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ABSTRACT
VERTICAL DYNAMICS OF RAILWAY VEHICLE-TRACK SYSTEM
Renguang Dong

A comprehensive finite element (FE) model of raiiway vehicle-track system is
developed to study the dynamic interaction between the vehicle and track. The
vehicle is represented by a lumped parameter system. The track is modeled as a
Timoshenko beam on discrete pad-tie-ballast supports. The tie is considered
either as a rigid body or a non-uniform beam. The rail-pad and ballast are
modeled as distributed spring-damper elements. The non-linear factors such as
loss of wheellrail contact, rail lift-off from the tie and tie lift-off from the ballast are
taken into account. A cutting and merging method along with a set of special
boundary conditions is established to extend finite length of track to infinitely long
track so that a vehicle can be modeled to travel on the track indefinitely with a
time-dependent speed. A numerical direct integréiion technique is employed to
solve the equations of motions of the vehicle and;_;t;ack systems. An adaptive
multi-point wheel/rail contact model is proposed and used to calculate the normal
and geometrical longitudinal forces due to irregularities in the wheel/rail contact
region. The developed FE model is validated using the experimental data
obtained from British Rail and Canadian Pacific (CP) Rail. The FE results such
as natural frequencies of concrete ties, the wheel/rail contact forces, the rail-pad
forces and dynamic strains in the rail, generally show good correlation to the
experimental data. The validated model is applied to investigate the
characteristics of impact loads due to wheel/rail tread defects such as wheel flats,

wheel shells and rail joints. The steady-state interaction between the vehicle and



track, and the dynamic force due to rail corrugations are also evaluated for high

speed operation.

The results of this study show that the impact load is maximum at the ties, and
is strcngly influenced by the axle load, vehicle speed, actual shape of the defect,
and rail equivalent mass. Elastomeric shear pads on the wheelset bearing, and
reducec rail-pad stiffness, can potentially reduce dynamic bearing force and tie
dynamic load, respectively. The magnitude of resonant force for venicle-track
system in a steady-state interaction mainly depends on the unsprung mass, tie
spacing, vehicle primary and track ballast damping, and rail stiffness. In the
presence of rail corrugation, the energy consumption due to longitudinal force
increases quadratically with the depth of rail corrugation. The dynamic contact
forces at neighboring wheels are influenced by each other and the basic
mechanism that controls such an interaction is the superposition of the dynamic
responses. Stable solution in the speed range 0 to 1440 km/h demonstrates the

effectiveness of the model for high speed simulation.

iii
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Parameters used to define irregularity of rail joint (see Eqs. 5.3 and
5.4)

Wheelset axle spacing

Tie bottom width along longitudinal direction
Total length of concrete tie

Length of haversine wheel flat

Rail-pad width along longitudinal direction
Total length of rail used in the calculation
Tie spacing

Total length of wheelset

Bogie mass

Car body mass

Tie mass per unit length

Sideframe mass

Rail mass per unit length

Track effective mass per unit length

Wheel mass

Leading wheel mass

Trailing wheel mass

Mass matrix

Axial force in rail (x direction)

The first peak impact load

The second peak impact load

The peak impact load located between P1 and P2 (see Fig. 5.2)
The first peak ballast ioad

The second peak ballast load

The first peak load on rail-pad
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Pp2 The second peak load on rail-pad

Pt The first impact load of the leading wheel at the rail joint

Piar The first impact lvad of the trailing wheel at the rail joint

Poas The contact force of the leading wheel before impacting (see
Fig.5.5)

Po1r The contact force of the trailing wheel before impacting (see
Fig.5.5)

Pc Wheel/rail contact force

PcT Wheel/rail contact force at the trailing wheel!

PcL Wheel/rail contact force at the leading wheel

Peq The first peak of wheel-rail contact force

Pc2 The second peak of wheel-rail contact force

Pi Vertical contact force on a element contact spring

P; Wheel/Rail maximum contact force directly caused by a

irregularity, where i may be L (leading wheel) or T (trailing wheel).
Pi.j Across-wheel contact force at Wheel j (L or T) due to initiating

force at Wheel j (L or T)

PL(x,t) Wheel/rait total contact force on leading wheel

Pm Maximum contact force

Po Static load per wheel!

Pp1 The first peak force between the rail and tie (Pad force)
sz The second peak force between the rail and tie (Pad force)
Pt(x,t) Wheel/rail total contact force on trailing wheel

R Wheel rolling radius

SG2,SG3,

SG4 Rail shear strains defined in ref. [107]

T Rail temperature



Timoshenko shear coefficient for concrete tie

Timoshenko shear coefficient for rail

Timoshenko shear coefficient for wheelset axle

Coordinate in the vertical direction

Kinetic energy

Vehicle traveling speed or potential energy

Vehicle critical traveling speed

Wave propagation speed in rail

Coordinate in the longitudinal direction

The vertical position on the cross-section of rail relative to neutral
plane

Ballast relative support height ("minus" for under-supported and
"plus" for over-supported)

Rail joint angle

FE beam shape function for u

Temperature coefficient of rail steel expansion

Wheel/rail geometrical contact angle in the longitudinal direction
FE beam shape function for ¢

The phase of initiating force (pj) relative to the input corrugation
The phase of across-wheel force (pj-) relative to the initiating force
The angle between a local and global coordinates

Shear strain of rail at the neutral plane

Non-dimension coordinate of FE beam element

Normal strain of rail at the vertical position of Y on the cross-
section

Displacement vector

Bogie rotational angle
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Oct Concrete tie rotational angle
¢ Rotational angle in a FE beam element
dfd The phase difference between the contact force and the

displacement wave of rail

Pct Mass density of concrete tie

Pw Mass density of wheelset axle

Pr Mass density of rail steel

A Corrugation wavelength

v Peak-peak depth of rail corrugation
Vet Possion's ratio for concrete tie

Vw Possion's ratio for wheelset axle

Vi Possion's ratio for rail steel
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CHAPTER 1
INTRODUCTION & LITERATURE REVIEW

1.1 INTRODUCTION

Railway transportation system has been in existence for about 170 years and it
is still a major mode of transportation all over the world. In the areas with large
populations such as in Europe, Asia and many develeping countries, railways
dominate both the passenger and goods transportation. Even though the
highway transportation system is very popular in North America, about 40%
(MGT) in U.S.A. and 77% (MGT) in Canada of goods transportation still depend
on railways [159]. Railway system is an economical, efficient and environment-
friendly transportation mode and it plays very important roles in the world

commerce and world development.

However, railway transportation system is under constant pressure to compete
with air and road transport systems. Worldwide attention, therefore, has been
directed towards improving the efficiency of railway operation in terms of speed
and load carrying capacity. In recent years, train speed has reached over 500
km/h [38]. At the same time, the load carrying capacity has been increased
significantly approaching 35 tons per axle [118]. These demonstrate that

railways will remain one of the major transport systems during the 21th century.

With the increase in operating speed and axle load, there is a growing concern
about the track system, its dynamics and dynamic vehicle/track interaction. In
recent years, significant attention and studies have been directed towards better

understanding of vehicle/track interaction in order to improve the vehicle and
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track design, reduce the cost of maintenance and assure safety. The complexity
is extreme, but the demands for increased speeds and greater load capacity,
which bring new problems of wear, fatigue and stability, have forced railway
operators and equipment suppliers to address these problems in a more

systematic and fundamental way.

A pictorial view of railway vehicle and track is shown in Fig. 1.1. The various
components of the vehicle/track system in the vertical direction is represented by
an schematic diagram in Fig. 1.2. Clearly, such a combined system is complex
not only because it involves in many components with wide range of mechanical
properti.es, but also because the dynamic variables are fi:nction of both time and
position. It is therefore, very common that the dynamic studies of the combined
system is divided into two subsystems and considered separately. These

subsystems are the vehicle system and the track system.

The study of the vehicle subsystem includes car body, secondary suspension,
bogie or truck, primary suspension, wheelset and rail which may be rigid or
flexible. Such a system is studied on tangent or curves track for rock and roli
dynamics, lateral stability (hunting) and curving performance. The track
subsystem on the other hand includes the rail, rail-pad, tie, ballast and subgrade,
which is mainly considered to study the rail and tie strength, the buckling of track
and the deterioration of the track geometry. In these studies, the dynamic
interactions between track and vehicle are either ignored or idealized as some
form of given functions. Such simplified approach is valid to some extend for
many of the investigations carried out to evaluate vehicle system design and

track design.



Figure 1.1 Railway vehicles and tracks
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Figure 1.2 Basic compositions of railway vehicle-track system
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With the increasing vehicle operating speed and axle load, the interaction
between the vehicle and track has become more pronounced than ever before,
and can not be ignored or idealized in some cases. Not only the high speed and
heavy load operation largely depends on the dynamic responses of the vehicle
and track system but also such operating conditions could cause damage to the
track and vehicle. A better understanding of the vehicle/track interaction is
therefore essential to carry out further development in this area. In the recent
years, considerable attention has been directed towards problems associated
with wheel and rail tread defects, the rail corrugations and wheel/rail wear and
noise. These problems and their influence on the dynamic behavior of vehicle
and track can only be investigated through comprehensive modeling of

combined vehicle/track system.

This investigation is aimed at developing a comprehensive vehicle/track model
as a tool to obtain an in-depth understanding of the interaction between vehicle
and track. The versatile Finite element (FE) method has been widely used in
many scientific fields and several commerciai FE software packages are
available. This method can conveniently deal with the complex structures and
boundary conditions so that the wheel and track can be considered more
realistically even at very high frequencies. However, it is difficult to use these
commercial FE software packages to simulate the vehicle/track dynamic
interaction if the vehicle is considered as a moving system on the stationary
track. A comprehensive FE model of the railway vehicle-track system has been
developed for this study. This development is a major contribution that provides
a practical approach to simulate a moving system on an infinite structure using

standard FE method.



Although such model can be used to study almost any aspects of railway
vehicle-track system, this study focuses on some important aspects of
vehicle/track interaction problems. Most damage to the vehicle and track is
caused by the dynamic forces generated at the wheel/rail interfface. Wheel and
rail irregularities such as wheel flats, wheel shells, rail joints and rail
corrugations are the major sources that cause severe dynamic forces. Railway
administrations are currently advocating them as priority areas in railway
problems. This study therefore, investigates the characteristics of the dynamic
forces due to these defects or irregularities, which may lead to a better

understanding and treatment of these problems.

In this study, the developed vehicle/track model is validated wherever possible
by comparing the simulated results with available experimental data. The
validated model is utilized to investigate the characteristics of impact loads due
to wheel tread defects such as wheel flats, shells and bolted rail joints.
Simulation is also carried out to investigate the steady-state vehicle-track
interaction forces and deflections. Finally, the dynamic forces due to rail

" corrugations are evaluated and discussed.



1.2 LITERATURE REVIEW

In the last three decades, extensive research work has been carried out on
various aspects of railway vehicle dynamics, with prime objective of increasing
operatin.g speed, imprdving safety, improving ride quality, and reducing wear
and maintenance. Table 1.1 lists the areas that are of concern in the study of
railway vehicle-track system. Among these, the items 1, 2 and 3 have been
studied extensively over the years where the vehicle and bogie system studies
consider idealized track and the track system studies consider idealized vehicle.
In general, the dynamic behaviors of these systems are well understood for most

practical purposes.

Items 4, 5 and 6 in Table 1.1, are of increasing concern with the advancement of
vehicle speed and load capacity. Some of these problem such as wheel flats
and rail joints have been of concern for some time but many aspects have not
been fully understood. Rail corrugations are also old problem but further effort is
required to search for their mechanisms of formation and development. So far a
satisfactory theory about the short-wave corrugation found on many fast lines

and transit system has not been established.

The last two items in Table 1.1 dealing with noise and ground-borne vibration
are considered new problems because of increasing concern for environmental

quality, especially on the transit systems.



TABLE 1.1 __PROBLEMS OF VEHICLE-TRACK INTERACTION

AREA OF CONCERN

Vehicle
(a) lateral stability
(b) vertical stability
(c) curving and derailment

Bogie and unsprung mass
(a) wheel bearings
(b) fatigue of axles, brake gear etc.

Steady-state response of track
due to a moving load

Steady-state vehicle-track interaction

Irregular running surfaces
of wheel and rail
(a) wheel flats
(b) out-of-round wheels
(c) wheel corrugation
(d) "long wavelength" rail corrugation
(e) "short wavelength" rail corrugation
(f) dipped welds and joints
(9) pitting, shelling

rREQUENCY (HZ)

0-20

0-500

0-1000

0-2000

(h) random wheel and rail irregularities

Track components
(a) fatigue of rail in bending
(b) railpads
(c) concrete ties
(d) ballast and track geometry

Wheel/rail noise
(a) rolling noise
(b) impact noise
(c) squeal

Structure-borne noise and vibration
(a) ground-borne vibration
(b) viaducts

0-1500

0-5000

0-500

REFS.

(58]

[157]

[2,17,19,21,
22,41,46,81
87,88,105,
106,113142,
151,158]

[12,108,144,
145]

[18,36,37,40,49,107)

[4,5]
[91]
[99-102]

[23,24,70,75,86,160]
[77,80,98,119]

[36,37]

[5,30]

[31]

(12,123,
131,149]

[33,43,112,125]



The literature in this field has been reviewed by many researchers and several
good surveys have been published. Knothe and Grassie [92] have recently
given a detail review of the modeling of railway track and vehicle-track
interaction in the high frequency range. The historical surveys, general
problems and most of the dynamic models in this field have been covered in the
review. Fryba [55] and Kerr [90] have, respectively, given historical surveys and
solution method reviews on the steady-state response of infinite beams
subjected to moving loads. State of art paper on railway vehicle dynamics has
been written by Sankar and Samaha [126]. Fryba [54] has also given a brief
review of the dynamic interaction of vehicles with tracks. A literature survey on
the dynamic interaction between train and track has also been reported by
Dahlherg [27]. A review on vehicle-guideway interactions has been written by

Taheri and et al. [146].

Two books have appeared in the scientific field of dynamics of vehicle-track
system. The book written by Garg and Dukkipati [58] deals with the vehicle and
train system dynamics. In this book, the track vibrations and the interactions are
not considered and the effects of the track are usually idealized as some kinds
of input functions in the modeling. On the other hand, Fryba [55] considered the
vehicle as simplified as constant moving forces and the vibrations of solids and
structures are discussed. The main part of this book deals with the vibrations of
one-dimensional solids such as beams and frames subjected to moving loads

but it also discusses the two-and three-dimensional solids and special problems.

As mentioned earlier, there is a very wider interest in the study of vehicle-track
interaction in high speed operation. Such study combining vehicle and track

model has become feasible with the advancement of computational tools. Such
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study must consider all important aspects of vehicle and track system within the
model. The dynamic interactions between the railway vehicle and track
generally involve in four main components as presented in Fig. 1.3. These
components namely, vehicle model, wheel/rail contact model, track model, and
wheellrail irregularity representation should be combined and solved using
efficient numerical technique for realistic simulation. A brief review of literature
on each aspects of vehicle-track interaction modeling shown in Fig. 1.3 along
with simulation technique is presented in the following subsections so as to

develop the scope of the present investigation.

Vehicle Contact force

model <

Wheel
displacement

WIR profile
p 4 > WIR contact > output
Irregularities A _ model results
Rail
displacement
Track ‘
model
Contact force

Fig. 1.3 A general vehicle-track interaction system

1.2.1 VEHICLE MODELS

The vehicle is often divided into sprung mass and unsprung mass systems in the

analysis. The sprung mass system includes the car body and bogie (see Fig.
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1.2) (on a freight car with three-piece-truck, the sprung mass system includes
the car body and bolster). The unsprung mass may consist of the wheelset,

bearings, axle-hung traction motor and gearing.

The type of the vehicle model employed in a dynamic study mainly depends on
the frequency range involved in the specific problem that is under investigation.
As indicated in [92], in the low frequency range (less than 20 Hz), the major
problems in the system are the vehicle curving, stability and, ride quality for
passenger or cargo. Vehicle suspensions are usually designed to ensure that
rigid body modes of a vehicle's bogie and body occur at less than 10 Hz in order
to isolate the vibration from passengers and to reduce the effective unsprung
mass. In this frequency range, the track behaves essentially as a relatively stiff
spring and its effect on the vehicle's behavior is small, especially in the vertical
direction. Hence, the vehi-'e is usually modeled as lumped mass systems, as
used by many researchers in the vehicle dynamics, e.g. [58). Several
commercial software such as NUCARS, MEDYNA, VAMPIRE and VOCO, have

been available to analyze the vehicle behaviors.

At frequencies in the range of 20~100 Hz, the coupled resonance of vehicie-
track system may be caused by long wavelength irreguiarities on the wheels and
rail treads, and in the track supports. The dynamic forces on the wheelset
bearings and bogie may be strongly affected by the resonance. It is prudent to

take into account both the sprung mass and unsprung mass in this case.

When the vertical dynamic forces due to wheel and/or rail irregularities such as
wheel flats and rail joints are of concerned, frequencies between 20 to 1500 Hz

may be involved in the response. The most active component on the vehicle is
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the wheelset or unsprung mass. For this reason, it is adequate to take only an
effective wheel mass loaded with a constant force into the model, as used by
Newton and Clark [107]. If the dynamic forces on the bearings are of concern,
the sprung mass has to be included in the model. If the interaction between
wheels on different wheelsets is of concern, half car models with several
degrees of freedom may be used. They have been ehployed by Cai et al. [18],
Schwab et al. [133], Nielsen et al. [109], Hu et. al. [77], and in the present work.
The two wheels within a wheelset, two side-frames and one boister have been
taken into account as lumped masses by Ahlbeck [3]. An approach has also
been suggested by Ahlbeck [3] to include the first four bending modes of

wheelset in the vehicle model.

The behaviors of railway wheelsets at high frequencies of excitation both in
vertical and lateral plane has been investigated by Grassie et al. [70]. The
wheelset is idealized as wheels on a uniform shaft which can extend and bend.
Each wheel model is composed of a rigid hub, a thin uniform circular web, and a
rim. The hub is encastre on the end of the shaft. The web can deform in
bending only and is encastre on the hub and the rim. The rim is a uniform ring

of rectangular cross-section.

In the noise studies, very high frequencies (up to 5000 Hz) may be concerned.
The elasticity of wheel and wheelset axle have to be taken into account. The
major technique used in the simulations is the finite element method. Finite
element models of wheels have been reported by Schneider and Popp [131],
Thompson [149], and Ganesan and Ramesh [57]. Curved Timoshenko beam on
elastic foundation has also been used to model a wheel by Bogacz and Dzula

[16].
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1.2.2 WHEEL/RAIL CONTACT MODELS

A survey of wheel-rail rolling contact theory has been given by Kalker [84]. State
of art paper on the prediction of wheel/rail dynamic contact has been written by
Elkins [44]. The book on contact mechanics written by Gladwell [59] deals with
contact problems in the classical theory of elasticity. It excludes rolling contacts
and is restricted to perfectly elastic solids. Without these limitations, the book
written by Johnson [82] includes more aspects of contact problems in

engineering applications.

In the vertical dynamics of railway vehicle-track system, the normal contact force
is essential. Hertzian contact spring has often been used to represent the
wheel/rail relationship, e.g. Newton and Clark [107], Ahlbeck [3], Cai [18]. ltis

considered as a nonlinear spring which may be expressed as:
p=CgAul® (1.1)

where p is the total contact force, C,, is the Hertzian contact coefficient and Au is
the wheel/rail overlap. C, depends on the geometry and materials of wheel and

rail.

In some cases, the overlap between the wheel and rail may be small and a |
linearized contact spring is adequate to represent the wheel/rail relationship.
This may largely simplify the modeling of the interaction. The stiffness (Kn) of

the linearized spring may be derived from Eq. (1.1) and expressed as:
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Ky =15CAup’ (1.2)

where Au, is the wheel/rail overlap under a static load (Po). The linearized
contact spring has been used by Grassie et al. [62] to study rail corrugations, by
Sato et al. [130] to study the vibrations due to high frequency irregularities on

whee! and rail treads, and by Thompson [149] to study the wheel/rail noises.

The contact point has been usually assumed to be on the center line of the
wheel. This may not be always true in some cases. Tunna [152] has indicated
that in the case of a wheel flat with a chord shape, the wheel may land on the rail
at an angle after a free flight. Tunna [152] has made a modification of the
contact assumption. He lets the computer scan around the wheel circumference
and find out the maximum overlap, and then calculate the contact force from the
maximum overlap with Hertzian spring formulas. A better prediction of time and
position of impact has been reported by using this modified Hertzian contact
model [152]. However, this model may overestimate the contact stiffness at the

corner of a irregularity and overestimate the impact loads [152].

Several complicated non-Hertzian contact models have been developed, e.g.
[85, 115]. These models can predict the shape and size of a contact patch but
they need enormous computer time. They have not been used to simulate the

vehicle/track dynamic interaction.
It is believed that the wheel/rail contact patch may have some influences on the

formation of rail corrugations [86]. To take into account the effect of contact

patch on the dynamic interaction, a common practice is to filter out the short
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waves with wavelengths less than the contact length from the irregularity
function before it is used as an input in the calculation. This is a reasonable and
simple approach to deal with very short waves. However, the influences of
waves with wavelengths about 1-3 times larger than the contact length may also

be suppressed to some extend and itis difficuit to use such a simple approach to

deal with them.

1.2.3 MODELING OF TRACK COMPONENTS

Components in track system include the rail, fasteners, ties, ballast and
subballast. The modeling considerations for each of these components are

reviewed as follows.

Rail modeling

Rail is the most sensitive component in the vehicle-track interactions because it
has a relatively small effective mass and it is located at the interaction interface.
A proper representation of the rail is a key to have a good prediction of the
dynamic contact force and strains in the rail, which are important for the

analyses and designs of tracks.

The simplest way to model a rail is to consider it as a jumped mass [10, 80]. Itis
impossible to satisfy all the frequencies that could be involved in the dynamic
response in lumping the rail mass. The dynamic strains on the rail can not be

directly calculated in such a model.

According to Ref. [92], Schwedler began to model the railway track laid on

longitudinal ties as a beam on Winkler foundation to calculate the stresses in the

- 14 -



rail more than a century ago. Primarily as a result of Timoshenko's work, it was
accepted around 1930 that railway track laid on transverse ties could also be
modeled satisfactorily for many purposes by a beam on Winkler foundation.
From 1926, starting with Timoshenko's investigation, in which he examined the
dynamic effects of wheel flats, there was a growing interest in dynamic loads on
track. However, until 1970's there were rather few papers in which dynamic
models of track were used to solve practical problems, even though the
response of an infinite beam loaded with a moving force had been well
established before that time. In recent years, vertical dynamics of vehicle-track

system has become a fast growing research area for the railway system.

Rail has been considered as an Euler-Bernoulli beam (or Euler beam) in many
analyses. It is adequate to represent the rail's response to vertical dynamic
excitation for frequencies of less than about 500 Hz [92, 94]. This model ignores
the shear deformation and the rotational inertia of rail, which makes the rail
stiffer than it really is and overestimate the dynamic forces in the high frequency
range [40,107]. This model may not be suitable for the lateral response due to
relative lateral flexibility of the web which ties together the more robust railhead

and foot.

Timoshenko-Rayleigh beam (or Timoshenko beam) should be used to model the
rail in the predictions of dynamic loads due to wheel and rail imperfections such
as wheel flats, and rail joints [40,107]. It has been reported that this beam model
is adequate for frequencies up to about 2.5 kHz for vertical responses [92]. For
lateral and torsion modes, however, railhead and foot have to be modeled at

least as independent Timoshenko beams interconnected by continuous
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rotational springs [92]. This double-beam model has been used by Knothe et al.

[93] to study rail corrugations.

In the noise studies, frequencies of up to 5 kHz may be of interest and the rail
may have to be modeled in much detail. The assumption of the rigid across
section used in the beam theories is no longer valid as the rail is excited at very
high frequencies. Finite elements have been used by Thompson 149] and
Knothe et al. [94] to model the rail to account for the elastic deformation in the

_across section.

Fastening components

A rail fastening system usually comprises of a rail-pad in parallel with two
fastening springs. This system is usually considered as a spring-damper
element acting at a point on the railfoot [92]. The rail-pad is made of rubber,
plastic or a composite material and its stiffness is usually non-linear. Mostly
because it is not convenient to represent the non-linear characteristic of the
stiffness in the track system modeling, the stiffness of the rail-pad spring is often
considered to be constant and the stiffness value is taken as that at a loaded
condition. Little investigation on the dynamic behaviors of the rail-pad has been

carried out.

The rail may lose contact with the tie when a train is traveling on the track,
especially in the case of wooden-tie track. Both the theoretical and experimental
results obtained by Tony [151] have suggested that the rail lift-off from the
support has little effect on the maximum deflection of the rail. It is however not
quite clear if such a lift-off has influence on the vehicle/track interaction, and the

dynamic force.
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Tie models

A tie is conventionally modeled as a rigid body or a beam. It has been reported.
that the dynamic response to forces at the railhead is well represented for
frequencies of up to 1 kHz by modeling the tie simply as a rigid body [92]. The
FE method has been used to calculate the natural frequencies of concrete ties
represented by a Timoshenko beam of variable thickness [31, 92]. The
theoretical results have shown very good correlation with the experimental data,
as presented in [31,92]. The torsional vibration modes have been observed in
the field tests [4], however they have not been considered in the track system

model.

Ballast and substrate models

Ballast and substrate systems are actually very complicated. They often show a
highly non-linear feature in their load/deflection relationship. Energy dissipated
in them are due to friction and wave radiation. There are hard spots and voids in
the actual situation. However, the ballast and substrate are relatively far from
the wheellrail interface and they do not show strong effect on the dynamic
contact forces excited by wheel and rail tread c:fects [40], in which only the
high-frequency dynamic behavior is of main interest. Most researchers lump the
ballast and subballast together and model them as a massless spring-damper
element under the tie [18,18,107,109]. The ballast and substrate have also
been considered together as an elastic or visco-elastic half-space by some
researchers [125]. This is useful for the investigation of the ground-borne
vibration, in which the frequencies less than 500 Hz are of concern. Sato [130]
and Zhai [158] have considered the ballast as lumped masses below ties which

are interconnected by springs and dashpots in shear.
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1.2.4 TRACK SYSTEM MODELS

A hierarchy of track models as shown in Fig. 1.4 can be formed by combining the
component models described in the previous section. As illustrated in Fig. 1.4,
they can be grouped under three basic catalogues, namely: (1) lumped
parameter models; (2) models represented by beams on distributed supports;

and (3) models represented by beams on discrete supports.

Lumped parameter track models

The simplest track model is a single effective track mass supported on track bed
by a linear spring-damper system (Fig. 1.4(1a)). It was the early analytical
model used by Meacham and Ahlbeck [103]. The effective mass of the track
was derived from the first natural frequency of the rail as an infinite Euler beam
on elastic foundation. They found that this single-mass model was adequate to
deal with vehicle vibrations at low frequencies associated with the wheel
unsprung and sprung masses, but was not sufficient to simulate high frequency
wheeil/rail impact. Similar models were used by Bjork [14], Kuroda [95], Jenkins
‘et al. [80], and Sato [128]. By improving the work of Bjork [14], a set of simple
formulae have been worked out on this simple model by Jenkins et al. [80] to

calculate the so-called P4 and P, impact loads developed at a dipped rail joint.

A model consisting of two track masses representing effective rail and tie/ballast
has also been used b: Ahlbeck [7] (Fig. 1.4(1b)). A non-linear stiffness between
the rail and the track structure mass is also used to simulate the stiffening of
trackbed under increasing load. Model parameters such as rail and tie effective
masses, stiffness, and damping coefficient have been calculated from the beam

on elastic foundaticn model. In the model shown in Fig. 1.4(1c), the tie is
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considered as a beam and the transverse bending modes of concrete ties can

be taken into account using the method proposed by Ahlbeck [3].

An effective mass for the separate ballast has been considered by Ehrenbeck
and Polcari [42], and Ahlbeck [3] (Fig. 1.4(1d)). In addition, a non-linear rail pad
stiffness was incorporated based on laboratory test results. The first four
transverse bending modes of the concrete tie have also been incorporated in the
model by Ahlbeck [3]. This model has been used to study the wheel/rail impact
forces due to wheel tread runout profiles by Harrison and Ahlbeck [9,72], and
impact loads on wheelset bearings by Williams, Ahlbeck, Harrison and et al.

[73,157).

Generally, a lumped parameter model is simple and fast for the calculation and
the computation can be carried out on any PC/AT-type computer. It addresses
the major track and wheelset structural modes of response. The non-linear
factors can be easily considered in the model. The major drawbacks of the

lumped track models are:

(i). It is difficult to satisfy all the major vibration modes to lump the rail
mass;

(ii). The stresses in the rail can not be directly obtained from the model;

(ili). The interaction between the wheels on different wheelsets can not

be modeled.

Track models represented by beams on distributed supports

Track models in this category cover a large number of publications in the

modeling of track and vehicle-track interaction. Such models are popular as
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they represent the track system fairly well, without adding much complexity in
obtaining solutions. These models are classified as Euler beam on elastic
foundation (EBEF), Timoshenko beam on elastic foundation (TBEF) and beams

on multi-layer continuous foundation (BMLF).

Euler beam on continuous elastic foundation (Fig. 1.4(2a)) is still the basic
model used in the track designs. It was first introduced by Winkler in 1867 [90].
In dynamic analyses, damping is often included in the distributed support and it
is referred to as damped Winkler foundation by some researchers. The tie mass
is usually absorbed in the rail beam by assuming they are uniformly distributed
along the track. The determination of the parameters in the model has been
discussed by Mair [99]. The use of this model and also a proper definition of the
track modulus, that is the foundation stiffness, has also been discussed by Kerr
[89). Experiments have been performed by Singh and Deepak [138] and El-
Sibaie [45] for estimation of track stiffness and track damping. Stewart [143]
reported field measurements of the vertical track response under static loading
conditions. Track stiffness and damping can also been found in text books
written by Fastenrath [48] and Hay [74]. Euler beam on a continuous foundation
with random stiffness and damping has been recently used to investigate the

moving load problem by Fryba [56].

As mentioned before, Timoshenko beam has a better representation of the rail
than Euler beam as high frequencies are of interest,' but it takes more efforts to
obtain solutions. The shear coefficient in Timoshenko beam theory has been
investigated by several researchers and some simple and accurate formulae are

available for its calculation [26].
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Sato [127] was the first to represent the track as an Euler beam on a layer of
distributed mass devoid of bending and shear stiffness (Fig. 1.4(2b)). Both the
rail pads and the ballast are modeled as continuous layers of elastic support
with viscous damping. The effects of shear and rotational inertia of the rail are
accounted for by describing the rail as a Timoshenko beam by Grassie et al.
[67]). A similar mode! has also been employed by Tassilly & Vincent [147] to
study rail corrugations. The same concept has also been employed by

Thompson [149])'to establish his track model in the wheel/rail noise study.

Grassie & Cox [65] has extended their mode! in [67] by representing the ties as a
layer of Timoshenko beam with cross-track flexural rigidity, but having no
longitudinal stiffness (Fig. 1.4(2c)). This allows to investigate the dynamic
behaviors of the ties in sufficient detail. Both symmetric and asymmetric
bending modes of the ties can be taken into account. A further extension of this
model by them [66] has been used to investigate the effects of localized track
support deterioration, namely those of unsupported ties due to isolated ballast

damage.

The track has been considered as a beam on half-space (Fig. 1.4(2e)) to study
its natural frequencies by Patil {114). The effects of foundation mass on different

frequencies may be reflected in such a model.

Track models represented by beams on discrete supports

The effects of discrete supports on the static stresses on a rail have been
investigated by Birmann [13] (Fig. 1.4(3a)). The resuits for stationary loads

indicate a difference between beam on distributed and discrete support
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representations of only 3-5 percent in rail stresses. This suggests that it is not
essential to represent the track as beams on discrete supports for the static

analyses.

A periodically supported track system has been considered by Jezequel [81] to
study the response of track due to a moving load. Cai and et al. [17] have found
an exact solution for the dynamic response of an infinite Euler beam on rigid and

equally spaced supports subjected to a moving force.

Beams on discrete rigid ties (Fig. 1.4(3b)) have been used by some researchers
[51] to model the track. This track model has also been employed by Knothe
and Ripke [93], and Hempelmann et al. [75] to investigate the mechanism and
process of rail corrugation formation. The rail was represented by three

separate layer components by Knothe and Ripke [93] in such a model.

In the model developed by Clark and Lowndes [25], the tie has been considered
as an Euler beam (Fig. 1.4(3c)). This model has been used by Newton and
Clark [107] to study the impact load due to a wheel flat and by Clark et al. [24] to
investigate the track behaviors due to a corrugated rail. Tunna [152] has also
used this model to study the dynamic loads due to wheel and rail irregularities
such as wheel flats and rail joints. A modification made on this model by Tunna
is that the concrete tie is discretilized into separated elements (12 elements)
each with its own mass, bending stiffness and, support stiffness. Both the rail
and the tie have been considered as Timoshenko beams by Cai and Raymond

[18], Neilsen and Abrahamsson [108].
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The three-layer model (Fig. 1.4(3d)) has been used by Sato [130] and Zhai et al.
[168). The major difficulty in this model is to determine the parameters

satisfactorily. Zhai et al. [158] have tried to estimate them theoretically.

Beams on halfspace models (Fig. 1.4(3e)) may be useful for studying ground-
borne vibrations [125]. The model developed by Ono and Yamada [112] may
also be classified in this catalogue. In their model, the elasticity and the mass
inertia of the road bed (ballast/subgrade) are taken into consideration by

assuming that the road bed is a compressible media in the vertical direction.

1.2.5 IRREGULARITY REPRESENTATION AND TRACK LENGTH

The most realistic representation of vertical excitation arising in the wheel-track
interaction is that of a wheel traveling over irregularities on the track, as used in

[107, 110, and 152].

If a vehicle (or a load) is assumed to be stationary to the track in the traveling
direction, the solution of a model may be much more simple and efficient,
pspecially if a frequency domain solution method is used. In such a model, the
irregularities are pulled through the wheel/rail interface at a constant speed to
calculate the interactions [3, 51,67,66,62,73,93,130,147,149]. Furthermore, this
makes it convenient to consider the track as an infinite system when the
receptance method is used in the calculation, which will be described in the next

section.

It has not been very clear that in what circumstances the excitation

representation with such a moving irregularity is correct. It is expected that the
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errors caused by this representation may not be ignored if the speed is high. At
a high speed, the contact force may be different from the force on the rail-pad
and ballast. This may not be truly reflected in the modei that considers a

stationary vehicle on the track.

The discrete supports of the track actually introduces a quasi-periodic
irregularity in the track system. Researchers have been debating whether or not
the discrete feature of track should be introduced in the track model [92]. It has
been clear that the dynamic force due to a rail corrugation may be quite different
at the midspan and over the tie at some speeds. It seems to be appropriate to

take into account this feature if the high frequency responses are of concern.

Ideally, it is the best to represent the track as an infinite system if the vehicle is
considered to be traveling on the irregularities. If the discrete feature of track is
ignored, it is relatively easy to do so. However, so far it has been impossible to
directly take into account an infinite track in a FE model if a time-step integration

technique is employed to calculate the vehicle-track interaction.

For most practical problems, a finite length of track is sufficient to represent the
track system interactions. The deflections of track far from the loading point are
actually small and they have little effect on the wheel/track interactions.
Different track lengths have been used in the models. For example, 12 tie spans
was used by Tunna [152], 35 tie spans by Nielsen et al. [109], and 40 tie spans
by Cai et al. [18].

The main problem with a finite track model is that boundaries may introduce

undesirable effects in the response to a moving load. This should be take into
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account in the modeling of such a system. If the length of the track is taken long
enough and the vehicle can always be kept in the center part of the finite track,
such a problem may be satisfactorily resolved. A 'ring' model has been
proposed to represent the infinite track [92], in which the length of the track is
physically finite but the two ends are connected to form an imaginary circle. In
such a way, the vehicle traveling on the track indefinitely can be simulated. A
disadvantage of such a model is that the size of dynamic equations may be

significantly increased if the FE method is employed in the modeling.

1.2.6 FREQUENCY-DOMAIN SOLUTION METHODS

The diversity of modeling is largely because many different techniques and
arithmetic are used in the calculations. Knothe and Grassie [92] have classified
them as the frequency-domain solution methods and time-domain solution

methods.

Frequency-domain methods for a stationary point load

One of the major purposes to investigate the response due to a stationary
oscillating point load is to find the receptance and use it to calculate the vehicle-
track interaction. The displacement response at the point of excitation is usually
called direct receptance (or receptance) and the response at any other point is

called cross receptance.

The receptances for models represented by beams on distributed supports are
usually easy to be obtained by using the integral transformation techniques.
Receptance for a continuously supported Euler beam was first obtained by

Timoshenko [92]. Receptance for an Euler beam on a separated layer of rigid
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ties was first calculated by Sato [127]. A approach to calculate the receptances
for a Timoshenko beam on a layer of rigid or elastic ties was proposed by
Grassie et al. [67] and used later by some other researchers [147]. The track's
lateral and longitudinal receptances has also been calculated by Grassie et al.
[68,69]. Patial [113] investigated the response of a distributed supported track
subjected a stationary vibrating mass, which may be regarded as the coupled

wheel/track receptance.

An algorithm has been developed to calculate the receptance for a model
represented by a rail on discrete supports and used by many researchers
[67,106,133]. The first step in the algorithm is that finite-element matrices, or
their equivalent, for a characteristic track section are formulated either
analytically or numerically. Then Floquet's theorem is used to connect the
displacements on different sections in the periodic system. By imposing the
boundary conditions, the unknown eigenvalue can be determined and the
harmonic displacement at any point can be calculated. In the case of a complex
periodic structure, the transfer matrix method is usually employed in the

algorithm for a numerical solution [149].

The receptance at around the so-called 'pinned-pinned' frequency (about 750 Hz
on the conventional track) in the discrete support model is quite different from
that in the distribute support model [67,92]). There is, however, no significant
difference at other frequency ranges. In the pinned-pinned eigenmode, the rai
vibrates with a wavelength equal to two tie spans with nodes located above the
ties. This mode may be excited in the impact response due to wheel flats and
railjoints. As a general model, the discrete feature of the track should be

included in the modeling.
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The receptance on vehicle may also be obtained theoretically [67,149] or
experimentally [147]. After obtaining the receptances, the interaction between
the vehicle and track is obtained by coupling the receptances (including the
contact receptance) to form appropriate transfer functions bstween input and
output. The transfer function may be the réquired final solution, e.g. in the noise
study [149], or it may be transferred to the time domain, e.g. for dynamic force
due to wheel and rail irregularities [62). If the irregularity is sinusoidal, the
response is found directly form the transfer functions. To calculate the response
to non-sinusoidal irregularities, their Fourier transform must first be found. The
waveforms with their wavelengths smaller than the contact patch can also be
effectively filtered in this procedure [62,149]. The above approach for the
calculation of the vehicle-track interaction is called the receptance method. It is
an efficient tool and has been widely used in the investigations of corrugations
[63,67,93,147], wheellrail noises [123,123,127], dynamic forces due to wheel

and rail irregularities [62].

Frequency-domain methods for a moving point load

Fourier and Laplace-Carson integral transformation techniques have been
widely used to find the response of a beam on a continuous support subjected to
a moving constant or oscillating (prescribed) load. A coordinate system moving
with the load is usually introduced in the system and a steady-state response
can be obtained. This type of solution techniques have been used in many
studies to solve the "moving load problem". According to [92], the first in this
field is Hovey, who gave a solution of a moving constant load on a continually
supported Bernoulli beam in 1933. The same problem was solved again by Dorr
in 1945 [92] and by Kenney [87] in 1954. Mathews [92] (1958) was the first who

investigated an oscillating load moving on a Bernoulli beam. A constant load
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moving on a Timoshenko beam was fist considered by Achenbach and Sun [2] in
1965. The influence of an additional axial force was investigated by Kerr [88] in
1972. Weitsman [154] (1970) and Torby [151] (1975) took account of the fact
that the ballast reacts in compression only. The solution to the problem of an
oscillating load moving on a Timoshenko beam was contained in Ref. [67]
(1982), and was later also solved in detail by Bogacz et ai. [92] (1983). The
work on the moving load problem was reviewed by Fryba [55] in 1972 and by
Kerr [90] in 1981. A few years ago, Duffy [41] investigated the steady-state

response of an Bernoulli beam subjected to a moving mass.

The stability of a load moving along a beam is a major concern in the moving
load problem. There exists a "critical speed" at which the speed of the moving
load would be equal to that of wave propagation in the beam. The critical speed
is usually much larger than the present or even foreseen train speed and

therefore has only academic interest to railway researchers.

The dynamic response of a moving load on a discretely supporied Euler beam
was first obtained by Mead [104,105], who gave a wave type solution that
utilizes Floquet's theorem. Similar technique was used by Smith and Wormley
[139), and Bogacz et al. [92]. Jezequel [81] has also proposed another solution
approach for this problem. In his approach, the differential equation of the rail
(Euler beam) is formulated in a coordinate system which moves with the load.
The combined reaction forces acting on the rail through the pad are developed
into Fourier series and thus are transformed into continuous (but non-uniform)
distributed forces. This technique has also been used by Kisilowski et al., llias
et al. and Sibaei according to Ref. [92]. Sibaei has considered the problem of

excitation by two wheelset in a bogie, which required enormous computational
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effort. The third method of calculating the response of discretely supported track
to a moving wheelset (represented as a rigid body) has been used by Grassie et
al. [67]. In this the response is assumed to comprise a steady-state component
whose amplitude varies symmetrically about the sleeper (which is essentially the
response to a moving irregularity), plus a transient component which varies with
position in the span of track between ties. The latter is found by a root-locus

technique. The discrete feature of track supports can be easily incorpurated in a

FE track model.

1.2.7 TIME-DOMAIN METHODS AND FE MODELING

Whereas there is a long history of frequency-domain solutions, the time-domain
solutions have become common only in the last 20 years. This is largely
because of the lack of sufficient computational power. Also for this reason, at
the early stage, the vehicle and track models with time-domain solutions were
usually relatively simple [80,103]. In the last few years, there is a greater
interest in employing the finite element method and numerical time-step integral

techniques to simulate the vehicle-track interaction.

Several numerical methods have been used in the modeling of vehicle-track or
vehicle-bridge interactions. For example, Ting et al. [150] have proposed an
algorithm based on finite differences to calculate the dynamic response of a
finite elastic beam supporting a moving mass. Blejwas et al. [15] have used
Lagrange multipliers to impose kinematics constraints between vehicle and
structure. Dahlberg [29] has proposed an approach to calculate the
vehicle/bricge interaction. The reciprocity method has also been used by

Dahlberg [28] to predict the track response due to a moving force.
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With the versatile FE method, detailed models of vehicles and tracks may be
formulated in a rational manner. Several good commercial FE packages, such
as ANSYS, NASTRAN, ADINA and ABAQUS, are available. However, so far, it
is still difficult to use these software to simulate the interaction between a movirg
vehicle system and a stationary track. A special FE software is needed to deal

with the interaction problems.

FE analysis in conjunction with moving loads has been reviewed by Filho [50].
Direct use of the FE method and a numerical time-step integration has been
made by Shah et al [135], Lin and Trethewey [96], Cifuentes [22], Nielsen et al.
[110]. Olsson [111] derived a structure/vehicle finite element by eliminating the
contact degrees-of-freedom of the vehicle. Solution of moving load problems
with a commercial computer code has been described by Schneider et al [132].
Fryba et al. [56] have adopted a so-called stochastic finite element for the
investigation of an infinitely long beam subjected to a moving constant force, in
which the foundation stiffness and the damping along the beam are represented
as random variables. Lin and Trethewey [97] implemented an active vibration

contrel technique on beam structures subjected to a moving force.

Modal superposition technique is often attractive in the dynamic analysis of
structures exhibiting a linear time-invariant behavior. Once a structure has been
modeled as modal components, a considerable reduction in integration time may
be obtained. Because of this, modal superposition technique has been
employed in most of the vehicle-track system models. In the case of wheel flat
problem, frequencies up to 2 kHz rnay be involved in the response and a large

number of modals have to be considered in the calculation. For example,
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Newton and Clark [107] used 125 modals and Neilsen [109] used 200 modals in
his modeling. A major disadvantage of the modal superposition technique is that

it is difficult to deal with the non-linear factors in the track and vehicle structures.

The modal equations used in the time-step integral technique may be obtained
by using an analytical method. Because of this, such an approach is often
called semi-analytical or combined analytical-numerical technique. At one
extreme of this type of solution technique is the work of Cai et al. [17], who
undertook an exact modal analysis of an infinite Bernoulli beam on rigid rollers.
This solution is elegant but it is difficult to extend it to more complex models of
the beam and supports. Semi-analytical approaches have been used by Lyon
(98], El-Sibaie and Klauser [46] for a Bernolli-Euler beam on Winkler or damped
Winkler foundation. Newton and Clark [107] have also proposed a semi-
analytical solution for a Timoshenko beam on Winkler foundation. A semi-
analytical approach that takes advantage of the receptance method was used by
Fingberg [51] to investigate wheel-rail squealing noise. A disadvantage of these
semi-analytical methods is that it is relatively difficult to study structural

irregularities such as variations in tie spacing, hard spots and voids.

Several numerical methods have been used to obtain the modal parameters
(eigenvalues, eigenvectors and normalized constant) for the modal analysis, e.g.
[19,155,156]. The techniques used in the modal superposition are also different.
A real-valued modal superposition technique for the track has been used by e.g.
Clark et al. {25], Tunna [152], and Cai and Raymond [18]. Huang and Shah [78]
modeled both vehicle and track as real-valued modal components. In [111], the

structure in the structure/vehicle finite element is modeled by its real-valued
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modal parameters. Decoupling of equations of motion by use of complex-valued

normal modes is used by Nielsen [110].

1.3 SCOPE OF THE INVESTIGATION

From the literature survey of past experiences, it is evident that there is a need
for a comprehensive vehicle/track interaction model which must be general
enough to simulate a wide range of wheel/rail defects and irregularity. The track
model must be sufficiently detail as it plays a strong role in the wheel/track
interaction specially at high speeds under high frequency of vibration. It
appears to be satisfactory to consider the rail as & Timoshenko beam for most
problems listed in Table 1.1. As reported, for vertical dynamic studies, it is fairly
good to model the wheel/rail relationship as a one dimensional spring in the
calculation of dynamic contact force due to irregularities with wavelength several
times larger than the wheel/rail contact length. However, an adaptive contact
model is needed to automatically take into account all the possible wavelengths

in the simulation.

For high speed simulation of vehicle/track interaction, FE approach has been
found to be practical and useful. One of the major difficulty has been in the
representation of infinite track. For most practical problems, however, a finite
length of track is sufficient to represent the track system interactions. On the
other hand, it is quite possible that in using finite track model, the boundaries
may introduce undesirable effects in the response to moving loads. Ideally, it is
better to represent the track as an infinite system if the vehicle is considered to

be traveling on the irregularities. However, so far it has not been possible to
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directly take an infinite long track in FE model if a time-step integration

technique is employed to calculate the vehicle-track interactions. There is

clearly a need for further research in this area.

The scope of this study is therefore, aimed at developing a comprehensive

general purpose dynamic model of railway vehicle/track system. Such a

validated model is essential to investigate the vertical dynamic forces due to

wheel and rail tread defects and parametric excitation of the track in high

frequency range. The important contributing feature of the present modeling are

as follows:

A FE model of Timoshenko beam is extended and employed to
represent the rail so that the strains in the rail can be directly
evaluated with high accuracy, which are essential for the model

validation and track design;

An adaptive multi-point wheel/rail contact model is proposed and used
to calculate the normal and geometrical longitudinal forces due to
irregularities in the wheellrail contact region. The model can
automatically take into account all possible wavelength of
irregularities, the nonlinear wheel/rail contact stiffness and the loss of

wheel/rail contact, in the simulation.

The rail-pad and ballast are modeled as distributed spring-damper
elements which account for the non-linear factors such as rail lift-off

from the tie and tie lift-off from the ballast;



e The standard FE approach is applied in conjunction with Newmark's
direct integration technique. A simple cutting and merging method
and a set of special boundary conditions are proposed to extend finite
length of the track to infinitely long track so that a vehicle can be
modeled to travel on the track indefinitely with a time-depehdent

speed.

The developed FE model is validated against available experimental data
obtained from British Rail and Canadian Pacific (CP) Rail. Such a validated
model can be used to study almost any aspect of vehicle/track vertical dynamics.
As specified in the literature review, some of the important concerns in recent
years have been on the effect of wheel and rail irregularities such as wheel flats,
wheel shells, rail joints and rail corrugations. This study, therefore, focuses on
prediction and understanding of the dynamic forces due to the above defects by
utilizing the developed FE model. On each aspect of the investigation, an
extensive parametric study is carried out to evaluate the influence of parameters

and to obtain an in-depth understanding of related dynamics.

Details of the FE modeling of railway vehicle/track system is presented in
Chapter 2. The vehicle system models employed in this investigation are
presented along with their equations of motion. Various elements of the track
system model are described along with their FE representation. The extension
of finite length of track to infinite track is also presented in this chapter. Finally,
the proposed adaptive wheel/rail contact mode! used in this investigation is

outlined.
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A new approach to calculate the natural frequencies of a singular system such
as a free-free concrete tie and wheelset is proposed and presented in the first
part of Chapter 3. The chapter further presents the calculated natural
frequencies of concrete ties, wheelsets and the vehicle/track system. Some
available experimental data of concrete tie frequencies are available and they
are used to validate the mathematical models of the concrete ties. The features

of the important coupled vehicle-track frequencies and their mode shapes are

also discussed in this chapter.

In Chapter 4, the background of wheel tread defects is first described. The
calcutated impact forces and rail strains due to wheel tread defects such as
wheel flats and wheel shells are compared with the experimental data from
British Rail and CP Rail to validate the FE model. Finally, the influences of

system parameters on the impact loads are investigated extensively using the

validated FE model.

The developed model is applied to investigate the dynamic forces due to rail
joints as presented in Chapter 5. The characteristics of the dynamic forces due
to a freight car traveling over a dipped rail joint are evaluated and discussed in

this chapter.

The steady-state interaction between the vehicle and track, in which the wheel
and rail are assumed to be perfect, is presented in Chapter 6. The results cover
the responses of vehicle-track system in the speed range of 0-400 m/s. A
parametric study on the resonant force due to the effect of tie spacing is

presented. As an example of the FE model application, the dynamic forces due
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to void (un-supported tie) and hard spot (over-supported spot) are also

presented in this chapter.

The background of rail corrugations is briefly described at the beginning of
Chapter 7. The dynamic forces due to rail corrugations are evaluated,
presented and discussed. The mechanism of dynamic interaction between two

wheels is also explored and presented in this chapter.

Finally, Chapter 8 presents important conclusions drawn from this study, and a

list of recommendation for further studies in this area.
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CHAPTER 2

MODELING OF RAILWAY VEHICLE-TRACK SYSTEM

2.1 INTRODUCTION

The vertical dynamic behaviors of railway vehicle/track system in high speed
operation is primarily dominated by wheel/rail interaction and the dynamic
behaviors of wheelset and track system. The track system model for realistic
representation of its characteristics, irreguiarities and defects are the most
important aspects in the modeling. The vehicle model on the other hand can be
simplified to a great extent without the loss of realism as long as wheellrail

contact interaction is modeled with care.

A major assumption made in the present modeling is that the vehicle is traveling
on a straight track without losing its lateral stability. This assumption is justified
if only the characteristics of vertical dynamic forces in the vehicle-track system
are of interest. In such a case, the lateral and longitudinal relative motions
between the wheel and rail are small and the creep forces at the wheel/rail
contact interface have little effect on the vertical high frequency dynamic
responses of the system. Therefore, they are ignored in this investigation to
simplify the modeling, and focus on vertical dynamic aspects. However, the
wear process of rail and wheel treads and the formation of rail and wheel
corrugations may involve dynamic responses in all the three directions. They
should be considered in the further studies, as recommended at the end of the

thesis.
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As discussed in the pervious chapter, a general model of vehicle-track system is
composed of four parts, namely: vehicle model; track systemAmodeI; wheel/rail
contact model; and representation of wheel/rail irregularities. A "building block"
approach to the development of vehicle-track system is adopted, where each
c-omponent is modeled separately and then combined to form the final system.
The following subsections present the details of the modeling carried out for this

investigation.

2.2 VEHICLE SYSTEM MODELS

A very wide range of vehicle models have been employed in studies dealing with
vehicle-track interactions. During the modeling stage, it is usually desirable to
develop a simple and credible model such that the motion of a dynamic system
is fully described. The simplicity of a model, in general can be determined by
the number of Degrees-of -Freedom (DOF) selected to simulate a given physical
system. Often increased complexity of the model may lead to difficulties in
interpretations of the system behavior. The credibility of a model is determired
in part by its capability to simulate the system behavior realistically within the

desired accuracy.

Some of the simple models for vehicle representation that can be adapted in this
study are presented in Fig. 2.1. The simplest representation is a 1-DOF single
wheel model rolling on the track, as shown in Fig. 2.1a. The wheel in this case
represents the unsprung mass carrying a constant load. A 3-DOF model
representing wheel, bogie and car-body in the vertical mode is presented in Fig.

2.1b. In this case, the wheelset and bogie is connected by primary suspension,
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Figure 2.1 Vehicle models employed in the FE system model
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and the car-body is supported on the bogie via secondary suspension. A more
realistic model of the vehicle incorporating two wheelsets, a bogie and half car-
body is represented as a 5-DOF model is shown in Fig. 2.1c. In this case, each
wheelset has vertical DOF (uy,1 and uy2). The bogie has vertical (up) and pitch
(6p) DOF, and the car-body has vertical (ug) DOF. The primary suspension in
this case is represented by spring and damping elements (K; and C4) and
secondary suspension is represented by spring and damping elements (K,, C,
and Kg). Ky in this case represents the pitch stiffness between car and bogie.
The wheel/rail contact forces for the leading and trailing wheel are represented

by PcT and P¢y, respectively.

The equations of motion for the three models of the vehicle (Model |, It and [ll in

Fig. 2.1) can easily be expressed as presented by equations 2.1 to 2.3.

For Model |,
M. i, = F - F, (2.1)
For Model II,
M, 0 0 |l|a, CI —C, 0 u,
0 M, 0 {it+|-C, C+C, -C,Ha,
0 0 Mc i, 0 —-C'z C2 u,
(2.2)
Kl .—Kl 0 uw pc_ng
+-K, K +K, -K, U, r =y —M,g
0 -K, K, J\u, -M. g
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For Model i,

M, i, [C 0 -C, -LC/2 0 ]fa,
M, 0 i, G -C, LC /2 0 l|la,
M, Vi [+ 2C, +C, 0 -C, K #,
0 A o, Symmetric L,C, 0 ||6,
L M. i ) | G |4
K, 0 -K, -LK /2 0 fu,] (P,-M,g
K, -K, LK /2 0 |lu, P.-M,g
+ 2K, +K, 0 -K,su, p=¢ -M,g ? 23)
Symmetric K,+LK 0 |l86, 0
5 K, lu.] | -Mg |

In the present investigation, each of the above three models are needed
depending on the objective of the study. As indicated by Knothe and Grassie
[92], for frequencies of over 20 Hz, car-body modes have negligible effect on the
vehicle/track interaction. When dynamic response due to irregularities such as
wheel flats and rail joints are of interest, the most active component of the
vehicle is the wheelset or unsprung mass. It has been demonstrated [107] that
in such studies dealing with impact load, it is adequate to consider the simple 1-
DOF loaded wheel. In order to evaluate bearing forces and the influence of

primary damping, it is prudent to consider the 3-DOF vehicle model

representation.

In order to evaluate the interaction between the two wheelsets within a bogie,
this study considers the 5-DOF model. This model can adequately represent the
in-plane motion of vehicle system under high frequency excitations. In this

model, it is assumed that the car-body has vertical mode and that there is no
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interaction between the leading and trailing bogies and their wheelsets. In order
to avoid further complication to the present model, the wheelset and bogie roll
motion is neglected at this stage and is recommended under further studies at

the end of this thesis.

2.3 FINITE ELEMENTS OF TRACK COMPONENTS

As discussed in the previous section, the track components include the rail, ties,
rail-pad, ballast and subgrade, and fasteners. The finite elements and their

formulation for each of these components are described in this section.

2.3.1 Finite element for rail

The most important component in the model is the mathematical representation
of the rail. For this purpose, a Timoshenko beam element model! is used in the
finite element analysis. This FE beam model was originally developed by
Thomas and Abbas [148] for a uniform Timoshenko beam to study its natural
frequencies. In this study, this model is extended to a non-uniform Timoshenko
beam. The changes of geometry along the length of beam and the foundation
stiffness are taken into account in this extended model. The longitudinal force in
the rail due to temperature changes is also considered. The bending and shear

strains on the rail are continuous at every point with this FE beam model.
The Timoshenko beam element presented in Fig. 2.2 is a two-node element with

four degrees of freedom for each node. The nodal coordinates of the element

may be described in vector representation as:
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Fig. 2.2 A Timoshenko FE beam model



M} = (5,67, (3 (B Ut Ot (B0t (B (24)

where u is the vertical displacement, ¢ is the rotational angle, e is the element
number, n and n+1 are the global node numbers at each side of the element. It
is assumed that u and ¢ can be represented by the polynomial expressions of

the form:

u=3om, ¢=22BmI, (2.5)

where «;(¢) and p;j(&) are cubic polynomial shape functions expressed as:

a1=P2=(2-38+8%)/4, a3 =Ps=h(1-8)(1-£%)/8,
as =P =(2+3E-E3)/4, oy =Pg=-h(1+E)(1-E2)/8,
a2=a4=a6 =(18 =ﬁ1=B3=Bs =ﬁ7=0, (246)

where h is the length of the beam element and £ is non-dimensionalized

coordinate expressed as:
g=(2x-h)/h (2.7)
where x is the coordinate along the element length.

By using the energy method, the mass, stiffness and damping matrices and the

force vector for the beam element are derived and they are presented as follows:

Masé matrix
The kinetic energy, U, of an elemental length, h, of a Timoshenko beam includes

the rotational energy, U,, and the vertical deflection energy, U..
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U=U, +U,

h h
P ., Ou., (2.8)
=501 () d+ [A (=
LG & [A G
Non-dimensionalization of the kinetic energy yields:
ph l 0b., l Ou,,
U=—[|I,(— A (=— .
4[£ ,<at>dé+_jl (G ) (2.9)

Upon substituting for ¢ and u from Eq. (2.5) and for a and B from Eq. (2.6), the

kinetic energy may be expressed as:
o=y k) @10

where [M‘] is a 8x8 mass matrix or inertia matrix and its elements are calculated

by:

1 1
m; =5 ([Aa0dt+ [18,8,d) (.i=12, ... 8) (2.11)
-1 e

In this formulation, the first integration represents the vertical deflection inertia

and the second one represents the rotational inertia.

Stiffness matrix
The potential energy, V, of an elemental length, h, of a Timoshenko beam
includes the bending energy, V,, the shear strain energy, V,, and the support

potential energy (for beam on elastic foundation only), V..

- 46 -



V=V,+V, +V;

E, } 0b., TGP, ou Y (2.12)
==L () +——[A (—-0)’dc +— |k, u’dx
2g,(ax) * 2! (- 9) +2£ e
Non-dimensionalization of the potential energy yields:
E, | T,Gh | h
L N 213)
-1 -1

Upon substituting for ¢ and u from Eq. (2.5) and for o and B from Eq. (2.6), the

potentia! energy may be expressed as:
l e r € e
v=-2-{n} [k]{n"} (2.14)
where [K*] is a 8x8 stiffness matrix and its elements are calculated by:

1 1 1
ky =2 1, B+ R A (S5 5+ BB, - 3B, T - B, B +1 [ koo
-1 ~1 -1
(i,j=12, ...... , 8) (2.15)

In this formula, the first integration represents the bending stiffness, the second
one represerits the shear stiffness and the third one represents the support

stiffness.

Damping matrix
For a unit length of the beam, the viscous damping coefficient is c,. Similar to

the foundation stiffness matrix, the elements of damping matrix, c; are

calculated from:
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1
c;=4[coa (,j=1,2 ......, 8) (2.16)
-1

Force vector
By using the virtual work method, the element equivalent nodal forces {F}

are derived and for arbitrary distributed lcad, p(&,t), they are expressed as:
1
FP(t) =4 [ p(&, o, (,j=12, ..., 8) (2.17)
-1
for concentrated force, P(t), the expressions are:

E°(t) =P(t)a;(€,) (i,j=12, ...... , 8) (2.18)

Geometric stiffness

The matrix resulting from the axial force (Ng) is usually called geometric stiffness
matrix [116]. The axial force, Ng, may be caused by the temperature changes in

the rail. It may be estimated using the expression:

N, =o,E A (T-T) (2.19)

where a4 is temperature coefficient, T is actual temperature of rail and 7, is the
rail neutral temperature at which there is no longitudinal temperature force in the
rail. From the geometric relationship and virtual work method, the geometric
stiffness matrix is derived and its elements are calculated by:

1
da;

koy =3 N FF & (i,j=12 ....... 8) 220)

1
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Strains on rail
The strains that are of concern in the study are the normal and shear strains on
the cross-section of straight rail. The normal strain is mainly composed of

bending and temperature strains, and can be calculated from:

2Y & .. N,
e, = L@+ (2.21)

where Y is the vertical position coordinate on the cross-section of rail, measured

from the neutral plane. The shear strain on the neutral plane is calculated from:

Ye =%§:<dai /&y - 3B (2.22)

By taking a very large shear modulus (say G =2.0x10* N /m?) in the calculation
of stiffness matrix and dropping the rail rotational inertia in the mass matrix, the
Timoshenko beam model can actually be switched to an Euler beam model.

This makes it easy to compare results from different beam theories.

2.3.2 Finite elements for ties

Wooden and concrete tie have been considered as either rigid bodies (or
lumped masses) or Euler beams or Timoshenko beams in this study, depending
on the objective. If only the dynamic contact force and strains in the rail are of
concern, it is not necessary to model the ties as the sophisticated Timoshenko
beams, which will increase the size of the equations of motion. To reduce the
time required for the computation, a well-known two-node Euler beam element
with 2-DOF for each node [122], is employed to model the ties. However, the

natural frequencies of a tie may be overestimated by using Euler beam theory.
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To overcome this drawback, the size of the tie in the model is changed so that its
~ natural frequencies are made approximately equal to those measured from a test
or calculated from Timoshenko beam model. In such a case, the strains directly
calculated from the FE system may not be suitable for the analysis. They may
be calculated in a re-analysis by using Timoshenko beam theory or other more

accurate tie models.

The Timoshenko beam element described in the last section is employed for
concrete ties to calculate their natural frequencies. Some concrete ties are not
uniform along its length and the FE coordinates for some of their elements do
not coincide with the global coordinate of the tie, as shown in Fig. 2.3. In such
cases, the following coordinate transformation matrix is used to convert the local

matrix to global matrix:

[cosy

T, = (2.23)

where v is angle between the local and global coordinates.

2.3.3 Finite elements for rail-pad
A rail-pad between the rail and tie has been usually modeled as a point spring-

damper element. This may enlarge the effect of tie spacing. In this study, the
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A FE element A local coordinate Symmetric

____________ s Global

f coordinate

Tie

Figure 2.3 The relationship between local and global coordinates
for non-uniform ties
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rail-pad can either be a single spring-damper element or a distributed spring-
damper element inserted between the rail and tie. It also makes it possible to
take into account the rotational motion of the tie if the rail-pad and ballast are

modeled as distributed spring-damper elements.

The stiffness matrix for the distributea rail-pad layer is derived from the
deflection of the track, as shown in Fig. 2.4. To establish the stiffness matrix for
Element 1, an infinitesimal force experienced in the pad due to the deflection is

considered and it may be expressed as:
dF =k (x)e(u, —u,)dx (2.24)
where k,(x) is the pad stiffness per unit length along its width and

4= o and 4, =U,+x0 (2.25)

where U, is the vertical displacement of the tie at the tie center and ¢ is the

rotational angle of the tie. The equivalent forces on the rail element nodes

resulting from the pad force can be calculated from:

Fr=[ adF=[ oku,-u)s i=1,3,5,7 (2.26)

-L,72

where Lp is the pad width along the rail. The equivalent forces on the tie can be

calculated from:

Fr = fL,/:ﬁ = fL’IZ k"(u’ ~u ),
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Figure 2.4 Rail-pad, tie and ballast finite elements
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Fy= fL,/zxdF = KL,/z xk,(u, — u, )dx (2.27)

By substituting Eq. (2.25) into Egs. (2.26) and (2.27), the relationship between

the force and dis~'acement vectors can be expressed as:

iRl

where {n‘} is the same as in Eq. (2.5) and {F*} is its corresponding force

vector for the rail element, {n‘} and {F'} are force and displacement vectors of

the tie and they may expressed as:

{n'}=[U; o {F}=[F, RJ (2.29)
The stiffness matrices in Eq. (2.28) can be calculated as following:
For elements of matrix [Kg],

0 . .
k= LR i,j=1,3,57.  (230)

For elements of matrix [Kgy],

ke == kode,  kg=-[ koxd  i=1,3,57. (2.31)

pi i
L2 Lz ?

For elements of matrix [Ky],



— —_ — 2
k= ke, ky=] ke, k= [k (2.32)

L2 P

Similarly, the stiffness matrix for element 2 can be derived. lIts stiffness elements
can be calculated following the same steps as described as in Egs. (2.30 to

2.32) except that the integration limit in this case is from 0 to Lp/2.

In a similar manner, the damping matrix due to distributed pad damping can be
- derived from the force established by the relative velocity of the rail and tie.
Because the damping is assumed to be viscous‘damping, the damping matrix
has the same form as the stiffness matrix. The elements in the damping matrix
can be calculated by simply replacing the k, with c,, where c, is the pad
damping per unit length along the pad width. In this study, the pad stiffness and
damping per unit length are taken as constant along the rail and they are equal

to Kp/Lp and Cp/Lp, respectively.

2.3.4 Finite element for ballast and subgrade

The ballast and subgrade are modeled as a massless distributed spring-damper
element in the FE system model developed in this study. The tie is assumed to
be a rigid body as far as its rotational motion is concerned. Hence, it is
straightforward to obtain the ballast stiffness and damping matrices. The ballast

stiffness in the vertical (K,r) and rotational (K,) modes may be calculated from:

-1,/2

L,/2 L2
Kyp=[" kdx Ko = kx'dc (2.33)

where ky, is the distributed ballast stiffness per unit length along the rail and it is

assumed to be constant and equal to Ky/Ls. The damping in the ballast is also
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assumed to be viscous and the expressions for ballast damping coefficients are

similar to those in Eq. (2.33).

2.3.5 Finite element for fastening

A fastener can be modeled as a spring element with vertical and rotational
stiffnresses. The pre-load on the fastening is also considered in the system
model. Actually, the fastening stiffness is usually significantly smaller than that
of rail-pad stiffness and in general has little effect on the dynamic wheel/rail
contact force and strains in the rail. However, modeling the fastening separately

may be useful to analyze the dynamic forces on the fastener.

2.4 TRACK SYSTEM MODEL

The track system model for this study is developed in two sitages. The track is
first modeled as a basic FE structure of finite length. Secondly, the procedure

proposed for extending the finite track to infinite track is outlined.

2.4.1 Basic track system model

In modeling the track, a section of single straight track is considered. The track
is represented by a Timoshenko beam on discrete supports as shown in Fig. 2.5.
The length of track selected depends on the vehicle model used. The
experience obtained from this study suggests that a length of 20 tie-spacing is
adequate even if the 5-DOF vehicle model (Model I1l) is chosen in the interaction

simulation.
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By properly expanding and assembling the matrices of rail element and the
matrices of discrete components, the track dynamic equations may be

expressed as:

MK+ [CKn 1+ [KKn )= {F} (2.34)

where [M], [C], and [K] are global mass, 'damping and stiffness matrices,
respectively, and {F} and {n} are global force and coordinate vectors,

respectively. The expressions for elements of each of these matrices and

vectors are derived and presented in section 2.3.

In some cases, especially on a wooden-tie track, it is possible for the rail to lift
off fiom the tie and/or the tie to lift-off from the ballast. This nonlinear factor is
taken into consideration in this model. The distributed gravity force on the
system is conisidered in the system modeling to properly take into account this
non-linear factor. In the cases of rail lift-off from tie and/or tie lift-off from ballast,
the pad stiffness and/or ballast stiffness is taken as zero. The condition for rail

lift-off from tie is:

u, —u >0, (2.35)
and tie lift-off from ballast is:
u >0 (2.36)

(4

where u,. is. rail vertical displacement and u, is tie vertical displacement. The

coordinate is positive for the upward displacements and forces. These
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relationships are checked at every time step and the system matrices are

modified according to the rail and tie displacements.

2.4.2 Extension of finite length of track to infinite track

One might take a very long portion of track in the model and calculate the
dynamic response of the system. This is not economical because the size of
system matrices would be significantly increased and a lot of time would be
required for the computation. The effect of a track far from the location of a
vehicle on the wheel-rail interaction is actually small and the track in those areas
can be cut-off so that only a short portion of the track may be used for the
physical FE model. However, a moving vehicle would quickly reach one end of
the track in such a model. To overcome this problem, a “ring” model has been
proposed [92] to represent the track, in which the length of the track is physically
finite but the two ends are connected to form an imaginary circle. A major
drawback of such a model is that the size of dynamic equations may be
significantly increased if the FE method is employed in the modeling.
Alternatively, a simple approach of “cutting and merging” is proposed and
adopted in this investigation to realize infinite track length. In this method, a
short section at the rear end is simply cut-off and a new section is merged to the
front end after the vehicle has traveled over the distance equal to the length of
the cut away section (say, a tie-spacing), as shown in Fig. 2.6. In this way, the
track becomes infinitely long and the vehicle could run on it forever. It should be
noted that the vehicle is always located in the center part of the track and hence
limits any significant influences that the spring-connected end conditions may

introduce.
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The boundary condition at the two ends of the rail is primarily treated as a
combination of vertical and rotational equivalent springs. Such boundary
conditions can be conveniently imposed in the FE moceling by simply adding
stiffness values of each spring to the corresponding elements in the system
stiffness matrix. The influence of the boundary element stiffness on the system
response will depend on the length of the track considered. If the track in the
model is taken long enough and the vehicle is always located at the center
part of the track model, the effect of boundary stiffness parameter may be
negligible. On the other hand, if the track length required is to be minimized an

approximately selected boundary spring stiffness will be required.

For the case o.f impact response, it is possible that vibration waves resulting
from the impact are reflected from the ends, and the response after the first
strike is affected by these waves. The rail actually serves as a medium for the
propagation of vibration waves. In reality, the waves are supposed to travel
away along an infinite rail and gradually be damped out by the damping in the
track. To facilitate such behavior of the track model, artificial damping is added
on the end elements as shown in Fig. 2.6. The damping added near the ends
can not change the nature of the original track system but they can absorb the
wave :nergy transmitted to the ends. This is equivalent to letting the waves
travel away along the rail. The added extra damping at the ends can also
damp out most of the disturbances caused by the cutting and merging process.
Part of the disturbance waves may also be damped out by the track damping
as they propagate on the way to the wheel/rail contact point. The influence of
the boundary spring stiffness and damping parameter on the dynamic response

of the track will be.investigated as a part of this study.
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2.5 REPRESiNTATION OF WHEEL/RAIL CONTACT FORCES

To overcome the limitations of the single point centact models as discussed in
Chapter 1, an adaptive contact model is proposed in this study, which can be
used to calculate the vertical dynamic contact force and longitudinal force due to

geometric relationship between the wheel and rail.

The most realistic representation of any irregularity in the modeling is to let the
vehicle travel over the irregularity. This is the irregularity representation

employed in this investigation.

2.5.1 Calculation of vertical contact force

Fig. 2.7 shows the proposed wheel-rail contact model in this study. This model
is similar to the adaptive tire model [20] used to represent the road-tire
relationship in road vehicle modeling. The wheel/rail relationship is represented
by a set of element springs which are uniformly distributed in the vertical plane
and have the same stiffnesses. This allows the springs to adapt to any
irregularity in the contact patch. For this reason, it is called adaptive contact
model. A multi-point contact at a rail joint may be easily simulated by using this
contact model in the calculation. Unlike the road-tire system, in which the
contact stiffness is mainly determined by the tire itself, the stiffness of the
element spring in the wheel-rail system depends on the material and geometric
shapes of both wheel and rail. A simple approach is proposed to estimate the

element spring stiffness.

First, the total static load, P,, is applied to the wheel and the deformation, Au, is

calculated from Hertzian contact model described in Eq. (1.1). That s,
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n2, s % Au
ke ~ B
AL

ke: element spring stiffness
Au: deformation under static load
Lc: contact length

m: number of element springs for stiffness calculation
P: static load

AL: distance between two spring elements

Figure 2.7 An adaptive contact model
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Au=(B,/Cy)?? (2.37)

It is then assumed that the contact length in the longitudinal direction (L¢) is
equal to the chord length that has the height equal to the deformation, as shown
in Fig. 2.8. From the known contact length, the distance between two

neighboring element springs is calculated as:
AL=L_ /(m-1) (2.38)

where m is the number of element springs in effect under the static load. The

stiffness of the eilement spring is then calculated as:

k, = P/ f; Au, (2.39)

i=1

where ay, is the deformation of element springs and they are calculated by
assuming that the wheel has a perfect principal rolling circle. In the dynamic

force calculation, the element deformations or overlaps are calculated by:
Auy=u,-u, ~f; (2.40)
where i corresponds to the i-th element spring, f is the irregularity function and

u_is the rail displacement, and =, is the wheel displacement which is calculated

by assuming that the principal rolling circle of wheel is perfect. The force on the

element spring can therefore be calculated as:

P =k Au, (2.41)
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Each element force is then transferred as nodal equivalent forces using

Eq.(2.18). The total vertical force is summed as:

P=3P. (2.42)

which is applied to the wheel to calculate the vehicle response. The relationship
between the total vertical force and the total deformation for the proposed
contact model is equivalent to that of the Hertzian spring represented by

Eq.(2.37), as shown in Fig. 2.8.

2.5.2 Calculation of geometric longitudinal force

The contact between the wheel and rail may not always happen on the
centerline of the wheel [40,152]. This may be affected by the motion of the
wheel and the irregularities on the wheel and rail. An off-centered contact may
generate a longitudinal component of the contact force, which may serve as a
resistive or driving force, depending on the actual contact position. This force is
due to the geometric contact relationship between the wheel and rail. To identify
this force from the longitudinal force caused by the creep of the wheel over the
rail, it will be refereed to as “geometrical longitudinal force", in this study. This
force may be small if the wheel and rail are smooth for ¢ )ossible train speed
and it has often been ignored in the study of dynamic contact forces. However,
this force may become significant due to the wheel and rail irregularities such as
wheel flats and rail corrugations. It may increase the energy consumption of the

vehicle and accelerate the deterioration of wheel and rail treads.
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Stiffness of single element spring (ke): 70.4 kN/mm

Figure 2.8 The relationship between W/R overlap and
vertical static force
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The adaptive contact model mentioned before is extended to predict the
geometric longitudinal force. In this extension, it is assumed that the curvature
at a given contact point‘ remains unchanged after the deformation of the wheel
and rail materials under the contact force. Based on the relationship shown in

Fig. 2.9, the longitudinal force on a element contact spring, F.i, is calculated by

F,, = p,tan(ay) (2.43)

where p, is the vertical force on the i-th element spring, and ay; is the contact

angle at the location of the i-th element spring.

Besides the adaptive contact model, the linearized Hertzian, non-linear Hertzian
and Tunna's contact models described under literature review have all been

incorporated in the computer program for the FE model developed in this study.

2.6 PROCEDURES OF VEHICLE-TRACK INTERACTION CALCULATION

The overall vehicle-track system is divided into two systems separated at the
wheel-rail interface in the calculation of their interaction. They are related by the
contact force calculated from the contact model, as shown in Fig. 1.3. An
iteration procedure is used to obtain the response in the time domain. This is

convenient to make any modification on both the vehicle and track systems.’

The calculation is started from the static deformation of the whole system. Then,
the vehicle is assumed to travel at a specified forward speed and a solution of

time history is obtained. This can avoid introduction of some undesired motions
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Wheel

Pij: Normal force on element spring (from Eq. 2.41)

F xi : Geometric longitudinal force
Qgi: Wheel/rail contact angle along longitudinal direction

Figure 2.9 Geometric longitidinal force
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in the system so that a steady-state interaction can usually be obtained after the

vehicle has traveled about 4 or 5 tie-spacings.

2.7 SUMMARY

A general FE model of railway vehicle-track system is developed. The

assumptions of this model are:

The vehicle is traveling on a straight track;

The track is symmetric with respect to its center line so that only a single
rail is considered in the track modeling;

The creep forces between the wheel and rail are small and their effects on
the vertical motion of vehicle-track can be ignored;

Hertzian contact coefficient is constant.

The components of the vehicle-track system modeled are as follows:

A vehicle is modeled as a lumped parameter system which consists of a
body, bogies, primary and secondary suspension and rigid wheels;
Wheel/rail contact is modeled as distributed springs in the contact patch
in the normal direction;

The rail is modeled as infinite, discretely-supported Timoshenko beam;
The rail-pad is modeled as a distributed a spring-damper element;

The fastener is modeled as a vertical and a rotational springs;

The tie is represented by either a rigid body or a non-uniform Euler

beam;
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The ballast and substrate are considered together and modeled as a

distributed spring-damper element.

The basic features of this model are summarized as follows:

A vehicle traveling on an infinite track indefinitely with a time dependent
speed can be simulated;

The adaptive contact model can adapt any irregularities on the wheel
and rail treads anu multi-point contact along the longitudinal direction
can be simulated; the actually measured rail and wheel profiles can be
directly input in the model for calculation without first filtered any high
frequency irregularity; the geometric longitudinal force can also be
estimated from this contact model;

The problems arising from the vehicle/track interaction for frequency
range up to 2.5 kHz can be investigated on this model;

Irregularities in the frack support, such as irregular tie spacing, voids and
hard spots under the ties and missing rail-pads, can be taken into
account;

This model is valid for all present and foreseen train speeds;

The dynamic forces in the system and rail strains can be directly
obtained from this FE model, where the rail strains are continuous

anywhere.

The major limitations of this model are:

Asymmetric motions of vehicle and track system can not be simulated;
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The bending motions of wheelset have not been included in this model
and their effect on the vertical dynamic force can not be studied using this
model,

The strains in the ballast and subgrade can not be predicted;

The calculated strains in the rail near the wheel/rail contact region are not
valid because the rail is modeled as a beam and the influence of contact
force on the strains is not considered;

The wheel and rail tread irregularities in the lateral direction are ﬁot
considered, and their influence on vertical dynamic force can not be

evaluated.
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CHAPTER 3
NATURAL FREQUENCIES OF VEHICLE-TRACK SYSTEM

3.1 INTRODUCTION

Natural frequencies are important properties of a structure. They can provide
useful information to understand the basic dyhamic behaviors of the vehicle-
track system. There is a relative motion between the vehicle and track and this
may affect the coupled wheel/track frequencies to some extent. However, this
influence should be small for the possible speeds of present trains because the
lowest wave propagation speed in the rail is about 1900 km/h [107]. Hence, the
vehicle and track can be considered to be stationary to analyze the system

frequencies.

The natural frequencies of the vehicle-track system can be basically divided as
frequencies of structure components and frequencies of conIed system. For
the present study, concrete ties, wheelsets and coupled wheel-track system are
the major components of the model. The natural frequencies for each of these
components are investigated and compared with experimental data whenever

possible.
3.2 NATURAL FREQUENCIES OF CONCRETE TIES AND WHEELSETS

The concrete ties and wheelsets are assumed to be beams and the Timoshenko

beam element model described in Chapter 2 is used to calculate their natural
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frequencies. The boundary conditions for them at their two ends are assumed to
be:
Q' =0, forx=0, L

u’—(I>=O, forx=0,L (31)

where u is the tie vertical displacement, @ is the rotational angle of cross-
section, and L+ is the total length of beam. After imposing the boundary

conditions, the dynamic equations of the beam may be expressed as:
[MJ{i} +[KKn} =0 (3.2)

This is the dynamic equation used to compute the natural frequencies of a
concrete tie and a wheelset. There is no essential boundary condition in the
free tie and wheelset systems and this equation is singular. Not all the existed
methods for the calculation of eigenvalues can be directly used on this system
because some of them may involve in the inverse of stiffness matrix, such as the
Rayleigh-Ritz subspace iteration method [120]. It is found that the simplest
approach to overcome this problem is to impose a pair of soft springs to the free
beam, as shown in Fig. 3.1, so that the free-free beam becomes non-singular.
The effects of the springs on the bending frequencies are negligible if the spring
stiffness is much smaller than that of the beam, as indicated in Fig. 3.2. This
figure further shows that the springs have little effect on the frequency value of a
particular vibration mode if the springs are located near the node points of this
mode. With such modification, any existing method can be used to calculate the
frequencies. Rayleigh-Ritz subspace iteration method [120] is employed to

calculate the natural frequencies of concrete ties and wheelsets in this study.
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Figure 3.1 Imposing a pair of springs to a free-free beam
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Figure 3.2 Effects of spring stiffness and support locations on frequencies -
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3.2.1 CN Type-A bridge concrete tie

CN Type-A coicrete bridge tie (Fig. 3.3) has an approximately uniform cross
section along its length. The first seven natural frequencies and modes of the
concrete tie wsre measured by Igwemezie [79] and they are used for model
validation in this study. The calculated results based on Euler beam theory and
Timoshenko beam theory together with the experimental data are all presented

in Table 3.1. The Error or the percentage of difference in the table is defined as

_ theoretical value - experimental value

Error :
experimental value

100% (3.3)

The parameters used in this part of the study is basically adopted from [79] and

are as following:

E,= 3214x10"° N/m (4662 ksi) G,= 1340x10"° N/m (1943 ksi)
Py =2458 kg/m> (2.3x107 Ib-s?/in*) m, =2068 kg/m (3x10” kip-s®/in?)
1,=6.4936 m* (1560 in*), v, =0.2, T, = 0.845

Timoshenko coefficient (T) of the concrete tie is calculated from the formulas

proposed in [26], which is expressed as:

_10(1+v,)

= 3.4
T 12+11v, (34)

As shown in Table 3.1, the frequencies calculated with the Timoshenko beam -
theory are very close to the experimental results.  The difference between the

experimental results and the theoretical results calculated with the Euier beam
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theory becomes larger with the mode increasing. This is because the Euler
beam theory ignores the shear deformation and the inertia of rotation and makes
the beam stiffer than it really is. This results in overestimation of the calculated
frequency. This effect on the first two bending modes cf the concrete tie is small
and it may be neglected. However, it is much better to use the Timoshenko
beam theory for the concrete tie if the higher modes are concerned in the

investigation.
3.2.2 CT-3 concrete track tie

The CT-3 concrete (Fig. 3.4) tie was installed in the test site for an impact load
investigation carried out by CP Rail System [36]. Its natural frequencies were
obtained in the in-situ field tests [36] and they are used to further validate the

theoretical tie model in this study.

In order to justify the theoretical tie model used in the FE model of the vehicle-
track system, four different models for the CT-3 concrete tie are considered in
the calculation. They are the free-free non-uniform Timoshenko beam (FTB),
the free-free non-uniform Timoshenko beam on elastic foundation (TBEF), the
non-uniform Timoshenko beam supported on two springs (TBS), the equivalent
free-free uniform Euler beam (EUEB) and the equivalent non-uniform Euler

beam on elastic foundation (ENEB). The parameters used in the calculation are:
E,= 3.214x10" N/m (4662 ksi) G,= 1340x10' N/m (1943 ksi)

P = 2458 kg/m’® (23x10™ Ib-s*/in*) k,= 2977x10° N/m (4318 Ib/in®),

K,=8268 MN/m (210 kip/in),  v,=02 T, =0845
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The Timoshenko shear coefficient is calculated from Eq. (3.4). The equivalent

uniform beam is calculated from the following criteria:

(a) the total lengtn of the tie remains unchanged;

(b) the width of the tie bottom remains unchanged;

(c) the total amount of mass remains unchanged,;

(d) the angle between the bottom and the side remains unchanged,

(e) all the physical parameters remain unchanged.

Table 3.2 shows the calculated naturali frequencies, together with the
experimental data. As shown in this table, the calculated frequencies from the
TBEF model generally have very good correlation with the experimental data.
The measured first bending frequency was originally recognized as 73 Hz in the
preliminary analysis reported in [36], which should in fact be for the near rigid-
body translation orfand rotation modes (01 and 02 in Table 3.2). This erroneous
observation is probably because the nodal points of the first bending mode
(about 130 Hz) are very close to the rail seats and hence this mode may not have

been excited effectively to be detected during testing.

The results in this table show that the continuous foundation stiffness strongly
affects the first bending frequency but it has little effect on the higher modes.
This may also be explained qualitatively using the following expression for the

natural frequency (f,) derived for an Euler beam on elastic foundation [60]:

k. !
1, =5_1;{%[n<n+o.s>‘ +=L]R, n=1,23, - (3.5)

- 79 -



[9¢] ‘Jox wox are e1ep rejuowruadyy ,

£20€ 661 5661 661 S VAV 6
oz z091 €09l Zo91 \\/<><><\ 8
6.€1 seoi rezl €8zt z8zl //\\//\\//\\ L
/N\__/
vi8 880l 898 18 898 7T T 9
N\ ™~ s
ges 859 02s SZS Frds 8lLs \ /.\ N\
S82 o6c €62 00c 662 162 \\/ﬂ\\ 4
€zL (¥4 60L €L 60l >
<
£ 00 1'€S zL 00 — ¢
€L
€L 00 &1 oL 00 t
ZH ZH ZH H ZH zH ‘ON
. Qep edwys epopy
fopon §IN3 | tepomEIN3 | 1epon SEL | ruewpedxg | 1OPON J38L | tepon ald epony

311 yoe1) 91210U0D £-1 Jo sapuonbaly feIMEN Z°€ olqel

- 80 -



where E is Young's modulus for the beam material, | is the second moment of
area of beam cross-section, m is beam mass per unit length and k¢ is the

stifiness of elastic foundation. With the parameters used in this study, this

expression for the concrete tie becomes:

1

£, =3512x[234 x (n+05)* +4145), n=1,2,3, - (3.6)

The second term (4.145) in the bracket represents the influence of foundation
stiffness on the frequencies. Its effect on the first frequency is large but it will
quickly disappear with the increase of the mode order (n) and the frequency then

become approximately proportional to the square of mode order.

Similar to the continuous support discussed above, there is no significant
dif_férence among frequencies for different discrete support conditions, except for
the first frequency, as shown in Table 3.2. If the support stiffness is small, the
effect of support conditions can even be ignored, as was shown in Fig. 3.2. In
the tests carried out by Dean et al. [34], the influences of support conditions on
the bending frequencies were not observed , even on the first bending mode, .
This is probably because the ties were not tightly restricted on the supports in

the tests and the tie behaved basically like a free-free beam.

The geometric changes along the length of the tie have some effect on the
frequency values, as indicated in Table 3.2. it is a general case that the
concrete tie has a thinner part in the middle and a thicker part at the two ends or
at the rail seats. This makes the tie frequencies smaller than those of its

equivalent uniform beam. It is difficult to give a general conclusion for this
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factor. As the results indicated, the method developed in this study can be used

to predict the frequencies and mode shapes accurately.

Based -n above discussions, it is clear that it is appropriate to model the
concrete tie as a non-uniform Timoshenko beam laying on elastic foundation
(TBEF) in a track model. However, this may increase the size of the governing
equations of the track system. On the other hand, only the first few frequency
values and vibration modes of the tie have some effects on the response of the
dynamic wheel/rail contact force and strains in the rail. Hence, to reduce the
computing time, the tie modeled as an ENEB is used in the system model
described in Chapter 2 and its natural frequencies are also listed in Table 3.2 for
comparison. As the results show ENEB model of the tie is as good as that of

TBEF for the first 6 modes.

3.2.3 Natural frequencies of a wheelset

The natural frequencies of wheel rim in the vertical plane may be estimated from

the following expression [67]:

1

f = - Q+n)"*(E, /p,)" n=1,23 (3.7)

n
w

where p,, is the mass density of wheel rim, E,, is the Young's modulus for rim
steel and R,, is wheel rim effective radius. For a AAR 36" diameter freight car
wheel, the free rim frequencies are 2754 Hz, 4355 Hz, and et al. [67]. The wheel

plate can further stiffen the wheel rim considerably and increase the frequencies.
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Hence, the frequencies of the rim are too high to be of concern in this study.
The axleivheel mass is therefore modeled as a lumped mass in this

investigation.

To bring into the geometric shape and the shear flexibility of the wheelset along
the axle, the wheelset is modeled as a non-uniform Timoshenko beam with
lumped masses and free-free end boundary conditions, as shown in Figs. 3.5
and 3.6. The mass and second moment of the wheel rim and web are assumed
to be concentrated at the locations of rolling center. The wheel hubs are
considered to be clamped on the beam. ' The wheelset is assumed to be
supported on the springs at the locations of bearings, as shown in Fig. 3.6. The
wheelset modeled as Timoshenko beam on spring supports is referred to as
TBS model. The free-free Timoshenko beam model (FTB) and the free-free
Euler beam modei (FEB) are also erployed in this investigation for comparison.
The results of the free-free Euler beam model are also obtained by properly

modifying the developed computer program.

The dynamic equation of the wheelset is the same as Eq. (3.2) developed to
calculate the natural frequencies of concrete ties, except that the lumped
masses (M) and inertia moments (Ju) of the wheels have to be added to mass

matrix. The model parameters for an AAR Axle Type C wheelset are taken as:
E,=21x10" N/m (30459 ksi ) G, =8.077x10"° N/m (11715 ksi )

p, =7757 kg/m? (7.259x10* Ib-s?/in*) M, =350 kg/m (19987 kip-s’/in)
J,=25kg-m (221 Ib-s-in), v, =0.3, T, =0.886, Kv=2.2 MN/m.
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The Timoshenko shear coefficient (T,,) for the wheelset axle is calculated from

the following expression [26]:

_6(1+v,)

7+6v, (3.8)

The evaluated results along with percentage difference from the FTB model are
shown in Table 3.3. A comparison of results obtained using FTB and TBS
models indicate that the influence of primary suspension stiffness on the
wheelset natural frequencies is negligible. This is due to the fact that the
wheelset axle stiffness is significantly larger than that of primary suspension.
The mass and inertia moment of the wheels are significant and they strongly
affect the frequency values and mode shapes. The test method used to

measure the frequencies of concrete ties should also be good for wheelsets.

3.3 NATURAL FREQUENCIES OF VEHICLE-TRACK SYSTEM

The natural frequencies of vehicle-track system is evaluated in two stages. First
a detailed wheelltrack model is considered to identify the coupled wheelltrack
frequencies. A simplified car-wheel-track system is then considered to estimate

its natural frequencies.
3.3.1 Wheel-track system
One of the coupled wheelltrack natural frequencies is the wheel/rail contact

resonant frequency. The wheel/rail contact stiffness is usually very large under

a quasi-static loaded condition. For example, it is about 1.8x10° for a 36' AAR
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wheel on a R136 rail under a static load of 147 kN (33 kips). The rail-pad
stiffness are usually several times smaller than this stiffness and its effect on
this contact resonant frequency can be ignored. Furthermore, the rail
equivalent mass is usually much smaller than the wheel mass and the
displacement of wheel may be ignored for estimation of wheel/rail contact
resonance. Hence, the resonant frequency due to this contact spring can be
evaluated by only taking into account the rail equivalent mass and contact
stiffness, which forms a 1-DOF system. In doing so, the wheel/rail contact

resonant frequency is estimated to be in the range of about 800-1000 Hz.

in the following discussions, in order to identify other coupled wheel-track
frequencies and simplify the FE modeling, the wheellrail contact stiffness is
assumed to be infinitely large and the wheel mass is rigidly attached to the rail
at the contact point. The model of the track system is the same as that
described in Chapter 2. The ties are considered rigid bodies in this case. The
natural frequencies of the wheel-track system vs. their mode number are
plotted in Fig. 3.7a. To identify the effects of the wheel on the frequencies, the

track frequencies are also calculated and plotted in Fig. 3.7b.

From these two figures, it can be seen that only a few frequencies are
significantly affected by the participation of the wheel on the track. Two of
them are important for the vehicle-track interactions. The first one is the
fundamental track frequency (80 Hz ) and it is replaced by the first coupled
wheel-track frequency (54 Hz). The second is the fundamental rail/tie anti-
phase frequency (474 Hz) and it is replaced by the wheel-railltie anti-phase
frequency (266 Hz). The presence of wheel does not significantly change the

basic distribution of the frequencies.
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Figure 3.7 Dispersion relations for a wheel-track system"
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The frequencies of the wheel-track system may roughly be divided into four
groups, as indicated in Fig. 3.7. The first group includes the two coupled
wheel-track frequencies. The wheel, rail and tie move in phase as the system
is vibrating at the first coupled frequency (54 Hz). The mode shape of this
frequency is very close to the deflection shape of the track as shown in Fig. 3.8
for various configuration. Hence, it is an important frequency in the vehicle-
track system. Mair [99-102] indicated that this frequency may have a
relationship to long-wave corrugations. A possible source causing the
resonance is the effect of tie spacing. The tie spacing is usually in the range of
0.55 to 0.8 meter in the present tracks. The first coupled wheel/track frequency
is usually in the range of 30 tc 60 Hz. The corresponding resonant speed due
to tie spacing will be in the range of 16.5 to 48 m/s (60 to 173 km/h). This
range covers most of conventional railway speeds. A further discussion on this

problem will be presented in Chapter 6.

The first coupled wheelltrack frequency mainly depends on the unsprung mass

(My), track equivalent mass (M) and track effective stiffness (Kg). The track
effective stiffness is composed of the rail stiffness and the foundation stiffness.

The equivalent mass and stiffness may be estimated from the formulae

proposed in [10]:

K,=2(4EIZ)°®  and  Mp=3mg(EI/K,)" (3.9)

where El is rail stiffness, myg is track equivalent mass per unit length and kfis
track equivalent stiffness per unit- length. In this study, the track equivalent
mass’per unit length is taken-as:"

m =m,+M,/L, (3.10)
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The track equivalent stiffness is taken as:

k=K, /L, (3.11)

where K is the equivalent stiffness on each support and it is calculated from:

k,k,L,L,
=P P2 (3.12)

Y kL, + kL

The first coupled frequency can then be calculated as:

1’ K
f, —_— e 3.
WIT™ 27\ My + Mg (3.13)

The coupled frequency may also be calculated from the formulae proposed in
[100]:

k 172 k 1/4
fW,,.=L(_f) where me=mm+-"11(—L) (3.14)

2r\m,

The frequency calculated from above Eq. 3.14 is about 49 Hz and it is lower
than the results obtained from the FE model and the expression given in Eq.

(3.13).

The second coupled wheel/track frequency (266 Hz) represents the anti-phase
motion between the wheel (plus the rail equivalent mass) and the tie. Because
the wheel mass is usually several times larger than the tie mass, the anti-phase
frequency mainly depends on the tie mass, rail-pad stiffness and ballast

stiffness.
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The frequencies in the rest of the three groups are mainly determined by the
properties of the track system. The frequencies in the second group (80 to 203
Hz) is characterized by their mode shapes in which the rail and tie basically
move in phase. The frequency values are closely spaced in this group but their
mode shapes are individually distinct from each other. Physically, this is
because a long rail is a slender structure and the energy in each mode in the
low frequency range is close to each other. Mathematically, this can be
explained from Eq. 3.5. For a reasonable length (L) of track used in the
calculation, the first term in the formulas is not significant until the mode
number (n) increases to some point. Below this point, the second term, which
is constant, dominates the values of the frequenéies. Therefore, the frequency
values can be very close to each other, even though their mode shapes are

orthogonal.

The frequencies in the third group (474 to 478 Hz) are also close to each other
but for a different reason. In this group, the rail and tie basically vibrate in anti-
phase manner. The feature of discrete tie supports contributes to a number of

closely spaced frequencies.

As the frequency increases (larger than about 478 Hz), the influences of
supports become smaller and the properties of the rail gradually dominate the
behaviors of the system. This may also be explained from Eq. 3.5. As the
mode order increases to some point, the constant term, which represents the
support condition, is no longer significant in determining the frequency values.
This suggests that the rail vibrations at very high frequencies are relatively

independent to the support conditions.
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3.3.2 Car(body)-wheel-track system

To estimate the natural frequencies of car-wheel-track system, a simplified
model as shown in Fig. 3.9 is considered. The evaluated natural frequencies
presented in Table 3.4 can be basically divided into three groups,. The first
group (2.69-2.70 Hz) belongs to the vehicle sprung system. Usually, the primary .
stiffness is designed to assure the isolation of vibrations from the exciting
sources and the fundament frequency of sprung system is less than 10 Hz. The
second one is for the coupled wheel-track frequencies (about 54 Hz) and the
third group is for the track system. The frequencies in the first group can
actu:illy be calculated fairly accurately by only taking into account the sprung
mass and primary stiffness. In spite that the positions of the four lumped mass-
wheel units are quite different, the frequency for each unit is almost the same, as
shown in Tabie 3.4. These mean that the properties of the wheel-track system
have little effect on the fundamental frequency of the vehicle sprung system.
Also because of the isolation provided by the primary suspension, the
frequencies of the wheel-track system are relatively independent of the sprung

system.

The results of this section clearly indicate that for evaluation of track frequency,
and wheel/track coupled frequency, it is sufficient to only consider the wheel-

track system.

3.4 SUMMARY

The natural frequencies of the major components of the model namely track

system, wheelset system and car body system are evaluated. The frequencies
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La : Wheelset axle spacing (1.74 m)

Lw: Wheelset distance between two vehicles (2.9 m)

Lr: Total length of track used in the calculation (16.24 m)
Er: Young's modulus for rail steel (2.07e11 Pa)

Ir: Rail second moment of area (2.35¢-5 m4)

my: rail mass per unit length (56 kg/m)

Kv : Boundary verticle effective stiffness (33.4 MN/m)

Kr : Boundary rotational effective stiffness (11.69 MN/Rad)
K¢ : Foundation stiffness per unit length (40 M/m/m)
Mw : Wheel mass (500 kg)

Mc : Sprung vehicle mass (10000 kg)

K1 : Vehicle primary suspension stiffness (3.0 MN/m)

Figure 3.9 Car-wheel-track system



TABLE 3.4 NATURAL FREQUENCIES OF A CAR-WHEEL-TRACK SYSTEM

MODE |
No. FREQUENCIES (Hz)
1 2.69
2 2.69
3 2.70
4 2.70
5 53.60
6 54.50
7 56.92
8 57.92
9 138.31
16 138.39
11 156.22
12 158.80
13 162.96
14 201.08
15 203.33
16 244.12
17 265.08
18 292.23
19 311.70
20 353.09
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are also evaluated for wheel-track and car-wheel-track system to identify

coupled natural frequencies.

A first stage validation of the model is carried out by comparing the FE results
with those available from field testing. The calculated natural frequencies for
concrete ties from the FE model showed good correlation with these obtained
experimentally by CN and CP Rail. The results further show that the support
conditions strongly affect the fundamental frequencies, but can safely be ignored

for higher frequencies.

The results of wheelset natural frequency indicate that due to relatively large

axle stiffness, the influence primary suspension is negligible.

Simulation of vehicle-track system show that for evaluation of track frequency
and wheel-track coupled frequency, it is sufficient to only consider the wheel-
track system. On the other hand, the sprung mass frequencies can be evaluated

effectively from the sprung mass and primary suspension.

From this part of the investigation, the vehicle-track (wheel-track) coupled
frequencies were identified as 54 Hz for in-phase motion and 266 Hz for out of
phase motion between the wheel (with rail) and the tie. The frequencies
corresponding to other modes are dictated by the properties of track system

alone.



CHAPTER 4
IMPACT LOADS DUE TO WHEEL FLATS AND SHELLS

4.1 INTRODUCTION

The most common wheel tread defects encountered by railway industry are
wheel flats (Fig. 4.1) and shells (Fig. 4.2). It is estimated that the railway
industry in North America is currently spending approximately $90 millions
annually to replace 125,000 wheels due to wheel tread defects [1]. Since
vehicles may operate with wheel tread defects before they are feplaced, it is
very important to evaluate their influence on the impact load experienced by

vehicle and track components.

Wheel flats and wheel éhells are known to cause abnormally high forces and
stresses in the track and on the vehicle components. Depending on the size
and shape of defect, axle load and speed, the stresses may be sufficient to
initiate fatigue cracks, or cause final failure, which may lead to derailment of
vehicles. Severe wheel flat and shell are clearly safety hazard. Smaller ones,
on the other hand, contribute to track deterioration and increased cost of
maintenance. In addition to safety and economic considerations, these defects
reduce passenger comfort and significantly increase annoying noise. A
quantitative definition of the impact loads and dynamic stresses in both wheel

and rail are therefore impartant in predicting safe operating limits.

The mechanism for the initiation of wheel flats is not well documented. It is

generally believed that wheel flats are mainly caused by braking. Once the
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Figure 4.1 Wheel flats at the same “o'clock” position on a single wheelset
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Figure 4.2 A fully shelled wheel
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wheels of a vehicle become locked during braking, they slide along the track.
The friction created by this adhesively wears a flat spot on the wheel. The flat
spot, possibly starting as a chord of the wheel circumference, tends to get longer
and rounded after a few cycles of wheel rotation. Then, the basic flat shapé
may stay on the wheel tread for a long time and repeatedly generate large
impact forces. Sometimes, this type of wheel flat is referred to as skid flats or
short wavelength flats (2.5 to 7.6 cm, in length) or traditionally flats by some

researchers [9].

US. Federal Railroad Administration [6,9,35] and Canadian National Railways
[134] have reported another type of wheel flat that has a longer wavelength (30
to 41 cm, in length). It has been called runout profile error in some articles since
'flat’ may be no longer a proper definition for such a profile shape. The initiating
process of runout profile is also uncertain either. Perhaps it starts from the
traditional flat, where the car is moved without proper release of brakes. This
process may induce a heat-affected zone on the tread and rim, with some
reduction of hardness. A thin, hard layer of martensitic material may also be
formed in this process from quick surface quench, but this layer should spall off
rather quickly under impact loading. Slight differences in effective lubrication
between the two wheels may result in long-term differences in profile shapes on
the two wheels. The vertical dynamic force may favor the development of flat in

some cases.

Wheel shells are mainly developed from micro-cracks initiated by high strains in
wheel/rail contact region due to high axie load and creep forces. Even though
the appearances of wheel shells are different from those of wheel flats, the

measured irregularity functions are quite similar for both cases [36]. Hence,
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their basic characteristics of the impact loads should also be analogous.

As an attempt to restrict the damage due to wheel tread defects, most railway
administrations has placed limits, such as the AAR Interchange Rule 41 [11], on
the length and depth of flats and shells that may stay in service. Experimental
results [36] have shown that some non-comdemnable wheel tread defects may
cause higher impact loads than some of comdemnable wheel tread defects [36].
Often the wheels with long wavelength runout profiles do not exceed the
condemning limits of the AAR Interchange Rule 41 but they may also resuit in

peak wheel/rail forces over 445 KN [157].

To replace the wheelsets with large flats, they have to be first detected. Many
railways still carry out the detection manually, which are costly and difficult in the
winter season. Devices for automatically detecting wheel-flats and wheel-shells
have been studied for many year [153] and some detectors, such as 'Salient'
wheel impact detector have been put into service [36]. Further improvements of

the automatically detectors are needed to increase their reliability.

The problem of wheel/rail impact loads due to wheel tread defects have become
an impor;tant concern with increase speed. The first successful investigation
was carried out experimentally by researchers at AAR in 1950's [83]
Researchers at British Rail [24, 25, 80, 152] undertook excellent work in this
area in 1970's. Ahlbeck and his colleagues [4-10, 72-73] and Grassie [62] have
endeavored to measure the loads caused by actual wheel irregularities and
compare these with calculated values in 1980's. Both short and long wheel flats
have been considered in their investigations. CP Rail System has carried outa

series of field tests on impact loads due to wheel tread defects in 1988 and 1989
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[36, 37]. The Salient wheel impact detector was used to measure the impact
loads. In recent years, more computer models of railway vehicle-track system
have been developed and they have been applied to the impact load problem

[18, 40, 49].

However, some aspects of the wheel tread defects remain unclear. In some
cases, the observations reported by different researchers seem to be conflicting.
For example, it has been reported by Fermer and Nielsen [49] that the dynamic
component of impact load is not affected by the axle load but the experimental
data obtained by CP Rail System [36] show that the dynamic loads on loaded
cars are larger than those on empty cars. Further studies are therefore needed

to examine all possible factors that may affect the impact loéd.

The objective of this section of the study is to carry out a thorough investigation
of impact load characteristics due to wheei flats and shells. For this, the
developed FE model is first validated against the available experimental data
from British Rail and CP Rail. The validated model is then used to carry out an
extensive parametric study to identify all possible factors that may affect the
impact load. Finally, the model is used to examine the interaction between two
wheels due to wheel tread defects. The validated FE model may provide an
important tool for the design and development of reliable wheel impact load

detector.

4.2 DESCRIPTION OF WHEEL DEFECTS

A fresh flat can be expressed as [4}
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f:__{—RW(‘I—COS(p) 0<o <o (4.1)
Y ®> @
and
_ sin"'(x/R,,) 0sx<L,/2 4.2)
sin"'[(L; -X)/R,] L, /2 <x <L, '

where x is longitudinal coordinate, Ly is flat length and Ry, is wheel tread radius.

After a few cycles of wheel rotation, a fresh wheel flat may get rounded under
the impact load generated by this flat. Hence, Lyon [98] has suggested a
haversine function as more realistic representation of a service-worn flat profile.

It may be expressed by

f=05D;[1-cos(2mx/ Lr)] (4.3)

where Ly is the length of flat and Dy is the effective flat depth that may be

calculated by

Df= L} /(16R,) (4.4)

Unlike the fresh and rounded flats, it is difficult to use a simple function to
expressed the wheel tread runout profiles and wheel shells. Device such as the
profilometer developed by Salient system is available to measure the actual

irregularities on wheel treads [36].
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The haversine flat function expressed in Eq. 4.3 and the actually measured

wheel flats and shells are considered in this study.

4.3 VALIDATIONS OF FE MODEL

As specified in the previous section, useful experimental results are available on
the wheellrail impact which can be used to validate the present FE model.
Validation can be carried out either in frequency or time domain. It is easier to
correlate few theoretical results to experimental data in the frequency domain.
However, in problem such as wheellrail impact a large range of vibration modes
could be excited, and due to large contact stiffness, the force is very sensitive to
wheel/rail response. It is therefore, crucial that the model for the proposed study
is validated in time domain. A time history validation will further give added

confidence on the model for its validity in other applications.

In the following subsection, the developed FE model is validated against
experimental data from British Rail and CP Rail. The proposed adaptive contact -
model is also verified with other well established models and the result are

discussed.

4.3.1 Validation against BR’s experimental data

Newton and Clark [107] at British. Rail carried out a field test to investigate the
impact loads and validate their theoretical model.in 1979. This experiment is

one of a few excellent experiments in the studies of impact loads [92]. Even
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though it was carried out about 15 years ago, the experimental data are still

valuable for the studies of vehicle/track interaction.

Their experimental work was carried out with an ideal haversine approximation
to a wheel flat which was ground into the rail, as shown in Fig. 4.3, thereby
avoiding the difficulties of measuring the effects of an irregularity on a wheel
which might strike at any point along the track. This also minimizes the
influence of lateral position of wheel on the impact load. The haversine function

for the wheel flat has been previously described in Eq. 4.3.

The parameters corresponding to the experimental setup presented in Table 4.1
is adopted in the FE model to duplicate the BR's test conditions. In this case,
the vehicle is modeled as a unsprung mass carrying a constant load (Model 1 for
vehicle in Fig. 2.1a). The tie is represented by a rigid body or a lumped mass.
The element length of rail is half of tie spacing. Various rail models utilized in
the simulation include: Timoshenko beam on discrete support model (TBDS),
Euler beam on discrete support model (EBDS), the Timoshenko beam on elastic
foundation mode! (TBEF) and the Euler beam on elastic foundation model

(EBEF).

The simulated time history contact forces for each of the above rail models along
with BR's experimental data are presented in Fig. 4.4. As the results indicate,
the basic shapes of the contact forces from all the models are similar to each
other, but the first peak values (maximum impact load) for different models are
quite different. The lowest peak value resulting from the TBDS model is the

closest to the experimental data.

- 105 -



Direction of running -

Irregularity
j —— —
Rail SG1 X SG2X  SG3 X
: BG1 : BG2
L 77771 T L 1 L] Loz e

p LN

Timber tie : Load-measuring baseplates

| 385mm | 395Smm

SG: Shear gauge
BG: Bending gauge
BP: Load-measuring baseplate
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TABLE 4.1
NOMINAL PARAMETER VALUES
FOR BRITISH RAIL'S EXPERIMENTAL SYSTEM
(BASED ON REF. [107])

Young's modulus for rail steel, 2.07x10" N/m?

Shear modulus for rail steel, 8.1x10"° N/m?

Rail second moment of area, 2.35x10”° m*

Rail mass per unit length, 56 kg/m

Track mass per unit length for beam on elastic foundation models, 119
kg/m

Foundation damping per unit length for beam on elastic foundation
models, 2.76x10* Nes/m?

Foundation stiffness per unit length for beam on elastic foundation
mudels, 4 x10' N/ m?

Railpad stiffness, 2.0x10° N/m

Ballast spring stiffness, 3.16x10’ N/m

Tie spacing, 0.79m

Cross-sectional area of rail, 7.17x10” m?

Timoshenko shear coefficient, 0.34

Hertz spring constant, .0x 10" N /m??

Depth of haversine wheel flat, 2.15 mm

Length of haversine wheel fiat, 2.15 mm

Wheel mass, 500 kg

Static load, 82 kN
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Figure 4.4 Wheel/rail contact force due to wheel flat
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The reason for the large discrepancy in the peak dynamic force to some extents
can be attributed to excessive mass being lumped to the rail in the distributed
support models used in the calculation. Fig. 4.5 shows the effect of increasing
equivalent track mass on the impact load calculated from the distributed support
TBEF model. It can be seen that the first impact peak (usually called P4 [80]) is
very sensitive to the track equivalent mass. For the given speed (117 km/h), the
major frequancy involved in the first peak is about 1 kHz (the first peak lasts only
about 1 ms, as shown in Fig. 4.4) and it is reasonable to expect that only a small
amount of tie mass could take part during impact at such high frequencies.
Hence by simply lumping the tie mass to the rail largely overestimates the impact
load. This suggests that the equivalent track mass on the EBEF and TBEF
models should be taken as a function of frequencies involved in the response.
This is one of the major drawbacks of all models in which the track is

represented as a beam on a single-layer elastic support.

Another reason for the large variation in the peak dynamic force predicted from
different models is the difference between the two beam theories. Euler beam
theory ignores the rotational inertia and the shear stiffness of the rail. This
makes the rail stiffer than what it really is. This significantly changes the rail
dynamic behavior at high frequencies. For this reason, the impact loads
calculated from Euler beam theory are again overestimated for a given vehicle

speed.

The dynamic force on the pad (pad force) under the rail irregularity that
represent the wheel flat [107] is- calculated from TBC'S model and presented in
Fig: 4.6. This figure also presents the experimental data in terms of dynamic

force factor (dynamic force divided by static load). It can be seen that the force
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on the pad has a better correlation with the experimental data than the wheel/rail
contact force. This is because the force data for both the rail and the rail-pad in
[107] were inferred from a load-measuring basepiate that was located at the
position of rail pad and hence the experimental data should represent accurately

the force on the rail pad.

The model is next validated by simulating the time history of strains developed at
the rail against those obtained experimentally. The calculation of strains in the
rail further involve deterioration of the rail displacement using (Egs. 2.20 and
2.21). Simulation and experimental results corresponding to rail foot bending
strains at BG1 and BG2 (Fig. 4.3) are shown in Fig. 4.7. Similarly shear strains
obtained at SG1, SG2 and SG3 (Fig. 4.3) are presented in Fig. 4.8. These
results are obtained using FE model with element length equal to half tie spacing
and lumped mass for tie. In general the results show very good agreement for

the first peak with some deviation for others.

The model is then further refined by: using element length equal to quarter of tie
spacing; adding extra damping near the rail ends to absorb the transmitted
waves; and modeling the tie as a beam. The above simulation is then repeated
and compared with experimental data as shown in Fig. 4.9 for rail foot bending

strains and in Fig. 4.10 for shear strains.

By comparing the results shown in Figs. 4.7-4.8 and Figs. 4.94.10, it can be.
seen that these modifications to the model do not significantly change the first
peak. values, which are the main concern in the cases of wheel flats and shells.
However, some improvements can be seen,in these results. For example, these

modifications make the reflected waves from the rail ends disappear, and the
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strains in the rail after their first peaks are significantly improved when compared

with the experimental data.

To examine the effect of extra damping near each end of rail and the boundary
spring stiffness, wheel/rail contact force is calculated for various values of
damping and boundary spring stiffness, and the results are presented in Fig.
4.11. As it can be seen from this figure, there is no significant difference
between the two responses for the quite different two sets of stiffness values: (i)
K,=108 MN/m, K=108 MN/m; (ii) K,=0, K;=0. This indicates that the stiffness of
the boundary spring has little effect on the impact response. This means that it
is not necessary to impose any restriction at the rail ends if the track in the
model is taken long enough and the vehicle is always located in the center part

of the track model.

On the other hand, Fig. 4.11 shows that the reflected waves from the ends are
satisfactorily absorbed when some viscous damping (c,=20 kN-s/m2) is added
on the last two finite elements at each rail end. The added extra damping at the
ends can also damped out most of the disturbances caused by the cutting and
merging process in extension of finite length of track to infinite track in the FE
modeling. These suggest that adding damping near each end is very useful to
improve a long term response in the dynamic modeling of vehicleftrack

interaction.

Dynamic response of the model in term of peak force factor, rail acceleration and
rail strain as a function of forward speed is presented in Fig. 4.12. Experimental
data [107], wherever available is superimposed for.comparison.. The dynamic

force factor for the pad again shows a better correlation with the experimental
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data than the W/R contact force. At low vehicle speeds, both wheel/rail contact
and pad forces have the same order of magnitude. However, for higher vehicle

speeds they differ significantly.

4.3.2 Validations against CP Rail experimental data

A Salient Wheel Impact Load Detector was installed on CP Rail Systems' main
line tangent track at Mile 47.8, Mountain Subdivision in the province of British
Columbia, Canada, to measure and report wheel impact loads. CP Rail
Research and Operations Development Department (CPRS) conducted a series
of field tests in April 1988 [36] and early February 1989 [37]. The main test
objectives were: to study the integration of the system into the inspection
procedure of empty coal trains; to compare impact load values from different
types and sizes of tread defects; to establish a wheel load distribution for coal
trains; to determine projected wheel removal rates for different alarm level

settings; and to assess the effect of frozen track structure on impact loads.

The detector was installed on 136 RE rail with CP Rail CT-3 concrete ties, with
30.48 m (100 feet) of concrete ties on the approaches [36]. The ties were spaced
0.6096 m (24") apart, and Portec Polyurethane 4.76 mm (3/16") rail-pads were
installed. These pads were reduced from 0.1905 m (7-1/2") to 0.127 m (5") in
length to ensure more circumference wheel coverage. A motion detector was

used to sense approaching eastbound and westbound trains and activate the

Salient detector. The detector was calibrated with a vertical. loading fixture .

developed: by the Centre for Surface Transportation Technology, National

Research Council of Canada [36). Two concrete ties were also strain gauged to
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measure their dynamic behavior under impact loads.

Fig. 4.13 shows one of the consists used in the tests, in which twenty wheelsets
with tread defects were selected and installed under five coal cars. These
defects were shells, flats and built-up treads, both condemnable and not
condemnable by AAR Rule 41. Wheel circumferential profiles were measured
with a special profilometer developed by Salient Systems [36). Several examples
of the profiles are shown in Fig. 4.14. In these tests, the cars were both empty
and fully loaded. Some of the wheels used in Summer tests [36] were also used
in Winter test [37] for comparison of the impact loads on frozen and unfrozen
tracks. Test data from these series of tests reported by CPRS [36, 37] are
employed to validate the FE model. The major parameters used in this
simulation are same as those corresponding to CP rail's experimental system as

presented in Table 4.2.

One of the methods used to measure the impact load, such as that employed in
the Salient Wheel Impact Load Detector, is shown in Fig. 4.15a. The net shear
strain differential is measured from the rail web and it is simply multiplied by a
calibration constant to obtain the wheel/rail contact force or impact load. A trace
of the actual vertical contact force measured from the detector, together with the
FE theoretical curve, is shown in Fig. 4.15b. In the detecting (or linear) range
(about 280 mm in this case), the shear strain differential is more or less constant
and its value is approximately proportional to the contact force, as calibrated in
[136]. The theoretical result is derived from the shear strain differential (Fig.
4.15¢) calculated from the FE model in a steady-state vehicle-track interaction, in
which the wheel and rail treads are assumed to be perfect and the vehicle is.

traveling on the track at a constant speed. The contact force calculated from the
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TABLE 4.2

NOMINALPARAMETER VALUES
FOR CP RAIL'S EXPERIMENTAL SYSTEM
ASED ON REF. [36])

Track system

Er

Gr

Young's modulus for raii steel,
2.07x10'! N/m?

Shear modulus for rail steel,
8.1x10'0 N/m?

Timoshenko shear coefficient
for rail, 0.34

Cross-sectional area of rail,

8.61x1072 m?

Rail second moment of area,
395x10° m?

Rail mass per unit length,
67.57 kg/m

Total length of concrete tie,
2.591m

Young's modulus for concrete
tie, 3.214x10'° N/m?

Shear modulus for concrete
tie, .340x10'° N/m?
Timoshenko shear coefficient
for concrete tie, 0.845

Mass density of concrete tie,
2458 kg/m3

Pad stiffness, 200 MN/m

Ballast spring stiffness, .-

4.0x107 N/m
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Cp
Ch

Railpad damping, 30 kNes/m

Ballast damping, 50 kNes/m

Vehicle system

Po

Static load per wheel,

146.8 kN (loaded car),

3.11 kN(empty car)
Sidefame mass, 500 kg
Wheel mass, 650 kg
Sideframe pitch inertial, 176
kg m2

Bolster and part of car body

mass

K4,Ko2: Primary spring stiffness,

788 MN/m

C1,Co: Primary damping, 3.5 kN-s/m

K3

C3

Secondary spring stiffness,
6.11 MN/m

Secondary damping, 158 kN
s/m

Wheel rolling radius,

0.4572 m (18 in)

Wheelset axle spacing, 1.78m

Hertz spring constant,

15x10'! N/m¥? -
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Figure 4.15 Simulation of a wheel impact detector
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FE model is basically consistent with the measured trace except that the
theoretical curve is slightly lower in the center part of the detecting range than
those at the two shoulders. The error is less than 5% in this case if the average
value of the differential is chosen to determine the theoretical calibration

constant.

Wheel dropping response
Some wheel drop tests have been carried out on a wooden tie track by CP Rail

System to correlate the force measured on an instrumented wheel plate and the
force measured on instrumented rail [136]. The load detector installed on the rail
is similar to Salient impact detector. In the tests, one wheelset in- situ. was
raised and dropped from various heights to impact the rail using a quick release
jack. The impact force was measured simultaneously by detectors both on the
wheelset and the rail. These drop tests are also simulated using the FE model.
An example of the predicted drop impact response, together with the
corresponding experimental trace, is shown in Fig. 4.16. As evident, the
theoretical prediction has a good correlation with the experimental data. It is
interesting to note that the dynamic force measured from the net shear strain
differential is almost exactly the same as the contact force directly calculated

using the FE model.

Comparisons of impact loads due to wheel tread defects
Extensive validation of impact load prediction by the FE model has been

presented in the previous section. In this section the scope of validating the
mode! where the vehicle is represented by a track with two wheelsets and a car -
body is utilized.” As shown in Fig. 4.13, CP rail experimental train consisted of

several cars where each axle had defective wheels.
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The FE model with 5-DOF vehicle representation is simulated using wheel tread
profile L12 for the leading wheel and L11 profile for the trailing wheel. The

characteristics of wheel profile L11 and L12 are shown in Fig. 4.14

The peak impact loads computed from shear strain differential and contact force
directly from FE model as a function of speed is presented in Fig. 4.17 for empty
as well as loaded cars. The experimental data for corresponding wheel defects
within a track is superimposed on the results for comparison, as shown in Fig.
4.17. As the results show the correlation of the theoretical results with the
experimental data is quite acceptable. The dynamic forces derived from the
calculated shear strain differentials are also found consistent to the contact

forces directly calculated in the FE model.

The predicted peak impact loads due to the wheel shell in Fig. 4.14c (L22 in
[36]), together with the experimental data, are plotted in Fig. 4.18. Elastomeric
shear pads were installed on the truck pedestals to simulate a radial truck in the
tests and to investigate its effects on the impact loads [36]. This pad is modeled
by reducing the primary spring stiffness (K4 and Ky on the vehicle model in Fig.
2.1c). The theoretical predictions show reasonably good agreement with the
experimental data, and both results indicate that minimal isolation is provided by

the shear-pads.

4.3.3 Verifications of the adaptive contact model

Frequency-domain techniques have been used by many researchers to study
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Figure 4.17 Impact loads due to wheel flats (L11 and L12 in [36]) .
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Figure 4.18 Impact loads due to a wheel shell (L22 in {36])
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the vehicle-track interactions, e.g. [62,75,130,149]. The major advantage of
these techniques is that a solution can be obtained efficiently. However, all the
calculations using these techniques tacitly assume that the whole system model
is completely linear, as indicated in [107]. The contact stiffness also has to be
linearized. A linear Hertzian contact spring, as expressed in Eq. 1.2, is often
used in these calculations. If the variation of the overlap is small, this simplicity
is reasonable. However, if the variation is large, especially if there is a loss of
wheel/rail contact, the predicted contact force with the linear model may be quite
different from a non-linear model, as shown in Fig. 4.18. The dynamic force
shown in this figure is caused by a haversine wheel flat (Eq. 4.3) (Df =1.5 mm

and L¢ =100 mm).

Fig. 4.20 shows the W/R contact force and the shear strain at SG2 (Fig.4.3)
calculated with Hertzian contact modei, Tunna's contact model [152] and the
proposed adaptive contact model. A haversine wheel flat (Eq. 4.3) (Df = 2.15,
Lf = 150 mm) is also assumed in this case. It can be seen that the loss of
contact occurs earlier and disappears later for Hertzian model than that
calculated using Tunna's model or the proposed model. The first peak value of
the contact force is also smaller for Hertzian model than those for other models.
Similar behavior can be seen for time history of shear strain presented in Fig.
4.20. The time and position of impact predicted from Tunna's model and the
proposed model are very similar to each other. The experimental results
corresponding to the present simulation were shown in Fig. 4.8, which indicate
peak strain to be approximately 640 pe. As the results in Fig. 4.20 show, the
proposed adaptive contact model is in best agreement. Tunna's model therefore
overestimates the contact force, and hence the shear strain. This is because the

contact stiffness is overestimated at tha corner of the flat by Tunna's model.
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Figure 4.19 Wheel/rail contact force due to a haversine flat
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Some more comparisons of the dynamic forces calculated from Hertzian,
Tunna's and the proposed contact models are shown in Figs. 4.21 and 4.22 for
different wheel flat profiles. They show that the dynamic forces from the
adaptive contact model at some locations are significantly lower than those from
Hertzian and Tunna's models. These Iocatidns are usually corresponding to
high frequency irregularities. This indicates that the single point contact models
may overestimate the dynamic force in these situations. The adaptive contact
model assumes a set of springs in effect in the contact patch so that it can adapt
any irregularities in the contact region. It seems to be able to give a better
representation of the actual contact situation. It can automatically deal with the
two-point contact that may happen at a bolted rail joint. It may also be used to

predict the distribution of the contact force in the contact patch.

4.4 DYNAMIC RESPONSE CHARACTERISTIC DUE TO WHEEL DEFECT

The validated FE model is subjected to irregularity function representing a wheel
flat. The model parameters are same as those presented in Table 4.1 and the
input irregularity is represented by Eq. 4.3. The input irregularity function along
with system time history responses in term of: wheel/rail contact force; rail, wheel
and tie displacements; pad and ballast forces; and rail acceleration are shown in
Fig. 4.23. After the irregularity appears, the contact force does not drop quickly
to zero but falls gradually. The wheel moves down and the rail rises up. The
wheel loses contact with the rail for.a while and then impacts the rail. The wheel
does -not hit the. rail at the. wheel vertical centerline but a little bit ahead of the-

centerline. This is shown by the vertical overlap (Au°) on the wheel vertical
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centerline in Fig. 4.23. The negative overlap indicates that the wheel is

separated from rail on the wheel centerline.

The characteristic of rail acceleration is unique in comparison to other variables,
as shown in Fig. 4.23. There is a very sharp and large peak in its time history,
which happens at the moment when the wheel hits the rail after its free flight.
Because the rail mass is very small compared with the wheel, the rail
acceleration is the most sensitive variable in the impact response due to wheel
or rail irregularities. This demonstrates the attraction of monitoring the rail
acceleration to detect bad wheels; this principle is used in commercia! wheel

impact detection devices.

4.5 A PARAMETRIC STUDY ON IMPACT LOAD

The validated FE model of the vehicle track system considered here serves as a
base line model for a detailed parametric study.. The objective here is to examine
the influence of important model parameters on the peak dynamic force and the
maximum strain. As shown in Fig 4.14, there is no significant difference in the
shape between wheel flat and shell. Hence the basic characteristic of these

impact load should be similar, and it is not necessary to study them separately.

The results of the parametric study are discussed under the following sub-
headings, where only one system parameter is varied at a time, while the others

are kept constant and equal to their nominal values.

Two different cases have been considered in this parametric study. In the first
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case, the vehicle is represented as a single wheel mass and the tie is modeled
as a rigid body. The haversine wheel flat used by Newton and Clark [1 07] is
utilized. The system parameters used are same as those listed in Table 4.1,
which correspond to British Rail's \est track and vehicle. The base vehicle speed

is assumed to be 90 km/h in this case.

In the second case, the 5-DOF vehicle model is used and the tie is modeled as a
non-uniform beam. If not specified, the irregularity function in Fig. 4.14a (L12 in
[36]) is assumed for the leading wheel and the one in Fig. 4.14b (L11 in [36]) is
for the trailing wheel. The basic system parameters are the same as those in
Table 4.2, which corresponded to CP Rail's experimental track and vehicle. The

vehicle speed used for this confirmation is 88.5 km/h (55 mph) if not specified.

As it will be presented below, the basic tendencies of the characteristics of
impact loads due to wheel tread defects are the same in these two cases even
though there are some differences between them in the system models,

parameters and flat shapes.

4.5.1 Effect of axle load

Fig. 4.24a shows the dynamic forces and strains for different axie loads due to a
haversine wheel flat calculated for the BR parameters. Fig. 4.24b shows the
dynamic components of impact loads at different axle loads for different wheel
flats. Both figures indicate that increasing the axle load generally increases the
impact load. This has also been observed in the experiments [36,107]. In most
cases reported in [36], the dynamic component of contact force (P¢-Pg)on-a

loaded car is higher than those on anempty car.
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4.5.2 Effects of unsprung mass and vehicle primary stiffness

The impact force depends on both the mass and velocity of impacting objects.
However, increasing wheel mass (unsprung mass) also reduces the
instantaneous wheel vertical speed at the moment the wheel strikes the rail for a
given load. For this reason, the impact load is not significantly changed by

increasing wheel mass in the range analyzed in this study, as shown in Fig. 4.25.

Adding elastomeric shear pads on the wheelset bearing is equivalent to reducing
the primary stiffness on the vehicle and therefore changing the equivalent
unsprung mass. However, as indicated above, this has no significant effect on
the impact load. This has been confirmed by both experimental data and
theoretical predictions shown in Fig. 4.18. More experimental data about this can
also be found in [36]. However, it is easy to understand that reducing the primary
spring stiffness at the wheelset bearings can certainly reduce the dynamic forces

on the bearings.

4.5.3 Effect of vehicle speed

In the case of haversine flat, both experimental and theoretical results show that
there is a peak value in the dynamic force factor around 30 km/h (Fig. 4.26).
This peak value is probably related to the coupled wheel-track natural
frequency. The excitation frequency due to the wheel flat is 55.5 Hz, which is
very close to the coupled wheel-track natural frequency. At low speeds, the
wheel, rail and tie move together without separation during the impact process.
However, for a higher operating speed (say larger than 60 km/h), the wheel/rail
separation occurs and the peak force increases with speed. The peak impact
force may probably reach a maximum value and then reduce since the wheel

would fly over the flat at a very high speed. This speed is beyond the practical
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operating speed for this particular wheel flat.

In the case of light axle load (empty car), the impact load increases with the
vehicle speed before it reaches a certain point and then remains more or less
constant for a large speed range, as shown in Fig. 4.17. This tendency is also

shown in most cases presented in [36].

4.5.4 Effect of rail-pad stiffness

Increasing the rail-pad stiffness enhances the tie-rail connection and increases
the track effective mass. This contributes in increasing the impact load, the
shear strain in the rail and the force transmitted to the tie, as shown in Fig. 4.27.
Fig. 4.28 shows the contact force in drop responses. It indicates that reducing
the rail-pad stiffness can isolate some vibration motions of a concrete tie from the
rail and it may benefit both the rail and the concrete tie. These observations
show that reducing the rail-pad stiffness to a certain level (say 200~300 MN/m) is
a practical and effective method to reduce the impact load and to protect the rails
and concrete ties. This is basically consistent to the experimental results in [32]
and [64].

4.5.5 Effect of ballast stiffness

Increasing ballast stiffness increases the track stiffness and reduces the rail
deflection. The rail bending strain is significantly reduced as the ballast stiffness
increases, as shown in Fig. 4.29. However, the peak ballast force, the second
peak contact force and the second peak pad force increase almost
proportionally to the ballast stiffness as shown in Fig. 4.29a. Hence increasing

ballast stiffness transfers more impact energy to the track substructure system.
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4.5.6 Equivalent tie mass

Fig. 4.30 shows the effect of equivalent tie mass on the impact forces and
strains. Increasing the tie mass increases marginally the pad force. It Goes not
have much effect on the first peak (P.4) of the contact force but it has large
effect on the second peak (Pcp). Increasing the tie mass increases the discrete

mass in the track system. This causes a significant increase in rail shear strain
(see SG2 in the figure).

4.5.7 Effect of rail type
Increasing rail weight per unit length increases the rail effective mass and rail

stiffness. This gives only marginal difference of the impact load among the rail

types commonly used at present time, as shown in Fig. 4.31.

4.5.8 Impact position

To investigate the effect of impact position on the impact load, only one wheel is
assumed to have the flat as in Fig. 4.14a (L12 in [36]) and the other wheel to be
perfect. A total length of 60 tie spacings is continuously traveled by the vehicle in
the calculation and every peak load vs. its location relative to the tie center is
plotted in Fig. 4.32. It shows a clear distribution pattern and indicates that the
impact load over the tie is about 10% larger than that at the midspan between
two ties. This is because }he rail effective mass and stiffness over the tie are
larger than those at the midspan. There is no significant difference if the rail-pad
is modeled as a single spring-damper discrete or layered element, as also shown

in this figure.

4.5.9 Effect of flat size
By varying the size of the haversine flat (L¢ and Ds in Eq. 4.3), different impact
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loads are predicted and plotted in Fig. 4.33. This figure indicates that for a given
depth of flat, there is a critical flat length at which the impact load reaches its
maximum value for a given speed. The deeper the flat is, the longer the critical
flat length is. There is a maximum peak line that goes through particular
combinations of flat length and depth for a given system and vehicle speed, as

shown in Fig 4.33.

4.5.10 Effect of lift-offs of rail from tie and tie from ballast

The effect of lift-off of the rail from the tie and tie from the ballast on the
wheel/rail contact force is also plotted in Fig. 4.34. It shows that the influence of
lift-off on the first peak of the impact load is very little. Hence, it is not necessary
to take this nonlinear factor into account if only the maximum impact load is of
concern. However, changes in the time history after the first striking are
significantly different, as shown in the figure. In the case of linear system
(without lift-off), more vibration energy on the ties is transferred to the rail and a
larger oscillation in the response is caused. This results in a higher second

peak.

4.5.11 Effect of longitudinal force

The effect of longitudinal force is to increase (if in tension) or reduce (if in
compression) the rail stiffness. However, its equivalent stiffness is not
compatible with the rail stiffness until the longitudinal force is larger than 108 N
in the case studied (Fig. 4.35). The rail temperature corresponding to this force
is not practical. Therefore, the effect of longitudinal force on the impact load is
usually very small and it can be ignored. However, the strains due to the
variation in temperature plus the strains caused by the impact load may reach a

very high level and resuilt in damage to the rail in cold weather.

- 150 -



Peak dynamic force (kN)

105N
N
I

W/R contact force

Time
ms
Speed: 117 km/h
Lift-offs considered
---------------- Without considering lift-offs
Figure 4.34 Effect of lift-offs on impact load

700

650 -  W/R peak dynamic contact force

600 —

550 —

500 —

450 -

400 —

350 1E+02 1E+04 1E+06 1E+08

Tension force (N)

Figure 4.35 Effect of longitudinal force on impact load (BR parameters)

- 151 -



4.6 DYNAMIC INTERACTION BETWEEN TWO WHEELS DUE TO WHEEL TREAD DEFECTS

The wheel/rail dynamic contact force generated at one wheel may partially be
transmitted to a neighboring wheel and cause the interaction between two
wheels. The force at the neighboring wheel due to this interaction will be called
"across-wheel force" in this study. To understand the mechanism of the
interaction between two wheels, it is important to understand how the forces are
transmitted. Some researchers believed that the across-wheel force is caused
by the pitch motions of sideframes [18]. This may be partially true if the
sideframe and wheelset are connected with a bearing assembly that has a very

large stiffness, such as that on a three-piece truck.

However, this study shows that most part of the high frequency interaction forces
are transmitted by the rail in a general case. To demonstrate this, Fig. 4.36
shows the time histories of the wheellrail contact forces calculated with two
different values of the primary stiffness (K1) in the 5-DOF vehicle model. In this
case, a haversine wheelflat (Eq. 4.3) (Df =1 mm and Lf =100 mm) is assumed to
be on the leading wheel tread. When K1 is 1.5 MN/m, the high frequency
dynamic forces are actually isolated by the suspension and it is unlikely for the
wheel-bogie-wh‘eel or wheel-sideframe-wheel chain to transmit the high
frequency forces from one wheel to another wheel. Even though the stiffness
values have a difference of two power orders, there is no significant difference
between the contact forces. This indicates that the impact force is mainly
transmitted through the track system, particularly through the rail because it has
a relatively small equivalent mass and large stiffness. The wheels and bogie or

sideframes are usually massive and they may serve as energy reservoirs like a
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flywheel. They may only influence low frequency dynamic forces, which is not
the case analyzed in this study. The results in Fig. 4.36 further indicate that the
primary stiffness has little effect on the impact loads, which has been mentioned

above and observed in the experimental data [36].

The phase (time) lag of the across-wheel force on the trailing wheel caused by
the impact force on the leading wheel (Fig. 4.36) also indicates that the
interaction force is mainly transmitted by the rail. The first peak of the cross-
wheel force is delayed about 1.3 ms after the first peak of the leading wheel
force occurs. The wheelset axle spacing used in the calculation is 2.4 m and
thus the {ransmission speed is about 1850 m/s, only the wave propagation in the
rail can reach such a speed in this case. Hence, it is the wave propagation in

the rail that transmits the impact load mostly.

The basic mechanism that controls the interaction between any two wheels is
the principle of superposition. To demonstrate this, the same wheelflat as used
in the last section is first assumed to be on the leading wheel and then on the
trailing wheel, respectively, and the contact forces are calculated separately.
Then the forces are superposed for each wheel to obtain the dynamic forces that
should be for the case of both wheels having the wheelflats. These forces are
compared with the forces directly calculated for both wheels having the same
wheelflats. As shown in Fig. 4.35, there is no significant difference between the
forces calculated from both approaches, even though the non-linear contact

model is used in the calculations.

Because of the superposition, the maximum dynamic force may be affected by

the relative position of the wheelflats on the two wheels. Hence, if wheeiflats
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occur on neighboring wheels, the dynamic forces on them may be significantly
different from a single flatted wheel. This should be taken into account in the

experiments and data analysis.

4.7 SUMMARY

The FE model of vehicle-track system is employed to duplicate the experiments
carried out by British Rail and CP Rail System. The theoretical results such as
the wheel/rail contact forces, rail-pad forces and strains in the rail showed very
good correlation to the experimental data. Extensive results are compared with
experimental data in the time domain for through validation of the developed

model.

A wheel impact detector that utilizes the net shear strain differential on rail to
measure the dynamic force is also simulated on the FE model. The FE modeling
shows that the dynamic force derived from the net shear strain differential is
basically consistent with the wheelirail contact force. This suggests that the

basic principle used in the detector is sound.

The characteristics of the impact loads due to wheel flats and shells are
investigated based on the validated FE mode!l. This study shows that the impact
loads are mainly affected by the shape and size of flat or shell, axle load, vehicle
speed and rail-pad stiffness. The impact load of a wheel on the rail over a tie is
larger than that at the midspan. Adding elastomeric shear pads on the wheelset
bearing does not reduce the wheel/rail dynamic contact force but it may reduce

the dynamic force on the bearing. Reducing rail-pad stiffness to a certain level
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on a concrete-tie track may significantly reduce the dynamic load and the force

transmitted to the concrete tie.
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CHAPTER 5
THE DYNAMIC EFFECTS OF
CONVENTIONAL FREIGHT CAR RUNNING OVER A DIPPED-JOINT

5.1 INTRODUCTION

The FE model of vehicle-track system validated in the last chapter is applied in

this section to evaluate dynamic responses over prescribed rail joints.

Even though the welded rail joint: have been widely used on the railway track,
there are still a large number of bolted rail joints in the field. The bolted rail joint
could be a weak point of the track and large dynamic loads could be generated
on the joints with increasing vehicle speed and axle load. The dynamic force
could produce large stresses in track, fatigue cracks in rail and tie, geometric
deformation of ballast, and damage the components of trucks, such as wheelset
bearings. The track deterioration occurs giving rise to a progressive increase in
forces. All those increase maintenance costs of track and bogie truck. It is
therefore considered a useful application of the developed model to obtain better

understanding of the nature and magnitude of the dynamic loads.

Several track models have been employed to study the dynamic loads due to
wheelflats and rail joints. They can basically be classified as lumped parameter
models [10,80,128], beam on distributed supports [56,98,127] and beam on
discrete supports [18,25,108]. The validated FE model of vehicle-track system
developed in this study is employed in this investigation. This model is exterded
to the bolted rail joint problem by including the fishplate and rail gap. By using

this model, the effects of change in parameters of the vehicle-track system on
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dynamic contact force are investigated. The effects of rubber bearing pad in

freight cars with three piece truck on the bearing impact force are also studied.

5.2 VEHICLE-TRACK SYSTEM MODEL

Similar to the procedures used in Ref. [107], the vehicle and track are divided
into two systems at the wheel/rail interface and modeled separately. The two
systems are coupled by a Hertzian contact spring or an adaptive contact model
presented in Chapter 2. The most sensitive component of the vehicle is the
wheelset. To consider the dynamic force on the bearing, the sideframe has to
be taken into account. For these reasons, the vehicle is represented by a half

car model with five DOF, as shown in Fig. 5.1.

The track is represented by a Timoshenko beam on equally spaced pad-tie-
ballast supports, as shown in Fig. 5.1. The most sensitive component in the
track is the rail because of its proximity to the exciting sources and has small
equivalent mass. The strains in the rail are usually important for the analysis
and designs. Consequently, an accurate Timoshenko beam element is used to
represent the rail. It is a two-node element with four degrees of freedom at each
node. The details of the formulation have been presented in Chapter 2. The
separated rails at a joint are physically connected by two pieces of fishplates. In
this model, the fishplates are also modeled as Timoshenko beams and their
mass and stiffness matrices are combined with the rail matrices. The rail gap is
considered in the rail irregularity function. The length of track in the model is
considered to be 39 tie spacing. The pad and ballast are considered to be

massless spririg-dashpot elements. The tie is considered to be a lumped mass.
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This model is referred to as FE model or Timoshenko beam on discrete supports

(TBDS) model in this study.

By properly assembling the track elements, the dynamic equations may be

expressed as

Mt} + [C{ A} + [K]in) = {F) (5.1)

where [M] is mass matrix, [C] is damping matrix, [K] is stiffness matrix and {F} is
force vector. Hertzian contact spring is usually used to represent the
relationship between the wheel and the rail. Tunna [152] indicated that the
centerline contact assumption may not be true in some cases and has proposed
an approach to find the maximum overlap and to calculate the contact force.
The maximum overlap used in his calculation may overestimate the dynamic
force in some cases. In order to overcome this drawback and to simulate the
multi-point contact on a rail joint, a multi-spring contact model presented in

Chapter 2 (also shown in Fig. 5.1} is employed in this study.

5.3 DYNAMIC RESPONSE

Results are obtained as dynamic wheel/rail and bearing forces for a vehicle
running over a dipped joint. A single wheel response is evaluated for different
track models. A two wheel model is also considered to examine the impact

forces at each wheel and bearings.
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A simple set of formulae have been proposed by Jenkins et al. [80] to calculate
the so-called peak forces, P4 and P, due to a single wheel over a dipped rail

joint, which are expressed as:

P, = P, +2aV [Kym, /(- m, / m,)

m, .2 Cymt
P, =Py +2aV(———) (l————————,/km
2770 (mu+mt 4kl(m‘,+m()) tu

(5.2)

where Pg is vehicle static wheel load, m, is vehicle unsprung mass, K is
linearized wheel/rail contact stiffness, V is vehicle speed, « is joint angle, and
me, M, ki and ¢, are equivalent track system parameters defined in [80].
According to these formulae, P1 depends on the product of V and a, if other
parameters are fixed. To confirm this point, the track model (EBEF: Euler beam
on elastic (damped Winkler) foundation) proposed in [46] is employed in this
study and some examples are shown in Fig. 5.2. The irregularity function of

dipped-joint used in the calculation is expressed by

) = D4(1-cos(2nx /L)) O<x<gL, /4
“1 Dy(1+cos(2nx/Ly)) L y/4<xsly/2

(5.3)
where D, and L, are the maximum depth and the affecting length of rail joint,

respectively.

A sample results as wheel/rail impact load time history obtained for a fixed joint
angle (), but different wave length of dipped joint, are shown in Fig. 5.2.
These responses calculated with this model are similar to those calculated from
Lyon's model [80, 98]. Although the speed and « are kept to be the same in the

calculation of the responses, the first impact load (P4) is different for different
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Wheel/rail contact force (kN)

4007

3007

Fig. 5.2 Impa

a

=2m(D1/L1)=0.01
V=160km/h

1: D1=0.0055m,L1=3.4m
2: D1=0.022m,L1=13.6m
3:
4

D1=0.00275m,L1=1.7m
D1=0.0011m,L1=0.68m

ct Responses Calculated from an Euler Beam

on Elastic (Damped Winkler) Foundation
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wave lengths of dipped joints. Hence, the impact load is strongly dependent on
the actual shape of an irregularity on the rail and the formulae in Eq. 5.2 may

only give a rough estimation of the impact load on dipped rail joints.

The FE model described in section 2 can be easily converted to a Timoshenko
beam on elastic (damped Winkler) foundation (TBEF) model. The response
calculated with this TBEF model along with the predictions from other models
(EBEF and TBDS) and the experimental data from [80] is shown in Fig. 5.3. It
can be seen that the response is similar to the results calcuiated with the method -
in [46]. This indicates that a reasonable prediction can be achieved by using the
FE method. The major advantage of the FE method is that detailed modeling of
the track system can be taken into account to study the influences of track
parameters on the impact loads. Further, the dynamic forces on the components

such as fasteners, pads, ties and ballast can be analyzed.

In the simple track model such as in EBEF or TBEF mode!s, the tie mass per unit
length is usually simply added to the rail. It is noticed that if the tie mass is
separated from the rail as in the FE model in this study, the impact response
shows some significant changes, as shown in Fig. 5.3.. The first change is a
significant reduction in the first peak value. However, this peak does not match
with the experimental data as shown in this figure. One of the possible reasons
is that the irregularity function may not be accurately described in the
calculation. For this reason, the irregularity function in Eq. 5.3 is modified and it

is expressed as:
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Time(ms)

V=160km/h

1: TBDS (D1=0.022m,L1=13.6m,D2=0.002m,L2=0.04m)

2: EBEF model(D1=0.022m,L1=13.6m,D2=12=0.0)

3: TBDS (D1=0.022m,L1=13.6m,D2=12=0.0)

4: TBEF model (using FE solution method)
(D1=0.022m,L1=13.6m,D2=12=0.0)

5: TBDS (D1=0.017m,L1=13.6m,D2=0.005m,L.2=0.08m)
6: Experiment data from shear strain gagues

Fig. 5.3 Impact response for different track models
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Dy(1-cos(2nx /L)) O<xs (L, -Ly)/4

_|Dy(1~cos(2nx/ L)) +Da(1-cos2n(x~ Ly / 4+ Ly / 4))) (Li—-Ly)/4<sx<L,/4
S(x)= Dy(1+cos(2mx/ Ly))+Da(1+cos(2n(x— L; / 4+ L, / 4))) Lilasx<(Ly+Ly)/4
Di(14+cos(2nrx/ L;)) (Ly+L)/4sx<y]2

(5.4)

The response using this modified irregularity function is closer to the
experimental data than other theoretical predictions, as shown in Fig. 5.3 (Curve

5).

For the study on two wheel vehicle system, the FE model is employed to
investigate the impact load on a CN freight car (100 T) running on a typical
dipped-joint (p,=0.01m, 1= 3.654m, p,=0.002m, r,=0.04m) of CN track (60
kg/m, 2640 ties/mile). The irregularity function in Eq. 5.4 is used in this

investigation.

The phenomenon of the interaction between two wheels presented in Chapter 4
is also observed in the dynamic response due to the rail joint. The time history
of wheel/rail and bearing forces at the leading and trailing wheels are shown in
Fig. 5.4. The results show that some of the impact energy on the first wheel is
transmitted to the second wheel. The high frequency peaks on the second
wheel are transmitted through the rail and some of the low frequency waves are
transferred through the truck. The impact force on one of the wheels may be

affected by the dynamic force on another wheel.
Fig. 5.5 shows an example of the dynamic forces on the leading and trailing

wheels. It indicates that the dynamic force magnification, (R,-R),) and (Bs-Pyys)

may be approximately the same but the total forces are different even though the
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Force: wheel/rail and bearing (kN)

Wheel/Rail Force at Front Wheel

Wheel/Rail Force at Rear Wheel
0.95ms

Time(S)

Fig. 5.4 Impact forces at two wheels
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>

rear wheel

front wheel

V=30m/s

(NW) Iresffsaym = 32104

Time(S)

Fig. 5.5 Dynamic forces on leading and trailing wheels
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axie loads on the two wheels are the same. The total force seems to depend on

the force level (P, ) before the wheel begins to lose contact with the rail at the

joint.

5.4 PARAMETRIC STUDY

Fig. 5.6 shows the effect of wheel mass on the dynamic forces at the contact
point, rail pad and bearing. Comparing with the equivalent mass of rail, the
unsprung mass of truck is usually very large. The change of wheelset mass has
little influence on P, when the weight of wheelset is more than 600-800 kg. P,
increases almost proporticnally with the wheel mass. When the mass of

wheelset is less than some value, the peak forces, P, and P, are transferred to

the bearing and the impact force acting on the bearing is increased.

A rubber pad has been introduced as a suspension element for wheel bearings
on the three-piece truck of the freight car considered in this study. Fig. 5.7
shows the stiffness of rubber pad on the impact load. It indicates that reducing
the pad stiffness has little effect on the first peak load but it can reduce the
dynamic force on the bearing. The second peak of the contact force can also be
reduced when the bearing pad stiffness is reduced. Placing a rubber pad on the
bearing is a beneficial choice from the point of view of vertical dynamic force.
However, the lateral stability may be threatened by the introduction of the rubber

pad. This problem should be studied in detail.

Axle load (F,) has important effect on both P, and P,, as shown in Fig. 5.8. It

shows that increasing axle load increases the total impact Icad. Fig. 5.9 shows
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Force : wheel/rail, pad and bearing (MN)
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Fig. 5.6 Effect of Wheel Mass
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Fig. 5.7 Effect of Bearing Pad Stiffness
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Force : wheel/rail, pad and bearing (MN)

Force : wheel/rail(MN)

0.5

PO: t.alf axle loading
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Fig. 5.8 Effect of Axle Load
0.5
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0.4
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Time(S)

Fig. 5.9 Effects of Increasing Stiffnass of Rail Pad
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that increasing rail pad stiffness enhances the effect of tie in the impact process
and increases the oscillations of dynamic contact force after the first impact. Fig.
5.10 shows that the rail mass has very large influence on Py and Py;. Fig. 5.11
shows that decreasing the ballast stiffness has little effect on P, , but it can

reduce P..

Fig. 5.12 shows an example of the effect of bearing stiffness on the impact
forces. The mass of side frame is often considered as unsprung mass in the
dynamic studies since the bearing stiffness is usually very large on the three
piece truck. This practice has little effect on A but it may not give a proper
prediction of P, because it is affected by the bearing stiffness, as shown in this

figure.

Properly designing a profile near the rail joint may reduce the impact load. Fig.
5.13 gives a comparison of various responses at a dipped joint with different
profiles. The calculation is carried out with the EBEF model. It shows that
properly raising the position of rail near a joint can reduce the imbact force.
Practically, the ties at the two sides of the joint may be kept at a certain elevation
to modify the joint profile. As calculated with the TBDS model, Fig. 5.14 shows
that rising the position of the ties near the joint can reduce B and P,. Another
way to reduce P, and P, is to decrease the stifiness of the rail pads and to raise
the positions of ties near the joint at the same time. Fig. 5.15 shows that this
combined method can improve the dynamic behavior of wheel/rail at dipped joint
significantly. ~ Fig. 5.16 shows that this method can reduce the wheel/rail

dynamic contact force, especially at high speeds.
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Force : wheel/rail, pad and bearing({MN)

0.4

force acting on rail pad
force acﬁng on bearing ............................
wheel/rail contact force

stiffness of primary spring
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Fig.5.12 Effect of Bearing Pad Stiffness
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1: D1=0.022m,L1=183.6m, no raising curve
2: D1=0.022m,L1=18.6m,raising profile

3: D1=0.00275m,L1=1.7m,no raising profile
4: D1=0.00275m,L1=1.7m,raiging profile

5: D1=0.0,0nly raising profile

Fig. 5.13 Effect of Different Profiles
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Force : wheel/rail(MN)
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Time(S)
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Fig. 5.14 Effect of Raising the Tie Height

- 176 -



Force: wheel/rail (MN)
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Fig. 5.15 Effect of Tie Height and Pad Stiffness
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5.5. SUMMARY

In this chapter, available experimental data of the dynamic force at a rail joint are
used to further validate the FE mode! of vehicle-track system. The validated FE
model is employed to investigate the characteristics of dynamic forces due to a

dipped rail joint.

The results show that increasing axle load and rail equivalent mass significantly
increase the first peak load (P4). The wheel (unsprung) mass, stifiness of
bearing rubber pad, and ballast stiffness mainly affect the seccnd peak load
(P,). Properly designing a profile near the rail joint may reduce the dynamic

load at the joint.

The results presented in this chapter also indicate that the dynamic load

generated at one wheel can partially transmit to a neighboring wheel.
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CHAPTER 6
STEADY-STATE INTERACTION
BETWEEN RAILWAY VEHICLE AND TRACK

6.1 INTRODUCTION

All the rails and wheeis in service have some form of iiregularities on their
treads. It is an idealization to assume them to be perfect in the analytical
formulation for steady-state response. The major purpose in such investigation
is to evaluate the possible dynamic forces and track system responses when a

vehicle is traveling onr the track.

As a further simplification, the vehicle may be idealized as a constant moving
load or a harmonically vibrating force. The problem then becomes the well-
known "steady-state response due to moving forces" or "moving loads problem".
The moving load problem has been studied by many researchers and it has
been well documented for the track considered as an Euler beam or Timoshenko
beam on Winkler or damped Winkler foundation. The beam response due to the
moving forces can be easily solved analytically by first assuming its existence.
Good reviews of such analyses have been given by Fryba [55] and Kerr [90]. A
mass that is vibrating harmonically and moving at a constant speed has been
included in the steady-state solution by Duffy [41] in the recent years. Fryba et
al. [56] have recently employed the FE method to investigate the steady-state
response of an Euler beam on damped Winkler foundation (with random
stiffness and damping) subjected to a moving constant force. Several methods

proposed by Jezequel [81], Mean {104,105] and Cai [17] may be used to solve
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the steady-state response due to a moving force on a track mode! represented

by a beam on discrete supports.

It remains unresolved that if the assumption of the existence of the steady-state
solution is true or not [92] and that if there exists something like a stability limit
similar to the critical speed for wheelset hunting. So far, the major finding in the
investigations of the steady-state response has been the so-called “critical
speed" at which the speed of the moving force would be equal to that of wave
propagation in the beam. It is not clear if this critical speed correspond to an
unstable situation, and if a system could travel on the beam at or larger than
such a speed. This critical speed is usually greater than 1000 km/h for a
generai railway track and it is far beyond the speeds of present and foreseen

trains. Hence, this critical speed may have only academic interest for railways.

It is obvious that the vehicle can not be considered as a constant moving load if
dynamic wheel/rail contact force is present. The force generated in the steady-
state interaction gives the lowest limit that could reach in the vehicle/track
interaction. A quasi-steady-state interaction has been reported by Nielsen et al.
[110] and a method for track design optimization based on the quasi-steady-
state interaction has also been proposed by them [108]. Except this, no report
has been found that investigates the steady-state interaction using a

comprehensive vehicle-track system model.
For the speeds of present trains, it may make some sense to take into account

the discrete feature of rail supports in the investigation of s'>ady-state

interaction. This is because the discrete supports may introduce dynamic force
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and cause damage on the vehicle and track, even though this force is usually

small [140].

The FE model developed in this study can be used to 'simulate the steady-state
interaction for any speed (even beyorid critical speed) without first assuming its
existence. The validated FE model is employed in this chapter to explore the
steady-state dynamic response of vehicle track system. This study may help to
clarify some questioris mentioned above. The steady state response simulated
in this investigation is examined clearly in terms of forces on and deflection of
wheel and rail. Since the model is capable of simulating rail and tie lift off, the
track deflection in steady state interaction is examined in detail. A parametric
study is also carried out to examine the effect of vehicle velocity and
acceleration on the dynamic force, and the influence of system parameter on
resonance force which has not been reported to date. The parameters used for

the simulations in this chapter is presented in Table 6.1.

6.2 STEADY STATE DYNAMIC RESPONSE

For the simulation of steady-state interaction, the static deflection of the system
for given parameter is first established. Then, the vehicle is given a constant
speed and the steady-state solution can us:ua||y be obtained after the vehicle
has traveled about 4~5 tie spacings in the conventional train speed range (say,
less than 120 km/h). At a higher speed, it needs a longer distance to reach a
steady-state solution. To reduce the time required for the system to get into a
steady-state, the vehicle is kept on motion on the track model as the vehicle

speed is switched from one speed to angther one.
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TABLE 6.1

NOMINAL PARAMETER VALUES

Track system

Young's modulus for rail steel,
2.07x10" N/m2

Shear modulus for rail steel,
8.1x10° N/m2

Timoshenko shear coefficient,
0.34

Rail second moment of area,

2.35x10®° m*
Cross-sectional
717x107 m?
Rail mass per unit length, 56
kg/m

area of rail,

mTR Track equivalent mass per unit

length, (mp+My/Lyt)

Tie mass, 143 kg

Rotational inertia of tie, 1.2
kg—m2

Pad damping, 30 kNes/m
Ballast damping,
40 kNes/m

Extra viscous damping added
on the end elements of rail,

20.0 kNes/m?
Average foundation stiffness

per unit length, (Ks/Lt)
Railpad stiffness, 280 MN/m
Ballast stiffness,
46.6 MN/m

Equivalent stiffness on each
support, KpKb/(Kp+Kb)

Lp
Lp

Young's modulus for conrete
tie, 3.2x10"° N/m2
Tie second moment of area,

1.18x10™* m*
Total length of tie, 2.36 m
Tie spacing, 0.60r0.7 m

Rail-pad width, 0.16 m
Tie bottom width, 0.3 m

Vehicle system

My, Wheel mass (unsprung mass),

- 183 -

500 kg

Bogie mass, 1500 kg for
Model I, 3000 kg for Model IlI
Bogie rotational moment, 2800
kgm?2

The primary vehicle stiffness,
1.5 MN/m

The secondary
stiffness,

0.6 MN/m

The primary vehicle damping,
100 kNes/m

The secondary vehicle
damping, 20.0 kNes/m
Wheelset axle spacing, 1.75 or
26m

Hertzian  spring
1Lox10" N/m*?
Static wheel/rail contact force,
85 kN

vehicle

constant,



Fig. 6.1 shows the displacements and dynamic forces of several system
components in a steady-state interaction. Generally, there are two distinct
periodic waves in the time history of the dynamic wheel/rail contact force. The
first one is mainly caused by the variation of overall track stiffness due to the
effect of tie spacing and has a wavelength equal to the tie spacing. The
dynamic peak always occurs in the second half of each tie span. This dynamic
force may reach a local maximum when the tie-passing frequency of the wheel is
equal to the coupled wheel-track resonant frequency or the loaded track
frequency. For example, with the parameters specified in Table 6.1, the system
resonance is excited when the wheel travels at about 41 m/s (148 km/h) and the
tie passing frequency is about 52 Hz, which is approximately equal to the first
coupled wheel-track natural frequency (51 Hz) calculated from Eq. 3.3 in
Chapter 3. For this condition, the peak force occurs at a point of about a quarter
of tie-spacing from the tie center, as shown in Fig. 6.2. A parametric study on

this resonant force will be presented in Section 6.5 of this chapter.

SHORT WAVE FLUCTUATION IN STEADY-STATE INTERACTION

As found in Fig. 6.1, a second type of wave is superposed on the first one and
it has a shorter wavelength in comparison to the first one. To assure that the
short wave is real and rot caused by the errors of the finite element modeling,
different lengths of rail elements in the FE model are tested in the calculation.
As shown in Fig. 6.3, the appearances of the waveforms have some differences
for different element lengths, but the number of major waves in each tie span
remains unchanged and the fundamental feature of the response is similar to

each other. This means that although the short wave predicted by the FE
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Figure 6.1 Wheel, rail and tie displacements, W/R contact force
in a steady-state interaction

- 185 -



Displacement

¢ Lva
/ Whee!l-rail contact force

.

I | «— tle position

] | I 1 1

{
S 55 8 8.5 7 7.5

Wheal travel distance
m

/ Rail displacement on contact point

Wheel displacement

Wheel travel Speed: 41 m/s (148 km/h)
Lt: Tie-spacing

Figure 6.2 A resonancs in a steady-state interaction
(parameters from Table 4.1)
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Figure 6.3 Effect of rail element length
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Figure 6.4 Effect of tie mass on short-wave fluctuation
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model may vary depending on the element size, it reveals a phenomena in the

vehicle-track interactions:

The short wave is caused by the traveling motion of the wheel and the
oscillations of the discrete supports. This may be explainéd by the response
shown in Fig. 6.1. The loading of a particular support due to a moving load is a
transient process. As a wheel approaches a particular support, the moving
load forces the tie to move downward through the rail and rail-pad. If the
motion of the tie is not in phase with the motion of the rail over the tie, an
oscillation of the support will occur and this may result in the fluctuation of the
contact force. This may be seen clearly from the relationship between the rail
and tie displacements shown in the figure. One may notice that each tie
reaches its maximum displacement earlier than the rail over the tie and then
tends to bounce back. This gives a resistive force to the rail that is still moving
downward. It is hard to identify the short wave fluctuations in the rail and tie
displacements but one can observe their presence clearly on the pad force.
The number and position of the wave in the pad force are consistent with those
on the contact force. The tie absorbs energy at first and then plays an active
role in causing the short wave fluctuations in the contact force. It behaves like

an absorber.

If the track bed is soft and the equivalent unsprung mass is small, the short
wave may dominate the dynamic force profile at some speeds, as shown in Fig.
6.3. The short wave may disappear after the mass of tie is reduced to some
level, as shown in Fig. 6.4. This is another evidence that the short wave is
caused by the oscillation of the tie. As shown in Fig. 6.5, the steady-state force

at the front wheel is similar to that at the rear wheel, except there is a phase
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Figure 6.5 Steady-state dynamic forces on leading and trailing wheels
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difference between them, which depends on the tie spacing and the wheel axle
spacing. If the tie-passing frequency of the vehicle is equal to the coupled
wheel/track resonant frequency, the wheel, rail and tie move in phase and the
short wave may disappear, as shown in Figs. 6.2 and 6.5(b). The wavelength
of the short wave is relatively independent to the vehicle speed as shown in
Figs. 6.5(a) and 6.5(c). However, the dynamic feature of the supports may
affect the wavelength. If the tie is modeled as a rigid body, only one vibration
mode of a tie is introduced in the system and the major short wavelength is
about a quarter of the tie spacing (Figs. 6.1 and 6.3). If the tie is modeled as a
beam, more vibration modes of the supports are introduced in the system and
the wavelength becomes shorter (Fig. 6.5). Based on the results obtained from
this study, it is estimated that the short-wave dynamic force is usually less than

5% of the static load and it may be ignored in many practical problems.

6.3 TRACK DEFLECTION IN STEADY-STATE INTERACTION

In view of the models capability to simulate rail lift-off from the tie, and tie lift-off
from the ballast, a closer examination of steady-state track deflected is
presented in the section. Fig. 6.6 shows the dynamic deflection of track in a
steady-state interaction at a conventional speed (117km/h). The deflection
shape is asymmetric and it is caused by the motion of the load. The wheel
centerline is slightly ahead of the maximum rail displacement. The rail lift-off
from the tie in front of the wheel centerline (uq) is larger than that behind the
wheel (up). Such a phenomenon was also presented in [46], in which Euler
beam on damped Winkler foundation model was used to calculate the dynamic

response due to a moving load on aa infinite track. The rail lift-off shown in Fig.
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6.6 is larger than that was predicted in [46] because the track in this study is
assumed to sustain compression only. A similar result was reported in [151],
from experimental observation and from analytical results based on calculation
of rail deflection when the rail lift-off from the foundation was taken into account.
These comparisons indicate that the FE model can also work well for the non-

linear track system.

Fig. 6.7 shows several examples of the dynamic deflections of the track at
different speeds. It -shows that the asymmetry increases with the vehicle
speed. The higher the speed, the larger the distance between the maximum
deflection of rail and the wheel center line. These phenomena are basically
the same as those observed in the response of an infinite beam on damped
Winkler foundation subjected to a moving constant load [55]. This confirms
that track representation as a beam on damped Winkler foundation in the
investigation of the steady-state response is quite acceptable, and the

assumption of the steady-state solution is correct.

Fig. 6.8 shows the maximum deflection of the rail vs. the speed. The deflection
increases with the speed until the vehicle reaches a critical speed. The critical
speed observed in the case of 0.7m tie spacing is about 340 m/s. It is only
marginally lower than the critical speed (358 m/s) calculated from the formulas

derived from an Euler beam on elastic foundation [70]:
V. =4 4k§EI
Mg

(6.1)

where El is the rail stiffness, k, is track average stiffness per unit length and
My is equivalent track mass per unit length (including the rail and tie masses).

The resuits obtained in this study show that the steady-state interactions are
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stable at the critical speed or even at a speeds greater than that, &s

demonstrated in Fig. 6.7.
6.4 EFFECTS OF VEHICLE SPEED AND ACCELERATION ON W/R CONTACT FORCE

To explore vehicle track system resonance, wheel rail contact forces are
evaluated for very high speeds. Figs. 6.9 and 6.10 show several examples of
the steady-state wheel/rail contact force at very high speeds. Fig. 6.11 shows
the dynamic force vs. tie-passing frequency. In this figure, Curve 1 is
calculated as the tie spacing is equal to 0.7m and Curve 2 is for 0.6m tie
spacing. It shows that reducing tie spacing reduces the dynamic force due to
the discrete supports. The dynamic force reaches its first peak as the tie-
passing frequency (VILt) of the vehicle is equal to the fundamental coupled
wheelltrack natural frequency, which is about 54 Hz in this case. The second
peak happens at about 145 m/s for 0.6 m tie spacing and 165 m/s for 0.7 m tie
spacing. The tie-passing frequency for such speeds is about 240 Hz. This
resonance is probably related to the second coupled wheelitrack frequency
(about 260 Hz in this case), in which the combined wheel-rail mass moves
against the tie mass. The dynamic force increases with the speed after the
speed is larger than about 300 m/s. This speed is much higher than the
speeds of the present or even foreseen trains and it may have only academic

interest.

As mentioned before, the steady-state interaction is calculated by assuming
that the vehicle is traveling on the track continuously and the vehicle speed is
changed by step to quickly obtain the response for different speeds. The

responses of the whole system for all the speeds cansidered in this study are
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very stable no matter the speed is switched from a higher one to a lower one
and vice versa. Fig. 6.12 shows a response in the speed switch. No significant
dynamic force is observed in the switch. This demonstrates that any significant
dynamic force in the wheel/track interaction should not be caused by any

possible acceleration of the train.

6.5 INFLUENCE OF SYSTEM PARAMETER ON RESONANCE FORCE

The fundamental coupled wheel/track frequency is usually about 30~60 Hz for
the tie spacing is in the range of 0.55~0.7 m, on the conventional tracks. The
corresponding resonant speed due to the tie spacing is in the range of
16.5~42 m/s (60~150 km/h) and it is within many of the conventional train
speeds. It is worth having a good understanding of the magnitude of the
resonant force (the first peak in Fig. 6.11) caused by the effect of tie spacing.
For this reason, the factors affecting the resonant force are investigated using
the FE model. The 3-DOF vehicle model (Model Il) is used in the calculation
and the tie is considered as a rigid body in the track model. The base system
parameters are the same as those listed in Table 6.1. The following results are

obtained for variation of one parameter at a time.

Unsprung mass

The resonance force factor computed for different value of unsprung mass is
presented in Fig. 6.13. It shows that increasing the unsprung mass (or wheel

mass) increases the resonant force.
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Rail-pad width

In this case, the total stiffness (Kp) of the pad is kept unchanged but the pad
width is changed in the calculation. Fig. 6.14 shows that increasing the pad
width only marginally reduces the dynamic resonance force factor. This means
that it is fairly well to represent the rail-pad as a point spring-damping element

in the dynamic track model.

Damping

The influence of damping in the ballast, pad and primary suspension on the
resonance force factor is presented in Fig. 6.15. As it can be seen from this
figure, increasing damping in the ballast obviously reduces the resonant force
while the damping on the pad has only a small effect. This is because the pad
stiffness is several times larger than the ballast stiffness and the relative motion
between the rail and tie is much smaller than that in the ballast so that vibration
energy in the track is mostly absorbed in or radiated from the ballast.
Increasing the primary suspension damping (C4) on the vehicle also reduces

the resonant force, as indicated in Fig. 6.15.

Equivalent tie mass

Increasing the equivalent tie mass increases the uneven distribution of the
mass in the track but this does not increase the resonant force (Fig. 6.16).
This suggests that the dynamic force due to tie spacing is not caused by the
discrete masses of the supports. The variation of the contact force within a tie
span is mainly caused by the variation of overall track stiffness over each

spacing.
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Ballast stiffness and pad stiffness

Reducing the ballast stiffness reduces the dynamic force, as shown in Fig.
6.17. The change in pad stiffness only slightly influence the resonant force
(Fig. 6.18). This demonstrates that the equivalent support stiffness (K) on
each support is one of the major factors affecting the dynamic force. The

support stiffness mainly depends on the ballast stiffness.

Tie spacing
Reducing tie spacing reduces the variation of the overall track stiffness and

hence reduces the resonant force, as shown in Fig. 6.19.

Rail type
Increasing the rail size increases the rail stiffness (E/l;). This reduces the
variation of the support stiffness in each spacing so that the resonant force is

reduced by increasing the rail size, as shown in Fig. 6.20.

Based on the results presented above, it is estimated that the first wheel/track
resonant force on a heavy haul track that has a small tie spacing (say, 0.61 m)
and large size of rail (say, Rail 136RE) are small (less than 5%). Still,
however, some attention should be paid to some special cases, in which some
components may be excited by the effect of tie spacing, as reported in [140].
More attention should be paid to the coupled wheel/track resonance due to the
discrete supports if the track has a large tie spacing, small rail size and stiff

support. The second coupled wheel/track resonant force is larger than the first
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one but it usually occurs at a very high speed. It is expected that most of the

factors affecting that resonance have similar characteristics to the first one.
6.6 AN APPLICATION OF THE FE MODEL TO HARD SPOT AND VOID

Dynamic forces may be caused by irregularities in track structure. The most
significant irregularity is probably the variation of support height at ties. This
irregularity is usually called hard spot for a over-supported tie location and void

for an under-supported location.

The hard spot and void may be represented by a single parameter, Yy, as shown
in Fig. 6.21. It may be regarded as the difference between a particular support
height and the average support height of ballast as the assembly of rails and ties
is lift-off. If Uy is larger than zero, it forms a hard spot. Otherwise, it forms a

void.

Grassie and Cox [66] has developed a sophisticated mathematical model to
investigate the dynamic response due to a full void. The full void has also been
investigated by Fermer and Nielsen [49] using a FE model of vehicle-track
system. In these models, the track is assumed to be linear and it is difficult tb
use them to simulate a hard spot and a non-full void. This limitation has been
overcome on the FE model developed in this study and the hard spot and void
with any amplitude can be easily simulated. As an example, the dynamic force

due to a hard spot and void at one tie is calculated and presented in this section.

Fig. 6.22 shows the dynamic forces vs. the ballast support height (Y},) calculated

from the FE model. In this case, the variation of the ballast support is assumed

£
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to happen under only one tie and all the ballast stiffness is assumed to be the
same. As it can be seen in the figure, the wheel/rail dynamic contact force is not
very sensitive to the variation of the ballast support height. This is because the |
variation in ballast support height can only cause a small variation of rail
settlement with a long wavelength. It can not usually result in a very significant
dynamic force. The effect of a void is actually similar to that of increasing the tie
spacing in the steady-state interaction. If the vehicle speed is increased to some
point at which the coupled wheell/track frequency is excited, the dynamic force
may be increased to some extent. If a void invoives in more ties, the
unsupported spacing may be increased and hence the dynamic force may be
increased. As shown in Fig. 6.22, the most significant effect due to the variation
of ballast support height is the change of the load transferred from the rail to the
ties. As expected, in the case of hard spot, the vertical load is concentrated on

the over-supported tie. The neighboring ties share more load if a void happens.
6.7 SUMMARY

The steady-state interaction of a vehicle-track system in a very large speed
range (0-400 m/s) is obtained with a time-step integration technique without
first assuming its existence. The characteristics of the track dynamic deflection
obtained from the comprehensive vehicle-track model are basically the same
as those of an infinite beam on a damped Winkler foundation subjected to a
moving constant load. This suggests that it is fairly well to use a beam on
Winkler foundation to study the steady-state response of the track. This study
also confirms that the steady-state response of track subjected to a moving

force does exist.
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The response of the whole system at the so-called ‘critical speed' does not
show a significant difference from those at other speeds, except that the track
deflection reaches its maximum value. This critical speed does not mean an

unstable situation in the vehicle/track interaction.

It is observed that there are two types of distinct periodic dynamic waves in the
history of the wheel/rail contact force. The first one is caused by the variation
of overall track stiffness due to the effect of tie spacing. The second one is
caused by the traveling motion of wheel and the oscillations of discrete
supports. In the present train speed range, the magnitudes of these dynamic
forces are usually less than 5% of static load, except that the coupled

wheel/track resonant frequencies are excited at some speeds.

The resonant forces due to discrete supports may be larger than 5% of static
load in some cases. The magnitude of the resonant force mainly depends on
the unsprung mass, tie spacing, vehicle primary and track ballast damping, rail

stiffness and the stiffness on each support.

- 208 -



CHAPTER 7
- WHEEL/RAIL DYNAMIC CONTACT FORCES
DUE TO RAIL CORRUGATIONS

7.1 INTRODUCTION

Rail corrugation may be defined as repetitive longitudinal wave formation on the
rail tread. An example of rail corrugation is shown in Fig. 7.1. Rail corrugation
was first mentioned in scientific literature in 1893 [141]. Since then it has been
reported by many researchers [92]. The majority of the world's railways on both
straight and curved track have the rail corrugation problem. Rail corrugation has
quite a wide range of wavelength and depth. The corrugation with wavelength of
20 to 100 mm is often called short-pitch corrugation and it usually has a depth of
up to 0.4 mm and primarily occurs on light axle load tracks and transit systems.
The corrugation with longer wavelength (usually 150 to 1500 mm) may have a
depth of up to 5 mm and is often called long-pitch corrugation. It is usually

associated with heavy-haul freight railroads.

Rail corrugations cause dynamic forces and lead to the further damage to track
and vehicle components, particularly to railclips, pads, fastenings and ties. The
presence of corrugations gives rise to high noise-levels for passengers and
people living near the railways. For this reason, corrugations are colloquially
termed "roaring rails" by some people. The cost of corrugation to railways in
North America alone was estimated as $100 millions a year in 1985 [52]. In
1988, British Rail paid £5 millions for grinding and maintenance directly related
to corrugation [124]). Hence, rail corrugation is not just a curious phenomenon

but a serious problem.
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Because of this, researchers in different areas have concentrated their efforts to
find the mechanisms of the corrugations that may lead to a certain cure of this
problem. A large number of papers have been published on this subject. A
historical review of corrugation problem has been presented under track
maintenance in a text by Srinivasan [141], which covers the literature up to
1960s. Modern references (1968 through 1989) on rail corrugations have been
cited in a literature review by Ahlbeck [8]. A article that surveys different types

of corrugations has been written by Grassie [63].

Dynamic modeling has been successful in both revealing the cause and
assessing the viability of treatmenis for some types of rail corrugations. Mair
and his colleagues in Australia [99,100] have demonstrated that the coupled
wheel-track resonance for iron ore wagons, excited particularly by rail welds and
joints, give rise to corrugation at wavelengths of about 200 mm. It was also
found that this resonance force was responsible for corrugation at wavelengths
of 300-1500mm which occurred folic wving bad welds on relatively light rail [61],
Similar reason was cited for some longer wavelength corrugation which occurs
in the RATP in Paris [147]. Dynamic models of vehicle-track system can now be

incorporated in design methods to prevent damage by this mechanism [62].

Several hypotheses have been proposed to explain the mechanisms of short-
pitch corrugations [23, 75, 147]. However, a satisfactory theory has not be
established. The growing understanding reveals that this type of corrugation is
an enigma with variations. Like influenza, its appearance and cause exhibit
great diversity. A well validated method that can prevent the formation of this
corrugation has not been found. The major way to control the propagation of all

types of rail corrugations is stiil carried out by grinding the rail.
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The dynamic forces at the wheel/rail interface must play an important role in the
formation and development of rail corrugations. The dynamic forces due to
short-pitch rail corrugation are systematically investigated using the validated FE
model developed in this study, which may help to understand this problem. In
this investigation, a sinusoidal rail corrugation is assumed which consists of 60
mm wavelength and peak-to-peak depth of 0.2 mm. The basic parameters and
symbols are listed in Table 7.1. The track modeled as Timoshenko beam on
discrete supports (TBDS model) and the concrete ties in the track modeled as
non-uniform Euler beam are employed in this study. For a constant vehicle
speed, the vertical and geometrical longitudinal dynamic forces are evaluated.
The dynamic interaction between two wheels is examined along with the phase
relationship between the dynamic force and excitation. The nominal parameters

used in this section of the study is presented in table 7.1.

7.2 VERTICAL AND GEOMETRICAL LONGITUDINAL DYNAMIC FORCES

The vehicle/track system with 3-DOF vehicle representation is used to evaluate
the vertical and geometric longitudinal forces due to the rail corrugation, and its

effect on energy consumption.

Time history of simulation results obtained for vertical and geometric longitudinal
forces along with the defined corrugation input is presented in Fig. 7.2. Fig. 7.2
(b and c) presents the vertical contact force for forward speeds 117 and 252
km/h. In previous studies [24,70], it has been reported that the dynamic force

over the tie is usually different from that at the midspan between tow ties and the
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TABLE 7.1

NOMINAL PARAMETER VALUES

Track system

Young's modulus for rail steel,

2.07x 10'! N/m?
Shear modulus for rail steel,

8.1x10'° N/ m?
Timoshenko shear coefficient
for rail, 0.34
Cross-sectional area of rail,

8.61x1073 m?
Rail second moment of area,

3.95x107° m*
Rail mass per unit length,
67.57 kg/m

Length of concrete tie, 2.58 m
Young's modulus for concrete
tie, 3.214x10'° N/m?

Mass density of concrete tie,
2458 kg/m3

Railpad width, 0.18 m

Tie bottom width, 0.28 m
Rail-pad stiffness,
2.8x10° N/m
Ballast  spring

40x10" N/m

Railpad damping, 30 kNes/m
Ballast damping, 50 kNes/m
Tie spacing, 0.6096 m (24")
Peak-peak depth of rail
corrugation, 0.2 mm
Corrugation wavelength,

60 mm

stiffness,

Vehicle system

- 213 -

Static load per wheel, 85 kN
Wheel mass, 650 kg

Bogie mass, 2400 kg

Bogie pitch initial moment,
2000 kgm?

Primary spring stiffness,

1.5 MN/m

Primary damping,

4.5 kN-s/m

Secondary spring stiffness,
0.6 MN/m

Secondary damping,

15.0 kN s/m

Wheelset axle spacing, 2.4 m
Wheel radius, 0.4572 m
Hertzian spring constant,

1.0x10" N/m*?
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maximum peak contact force usually appears at the neighborhood of the tie
center before the so-called pinned-pinned rail vibration modes are excited. This
phenomenon is also observed in the FE model. The FE results show that if a
system resonance is excited, the maximum peak may occurs in the second half
of each tie spacing, as shown in Fig. 7.2(b). At a speed equal to 252 km/h, the
first pinned-pinned mode is excited and the dynamic force reaches its maximum
value. In this case, the peak is located around the midspan between two ties,
as shown in Fig. 7.2(c). The same trend was also observed in [70],. however,
the observed frequency (1167 Hz) of the pinned-pinned mode in this study is
lower than that calculated from the formula proposed in [70], which may be

expressed by:

1
f_,= E(n /L)JE]L /m, | (7.1)

which gives a value of 1470 Hz. The major reason for the discrepancy is that
Eq. (7.1) is derived from Euler beam theory and it gives a higher value than that

calculated from Timoshenko beam theory, which is used in this study.

The geometric longitudinal force due to the rail corrugation is shown in Fig.
7.2(d). The longitudinal force varies approximately in phase with the vertical
dynamic force, which has a peak value on the up-hill side of the corrugation.
The combination of these two forces may result in the forward flow of metal on
the rail tread as corrugation is developed to some stage, which has been
observed in the field [8]. The oscillation of the longitudinal force may also cause

torsional vibration of the wheelset. The longitudinal force at the up-hill side is
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always larger than that at the down-hill side of the corrugation. This generates a

pure resistiveforce on the train andincreases the energy consumption.

Fig. 7.3 shows the normalized vertical dynamic force vs. the vehicle speed.
Several local maximum are shown in the figure and they correspond to various
resonances in the vehicle-track system. The first resonance occurs at about 10
km/h and it is caused by the fundamental wheel/track frequency (47 Hz), in
which the wheel, rail and tie move in phase. The second one is at about 45
km/h and it is caused by the second wheel/track frequency (210 Hz), in which
the combined wheel-rail mass moves against the tie mass. The third one is at
about 120 km/h at which the third bending mode (540 Hz) of tie is excited. The
fourth one is at about (252 km/h) and it corresponds to the pinned-pinned mode
(1167 Hz). Since the track system is considered to be symmetric, no asymmetric
bending modes of the tie can be observed in the response. The first bending
mode of the tie has its node point very close to the rail seat and it is not excited.
The higher frequency modes of the tie do not show a strong effect on the
dynamic force. This is probably because the vibration of rail at a very high
frequency is relatively independent of the support conditions because of the
isolation of the rail-pad. Comparing with the dynamic force due to the rail
corrugation, the response due to the effect of tie spacing is small and it is

difficult to be identified.

Fig. 7.4 shows the energy consumption due to the geometric longitudinal force
on a corrugated rail at different speeds. It shows that the energy consumption is
approximately proportional to the vertical dynamic force. The maximum energy

consumption occurs as the pinned-pinned mode is excited. Fig. 7.5 shows how
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the energy consumption increases quadratically with the depth of the

corrugation.

Fig. 7.6 shows the effect of corrugation wavelength on the dynamic wheel/rail
contact force for a given depth of rail corrugation. The dynamic force is
significantly suppressed by the contact patch as the corrugation wavelength is
reduced to less than the static contact Iength.' The contact force calculated with
Hertzian contact model is significantly different from that obtained using the
adaptive contact model as the corrugation wavelength is less than about 2.5
times of the contact length. The difference between the dynamic contact forces
calculated from these two contact models generally increases with Vehicle
speed, as shown in Fig. 7.7. A single point contact spring can not take into
account the effect of the contact patch and it may not be valid to predict the

dynamic force due to a short wave irregularity.

The results presented in Fig. 7.6 also show that there is a local maximum for
each speed for wavelength of corrugation in the range of 1.5-3 times of the
contact length. This is resulting from the combination of two distinct factors.
The first one is that the dynamic force generally increases with the reduction of
the wavelength for a given wave depth, irrespective of the system resonant
frequencies. This is because the slope of the input irregularity increases with
the reduction of the wavelength for 2 given wave depth and vehicle speed.
Secondly, when the wavelength is reduced to some stage, the overall slope of
the wheel/rail overlap can no longer increase because of the effect of contact
patch. Hence, the contact force reaches a local maximum before the wavelength
is reduced to less than the static contact length. The position of this local

maximum may be influenced by the system resonant frequencies. The actual
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wheel/rail contact length is usually in the range of 10-20 mm and hence the local
‘maximum of the contact force’ should appear as the wavelength'is about 15-60
mm. This range covers many of short-wave rail corrugations observed in the
field [8,23,86). Still, no corrugation with a dominated wavelength less than the
static contact length has been observed in the field. Based on these
observations, it is believed that the contact patch may influence in the formation

and development of the short-wave rail corrugations.

7.3 DYNAMIC INTERACTION BETWEEN TWO WHEELS

7.3.1 The mechanism of interaction

In this section, the 5-DOF vehicle model is employed to investigate the
interaction between two wheels (on two wheelsets) caused by a sinusoidal rail
corrugation. Fig. 7.8 shows the dynamic contact forces at two wheels purely due
to the corrugation at the leading wheel. This figure clearly shows that the
wheel/rail dynamic contact force generated at one wheel can partially be
transmitted to a neighboring wheel in the adjacent wheelset and cause an
interaction between them. In the following discussions, the force directly
generated by an irregularity will be called "initiating force", and the force at the
neighboring wheel caused by the initiating force will be called "across-wheel

force".

The exciting frequencies of rail corrugations are usually in the high frequency
range (larger than 20 Hz). Because the wheel and bogie (or sideframe) are
usually massive, most part of the high frequency across-wheel force is not

transmitted through the wheel-bogie-wheel chain but through the track system.
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This is particularly true if a vehicle has a primary suspension system between
the wheelset and bogie, which ‘isolates high frequency vibrations of the wheel.
The major component in the track system that transmits the across-wheel force
is the rail because it has a relatively small equivalent mass and large stiffness.

It is the wave propagation in the rail that mostly transmits the across-wheel

force.

On the other hand, no matter how the across-wheel force is transmitted, the
basic mechanism that controls the interaction between any two wheels is the
principle of superposition. To show this, a corrugation is first assumed to be
acting on the leading wheel and then on the trailing wheel, respectively, and the
contact forces are calculated separately. Then the forces are Superposed for
each wheel to obtain the dynamic forces that should be for the case of both
wheels excited by the corrugation. These forces are compared with the forces
directly caiculated when both wheels acted upon by the corrugation. As shown
in Fig. 7.9, the forces calculated from both approaches are identical if the
wheel/rail contact relationship is represented by a linearized contact spring. Fig.
7.10 is obtained by using the adaptive contact model in the calcuiations.
Because of the non-linear wheel/rail contact, there is a difference between the
peak values of the forces calculated from the two different approaches. This
difference increases with the increase in the depth of corrugation because the
variation of the wheel/rail overlap increases with the depth of corrugation, which
increases the effect of non-linear factor in the wheel/rail contact. However, it is
found that the non-linear contact relationship (adaptive contact model) has
negligible effect on the phase relationship between the calculated responses
from the method of superposition and direct approach, as shown in Fig. 7.10.

Since the phase relationship among the initiating forces, across-wheel forces
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and exciting sources hold the key to understand the phenomena of the dynamic
interaction between any two wheels on a corrugated track, the dynamic forces
under corrugations calculated using the method of superposition is qualitatively

valid.

7.3.2 Phase relationship between dynamic force and excitation

Figs. 7.11 shows phase relationship between the dynamic force and excitation
source, which may be used to analyze the superposition of the total dynamic
forces at the two wheels. In this figure, the phase of the exciting sinusoidal
corrugation function at the leading wheel, C,, is assumed to be zero and thus the
corrugation vector at the trailing wheel, Cy, is 2rL,/A. P, and P, are the initiating
force vectors at the leading and trailing wheels, respectively. Their phase
angles relative to the input corrugation at their respective wheels are , and B,
respectively. Py, is the across-wheel force vector at the trailing wheel due to
the initiating force at the leading wheel and it has a phase lag angle, Br,,
relative to its initiating force. Similarly, P, ; is the across-wheel force vector at
the leading wheel due to the initiating force at the trailing wheel and it has a
phase lag angle, B, relative to its ‘initiating force. By taking the corrugation
vector at the leading wheel as a reference, phase relationship among the force

and excitation source may be expressed as following:
for the trailing wheel,

;= Br - 2nla/A and Qr =B -Bre (7.2)
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and for the leading wheel,
@ =B - and @, = Br-Br-2nLa/A - {7.3)

where La is the wheelset axle spacing, A is the wavelength of corrugation. The
total dynamic force at the each wheel depends on the phase difference between
the initiating and across-wheel forces. This phase difference may be
represented by a non-dimensional parameter, which will be called "mutual

interaction coefficient". It is defined as:
Cm = |¢l ‘d)'.]!/27t (7.4)

where i represents the wheel at which the total force is calculated, and j
represents the wheel at which the across-wheel force is caused. If Cm is equal
to an integer, the across-wheel force and the initiating force at the i-th wheel
vary in phase and the total dynamic force reaches a resonant value, as shown in
Fig. 7.12. This resonance is caused by the forces initiated at different wheels

and thus it is called mutual interaction resonance in this study.

It is observed that the phase angles of initiating forces, B, and B;, mainly depend
on the excitation frequency (V/A) for a given depth of corrugation and they are
approximately the same in a general case. Hence the difference between the
phase angles of initiating and across-wheel forces, e:g., ®, and @, is mostly
determined by B,.r and the phase angle due to axle spacing (2nL4/A). It is
observed that ., (or B..;) is basically composed of two parts. The first part (¢s.q)
is due to the phase difference between the force and the displacement wave in

the rail, or it may be regarded as the phase difference between the initiating
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force and the across-wheel force when wheelset axle spacing becomes zero, as
~shown in Fig. 7.13. The second part-of B, or B,.; is due to the time delay for
the rail displacement wave to travel from the one wheeél to another wheel.

Hence, By, and B,.;r may be expressed as:

2nL,V

BT-L = ¢f.d - m (7-5)
2nL,V

Brr=0,a- A (7.6)

where V,, is the wave propagation speed in the rail and V is the train traveling

speed.

As shown in Fig. 7.13, the values of B,, and B, calculated from Egs. (7.5) and
(7.6), respectively, are consistent with the results directly calculated from the FE
model. The wave propagation speed (V,,) estimated from the FE results is about

1369 m/s.

As shown in Fig. 7.14 or indicated in Egs. (7.5) and (7.6), the across-wheel force
at the trailing wheel has a different phase lag from that at the leading wheel.
This is caused by the traveling motion of the vehicle. This difference increases
with the vehicle speed. This demonstrates that it is appropriate to consider the
vehicle as a moving system in the modeling of the vehicle-track interaction,
especially for a high speed train. This phase difference also explains why the
contact forces at the leading and trailing wheels are generally different even
though the initiating forces on both wheels may be in phase (for the wheelset

axle spacing equal to 2.28 m, 2.34 m, 2.4 m and et al.), as shown in Fig. 7.12.
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Fig. 7.12 also shows how the peak forces on the trailing and leading wheels are
very sensitive to changes in the wheelset axle spacing (L,) for a given speed (V)
and corrugation wévelength (A). This is because a small change in wheelset
axle spacing, although does not change the phase angle of the across-wheel
force significantly (mainly determined by Eq. 7.5 or 7.6), but causes a large
change in the phase difference between the corrugation vectors at the trailing
and leading wheels (C; and C,), represented by 2xL /A (Fig. 7.11), and hence it
is very sensitive to wheelset axle spacing. Another obvious phenomenon shown
in Fig. 7.12 is that the total force at a wheel is approximately periodically
changed with a wavelength equal to the corrugation wavelength. This is
because the phase of the initiating force changes periodically with the

wavelength of the corrugation.

Fig. 7.14 shows how the maximum dynamic force at the trailing wheel (purely
due to the corrugation under this wheel or the corrugation on this wheel tread) is
affected by the wheelset axle spacing. It is found that the across-wheel force
itself can also generate another across-wheel force to affect the dynamic force at
the original wheel at which the dynamic force is initiated. This demonstrates that
the original force can be partially reflected back from a neighboring wheel. The
phase relationship between the initiating force the reflected force may be
represented by another interaction parameter, which will be called "self

interaction coefficient". It is defined as:
Cs = [BL.r + Br.l/2n (7.7)

By substituting Egs. (7.5) and (7.6) into Eq. (7.7), the self interaction coefficient

may be expressed by:
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Co= lord/n- 2LaV Vi /l(Vy, -V )A]| - “(7.8)

If Cs is equal to an integer, the initiating force and the reflected force are in
phase and this causes the total force to reach a resonant value, as it can be
seen in Fig. 7.14. This resonance is actually caused by the force generated at
one wheel and thus it is called self interaction resonance in this study. Fig. 7.14
also shows that the dynamic force reduces with the increase of the axle spacing.
This is because the dynamic wave dies down as it is traveling along the rail due
to the energy consumption and dispersion in the track. As the self-interaction
coefficient is equal to an even number, all the initiating and across-wheel forces
on both wheels are approximately in phase. In this case, the mutual and self

interaction resonances may happen simultaneously, as shown in Fig. 7.12.

The basic theory presented in this paper may be applied to analyze the
interaction among the wheels for a whole train-track system. The dynamic
forces on the two wheels within a wheelset may also be calculated using the
principle of superposition. Based on the results presented above, it is expected
that for some arrangements of wheelset axle spacings in a train, the dynamic
forces at some wheels may be significantly different from those at other wheels

as the train is traveling on a corrugated track.

7.4 SUMMARY

The vertical and geometric longitudinal dynamic forces due to a rail corrugation

is calculated using the FE model. It is abserved that the dynamic forces are
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generally higher over a tie than that at the midspan between two ties but the
~ location of the maximum force is reversed if the so-called 'pinned-pinned' modes
are excited. A resonance may occur if the frequency of excitation due to a rail
corrugation is equal to a natural frequency of the vehicle-track system, in which
case the maximum peak contact force may occur in the second half of each tie

spacing.

The energy consumption due to the geometric longitudinal force caused by a rail
corrugation is evaluated. It is found that the energy consumption is
approximately proportional to the amplitude of the vertical dynamic force and it
reaches the maximum value when the so-called "pinned-pinned mode" is
excited. The energy consumption increases quadratically with the depth of rail

corrugation.

A local maximum of the dynamic force is observed as the excitation wavelength
on the rail is about 1.5-3 times of the length of the wheel/rail static contact patch.
It is further observed that the dynamic forces at two wheels are generally
different from each other, even though all the conditions on the track and wheels
are identical. Their difference may be significant in some cases and it is
resulting from the interaction between the two wheels. The rail is the major
transmission media in the interaction between two wheelsets. The basic
mechanism that controls the interaction is the principle of superposition. The
superposition of the initiating and across-wheel forces may cause a mutual
interaction resonance and a self interaction resonance. The difference between
the dynamic forces at two wheels due to a rail corrugation is strongly influenced

by wheelset axle spacing.
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CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

8.1 HIGHLIGHT OF THE THESIS

The primary objective of this thesis is to investigate the characteristics of vertical
dynamic forces due to wheel and rail irregularities through developing a
comprehensive finite element model of vehicle-track system. The model for the
rail is based on non-uniform Timoshenko beam. Care is taken in the modeling of
track system to include realistic ties rail pads, ballast and subgrades. Four
different track models, namely Timoshenko beam on discrete support model
(TBDS); Euler beam on discrete support model (EBDS); Timoshenko beam on
elastic foundation model (TBEF); and Euler beam on elastic foundation model
(EBEF), are used with three different vehicle models. The three vehicle models
are: 1-DOF carrying a constant load, 3-DOF single wheel with sprung and

unsprung masses, and 5-DOF truck model with two axles and half car body.

A cutting and merging method along with a set of special boundary conditions is
proposed to extend finite length of track to infinitely long track, which provides
an approach to simulate a moving system on an infinite structure using the
standard FE technique. This method is successfully used in the FE model
developed in this investigation for the simulation of a vehicle traveling on the

track model indefinitely with a time-dependent speed.

An adaptive wheel/rail contact model is developed to calculate the vehicle/track
interaction forces in the vertical and longitudinal directions. This model can

adapt to any irregularity on the wheel and rail trgad in the vertical and
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longitudinal direction. It can also be used to estimate the energy consumption

due to geometric longitudinal contact force.

The developed model is capable of simulating wheel lift-off from the rail, rail lift-
off from the tie and tie lift-off from the ballast. The model can further simulate

the dynamic response under void and hard spot.

For all the various models developed in this study, considerable time and effort
is devoted to validate them. The primary validation is achieved by comparing
the results with the experimental data available in the literature (from British Rail
and CP Rail Systems). The theoretical results calculated from the FE model,
such as natural frequencies of concrete ties, the impact loads and dynamic
strains on the rail, show good correlation with the experimental data. All
validations are carried out in time domain to ensure that the model can simulate
exact response behavior. Due to detailed FE modeling of the rail system a good
quantitative correlation with experimental dynamic rail strain was possible giving

added confidence in the model.

The validated FE model is employed to investigate the vertical dynamic
response characteristics of the vehicle-track system, and the influences of
system parameters on the dynamic response. The dynamic forces caused by
the wheel flats and shells, rail joints and rail corrugations are currently a major
concern to the railway industry and administrations. These are the major topics
addressed and discussed in this study. This study also investigated the natural
frequencies of concrete ties, wheelset and vehicle-track system, which are
useful to understand the basic dynamic behaviors of the railway vehicle/track

system.
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For the first time, the rail-pad and ballast has been modeled as distributed
'spring-damping elements in the track mathematical model.  However, this does
not lead to a significant change in the wheel/rail contact force. This suggests:
that it is not necessary to consider these components in very detail if only the
dynamic contact force and rail strains are of concern. Their detail models may
be useful when the distributions of dynamic forces and strains in these

components are required.

Specific conclusions drawn from each aspect of this study along with a list of

recommendation for further work is presented in the following sections.

8.2 SPECIFIC CONCLUSIONS

8.2.1 Natural frequencies of vehicle-track system
o The mode shape of the fundamental coupled wheel/track natural frequency
is very close to the deflection shape of the track under a constant load and

hence it is an important vibration mode in the vehicle/track interaction.

o For evaluation of track frequency and wheel-track coupled frequency, it is
sufficient to only consider the wheel-track system.- On the other hand, the
sprung mass frequencies can be evaluated. effectively from the sprung mass

and primary suspension.

» The foundation stiffness of track strongly affects the first bending frequency

of a concrete tie but it has little influence on higher bendirg modes.
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Due to relatively large axle stiffness, the influences of primary suspension

on the bending frequencies of wheelset are negligible.

8.2.2 Impact loads due to wheel flats and shells

The impact loads are mainly affected by the shape and size of wheel and rail

tread defects, axle load, vehicle speed and rail-pad stiffness.

The impact load of a wheel on the rail over a tie is larger than that at the

midspan.

For a given set of system parameters and vehicle speed, there exists a
special ratio (length/depth) of haversine wheel flat at which the impact load

reach the maximum value.

Reducing rail-pad stiffness to a certain level on a concrete-tie track may
significantly reduce the dynamic load and the force transmitted to the

concrete tie.

Adding elastomeric shear pads on the wheelset bearing does not reduce the
wheel/rail dynamic contact force but it may reduce the dynamic force on the

bearing.
The FE modeling shows that the dynamic force derived from the net shear

strain differential is basically consistent with the wheel/rail contact force.

This suggests that the basic principle used in the detector is sound.
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The dynamic force on one wheel is affected by those on its neighboring
wheels. The major media that transmits the dynamic waves is the rail. The
basic mechanism that control the interaction between two wheels is the
superposition of the dynamic force directly generated at one wheel and the
across-wheel force that is caused by the dynamic force at a neighboring

wheel.

8.2.3 Dynamic force due to a dipped-rail joint

Increasing axle load and rail equivalent mass significantly increase
the first peak load (P4). The wheel (unsprung) mass, stiffness of
bearing rubber pad, and ballast stiffness mainly affect the second

peak load (P,).

The dynamic force at one wheel at the joint is affected by those at its
neighboring wheels. The basic mechanism that control the
interaction between wheels is the same as that in the case of impact

loads due to whee! flats and shells.

8.2.4 Steady-state interaction between vehicle and track

The characteristics of the track dynamic deflection in the comprehensive
vehicle-track model are basically the same as those of an infinitely beam
on a damped Winkler foundation subjected to a moving constant load.
This suggests that it is fairly well to use a beam on Winkler foundation to
study the steady-state response of the track. This study also confirms that

the steady-state response of track subjected to a moving force does exist.
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The response of the whole system at the so-called 'critical speed' does not

-show a significant difference from those at other speeds, except that the

- track deflection reaches its maximum value. This critical speed does not

mean an unstable situation in the vehicle/track interaction.

There are two types of distinct periodic dynamic waves in the history of the
wheel/rail contact force. The first one is caused by the variation of overall
track stiffness due to the effect of tie spacing. The second one is caused
by the traveling motion of wheel and the oscillations of discrete supports.
In the present train speed range, the magnitudes of these dynamic forces
are usually less than 5% of static load, except that the coupled wheel/track

resonant frequencies are excited at some speeds.

The resonant forces due to discrete supports may be larger than 5% of
static load in some cases. The magnitude of the resonant force mainly
depends on the unsprung mass, tie spacing, vehicle primary and track

ballast damping, rail stiffness and the stiffness on each support.

The dynamic force due to a full void is similar to the case of increasing the
tie spacing in a steady-state interaction. The force originally transmitted to
the tie is shared by neighboring ties if a void happens. in the case of hard

spot, more force is concentrated on a tie at the hard spot location.

8.2.5 Response to rail corrugation

Dynamic force due to rail corrugation is higher over a tie than that at

midspan. If corrugation frequency is equal to system response, the peak
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force occur in the second half of tie spacing. The force is maximum with

- peak at the midspan of tie when so called “pinned-pinned” mode is excited.

« The energy consumption is approximately proportional to amplitude of
vertical dynamic force that reaches a maximum value for “pinned-pinned”
mode. The energy consumption increases quadratically with the depth of

rail corrugation.

e Dynamic force at the two wheels are different due to interaction between
them, where rail is the major transmission media. The force difference

between the two wheels is strongly influence by the axle spacing.

o The influence of irregularities with wavelengths less than the wheellrail
contact length on the dynamic force is significantly suppressed. There is a
local maximum of the dynamic force for the wavelength in the range of 1.5-3

times of the length of the wheel/rail static contact patch.

8.3 RECOMMENDATIONS FOR FUTURE STUDIES

» The present study provided a significant insight on the problems associated
with wheel and track defects. -For this, more attention is directed towards
the track system modeling with simplified approach to vehicle model. Here
no attempt is made in evaluating vehicle ride quality and suspension
system. A list of further studies that can be carried out with the developed
model along with recommendation for model improvement is presented in

this section.
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"The 5-DOF vehicle mode! can be used to evaluate vehicle ride quality and

influence of primary and secondary suspension on the vehicle ride

characteristics.

In the vehicle/track system model developed, the vehicle and track is
modeled separately. The in-plane vehicle model can easily be extended to
include two trucks with four wheelsets and a complete carbody. Such

model can be studied for vertical and rock motion.

Similar to above, any number of trucks and wheelsets can be incorporated
with FE track model to investigate wheel/rail interaction in a train. However,

this will require an increase in the track length and computation time.

The developed model is valid for majority of the problems in the vertical
dynamics of vehicle-track system. Further studies can be carried out to

study other aspects listed in Table 1.1, including noise studies.

The FE model developed may be used to further investigate the influence of
non-linear factors on the force measurement. This then can be

incorporated in the measurement device for better accuracy.

Further model refinement of FE model

An improvement on the present model should be aimed at increasing the
computation efficiency and reducing the memories required. This may be
achieved by using the matrix reduction technique and the FE-transfer matrix

method.
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" The ballast and subgrade mass may be included in FE modél to investigate

settlement of track bed.

The model can be further refined by including bending vibration of
wheelsets as it has been shown to have some influence in the dynamic

force [4].

Impact load in frozen track is greater than unfrozen track [37,107]. Hence
attempts can be made to make provision for change in appropriate system

parameter with temperature, in order to simulate frozen condition.

For better understanding of rail corrugation formation, the model should be
extended to include vertical, lateral, longitudinal and rotational motions of
wheel and track. The non-linear characteristics of creep forces generated

at the contact point should also be incorporated in the FE model.
The model should be extended to 3-D representation to include two track,

and complete wheelset to examine interaction between left and right

wheels, and tracks.
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