Implementation of 3D Snooker Simulator

Ying Feng

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Computer Science at
Concordia University

Montreal, Quebec, Canada

April 2004

©Ying Feng, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91029-6
Our file Notre référence
ISBN: 0-612-91029-6

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

1

Abstract

Implementation of 3D Snooker Simulator

Ying Feng Master of Computer Science
Concordia University, 2004

The implementation of 3D Snooker Simulator project is one part of the 3D Snooker
Simulator project. It mainly focuses on porting the graphic and user interface of the
existing 2D Snooker Simulator from 2D to 3D by using OpenGL and ANSI C++.

In the report, a brief introduction is given to the current situation of game programming,
game programming using OpenGL and the features of the 2D Snooker Simulator. In the
last decade, 3D graphic and user interface has become the main stream of computer-
based game development and OpenGL is the main graphics-programming library,
software interface to graphic hardware, and a "standard" for 3D graphics.

The target of the project is to implement the Snooker Simulator as a platform-
independent 3D game with user-friendly, game-like User interface while preserving all
the functionalities of the 2D version. The author describes how to reach these goals from
designing, 3D object modeling and implementation. Meanwhile, lots of implementation
problems and solutions are discussed in the report.

Finally, the author points out that the current 3D Snooker Simulator has achieved most of

the design goals, but still has space for improvement.

ii

1.
2.

S.

Table of Contents

INTRODUCTION. . .icuiitiiiinrietisetieccrsersessersssessessessessessossassessssessense 1
BACKGROUND .. .icutititiarsnrestersnrsecessetsessocessesssssassessnssassascassnsassane 4

2.1 GAME PROGRAMMINGcoutiiiuieiiiiiteniteenetestresutesetesseeessseanaseanseesaseesaseesasessseeans 4
2.2 OPENGL GAME PROGRAMMINGccocoerereeerurennrieneereeereeeseeeemnsesnsenseessseesasessnsens 5
23 2D SNOOKER SIMULATOR.........ceereeneerteenieeenneesreseeesseeessetesneesaseesssessmsesssesssnnenne 7
1) DN 9

3.1 PROJECT GOAL ..ottt ettt e st st st et e b e eseeeene 9
3.2 3D MODEL......utiiiimiiniinienitiieere ettt et sr e sbe et et st eseeeae e sre e et s be et esanesaeen 9
3.2.1 SCEME ...ttt s e e s sb e e ba e e et e e s s nbaesennaes 9
3.2.2 The SnooKer Table.......ccccoiiiiiiiiiii e 13
323 VIBWS -eiiiiiiiiieitesreeerteste e e e sttt eseaesaeesssassteasseessseessneeasaeessasanseessssenssesnsessns 14
3.24 LAGIENG ..ottt sttt ettt 15
33 ANIMATION......cuttiieieitiieeeeciie e e eeee e e eeetrreeeeestreeeeeebeseseeesnseeseesestneseeeasnssseessnnranes 16
33.1 Ball’s MOVEMENL......c..cccviriiriiiieeienienitestier et se st e et beseeeaeas 16
33.2 Camera’s MOVEIMENLc.cueviiiieierieriieeieereee e eae e eaneereas 16
34 CLASSES AND FILES ..ottt sttt n et va e s ve e e 16
IMPLEMENTATION. . ccoittttiriererirsecersosntarcisasessscersssecescarsscacssssnne 19

4.1 THE SNOOKER TABLEccctvitiieiieienieriinrentsiteseentesteniestessanssessessessaesnesassssssens 19
4.1.1 Polygon TesSSellationc.ccevieiieieiieiiiciiceeee et 19
4.1.2 INUIDS SUITACE. ...c..eieieiiieieierite e et 21
4.2 THEBALL’S MOVEMENTcccctritiitiiieienieeienteseneessessaeesaeeereseeesanesssenssenseennes 23
4.3 THE CAMERA’S MOVEMENTccccoitiiiiimiertenieenreeienteorienaesnsessaessssssesssesssessnessenns 24
43.1 In Main WINAOWcccciveivieriieniiiniierieniesecs ettt eae s eae e 24
4.3.2 In FINE WINAOW ..c.vviiiiiiiiiiiiiieccieecteetce e sne et 36
44 IMPLEMENTATION PROBLEMS AND SOLUTIONScceiveieienieereereereereereeneeneenns 39
4.4.1 Draw a circle in Fine Adjust Windowcccoeeeveeiineeviceieeeecee e 39
4.4.2 Issues with Fine Adjust Windowic.ooverieneeeeiveieeeeeeecee e 40
443 Continuous moving by setting Timercccccvevievieeieeceice e, 41
44.4 MeENU SEIECHIONoveiiiiiieiiriereeee ettt ae e 42
4.4.5 BIENdINEGoveiiiiiriiriictrieee et e 44
4.4.6 Change the cursor when mouse entering into certain area 45
4.4.7 Simulating Ball-like cursor on Snooker Table..........c.c.ccevvevirieereinrennene. 46
448 Position balls on Snooker Tableccccevvieiiviiiiiciiiicecce e, 46
449 Multiple windoOws Management...........c.ecvereereerreeireenreenneereeeesereerreseeennas 47
4410 TOOL TIPS .uuuiiiiiiiiniiiiiiitiei et e sttt e ee e s e e btr e e e e e s eaneaeeeseanbeeeeeenes 48
4.4.11 GIUL WINAOW...coiiriiiiiiiieiiecieciteie ettt ene e sae et eteesaesnsesneens 48
4.4.12 DiSPIAY LAST..c..iomiiiiiieiicienieieceetetee sttt ettt e 50
4.4.13 Calculate Time-increment for best performanceccocoevevvveveeereennnns 50
4.4.14 Fix out-of-virtual-memory defectcccoevvrmeevreieneeieceeececee e, 51
CONCLUSION. c.tutitittnierateserstettetsisrsssssssectsssscnsecesssasessssesssssssnsns 53

iv

6. REFERENCES.ccuiiiiiiiiiiiiiiiiiiiniiineneetenceneeenessnsesessssesensesnnss 55

APPENDIX A. MAIN SOURCE CODE FOR 3D IMPLEMENTATION............. 56
1. DISPLAY PARAMETER SET WINDOW USING GLUL........ooovveimroreieeeooeoeoooeeeo 56
2. DRAWBALL-SHAPE CURSORccoviuiuiitieiereneeeeseeeeeeeeeseseeeseseeseees e eeeees oo, 60
3. DISPLAY FINE ADJUST WINDOW......eoueeteeeeeeeeeseeseseeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeo 61
4. DISPLAY MAIN WINDOW........coouimireririmiaieeeereeeeseseeesesesssesessesesss s ssesesoses s eseee e, 65

APPENDIX B. USER MANUAL.....cccvuituirerernncacensoncnnconesssassonsnnensensennm 68
INTRODUCTION ..ottt ettt eeeses e ese s ee s e s s s ee st eseee e 68

Introduction to the 3D Snooker SIMUIALOTo.eeereeereeeeeeeeeoeeeeeeeeooeeoeoeeoeeeen. 68
Introduction to SNOOKET GAME.............cvoeereeeeeeeeereeeeeee e 69
INSTALLATIONoouimiiiuiuiinieintetiseet ettt see et eee et et ese e s s s e e st eeeeses 73
SYStEM REQUITEMENTcvreuviiieiriititiecee e 73
InStall/UNINStall:.....cooviireeeictiies et 73
PLAY GAME. ...ttt et e et e et 74
Start the SNOOKer SIMUIALOT.........c.ovivieieeeeeeeeee e e 74
INErodUCHON T SCEMES: «...evvviviuirirreriririiierereeeeereeestereseses et ete et eeeeeeesseseee 74
Playing & SHOtcoiiiiciicirieeee et 79
QUESTION AND ANSWERSccevvttureiteterereisiaieseeeeeseeseeeseseseesesesesesee st es e 81
L. What iS DEMOc.oooiiiitiiiiietceceseceeeeeeee oo e 81
2. What is Time TeSting.......cocvveeurrrrrererirerereieiesieeeeee e 81
3. How t0 Set Players’ MOGe..........ouvvevevvvieeeereeeeeeeeeeeeeee oo 81
4. How to set the Environment Parameters.oveevvveveveroeoeoeoeoeooeoeoeoeoooon 82
5. What’s the difference between Detail report and Simple report?.....ccvvvevrennnn. 83
6. What is the Tracking MOGe............c.ovovevvvieeeeeeeeeeeeeeeeeeee oo, 84
7. What is the AdVISOT MOGEcuvivieeeeeeeeeeeeeee e 84
8. CanIleave the game temporarily without closing it?coovvvevvevevnno.. 34
9. How to Close the SAMe.........c.coeureiviieceiiiieeeeee e 85
10. How to adjust in Adjustment Window.............oceeveeeeereerereeeeeoooeooooeooooo. 85
11. What is Adjustment LIMit..........cecevrereriirerinieeeesineeseeeeeesesesesoesos e, 86
12. What is AUtOmMAtic PIAYETS............c.oviieeeieeeeeeee e oo 86
13. How to edit the Data Filescc.evvimeeeeeeeeeeeeeeeeeeeeeeeoeooeoeeeeeeeeoeooeoee 87
14. How about Environment Parametersooovovevevvmeoeeoeoeoeooooooooooooo 89

List of Figures

Figure 3.1 Game SCEME.....cc.couiiriierinieteieerietrete ettt sttt ettt ena s 10
Figure 3.2 Scoreboard OPtions........c.coceveeveeeriererirerieieereeenieste et ese s ses s 11
Figure 3.3 The Snooker Tablecccocivirinirininieinineeseteste ettt ev e 13
Figure 3.4 Outline of the SN00KEr tablec..ccecveirrrerrnieereceseee et 13
Figure 3.5 Snooker table 0f TOP VIEWc..ccceviriirirririineririrreieincsesesiesies e sseseneenas 14
Figure 3.6 The snooker table of Side VIEWcccoevevrveveerreisireiecseeee e 15
Figure 3.7 The fine WindOWccccviiiiiiiieiiiininiiretrese ettt 15
Figure 4.1 Camera and balls POSItIONS.......cccocevirireirieririneinerete et 36
Figure 4.2 Calculate moving diStanceccccocveuerierireneeeeniecieceee et 37
Figure 4.3 Calculate Circle rotationcoceeirieerrenrireneneeesesiete e e st se s 39
Figure 4.4 Main Menu Pagec.cccoiiiiiiiiiniiiiiceeeeesret et 43
Figure 4.5 Play-time Taskbarccccecieoieriiiieiieieecieee et 44
Figure 4.6 Taskbar with blending...........cccceevieriririininieeeierireceere e 45
Figure 4.7 Multi-WindOW SIUCKHUTE.......c...ccverierrirrierireeciece e ecieeieereerevesre et ereseeeaens 48
Figure 4.8 Player Mode Setting........ccccecevuevieririirinreieieeerirestenereereseeres e ssenenes 49
Figure 4.9 Parameter SEtNgcccoeverieinieiniirieee ettt 50
Figure A.1 Main MENU PAZEcoveeemenuenienietrierieiesieneressesensesessetessessessessssessessessessessses 74
FIigure A2 GaIE PAZE.....eeirerreieieniieieeieirestesseetesseesesseesestesteeseeseessensenseensessensessesseeneas 76
Figure A3 TaskDar ..ottt 76
Figure A.4 Snooker table at TOP VIEWccccvvvviiieiirnieniereeieresteessereeeree et 77
Figure A.5 Snooker table at Side VIEWccociviriiiriiinineeieeee et 78
Figure A.6 Player mode Set WildOWcccecvieririirieieereieienieieneese e e eseeeenes 81
Figure A.8 Environment parameters set WindOWcceverceerienienienreesienieneseeeessenens 82
Figure A.9 Detail REPOIT.......ccoueiieiiririeiiieieree ettt ettt sas et 83
Figure A.10 Simple REPOIt........couioieiriiiiiiniieiccetrcieteere et 83
Figure A.11 Tracking mOde........cccoocoueueiiiiiiniininiiiieiee ettt 84
Figure A.12 Fine-Adjust WIndOWc..cccocererieririineniennieeere ettt 85

vi

1. Introduction

The 3D Snooker Simulator (abbreviated as the 3D version) is the successor
version of the 2D Snooker Simulator (abbreviated as the 2D version) that was
developed by Professor Peter Grogono. The 3D version reserves all the
functionalities of the 2D version, including four options of playing mode —
manual, track, advise and auto, time testing, demo, parameter setting for game
environment and players.

The 2D version has a 2D user interface which is based on Fastgraph library©™
and win32 GDI. It’s platform-dependent software. One main task of this project is
to implement a user-friendly, game-like 3D user interface. To make it possible
and easy to be ported to other platforms in the future, the whole project is
implemented only with OpenGL and ANSI C++.

The 2D version has already embedded a good mechanism to calculate the ball’s
movements according to the environment properties, such as ball-ball collision,
ball-table collision and hitting position, speed and direction. It also supplies an
optimized algorithm to select the best action for an auto player. In the 3D version,
all of these logic components are reserved.

In the 2D version, the Ul components are not separated very clearly from logic
components. How to integrate the new 3D user interface with the existing tested
complicated logic part is the most difficult part of the project. By using software
reverse-engineering approach, we isolated the classes and functions only or

mainly for user interface from those classes/functions for game logic and defined

the interfaces between the UI components and logic components. With this
approach, we can focus our attention only on UI components without affecting the
logic parts. This method saved us lots of time on Ul development and system
testing.

To support Ul implementation with OpenGL, a set of classes based on an
extendible hierarchical structure is designed and implemented. With the help of
these classes, it’s very easy to create autohidable/ non-autohidable windows with
customized position, size, background, contained controls, and controls of
different size, position, shape, text, image, tool tip, border-style, font, etc. (Some

functionalities are not implemented completely yet).

The followings are the new features implemented in the 3D version:
» 3D snooker table with wooden cover

Light reflection on balls

Multiple views - Top view, Side view and Fine view

Continuous moving — zooming, turning, moving

Foldable Scoreboard

Auto-hidable subwindow

Tool tip for immediate help

Exact cue speed shown as tooltip

Full screen game

YV V ¥V V¥ VY V¥V VYV V VY

Change cursor to show the safe hitting area of the cue ball in the Adjust

Window

Separate main menu page to make Ul clearer
Animated 3D cue
External resources, supplies a possibility to use change-skin technology to

make the UI more funny (not implemented yet)

The following old features are reserved and/or re-implemented in the 3D version.

>

vV V VvV Vv VY VY V V VY

Y

Four play modes — manual, trace, advise and auto

Al for auto/advise play mode

Player parameter setting

Environment parameter setting

Time testing for best setting

Demo

Sound effect control

Cue speed control

Cue ball hitting position control

3D view for adjusting colliding pot between cue ball and target ball more
precisely

Ball-like cursor in Snooker table for positioning a ball precisely

Keyboard support

2. Background
2.1 Game Programming

In the last decade, computer games have grown into a multi-billion-dollar market.

. . . . OpenGL G
As a computer-based game, it mainly consists of following elements. [OpenGL Garme]

Graphics
Input

Music and sound

>
>
>
» Game logic and artificial intelligence
» Networking

» User interface and menu system

» A good game interface makes playing the game as easy as possible

As to an individual game, some aspects may be not present, such as networking
for a non-network game, but these elements have already covered all the essential
aspects of a game.

Firstly, a game must be amusing and interesting. A beautiful user interface and
exciting 2D/3D graphics are vital to a game, they must be able to seize the
players’ attentions at the first watch.

Then, the game must be powerful but easy to use, nobody is willing to spend
several hours just for learning how to play the game. So, a clear, friendly user

interface with convenient input approach is very important to give players a

relaxed playing environment.

Anyway, to achieve a fascinating game, high artificial intelligent is the key factor.
Beautiful U], exciting music and graphics can only pull the players to the play
station, the game itself is the key to keep the players staying there and playing.
From all the aspects we discussed above, we know PC Game is a complicated
engineering system. It involves many fields of computer science, hardware,

software, multi-media, computer graphic, etc.

2.2 OpenGL Game Programming

As the developing of the PC Game industry, the players are not satisfied with 2D
images again. They want the game images to be funnier, as close to real life as
possible, even more interesting and exciting.

3D user interface is becoming the main stream of PC game development. Many
powerful 3D development environments are available for developers to create 3D
graphics without any low-level programming knowledge, such as SoftImage, 3D
Studio, Maya, Photo Styler, INFERNO. All these applications are based on low-
level 3D API, such as OpenGL, DirectX, Heidi.

OpenGL is not only a graphics-programming library, but also a software interface
to graphic hardware, and a "standard" for 3D graphics. More and more hardware
manufacturers and operating system developers promise to support OpenGL, and
include OpenGL library as one part of their products, such Microsoft’s window
system. OpenGL has become the main 3D graphic standard, main 3D graphic

developing tool in last ten years.

OpenGL is also an excellent tool and powerful library to develop PC games for
the following advantages:

> Device independence. OpenGL is an interface between hardware and
software. With OpenGL’s support, developers needn’t to care about the
technical details of display devices, but put all their attentions on the 3D
graphic itself.

» Simple, easy to learn. OpenGL is just a set of statements, all the
complicated algorithms are encapsulated very well. This feature can
shorten the learning curve and accelerate the development speed.

> Powerful, flexible feature set. OpenGL is powerful and flexible.
Developers can implement any kind of feature they want by using
OpenGL.

> Cross-platform portability. OpenGL is platform-independent, it can be
ported to any system that supports OpenGL. If the game is developed with
pure OpenGL, it can be compiled and run on many systems, so as to save
development cost (money and time) and extend the potential market of the
game.

> Established: More and more third-party libraries are available in the
market. All these tools are tested very well. This makes OpenGL more
powerful, stable and easier.

» Performance. OpenGL are implemented at assembly level and all the

algorithms and codes are optimized. With hardware’s support, OpenGL

can gain very good performance enough to develop any complicated 3D
graphics.
»> Interactive: OpenGL is good at developing interactive applications. Good

interactivity is the vital feature of Games.

2.3 2D Snooker Simulator

The 2D Snooker Simulator was developed based on a snooker simulation that
runs on PC under DOS, which was also developed by Professor Grogono. 2D
Snooker Simulator did a good job on simulating the motions of the balls much
accurately.

As an interesting feature of 2D Snooker Simulator distinctive from other snooker
games, environment properties are considered for calculating the movements of
balls. The player can control these properties by modifying the parameter settings.
So, it’s not only a game, but also a real simulator of snooker game.

In the simulator, the effects of ball/ball and ball/cushion collisions are simulated
by solving differential equations numerically, rather then by relying on analytical
solutions of simplified equations. The behavior of balls in the simulation is very
similar to the behavior of balls on a real table. There are some limitations,

however the cue is always horizontal, so massé shots are not possible, and balls

: The Snooker Simulati
remain on the table, [T1¢ Snooker Simulation]

Meanwhile, 2D Snooker Simulator is very intelligent. It supports four playing
modes — manual, track, advise and auto. The player can play snooker by himself
with/without tracking, or watch the computer simulating the game. He can also
play against the simulated player. It is worth mentioning that the game supports
personalized auto-play/advise mode. Following an auto-play algorithm, the
computer can calculate and select the best action according to current situation
and the selected auto-player’s ability is not always the ideal action. This
mechanism increases the amusement of the game.

The graphics and user interface of 2D Snooker Simulator was developed using
Fastgraph™ and window GDI. The applications tried to simulate 3D effect in 2D
context, such as light reflection on the balls, pseudo 3D view for fine

adjustment .The user interface is clear and concise with enough help information.
But it’s based on standard windows with standard drop-down menus. As a game,

it’s not funny and exciting enough.

3. Design

3.1 Project Goal

The 3D Snooker Simulator is based on the 2D version. We will keep all the
useful functions in the new version. Meanwhile, we’re trying to improve the
game in following aspects:
» 3D graphic and User Interface with multiple views, allows players to
switch between different views to get more details as real game
> Funny and interesting U, like a real game
> More friendly UL, allows the player to get help more convenient and
quickly

» Platform independent

3.2 3D Model

3.2.1 Scene

/ scorehoard

Snooker table

control panel

Task Bar adjust window

Figure 3.1 Game Scene

As shown in the above figure, the scene of the game consists of five parts:

1. Scoreboard: Scoreboard is used to display the players’ information (player’s
name, who is the current striker, break, score, frames, cumulative and high
breaks). To save display space, two types of Scoreboard are supplies, simple

report and detail report. To toggle between these two options, the user can

" on the Task Bar or double click on the Scoreboard (See figure 2)

10

Simple Report

Figure 3.2 Scoreboard options

2. Snooker table: The Snooker table is the area where the players actually play
the game. Two views are supplied to the players for observing the situation

more convenient and clearer — Top View and Side view.

3. Control Panel: The Control Panel allows the players to change the viewpoint
to the Snooker table. It contains 8 controls. Players can use these controls to
adjust the camera’s position and focal distance to get desired views. Some

controls may not be accessible in a specific view to avoid ambiguities.

4. Adjust Window: The Adjust Window consists of three controls — speed set
control, cue ball adjust control and fine adjust window. Speed set control
allows players to set the cue speed by clicking on the calibrated scale, the
accurate speed is shown when the mouse locates above the scale; Cue ball

adjust control allows players to set the position where the cue will hit the cue

11

ball. Fine adjust window is a real 3D view, it allows players to adjust the
hitting position between cue ball and target ball more precisely by clicking on
the window. The distance between clicking position and the center of mapping
circle of cue ball defines the adjustment degree. All the adjustments will take

effect immediately.

Task Bar: The Task Bar provides players a clear and convenient environment
to access all the functions available when a frame is in playing. (Time testing
and demo may only be accessible when there is no frame in playing, so we
exclude these two functions from Task Bar, and include them in the Main
Menu Page. The playing frame will be terminated before switching to the

Main Menu Page,)

12

3.2.2 The Snooker Table

Playing Surface

Cushion

Wood

Corner pocket

Comner of table

Side of table

Side pocket
Figure 3.3 The Snooker Table

The playing surface is 350 cm by 175 cm. This is the distance between
the cushions (rails) at each end (side) of the table.
Beyond the cushions, there is:

4 cm of green cloth.

8 cm of brown wood.

1 cm of metal trim.

Cushion Wand

\\I Playing surface /

Figure 3.4 Outline of the snooker table

13

The top of the cushion is 3.75 cm higher than the table surface. The cushion
is about 1 cm thick, so the gap between the table surface and the bottom of the

cushion is 2.75¢cm.

3.2.3 Views

The 3D Snooker Simulator provides three different views that allow players to
observe the balls from different viewpoint — Top View, Side View and Fine View.
Snooker table has two views -- Top View and Side View. On Top View, the
camera originally locates at (0.0, 0.0, 225.0), this view gives players a full view of
the table. On Side View, the camera originally locates at (-100.0, 0.0, 30.0), this

view allows players to observe every ball clearer from any horizontal viewpoint.

Figure 3.5 Snooker table of Top View

14

Figure 3.6 The snooker table of Side View

The Fine View is only available in the Fine Adjust Window. The camera locates
right beside the cue ball, and keeps aiming at the target ball. This view allows

players to get the position relationship between cue ball and target ball much

clearer.

Figure 3.7 The fine window

3.2.4 Lighting

In main window, there is a white light positioning at (0.0, 0.0, 50.0), so the

snooker table is bright and clear enough but not too blazing.

15

3.3 Animation

3.3.1 Ball’s Movement

The movement of a ball is based on three factors — speed, direction and spin angle.
The moving speed of a ball is calculated from the cue speed set by players. The
moving direction is decided by the position of the cue ball and the selected target

ball. The spin angle will also influence the ball’s moving direction.

3.3.2 Camera’s Movement

There are three cameras in the scene. We provide many different approaches to
move each camera, so as to observe the snooker table and the balls’ movements as
players want.

On the “Top View”, the camera can move upward, downward, rightward,
leftward, and can zoom in and zoom out.

On the “Side View”, the camera can move upward, downward, rightward,
leftward, forward, backward, turn left and turn right.

On the fine window, the camera can only zoom in and zoom out.

3.4 Classes and Files

After read and comprehend the source code of the 2D Snooker Simulator, we isolated the
Ul classes/functions from those game logic classes/functions. Our porting job mainly
focuses on these Ul classes/functions. Meanwhile, to support implementing 3D UI, we
define and implement a set of classes for creating and managing windows and controls

easily.

16

The modified existing classes mainly include:

>

vV V VYV VvV VY

Ball — display balls and their movements

Control — Manage cue speed setting, cue ball hitting and fine adjustment
Cue - display cue and its animation

Path - display path of ball movement

Table — display snooker table and different views

Snooker.cpp which contains entry point of the application and a lot of global

functions

The new created classes to support 3D Ul implementation include:

>

vV V. V¥V Vv V VY Vv VY

Y

VirtualWindow - base class for all windows

MainWindow — main window inherits from VirtualWindow
GluiWindow — Glui window inherits from VirtualWindow
VirtualControl — base class for all controls

ControlCollection — manage a set of control

ButtonCtl — button control inherits from VirtualControl
RoundButtonCtl -- round button control inherits from ButtonCtl
LabelCtl — label control inherits from VirtualControl
AutoHidablePanel — Auto hidable window inherits from VirtualWindow and
implements IAutoHidable interface

AdjustWin - Container window inherits from VirtualWindow
FineAdjustWin — adjust hitting position more finely, inherits from
VirtualWindow

PanelCueSpeed — To set cue speed, inherits from VirtualWindow

17

> PanelCueBall - To set hitting position on the cue ball for cue, inherits from
VirtualWindow

MainMenuWin - Supply main menus, inherits from VirtualWindow
NominateWin — to select nominated color balls, inherits from VirtualWindow
PanelControl — window to control camera, inherits from VirtualWindow
PanelHelper — window to display help topics, inherits from Virtual Window

GluiHelperWin — help window for Glui windows, inherits from GluiWindow

YV WV VWV V¥V Vv V

ParameterSetWin — Glui window for environment parameter setting, inherits

from GluiWindow

» PlayerModeSetWin — Glui window for player mode setting, inherits from
GluiWindow

> Scoreboard — foldable window to show scores, inherits from VirtualWindow

> SettingWin — window for parameter setting and sound control, inherits from
VirtualWindow

> ToolTipWin - tooltip window for immediate help on controls, inherits from
VirtualWindow

> TaskBar — window containing all button accessible when game is in playing,

inherits from VirtualWindow

Note: For more details on the hierarchical relationship between new created windows,

please see another report of this project on “3D User Interface Architecture”

18

4. Implementation

4.1 The Snooker Table

The snooker table consists of many surfaces, most of them are rectangles that can be
simply defined by its four vertexes, while others are more complicated, such as table
corners. Here we mention two kinds of methods to draw these complicated surfaces:

tessellation and Nurbs.

4.1.1 Polygon Tessellation

OpenGL can directly display only simple convex polygons. “ A polygon is simple
if the edges intersect only at vertices, there are no duplicate vertices, and exactly

two edges meet at any vertex.” [The Red Book] 5,14 in snooker table, there are many

concave polygons, like “the side corner of the table”, it should be draw as this:

So we need to use tessellation, which can subdivide

a concave polygon into simple convex polygons

before they can be displayed, and OpenGL provides

Side corner of Table a collection of routines that perform tessellation.

The code and explanation is as follows:

m_tess = gluNewTess(); // Create a new tessellation object
void Table::side_table(void)
{

MpyPoint pt[] = // Define key points

{
{0.0,13.0, 0.0},

19

{9.0, 13.0, 0.0},

{9.0, 4.0, 0.0},
{4.5,4.0, 0.0},
{4.0, 8.0, 0.0},
{2.0, 10.0, 0.0}
{0.0, 10.5, 0.0}
)i
/7

// Use gluTessCallback() several times to register callback funtions to perform operation
// during the tessellation. When the tessellation algorithm detects an intersection and must
// call the callback functions.

/.

gluTessCallback(m_tess, GLU_TESS_BEGIN, (void (__stdcall *)(void))&glBegin);
gluTessCallback(m_tess, GLU_TESS_VERTEX,(void (__stdcall
*)void)) &glVertex3dv);
gluTessCallback(m_tess, GLU_TESS_END, &glEnd);
gluTessCallback(m_tess, GLU_TESS_ERROR, (void (__stdcall *)(void))
&errorCallback);

s - —

// gluTessBeginPolygon() and gluTessEndPolygon() begins and ends the specifiction of a polygon
to

// be tessellated and associated a tessellation object.

// GluTessBeginContour() and GluTessEndContour() begin and end the specification of a closed
// contour which is a portion of a polygon. It consists of some calls to gluTessVertex().

/.

gluTessBeginPolygon(m_tess,0); // top surface of corner of table
gluTessBeginContour(m_tess);

SJor(inti=0; i< 7; i++)

20

gluTessVertex(m_tess, pt[i], pt[i]);

gluTessEndContour(m_tess),

gluTessEndPolygon(m_tess);

4.1.2 Nurbs Surface

Nurbs surface is very important for modeling complicated surface, it’s powerful
and flexible for drawing any type of surface. Though it consumes more space and
time for rendering, we still use it to draw the vertical walls of table corners.

To draw a Nurbs surface, the main procedures are:

1. Create a Nurbs Render

void Table: :init_nurbs()

{
m_theNurb = gluNewNurbsRenderer();
gluNurbsProperty(m_theNurb, GLU_SAMPLING_TOLERANCE, 25.0);
gluNurbsProperty(m_theNurb, GLU_DISPLAY_MODE, GLU_FILL);
gluNurbsCallback(m_theNurb, GLU_ERROR,
(void (__stdcall *)(void)) errorCallback);
}

2. Declare global array for control points of the Nurbs surface

GLfloat cpwpoints[6][4][3]; /contral points of corner pocket wall

3. Initialize the control point array for the Nurbs surface

21

void Table: :init_corner_pocket_wall(void)
{
GLfloat z_coord = 0.0;
for(intv =0;v <4; v++)
{
cpwpoints[0][v][0] =-2.3;
cpwpoints[0][v][1] =4.85,
cpwpoints[1][v][0] = -4.0;
cpwpoints[1][v][1] = 2.3;
cpwpoints[2][v][0] = -6.0;
cpwpoints[2][v][1] = 1.2;
cpwpoints[3][v][0] = -9.0;
cpwpoints{3][vi[1] = 0.2;
cpwpoints{4][v][0] = -12.0;
cpwpoints[4][v][1] = 0.0;
cpwpoints[S][v][0] = -14.0;

cpwpoints{5][v][1] = 0.0;

filv==0|lv==1)

z_coord = 1.875 - 0.9375 *v;
else

z_coord = 1.875 - 0.9375 * (v+1);
cpwpoints[0][v][2] = z_coord;
cpwpoints[1]{v][2] = z_coord;
cpwpoints[2][v][2] = z_coord;
cpwpoints[3][v][2] = z_coord;
cpwpoints{4][v][2] = z_coord;

cpwpoints{5][v][2] = z_coord;

22

}

Draw the Nurbs surface

void Table::corner_pocket_wall(void)

{

GLfloat tknots{12] = {0.0,0.0,0.0,0.0,0.0,0.0, 1.0,1.0, 1.0,1.0, 1.0,1.0);
GLfloat sknots[8] = {0.0,0.0,0.0,0.0,1.0,1.0, 1.0,1.0};
gluBeginSurface(m_theNurb);
gluNurbsSurface(m_theNurb,

12, tknots, 8, sknots,

12, 3, &cpwpoints{0][0][0],

6, 4, GL_MAP2_VERTEX_3);

gluEndSurface(m_theNurb);

4.2 The Ball’s Movement

The ball’s movement is implemented by redrawing the balls at new position
periodically according to the Time-increment and Display factor settings. The
game logic classes, i.e. Path and Planner, are responsible for calculating the new
position of each ball on the snooker table according to the cue speed, hitting
position and spin angle, current position as well as environment properties.
When new positions are set for all balls, a redisplay event is raised. The OpenGL
will call the display function to redraw the balls at the earliest available time. The
smooth moving of balls mainly depends on the environment settings — Time

increment and Display factor, and machine’s speed to a great extend.

23

void Ball::DrawBall()
{
iffvisible)
{
glPushMatrix();
glTranslatef(xs,ys,zpos);
glRotatef(zspin,0.0,0.0,1.0);
glRotatef(yspin,0.0,1.0,0.0);
glRotatef{xspin, 1.0,0.0,0.0);
glMaterialf(GL_FRONT, GL_AMBIENT AND_DIFFUSE,
RGBColors[colour]);
glMaterialf(GL_FRONT, GL_SHININESS, polished);
glMaterialfy(GL_FRONT, GL_SPECULAR, white);
gluSphere(qobj, 2.7, 32, 16);

glPopMatrix();

4.3 The Camera’s Movement

As a 3D object, the most important feature of the object is that it can be observed
from any viewpoint. We provide many kinds of camera movements in main

window and fine window to enhance this feature.

4.3.1 In Main Window

e From the Top View

24

The camera originally locates at (0.0, 0.0, 225.0), and the play can control the

camera to go up, down, left, right, zoom in and zoom out.

Up When the Up button is clicked each time, the camera will move up
a little bit. To achieve such effect, we modify the camera’s Y-
coordinate and aiming point’s Y-coordinate. Each time, the
camera’s Y-coordinate is added by 2.0, and camera’s aiming
point’s Y-coordinate is added by 2.0.

At the same time, we limit the up-bound of Y-coordinate, so that the

snooker table can always be seen on the scene.

if{top_positionY < 87.5)

{
top_positionY +=2.0;
top_aimY +=2.0;
mainWindow-> RefreshWin(),
}
> Down

ﬁ When the Down button is clicked each time, the camera should

Down
move down a little bit. We modify the camera’s Y-coordinate and

25

aiming point’s Y-coordinate. Each time the camera’s Y-coordinate
is subtracted by 2.0, and camera’s aiming point’s Y-coordinate is
subtracted by 2.0.

At the same time, we limit the down-bound of Y-coordinate, so that the

snooker table can always be seen on the scene.

ifltop_positionY >=-87.5)

{
top_positionY -=2.0;
top_aimY -=2.0;
mainWindow->RefreshWin();

}

> Left

When the Left button is clicked each time, the camera should

Left
move to the left a little bit, here we change the camera’s X-

coordinate and aiming point’s X-coordinate. Each time, the
camera’s X-coordinate is subtracted by 2.0, and camera’s aiming
point’s X-coordinate is subtracted by 2.0.

We also define a limitation to the left-bound of X-coordinate, so that the

snooker table can always be seen on the scene.

if (top_positionX >=-175)
{

top_positionX -=2.0;

26

top_aimX -=2.0;

mainWindow->RefreshWin();

» Right
When the Right button is clicked each time, the camera should
Right
move to the right a little bit, here we change the camera’s X-
coordinate and aiming point’s X-coordinate. Each time the

camera’s X-coordinate is added by 2.0, and camera’s aiming

point’s X-coordinate is added by 2.0.

We also limit the right-bound of X-coordinate to ensure the snooker table

to be visible on the scene at any time.

if (top_positionX <=175)

{
top_positionX +=2.0;
top_aimX +=2.0;
mainWindow->RefreshWin();

/

» Zoom In

Zoom In

27

When the Zoom In button is clicked, the snooker table and balls
should seem to be a bit larger. Here we change the alpha value of
the viewing volume for the perspective projection, that is, we
deduct the alpha value by 0.25 each time, and we limit the bound

of the alpha value.

if (alpha>0.25)

{
alpha -=0.25;

mainWindow->RefreshWin();

» Zoom Out
@ When the Zoom Out button is clicked, the snooker table and balls
Zoom Out
should seem to be a bit smaller. Here we change the alpha value of
the viewing volume for the perspective projection, that is, we

increase the alpha value by 0.25 each time. We also set a limitation

to the bound of the alpha value.

if (alpha <180)
{
alpha +=0.25;

mainWindow->RefreshWin(),

28

o From the Side View

The camera originally locates at (-100.0, 0.0, 30.0), and it can move
upwards, downwards, leftwards, rightwards, forwards, and backwards and

turn to left and right.

When the Up button is clicked each time, the camera should move

up a little bit. Here we change the camera’s Z-coordinate and
aiming point’s Z-coordinate and X-coordinate. Each time the
camera’s Z-coordinate is added by 1.0, and camera’s aiming point

Z-coordinate is added by 0.2, X-coordinate is added by 0.1.

At the same time, we limit the up-bound of Z-coordinate.

iflz_distance<=70.0)

{
z_distance +=1.0;
x_aim +=0.1;
z_aim +=0.2;
mainWindow->RefreshWin();
/
> Down

29

i When the Down button is clicked each time, the camera should
Down
move down a little bit. Here we change the camera’s Z-coordinate
and aiming point’s Z-coordinate and X-coordinate. Each time the
camera’s Z-coordinate is subtracted by 1.0, and camera’s aiming

point Z-coordinate is subtracted by 0.2, X-coordinate is subtracted

by 0.1.

At the same time, we limit the down-bound of Z-coordinate.

iflz_distance >=27)

{
z_distance-=1.0;
z_aim -=0.2;
x_aim -=0.1;

mainWindow->RefreshWin();

> Left

When the Left button is clicked each time, the camera should move

Left
to the left a little bit. But in the Side-view, it’s more difficult to

move it than in the Top view since the camera may move to any
angle in this view. The aim point should also move
correspondingly to keep the line between camera and aim position

the same angle to the axis of the table. The calculation formula is

30

implemented in GetMoves function. Here, we call GetMoves
function to calculate the movX and movY. The camera’s X-
coordinate and aiming point’s X-coordinate is increased by movX
everytime, and the camera’s X-coordinate and aiming point’s X-
coordinate is incremented by movY.

To prevent the table moving out of the screen, the right-bound of X-

coordinate is set.

double movX = 0;

double movY = 0;

ifly_distance<=175.0)
{
GetMoves(5,x_distance,y_distance,x_aim,y_aim,movX, movY,1);
x_distance += movX;
y_distance += movY;
X_aim += movX;
y_aim += movY;

mainWindow->RefreshWin();

void GetMoves(double moveDis,double camX, double camY, double aimX, double aimY,
double &movX, double &movY, int type)
{

double dis = sqri(sqr(aimX-camX)+sqr(aimY-camY));

ifldis == 0)

{

31

movX = 0;
movY = 0;
return;

}

movY = moveDis * (aimX-camX) / dis;

movX = moveDis * (aimY-camY) /dis;

ifltype)

movX *= -];

else

movY *= -[;

return;

> Right

Right

When the Right button is clicked each time, the camera should
move to the right a little bit. As discussed above, in the Side-view,
camera may move to any angle in the Side View, the aim point
should also move correspondingly to keep the line between camera
and aim position the same angle to the axis of the table. We call

GetMoves function to calculate the movX and movY, and add the

32

camera’s X-coordinate and aiming point’s X-coordinate by movX
every time, and the camera’s X-coordinate and aiming point’s X-

coordinate by movY.

We also limit the left-bound of X-coordinate to prevent the table moving

out of the screen.

double movX = 0;

double movY = 0;

ifly_distance >=-175.0)
{
GetMoves(5,x_distance,y_distance,x_aim,y_aim,movX, movY,0);
x_distance += movX;
y_distance += movY;
x_aim += movX;
y_aim += movY;

mainWindow->RefreshWin(),

> Forward

‘ﬁ When the Forward button is clicked each time, the snooker table
Forward
should seem to be closer to the camera a little bit. Here we change

the camera’s X-coordinate and aiming point’s X-coordinate and Z-

coordinate. Each time the camera’s Z-coordinate is added by 2.0,

33

and camera’s aiming point Z-coordinate is added by 0.05, X-

coordinate is added by 0.2.

At the same time, we limit the bound of X-coordinate.

ifix_distance<=-50.0 & & VIEW_MODE==SIDE_VIEW)

x_distance +=2.0;
x_aim +=0.2;
z_aim +=0.05;

mainWindow->RefreshWin();

> Backward

When the Backward button is clicked each time, the snooker table

Backward
should seem to be farther to the camera a little bit. Here we change

the camera’s X-coordinate and aiming point’s X-coordinate and Z-
coordinate. Each time the camera’s Z-coordinate is subtracted by
2.0, and camera’s aiming point Z-coordinate is subtracted by 0.05,

X-coordinate is subtracted by 0.2.

At the same time, we limit the bound of X-coordinate.

ifix_distance>=-210.0 & & VIEW_MODE==SIDE_VIEW)

34

x_distance -=2.0;
x_aim-=0.2;
z_aim -=0.05;

mainWindow->RefreshWin();

» Turn Right

When the Turn Right button is clicked each time, the snooker table

Turn Righ ,
REE should turn to right a little bit. Here we change rotating angle’s

value of the snooker table. Each time the angle is incremented by
2.0 degrees.

ilVIEW_MODE==SIDE_VIEW)

{
angle += 2.0;

mainWindow->RefreshWin();

> Turn Left

When the Turn Left button is clicked each time, the snooker table

Turn Left
should seem to be turned left a little bit. Here we change rotating

angle’s value of the snooker table. Each time the angle is

decremented by 2.0 degrees.

35

ifVIEW_MODE==SIDE_VIEW)

{
angle -=2.0;

mainWindow->RefreshWin();

4.3.2 In Fine Window

In fine window, the camera is always located on the line from cue ball to target

ball, and aiming at target ball. As the figure shows below:

cue ball camera target ball

O {3 »O

Figure 4.1 Camera and balls positions

Firstly, we need to get the camera’s position. What we know now are the position
of the cue ball (cueX, cueY, cueZ), the position of the target ball (targetX, targetY,
targetZ), and the distance between the camera and the target ball, we need to
calculate the X, Y, Z coordinate of the camera. Since the Z-coordinate of the cue
ball, target ball and the camera are the same (2.7), we only need to consider the X,

and Y coordinates of the camera.

36

Y See figure on the left, suppose A is
cue ball, E is target ball and B is the
camera.

The distance between the cue ball and
the target ball is:

l \ |AE|= A / (targetX-cueX)*-(targetY -cueY)>

C D E Suppose the distance between the
target ball and the camera [BE] is
» X increment (a constant).

|AE| ICE] |AC]|
Figure 4.2 Calculate moving distance BE| ~ |DE| ~TBD["

|CE|=| cueX -targetX |

IDE|=|cameraX -targetX |

|AC|=|cueY- targetY |

IBD|=|cameraY- targetY |

So:

cameraX=(increment*(cueX-targetX))/|AE| + targetX

cameraY=(increment*(cueballY-targetY)/|AE| + targetY

In fine window, we provide two kinds of camera’s movement: Zoom In and Zoom

Out.

» Zoom In
When the Zoom In button is clicked, the target ball should become a bit

larger. Here we change the alpha value of the viewing volume for the

37

perspective projection, that is, we reduce the alpha value by 1.0 degree

each time, and we limit the bound of the alpha value.

iflzoom_in)
{
iflfine_alpha >= 5.0)
fine_alpha -=1.0;
mainWindow->RefreshWin();

}

> Zoom QOut

When the Zoom Out button is clicked, the target ball should seem to be a bit
smaller. Here we change the alpha value of the viewing volume for the
perspective projection, that is, we increase the alpha value by 1.0 degree each

time, and we limit the upper bound of the alpha value to 180 degrees.

iflzoom_out)
iflfine_alpha <= 180.0)

fine_alpha +=1.0;

mainWindow->RefreshWin();

38

4.4 Implementation Problems and Solutions

4.4.1 Draw a circle in Fine Adjust Window

In the Fine Adjust window, whenever the target ball is

selected, a circle will be displayed in front of the target

represent the position where the cue ball will hit the target ball.

In order to generate such a circle, firstly we need to draw a circle at (0.0, 0.0, 0.0),
then rotate the circle along the line which is perpendicular to the cue ball and
target ball line, finally move the circle to the target ball position. (See figure 4.3).
The most important part is how to find the rotation axis, the calculation is as
follows (since all the balls are in the same plane, here we are concerned only with

the X and Y value):

Suppose the cue ball’s
coordinate is (cueX, cueY),
Rotation axis A and target ball’s coordinate is
(targetX, targetY), and the
line of cueball and target ball
is:

Y

A]X +B1Y+C1=0
Cue ball
X
(0.0,0.0) The rotation axis is:
.]) A X+B,Y=0 (the rotation
Figure 4.3 Calculate Circle rotation axis is throgh the original
point)

Since the rotation axis is perpendicular to the cue ball and target ball line,

A1A,=-B,B, , we get three equations:

39

A1X +B; Y+C]=0
A, X+B,Y=0

A1A2=-B1B2

X=-(A1*C1)/ (A*+B,?)

Y=-(B;*C1)/ (A/*+B;)

Here the cue-ball target-ball line is through the cue-ball point and target-ball point,
so the equation of the line can also be:
(x-cueX) /(targetX-cueX) = (y-cueY)/ (targetY-cueY)
= (targetY-cueY)*x- (targetX-cueX)*Y- (targetY-cueY)*cueX+ (targetX-
cueX)*cueY=0
A= targetY-cueY
—

B =targetX-cueX

Ci = - (targetY-cueY)*cueX+ (targetX-cueX)*cueY

4.4.2 Issues with Fine Adjust Window

When drawing Fine Adjust Window using the approach discussed in 4.4.1, we
will meet some unexpected cases if we draw the cue ball as in the real Snooker
table. If the target ball is very close to the cue ball, the camera will locate right
behind the cue ball, in this case, we can only see a very big cue ball, the target

ball and the mapping circle are all blocked by the cue ball. In the Fine Adjust

40

Window, what we care about are the target ball and the mapping circle of the cue
ball, the cue ball itself is not a critical factor, so we skip drawing the cue ball in

the Fine Adjust Window to solve this issue.

In the 2D version, the Fine window is a manually-drawn pseudo-3D view, all the
balls on the line between cue ball and target ball will be displayed, that’s to say, if
a new ball enter the view during adjusting, the camera focus will be changed to
this new ball. But it’s difficult to implement it in the 3D version. In 3D Snooker
Simulator, Fine Adjust Window supplies a real 3D view, it’s not easy to get the
position of the new ball. So, to simplify the case, in Fine Adjust Window, we
ignore the new ball enter the view, it’s up to the player to decide if some other ball

is on the way of the cue ball by observing the real Snooker table.

4.4.3 Continuous moving by setting Timer

In the Snooker Simulator, some functions are supplied to control the camera, such
as turning, zooming. To improve the Ul friendliness, we allow the user to press
the button, and the camera will keeping moving (zooming, turning) till the user
release the mouse button instead of keeping clicking the button. To implement
this feature, we declare a flag variable for each function, when the button is
pressed, the flag is set to true, when the button is released, the flag will be set to
false. We use glutSetTimerFunc to set a timer, the applications will check the

flags periodically, if the flag is false, nothing is done, if the flag is true, some

41

bound functions will be executed for moving, zooming or turning. We also use
this mechanism to implement auto-hidable windows.

It’s important to define how long the timer interval should be set. Too short
interval will degrade the performance, too long interval will make the moving not
smooth. After testing, we use 100ms as the timer interval to balance the

performance and moving effect.

4.4.4 Menu Selection

To gain a clear and friendly user interface, we discard the old standard dropdown menu
system. Two sets of menus are supplied, one is the main menu page, and the other one is
the playtime taskbar. Main menu page lists all main menus and some functions not
available during the play-time such as Time Testing, the player can get what main

functions the game supplies from the opening screen.

42

Snooker Simulator

T

- Start game
Demo
Time Test

- Setting

o H&'fp

Exit

Figure 4.4 Main Menu Page
The Main Menu Page includes following functions:
> Start game
Demo
Time Testing
Setting

Help

YV ¥V Vv V V¥V

Exit the application

The playtime taskbar is simulating the taskbar of window system, it allows the player to
get all the accessible functions at any time very easily. Though the icons on the taskbar
are very simple and small, with Tooltips help, the players can understand their functions

without any difficulty.

43

| fmese mass

Figure 4.5 Play-time Taskbar

The main functions supplies in taskbar include:
> Exist the game

Help

Scoreboard control

Setting

Rank

Start a game

Stop a game

Shoot

Pass

Switch to Top View

Switch to Side View

Hide/Show Adjustment window

Hide/Show Control Panel

vV ¥V Vv Vv V¥V ¥V V¥V VY Vv V¥V VYV VYV VY

Minimize the game

4.4.5 Blending

In the 3D version, all the menus are made of texture mapping. Sometimes, we
choose a background image firstly, and then put the menu images on it. The
background should be transparent when the menu image combined. In OpenGL,

new fragment will overwrite any existing color values if blending is not applied.

With blending, we can control how the existing color value should be combined

44

with the new fragment’s value. Here we use glBlendFunc() to specify how the
source color and destination color are combined.

For example, in our taskbar, we set the alpha value of the background (destination)
is 0.0, and set the alpha value of menu image (source) is 1.0, then we use
glEnable(GL_BLEND) to enable blending, glBlendFunc(GL_ONE,
GL_SRC_ALPHA) to set the source factor to GL_ONE and destination factor to
GL_SRC_ALPHA which equal to the destination’s alpha value (here is 0.0), in
such way, the background image can be transparent when the menu image above

it. (See figure4.4).

Figure 4.6 Taskbar with blending

4.4.6 Change the cursor when mouse entering into certain area

In order to make some special effect, sometimes we need to change the cursor
when the mouse moves to certain area. For example, to set the spin, you need to
move the mouse to the white green ball image and click. Here we change the
curse to crosshair when the mouse moves to green area so as to let the user know
which area he can set the spin.

cursor
To achieve this effect, we use glutSetCursor() to change

the cursor, and register glutPassiveMotionFunc() callback

after.

45

4.4.7 Simulating Ball-like cursor on Snooker Table

Ball-like cursor is used for locating, selecting a ball in snooker table. Glut
supplies circle cursor, but it does not meet our necessity since the size of the circle
curse cannot be changeable as the camera zooming. According to our design, the
cursor should be the same size as balls, and the size of the cursor should be able to
change correspondingly when zooming in and out, then we can preview the ball
position from the cursor. To obtain such effect, a BallCursor class is created to
simulate a customized ball-like cursor. When mouse moves in the snooker table,
the BallCursor object will take place the real cursor. This ball-like cursor does not
perform as well as the system-supplied cursor, there is a little delay to the mouse

movement, but the player may not feel it if the machine is fast enough.

4.4.8 Position balls on Snooker Table

In a game, the player needs to position the cue ball or select a position as the
target of the cue ball. Though Top View and Side View are available for the
player, we only allow the player to do these actions in the Top View. In the side
view, the coordination system is distorted, it’s very difficult to transform the
mouse click position from window coordination to world coordination. If the
player clicks mouse, we suppose he want to position, the view will switch back to

Top View automatically.

46

4.4.9 Multiple windows management

In Snooker Simulator, the main scene is divided into five parts: Scoreboard,
Snooker table, Control panel, Adjust window, and Task Bar. Each part is
relatively independence to each other, has its own display function and callbacks.
To support this characteristic, we implement the system as a multi-level window
system, the main window is divided into different subwindows, each with its own
OpenGL context and callbacks. In detail, we use glutCreateSubWindow() to
create each subwindow (which is encapsulated in CreateWin function of
VirtualWindow class), write its own init function, and register its own display
function and callbacks. Whenever we want any window be the current window,
we use glutSetWindow() (which is encapsulated in VirtualWindow class as
SetAsCurrentWindow function) to set it. But since OpenGL requires some
functions and variable be global, till now, we cannot implement OpenGL callback
functions as class methods, so we cannot encapsulate everything into class.
Current multi-level window system is a relatively loose system, say subwindow
and its parent are relatively independent. Though they’re physical related, the
subwindows deal with they own events individually, not controlled by their parent
window.

The relation between the main window and subwindows is show below:

47

—— Scoreboard Window

— Control Panel Window

Main Window—
(snooker table) Speed set Window
— Adjust Window { Cue ball Adjust Window
Fine Adjust Window

_— Task Bar Window

Figure 4.7 Multi-window structure

4.4.10 Tool Tips

As a game, a friendly user interface is very important. The users should be able to
get help information easily and quickly when it’s needed. A player may be
impatient if he has to call the help window frequently and has to click OK to close
the window every time. Besides making the Ul as simple as possible, we still
supply tooltips for important controls to give users immediate help. When the
mouse moves over a control, tooltips is displayed to give user more information
on the control, when the mouse leaves the control, the tooltips will hide

automatically.

4.4.11 Glui Window

GLUL is a third-party GLUT-based C++ user interface library, which provides
controls such as buttons, checkboxes, radio buttons, spinners, and listboxes for

creating UI, controls easily in OpenGL applications. It is window-based

48

independent, relying on GLUT to handle all system-dependent issues, such as

window and mouse management.

Though GLUI supplies a lot of useful controls, but it’s difficult to customize the
controls, such as color. In addition, its auto-layout mechanism prevents users to
organize the controls to meet their special requirements. All these limitations
make the GLUI not suitable for a game context. So, in Snooker Simulator, we
only use GLUI to create our setting windows -- Player Mode Setting window and
Parameter Setting Window (See figure 4.6 and 4.7). The GLUI window style is
different from our own-created windows, but it saves us a lot of time to deal with
the settings, and it only displays in a relatively independent context, it doesn’t

break the style uniform of the user interface.

Figure 4.8 Player Mode Setting

49

ERsnooker Simulation

Figure 4.9 Parameter Setting

4.4.12 Display List

3D object displaying is more complicated than 2D graphics, though hardware,
such as 3D graphic accelerate card, makes 3D object displaying much faster than
before, it’s still time-consuming. Display list is a set of pre-defined OpenGL
statements, which have been compiled. Once it’s recorded, it can be called many
times at any time, and it can be executed much faster than non-listed statements.
To optimize the performance, display list is used for some complicated objects,

such as the snooker table.

4.4.13 Calculate Time-increment for best performance

Both 3D and 2D version supply a function of time-testing — the application simulates a
full-speed hitting and give player a suggestion on Time-increment setting according to
the simulating time and real time so as to gain best performance based on working
machine’s property. But, 3D graphics rendering is slower than 2D graphics rendering
though OpenGL has already supplied best performance. Using the existing formula

cannot get a proper result.

50

sim_time = path->time();
act_time = (finish - start)/ CLK_TCK;

new_dt = Time-increment * (act_time / sim_time);

After testing, we added a factor for calculating the simulating time, that is:

sim_time = path->time () / 6;

With this modification, we can gain a satisfying performance using the suggested
Tim-increment setting. Anyhow, this factor may not be suitable for all machines,

we have no way to test it on many kinds of machines to get a generic formula.

4.4.14 Fix out-of-virtual-memory defect

During the system testing, we encountered a big problem that may causes the
system out of virtual memory and crashed. It mainly happened when performing
the demo, it may happen at any time (5-60 minutes) after the demo starts. It seems
the applications tries to find the next target ball, but failed, the used memory
increasing dramatically up to 150M and cause the system out of virtual memory.
When tracing into the codes, we found that a variable may be 0 and cause a
“divided by zero” exception, but the system didn’t throw out the exception, we
suppose it as the reason of the issue. After solving this problem, the performance

got some improvement, but the memory issue still happened.

51

Finally, we found second displaying of Snooker table in the Fine Adjust window
caused the problem. When we remove the Fine Adjust window or skipped the
display table function in that table, the memory issue disappeared. We analyze
that two display functions share the same global variables, confliction may
happen in some special cases. So, we declare different global variables for each
one, but it still didn’t solve the problem completed though some improvement
achieved. We continue trace into the display function of the Table class, and
found it happened when drawing corners of the table, we tried many methods to
solve it but failed. Since, the table corners are not important in the Fine Adjust
window, as a workaround, we skip drawing table corners in the Fine Adjust
window, and solve the problem successfully. After several long-time testing (up
to 8 hours), memory issue never happened again. Though it’s not the best solution,

but as a trade-off between performance and developing time, it’s still acceptable.

52

5. Conclusion

Porting Snooker Simulator from 2D to 3D is a complicated project. Though our
project mainly focuses on graphic and UI implementation, we experienced almost
every step of software development -- understanding the existing application,
redesign, 3D object modeling, 3D graphic and Ul implementation, testing, system

integration, system testing and software maintenance.

This project involves a lot of concepts and technology across many fields of
computer science, such as software reverse engineering, object-oriented analysis,
design and programming, computer graphic programming, User Interface design,
software and system testing. Through working on this project, we got a big
improvement with all these knowledge and a deeper understanding on software

development, esp. the game development.

After long-time hard working, we reserve all the functionalities of 2D version in
the new 3D Snooker Simulator, implement a real-like, smooth 3D graphic and

friendly game-like user interface. We achieved almost all our project goals.

Of course, there’re still some aspects need to be improved, such as 3D movement
performance, anyhow, we still can feel some flashing when ball is moving,
especially when the machine is not fast enough. In addition, though we’re trying

to make the application to be platform-independent, there still exist two functions

53

depending on Win32 API — MessageBox and PlaySound. To make 3D Snooker
Simulate to be able to run other operating system, some modifications are still

needed.

Conclusively, after working on this project, we really feel 3D game development

is an interesting, exciting and challenging field. We’re fascinated by it.

54

6. References

1. [The Red Book]
OpenGL Architecture Review Board, OpenGL Programming Guide, second

edition, 1997, Addison-Wesley Developers Press. ISBN: 0-201-46138-2

2. [The Snooker Simulation]
Peter Grogono, The Snooker Simulation

http://www.cs.concordia.ca/~faculty/grogono/snooker.html

3. [OpenGL Game]
Dave Astle, et al , OpenGL Game Programming, 2002, Premier Press. ISBN:

0761533303. hitp://www.codeguru.com/columns/gamedev/OpenGL-01.html

4. [OpenGL Example]
Xiang, Shiming OpenGL Programming and Examples, 1999, Publishing House of

Electronic Industry, China. ISBN:7-5053-5625-9/TP e 2880

55

Appendix A. Main Source code for 3D implementation

1. Display parameter set window using GLUI

void ParameterSetWin::ShowWin()
{
RefreshData();
SaveOld();
{
m_gluiWin->show();
m_isVisible = true;

void ParameterSetWin:: AddControls()
{

panell = m_gluiWin ->add_panel("", GLUI_PANEL,_NONE);

m_gluiWin->add_statictext_to_panel(panell, " New Value");
setTextl = m_gluiWin->add_edittext_to_panel(panell, " Sliding Friction ",
GLUI_EDITTEXT_FLOAT, &tl);

setTextl->set_w(200);
setTextl->set_float_val(paraManager->get_sliding_friction());// 0.0800);

setTextl->set_alignment(GLUI_ALIGN_LEFT);

setText2 = m_gluiWin->add_edittext_to_panel(panell, " Rolling Friction ,
GLUIL_EDITTEXT_FLOAT, &t2);

setText2->set_w(200);

setText2->set_float_val(paraManager->get_rolling_friction());//0.0070);
setText2->set_alignment(GLUI_ALIGN_LEFT);

setText3 =m_gluiWin->add_edittext_to_panel(panell, " Z-axis Friction ,
GLUI_EDITTEXT_FLOAT, &t3);

setText3->set_w(200);
setText3->set_float_val(paraManager->get_z_spin_friction());//0.0020);
setText3->set_alignment(GL.UI_ALIGN_LEFT);

setText4 =m_gluiWin->add_edittext_to_panel(panell, " Ball/ball friction ",
GLUI_EDITTEXT_FLOAT, &t4);

setText4->set_w(200);
setTextd->set_float_val(paraManager->get_ball_ball_friction());//0.0100);
setText4->set_alignment(GLUI_ALIGN_LEFT);

setText5 =m_gluiWin->add_edittext_to_panel(panell, " Ball/cushion friction ",
GLUI_EDITTEXT_FLOAT, &t5);

setTextS->set_w(200);
setTextS->set_float_val(paraManager->get_ball_cushion_friction()); //0.3000);
setText5->set_alignment(GLUI_ALIGN_LEFT);

56

"

setText6 =m_gluiWin->add_edittext_to_panel(panell, " Display factor ,
GLUI_EDITTEXT_FLOAT, &t6);

setText6->set_w(200);

setText6->set_float_val(paraManager->get_display_factor()); //3);
setText6->set_alignment(GLUI_ALIGN_LEFT);

setText7 =m_gluiWin->add_edittext_to_panel(panell, " Time increment(sec) ",
GLUIL_EDITTEXT_FLOAT, &t7);

setText7->set_w(200);
setText7->set_float_val(paraManager->get_time_increment());//0.0040);
setText7->set_alignment(GLLUI_ALIGN_LEFT);

m_gluiWin->add_button("OK", 0, ParameterOK);

m_gluiWin->add_column(false);

panel2=m_gluiWin->add_panel("", GLUI_PANEL_NONE);
m_gluiWin->add_statictext_to_panel(panel2, " Default Value");

defaultText] =m_gluiWin->add_edittext_to_panel(panel2, " ", GLUI_EDITTEXT_FLOAT,
default_parameter[1]);
defaultText1->set_float_val(paraManager->get_default_sliding_friction());//0.0800);
defaultText1->disable();

defaultText2 =m_gluiWin->add_edittext_to_panel(panel2, " ", GLUI_EDITTEXT_FLOAT,
default_parameter[2]);
defaultText2->set_ﬂoat_val(paraManager—>get_default_rolling_friction());//0.0070);
defaultText2->disable();

defaultText3 = _gluiWin->add_edittext_to_panel(panel2, " ", GLUI_EDITTEXT_FLOAT,
default_parameter[3]);
defaultText3->set_float_val(paraManager->get_default_z_spin_friction());//0.0020);
defaultText3->disable();

defaultTextd =m_gluiWin->add_edittext_to_panel(panel2, " ", GLUL_EDITTEXT_FLOAT,
default_parameter[4]);

defaultText4->set_float_val(paraManager-> get_default_ball_ball_friction());//0.0100);
defaultText4->disable();

defaultText5 =m_gluiWin->add_edittext_to_panel(panel2, " ", GLUI_EDITTEXT_FLOAT,
default_parameter[5]);
defaultTextS->set_float_val(paraManager—>get_default_ball_cushion_friction());//0.3000);
defaultText5->disable();

defaultText6 =m_gluiWin->add_edittext_to_panel(panel2, " ", GLUI_EDITTEXT_FLOAT,
default_parameter[6]);
defaultText6->set_float_val(paraManager->get_default_display_factor())://3);
defaultText6->disable();

defaultText7 =m_gluiWin->add_edittext_to_panel(panel2, " ", GLUI_EDITTEXT_FLOAT,
set_parameter[7]);
defaultTcxt7—>set_ﬂoat_val(paraManager->get_default_time_increment());
defaultText7->disable();

m_gluiWin->add_button("Cancel", 0, ParameterCancel);

57

}

m_gluiWin->add_column(false);

panel3=m_gluiWin->add_panel("", GLUI_PANEL_NONE);
m_gluiWin->add_statictext_to_panel(panel3, " Select Default");
s_buttonl=m_gluiWin->add_button_to_panel(panel3, "S", SET_SLIDING, ParameterReset);
s_buttonl->set_w(20);

s_button2=m_gluiWin->add_button_to_panel(panel3, "S", SET_ROLLING, ParameterReset);
s_button2->set_w(20);

s_butt0n3=m_gluiWin->add_button_t0_panel(panel3, "S", SET_ZAXIS, ParameterReset);
s_button3->set_w(20);

s_button4=m_gluiWin->add_button_to_panel(panel3, "S", SET_BALL_FRICTION,
ParameterReset);

s_buttond->set_w(20);

s_button5=m_gluiWin->add_button_to_panel(panel3, "S", SET_CUSION_FRICTION,
ParameterReset);

s_button5->set_w(20);

s_button6=m_gluiWin->add_button_to_panel(panel3, "S", SET_DISPLAY_FACTOR,
ParameterReset);

s_button6->set_w(20);

s_button7=m_gluiWin->add_button_to_panel(panel3, "S", SET_TIME_INCREMENT,
ParameterReset);

s_button7->set_w(20);

m_gluiWin->add_button("Help", SET_PARAMS_HELP, ParameterHelp);

m_gluiWin->add_column(false);
paneld=m_gluiWin->add_panel("", GLUI_PANEL_NONE);

m_gluiWin->add_statictext_to_panel(panel4, " Help");
h_buttonl=m_gluiWin->add_button_to_panel(panel4, “H", SET_SLIDING_HELP,
ParameterHelp);

h_buttonl->set_w(20);

h_button2=m_gluiWin->add_button_to_panel(panel4, "H", SET_ROLLING_HELP,
ParameterHelp);

h_button2->set_w(20);

h_button3=m_gluiWin->add_button_to_panel(panel4, "H", SET_ZAXIS_HELP, ParameterHelp);
h_button3->set_w(20);

h_buttond=m_gluiWin->add_button_to_panel(panel4, "H", SET_BALL_FRICTION_HELP,
ParameterHelp);

h_button4->set_w(20);

h_button5=m~gluiWin—>adcl_button_to_panel(panel4, "H", SET_CUSION_FRICTION_HELP,
ParameterHelp);

h_button5->set_w(20);

h_button6=m_gluiWin—>add_button_to_panel(panel4, "H", SET_DISPLAY_FACTOR_HELP,
ParameterHelp);

h_button6->set_w(20);

h_button7=m_gluiWin->add_button_to_panel(panel4, "H", SET_TIME_INCREMENT_HEIL P,
ParameterHelp);

h_button7->set_w(20);

void ParameterSetWin::RestoreOld()

{

tl = otl;
t2 = ot2;
t3 = ot3;
td = ot4;
t5 = ot5;

58

}

t6 = ot6;
t7 = ot7,

void ParameterSetWin::SaveOld()

{

}

otl =tl;
ot2 = t2;
ot3 =t3;
ot4d = t4;
ots =t5;
ot6 = to;
ot7 =t7;

void ParameterSetWin::Update()

{
}

m_gluiWin->sync_live();

void ParameterSetWin::ResetAsDefault(int index)

{

}

switch(index)

{

case SET_SLIDING:
t1 = paraManager->get_default_sliding_friction();
break;

case SET_ROLLING:
t2 = paraManager->get_default_rolling_friction();
break;

case SET_ZAXIS:
t3 = paraManager->get_default_z_spin_friction();
break;

case SET_BALL_FRICTION:
t4 = paraManager->get_default_ball_ball_friction();
break;

case SET_CUSION_FRICTION:
t5 = paraManager->get_default_ball_cushion_friction();
break;

case SET_DISPLAY_FACTOR:
t6 = paraManager->get_default_display_factor();
break;

case SET_TIME_INCREMENT:
t7 = paraManager->get_default_time_increment();
break;

}

m_gluiWin->sync_live();

void ParameterSetWin::UpateParameters()

{

paraManager->set_sliding_friction(t1);
paraManager->set_rolling_friction(t2);
paraManager->set_z_spin_friction(t3);
paraManager->set_ball_ball_friction(t4);

59

paraManager->set_ball_cushion_friction(t5);
paraManager->set_display_factor(t6);
paraManager->set_time_increment(t7);

}

void ParameterSetWin::RefreshData()

{
tl = paraManager->get_sliding_friction();
t2 = paraManager->get_rolling_friction();
t3 = paraManager->get_z_spin_friction();
t4 = paraManager->get_ball_ball_friction();
t5 = paraManager->get_ball_cushion_friction();
t6 = paraManager->get_display_factor();
t7 = paraManager->get_time_increment();
m_gluiWin->sync_live();

}

2. Draw ball-shape cursor

//Display the ball-shape cursor
void BallCursor::Display()
{
if(m_showCursor)
{
glDisable(GL_LIGHTING);
glDisable(GL_DEPTH_TEST);
glColor3fv(RGBColors[m_Color]);

glPushMatrix();
glTranslatef(m_xPos, m_yPos, 0.0);
glBegin(GL_POINTS);
glVertex3£(0.0, 0.0, 0);

glEnd();

const int STEPS = 1000;

60

double ang = 0;

glBegin(GL_LINES);

for(int k = STEPS; k< 3*STEPS; k++)

{
ang = PI*(k/(2.0 /*m_Radius*/*STEPS));
glVertex3f(m_Radius*cos(ang),m_Radius*sin(ang),0);

}

for(int p = STEPS; p< 3*STEPS; p++)

{
ang = PI*(p/(/*m_Radius*/2.0*STEPS));
glVertex3f(-m_Radius*cos(ang),-m_Radius*sin(ang),0);

}

glEnd();

glPopMatrix();

glEnable(GL_DEPTH_TEST);

glEnable(GL_LIGHTING),

3. Display Fine Adjust Window

void FineAdjustWin::Display()

{

float A, B, C;

glutSetWindow(m_thisWin);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
float cueballX=cueBall->get_xs();

float cueball Y=cueBall->get_ys();

61

float targetXX=cueBall->get_targetX();

float targetY Y=cueBall->get_targetY();

float a=sqrt(((cueballX-targetXX)*(cueballX-targetXX))+((cueball Y -target YY) *(cueball Y-
targetYY)));
float increment; //=a-2.7; //-3.0;
if(a<=5.4)
increment=0.5;
if (a <30.0 && a>5.4)
increment=a-3.5;
if (a >=30.0)

increment=20.0;

if(a>0)

{
target_positionX=(increment*(cueballX-targetXX))/a + targetXX; //cueballX;
target_positionY=(increment*(cueball Y-targetYY))/a + targetY'Y; //cueballY;
target_positionZ=2.7; //18.0;

}

else

{
target_positionX = 0;
target_positionY = 1;
target_positionZ = 2.7;

}

target_aimX=cueBall->get_targetX();
target_aimY=cueBall->get_targetY();

target_aimZ=2.7;

62

500.0);

A=target_aimY -cueballY;
B=-(target_aimX-cueballX);
C=-(A*cueballX)-B*cueballY;
float pp = A*A+B*B;
float roX = 0;
float roY = 0;
if(pp = 0)
{

roX=-(A*C)/pp;

roY=-(B*C)/pp;

giMatrixMode(GL_PROJECTION);

glLoadlIdentity();

gluPerspective(fine_alpha,/*(adjustWidth - cueWinWidth + 2)*/184/(2*SPIN_RAD + 2), 0.05,

giMatrixMode(GL_MODELVIEW);

glLoadldentity();

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, gray);

gluLookAt(target_positionX, target_positionY, target_positionZ,

target_aimX, target_aimY, target_aimZ, 0.0, 0.0, 1.0);

glLightfv(GL_LIGHTO, GL_POSITION, pos);

glLightfv(GL_LIGHTO, GL_AMBIENT, ambient_light);

63

table2->draw_table();

for(int i =2; i <XNUMBALLS; i++) //skip drawing cue ball
{
if(balls[i])

balls[i]->DrawBall();

glDisable(GL_LIGHTING);
glDisable(GL_DEPTH_TEST);

glColor3£(1.0, 1.0, 1.0,

glPushMatrix();

glPointSize(3.0);

glBegin(GL_POINTS);
glVertex3f(target_aimX, target_aimY, 2.7);
glEnd();

glPopMatrix();

glPushMatrix();

glTranslatef(target_aimX, target_aimY, 2.7);
glRotatef(90.0, roX, roY, 0.0);

const int STEPS = 1000;

double ang = 0.0;

glBegin(GL_LINES);

for(int k = STEPS; k< 3*STEPS; k++)

{

64

ang = PI*(k/(2.0*STEPS));
glVertex3f(2.5*cos(ang),2.5*sin(ang),2.7);

}

for(int p = STEPS; p< 3*STEPS; p++)

{
ang = PI*(p/(2.0*STEPS));
glVertex3f(-2.5*cos(ang),-2.5*sin(ang),2.7);

}

glEnd();

glPopMatrix();

glEnable(GL_DEPTH_TEST);

glEnable(GL_LIGHTING);
glFinish();

glutSwapBuffers();

4. Display main window

/[display the main window

void display(void)

{

float pointX=0, pointY=0

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

gluPerspective(alpha,w/h, 0.5, 500.0);

65

glMatrixMode(GL_MODELVIEW);

glLoadldentity();

if (VIEW_MODE==SIDE_VIEW)
{
gluLookAt(x_distance,y_distance,z_distance, x_aim, y_aim, 2.7, 0.0,0.0,1.0);

}

else if (VIEW_MODE==TOP_VIEW)

{
gluLookAt(top_positionX, top_positionY, top_positionZ, top_aimX, top_aimY,

top_aimZ, 0.0, 1.0,0.0);

if(VIEW_MODE==SIDE_VIEW) //!=TOP_VIEW)

{

glRotatef(angle, 0.0,0.0,1.0);

else

glTranslatef(0.0,15.0,0.0);

glLightfv(GL_LIGHTO, GL_POSITION, pos);
glLightfv(GL_LIGHTO, GL_AMBIENT, ambient_light);

table->draw_table();

for(int i = 0; i <NUMBALLS; i++)

{

if(balls[i])

66

balls[i]->DrawBall();

cue->DrawCue();

path->DrawPath();

ballCursor->Display();
glFinish();

glutSwapBuffers();

67

Appendix B. User Manual

Introduction

Introduction to the 3D Snooker Simulator

The 3D Snooker Simulator is a real 3D snooker game. Current version is a
window-based standalone version.
It supplies four play modes — manual, track, advise, and auto.
¢ Manual. In manual mode, you have to do all the work of playing a shot yourself.
To set a player to manual mode, first click on the Manual button for either Player 1 or

Player 2, and then enter the player's name in the Name box at the top of the dialog box.

¢ Tracking. Tracking mode is similar to manual mode except that Snooker displays
the "tracks" that the balls will follow. The tracks are not displayed until you have set
the ball's speed. After you have set the ball's speed, Snooker responds to any change in
the controls by re-displaying the tracks. To set a player to manual mode, first click on
the Tracking button for either Player 1 or Player 2, and then enter the player's name
in the Name box at the top of the dialog box.

The track of a ball usually consists of a white part and a black part. The white part
corresponds to sliding motion and the black part to rolling motion. The cue ball will
slide after impact unless you hit it on the "natural roll" line, indicated by a horizontal

red line on the ball image at the center of the control window.

¢ Advise. In advise mode, Snooker suggests a shot for you to play. You can accept

the suggestion and simply play the shot, or you can use the controls to change the shot.

68

To set a player to advise mode, first click on the Advise button for the player. Next,
choose an advisor from the Auto-Players window near the bottom of the dialog

box. Finally, enter the player's name in the Name box at the top of the dialog box

¢ Automatic. In automatic mode, Snooker plays the shot itself. To set a player to
automatic mode, first click on the Automatic button for the player and then choose

a player from the Auto-Players drop-down list.

The players are allowed to change the environment properties, such as ball-ball collision,
ball-cushion collision, etc.

To gain the best 3D performance, the player can change display factor and time
increment. The Snooker Simulator supplies a Time-testing function to calculate the best time
increment automatically.

The game is playing at full-screen mode. The player can go to desktop by clicking the
Minimizing the game button at any time and go back to the game by clicking the icon of the

game on the system task bar.

Introduction to Snooker Game

How to Play Snooker

The objective of snooker is to pot balls. If the position prevents you from potting a ball,
you try to prevent your opponent from potting balls.

The game begins with 15 red balls on the table. A player starts by trying to pot a red. If

the shot is successful, the player nominates a colored ball, and tries to pot that. If the color

goes in, the player goes for another red, and so on.

69

When the last red has been potted, the player nominates and tries to pot a color. After this
color has been potted, it is re-spotted, and all of the colors are potted in order of increasing
value: yellow, green, brown, blue, pink, and black.

If a player fails to pot a ball, the "innings" ends, and the other player comes to the table.

The following shots are "fouls".

. The cue ball hits the wrong ball first. (The "wrong ball" is a color if the player is
aiming for reds, and a red or a color other than the nominated color if the player has
nominated a color.)

* A ball other than a red or the nominated color goes into a pocket. Potting more
than one red in a single shot is allowed.

¢ The cue ball does not hit any balls at all.

. The cue ball goes into a pocket, either directly or after hitting another ball.

] The cue ball goes off the table. (This should not happen in The Snooker

Simulation.)

After a foul, the player's innings ends and the other player comes to the table with an
option: to play a shot or to "pass". In The Snooker Simulation, the Pass button (on the right
of the Shoot button) is highlighted after a foul. The incoming player passes by clicking on
it.

In The Snooker Simulation, it is not usually necessary to "nominate" a color, because
Snooker can determine which ball the cue ball will strike first. However, if you set the shot
up in such a way that the cue-ball will not strike a color, Snooker will display a dialog box
asking which color you are trying to hit.

Reds that are potted remain off the table. After a color has been potted, it is returned to

the table and "spotted”. The rules for spotting a ball are quite complicated, because there may

70

be another ball on or close to the color's normal spot. You do not need to worry about these

rules, because Snooker always spots balls correctly.

Snookers

The word "snooker” is used in two senses in the game of Snooker. If your opponent plays
a shot that leaves the balls positioned so that you cannot hit any legal ball directly, you are
“snookered". There is no score or penalty associated with a snooker, but your opponent is
hoping to gain points either because you miss or because, in escaping from the snooker, you
will leave an easy shot.

Suppose that your opponent plays a foul shot that leaves you without a clear shot on a
legal ball. You have a "clear shot" if you can hit the object ball at any desired angle without
your shot being blocked by another ball. If you do not have a clear shot on at least one legal
ball, you are "snookered by a foul" and you have a "free ball". This means that you can
nominate any ball on the table and try to pot it. The ball you have nominated is treated, for
scoring purposes, as if it was a legal ball.

For example, suppose there is one red on the table. Your opponent tries to pot it, but
misses altogether and leaves you without a clear shot. You claim a "free ball", nominate the
green as your free ball, and pot it. You score one point for the green (as if it was a red), and
the green is repotted. You then nominate a color and try to pot it, just as if you had potted a
red.

Since Snooker implements the "snookered by a foul" and "free ball" rules, you do not have

to worry about the details.

Scoring

71

Since Snooker keeps the score in the window that appears below the table image on the
screen, it is not necessary to describe scoring in detail here. Here is a summary of the scoring
rules.
¢ If you pot a red, you get one point. If more than one red goes into a pocket, you get one
point for each red potted.
¢ If you pot a color, you get the value of the color: yellow, 2 points; green, 3 points; brown,
4 points; blue, 5 points; pink, 6 points; and black, 7 points.
¢ If you play a foul shot, your opponent receives penalty points. The minimum penalty is 4
points. If the foul involves a ball with a value higher than 4 points, the penalty is the value
of the ball. A foul on the blue incurs 5 penalty points; on the pink, 6 penalty points; and on

the black, 7 penalty points.

The program displays a quantity called "Reserve" in the Information box. The reserve is

calculated as follows:

1. Calculate the "points on the table" assuming that the current player will pot a black after
each red. Thus the number of points on the table is 8 times the number of reds plus the
value of all the colors, namely, 27. For example, at the beginning of a frame, there are 15
reds on the table and each player has a reserve of 8 x 15 + 27 = 147.

2. Add the current player's score.

3. Subtract the other player's score.

The reserve is therefore the amount by which the current player would win by playing a "perfect"
game. A player whose reserve is negative must force the other player to foul in order to win the
game. An automatic player with a small, negative reserve may attempt to snooker the other

player. When the shortfall gets large enough, the player resigns.

72

Installation

System Requirement

> Hardware (suggested):
P4 1.5G CPU, 256M memory, at least 10M available hard disk space. 32M

Video memory. 3D graphic accelerate card. Sound card and speaker.

> Software:

Windows 9x, 2000 (not tested on XP and NT). Glut32.dll (included with game)

Install/Uninstall:

> Install: Double click Snooker_Setup.exe, follow the installation wizard, select the
target folder. The installation wizard with create an icon on desktop and a shortcut in

the Start->Programs menu system.

» Uninstall: click Start on the taskbar, click Programs, go to Snooker Simulator (3D),

and click Uninstall Sncoker Simulator. All installed files will be removed from the

machine.

73

Play game

Start the Snooker Simulator

» Double click the Snooker Simulator (3D) icon on the desktop; or
> Click Start on the taskbar, click Programs, go to Snooker Simulator (3D), click 3D

Snooker Simulator

Introduction to Scenes:

1. Main menu page

After start the Snooker Simulator, the Main Menu Page is the first scene your will

meet.

o Start gaine

Dewmo

= Time Test

Figure A.1 Main menu page

In this page, the player can:

74

> Start a game. Click Start game. The default play mode is manual for all
players
> Demo. Click Demo. The compute will keep playing game automatically
till the player stop it
> Time testing. Click Time test. The computer will simulate a full-speed hit
and calculate the best Time increment accordin g to the computer’s performance
> Setting. Click Setting. Three sub-functions supplied.

. Player Mode. Change players’ properties

o Parameter Setting. Change environment parameters

. Sound Effect. Toggle to turn on/off sound effect
> Leave the game, click Exit

> Read helps, click Help, then click on the help topic

2. GAME PAGE

75

Figure A.2 Game page
The Game page consists of 5 parts:
> Scoreboard: show players current score and statistics on all the frames;
> Snooker table: the area where the players actually play the game
> Adjust Window: set cue speed, where the cue hits on the cue ball and

adjust the hitting position between cue ball and target ball more precisely

» Control panel: switch between different views, adjust the camera’s

position and focal distance

> Taskbar: list all the functions available for the game

Figure A.3 Taskbar

76

From left to right, the buttons are for:

Finish game and go back to main menu

Show help

Toggle the Scoreboard between detail report and simple report
Show setting panel

Show rank of auto players

Start a game

Stop the current game

Shoot

Pass

vV VvV ¥V Vv VY V¥V VY V VYV V¥V

Switch to Top view of the snooker table

Figure A.4 Snooker table at Top View

> Switch to Side view of the snooker table

77

Figure A.5 Snooker table at Side View

»> Hide/Show the adjustment window
> Hide/Show the control panel

» Minimize the game

78

Playing a Shot

To play a shot, you first have to set the "controls". There are four controls to set: they

determine the coarse direction, fine direction, speed, and spin of the cue ball.

¢ Coarse Direction. To set the direction, move the mouse cursor over the playing-area of
the table. (The cursor is a small circle while it is within the playing-area.) Choose a point

through which you want the cue ball to pass, and click the left mouse button.

¢ Fine Direction. Move the mouse cursor into the 3D view (fine adjustment) at the bottom
right of the Adjustment Window. Clicking the left mouse button in this area will make small
changes to the direction of the cue ball. The amount by which the direction changes depends
on how far the mouse cursor is from the center of the 3D view: if it is close to the center, the
change will be very small. If the mouse cursor is left of center, the direction changes in the
counterclockwise direction; if the mouse cursor is right of center, it changes in the clockwise

direction.

¢ Speed. Move the mouse cursor into the calibrated scale at the top of Adjustment Window.
The real speed for your current mouse position will display. Click on the position with your
ideal speed to set the cue speed. The red, thermometer-like bar indicates the speed you have

chosen. The maximum speed is 2.5 meters per second.

¢ Spin. Move the mouse cursor into the white and green circular area at the bottom left of

the Adjustment Window. The small spot in the circle will move to the cursor position. This

79

spot corresponds to the point where the cue will strike the cue ball. If it is near the top of the
green area, you are applying top spin ("follow"); a point near the bottom corresponds to back
spin ("draw"); and points to the left and right sides correspond to left and right side-spin
("english") respectively. You cannot move the impact point outside the green circle because

impacts near the edge of the ball are likely to cause a miscue.
If the player is in manual mode, there will be no visible response to changing a control except
that the 3D view will change in response to a change of direction. In tracking and advise

modes, Snooker will display the paths that the balls will take each time you change a control.

When you have adjusted the controls to your satisfaction, move the mouse cursor to Shoot
button on the taskbar and click it. The Shoot button is highlighted whenever the current

player is allowed to play a shot.

If you reach the adjust limitation, no action but shooting will take effect.

80

Question and Answer

1. What is DEMO

Snooker will play until you stop it. Each frame will be played by a randomly-chosen pair
of automatic players. To stop the demonstration, click the END on the taskbar or press

the ESC key, the demo will stop until the balls come to rest at the end of a shot.

2. What is Time Testing

The program will perform a full-speed hitting to find the best value for the parameter
“Time Increment'. The players can take this suggested value by click “Yes” when a

message is prompted.

3. How to Set Players’ mode

Click Setting->Player Mode on Main Menu Page, or click Setting on the taskbar.

A Player mode setting window will be shown as:

Snooker Simulation

Figure A.6 Player mode set window

In this window, you can set properties for each player. You can:

81

» Change player mode:
For Manual and tracking mode, you have to input the player’s name
For Advise and auto mode, candidates and their performance will be shown,
select one person, the name will input in the proper field automatically.
» Change adjustment times: maximum times allowed to adjust before shooting
Click OK to save the modifications, click cancel to cancel the modifications. For more

information click help.

4. How to set the Environment Parameters

Click Setting->Parameter Setting on Main Menu Page, or click Setting on the taskbar.

A Player mode setting window will be shown as:

= snooker Simulation

.

Figure A.§ Environment parameters set window

In this window, you’re allowed to change values for Sliding Friction, Rolling Friction, Z-

axis Friction, Ball/ball friction, Ball/cushion friction, Display factor and Time increment.

Change value: click the proper white edit box, input new value

Reset the value to default: click the S button for the target parameter

82

For the help on this parameter, click the H button for the target parameter
Click OK to save the settings, click Cancel to reserve the old setting.
For more information, click Help

See details on Q&A14 — How about Environment Parameters

5. What’s the difference between Detail report and Simple
report?

Detail report contains:

Players’ name, current player, break, Score, Frames, Cumulative and High breaks

Figure A.9 Detail Report

Simple report contains:

Players’ name, current player, break, Score

Figure A.10 Simple Report

How to switch:

» Click on the Scoreboard, or

button on the taskbar.

83

6. What is the Tracking Mode

Tracking mode will show the moving track of balls when you select a target ball. This

will help the player preview the result of his shoot.

Figure A.11 Tracking mode

7. What is the Advisor Mode

Advisor mode is still played by you, but the your selected advisor will give you
suggestion before you shoot (show movement tracking as Tracking mode), you can adjust

speed or direction on the suggestion shoot or ignore the suggestions.

8. Can I leave the game temporarily without closing it?

Yes. In the Game page, click the rightmost Minimize button on the taskbar will make you

go back to desktop. Click the icon on the system taskbar will bring you back to the game.

84

9. How to close the game

If you are in Main Menu Page, click Exit or press Escape
If you are in Game Page, click leftmost button on the taskbar or press Escape will bring

you back to Main Menu Page, then click Exit or press Escape again.

10. How to adjust in Adjustment Window

This window allows you to adjust cue speed, hitting position of cue on cue ball, hitting

position between cue ball and target.

Figure A.12 Fine-Adjust window

To set cue speed: move the mouse about the scaled bar on the top, the real speed will be

shown, when get the ideal speed, click the mouse on the spot.

To set the hitting position of cue on cue ball (direction): move mouse to the green area
of the white ball on the left, when cursor changed to cross, you’re in the valid area, click

on the ideal position.

85

To adjust the hit position between cue ball and target ball: The white circle is the
mapping of cue ball, click on the right window will move the circle a bit to left or right,
depend on the distance between mouse and circle (the larger the distance is, the more the

circle will move). If the ball is too small to too big, click the + and — button on the right.

Attention: During adjusting, if new ball move between the cue ball and target ball, it will
not show in the adjustment window. It’s suggested to observe the snooker table at the

same time to ensure no other ball will block the cue ball.

11. What is Adjustment Limit

In manual modes (that is, Manual, Tracking, and Advise), you can set the number of
adjustments that can be made for each shot in the Player Mode setting

window. If the Adjustments field is set to a small number, such as 5 or 10, the player
can make only a limited number of changes before playing the shot. Two players with

different skill levels can used the Adjustments field as the basis for handicapping.

12. What is Automatic Players

You can adjust the level of skill and style of play of each automatic player by editing
the text file players.dat (see the section "Editing the Data Files" below). The
program maintains rankings for the players. You can see the current rankings by

clicking on Rank Button on the taskbar.

86

13. How to edit the Data Files

The folder in which you have stored The Snooker Simulation contains two data files:
"players.dat" containing information about the automatic players and
"settings.dat" containing information about the table parameters. By editing
these files you can customize Snooker and avoid wasting time changing settings when

the program is running,

Both files are in "plain ASCII" format. This means that you should edit them with an
ASCII text editor, such as Microsoft Notepad. If you edit them with a word processor,
such as Microsoft Word or Corel WordPerfect, you should save them in "ASCII" or

"text" mode after making the changes.

The file "players . dat" should look something like this:

#comment ACC LON STR PRE POS DEF HI CLU GTL PER
Hardy Potts 10 10 5 10 10 10 10 10 10 10
Careful Kate 7 7 10 10 10 10 6 3 9 10
Sharky Pete 10 10 2 8 10 10 2 2 5 10
Gofer Black 7 6 9 6 9 6 10 5 8 8
Artful Ann 8 4 7 8 5 2 5 10 4 7
Willy Wacker 4 9 9 2 2 2 5 10 0 4
Duffer Dave 2 2 8 1 1 1 8 3 5 1
#end

Snooker ignores lines beginning with "#". Each of the other lines consists of the name

of a player followed by exactly ten numbers. The numbers must be integers (no

87

fractions or decimals), not less than zero, and not greater than 10. The numbers
determine the style of the automatic player. They are answers to the following

questions, with 0 indicating "definitely not" and 10 indicating "definitely yes".

1. Iam an accurate potter.

2. lam good at long pots.

3. I prefer straight pots to cuts.

4. Iprepare each shot very carefully.

5. Tam good at positional play.

6. Iam good at defensive play.

7. I go for balls with high scoring value.

8. Ibreak up clusters of balls whenever possible.
9. [Iprefer gentle shots to strong shots.

10. T give up only when I have no chance of winning.

You can change the values of the existing players or you can create new players of your

own.

The file "settings.dat” contains information that describes properties of the snooker
table. Each line consists of a number followed by an explanation in English. Only the
number is important; Snooker ignores the explanation. The numbers are all fractions
less than 1, except the display factor, which is an integer greater than 1. Snooker does
not check to see if the numbers in the file are reasonable. If you enter unlikely values,
Snooker may behave — or misbehave — in curious ways. For example, if rolling

friction is zero, the balls will roll for a very long time. If ball/cushion friction is also

88

zero, they will roll forever! The practical problem with zero friction is that the program

will try to construct infinitely long trajectories for the balls and will crash.

Here is the file settings.dat with default value.

0.08 Sliding friction
0.007 Rolling friction

0.002 Spin friction

0.01 Ball/ball friction

0.3 Ball/cushion friction

3 Display factor

0.03 Time increment (seconds)

The data in this file is used to set default value, during the game, you can change all the

settings in Parameter Setting window. But the new setting will not saved to this file.

14. How about Environment Parameters

The Snooker Simulation allows you to change the properties of the table you are
playing on and to adjust the speed of the game to your computer. To change the
properties, select Settings from the menu bar and then Parameters. Snooker

will open a dialog box that you can use to read and change various values.

¢ Sliding Friction. This is the coefficient of friction between a sliding ball and the
cloth on the table. A ball slides for a short time after being struck by the cue or
another ball. The effect of friction is particularly important for the cue ball: a high
coefficient of friction makes back spin ("draw") and top spin ("follow") more

effective.

89

¢ Rolling Friction. After sliding for a while, a ball begins to roll. Its speed is
affect by friction, but much less than when it is sliding. Rolling friction is typically

about one-tenth the value of sliding friction.

¢ Spin Friction. Spin friction is the friction experienced by a ball spinning about a
vertical axis. (Spin friction is also called "Z-axis friction" because the Z-axis is the
vertical axis.) The vertical spin affects the behavior of a ball when it hits a cushion
and, to a lesser extent, when it hits another ball. If spin friction is high, the ball will
lose its vertical spin as it travels and will not be deflected by spin when it hits a
cushion. If spin friction is low, the ball will retain its vertical spin and be deflected

even at a distant cushion.

¢ Ball-Ball Friction. The ball-ball friction is the friction experienced by balls that
are in contact during a collision. It is small and, ideally, would be zero. After a
collision between frictionless balls, one ball travels along the line of centers at the
time of collision and the other travels at right angles to this direction. If there is ball-
ball friction, these directions are altered slightly. The automatic players in Snooker
occasionally miss long pots: this is because they do not allow for ball-ball friction. If
you set ball-ball friction to zero, you will find that the automatic players do not miss

pots as often as they do when the default value is used.

¢ Ball-Cushion Friction. This is the friction experienced by a ball when it is

sliding against a cushion. If the ball rolls directly into a cushion, there is very little

sliding, and ball-cushion friction has little effect. If, however, the ball hits the

90

cushion obliquely, or is spinning about a vertical axis, the ball-cushion friction will
affects its motion after the impact. If ball-cushion friction is small (less than 0.1), the
cushions will be "fast” (balls will not lose much speed) but side-spin will have little
effect. If ball-cushion friction is large (0.4 or more), the cushions are slower but
side-spin is effective. When ball-cushion friction is set to 0.3 (the default value), the

effects are quite close to what you would see on a real snooker table.

¢ Display Factor. The display factor determines how often the screen is refreshed

while the balls are in motion.

¢ Time Increment. The time increment determines how often Snooker computes

the positions of the balls.

Suppose that the display factor is set to 3 and the time increment is set to 0.01. This

means that:

) The positions of the balls will be computed every 0.01 seconds or, in other words,
100 times each second.
. The screen will be refreshed at every third computation: in this case, 100/3 = 33

times per second.
The accuracy of the simulation depends on the time increment: the smaller the value, the

more accurate the simulation. But, if the value is too small, the simulation will be

unacceptably slow.

91

The speed of the balls on the screen, and the jerkiness of their motion, depends on the
display factor. If the display factor is 1, the motion will be smooth but slow. If the value

is large, say 10, the balls will move ten times faster, but in jerks.

You should try to choose settings of the display factor and time increment that give

smooth motion that is fast enough. Snooker provides a "timing test" to help you. Use it

as follows:
* Start Snooker or, if it is running, end the current frame.
¢ Select Settings from the menu bar and then Timing Test. When the

message window appears, click on OK.

. Snooker will play a "lag shot" which sends the cue ball up and down the table. It
will compute both the simulated time and the actual time required for this shot, and will
report the value of the time increment that would make them equal.

. If you click on OK in the final message box, Snooker will set the value of the

timing increment to the value that it has computed.

Although the value of the timing increment is now correct, you may still want to change
the display factor. Here is a rule of thumb that will help you: find the smallest value of
the display factor for which the timing test gives a value of 0.01 or less to the timing
increment. When you have found the best value for the display factor, run the timing test

again to get the appropriate value of the time increment.

If you want to save the timer settings permanently, so you do not have to change them

every time you pay, edit the file "settings.dat", as described in Q&A13.

92

