Functional Requirements and Non-Functional Requirements: A Survey

Jun Ying Zhou

A Major Report
in

The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science at
Concordia University
Montreal, Quebec, Canada
April 2004

© Jun Ying Zhou, 2004

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-91163-2
Our file Notre référence
ISBN: 0-612-91163-2

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

11

Abstract

Functional Requirements and Non-functional Requirement: A Survey

Jun Ying Zhou

Software impacts almost every aspects of modern society. Software development process
is a coherent set of activities for software modeling and associated artifacts. Requirements are
basis of software systems. As the first phase of the software development process, requirements

set reasonable targets to be achieved.

The purpose of this report is to study the role of requirements in software development
process, and to survey the methods for specifying functional and non-functional requirements
(NFRs). In this report the concepts of functional and non-functional requirements are introduced.
The problems of functional and non-functional requirements lay on one of the following aspects:
identify, document, validate and verify, so this report presents some answers to these questions
through discussion and comparison of many process and methods. We also introduced some

NFR frameworks are introduced and overviewed some tools used to support requirements.

Table of Contents

Chapter 1 INtrodUCHON ...cciviiciccriirciiictri e ras e e s na s sat e e n e s aanasasanes 1
1.1 The Importance of Requirements in Software ENgiN@ering.........cccovvveevvivrceveceeiecenenas 1
1.2 Purpose and Problem Statement..........ccvviiiiiiiiininicnicecseensee e rceresreeseeesensesssssssnnes 2
1.3 REPOI OUHING ...ttt ettt st e essr e e e sr b e st e be s srrassessnaansnen 3

Chapter 2 BackgrOUNG ... irorircccnsnresmncsssersserssessssssmesnssassrssasssarasssesansesssessansassnsensasenns 4
2.1 LY (£eTe [WTex 1T o TORU OO TSP 4
22 Software DevelopmeEnt PrOCESS.......ou e ciieiirrccieeccie s e csee e te e et ree e e s b e s e e e nsenneas 4
2.3 Waterfall MOE]c. ettt scr st r e st e e sra e et s ae st e esne e e see e mnesnnesneeenes 5

2.3.1 Prototyping, Iterative, and Incremental MOdEISccoevcreviicreecieecsiecreeeeeeeree e, 6
P T U 1« 11 LR RS 8
2.4 SOfWArE QUAIRYcceerieeeeiceceerie et ce ettt sre et b s et sar et e b e sasssasabesrseresnas 9
2.4.1 Measuring the Quantity of QUAlitYccccooeeerriiiriiieiriceeere e 10
242 1S09126 Quality DOSCHPLON ...c.evciriirrireriirreeecirree s rere st s ebe et e et s e e s e snees 10
2.43 Quality Attributes for the Engineering ProCess.........cccvvvvvvcnneieeienecreeseceseennenns 11
244 SQA ANA VAV ...t ts et e e s e e vasseesst st o se st s e e e ta st e san e e besrsensesas 13
25 Role of Functional and Non-Functional Requirements in the Development Process....14

Chapter 3 Functional ReEqUIrEMENtS......c.c.crviiiicincnierersnessercermnssnsssssssssssscssssneesssesssensesseesas 15
3.1 1071 =T Ta] o O OO 15
3.2 Denotation of Functional Requirements............ccccoveminiiiincnineciiniecncesn e 16
3.3 Classification of Requirements and Analysis Techniquesccccoevenieireessnceiiiensnns 17
34 Validation & Verification of Functional Requirements...........cccoevvveiveinviceicccieeeenenne 20
R R T oo 1= O SR 22

Chapter 4 Non-Functional REqUIr@MENTSccccceeiivrirrsirnvrmenrsreieneaecenesssrssnssenssesassssessasesssas 26
4.1 1 ET(geo [F o [o] o TR OO OO USROS 26
4.2 SOUICES fOF NFRS oo iiiiitirieccirre e erer e rte et et ese e s e s st e e s e e besans st esaneasenennesnonenenen 27
4.3 NFRs and Quality MOGEISc..oo it ceiee et 29
4.4 Dealing with Non-Functional Requirements...........c.ccvcoecceevrncneeiicececce e 30

T o B S Te7 = 4o o R U RRTITOP 30
4.4.2 DOCUMBNLALION. ...c..eii ittt e e et e et se e s eeeseneeseessreeeneseneenes 35
4.4.3 ArchiteCture AlIGNMENT.........ccvivereiiirie it st eeresereem e seeseeseeeaeeseeeeeeeseeses 38
4.5 NFR FFAMEBWOIK ... oot st sers et e vt sses cne e n s te e b sbtsssaesese e snesreeemesenees 38
46 NFRs and Software ArchiteCure ...t 40

Chapter 5 CONCIUSIONSooiiiimiiriniminacseraneresnesnesnesesssessssesssasemsssessessessessasessssaseneasassessssssrnnnen 42
5.1 CONCIUSIONSceeuieiiteeiteietie et er e tesre et ee e e e sasestsbssreanbesbesassassstseseeemeseeesesseennennens 42

Chapter 6 RefErENCEeS........iuccceircrieemreercrerrsnerarersserssenesesssessrasessasrsns sessensssssssssse sanssanssasnesanerassan 43

6.1 RETEIENCES ..ottt ettt eseeesesettereeeeeseasanaeaesseeessasasnntneeeeasasnes 43

List of Figures

Figure 2-1: Waterfall MOAEI ..ot ee et s et 5
Figure 2-2: Evolutionary Development PrOCESScccieiieicriieececeeeeeeeeereetres e neae e 7
Figure 4-1: The Win-Win Spiral MOAe!c.oovriere ettt st 31
Figure 4-2: Win-Win Negotiation MOdelcooe it cecseser s ssesss s ens 32
Figure 4-3: A Portion of the See Domain Taxonomycccceevrevrivecirecieecreeneeeies e s esaee e snea 33
Figure 4-4: Decomposition of Non-Functional Requirements Using the NFR Framework 34
Figure 4-5: Generic Taxonomy fOr NFRccoiioiieicciecieecs e st st e e aeene 36
Figure 4-6: NFR Analysis MEthOdcoireicee et et sas ot e 37

List of Tables

Table 2-1: Software Quality Characteristics and AHMDUIES.........ccvieeeeeeeeeeeeeeeeeeeeee e sreeans 12
Table 3-1: Compare AMONg the TOOISccccuerrrrirrictrieerrere ettt e e e eeesee e eees 24

Chapter 1 Introduction

In this major report, we have stressed the importance of the role of requirements in
software development process, and have contributed to the classification and standardization of

the software non-functional requirements.

1.1 The Importance of Requirements in Software
Engineering

Software impacts almost every aspects of modern society. Software development process
is a coherent set of activities for software modeling and associated artifacts. Software
Engineering is a discipline for the systematic construction and support of software products so
they can safely fill the uses to which they may be subjected. Requirements are basis of software
systems. As the first phase of the software development process, requirements set reasonable
targets to be achieved.

Mistakes introduced at this phase of software development lead to failures and costly
maintenance phase of the product. The Standish Group’s CHAOS Reports from 1994 and 1997
[STA97] established that the most significant contributors to project failure relate to requirements.
Another study [COM97] of 500 IT managers in the U.S. and U.K. reported that 76 percent of the
respondents had experienced complete project failure during their careers, and most frequently
named cause of project failure was "changing user requirements."

In software industrial practice, the high cost of development process of large-scale software
has put emphasis on the need to prevent problem occurrence, rather than fix errors during the
later phases of a software life cycle. As the above says, if we want to build a “right” software
system, that is, if we want to build a software system just as what customers expect, we must
start with “correct” requirements. The major objective of the requirements engineering is defining

the purpose of a proposed system and outlining its external behavior. Requirements generally

express what an application is meant to do. They do not attempt to express how to accomptlish
these functions. The set of requirements for the system should describe the functional and non-
functional requirements so that they are understandable by system users who don't have detailed
technical knowledge. The functional requirements for a system describe the functionality or
services that the system is expected to provide. Non-functional requirements, as the name
suggests, are those requirements that are not concerned with the specific functions delivered by

the system. They may relate to emergent system properties such as reliability, response time.

Now many methods in collecting, tracing, reflecting requirements are produced, which we
could use to trace, control, manage requirements, but there are still work to do. First, non-
functional requirements were not paid much attention to until recently, that is to say, whether in
research or in practice, non-functional requirements were not treated seriously even in very
recent. Second, in order to build software quality into software system, we must develop new
software development process which should have much difference from exist ones because we

must make non-functional requirements as a natural part of the process.

1.2 Purpose and Problem Statement

Many mature methods on dealing with functional requirements have been used for a long
time and proved to be effective. Functional requirements are often described as “should do...” or
“should be..”, that is, they are easier to validate and verify. But to the non-functional
requirements, it is hard to define an accurate target. For example, customer may require a
“Friendly” software system. We recognize that in fact the user requires the “Usability” of the
software system interface, perhaps also the “Effiencency”, but it's hard to define an accurate
target to achive. Concequently, valiadation and verification of non-functional requirements are
more difficult than of functional requirements. Therefore, methods must be used to make this

requirement to be visual and clear.

In this report, we focus on the problem stated above. The purpose of this report is to study

the role of requirements in software development process, and to survey the methods for

specifying functional and non-functional requirements (NFR). Some NFR frameworks are
introduced and tools used to support requirements are overiviewed. “How to identify
requirements”, “how to document requirements” and “how to deal with requirements” are always
the most common questions in front of us, so this report presents some answer to these

questions through discussion and comparison of many process and methods.

1.3 Report Outline

The present major Report is organized as follows:

Chapter 1: Introduction. In this chapter, we present the importance of functional
requirements and non-functional requirements. Then the purpose and problem statement are

outlined.

Chapter 2: Background. In this chapter, we introduce some backgrond knowledge including
software development process, NFRs, software quality, SQA and V&V, etc. This chapter mainly

presents backgrond knowledge necessary for this report.

Chapter 3: Functional Requirements. This chapter discussed functional requirements,
including the category, methods used to deal with (collect, document, validate and verify) them,

some support tools also discussed in this chapter.

Chapter 4: Non-Functional Regirements. This chapter discussed non-functional
requirements, including the category, the source of NFRs, methods to deal with(identify,

document, validate and verify) them, some tools also discussed.

Chapter 5: Conclusion. This chapter conclude the work done by this report, and we present

a further work to be done in this chapter.

Chapter 2 Background

2.1 Introduction

In this Chapter, the software development processes are introduced, and the role of both
functional and non-functional requirements in the software development are outlined.

Software systems must be more than just a bunch of code modules. They must be
structured in a way that enables scalability, security, and robust execution under stressful
conditions. Large software projects have a huge probability of failure - in fact, it's more likely that
a large software application will fail to meet all of its requirements on time and on budget than that
it will succeed. Software Engineering is a discipline for the systematic construction and support
of large software products so they can safely fill the uses to which they may be subjected. In the
IEEE Standard Glossary of Software Engineering Terminology, the notion of software engineering
is defined as “the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application of engineering to

software” [IEE90].

2.2 Software Development Process

Software development process is a coherent set of activities for software modeling, input
and output (sometimes known as milestones) for each activity, and associated artifacts. A
software process model is an abstract representation of a software process. Each process model
represents a process from a particular perspective, and only provides partial information about
that process. The oldest process model is the waterfall model. Recently, some new models such
as Rational Unified Process, and eXtreme Program process were used more and more widely. A

number of different general models of software development are listed below.

2.3 Waterfall Model

Waterfall model is the software development process model with longest history.

In 1970, Winston W. Royce introduced waterfall model in his paper [WIN70), and from then
on, waterfall model has been used in software development. The process waterfall model
includes five sequential activities: requirements definition, system and software design,
implementing and unit testing, intergrate and system testing, operation and maintenance

(see Figure 2-1).

Waterfall model is decomposed into phases, each phase corresponding to one activity and

producing a delivery artifact.

Requirements
Definition

A

System and
Software Design

A 4

implementing and
Unit Testing

Integrate and
System Testing

y

Operation and
Maintenance

Figure 2-1: Waterfall Model

Phases In Requirements analysis and definition phase, the requirements are collected
from the customers and defined, and the Software Requirements Specification (SRS) document
is produced. SRS serves as a contract between the customers and the developers, therefore all

the requirements defined should be understandable by both customer and system developers.

In System development process, requirements are refined into software and hardware
requirements, the system architecture and system’s components interfaces are fixed. The

deliverable produced in this phase is the Design Document.

The system is realized as a set of components in Implementing and Unit Testing phase.
Code is the main production of this phase. Units of code are individually tesed, and the test cases

and test results are reported.

In Integrate and System Testing phase, units are integrated, integrate tests are performed

and reported. If the testing results are satisfactory, the system is delived to the end-users.

in the last phase - Operating and Maintenance, bugs reported by the users are fixed and

some enhancements are added to the software’s functionality.

In the Waterfall Model the phases are sequential, that is, each phase (starting from the
second) must begin after the previous phase has been ended. Waterfall Model is closer to the
management ideas on software development organization, so it was enthusiastically welcomed

by managers when it appeared due to its simplicity and clarity.

Applicability When the software requirements are clear from the beginning of the
development process, Waterfall Model can be a very good chocie due to its transparency and
ease of control. However, Waterfall Model is not feasible for the development of complex systems.
According to the description above, Waterfall Model has a very late “product deployment”, that is,
we get the product to be delivered to users almost in the end of the process without giving any
feedback on its development to the customers until the end of the process. If the user is not

satisfied with the product, the whole development process has to be repeated.

2.3.1 Prototyping, lterative and Incremental Models

Complex and evolving systems require a different approach to their development.

Prototyping, Iterative and Incremental models have been created and used in software industry

for development of complex systems. Evolutionary Development Model and RUP (Rational

Unified Process) are two of them.

Evolutionary Development Model is based on an idea of building a prototype and
continually improving it according to customer feedbacks at each iteration. Users are giad to see
the software continuously improving, so the model has been accepted quickly. In this model,

there are two kinds of development:

® Exploratory Programming: Query customer requirements. First implement basic

requirement and later add more complex ones.

L Throw-away-Prototyping: Build prototype to understand the customer’s requirements.

The prototype and experiments with the customer help to define the requirements.

The Figure 2-2 illustrates the Evolutionary Development Process:

Requirements and Analysis

Prototype Development -
Validation
Change to Product Definition
'Y
New Prototype Yes
necessary?
Maintenance

Installation and Use

Figure 2-2: Evolutionary Development Process

Evolutionary Model is a theoretically model with wide applicability, but it still has some
shortcoming, for example, the process is not transparent, the code would not be well structured

due to the frequent modifications, and there is a need for skilled team to use this model.

Rational Unified Process (RUP) is another model used widely in the industry. RUP is first
introduced by Rational [RAT00], this model can be integrated with Rational’s tools and UML is
used to model the system in the whole process. RUP is a configurable process. The Unified
Process fits small development teams as well as large development organizations. RUP is
founded on a simple and clear process architecture that provides commonality across a family of
processes. Yet, it can be varied to accommodate different situations. It contains a Development
Kit, providing support for configuring the process to suit the needs of a given organization. RUP
can be cut down to customize the unique development process of specific software, with the

reasonable cut down; we can use RUP as a sharp weapon.

2.3.2 UML™

The OMG's Unified Modeling Language™ (UML™)[UML98] helps you specify, visualize, and
document models of software systems, including their structure and design, in a way that meets
all of these requirements. Using any one of the large number of UML-based tools on the market,
you can analyze your future application's requirements and design a solution that meets them,

representing the results using UML's twelve standard diagram types.

UML can be used so widely that you can model just about any type of application, running
on any type and combination of hardware, operating system, programming language, and
network, in UML. lis flexibility lets you model distributed applications that use just about any
middleware on the market. In fact, many extensions of UML have been produced that you can
use UML to using UML in specific fields, for example, in embeded field and RT system Modeling.
UML support program language widely. Using UML, you can ignore the difference from different

languages, systems built upon one language can be a natual fit for other languages.

Also, UML can be used to do other useful things. For example, some tools analyze existing
source code and reverse-engineer it into a set of UML diagrams. Another example: In spite of

UML's focus on design rather than execution, some tools on the market execute UML models.

UML is useful to define requirement, either functional requirements or non-functional
requirements. Functional requirements can be defined by Use Case Diagram; The ways to using

UML to define non-functional requirements are also mentioned in some papers.

The most critical stage in the software development process is the requirements phase as
errors at this stage inevitably lead to later problems in the system design and implementation. In
general, requirements are partitioned into functional requirements and non-functional
requirements. The rest of this Chapter is an overviews the role of the requirements (functional

and non-functional) in the software development process.

2.4 Software Quality

Within an information system, software is a tool, and tools have to be selected for quality
and for appropriateness. This section introduces software quality, including software quality

models, framework and quality factors.

The notion of “quality” is not as simple as it may seem. For any engineered product, there
are many desired qualities relevant to a particular project, to be discussed and determined at the
time that the product requirements are determined. Qualities may be present or absent, or may
be matters of degree, with tradeoffs among them, with practicality and cost as major
considerations. The software engineer has a responsibility to elicit the system’s quality

requirements that may not be explicit at the outset and to discuss their importance and the

difficulty of attaining them.

Various researchers have produced models (usually taxonomic) of software quality

characteristics or attributes that can be useful for discussing, planning, and rating the quality of

software products. The models often include metrics to “measure” the degree of each quality

attribute the product attains.

Usually these metrics may be applied at any of the product levels. They are not always
direct measures of the quality characteristics of the finished product, but may be relevant to the
achievement of overall quality. Some of the classical quality models are McCall, Boehm [BOE78],
and others and are discussed in the texts of Pressman [PRE97], Pfleeger [PFL98] and Kan
[KAN94]. Each model may have a different set of attributes at the highest level of the taxonomy,
and selection of and definitions for the attributes at all levels may differ. The important point is
that the system software requirements define the quality requirements and the definitions of the

attributes for them.

2.4.1 Measuring the quantity of quality

A motivation behind a software project is a determination that it has a value, and this value
may or not be quantified as a cost, but the customer will have some maximum cost in mind.
Within that cost, the customer expects to attain the basic purpose of the software and may have
some expectation of the necessary quality, or may not have thought through the quality issues or
cost. The software engineer, in discussing software quality attributes and the processes
necessary to assure them, should keep in mind the value of each one. A discussion of measuring

cost and value of quality requirements can be found in [WEI93] Chapter 8 and [JON91] Chapter 5.

2.4.2 1ISO 9126 Quality Description

Terminology for quality attributes differs from one model to another; each model may have
different hierarchical levels and a different total number of attributes. One attempt to standardize
terminology in an inclusive model resulted in 1ISO 9126 [IEE91]. ISO 9126 is concerned primarily
with the definition of quality characteristics in the final product. ISO 9126 sets out six quality

characteristics, each very broad in nature. They are divided into 21 attributes, or

10

subcharacteristics. Some terms for characteristics and their attributes are used differently in the
other models mentioned above, but ISO 9126 has taken the various sets and arrangements of
quality characteristics and has reached consensus for that model. Other models may have
different definitions for the same attribute. A software engineer understands the underlying
meanings of quality characteristics regardless of their names and their value to the system under

development or maintenance.

2.4.3 Quality Attributes for the Engineering Process

Other considerations of software systems are known to affect the software engineering
process while the system is being built and during its future evolution or modification, and these
can be considered elements of product quality. These software qualities include, but are not

limited to:
® Code and object reusability

® Traceability of requirements from code and test documentation and to code and test

documentation from requirements
® Modularity of code and independence of modules.

These software quality attributes and their subjective or objective measurement are
important in the development process, particularly in large software projects. They can also be
important in maintenance (if code is traceable to requirements — and vice/versa, then modification
for new requirements is facilitated). They can improve the quality of the process and of future
products (code that is designed to be reusable, if it functions well, avoids rewriting which could

introduce defects).

Table 2-1 is the software quality characteristics and Attributes from the

ISO 9126 view.

11

Table 2-1: software quality characteristics and Attributes - the ISO 9126 view

Futionality

Characteristics relating to achievement of the basic purpdsé for which ‘
the software is being engineered

Suitability The presence and appropriateness of a set of functions for specified
tasks

Accuracy The provision of right or agreed results or effects

Interoperability Software’s ability to interact with specified systems

Compliance Adherence to application-related standards, conventions, regulations
in laws and protocols

Security Ability to prevent unauthorized access, whether accidental or
deliberate, to programs and data.

Reliability Characteristics relating to capability of software to maintain its level of
performance under stated conditions for a stated period of time

Maturity Attributes of software that bear on the frequency of failure by faults in

the software

Fault tolerance

Ability to maintain a specified level of performance in cases of software
faults or unexpected inputs

Recoverability

Capability and effort needed to reestablish level of performance and
recover affected data after possible failure

Usability

Characteristics relating to the effort needed for use, and on the
individual assessment of such use, by a stated or implied set of users

Understandability

The effort required for a user to recognize the logical concept and its
applicability

Learnability The effort required for a user to learn its application, operation, input,
and output

Operability The ease of operation and control by users

Efficiency Characteristic related to the relationship between the level of

performance of the software and the amount of resources used, under
stated conditions

Time behavior

The speed of response and processing times and throughput rates in
performing its function

Resource behavior

The amount of resources used and the duration of such use in
performing its function

Maintainability

Characteristics related to the effort needed to make modifications,
including corrections, improvements or adaptation of software to
changes in environment, requirements and functional specifications

Analyzability

The effort needed for diagnosis of deficiencies or causes of failures, or
for identification of parts to be modified

Changeability

The effort needed for modification fault removal or for environmental
change

Stability The risk of unexpected effect of modifications

Testability The effort needed for validating the modified software

Portability Characteristics related to the ability to transfer the software from one
organization or hardware or software environment to another

Adaptability The opportunity for its adaptation to different specified environments

Installability The effort needed to install the software in a specified environment

Conformance The extent to which it adheres to standards or conventions relating to

portability

Replaceability

The opportunity and effort of using it in the place of other software in a
particular environment

12

2.4.4 SQA and V&V

The set of requirements has a direct effect on the quality of other products, down to the
delivered software. While the software engineering process builds quality into software products
and prevents defects, the software engineering process also employs supporting processes to
examine and assure software products for quality. The supporting processes conduct activities to
ensure that the software engineering process required by the project is followed. Software Quality
Assurance (SQA) and Validation and Verification (V&V) umbrella activities examine software
through its development and maintenance, detect defects and provide visibility to the

management in determining how well the software carries out the documented requirements.

The SQA role with respect to process is to ensure that planned processes are appropriate
and have been implemented according to their plans and that relevant measurements about

processes are provided to the appropriate organization.

The V&V process determines whether products of a given development or maintenance
activity conform to the requirements of that activity and those imposed by previous activities, and
whether the final software product satisfies its intended use and user needs. Verification ensures
that the product is built correctly, that is, verification determines that software products of an
activity fulfill requirements imposed on them in the previous activities. Validation ensures that the
right product is built, that is, the final product fulfills its specific intended use. The activities of
validation begin early in the development or maintenance process, as do those of verification.
V&YV provides an examination of every product relative both to its immediate predecessor and to

the system requirements it must satisfy.

The visibility comes from the data and measurements produced through the performance of
tasks to assess (examine and measure) the quality of the outputs of the software development

and maintenance processes while they are developed.

Many SQA and V&V evaluation techniques may be employed by the software engineers

who are building the product. And the techniques may be conducted in varying degrees of

13

independence from the development organization. Finally, the integrity level of the product may

drive the degree of independence and the selection of techniques.

2.5 Role of Functional and Non-Functional
Requirements in the Development Process

The major objective of the requirements phase is defining the purpose of a proposed system
and outlining its external behavior. Requirements generally express what an application is meant
to do. They do not attempt to express how to accomplish these functions. The set of requirements
for the system should describe the functional and non-functional requirements so that they are
understandable by system users who don’t have detailed technical knowledge. Functional
requirements are associated with specific functions, tasks or behaviours the system must support,

while non-functional requirements are constraints on various attributes of these functions or tasks.

Functional requirements capture the intended behavior of the system. This behavior may be
expressed as services, tasks or functions the system is required to perform, for instance, Ul
requirements, database requirements are functional requirements. Generally, functional
requirements are what we focus first. Traditional methods for requirements analysis often focus
on functional requirements, interview is a common way to collect customers’ requirements, from
the interview, we can get function points by picking verbs and nouns, but we cannot recognize the
hidden non-functional requirements from it. In the requirements definition phase, what we get
from customers are almost functional requirements because customers always focus on “what we
want” instead of “what quality the product should have”, the other reason is customers always

think software quality as hidden things they cannot controll.

With the need for software quality increased, non-functional requirements were paid more
and more attention to. It can be helpful to think of non-functional requirements as adverbially

related to tasks or functional requirements: how fast, how efficiently, how safely, etc.

The next two Chapters introduce the role of requirements in software development process,

and survey the methods for specifying functional and non-functional requirements.

14

Chapter 3 Functional Requirements

3.1 Category

Functional requirements are always defined as what the system should really do. To give a
accurate category of functional requirements is an impossible task because a software system is
developed to satisfy some paticular requirements, which may be very difference from them of

other customers.

However, we can assign a common category to the functional requirements. Let us think
about a software system: firstly, every system should have a data process mechanism, so there
must be some requirements on data processing, for example, how to store the data, how to
structure the data and how to process the data. We can call all these requirements “data
requirements”. Secondly, every system should have relationship with other systems, for example,
with operation system, with some old systems already used, and/or with customers. These
requirements can be categorized as “interface requirements”. Lastly, as the most important
things, we must develop a system to help customers to solve problems in the real world, that is,
we must first collect the requirements related to customers’ problem. we can categorize these
requirements “operation requirements”. “Operation requirements” are always most important to

customers for the software system is used to solve their problem.

“Data requirements”, “interface requirements” and “operation requirements” are not a
standard way to cataloge funtional requirements, but in this report, we can use them to describe

functional requirements.

15

3.2 Denotation of Functional Requirements

A functional requirement means a function the system should have. We can use different
ways to record a functional requirement. Using natural language to denote functional

requirements is a common way, an example of functional description always seems like this:
[Function]
Name, purpose
Preconditions
Description
End result
Exceptions

Describing functional requirements in natural language bring benefits: in requirements
analysis phase, we use natural language (for example, English) to communicate with customers,
so we can easily use the same way to record customers’ requirements directly. A traditional way
to collect customers’ requirements is picking verbs and nouns from words of customers.
Functional requirements thus can be generated from them. However, denoting functional
requirements by natural language bring some trouble. As we all know, natural language is
sometimes ambiguous, different people may not have same “feeling” when they read same words.
If natural language was used as the only tool to record functional requirements, customers and

requirements analysts may reach the seeming consistent but for the real consistent.

To deal with inconsistent requirements, many approaches to requirements analysis have

been developed over the last few years. The different techniques are listed below.

16

3.3 Classification of Requirements and Analysis
Techniques

According to a survey paper[GRO95], requirements and analysis techniques consist of four

major classes and various subclasses. These major classed of techniques are as follows:

1. Formal methods are based on translation of requirements into mathematical form. Eight

different techniques were discovered.

2. Semi-formal methods are based on the expression of requirement specifications in a

special requirement language. Eleven different individual techniques were discovered.

3. Review and Analysis (informal method) are based on reviews by special persona!l of
the adequacy of requirement specification according to a pre-established set of criteria and

detailed checklists and procedures. Seven different methods were identified.

4. Tracing and Analysis Techniques of requirements are based on matching of each
unique requirement element to design elements and then to the elements of the implementation.
A typical tracing and analysis technique can be described as below: first, requirements analyzer
go to interview customer, listen to their need, listen to their complaint, and listen to what they
want, when he go back, he make requirements elements as baseline of the software. When the
software is to be designed and implemented, all these requirement elements must be realized.

Tracing is to validate. Traditionally, we collect functional requirements using these ways.

Formal methods are theoretically perfect methods. Theoretically, formal specification can
lessen requirements errors by reducing ambiguity and imprecision and by clarifying instances of
inconsistency and incompleteness. However, in the real world, it is difficult to use formal methods.
First, the requirement shall be formulated unambiguously and “crystal clear”. To ensure this, we
must separate requirements into atomic and state them in terms of need, them we must find a
way to make the definition of requirements unique and without different meaning. The other

problem lies on formal language, there is still not a formal language accepted by all, so it's difficult

17

to communicate with each other using formal language, and, formal language is too complex to

understand for most people.

PVS specification and verification system [SOW95][JCR95] is a formal specicfication and
verification system commonly used in real-time control system. A project SafeFM
[TBO94][SOW93] aimed to support the practical use of formal methods for high integrity systems
not by producing new methods but by integrating formal methods into existing development and
assessmant practice, demostrates an approach to formal methods of requirements analysis

[BRU97].

Statechart [DHA87] is another effective method to deal with functional requirements,
statechart mark requirement as node and then make chart to trace and validate them. Statechart

make things easy to use chart instead of formal expressions.

CPN [MEF76] and RSML [WOL94] are also effective formal methods. By using these
methods, requirement analysis can be more easy and the quality of requirements specification
can be improved. However, the three methods described above have shortcoming — in some field,

they can not be used due to their mathmetical nature.

SIS-RT [KUR97] is an improved method based on the three methods above, SIS-RT has
three views; Inspection View, Traceability View, and Structure View. Inspection View of SIS-RT is
designed to partially automate the software inspection process so that the burden of software
inspection may be reduced. Requirement traceability analysis, which is considered as one of
important activities of software V&V, is supported through Traceability View of SIS-RT. Also,
Structure View of SIS-RT supports that the analyzer can easily specify a system using a formal
specification method. By the three view, this method suggests an integrated approach with

inspection and formal methods in order to support easy inspection and effective use of formal

specification method.

Semi-formal methods are also introduced recently, they are based on special requirement
languages, normally “Graphic” languages. GRA (Graphical Requirements Analysis) [NIH98] is a

typical semi-formal method. GRA is a framework that describes a function into graphic logic

18

based with a structured form, by the predefined graphic symbols this framework can be used to
analyze and design functional requirements. Graphical expressions can be understood more
easily than formal language, so semi-formal methods are better way to deal with functional
requirements. However, semi-formal methods are more difficult to master and when we translate
textual requirements from customers to semi-formal, we may lose some information. Traditionally,
and most common today, is that requirement specifications are written as text only, sometimes

illustrated with figures.

Review and analysis methods may control functional requirements well. By the work of
experts and customers, we can review requirements specification according to a pre-established
checklist, thus we can find things wrong. But establishing an appropriate checklist is more difficult
than it seems to be, considering the customers are not computer experts, perhaps the review
should hardly reach the target. Tracing and analysis téchniques can be useful in the development
process, but it cannot tell if the requirements are what customers “exactly” want, and, it brings

more additional work to the development process.

Use Cases [OBJ02] is another way to develop functional requirements. Intergrated with
UML, Use Case is a powerful tool to develop functional requirements. Use case describe the

senario users may perform and thus be more interesting to customers.

In [BUL96] a method for feature specification, design and validation is presented. This
method uses USM (Use Case Map) [ISO89] for the design and documentation of features, uses
LOTOS [AMYO00] for the formal specification of features and for their formal verification. USM
allows user to design senario visually, customers will master it soon and then use it to tell what
they reaily want. LOTOS is an algebraic language with a history of applications to validation of

distributed systems in general and to feature interaction detection in particular (see[KAM98],

among an extensive literature).

A relational model for formal Object-Oriented requirements analysis is presented in [ZHI03].
This model uses use case and UML to analyze requirements and give a serial accurate

mathmatical expressions.

19

As mentioned above, there is no perfect method that can be used in any case. Semi-formal
methods are payed more and more attention because of their advantage, but traditional review
and tracing methods are still useful in development process, especially when we decide to write

requirement specifications mainly in textual mode.

3.4 Validation & Verification of Functional Requirements

Validation and Verification of functinal requirements are important work have to do. IEEE
standards (IEEE 1012, IEEE 1012a, IEEE 1059) [IEE90] give guidelines in how to validate and
verify the software. Normally, when we deal with functional requirements, we pay attention to the

following:
e Does the requirement specification include all the functional requirements of customers?

e Does the requirement specification make thing clearly to all the relevant person,

including costomers, designers, developers?

e How to verify the system implemented? How can we know wether the system is just the

thing described in requirement specification?

Requirements validation is the process of establishing the adequacy, completeness and
consistency of a requirements specification. There are five standard approaches to evaluate
adequacy, completeness and consistency of a requirements specification regarding the users

needs and expectations:
1. conducting reviews of the requirements specifications;

2. building and evaluating a prototype;

3. running a simulation;

4. using test and analysis functions intrgrated in specification tools/automated completeness

and consistency analysis.

20

Test is the most common way to validate the functional requirements. System test is
performaned to ensure all the functional requirements are implemented in the software system
and no additional function is implemented. Test actives(unit test, integrated test and system test)
must be preformaned in the whole development process to validate functional requirements.
Different development processes have different test strategies, for instance, in trational Waterfall
model, testing is the phase between coding phase and maintenance phase, but when we use XP
process as our development process, we will find testing is among all the phases of the process.
In this view, we can say different development process bring difference to functional requirements

validation and verification.

Besides testing, many methods were introduced to deal with these problems. To validate
the requirements, tarditional review and tracing methods are used, and, as new methods, GRA
(Graphical Requirem nt Analysis) and methods using model are introduced recently. GRA uses a
graphical semi-formal symbols to analyze and validate functional requirements while methods
using model focus on the textual specification and use model to validate it [NIH98]. StateChart,

CPN and RSML are all used as effective v&v harness [DHA87] [MEF76] [WOL94].

Function points review [MAUO1] is a traditional method to validate and verify functional
requirements. Requirements are numbered with a unique number so that they can be traced in
the whole development process. In traditional development process, functional points review is a
good method because functional requirements are not changed much in the whole development
process, we can use requirements as the basis to check whether the system implement all the
functional requirements. But function points review have its own shortcomings, the obvious one is

we cannot prove the requirement specification is correct, all the thing it can prove is the system is.

V&V of functional requirements are related with process also. In [NUNO2] an emergence-
driven software process for agent-based simulation is presented; the process clarifies the
traceability of micro and macro observations to micro and macro specifications in agent-based
models. In this paper, the concept of hyperstructures was used to illustrate how micro and macro

specifications interact in agent-based models.

21

Formalizing, in total or part, can be used to validate and verify functional requirements.

Because of the complexity of the V&V process, the formal methods have to be supported by tools.

3.5 Tools

Many method metioned above are supported by tools, for example, SCR (Software Cost
Reduction) tabular notation include a set of case tools to develop formal requirements
specifications[NGL94]. Paper[NGL94] uses these tools to develop, verify and test formal

functional specifications.

Now many tools were developed to help to analyze and validate requirements. Tools make
requirements analysis process clear and under control. Commercial tools such as Rational
Enterprise Suite has been used commonly in many company, it is powerful and suit for the team
development, but it's expensive on the other hand. Some free tools which can be gotten with no

charge are also useful and used by research institudes, schools and some company.

RAST(Requirement Analysis Support Tool) is presented by Seo-Young Noh, Shashi K.
Gadia in their article [SEO99], this tool bases on linguistic information. By using RAST system,
we can expect that requirement engineers can communicate with each other in common
notations, and use logical expressions rather than using requirement specifications written in

natural language.

Rational RequisitePro is another good requirements support tool, it can be integrated with

other products of Rational and presents good flexiblity.

Each tool has its own benefits and certainly it's shortcoming. When we decide to choose
one from them, the hardware support, the operation system ,the functions it presents and the

price are to be considered. A detailed compare among the tools lists in table 3-1[IEE99].

In this Chapter, we have reviewed the role of functional requirements in the software

development process, and have surveyed the existing methods for specifying, validating and

22

verifying the functional requirements. In the next Chapter, the role of the non-functional

requirements and the methods for their specificaton are introduced.

23

ve

psywii
ZEUIM 98X |00} AJjiqeaoey; sjuswalinbey| Aid sweisAS HOILVYDI 1ay
SO%en
ZEUIM
XN Odd OHVdS 98X 8}iNs |00} UOHEINWIS pue sjuswalinbey|uonelodio) 21607 Jusdsy 0002-aad
SO%en
CEUIM
Xiun Ddd DHVJS 98X 8JINS |00} uolEINWIS pue sjuawaiinbay|uoneiodion) 01607 Weosy| 001-aay
Xiun DHYdS ajqgejieae Jabuo| oN "|o0} AYljiqesoe.) sjuswalinbay [000}04d aorl] -y
(SSD) "ou| ‘eremyos
ZEUIM 98x| PJOM HOSOIDIN Yyum pajesBaiul sl jey; [00) aoel) sjuswaiinbay ® swolsAS Ayend) yaiinbaigsd
[euolieulaiu)
a|qejieae Jabuo| ON °|00} AlljIqesdrl) sjuswalinbay $921n0saYy Jaindwio) JIDAD-OHT
cEUIM
9LUIM OSIY-vd 98X
Xiun| 0009SH SdIN O4HVdS 1Y seoe|dey |00} Ayjigesdel; sjuswseinbey alemdiyo pejelbeluj 1d3ONODO!
sLe|0S
ZEUIM
9LUIM (SSD) "ou| ‘esemyos
xiun 0009SY 98X DHVdS |oo} Alljiqesoel; sjuswalinbay % swislsAg Ayenpd SHO0a
‘Juswalinbai e jo Led se uopeLwIoUl
Xiun 0009SH| 1ay1o Aue pue swelsbelp ‘ssjqe) ‘si@ayspeaids ‘sydelb ‘eseqeiep (swajsAs
CEUIM XVA 98X QHVYdS sy uiyum Buuioss Jo ejqedes |00y Juswabeuel sjuswalinbay|esemyos painonis) 1Sel DIH/IT1AVHD
‘ssa04d
uoneoyliaa pue ubisep weisAs ‘Buljspowl Joineysq ‘Juawsbeuew
sswalinbai uawdojensp esodoid pue juaswdojersp
ZEUIM 1deouo9 o shep i1saijies ayy wody whipeled Buliesuibus swelsAs
9LUIM 08X sy} spoddns 3 "joo) 38y Bunesuibus swelsAs 9joAd-ajlj [in4 di09 yoaup 340D
(gL
ZEUIM SdIN BYdly 98x joo} Ajjiqeaoel; sjuswsaainbay| ou| ‘siep|ing ABojouyos]| Wy-laqien

sjoo} ay} Buouwie aledwod :|-g ajqel

Ge

Xiun (1lonles)DYVYdS Buiieauibug
ZEUIM (1ua10)98x 100} AljIgeaoes; sjuswalinbay umo.g aukpala] 1H-911X
"ou|
ZEUIM 98X |00} AlljigeaoRl) Sjuawalinbay| uopewolny souelduwion) SUIT JeUA
9LUIM
ZEUIM 98X joo} Aujiqeasel; sjuswalinbey 3asi laoel)|
"aIeMYOS au} yim iayiabo) suoissiw s,WwaisAs ay) a1ejdwos
yoiym ‘weisAs e Jo sped (918 ‘olueyosW ‘OlNeIPAY ‘01U0I080)
aiempiey pue (Uewny) [enuew ay} os|e g ‘asemyos Ajuo
LINUIM 098X 10u BuiBeuew pue Bujziiesal Ul noA sisissy "SWalsAS 104 |00] av sjol sjo]|
"$]00} ISV pue Josloid ‘26 8210
XN-dH 0] saoeyuaiu| ‘Bujuoiyped feinonais ybnoayl sidesuoo mel WoJj
1NUIpA subisap |anol-WaSAS JUBWINO0P pue pjing ‘eziuebio ‘ainides saibojouyos |
SUBIOS| OSIH-Vd 98X QHVJS| 01 pasn si (31v1S) sieaulbug 10} [00] uolBWOINY [9A97 WelSAS al - odas 31VIS
sjuswalnbal
jo snjels Bunsey pue juawdojensp sy Buoel) sepnoul
Sly '8po9o 921n0Ss pue uoljeiuswnoop BuiAuedwoosoe sy ybnoiyy
109(o1d arempiey/alemyos e Jo sjuswealinbal ayy Bunjoel) Jo} "OU| ‘S8]BI00SSY
Xiun DHYdS| uonepunoj ssjdwo?) "(S1H) SwaisAg Aujiqessel] sjuswelinbay aleple A\ 01UO0L09|] S1Y
cEUIM
9LUIM 98X
XIun| 0009SH SdIN OHVdS| “1onpoid 1d3ONOD9! 993 aremyos Aljiqesose.; sjusweiinbey alemdiy) pajeldeyu W1
ZEUIM SdIN Budly 98X 1001 Ajjjigeade.; sjuswalinbay 2IBM)OS |BUOlIRY oidausinbay

Chapter 4 Non-Functional Requirements

4.1 Introduction

According to IEEE standard [COM97] , non-functional requirement is defined as “ a software
requirement that describes not what the software will do, but how the software will do it, for
example, software performance requirements, software design constraints, software external
interface requirements and software quality attributes. Non-functional requirements are difficult to

test; therefore, they are usually evaluated subjectively.”

NFRs are described in [BOE78] as Interface requirements, Performance requirements,
Operating requirements, Lifecycle requirements, Economic requirements and Political
requirements; while in another view, NFRs can be classified as accessibility, adaptability,
controliability, etc. Non-functional requirements are always related to software quality factors. Not
long ago, Non-functional requirements had yet been neglected by the requirements engineering
practice and research. But recently, with the need of building high-quality software growing, an
increasing trend to build better software systems has highlighted the need to take non-functional
requirements more seriously. Non-functional requirements were talked about by more and more
people, many new framework and method to identify, control and manage NFRs were introduced,

and many support tools were applied in the real development process.

From the SQA point of view, Non-functional requirements are usable descriptions of a
software system. We can use NFRs framework to manage Non-functional requirements and thus

improve the quality of the software system.

Non-functional requirements are hard to be measured directly. Whether or not a product
meets its functional requirements is pretty straight forward. Either the product correctly responds
to an input or it does not. Moreover, there are several notations for defining functional
requirements precisely and unambiguously, to ensure that such requirements are testable. But to

the NFRs, NFRs are implicit attribute of the system, we can not easily judge a system meet the

26

NFRs or not, for example, how can we say a system is “fast enough” or “robust enough™? An
available way to make NFRs be measured is to use an approximate range to define the Non-
functional requirement: for instance, we can define a Non-functional requirement like this: “The
response time can not be increased more than 10% while the system used by 200 users than by
1 user”. That means you must know and document the response time of the situation when only 1
user use this system, than you can use this as the basis to check if the specific Non-functional
requirement is met. Another way is QFD [LCH94] (Quality-Function Deployment) method to

relate an immeasurable or hard-to-measure NFRs to one or more functional requirements.

Many Non-functional requirements conflict with one another. This conflict means it is hard to
build a product that maximizes both attributes. When this happens, we can use priority to help us
make decisions. Different Non-functional requirements have the different importance to end-users,

so we can rank them by priority. When we have two or more attribute conflicts, we can choose

the attribute that is prior to all others.

4.2 Sources for NFRs

NFRs (Non-functional requirements) are always related to software quality and are among
the most expensive and difficult to deal with [BRO87] [DAV93] [BRE99][CYSO01]. In real world,
NFRs arise from the operating environment, the customers, and competitive products [RUTO1].

We can classify the sources for NFRs as follows:
® System Constraints:

Software system always depends on some constraints, for instance, the operation system,
the hardware on which system must depends, the development language system must use. All
these constraints should be built into software system and thus constraints are origin of NFRs

[MALO1].

® User Objectives, Values and Concerns:

27

in establishing run-time qualities for a system, it is important to identify all users (including
other systems) that will interact with the system, and understand what quality attributes they care
about. Sometimes a quality attribute may be a concern to one user, but it maybe a value for the
other. Therefore, it is useful to perform direct elicitation of the values and concerns for

customers [MALO1].
® Development Organization Constraints:

In product development, constraints placed by upper levels of management typically take
the form of required time-to-market of the application or release and/or fixed development
resources. When both variables are fixed, the feature requirements have to be strictly scoped.
This shows up in what functionality is scoped for the current release and what is deferred, and in
driving trade-offs among the quality attributes of the system. Other factors of the development
organization, such as the background and skill-set of the engineers, may also place constraints
on what the development organization can accomplish especially given other constraints like

time-to-market.
® Development Organization Objectives, Values and Concerns:

Stakeholders in the development organization include strategic management (e.g., general
manager and R&D/IT manager), program and project managers, architects, developers, quality
assurance (testers), marketing and manufacturing engineers, etc. Their objectives, values and
concerns may relate to the business performance, schedules, productivity and effectiveness,
work-life balance, etc. For example, strategic management establishes the product portfolio plan,
including planned releases (which products in what timeframe). The architects and technical
managers may translate those portfolio objectives into development-time quality requirements
such as extensibility, evolvability, and reusability [MALO1], knowing that the portfolio cannot be
accomplished without these characteristics. Developers may be concerned that reuse artifacts in

fact deliver the qualities their particular product requires. And so forth.

® Competitors and Industry Trends:

28

Benchmarks of competitors’ processes (e.g., how many products they release per year, with
how many people) and industry trends, may drive the organization to adopt more aggressive
productivity objectives which may in turn translate into development-time qualities such as

evolvability and reuse.

Once you have worked with stakeholders to gather their requirements, these needs to be
documented in such a way that the architects, designers and implementers can all understand

them and create a system that fulfills the requirements.

4.3 NFRs and Quality Models

When we say NFRs, what we mean is what quality targets should the system achieve, so
we depend on software quality models to describe NFRs. Software quality models are used to

determine to what extent software components satisfy the requirements of a given context of use.

Some software-centered quality standards have been proposed [ISO99][IEE92][ROM85].
Although each of them has its own specifities, some guidelines are common: a framework for the
whole quality assessment process exist; software quality characteristics are identified and defined
in a hierarchical manner; etc. A set of ISO/IEC standards are related to software quality, being
standards number 9126 (which is in process of substitution by 9126-1, 9126-2 and 9126-3),
14598-1 and 14598-4 the more relevant ones [ISO99] which we have discussed in details in
section 2.3. The main idea behind these standards is the definition of a quality model and its use
as a framework for software evaluation. A quality model is defined by means of general
characteristics of software, which is further refined into subcharacteristics in a multilevel hierarchy:
at the bottom of the hierarchy appear measurable software attributes. Quality requirements may

be defined as restrictions over the quality model.

The ISO/IEC 9126 standard states that characteristics at the top of the hierarchy are:
functionality, reliability, usability, efficiency, maintainability and portability. These characteristics
can be separated into accuracy, compliance, interoperability, security, suitability, faults, maturity,

recoverability, learnability, operability, understandability, analysability, changeability, stability,

29

testability, adaptability, installability, replaceability. A detailed description of this is demostrated by

Table2-1 in the Chapter2.
We can classify NFRs into three classes:

° Product-Oriented Attributes: Performance, Useability, Efficiency, Reliability, Security,

Robustness, Adaptability, Scalability, Cost;
L Family-Oriented Attributes: Portability, Modifiability, Reusability;

] Process-Oriented Attributes: Maintainability, Readability, Testability, Understandability,

Integratability, Complexity.

The reason why we classify these NFR attributes is that different roles related with the
software, such as software developers or customers, concern different class. Software
developers tend to pay attention to family-oriented and process-oriented attributes. These
attributes have noting to do with saving money during development, testing, and maintenance.
While customers may only pay attention to product-oriented attributes, because they just want a
product which is cheap, robust, efficient, easy to install and operate. The maintainancibility,

reusability and etc. normally are not the factors they concern.

4.4 Dealing with Non-Functional Requirements

When surveying existing approaches to NFRs, we distinguish them according to their

support for different tasks: elicitation, documentation, and architecture alignment.

4.4.1 Elicitation

An important step in achieving successful software requirements and products is to achieve
the right balance of quality attributes requirements. This involves identifying the conflicts among

several desired quality attributes, and working out a satisfactory balance of attributes satisfaction.

Elicitation covers the following questions:

30

1. How to identify NFRs;

2. How to ensure consensus of all stakeholders (resolving conflicts among NFRs);
3. How to relate the NFRs, the FRs, and the architecture;

4. Major techniques for dealing with these questions are the followings;

5. Negotiation techniques. Examples for this technique are WinWin and structured client

reviews (SCRAM);

6. Decomposition.

4.4.1.1 Negotiation techniques

o USC-CSE WinWin system

The WinWin system[BOES94] is based on the win-win spiral model
(Figure 4-1), which uses the Theory W win-win approach to converge on a system’s next level
objectives, constraints, and alternatives.

2. Identify Stakeholders’
win conditions

3. Reconcile win
conditions, Establish
next level objectives,
constraints, alternatives.

1. Identify next-level
Stakeholders

7. Review, commitment
4. Evaluate product and
process alternatives.
Resolve Risks

6. Validate product
and process definitions

5. Define next level of product and
process - including partitions

Figure 4-1: The win-win spiral model

31

Figure 4-2 shows the negotiation model used by WinWin, in terms of its primary artifacts
and the relationships between them. Stakeholders begin by entering their Win Conditions, using
a schema provided by the WinWin system. If a conflict among stakeholders’ Win Conditions, an

issue schema is composed, summarizing the conflict and the Win Conditions it involves.

For each issue, stakeholders prepare candidate Option schemas addressing the issue.
Stakeholders then evaluate the Options, iterate some, agree to reject others, and ultimately
converge on a mutually satisfactory option. The adoption of this option is formally proposed and
ratified by an agreement schema, including a check to ensure that the stakeholders’ iterated win

conditions are indeed covered by the agreement.

Win Condition Issue
Artifact Involves Artifact
Covers Addresses
Agreement Option
Artifact Adopts Artifact

Figure 4-2: Win-Win Negotiation Model

In large systems involoving several dozens or more win conditions, it becomes difficult to
identify conflicts among them becausae it is lack of a common domain model which provides a
consistent semantic framework for all win conditions.The WinWin system provides us a model
that acts to facilitate understanding of one’s own and others’ win conditions, and also of the
relations among the win conditions. Understanding the win conditions in terms of domain

functions and attributes, is a major facilitator for determining plausible confiicts. Figure 4-3 shows

32

part of the WinWin software engineering environment (SEE) domain taxonomy. The system

enables stakeholders to negotiate common terminology as well as system requirements.

SEE

component-of has-attribute

SEE-attributes

SEE Infrastructure has-function

process
attribute

Integration tool

1B Core Fns

Object Management

SEE Usage Support

Domain
Modeling

Product lifecyel
support

subfunction

Product
Engineering Tools

product
atiribute

“Dev. Process
support

Process
Mgmt. Tools

@ Design Analysis

& Smulation

SEE-GEN:
Product -Generator

Testing

Figure 4-3: A portion of the SEE domain taxonomy

(The overall domain model has two components: a) a terminology database (not shown) that
provides a description of all key terms that are used in defining a win condition; b) the domain
taxonomy: a structured hierarchy of the domain entities and their attributes in the domain as well
as their process specific attributes.)

4.4.1.2 Decomposition Technique

Decomposition encompasses the refinement of NFRs into more detailed NFRs. A very
important aspect of non-functional requirements decomposition using the NFR
Framework[CHUQQ] is that, as far as NFR softgoal are refined into more detailed ones, it is
possible to identify interactions between non-functional requirements. These interactions include
positive and negative contributions and have a critical impact on the decision process for

achieving other non-functional requirements. A suitable way to deal with such complex

33

interdependencies is to assign priorities to non-functional requirements in order to make

appropriate tradeoffs among NFRs.

For instance, Figure 4-4 shows a decomposition of non-functional requirements using the
NFR Framework. The goal security of information is decomposed into the subgoals integrity,
availability, confidentiality through an AND type of contribution (i.e. only if all subgoals are met the
overall goal is achieved). While the goal system performance is decomposed into throughput and
response time. Interestingly, it is necessary to address interactions between different kinds of
non-functional requirements even though the non-functional requirements were initially stated as
separate requirements. Note that cryptography contributes negatively (show as “”) for system
performance. Since the NFR Framework facilitates the unde.rstanding of what a particular non-

functional requirement means.

Securiv] Enluo|

[rerformunce] System|

C2

IR R I

Confidentialits [Lnfu] # . Rusponge e
L4

. “Threughpu
Avalabalig | bndw &

Authwrization fhitef Crvplography| Inlo|

Legend ‘
NER Goal - Cparatninalizating Goal A !
. 1~
: And

Hur

Figure 4-4: Decomposition of non-functional requirements using the NFR Framework

34

4.41.3 Operationalization Technique

Formally speaking operationalization is a process that maps declarative property
specifications to operational specifications satisfying them.[EMM02] The operationalization can
be represented in two different ways. The fist one is called dynamic operationalization. This type
of operationalization can be faced as those that ask for abstract concepts and usually calls for
some actions to be carried out. The second one is called static operationalization and usually
expresses the need for some data to be used in the design of the software to store information

that is necessary to satisfy NFRs[CYSO01].

4.4.2 Documentation

We have realized the importance of NFRs, in order to deal with and build them into software;
we have to document them first. To document NFRs, we have to solve at least two problem:
“How to describe NFRs” and “Which additional information is necessary to deal with NFRs”.
Article [MRB95] give an answer to the former, it distinguish different facts on how to describe

NFRs, namely concerns, system and environmental properties relevant for the NFR.

In [MRB95], each NFR attribute (performance, dependability, security and safety) should be

identified with taxonomy (See Figure 4-5):

4 Concerns — the parameters by which the attributes of a system are judged, specified

and measured. Requirements are expressed in terms of concerns.

Attribute-specific factors —properties of the system (such as policies and mechanisms
built into the system) and its environment that have an impact on the concerns. Depending on the
attribute, the attribute-specific factors are internal or external propetties affecting the concerns.
Factors might not be independent and might have cause/effect relationships. Factors and their

relationships would be included in the system’s architecture:

Performance factors — the aspects of the system that contribute to performance. These

include the demands from the environment and the system responses to these demands.

35

4 Dependability impairments — the aspects of the system that contribute to dependability.
There is a causal chain between faults inside the system and failures observed in the
environment. Faults cause errors; an error is a system state that might lead to failure if not

corrected.

Concerns
n Attribute- Intemal/External
Attributes specific == Cuues/Rffect
factors
Analysis/Synthesis
Maethods Procedures/ Training
Development/Execution

Figure 4-5: Generic Taxonomy for NFR

@ Security factors — the aspects of the system that contribute to security. These include

system/environment interface features and internal features such as kernelization.

@ Safety impairments — the aspects of the system that contribute to safety. Hazards are
conditions or system states that can lead to a mishap or accident. Mishaps are unplanned events

with undesirable consequences.

4 Methods — how we address the concerns: analysis and synthesis processes during the
development of the system, and procedures and training for users and operators. Methods can
be for analysis and synthesis, procedures and training, or procedures used at development or

execution time.

Scenarios have been advocated as an effective means of acquiring and validating
requirements as they capture examples and real world experiences that users can understand

[CPQ94]. Figure 6 illustrates the whole process of a Scenarios Method.

36

Paper [ASU98] proposes an analysis method that describes scenario templates for NFRs,
with heuristics for scenario generation, elaboration and validation. The method contains a
template for each high level NFR with embedded heuristics for scenario creation, validation and
benchmark assessment by metrics. The templates give process guidance as well as scenario
knowledge representation schemas. Templates for each high level type of NFR describe the
necessary contents of a scenario that may be either generated or captured, an example scenario,
validation guidelines for using the scenario in conjunction with other representations, and metrics
for quality assessment. As many NFRs interact, choosing one solution may frequently adversely
affect another property. To help tracing possible knock-on effects the method provides a
comparison matrix as an aid memoir to trace interactions between NFRs. When interactions are
found, these can be reflected in scenarios as a record of the problem or entered into the design

rationale as synergistic or conflicting criteria.

,,.a-'-"" UgersThsigners
Asmismemat

E

Brovedurss

Suggedd
adrics

realwndid
xuanples

2: Dstermine
Anvessmani
Meirics

- gwxmiu | NFR Temphites
¥ K/
Captuce Guiddines 7

Heuristics

Scenarios

4 Roaless
NFRs &
Elubuonte
Reyuirenwmt;

Pridatypes andar
Aachitectural Designs

| Sysiem Repireseniations

I Renpuiremenits Spocification

Figure 4-6: NFR Analysis Method

37

4.4.3 Architecture Alignment

When select a architecture, we have to take NFRs into acount. But how can we do this?
Article [RKA99] presents a model named ATAM (Architecture Tradeoff Analysis Method) to
provide a systematic method of evaluating scenarios against an architecture. ATAM have six
steps to select architecture: Scenario brainstorming, Architecture presentation, Scenario
coverage checking, Scenario grouping and prioritization, Map high priority scenarios onto
architecture and Perform quality attribute-specific analysis. During these steps, the analysts may
discover that the existing architecture is inadequate. As a consequence, architectural alternatives
may be suggested, and these will such as: more architectural information, scenarios,
environmental information, platform information, details about constraints, or justification for

requirements.

Paper [DGROO] describe the way to using Design Partner in architecture alignment. Design
Partner is now being used by many project and proved to be a useful tool to reuse and buiid a
stable system. Paper [DGROO] presents the way in how to use Design Partner to select

architecture while taking NFRs into account.

4.5 NFR Framework

NFR Framework is the first technique developed at the University of
Toronto[LCHI5][LCI5][JMY92] to represent component-offered QoS (Quality of Service)
contracts. NFR Framework and its associated method help the service developer to reason about
the relative merits of one design solution over another with respect to their impact on particular
QoS parameters and, also to reason about conflicts and synergies amongst QoS parameters
themselves (e.g., the frequent conflict between space and time performance). In summary, the
NFR Framework and its associated method helps designers reason about the tradeoffs between
NFRs (including non-functional QoS parameters) when selecting amongst or combining design

solutions.

38

NFR Framework can help to detect the architecture weakness, give the reason of weakness
and guide to chage the architecture to improve the quality of software. After NFR Frameworks
ware introduced in 1995, many new methods which depended on NFR Framework were
developed, some of them are Process-Orliented while other are Goal-Oriented. Process-
Oriented methods focus on process and easy to intergrated into develope process, while Goal-

Oriented ones uses NFRs as goal to guide the refinition of reflect process.

Normally, NFR frameworks use priority to evaluate the architectures, different framework
use different factors and metrics. Generally, NFR Framework requires the following interleaving

tasks, which are iterative:
1. Develop the NFR goals and their decomposition;
2. Develop architectural alternatives;
3. Develop design tradeoffs and rationale;
4. Develop goal criticalities;
5. Evaluation and Selection.

Lawrence Chung and Nary Subramanian present a framework POMSAA (Process-Oriented
Metrics for Software Architecture Adaptability) [LCHO1] to provide numeric scores representing
the adaptability of a software architecture as well as the intuitions behind these scores. In
POMSAA framework, the intuitions behind the architectural adaptability scores are traced back to
the "whys" of the architecture, namely, the requirements for which the architecture exists in the
first place. POMSAA adds a metrification step to the NFR Framework and applies it at the
architecture level. In the metrification step, either an automatic algorithm or a semi-automatic

procedure is used to propagate metric values up the SIG to the NFR whose metric is to be

computed.

Paper[NIX00] presents a performance requirements framework (PeRF). The purpose of
PeRF is to deal with performance requirements of Information System, mainly the management

of performace requirements. PeRF integrates and catalogues a variety of kinds of knowledge of

39

information systems and performance. These include: performance concepts, software
performance engineering principles for building performance into systems, and information

systems development knowledge. All this knowledge is represented using NFR framework.

A method named SA3 on generating adaptable Ul is presented in [NAR99]. Ui of a software
system is treated as a software system itself in [NAR99], then SA3 is presented to use the
principles behind the NFR Framework, particularly the latter's knowledge base properties, to

automatically generate adaptable architectures, which can then be completed by the Ul developer.

The NFR framework was one significant step in making the relationships between quality
requirements and intended decisions explicit. The framework uses non-functional requirements to
drive design to support architectural design, and to deal with change. Article [DAN99] presented a
way to design using patterns. In this article the authors proved it is possible to use patterns to

design software system satisifing NFRs.

4.6 NFRs and Software Architecture

NFRs are suggested to be built into software architecture [LCH00]. NFR framework

presents ways to reflect NFRs into components of software architecture.

Paper [FRA98] presents an approach for incorporating non-functional information of
software system into software architectures. In that paper, components present two distinguished
slots: their non-functional specification, where non-functional requirements on components are
placed, and their non-functional behavior with respect to these requirements. And, connector
protocols may describe which non-functional aspects are relevant to component connections. A

notation to describe non-functionality in a systematic manner was used to analyze aspects was

described also.

Achieving an acceptable architecture requires an iterative derivation and evaluation
process that allows refinement based on a series of tradeoffs. Researchers at the University of

Texas at Austin are developing a suite of processes and supporting tools to guide architecture

40

derivation from requirements acquisition through system design. The various types of decisions
needed for concurrent derivation and evaluation demand a synthesis of evaluation techniques,
because no single technique is suitable for all concerns of interest. Two tools (RARE and
ARCADE) can deal with NFRs were presented in paper [BAR02]. RARE guides derivation by
employing heuristics knowledge base, and evaluates the resulting architecture by applying static
property evaluation based on structural metrics. ARCADE provides dynamic property evaluation

leveraging simulation and model checking.

Paper [SMI97] presents an architecturally based software reliability model and underlines its
benefits. The model is based on an architecture derived from the requirements including both
functional and non-functional requirements and on a generic classification of functions, attributes.
The model accounts explicitly for the type of software development fife cycle. It can incorporate
any type of prior information, such as results of developers' testing or historical information on a
specific functionality and its attributes, and is ideally suited for reusable software. By building
architecture and deriving its potential failure modes, the model forces early appraisal and
understanding of the weaknesses of the software, allows reliability analysis of the structure of the

system, and provides assessments at a functional level as well as at the system level.

Also, UML is used to reflect NFRs into software architecture. MoFoV is presented by paper
[BENO2], which is a support method for the design of complex systems. MoFoV is devoted to a
functional view of systems. Assigned to technological contexts, this method is based on two
generic models (which vary depending on each specific application domain). The first (MOGET)
is dedicated to systems treatments (in terms of functions) whiist the second (MOGEP) deals with

the potential properties of those systems.

In this Chapter, the role of non-requirements in software development process has been
outlined, and the methods and tools for specifying non-functional requirements (NFR) have beed

surveyed. The conclusions of this report are summarized in the following Chapter.

41

Chapter 5 Conclusions

5.1 Conclusions

This Major Report presents a survey on functional requirements and non-functional
requirements. The functional and non-functional requirements play important role in software
development. The research in the area of functional requirements is extensive, and recently the
non-functional requirements (NFRs) have been paid more and more attention due to the higher

software quality expectations of the customers.

The concepts of functional and non-functional requirements are introduced, methods to deal

with them are also described, and tools for requirements engineering were compared.

The problems of functional and non-functional requirements lay on one of the following
aspects: identify, document, validate and verify. In this report, we introduce the identify, document,
validate and verify of functional requirements. As to NFRs, we introduce methods to identify and
document NFRs, and the ways to deal with NFRs. The future research work in the area of NFRs

has to be concerned with their validation and verification.

42

Chapter 6 References

6.1 References

[AMY00)

[ASU98]

[BAROO]

[BARO2]

[BAS98]

[BENOZ2]

[BOE78]

[BOE94]

Amyot, D., and Logrippo, L. “Use Case Maps and LOTOS for the Prototyping and
Validation of a Mobile Group Call System”. To appear in Computer
Communications, 23(8),2000.

A. Sutcliffe and S. Minocha, "Scenario-based Analysis of Non-Functional
Requirements”, REFSQ’98, 1998.

Barbara Paech, Allen H. Dutoit, Daniel Kerkow, Antje von Knethen, Functional
requirements, non-functional requirements, and architecture should not be
separated—A position paper, 2000.

Barber K.S., Graser T., Holt J., Enabling iterative software architecture derivation
using early non-functional property evaluation. {EEE International Conference on
Automated Software Engineering, 2002. Proceedings. ASE 2002. 17th, P 172 =
182.

Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice,
Addison-Wesley, 1998.

Benaben F., Antoine C., Pignon, J.-P., A UML-based complex system design
method MoFoV (Modeling/Formalizing/Verifying) Systems, 2002 |EEE
International Conference on Man and Cybernetics, Volume 3 ,P 6 pp. vol.3
Boehm, B. W. et al, Characteristics of Software Quality, TRW series on Software
Technologies, Vol. 1, North Holland, 1978

Boehm, B., Bose, P., Horowitz, E., and Lee, M., “Software Req‘uirements As
Negotiated Win Conditions", Proceedings of the First International Conference on
Requirements Engineering (ICRE94), IEEE Computer Society Press, Colorado

Springs Colorado, April 1994, pp. 74-83

43

[BRE99]

[BRO87]

[BRU97]

[BUL9S]

[CHUO0O0]

[COMO7]

[CPO94]

[CYS01]

[DAN99]

[DAV93]

[DGROO]

[DHA87]

Breitman,Karin Koogan, Leite J.C.S.P. e Finkelstein Anthony. The World's Stage:
A Survey on Requirements Engineering Using a Real-Life Case Study. Journal of
the Brazilian Computer Society No 1 Vol. 6 Jul. 1999 pp:13:37.

Brooks Jr.,F.P."No Silver Bullet: Essences and Accidents of Software

Engineering" IEEE Computer Apr 1987, No 4 pp:10-19, 1987.

Bruno Duterire and Victoria Stavridou, "Formal Requirements Analysis of an
Avionics Control System", IEEE Transactions on Software Engineering, Vol. 23.
No. 5. 1997

Buhr, R.J.A. and Casselman, R.S. Use Case Maps for Object-Oriented Systems,
Prentice-Hall, 1996.

Chung, L., Nixon, B., Yu, E., and Mylopoulos, J., Non-Functiona! Requirements
in Software Engineering. Kluwer Academic Publisher, 2000.

Computer Industry Daily reported on a Sequent Computer Systems, IEEE,
December 1997

C. Potts, K. Takahashi and A. I. Anton, ‘Inquiry-based Requirements Analysis’,
IEEE Software, vol. 11, no. 2, pp. 21-32, 1994.

Cysneiros,L.M., Leite, J.C.S.P. and Neto, J.S.M. “A Framework for Integrating
Non-Functional Requirements into~ Conceptual Models” Requirements
Engineering Journal — Vol 6, Issue 2 Apr. 2001, pp:97-115.

Daniel Gross, Eric Yu, From Non-Functional Requirements to Design through
Patterns, 1999.

Davis, A. "Software Requirements: Objects Functions and States" Prentice Hall,
1993.

D. Gross, E. Yu, “From Non-functional requirements to design through patterns”,
REFSQ’00, pp.86-97, 2000.

D. Harel, "Statecharts: A Visual Formalism for Complex Systems," Science of

Computer Programming, vol. 8, pp.231-274, 1987.

44

[EMMO2]

[FRAQ8]

[GRE98]

[GROYS5]

[IEEQ0]

[IEE91]

[IEE92]

[IEE99]

[1S089]

[1SO99]

[JCR95]

Emmanuel Letier and Axel van Lamsweerde, Deriving Operational Software
Specifications from System Goals, 2002

Franch X, Botella P., Putting non-functional requirements into software
architecture, Ninth International Workshop on Software Specification and Design,
1998. Proceedings, P 60 — 67.

Gready Booch, James Rumbaugh, Ivar Jacobson. 1998. The Unified Modeling
Language User Guide

Groundwater E.H., Miller L.A., Mirsky S.M. 1995. Guidelines for the Verification
and Validation of Expert System Softwre and Conventional Software. Survey and
Document of Expert System Verification and Validation Methodologies,
NUREG/CR-6316, SAIC-95/1028. Vol.1-7

IEEE Std. 610.12-1990. IEEE Standards Glossary of Software Engineering
Standards.

IEEE standard: Quality Characteristics and Guidelines for their Use, 1991

IEEE Computer Society. IEEE Standard for a Software Quality Metrics
Methodology. IEEE Std. 1061-1992, New York, 1992.

IEEE-1220 SE Tools Taxonomy - Requirements Analysis Tools, International
Council on Systems Engineering, 1999,

ISO, Information Processing Systems, Open Systems Interconnection, LOTOS
— A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour, IS 8807, Geneva, Switzerland, 1989 (E. Brinksma, Ed.).
ISO/IEC Standards 9126 (Information Technology — Software Product Evaluation
-Quality Characteristics and Guidelines for their use, 1991) and 14598
(Information Technology - Software Product Evaluation: Part 1, General
Overview; Part 4, Process for Acquirers; 1999).

J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas, "A tutorial introduction
to PVS" in WIFT95 Workshop on Industrial-Strength Formal Specification

Techniques, April 1995

45

[JMY92]

[JON91]

[KAMOS]

[KAN94]

[KUR97]

[LC95]

[LCHOO]

[LCHO1]

[LCH94]

[LCH95]

[LUI0Z]

J. Mylopoulos, L. Chung and B. Nixon, Representing and using non-functional
requirements: a process-oriented approach. IEEE TSE, Vol. 18, June 1992.
Jones, Capser, Applied Software Measurement, McGraw-Hill, Inc., 1991

Kamoun, J. and Logrippo, L. “Goal-Oriented Feature Interaction Detection in the
Intelligent Network Model”. In K. Kimbler and L. G. Bouma (Eds), Fifth
International Workshop on Feature Interactions in Telecommunications and
Software Systems (FIW'98), Lund, Sweden, Sept. 1998. IOS Press, 172-186.
Kan, Stephen, H., Metrics and Models in Software Quality Engineering, Addison-
Wesley Publishing Co., 1994

Kurt Jensen, “Coloured Petri Nets (Basic Concepts, Analysis Methods and
Practical Use Volume 1), Second Edition”, Springer-Verlag Berlin Heidelberg,
1997.

L. Chung, B.A. Nixon and E. Yu, Using non-functional requirements to
systematically support change. Proceedings Requirements Engineering 1995.

L. Chung, B.A. Nixon, E. Yu, and Mylopoulos,J. “Non-Functional Requirements in
Software Engineering”, Kluwer Academic Publishers 2000.

L. Chung, Nary Subramanian, Process-Oriented Metrics for Software
Architecture Adaptability, Proceedings of the Fifth International Symposium on
Requirements Engineering (RE’01), 2001.

L. Chung, Brian A. Nixon and Eric Yu, “Using Quality Requirements to
systematically develop quality software”, fourth international conference on
software quality, 1994.

L. Chung and B.A. Nixon, Dealing with non-functional requirements: three

experimental studies of a process oriented approach. Proceedings of the 17th

ICSE, pp. 25-37, 1995.

"Luiz Marcio Cysneiros Julio César Sampaio do Prado Leite, Using the Language

Extended Lexicon to Support Non-Functional Requirements Elicitation, 2002.

46

[MALO1]

[MAUO1]

[MEF76]

[MRB95]

[NAR99]

[NGL94]

[NIH98]

[NIX00]

[NUNO2]

[OBJ02]

[PERO1]

Malan, R. and D. Bredemeyer, “Functional Requirements and Use Cases”,
October 2001.

Mauricio Aguiar, Caixa Economica Federal ,”Applying Function Point Analysis to
Requirements Completeness”, The Journal of Defense Software Engineering,
Feb 2001 Issue

M.E. Fagan, “Design and Code Inspections to Reduce Errors in Program
Development,” IBM system Journal, Vol. 15, No. 3, pp. 182-211, 1976.

M. R. Barbacci, M. H. Klein, T. Longstaff and C. Weinstock, "Quality Attributes”,
Technical Report CMU/SEI-95-TR-021, Software Engineering Institute, Carnegie
Mellon University, December 1995.

Nary Subramanian, Lawrence Chung, Adaptable User Interface Generation,
1999.

N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese, "Requirements
Specification for Process-Control Systems," |EEE Transaction on Software
Engineering, vol.20, no.9, sept. 1994.

Nihal Kececi, Wolgang A. Halang, Alain Abran. 1998. A Semi-formal method to
verify correctness of functional requirements specifications of cmplex embedded
system

Nixon, B.A., Management of performance requirements for Information systems,
IEEE Transactions on Software Engineering, Dec. 2000, P1122 - 1146,
Volume.26, Issue.12.

Nuno David, Jaime Simdo Sichman, Helder Coelho, “Towards an Emergence-
Driven Software Process for Agent-Based Simulation”, Multi-Agent-Based
Simulation Il, Proceedings of MABS 2002, Third International Worshop

Objective Engineering, Inc., “Modeling functional requirements with use cases:
frequently asked questions”,2002

Pere Botella, Xavier Burgués, Xavier Franch, Mario Huerta, Guadalupe Salazar,

Modeling Non-Functional Requirements, 2001

47

[PFL98]

[PRE97]

[RATO0]

[RKA99]

[ROMS5]

[RUTO1]

[SEO99]

[SMI97]

[SOW93]

[SOW95]

[STA97)

[TBO94]

[UMLO8]

[WEI93]

Pfleeger, S. L., Software Engineering - Theory and Practice. Prentice Hall, 1998.
Pressman, R. S., Software Engineering: A Practitioner's Approach (4th Edition).
McGraw-Hill, Inc. 1997

Rational Unified Process, Version 2001', Rational Software, Cupertino, California,
and Philippe Kruchten, The Rational Unified Process: An Introduction, 2e.
Addison Wesley, 2000.

R. Kazman, M. Barbacci, M. Klein, S.J. Carriere, S.G. Woods, “Expereience with
Performing Archietcure Tradeoff Analysis”; ICSE 99, pp.54-63, 1999.

Rome Air Development Center (RADC). Software Quality Specification
Guidebook RADC-TR-85-37, vol. Il, 1985.

Ruth Malan and Dana Bredemeyer, “Defining Non-Functional Requirements”,
2001, BREDEMEYER CONSULTING

Seo-Young Noh, Shashi K. Gadia, RAST: Requirement Analysis Support Tool
based on Linguistic Information, 1999.

Smidts C., Sova D., Mandela G.K., An architectural model for software reliability
quantification, PROCEEDINGS The Eighth International Symposium On
Software Reliability Engineering, 2-5 Nov. 1997 P 324 — 335.

S. Owre, N. Shankar, and J. M. Rushby "User Guide for the PVS Specification
and Verification System", Computer Science Lab, SR! International March 1993
S. Owre, J. Rushby, N. Shankar, and F. von Henke: "Formal verification for fault
tolerant architectures Prolegomena to the design of PVS", IEEE Transactions on
Software Engineering vol. 21 no. 2 pp. 107-125 February 1995

The Standish Group’s CHAOS Reports, Standish Group, 1994-1997

T. Boyce, "SafeFM case study report" Tech. Rep. SafeFM-018-GEC-1, SafeFM
project, January 1994

UML specification, OMG, 1998

Weinberg, Greland M., Quality Software Management, Vol2: First-Order

Measurement, Dorset House, 1993.

48

[WIN70]

[WOL94]

[XBUOO]

[ZH103]

Winston Royce, "Managing the Development of Large Software System."
Prqceedings of IEEE WESCON (August 1970), pp.1-9.

WolsongnNPP 2/3/4, “Software Work Practice Procedure for the Specification of
SR for Safety Critical Systems,” Design Document no. 00-68000-SWP-002, Rev.
0, Sept. 1991.ansaction on Software Engineering, vol.20, no.9, sept. 1994.

X. Burgues, X. Franch. "A Language for Stating Component Quality".
Proceedings of 14th Brasilian Symposium on Software Engineering (SBES),
Joao Pessoa (Brasil), October 2000, pp. 69-84.

Zhiming Liu, He Jifeng, Xiaoshan Li and Yifeng Chen, A Relational Model for
Formal Object-Oriented Requirement Analysis in UML, ICFEM 2003, 5-7

November, 2003, Singapore.

49

