they are

traversed. In other words, only the previous extreme input values determine the hysteresis



branches. The speed of input variations is not an influential factor. Figure 1.5 illustrates

this property.
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Figure 1.5 Rate-independent effect of hysteresis
In plotting of Figure 1.5, two sin inputs u,(¢) and u,(¢), with the same successive
extreme values but different frequencies are employed as shown in the upper part of

Figure 1.5. The same hysteresis responses are obtained as shown in the lower part of

Figure 1.5, where the rate-independent memory effect can be shown.



1.3 Mathematical models for hysteresis

Hysteresis is a phenomenon common to a broad spectrum of physical systems. As
such, it is often present in plants for which controllers are being designed, where it
introduces a problematic nonlinear multi-valued behavior. Continuing research into
nonlinear systems is generating an increasing interest in the control of hysteretic plants.
Herein, there is a broad twofold focus: to obtain general and tractable models of
hysteresis capable of accurately describing a variety of hysteretic phenomena, and then to
derive corresponding control designs and supporting analytical results [6]. According to
past research on hysteresis, many types of mathematical models for hysteresis have been
presented, such as Duhelm, Chua-Stromsmoe, Preisach, Ishlinskii, and Mohammed
models, etc [6], [8]. Among these, the Duhelm and Preisach models are most popular in
recent research because both of them are capable of representing a great many forms of
hysteretic behavior and they are also mathematically tractable enough for design control
[6]. Here, we give a brief illustration for these two models.
—  Duhelm Model

The Duhelm model for active hysteresis dates from 1897 [8] and focuses on the fact
that the output changes its character when the input changes its direction. This model
uses a phenomenological approach, postulating a differential equation to model the

relation of input and output. Bouc-Wen differential equation is described by [8]

dw
—4a
dt

dv

dt

dv

g(v,w)zb;; (L.1)

A typical choice for g isg(w,v) =cw—v. When v(-) is a sinusoid input, w(-) forms a

classical hysteresis loop as shown in Figure 1.6.



Figure 1.6 The shape of the hysteresis curve can be changed
by modifying a, b, and ¢

The real parameters a, b, and ¢ control the scale and shape of the hysteresis curve. Their
effects are illustrated in Figure 1.6.

Such a model is useful in applied electromagnetics because the function and
parameters can be fine-tuned to match experimental results [8].
—  The Preisach Model

The Preisach Model of electromagnetic hysteresis dates from 1935 [8]. It was
investigated in the 1950s by Everett and collaborators and by Biorci and Pescetti, and has
been studied extensively in recent times. The basic idea of this model is to represent a

large class of hysteresis operators as an average of relays. That is [8]

v(t) = [[uter, By o luk)dar dp (1.2)

where u(a, ) =0 is a weight function usually with support on a bounded set in the

(«,p) plane, y,, [u](r) is a relay hysteresis operator with thresholds & < f, and



+1, u(t)y>p
Ypltk =3¢, a<u®<p (1.3)
, ut)<a

—

where ¢ can be +1 or -1, depending on the history of u(¢). See Figure 1.7

7/aﬂ

+1 |77 >

u\(t)

<

-1

Figure 1.7 Relay hysteresis operator

Figure 1.8 will be used to illustrate how the Preisach model works. In Figure 1.8(a),
S represents the limiting triangle corresponding to maximal and minimal inputs, and,
while umax and umin represent the upper and lower limits of the inputs respectively. The
region S+ and S- represents the hysteresis operators that are in ‘down’ and ‘up’ positions
respectively. Assume initially the input u, at time ¢ is 0, and all the hysteresis operators
are in the ‘down’ position (with an output of 0) (see Figure 1.8(a)). When the input
increases from 0 to u, all the hysteresis operators, whose up switching £ value is less
than the input u;, are turned to the ‘up’ position. Geometrically, this switch to the ‘up’
position leads to the subdivision of the limited triangle S into two areas that are S+1 and

S-1 (see figure 1.8(b)). This subdivision is made by the horizontal line S = u(¢), which

moves upwards when the input is increased. When the input decreases from u; to u,, all



the hysteresis operators, whose down switching « value is larger than the current input
value u;, are turn to the ‘down’ position. Geometrically, this is illustrated by a vertical

line moving from right to left that, thus, reduces the S+1 area (see figure 1.8(c)).

max Uu u

max max

S+ S+1

U
umin a Uu 24 2 a

(2) (b) (c)

Figure 1.8 Illustration of how the Preisach model works

According to the above illustration, the double integral in equation (1.2) can be

subdivided into two double integrals over S+1 and S-1, respectively,

v(t) = [[w@. By luktyda dB + [[uia. B)y 5 luktyde dp (1.4)

S+1 S-1

Let us consider an input history consisting of a few cycles of increase and the
decrease as illustrated in Figure 1.9(a). At time ¢;, the subdivision area with the bound
line ‘a-f-g-h-i-j-k’ is illustrated in figure 1.9(b). Subsequently the input is further
decreased to some value us whose absolute value is bigger than that of up, u3, u,, and us.
Because of the wipeout property of the Preisach model, the history value of u;, u3, uy, and
us will not affect the output. At time 7,, the subdivision area with the bound line ‘a-b-c-d-

e’ is illustrated in Figure 1.9(c).
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Figure 1.9 Illustration of how the Preisach model works using example

1.4 Neural network approximation for hysteresis
Neural network is a powerful and flexible tool for the identification of nonlinear
systems and it can be used in the identification of systems with hysteresis [3], [13].

Hysteresis modeling based on neural networks has indeed been receiving increasing

10



attention in the last few years [13]. In 2000, Visone et al proposed a hysteresis
identification technique using Neural-Preisach-Type models [13], which was based on
Multi-layer neural networks (NN). In 2002, Tiansun Lu developed a hysteresis modeling
method based on diagonal recurrent networks. (DRNN) [3]. A reference model for

hysteresis identification based on the neural network is displayed in Figure 1.10.

Hysteresis

Z—l 7

Figure 1.10 Block diagram of Hysteresis learning structure
Compared to traditional methods, hysteresis modeling based on neural networks can
achieve higher approximation accuracy since neural networks are capable of
approximating any nonlinear continuous function to arbitrary accuracy in a compact
subset if the number of connection weights is sufficiently large. In addition, it can
approximate some hysteresis nonlinearities that are difficult to fuse with controller

design.
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1.5 Objectives

In this thesis, the hysteretic system is considered as a dynamical nonlinear plant
preceded by a hysteretic actuator. The proposed control strategy will track both cyclic
and acyclic reference input signals. The two main objectives of this study are:
(1) to develop a hysteresis inverse compensator using Recurrent Neural Networks.
(2) to develop a controller based on the combination methodology of sliding mode

component and Gaussian network adaptive component.

1.6 Thesis Organization

Chapter 2 gives a brief introduction of hysteretic system. And a brief survey of the

control approach for such a system is also included in this chapter.

Chapter 3 gives a brief introduction of diagonal recurrent neural networks and

sigmoid self-feedback neurons, by which the diagonal neural networks are constructed.

Chapter 4 proposes two hysteresis learning methods based on diagonal recurrent
neural networks. One of the hysteresis learning methods is based on the dynamic network
with adaptive input weights. The other method is based on the dynamic network with
fixed input weights. Simulation studies show that both of these two methods perform
very high accuracy for hysteresis learning and, therefore, they can be used for hysyeresis

identification, especially the latter method.
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Chapter 5 proposes a hysteresis inverse online learning method based on diagonal
recurrent neural networks without hysteresis identification. Simulation studies show that
this method 1s effective for mitigating the effect of hysteresis and can be employed in the

control system designs described in chapter 6.

Chapter 6 gives the control scheme based on the Gaussian network controller with a
diagonal neural network compensator. Controller design is derived from a continuous
system taking into consideration dynamic error caused by the mis-match of hysterests
inverse compensation. Based on the results, a coﬁtroller design procedure for the discrete

system is proposed.

Chapter 7 describes the simulation studies and presents two examples. One is a
second order linear dynamic plant preceded by the hysteresis and another is a third order
linear dynamic plant preceeded by the hysteresis. The hysteresis inverse learning happens
on-line rather than by obtaining a hysteresis inverse model through offline training.
Simulation results are given based on the proposed control methodology so as to evaluate
the whole system performance by using matlab programs. The simulation results show

that the proposed control methodology is effective for the hysteretic system control.

Chapter 8 presents the conclusion of this thesis and gives recommendations for

future work. The references follow Chapter 8.

13



1.7 Contribution

M

)

One dynamic neural network for hysteresis (or hysteresis inverse) learning is used
rather than two as in past research. Great uncertainties caused by switching from one
neural network to another are avoided, thus learning accuracy can be dramatically
improved.

Since very high precision is required in hysteresis inverse learning, the hysteresis
inverse compensator removes most of the hysteresis nonlinearity. Therefore, more

control methodologies can be applied after hysteresis effects have been removed.
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Chapter 2

Literature survey of hysteretic system control

2.1 Introduction of hysteretic system
As has been mentioned in Chapter 1, the hysteresis actuator output v(¢) depends not

only on the current input u(¢), but also on its previous trajectory. Control of a system is
typically challenging in the presence of hysteresis nonlinearities. They severely limit
system performance in such manners as giving rise to undesirable inaccuracies or
oscillations, which can even lead to instability.

Actuators made of some smart material, such as magnetostrictives, piezoelectrics,
and shape memory alloys, etc, can be built into structures that have the ability to respond
to environmental change to achieve desired control objective. A general class of
industrial systems has the structure of a nonlinear plant preceded by hysteretic
nonlinearity in the actuator [1], [3]. A block diagram of this structure is shown in Figure

2.1 for reference.

v(?) (@)

ul) Hysteresis Plant

Actuator

Figure 2.1 Plant with actuator hysteresis
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where v(f) represents the output of hysteresis actuator, u(f) stands for the input to
hysteresis actuator and y(¢) is the output of the plant. Hysteresis nonlinearity can be
denoted as:

(1) = Hlu(t)] (2.1)
The nonlinear dynamic system being proceeded by above hysteresis can be described in

the formula:

X )+ £ (@), 2(0), -, x "0 (0) = by(©) (22)

where f is continuous, linear, or nonlinear function. Control gain b is unknown but a
positive constant. It should be noted that more general classes of nonlinear systems can

be transformed into this structure [1].

2.2 Control strategy for system with hysteresis nonlinearity

Researchers have tried different methods to deal with the control problems of
hysteretic systems. Early approaches, which have lasted for decades, to the control
strategy for such a system simply ignore the effects of hysteresis. It is extremely difficult
to prove stability with this method. Besides, the control performances of the hysteretic
system without considering the effects of hysteresis often lead to oscillations or even
instabilities [3]. A fundamental idea in coping with hysteresis has been to formulate the
mathematical model and use inverse compensation to cancel out the hysteretic effect.
This idea can be found in [16]-[20]. Recently, many control schemes have been proposed
to deal with unknown backlash hysteresis. A common feature of such schemes is that
they rely on the construction of an inverse hysteresis to mitigate the effects of the

hysteresis.
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Inspired by the above research, Su, et al. propose a new approach for controller
synthesis by using the properties of the hysteresis model rather than constructing an
inverse hysteresis nonlinearity to mitigate the effects of the hysteresis in 2000 [1]. This
method can be thought of as a preliminary step to the fusion of complicated general
hysteresis models with controller design.

In summary, four common approaches for the control problem of hysteretic systems
are:

1. Ignoring the effects of hysteresis (See Fig 2.2):

u(t) 7 0 (1)
> ,’/ > » Plant —>p

u(t) /11 v(t) (1)
P » » Plant —p

Figure 2.2 Illustration of ignoring hysteresis effects

As has been mentioned above, this approach is extremely difficult to prove stability

and often leads to oscillations or even instabilities.
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2. Finding the inverse model to compensate the effect of hysteresis:
In order to remove hysteresis effects, some researchers construct a hysteresis

inverse compensator in the feedforward path. This idea can be observed in Figure 2.3.

w(t) u(t) M w(t) 340)
—> » % > » Plant [P

e(t)
W) T L »é V(o) 7
—p /] > » Plant [P

Figure 2.3 Illustration of hysteresis inverse compensation

In Figure 2.3, the plant input can be expressed as follows:
v(t) = w(t) +e(t)
where e(t) represents residue error caused by the mismatching of the inverse model. The

residue error can be further reduced by a closed loop control design.
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3. Partitioning the characteristics of hysteresis:
Some researchers partition the characteristics of hysteresis into two parts. The first

part is linear in input signals and the second part can be thought of as a disturbance. This

idea is illustrated in Figure 2.4.

0
u(t) ) Y
» / ’ —»  Plant ——»

d(t)

u(t) T e 0 ()
> ’ > Plant +—»

Figure 2.4 Illustration of hysteresis linearization
In Figure 2.4, the plant input can be express as follows:
v(t) = cu(t)+d(v)
where ¢ represents a constant, d(v) can be treated as dynamical disturbance.
If the second part d(v) is bounded, then some conventional control methods can be

applied, such as robust control [13].
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4. Direct control without constructing a hysteresis inverse compensator:

By using the properties of the hysteresis model, controllers can be synthesized

directly rather than by constructing an inverse hysteresis compensator to mitigate the

effect of the hysteresis. The control system has a very simple structure, as presented in

Figure 2.5.

Input

Controller

Plant

Output

Figure 2.5 Direct control by using the properties of hysteresis
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2.3 Neural network application on dealing with the hysteresis effect

In the traditional method for mitigating the effects of hysteresis, a fundamental idea
is to formulate the mathematical model and then find its inverse to compensate hysteretic
effect [16]-[21]. Thus, many kinds of mathematical models of hysteresis have been
developed for control design over the past decades. The development of general models
capable of accurately representing large classes of diverse hysteretic phenomena has been
a subject of increasing interest in recent years. Whereas, when dealing with some
hysteretic systems using the traditional method, one is often faced with difficulties.
Some of these difficulties are: the unavailability of mathematical models for hysteresis
nonlinearity, the mathematical models used for descript hystereéis nonlinearity are not
accruable enough in some high accuracy applications, and that some of hysteresis models
are so complicated that their inverse models are not available [3], [24], and, therefore,
present a challenge for the control design engineer.

In contrast, hysteresis modeling based on neural networks can achieve a higher
approximation accuracy since neural networks are capable of approximating any
nonlinear continuous function to arbitrary accuracy in a compact subset if the number of
connection weights is sufficiently large [3], [13]. In addition, it can approximate some
hysteresis nonlinearities that are difficult to describe with mathematical models, such as
some types of piezoelectric actuators. Hysteresis (or its inverse) modeling based on
neural networks has been receiving increasing attention in the last year [13]. For
example, in 2000, Visone, et al. proposed a hysteresis identification technique using
Neural-Preisach-Type models which was based on Multi-layer neural networks (NN)

[13]. Rastko and Lewis proposed a dynamic inversion compensation scheme based on the
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neural networks [24]. In 2002, Lu developed a hysteresis inverse modeling scheme based
on diagonal recurrent networks (DRNN) [3]. A reference model for hysteresis inverse

modeling based on the neural network is presented in Figure 2.6.

u Y
RN 1/7 N v BN
e
w 11 v
—> Plant [—>

Figure 2.6 Compensated hysteresis effect using neural network
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2.4 Problem Formulation

Consider the following unknown systems proceeded by hysteresis, as illustrated in

Figure 2.7.

—>1 H(e) Plant >

Figure 2.7 Plant proceed by hysteresis

Mathematically, this system can be described by equation (2.3) and (2.4) [1]
x4 %, x" )y = by (2.3)
v=H(u) 2.4)
where f is an unknown function, which can be linear or nonlinear, H(e) represents

hysteresis nonlinearity with input u, v is the input to the plant, and b a nonzero unknown

constant.

To mitigate the effects of hysteresis, the hysteresis inverse compensator is built into

the feedforward path of system, as illustrated in Figure 2.8
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— H'(e) H(e) Plant [~

Il

w Yy
@ Plant

Figure 2.8 Hysteresis compensate effect

Then, the mathematical expression of the system can be rewritten as:
X fex, e, x" ) = b(wte) (2.5)
where e represents residue error caused by hysteresis inverse compensation

Again, we modify equation (2.5)

x” + f(x, %, x")—be = bw (2.6)
If the residue error e is bounded, equation (2.6) can be approximated by the following

equation:
N
x4 G (x, %, x ") = bw (2.7)
i=1

where G, is a Gaussian function.

Thus, a Gaussian network controller can be applied for such a system.
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Chapter 3

Diagonal Recurrent Neural Network (DRNN)

3.1 Description of Sigmoid Neuron

An artificial neuron is designed to mimic the first-order characteristics of a
biological neuron. A set of inputs is applied, each representing the output of another
neuron. Each input is multiplied by a corresponding weight, analogous to a synaptic
strength, and all of the weighted inputs are then summed up to determine the activation

level of the neuron. In the block diagram of Figure 3.1, showing the model of a neuron,
an input vector X, consisting of a set of inputsx,, x,, - - -, X, is applied to the artificial
neuron. Each signal is multiplied by an associated weight w,,w, ,---, w, in the weight
vector W before it is applied to a summation block, labeled X . Each weight corresponds

to the strength of a single biological synaptic connection. The neuron’s output is

produced by a nonlinear activation function, denoted by f(-), acting on the summed

output as shown in Figure 3.1.

25



Figure3.1 General Neuron model

In mathematical terms, we may describe a neuron with the flowing pairs of equations:
netszi-x, 3.1)
i=1

O, = [ (net) (3.2)
The active function, denoted by f(-), defines the type of neuron. If f (net) = net , the

neuron is defined as [inear neuron, and its model can be simplified as shown in Figure

3.2
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Figure 3.2 Linear neuron models

In this case, the equation (3.2) can be rewritten as follows:

Onet = Zwi ‘xi (33)
i=1

Consider the equation (3.4) shown as below. It is actually a form of the hyperbolic
tangent function that is commonly applied as an activation function. If we apply this
function as an activation function of a neuron, the neuron can be defined as sigmoid

neuron. Its detailed model is shown in Figure 3.3.

f(net) = y tanh[a(net + B)] + p (3.4)
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x, (k)

w
x, (k)
XZA
net(k) =
Inputs x3 (k) m 0,.(k)= O, (k) g
m | 2O e
f(net) = y tanh[a(net + O]+ p
xm (k)

Figure 3.3 Sigmoid neuron models

Correspondingly, we may describe this sigmoid neuron by writing the flowing pairs of

equations:

m

net(k) =Y w,x, (k) (3.5)
i=1

O, (k) = flnet(k)] (3.6)

flnet(k)} = y tanh|a(net (k) + B+ p (3.7)

The model of a sigmoid neuron with self-feedback is presented in figure 3.4.
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x, (k)

x, (k)

0, (k)

net(k) =
> wx, (k) 4
i=1

Onct (k - 1)

Onet (k) =
fnet(k)]

x3(k)

Inputs

f(net) = y tanh[a(net + B)] + p

Figure 3.4 Model of sigmoid neuron with self-feedback loop

Mathematically, we may describe this sigmoid neuron by writing the flowing pairs of

equations:

net(k) = iwix,.(k)whOm,, (k—-1) (3.8)
O, (k) = fnet (k)] (3.9)
flnet(k)] = y tanh[a(net(k) + £+ p (3.10)

The characteristics of equation (3.10) are illustrated in Figure 3.5(a) and 3.5(b).
Figure 3.5(a) demonstrates that varying the value of parameter  will change the

saturation point but doesn’t affect the saturation values (1, 2). Figure 3.5(b) demonstrates
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that varying the value of slope parameter o will cause a change in the slope of the curve.
The activation function may be thought of as a nonlinear gain of the artificial neuron,

which may be calculated by finding the ratio of the change in O,, to a small change in

net
net. Thus, gain is the slope of the curve at a specific excitation level. It varies from a low
value at large negative excitations, where the curve is nearly flat, to a high value at zero

exciation, and it drops back as exciation becomes very large and positive.

2.
y=0.5
p=1.5

1.8} =35
f=-0.5
-0.3
16} -0.1
- 0.1
Q 0.3
© 14 0.5
Increasing
1.2+
1 i 1 ]
-1.5 -1 -0.5 0 0.5 1 1.5

Figure 3.5(a) Sigmoid function curves for varying saturation parameter [3
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y=0.5
18} p=1.5
=()
a=2 4
161 6
8
N 10
5 )
o Increasing o
S 14 g
1.2+
1 | 1 e
-1.5 -1 0.5 0 0.5 1 1.5

Figure 3.5(b) Sigmoid function curves for varying slope parameter a

In this thesis, a specific sigmoid function is applied, which is described as

follows:
f(net) =0.5tanh(net)+1.5 3.11)
It satisfies: (See Figure 3.6)

1< f(net) <2 (3.12)
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1.8}

1.6}

finet)

1.4}

1.2

net

Figure 3.6 The curve of equation (3.11)

The derivative of equation (3.11) is given as follows:

0.5
"(net) = ———— 3.13
S (nef) cosh’ (net) 3-13)
which satisfies: (See Figure 3.7)
0< f'(net)<0.5 (3.14)
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0.5

0.4

0.3}

flnef

0.2+

0.1

net

Figure 3.7 The curve of equation (3.13)

3.2 Diagonal Recurrent Neural Network (DRNN)

The recurrent neural network was introduced by Hopfield [39]. It distinguishes itself
from a feed forward neural network in that it has at least one feedback loop [64]. A
typical type of recurrent neural network called the “Diagonal recurrent neural network” is
illustrated in the architectural graph in Figure 3.8. In the structure depicted in this figure
there are self-feedback loops in the hidden layer; that is, every node in each layer is
connected to every other node in the adjacent forward layer without interlinks among

neurons in the same layer.
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Onet(k)

1,(k) >

T

Output layer with
linear neuron

Input layer T
Hidden layer
With self-feedback
sigmoid neuron

Figure 3.8 Diagonal recurrent neuron networks

The presence of feedback loops has a profound impact on the learning capability of
the network and on its performance. For this reason, recurrent neural networks have been
shown to be more powerful than pure feedforward neural networks. For example, the
feedforward neural network is a static mapping, hence it is unable to represent a dynamic
system mapping. Although many people use the feedforward neural network together
with tapped delays to deal with dynamic systems, the feedforward neural network

requires a large number of neurons to represent dynamic responses in the time domain.
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On the other hand, the recurrent neural network consists of both feedforward and
feedback connections between lays and neurons forming complicated dynamics and is
able to deal with time-varying input or output through its own natural temporal operation.
Thus the recurrent neural network is a dynamic mapping system and is more appropriate

than the feedforward neural network when applied to a dynamic system [37], [41], [45].

3.3 Mathematical representation of DRNN

The mathematical model for the DRNN in Figure 3.8 is shown below:

Om'l (k) = Z wj')Xj (k) (313)
X (k)= f(S,;(k)) (3.14)
S, (k)= X, (k=1 +Y wiI,(k) (3.15)

where (k) represents the ith input to the DRNN, S, (k) is the sum of inputs to the jth

sigmoid neuron, X (k) is the output of the jth sigmoid neuron and O, (k) is the output

nel

of the DRNN. Here f(-) is the usual sigmoid function representing the nonlinear

threshold function, and w[,.[ , w,” are input, and output weights respectively, in

J

R"and R™ , which are Euclidean spaces with appropriate dimensions.
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Chapter 4

Hysteresis Learning Based on the DRNN

4.1 Description of Hysteresis

It is well known that hysteresis exists in a wide range of physical systems [4]-[13].
Throughout this chapter, a typical class of hysteresis, which is described by a modified
Duhelm Model [1], is given for the purpose of simulation to test the performance of
hysteresis modeling based on the DRNN model.

A typical class of hysteresis is described by [1]:

dv du
= =al—{(cu—-v)+ B, — “4.1)
dt dt( u=v) bt

where v represents the input and urepresents response of hysteresis. The parameter
o, B, and c represent real parameters, which control the scale and shape of the
hysteresis curve.

The discrete form of (4.1), based on the forward difference method, is described below:

v(k) = v(k — 1) + afu(k) — u(k - D|(cu(k —1) ~ v(k — 1))+ B, (u(k) - u(k ~ 1)) 4.2)

The characteristics of hysteresis described by equation (4.1) with a=1, ¢=3.1635,

B1=0.345, v(0) =0 for u(k) =sin(k *ts) is presented in Figure 4.1.

36



u(k)=A*sin(k*ts)

Figure 4.1 Hysteresis curves with a=1, ¢=3.1635, and B1=0.345 for

u(k)=A*sin(k*ts) with A=2.5,3.5,4.5, 5.5, 6.5.

37



4.2 DRNN based Hysteresis Learning Structure

Neural networks are a known method for universal function approximation. They are
capable of approximating any nonlinear continuous function to arbitrary accuracy in a
compact subset if the number, in relation to the connection weight, is sufficiently large
[3]. In this thesis, a dynamic neural network named diagonal recurrent neural network
(DRNN) is employed for hysteresis learning. The block diagram of the learning structure
is presented in Figure 4.2, and this neural network is denoted as DRNNI, the abbreviation
of diagonal recurrent neural network identifier. The dynamic learning algorithm for

DRNNI will be developed in the next section.

Hysteresis

®) |
" A7

> Ym(k)

Z«l 7

Figure 4.2 Block diagram of Hysteresis learning structure
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4.3 Hysteresis Learning Algorithm for DRNNI with Adaptive Input and OQutput

Weights

4.3.1 Description of Weights Update Rule

Letu(k) and y, (k) be the input and output of the DRNNI. The error function can be

defined as:
1 2 1 2
E = Eem (k) = E(V(k) “Vu (k)) (43)

The gradient of error in (4.3) with respect to an arbitrary weight vector W e R"is

represented by

k
O e 28 - (1 D) “4)
ow ow ow

where e, (k) =v(k)-y, (k) is the error between the reference input and output response
of the DRNNI, and O, , (k) is the output of DRNNI. Respectively, the output gradients

with reference to output and input weights can be computed using the following

equations:
%@:X_,<k) (4.5a)
ig%'/:]ﬁ ~W00, k) (4.5b)
where 0, (k) = oA, ffc) , which satisfies:

i

Oy (k)= f'(SHU, )+ 0 (k=D]  ©0;(0)=0 (4.6)
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Note: The equations in (4.6) are nonlinear dynamic recursive equations for the

J

gradients

Proof of (4.5) and (4.6):

From (3.13), the gradient with respect to the output weight is found as

AN WX (k
00, (k) _ {Z 40

= J = X (k)
oy’ owy ’

Hence, (4.5a) follows.
Similarly, from (3.13), the gradient with respect to the input weight is

00,,(k) _ 80, (k) 0X; (k) W oxX ; (k)

ow,) X, (k) aw’ ar7a =W ®
Thus, (4.5b) follows.
Finally, from (3.13), (3.14) and (3.15),
6Xj([k) _ X, (k) 85, (k) sk )) S (k)
ow/! oS, (k) aw;! ow;
agW(k) =G X0 L0

= [l(k)+Ql/(k_l)

Substitute (4.8) into (4.7), then (4.6) follows.

From (4.4) and (4.5), the negative gradient of error with respect to a weight is:

- e (X, )

lIl
g

OE

8W1 em (k)W Ql] (k)

40
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The weight can now be adjusted following the steepest descent method, i.e., the update

rule of the weights is described as follows:
ok
Wk+D)=W(ek)+n(——— 4.11
(k+1) | (k) +n( aW) (4.11)

where the weight W can be W°orW ', and 7 is the learning rate.
The update rule equations for individual weights can be described as follows:
Wl (k+)=W?(k)+ne, (k) X, (4.12a)

Wl (k+1) =W (k) +n'e, &) W} (k)Q, (k) (4.12b)

4.3.2 Learning Rate Estimate for DRNNI

In this section, we give a rule for choosing the learning rate under the guarantee of

network stable.
If W is an arbitrary weight vector inR", 7 is the learning rate for the correspond
weight of DRNNI, and ||” is the Euclidean norm inR", then the convergence is

guaranteed if # is chosen as

PP S — (4.13)
60"(5’ (k)
ow

Proof of (4.13):

Give a Lyapunov function as
AV(Ey=V(k+D)-V(k)

- —;—[e,,,2<k+1>—e,,,2(k>]
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e, (k)[2e, (k)+ Ae, (k)] (4.14)

III m

If AW represents a change in an arbitrary weight vector in R", the error difference due to

the learning can be presented as below:

e (k)] 80, (k)]
ky=e, (k+1)—e, (k)=| —2—=| AW = —"| AW 4.15
fll( ) elll( ) e"l( ) [ aW } [ aW ( )
From the updated rules (4.4) and (4.11),
00, ., (k)
AW = fy— = 4.16
776]"( ) aW ( )

Substitute (4.15) and (4.16) into (4.14), we obtain:

__ 120, ®Y 20, ®) 00, 80,k
AV (k) = 2{ & }77 e (k) {2e,,,(k> [ o }n e, () =22 }

2

00, (k)
— . 2 k . nel k nel
n em( ) oW € ( )H
o0 I, 1 NG
——n. 2 k ~net \"™ /] 1—==-p- net 4.17

If the convergence must be guaranteed, then AV (k) <0, thus,

net

2
>0 4.18
oW (4.18)

2

and (4.13) follows.
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Theorem 4.1:
Let n°and n' be the learning rates of the DRNNI weights W andW’ respectively.

Then the dynamic back propagation algorithm converges if the learning rates are chosen

as:

0<n’ < (4.19a)

n,
2
(1) W L

max max

0<n' <

(4.19b)

where n, represents the neuron number of input layer, and 7, represents the neuron

number of output layer.

max

Here, we define W © nax = max[W |, and I_, =max|l|.
J i

Proof of (4.19a)

From (4.5a):

90, (k)
aWO

= X (k)
where X = [X Xy X, ]T ,and X, is the output value of the jth neuron in the hidden

layer, and 7, is the neuron number in the hidden layer.

Sincel < X, <2,j=1,2,---,n,, then we have:

<4.n, (4.20)

20, (0|’
aW (¢}

From (4.13) and (4.20), (4.19a) can be obtained.



Proof of (4.19b)

oX (k)
In equation (4.5), we define O, (k) =

, and from (4.6)

O, (k) = f'(S; k) (k) + Oy (k ~1)]

Thus the solution of the above equation can be written as:

0, (k) = Z[[ﬁf(S k- n»}f (m)] [Hf’(s,-(k—n))}g,,(m

m=1 n=0 n=0

Note that 9, (0) =0

0,(k) = Z([ﬁf S, (k- n»}f (m))

0, (k)| < q }]1 (m)lj

Since f'(S;(k~n))<0.5 (0<n<k<+w),

k k
0, ()< D055 1,(my < 305%™, =(0.5+05" +-)],, <[

max max
m=0 m=0

]

1%

max

where 1, = max[bias, lu

max {*

Thus,
”Q(k)”z < (nl + nh)[max2

e ,(k)

i

From the definition,

=W;Q,;(k), we can obtain:

aOnel (k)

W o
Kz

max

o, ®)|
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Here, we define W ¢ nax = max}W v ‘ . Thus

2
2

SVVn(\)axz ‘(nl +nh)[max (421)

aOHL‘I (k)
ow'’

Hence, from (4.13) and (4.20), (4.19b) follows,

Remarks:

In the fixed-learning-rate learning process, the two uncertain terms, W’ and/__ in

max max

(4.19b), need to be further evaluated. And this can be achieved under the following
conditions:

1. The input signals to the system are bounded.

2. The DRNNI is fully connected, and the same initial value for all weights is set.

Clearly, condition 1 constrains the term 7/ __ in (4.19b), and condition 2 will make it

nax

possible to estimate the value of W%,

. - 1he detailed process is presented as follows:
In the learning process of fully connected DRNNI, if we set the same initial value for

all weights and apply fixed learning rates for weights adaptive, we can achieve such

roperties: W' =W/ =W’ X, =X, =--=X_. Thus, equation (3.13) can be
p 1 2 1 2 ny, q

Hy,

rewritten as:

OHet (k) = ZW/OX/ (k) =n, WIX/ (k)

e [0, (K)

W() ¢
nh X/ (k)

max N
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where n, is the neuron number in the hidden layer, O,, (k) 1s output of DRNNI, and

net
X (k) is the output of jth neuron in hidden layer.
If we choose a constant, ®, which satisfies:

® = max{0,,, (k). }»
and this condition is held through the whole learning process then together with the

condition: 1< X (k) <2, (18a) and (18b) can be modified as below:

0< 7—7—0 < Ein— (422)
h
0<i! < ) (4.23)
(m, +”h)'®4

If we choose the learning rate as follows:
7 =Q, xmin{sup(7°),sup(@’)} 0<Q, <l (4.24)

then, the convergence will be guaranteed.

4,3.3 Simulation

In this simulation study, 2x5x1 DRNN is employed to act as DRNNI with the

uniform initial weight value of 0.00001. The learning rate is chosen according to (4.24).

For the purpose of simulation to test the performance of hysteresis inverse modeling,

a typical class of hysteresis described in section 4.1 is used.
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The input signal is: u(k) = A=*sin(k*s) with ts=0.001, A=1, 2, 3, 4 and initial
valuev(0) =0.
Figs 4.3- 4.10 show the hysteresis curves given by Equation (4.2), the learning

curves, and learning errors with A=1,2,3.4. From all these Figures, it clearly shows the

DRNN is capable of learning the hysteresis.
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Figure 4.3 (a) Hysteresis curve (b) Learned hysteresis curve

For u(k)=sin(k*ts)
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Hysteresis & Learned Hysteresis
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Figure 4.4 (a) Hysteresis curve & Learned hysteresis curve (b) Learning error

For u(k)=sin(k*ts)
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Figure 4.5 (a) Hysteresis curve (b) Learned hysteresis curve

For u(k)=2*sin(k*ts)
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Hysteresis & Learned Hysteresis
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Figure 4.6(a) Hysteresis curve & Learned hysteresis curve (b) Learning error

For u(k)=2*sin(k*ts)
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Hysteresis

10— : T 1 1 !
B T LTI .
Q 0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, i:_ﬁf:f ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4 L
1 SR SO Do SO A N
10 i | uo ;
-3 2 -1 0 1 2 3
(@)
Learned Hysteresis
10 T :
-3 U U U ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
g 04,,_f—f’ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
g : .
>
I s N - SO SR ]
-10 | i ul(k) i 1
-3 -2 -1 0 1 2 3

(b)

Figure 4.7 (a) Hysteresis curve (b) Learned hysteresis curve

For u(k)=3*sin(k*ts)
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Hysteresis & Learned Hysteresis
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Figure 4.8 (a) Hysteresis curve & Learned hysteresis curve (b) Learning error

For u(k)=3*sin(k*ts)
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Figure 4.9 (a) Hysteresis curve (b) Learned hysteresis curve

For u(k)=4*sin(k*ts)
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Hysteresis & Learned Hysteresis
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For u(k)=4*sin(k*ts)
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4.4 Hysteresis Learning Algorithm for DRNNI with Fixed Input weights and

Adaptive Output Weights

In section 4.3, we developed hysteresis learning algorithm for DRNN with adaptive
input weights and adaptive output weights. For this learning algorithm, input weights and
output weights need to be updated during the learning process. However, in the online
application, we hope less parameter to be updated because less parameter to be trained
less computation is required. So, in this section, hysteresis learning algorithm for DRNN

with fixed input weights and adaptive output weights will be developed.

4.4.1 Description of weights update rule

Letu(k) andy, (k) be the input and output of the DRNNI respectively. The error

function can be defined as:

LI P 2
E= 2em - 2(V(k) Y (k)) (425)

The gradient of error in (4.3) with respect to W ° € R™ is represented by:

or _ Y. (k) _

aOnel (k)
8W0 __em(k) aWO A O

6W0

—e,, (k) (4.26)

where e, (k) =v(k) -y, (k) is the error between the reference input and output response

of the DRNNI. And O

nel

(k) is the output of DRNNI.

From (3.15), the gradient, with respect to the output weight, can be computed as:

o> WX (k)
aOnel (k) _ |:Z’: ’ ! . X (k) (4 27)
owy owy ~’

From (4.26) and (4.27), the negative gradient of the error with respect to a weight is:
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ok

o ¢

()X (k) (4.28)

j
The weight can now be adjusted following the steepest descent method, i.e., the update

rule of the weights is described as follows:
Wk+1)=W(k)+ (___BE ) (4.29)
T ow |

The update rule equations for 7 ? can be described as:

WO k+1)=W° (k)+7°, (k) X, (4.30)

4.4.2 Learning Rate Estimate for DRNNI
Let W9 be a weight vector in R" , 7° be the learning rate for the correspond weight

of DRNNI, and |||| be the Euclidean norm in R™ . Then the convergence is guaranteed if

n? is chosen as:

0

s 4.31)
“aOnel (k) 2

aW()

Theorem 4.2:
Let ¢ be the learning rate of the fully connected DRNNI’s weight ¥ . In the fixed-

learning-rate learning process, if fixed input weights ' are set at the same value and all

adaptive weightsW” are set same initial value, then the dynamic back propagation

algorithm converges if the learning rates are chosen as:
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0<n? < : (4.32)
2-n,

Remark:

The proof of (4.31) and (4.32) are similar to that of (4.13) and (4.19a), and, therefore,

will not be given in this section.

4.4.3 Choice of Input weights

Figure 4.11 shows the jth sigmoid neuron model

Bias
VAQ)
u(k) #’
X(k)
v(k-1)
X(k-1)

Figure 4.11 The jth sigmoid neuron model

From equation (3.17), we can obtain:

S (k) = X, (k=) +bias + W' (u(k) + v(k 1)) (4.33)
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X,(0) = £(S, (k) (4.34)
F(S)=05tn(S)+1.5 (4.35)

The curve of equation (4.35) is shown in Figure 4.12.

1.8¢

1.6} | /

1.4+ /

1.2}

ot

Figure 4.12 The curve of equation (4.35)

Figure 4.12 shows that the instauration range for S is (-4 - 4). In the learning
process, if the input signal to the sigmoid neuron exceeds this range, it may result in a
large learning error. So we can constrain S in a slight larger range (-5 5). Thus, from

(4.33), we can obtain:
]X(k 1)+ bias +W ' (u(k) +v(k - 1))| <5 (4.36)

Since bias =1, from (4.36), we can choose W ' within the range as below:

IW11< 4—-X(k-1)

 JuCk) + vk 1) (437)

Since|u(k)|+ |[v(k —1)| > [u(k) + v(k —1)|, (4.37) can be modified as:
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< 4-X(k-1)
* Juh)| + vk 1)

Sincel < X <2, and if we choose a parameter ® which satisfies:

3

© > max(ju(k)

v(k —1)

,bias) , then, (4.38) can be rewritten as:
wil<g
®
Since ® > 1, the input weights should be:

|W’|31

4.4.4 Simulation

(4.38)

(4.39)

(4.40)

In this simulation study, 2x5x1 DRNN with fixed input weights is employed to act

as DRNNI with the uniform initial weight value of 0.00001. The learning rate is chosen

according to (4.22).

For the purpose of simulation to test the performance of hysteresis inverse modeling,

a typical class of hysteresis described in section 4.1 is used. The input signal is

u(k) = A=*sin(k *ts) with ts=0.001, A=1, 2, 3, 4 and initial value v(0) = 0. The

simulation results are shown in Figs 4.13-4.20. it also shows that the DRNN with fixed

input weights can learn the hysteresis very well.
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Figure 4.13 (a) Hysteresis curve (b) Learned hysteresis curve

For u(k)=sin(k*ts)

61



Hysteresis & Learned Hysteresis
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Figure 4.14 (a) Hysteresis curve & Learned hysteresis curve (b) Learning error

For u(k)=sin(k*ts)
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For u(k)=2*sin(k*ts)
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Hysteresis & Learned Hysteresis
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Figure 4.16 (a) Hysteresis curve & Learned hysteresis curve (b) Learning error

" For u(k)=2*sin(k*ts)
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Hysteresis
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Figure 4.17 (a) Hysteresis curve (b) Learned hysteresis curve

For u(k)=3*sin(k*ts)
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Hysteresis & Learned Hysteresis
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Figure 4.18 (a) Hysteresis curve & Learned hysteresis curve (b) Learning error

For u(k)=3*sin(k*ts)
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Hysteresis
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Figure 4.19 (a) Hysteresis curve (b) Learned hysteresis curve

For u(k)=4*sin(k*ts)
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Hysteresis & Learned Hysteresis
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Figure 4.20 (a) Hysteresis curve & Learned hysteresis curve (b) Learning error

For u(k)=4*sin(k*ts)
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4.5 Summary

In this chapter, two types of DRNN identifiers have been presented; one isa 2x5x1
Diagonal Recurrent Neural Networks with adaptive input and output weights, and the
other is a 2x5x1 Diagonal Recurrent Neural Networks with fixed input weights and
adaptive output weights. Both of identifiers perform high learning precise, but the second

one performs better than the first for the hysteresis learning.

Table 4.1 Hysteresis learning accuracies with fixed input weights and adaptive input

weights
DRNNI with fixed
Max Learning Error | DRNNI with
input weights and
corresponding adaptive input and
adaptive output
reference input: output weights:
weights:
sin(k*ts) 0.11% 0.11%
2*sin(k*ts) 0.16% 0.15%
3*sin(k*ts) 0.2% 0.17%
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4*sin(k*ts) 0.65% 0.18%

Chapter S
Hysteresis Inverse Learning

Without Hysteresis Identifier

5.1 General structure for Hysteresis Inverse Learning

The block diagram of the diagonal recurrent neural network (DRNN) based
hysteresis inverse learning system is shown in Figure 5.1. In this diagram, the hysteresis
compensator is denoted as DRNNC, the abbreviation of “diagonal recurrent neural

network based hysteresis compensator.”
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w(k) u(k) v(k)
» DRNNC |———p Hysteresis

¥

Hysteresis Compensator

Figure 5.1 Block diagram of inverse learning of Hysteresis

5.2 Hysteresis inverse learning with identifier

The block diagram of neural networks based hysteresis inverse learning structure
with identifier is shown in Figure 5.2. The hysteresis identifier is denoted as DRNNI, the
abbreviation of “diagonal recurrent neural network based hysteresis identifier.” In
Chapter 4, it has been proven that multilayer DRNN with fixed input weights can achieve
precision, that is, low error, in hysteresis learning. So, throughout this chapter, DRNNI

refers to three-layer DRNN with fixed input weights.
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wi(k) V()
= e
——» P Z/ >

Figure 5.2 Block diagram of Hysteresis inverse learning with identifier

5.2.1 Learning Algorithm
Letw(k) andv(k) be the input of DRNNC and output of the hysteresis model. The

error function can be defined as:
1, 1 2
E=—2—e =5(M)(k)‘“V(k)) (51)

The gradient of error in (5.1) with respect to an arbitrary weight vector W e R" is

represented by

OE _ o ovk) o ov(k) du(k) _ Ou(k)
o =B =R S o R
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aOHGI (k)

= _e(k)ys oW

(5.2)
where e(k) =v(k)—w(k) represents the error between the reference input and output

ov(k)

response of the hysteresis model, and the factor y, = ouh) represents the sensitivity of
U

the hysteresis with respect to its input, and O,,, (k) is the output of DRNNC. Since the

hysteresis is normally unknown, the sensitivity needs to be estimated by DRNNI.
The output gradients with respect to output and input weights can be computed using the

following equations respectively:

aOnel (k) -
Tt (k) (5.3a)
00, (k) _
“8W; =W;Q,(k) (5.3b)
oX ; (k) . .
where O, (k) = ———, which satisfies:
Q_i/' (k)= f’(S,)[], (k) + Q;,' (k-D] Q_i/ ©0)=0 (5.4)

Note: Equations (5.4) are nonlinear dynamic recursive equations for the

J

gradients , and can be solved recursively with given initial conditions.

Remark:
The proof of (5.3a), (5.3b) and (5.4) are similar to that of (4.5a), (4.5b) and (4.6), and,

therefore, will not be given in this section.
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From (5.2) and (5.3), the negative gradient of the error with respect to a weight are

OF

“awr =N B (5.7a)
OF R
= = R0, (k) (5.7b)

i
The weight can now be adjusted following the steepest descent method, i.e., the update
rule of the weights 1s described as follows:

Wk+1)=W(k)+n(- 5—5/) (5.8)

where the weight W canbe W orW ', and 7 is the learning rate respectively.

The update rule equations for individual weights can be described respectively as

follows:

WP kD) =W} (k) +11° g -e(hk)- X, (>-99)

W (k+D)=W/(k)+n" -y -etk)- W’ (n)Q, (5.9b)

5.2.2 Learning Rate Estimate for DRNNC

Let W be an arbitrary weight vector inR", 7 be the learning rate for the
corresponding weight of DRNNC, and |||| be the Euclidean norm inR". Then the

convergence is guaranteed if 7 is chosen as:

. (5.10)

2
Vs

<
00, (k)
ow

Proof of (5.10):
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Give a Lyapunov function as:

AV (k) =V (k+1)=V (k)

- é[e%kﬂ)—e%k)]

= %Ae(k)[Ze(k) + Ae(k))] (5.11)

If AW represents a change in an arbitrary weight vector in R", the error difference due to

the learning can be presented as below:

Ae(k) = e(k +1) —e(k) = [%‘Z(V?J AW (5.12)

From update rules (5.2) and (5.8),

00, (k)

AW =n-e(k) yg- W

(5.13)

Substitute (5.12) and (5.13) into (5.11), we obtain:

_Lfoe®)] oy 00,,(R) de®)] 1 80,
AV (k)= 2{ v } n-e(k) yg o {Ze(k){ g } n-e(k) ys ——-}

ow
(5.14)
Since oe(k) =—Vy, M)—, equation (5.14) can be rewritten as:
ow G4
o0 (| 1 Jeo.. ol
AV =-n - 2 k) - '2 net + = 2.2 k- v net
e (k) ys | e Ry |

aOluzl (k)
ow

=—77'ez(k)-ys2 >

o0, (I 1
o g

} (5.15)

If the convergence must be guaranteed, then AV (k) <0, thus:
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2
>0 (5.16)

Thus (4.10) follows.

Theorem 5.1:
Let n°and n' be the learning rates of the DRNNI weights W andW' respectively.

Then the dynamic back propagation algorithm converges if the learning rates are chosen
as:

1

0<n? < ;
2-n,-yg

(5.17a)
2

0 ? 2 2
(nl +nh)‘W .]max 'yS

max

0<n' <

(5.17b)

where 7, is the neuron number of input layer, 7, is the neuron number on hidden layer

in DRNNC, % max := max, |7, ()],

W ()| = max, 7 (k)

s Lo = max, [|[1(k)

. (k)

is the input vector nf DRNN at time k, and IHI is the sup-norm.

Proof of (5.17a)

From (5.3a),

aOnel (k)
a W (0]

=X (k)

where X = [X . CYLLLIP ¢ ]T ,and X ; is the output value of the jth neuron in the hidden
layer, and n, is the neuron number in the hidden layer.

Sincel < X, <2,/ =1,2,---,n,, then we have
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2

<4-n, (5.18)

aOnal (k )
6 W ¢}

From (5.18) and (5.10), (5.17a) can be obtained.

Proof of (5.17b)

: oxX ; (k)
In equation (5.3b), we define Q, (k) = 6W and from (5.4)

7
i

0, (k) = f1(S; (kNI (k) + Q; (k= 1)]

Thus the solution cf the above equation can be written as:

0, (k) =2, ([H 118 k- n»}lf <m>J + [f[ JACH G n»}Q,-,- 0)

m=1 n=0 n=0

Note that 0, (0) =0

0, (k) = Zqﬁ 7S,k - n))}l,- <m))

m=1 n=0

0, (k)| < i([ﬁlf’(s, (k - n»]]ll,- (m>IJ

m=0 n

Since f'(S;(k-n)) <05 (0<sn<k<+x),

k k
0,0 < D054 [,(m) <3054, =(05+0.5" +--)1,, <]

max max
m=0 m=0

where [, = max[bias, w

max vmax

]

 Ju

max |’

Thus,

HQ(k)Ilz < (nl + nh)[max2
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From the deﬁnition

ncl (k)
w!

if

=W/Q,(k), we can obtain:

20,,, (k) 0
HL’ W Q (k)‘
T Al max i
7 ’
Here, we define W @ pax = malejol . Thus,
80 (k)|
net 2
“ aWI m’\X ( + nh )Imax (519)

Hence, from (5.19) and (5.10), (5.17b) follows.

5.2.3 Sensitivity Estimate for Hysteresis

e,

In order to make a distinction, we put a star “«” on the left upper corner of
parameters of DRNNI.

From the definition

ov(k) _ 0, (k)

(k)= = 5.20
Vs ()= 5ty = uth) (5.20)
where u(k)is an input to the Identifier (DRNNI).
Applying the chain rule to (5.20), and noting that y, (k)="0,, (k) of (3.13),
' 0 X k 0 X k
aym (k) _ 0 Onel (k) - Z ncl (k) ( ) z ( ) (521)

ou(k)  ou(k) =X, (k) du(k) 5 / “ou(k)

From (3.14),
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*

6*X,.(k) o 2S,(k)
o =SS0 — (522)
ou(k) ou(k)
Since inputs to the DRNNI are u(k) and v(k —1) from (3.15), we can obtain:
'S (O)="X (k= D+ W uk)+ W, vk - 1)+ Wb, (5.23)
where b, is the bias input of DRNNI. Thus,
8'S,(k
s )=* w! (5.24)
ou(k) !
from (5.21), (5.22), and (5.24),
vy =Y, W (S, (k)W (5.25)
J

If we set same initial value for all output weights*W/.O , and apply fixed learning rates for
weights  adaptive, then the output weights have the  properties:
we="wp = ---=*W,f: ="W?. Moreover, if input weights are set at the same value as:
‘W,="W', together with the condition: 0< f'('S;)<0.5, then from (5.25), we can

obtain:

*

s} <=~

*

*W()I_

w| (5.26)

where “n, represents the number of neurons in the hidden layer of DRNNIL.-
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5.3 Inverse Learning Algorithm without Identifier

During the hysteresis inverse learning process, which applies the learning structure
with the hysteresis identifier, two neural networks are trained simultaneously.
Information transfers between them while they are training which allows the two
networks to affect each other and results in several disadvantages. A high level of
randomness and uncertainty will arise, especially at the beginning of networks training.
This learning structure depends almost entirely on the choice of initial value. Therefore,
if we can not choose the correct initial value, the hysteresis inverse learning based on this
structure may fail. Another disadvantage of this learning structure is that computation
will rise since two networks are being trained at same time. Thus a simple structure is
desired in the real-time application. In this section, we will propose a simple structure, by

which hysteresis inverse learning is done without using an identifier.

From (5.17), we can make a modification of:

0<ly® ys| < _ (5.27a)
2 ) nlt .lyh'l
0<ln’ys| < 2 —— (5.27b)
(I’l[ +nh).VVn(1)ax '[max lyS|
Since (5.26), (5.27a) and (5.27b) can be further modified as:
0<%y (k)| < L ! (5.28a)
B
4 1
0<n'y. (k)| < . 5.28b
l77 ys ( )1 (n[ + nh)‘ nh VVn(é\xz ) 11118)(2 ’ *WO b ) *WI’ ( )
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In the training process of DRNNC, if we set the same initial value for all weights and
apply fixed learning rates for weights adaptive, we can have the property:
we=wy=-W? X =X,=--=X, . Thus, from equation (3.13) we can obtain:

ny,

Onel (k) = Z WiOXj (k) =n, - WiX.i (k)
J

wo lWO‘ _ |0, (K)|

max j (5293_)
on X (k)

where #n, is the neuron number in the hidden layer, O, (k) is the output of DRNNC, and
X (k) is the output of jth neuron in hidden layer.

Similarly,

"0, (B)
' n, '*Xj (k)

*rrO| _
J

(5.29b)

where "n, is the neuron number in the hidden layer, “O

net

(k) is the output of DRNNI,
and "X (k) is the output of jth neuron in hidden layer.

Substitute (5.29a), (5.29b) into (5.28a) and (5.28b) can be rewritten as:

1 "X (k)
0 <y (o) <L : (5.30a)
l * ‘ nh Onel (k)’ ’ W[ ’
4.(n")? XYV X (k
0<’771ys(k)>< (). 2 ( )2 . = wl (>-300)
(l’l, +nh) Oncl(k)l .Imax : Onel(k)!. W‘

If we choice a constant, ®, which satisfies:

(S max{O

net

(k). 1

|

0, (k)

max >
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and this condition is hold through the whole process. Together with the condition:

1 < X (k) <2, we can obtain two constants, 7 and 7', which satisfy:

_ 1 1
0<77? <— —r2 531a
n, © ‘ w' ' ( )
4-(n,)
0<ip! <2 () 5 L 1 (5.31b)
(n, +n,) © - |'W ‘
From (4.39), we can obtain: l*WI‘ < é, and modify (5.31) as:
|
O<p” <— (5.32a)
n,
2
0<7’ <—4L-—ﬂ- (5.32b)
(nl + nh) @
Thus, we choice the learning rate as follows:
7 = Qxmin{sup(),sup(@')} , V 0<Q<l1 (5.33)
then, (5.9a) and (5.9b) can be modified as follows:
WP (k+1)=W7(n)+7ek)X, (5.34a)
W, (k+1) =W/ (n)+17e(t)W; (K)Q, (5.34b)

From (5.32), (5.33) and (5.34), it is clear that the modified weights updating rule of
DRNNC given in (5.34) do not need the information from the hysteresis identifier. Thus,

the part that is the hysteresis identifier can be moved from figure (5.2), and a simplified

hysteresis inverse learning structure can be obtained as follows:
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wi(k)
e u(k) /7 v(k)
) 2 >
¥
DRNNC
7]

L— |

Figure 5.3 Block diagram of Hysteresis inverse learning without identifier

5.4 Simulation study for Hysteresis Inverse Learning

In this simulation study, the hysteresis inverse learning structure, which is shown in
Fig 5.3, is applied. 3x7x1 DRNN is employed to act as DRNNC with the uniform initial

weight value of 0.00001. The learning rate is chosen according to (5.33).

For the purpose of simulation to test the performance of hysteresis inverse modeling, a

typical class of hysteresis described in section 4.1 is used.

The input signal is u(k) = A *sin(k *ts)/u(k) = A *[0.6sin(k * t5) + 0.6 sin(k * ts/3)] with

ts=0.001, A=1, 2, 3, 4 and initial value v(0) =0.

The simulation results are shown in Figs 4.3- 4.10. From these Figs, it shows that
hysteresis effect can be mostly removed by DRNNC. The residue error caused by

hysteresis inverse compensation is small and bounded.
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Figure 5.4 (a) Input & output (b) Control input (c) Learning error

For w(k)=sin(k*ts)
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Hysteresis & Its Inverse
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Figure 5.4 (d) Hysteresis & Its inverse  (e) Compensation effect

For w(k)=sin(k*ts)
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For w(k)=sin(k*ts)

86



Hysteresis & lts Inverse

0.8
0.6
0.4
0.2

(d)

vik); fuk)]
(=]

0.2
0.4
0.6
0.8

-1

ugk); [wik)l

Compensation Effect

vik)

(e)
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For w(k)=sin(k*ts)
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For w(k)=2*sin(k*ts)
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Hysteresis & Its Inverse
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Figure 5.6 (d) Hysteresis & Its inverse  (e) Compensation effect

For w(k)=2*sin(k*ts)
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Figure 5.7 (a) Input & output (b) Control input (c) Learning error

For w(k)=2*sin(k*ts)
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Hysteresis & lts Inverse
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For w(k)=2*sin(k*ts)
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For w(k)=3*sin(k*ts)
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For w(k)=3*sin(k*ts)
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Figure 5.9 (a) Input & output (b) Control input (c) Learning error

For w(k)=3*sin(k*ts)
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Figure 5.9 (d) Hysteresis & Its inverse (e) Compensation effect

For w(k)=3*sin(k*ts)
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96



Hysteresis & lts Inverse

(d

v(k); {u(k)]

u(k); [wik)]

Compensation Effect

T

1

(e)

v(K)

wi(k)
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For w(k)=4*sin(k*ts)
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For w(k)=4*sin(k*ts)
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Figure 5.11 (d) Hysteresis & Its inverse (e) Compensation effect

For w(k)=4*sin(k*ts)
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Chapter 6

Gaussian Networks Controller Design

6.1 Choice of control law

If the effect of hysteresis can be mostly removed by DRNNC, control problems will
be simplified and thus many of control methods can be applied for such a system. For a
dynamic system control, neural network based control strategies have been receiving
increasing interest in recent years. Gradient decent optimization methods are usually
employed for adjustment of the weights of neural networks and have proven to be quite
effective in practice. However, these methods are limited in their use in high precision
applications and stable analysis becomes very complicated when learning and control are
attempted simultaneously [52]. To overcome these drawbacks, a specified controller,
which is synthesized with Gaussian networks and a sliding mode component, is proposed
in this thesis. The parameters of Gaussian networks are tuned under the guarantee of
stability, and desired tracking performance can be achieved by properly setting the free

parameters of the controller.

Consider a nonlinear dynamic system in the canonical form:
n
X+ 204, /(5 x e, x) = by ©.1)
i=1

v=H(w) (6.2)
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where f'is an unknown function which can be linear or nonlinear, v is the input to the
plant, w is the output of the hysteresis, and b is a nonzero unknown constant.

To facilitate the adaptive controller derivation, let us rewrite equation (6.1) as

Box® +§a,f,.(x)= y (6.3)

wherex =[x, %,---,x" "], h=1/b, and o, =a,lb.
Using hysteresis inverse scheme developed in the above Chapters, v can be rewritten as
follows:

v=w+e (6.4)
where w is the control input, and e represents residue error of hysteresis inverse learning,

which are illustrated in figure 6.1

w Plant

Figure 6.1 Illustrate the inputs of the plant
Clearly, the equation can be written as:
ho-x + Yo, fi(x)-e=w (6.5)
i=]
Applying the sliding control approach, let us define the combined error as:

s=x"" 1+ 4,

7

_2’)\6("‘2) 44 /10)7“ == A(p); (66)
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where X¥=x-x, and A(p)=p"V+4,_,p" P +--+4, is a stable (Hurwitz)
polynomial in the Laplace variable p. Note that s can be rewritten as:
s=x""D 440 : (6.7)

1y .
where g, is defined as:

-1 —~1 ~(n— Iy
ar(" ) __xd(" )+/1n—2x(" 2) +...+/10x (68)

From equation (6.7), we can obtain:

hs=w-> a,f,(x)+ha,” (6.9)

i=1

With this expression, a control law can be obtained as:

.
w=—ha," —k,s+Y a,f,(x,0) (6.10)
i=1
where k,, is a positive constant, and a," is the derivative of a," ™", i.e.,
(n) _ (1) ~(n-1) <
a,’ =-x; +A X"+ + X (6.11)

since A and c; are usually unknown parameters. Thus for the adaptive control, the control

law (6.3) is replaced by:

w=-ha," —k,s+Y &, f (x,0)+e (6.12)
i=1

The term in equation (6.4), that idei f:(x,t), can be approximated using the Gaussian

i=]

N
function expressed as Zéi g,(x,€,), thus (6.12) can be rewritten as:

i=1

w=—ha," —k,s+ > ¢,8(x,&) +e (6.13)

Iel,

To overcome the effects of e, this control law can be modified as [52]:
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A

w=—ha" —k,s+(1- m(t))i 6.8,(%,E,)+m(t)-u, (6.14)

where, m(f) will be specified in the following development.

This control law expression can be rewritten in more general form as:

w(t) =u,, () + (1= m())u,, (&) + m(Du, (£) (6.15)
Here u,,(t) is a negative feedback term including a weighted combination of the
measured tracking error states. The termu , (¢), represented the sliding component of the
control law to overcome the effects of e, and u,, (¢) represented the adaptive component

to compensate the system dynamics. The function m(¢) is a continuous, state dependent
modulation that allows the controller a smooth transition between sliding and adaptive
modes of operation. The block diagram of this control system structure is shown in figure

6.2. From Figure 6.2, detailed structure of GNNC is presented in Figure 6.3.

Input
Output
—-—ﬁ GNNC ~ DRNNC - . ~
h.
4 Controller P Compensator >| Hysteresis == Plant >
4
Gaussian Neural Hysteresis Inverse
Network Compensator
Controller

Figure 6.2 Block diagram of control system structure
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u
Gaussian ad
™™ Networks
Xa —
y w
ug /3 \
. Sliding I1 Q/ >
L]
X
{ Modulate
m(t)
R Liner
Feedback

Figure 6.3 Block diagram of controller (GNNC) structure

O u »4(8) - A negative feedback term given as below:
U (6) =~k s(t) ~ ha, (6.16)
where k, is the constant gain of feedback, and ar(") is defined in equation (6.11)

The update rule of his given as below

h=-ysgn(h)-s-a,™ (6.17)

[J u, - The sliding component of control law defined as:
u,(t)=-k, (t)sat(s(t)/ D) (6.18)
where saf(-) is the saturation function ( sat(y)=y if | y[ <1, and sat(y)= sat(y) otherwise ),

@ is an arbitrary positive constant, and &, is the gain of the slide controller.
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m(t)- A continuous, state dependent modulation which allews the controller

having a smooth transition between sliding and adaptive modes of operation, which

is defined as follows:

r(t)—1

m(t) = max(0, sat( ¥

) (6.19)

where max(-) is the maximum function, saf(-) is the saturation function, and ¥ is a

positive constant representing the width of the transition region, and r(¢) is defined as:

1/p

J (6.20)

) =k -x,], = z[‘x_‘x_

i=1 w;

1

where x, fixes the absolute location of sets in the state space of the plant, and w,

represents the weight.

We define two sets as:
4, = k| Ix-x.l,,, =1}
and
A=l fx-xl],, <1+
when
i) () <1, meaning that x € 4, and m(t) =0
i) l<r(t)<l+¥,meanthat xe 4— 4, and 0 <m(t) <1

i) r@®) =21+Y¥Y, meanthat x € 4° and m(t) =1

In the limiting case p = «,

1x1 - x0,1| ‘x2 - x0,2‘ X, = Xo )1|

r(t) = |x(t) - Xo”,,,w = ma){ , s : 6.21)

w, w, w

H
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(J u,,(t) - the adaptive component in control law:
N ~
Uy (1) =D 6, (0g,(x.8,) (6.22)
i=1

where x =[x,%,---,x" "], & encode the sampling mesh, which represents the input

weights to neuron i, and ¢, is the estimate of the true coefficient ¢, is the output weight

for that neuron.

The structure of this component is illustrated in figure 6.4.

Figure 6.4 Structure of the adaptive component of the control law

Here, the Gaussian function g is given by:

g(x,) = g(x—&) = exp(-70,’d*) (6.23)
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where o, is a positive constant.d’ = “x —é” =(x-§)" (x-§&). This can be illustrated in

figure 6.5.

N/ NS v Ny
O >—O—0O 5 Q o >
\i,
X
+
m+1 Lm+2 er+3 m+4r\ JK KL\ )
\/ o . v g

A\

Fig 6.5 Illustration of sampling mesh

The updated rules of ¢, are given as [52]:

&,(6) =k, (1- m(t))s, (g, (x(t) - &,) (6.24)

s, (1) = s(t) — Dsat(s(t)/ D) (6.25)
where @ is an arbitrary positive constant which is chosen as the deadband of s, and

sat(-) is the saturation function.

The function s, (¢) has two properties useful in the design of adaptive laws:

i) Ifls|<®,then s, =0
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ii) While if |s] > @, then |SA] = ls‘—CD

6.2 Choice of Gaussian network parameters

It is well known that three layer feed forward neural networks with one hidden layer of
nonlinear nodes can uniformly approximate functions. The approximation implemented

by such three layer networks can be represented mathematically as:
N
fa(x)= Ecigi(x’gi)

where x=[x,%,--,x" V], £=[£,¢,,-£,], and g, is the elementary function
implemented by node i, often taken as a logic, or sigmoid function. In this thesis, g,
represents a Gaussian function, which is defined in equation (6.23). The coefficient ¢,
represents the output weight of node 7, and &, represents the input weight for that node.
In the Gaussian network design, the three parameters that should be determined are: the
lattice mesh size A, the variance 0‘,2, and the truncation radius/. If we make suitable
choices for these three parameters, then we can obtain:

f)-f(<e, V xed (6.26)
The error sources can be given by:

£, =& +&, +&, (6.27)

In above equation,

g,- represents the error introduced by approximating f on a compact set 4 using only

frequencies of an absolute value less than £ .
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&, - represents the error introduced into the cardinal series by the fact that the radial
Gaussian is not an ideal spatial low-pass filter. The mesh size A and variance o, can be

chosen so as to reduce &, as much as is required. The rule that yields the best results for

low dimensional networks is to take:

o, =np’ (6.28)
Aml (6.29)
208 '

where @ is the over sampling parameter.

&, - represents the error introduced by truncating the cardinal series to a finite number of
terms. The truncation parameter / can be chosen to reduce the errore,. The rule for
choosing / is given by [49]:

/> n-1

(6.30)
270’

v

where n is the dimension X.

6.3 Determining the number of nodes in the networks

After the appropriate prior choice of network parameters, we can finally determine

the number of nodes in the networks. Here, a new set, /7, is defined as below:
I = {x 1 ”x—y”w <IAVye A} (6.31)

that is, /" is the rectangle containing all lattice points within a distance p = /A of 4.
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Since / and A define the set I', this set plus the choice of A together determine the
number of nodes in the network. For example, if
A=[-mA, mAlx[-m,A, m,A],
then
[ =[-mA+p), (mA+p)x[-(mA+p), (mA+p)]

Thus, the total number of nodes in the network should be:
N =[2(m, + 1) +1]x[2(m, + 1) +1]

For reference, Figure 6.6 illustrates the relationships among the 4 and I .

2Am2
2(Amy+p)

X, i =
2Am,

2(Amy + p)

A 4

Y

A

Figure 6.6 Illustration of the relationship of state space 4 and I .
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6.4 Outlining the implementation procedure of discrete Gaussian Network
Controller
Generally, the design procedure of the Gaussian network controller includes two
basic steps:
Step 1  Properly choosing the parameters for Gaussian network controller
according the rules that have been presented in previous section.
Step 2 Base on these parameters, constructing a Gaussian network controller and
implementing it into the control system to train the network while
adapting output weights “c”.
In step 1, the parameters that should be determined are listed as follows:
® — Arbitrary positive constant

3 — Smoothness constraint parameter
& — Over sampling parameter

A — Sampling mesh

o,’ — Gaussian variance

/ — Truncation radius

N — Number of nodes in Gaussian networks

k ,— Constant gain of feedback
k, — Positive constant determining the adaptation rate

k., — The gain of the slide controller
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After properly choosing the parameters of the network, the network can be trained and its

output weights can be tuned.

Atstep k

1)

2)

3)

4)

3)

Compute the error state, X(k):
X(k) = x(k) —x, (k)

x(k)—x(k-1) xth—n+2)—x(k—n+1)

where x(k) = [x(k), . . 1,

is

x,, (k) :[xd(k)axd(k)—tzd(k_l):"'>XJ(k_n+2)l;xd(k_n+1)

7
Compute the filtered errors(¢) :
s(k) = A"X(k)
where A" =[A"",(n-1)A"? ... 1]; X(k) = x(k) —x , (k)
Compute the tuning error s, (f) using equation (6.25):
sy =5 —@-sat(s(k)/D)
where @ is an arbitrary positive constant and sar(-) is the saturation function.

Compute the parameter, m(k) , using the modulation function (6.19):

r(k)—1
¥

m(k) = max(0, sat(

)

where max(-) is the maximum function, saf(-) is the saturation function, V' is a
positive constant, and r(k) has been defined in section (6.1).

Compute the sliding control component, u,, (k) , using function (6.18):
uy (k) = —k, (k)sat(s(k)/ ©)

where sat(-) is the saturation function, @ is an arbitrary positive constant, and
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k, 1is the gain of the slide controller.

6) Compute the adaptive output of network, u_,(k), using function (6.22):
N ~
U,y (k) = ¢ (k)g, (x(k)-§&,)
i=1

where &, represents the input weights to neuron 7, and ¢,
represents the output weight for that neuron.

7) Compute the negative feedback term, u ,,(k), using function (6.16):
U g (k) = ~kys(k) = h(k)a,” (k)

where k, is the constant gain of feedback, a,"” (k) = AT X(k) - x{" (k) with

AT =[0, A, (n-DA2,--,(n-DA], xW (k) is the nth derivative of the
desired trajectory, and s(¢) is the filtered tracking error which has be defined in
section (6.1).
8) Compute the general controller output, w(k), using function (6.15):
wik) = u ,y (k) + (1= m(k)u , (k) + m(k)u, (k)
9) Compute system output from w(k) .
10) Update Gaussian network output weight ¢
ck+)=c¢,(k)—ts-k, (A—m(k))s,(k)g(x(k)-¢&,) (6.32)
where k, is a positive constant determining the adaptation rate
11) Update input gain 4 using function (6.16):
h(k +1) = h(k) —ts - y sgn(h(k))-s -a, "

12) Wait for the last step to elapse and loop back to step 1)
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Chapter 7

Simulation study

In this section, the preceding theoretical development is applied to four examples. In
the simulations that follow, two different plants are used to track a set of desired
trajectories, and the whole control system which is applied is descript in Fig 6.7.

The simulation results are shown in Figs 4.3- 4.10. Figure 4.3(a)-4.10(a) show the
curves of reference signal and tracking signal, and Figure 4.3(b)-4.10(b) show the
tracking error. From these Figs, it clearly shows that the proposed control system can
tracking the reference signal very well, and tracking accuracy can be achieved within

desired goal.
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Example 7.1:

A second order plant is applied to track a sin wave signal sin(k * £s). The goal of the

controller is to obtain asymptotic position tracking accuracy within 0.005 units. For this

design target, the parameters of Gaussian networks controller are chosen as below:

®=0.005 /=4
B =2 N =961
0=2 k=100
A=0.125 k, =50
o =4x k,=10

The plant that is illustrated in discrete form is given as follows:

-1 5.4735+ 546421

. x1077
1-1.99482 "1 +0.994787~

2
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for the fist order plant with the input: sin(k*ts)
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Example 7.2:

A second order plant is applied to track a sin  wave
signal 0.5sin(k * £s) + 0.5sin(k *#s/3) . The goal of the controller is to obtain asymptotic

position tracking accuracy within 0.005 units. For this design target, the parameters of

Gaussian networks controller are chosen as below:

®=10.005 [ =4
B =2 N =961
0=2 k, =100
A=0.125 k,=50
o'=4n k,=10

The plant that is illustrated in discrete form is given as follows:

1 5.4735+5.4642 |

. %1077
1-1.99482" ! +0.994782

2
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Figure 7.2 (a) Input & output (b) Tracking error

for the fist order plant with the input: 0.6sin(k*ts)+0.6sin(k*ts/3)
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Example 7.3:

A third order plant is applied to track a sin wave signal, sin(z). The goal of the

controller is to obtain asymptotic position tracking accuracy within 0.005 units. For this

design target, the parameters of Gaussian networks controller are chosen as below:

®=0.005 =4
p=2 N =961
6 =2 k, =220
A=0.125 k,=0.01
o, =4n k, =20

The plant that is illustrated in discrete form is given as follows:

1. 0.0333+0.13302 1 +0.033227 2 10-8
1-2.9950z"! +2.99002"2 —0.9950z 3
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Example 7.4:

A second order plant is applied to track a sin wave signal: 0.5sin(¢) + 0.5sin(¢/3).

The goal of the controller is to obtain asymptotic position tracking accuracy within 0.005

units. For this design target, the parameters of Gaussian networks controller are chosen as

below:
®=0.005 [ =4
B =2 N =961
=2 k,=220
A=0.125 k,=10
c,'=4n k, =30

The plant that is illustrated in discrete form is given as follows:

1. 0.0333+0.1330z " +0.033227 2 10-8
1-2.9950z"1 +2.99002~2 - 0.99507 3
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Chapter 8

Conclusion and future work

Conclusion:

For a system with hysteresis, we have developed a neural network based hysteresis
inverse compensator to remove the effect of hysteresis. Based on the cancellation of
hysteresis effect, we propose an adaptive tracking control architecture, which can be

constructed via the combination of sliding mode and Gaussian networks.

A specialized recurrent neural network called the diagonal recurrent neural network
(DRNN) is applied to construct the hysteresis inverse compensator because DRNN
requires fewer weights, less training time, and still preserves the dynamic characteristics,
which allow the DRNN model to be used for on-line applications. An on-line learning
algorithm called the dynamic back propagation (DBP) algorithm has been developed to

train the DRNN.

We propose a simplified on-line hysteresis inverse learning architecture by which the
hysteresis inverse modeling can be obtained without using a hysteresis identifier. A
simple structure is desired in the real-time application because simple structure implies
that less parameters need to be updated and therefore less computation is required.

Moreover, simple structure will allow a reduction in the random influence that may result
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in learning structure failure. Simulation results indicate that this structure can achieve

high inverse modeling precision.

The update rule for weights adaption requires choosing a proper value for the
learning rate. With a small learning rate, the convergence of DRNN is guaranteed but the
learning speed is very slow; on the other hand, if the learning rate is too big, the
algorithm becomes unstable. In this thesis we have developed a guideline for selecting
the learning rate properly, which ensures the fastest possible learning rate while

maintaining the stability of DRNN.

Under the guarantee that the hysteresis effect can be mostly removed by the DRNN
compensator on-line, a hybrid controller, which is combined with sliding mode and tree-
layer Gaussian network (GNNC), has been developed. A unique feature of this control
law is its ability allow the smooth transition from adaptive to nonadaptive modes of
operation; becoming a), a sliding controller in the regions of the state space where the
network has poor approximating capability, b), a purely adaptive controller where the
network approximating power is géod, or ¢), a stabilizing blend of the two modes in an

intermediate transition region.

In conclusion, the proposed control strategy, which constructs GNNC controller and
DRNN compensator in the close loop system, is successful for the control of a class of
dynamic systems preceded by hysteresis. The simulation results show that the control

system can track cyclic and acyclic signal very well.
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Future work:

Even though the proposed control strategy is efficient for a class of dynamic system
preceded by hysteresis. However, this kind of control method limits its use in more
general hysteric system. It is suppose that a neural network based identifier should be
used to acquire the information of the hysteric system, and then accordingly control

methodology will be generated.
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