USER INTERFACE REQUIREMENTS ENGINEERING:

A SCENARIO-BASED FRAMEWORK

ASMAA ALSUMAIT

A THESIS
IN
THE DEPARTMENT
OF

COMPUTER SCIENCE

PRESENTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY AT

CONCORDIA UNIVERSITY

MONTREAL, QUEBEC, CANADA

AUGUST 2004

©ASMAA ALSUMAIT, 2004

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-96956-8
Our file Notre référence
ISBN: 0-612-96956-8

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

[b |

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

User Interface Requirements Engineering: A Scenario-Based Framework

Asmaa Alsumait, Ph.D.
Concordia University, 2004

Effective user interface is an important component to the success of an interactive system
as any of the components that manage the underlying functionality of the system. The
development of an effective user interfaces highly depends on the quality of the
requirements where the end-user should be actively involved. Therefore, there is a need
to accurately capture, interpret, and represent the voice of the end-user when specifying
the user interface requirements. The objective of the thesis is to advance the state of the
art in bridging the gap between specifying the User Interface Requirements for interactive
systems on the one hand and the design and development of it on the other hand.
Towards this objective, a software framework called SUCRE (acronym for Scenario and
Use-Case based Requirements Engineering) was developed as a part of this thesis work.
Use Case Maps (UCMs) that were introduced in the literature were examined and have
been enriched with new visual notation for modeling and specifying the user interface
requirements. This enriched UCM for User Interface (UCM-UI) model formed a basis for
SUCRE. Thus, scenarios and use cases are used as a means to represent the user interface
requirements and communicate with end-users.

In addition, the thesis explores two other objectives, namely validation of user
interface requirements and usability prediction of the intended user interface. SUCRE
was used to build operators that validate the consistency, completeness, and precision of
the UCM-UI model using heuristics for constructing a formal analysis of the
requirements. SUCRE was also used to define a metrics suite to predict usability from
scenarios and use cases. This metrics suite includes simple structural measures as well as
content-sensitive and task-sensitive metrics. Considering the difficulties in the
specification and design of user interfaces, the thesis aimed also to identify the need for a
mix of both informal and formal representation in specifying user interface requirements.
Therefore, SUCRE was successfully used to bridge the gap between the semi-formal
requirement UCM-UI and detailed formal requirements such as UML, LOTOS
specifications, and XML.

1i1

ACKNOWLEDGMENTS

In the Name of Allah, The Most Gracious, The Most Merciful

At this moment, I would like to thank many people who helped me to get through the

tough time and who made this thesis possible.

First and foremost, I would like to express my sincere gratitude and appreciation
to my supervisors, Dr. T. Radhakrishnan and Dr. A. Seffah for their guidance and
patience throughout the completion of this study. I am very thankful for the opportunity I
had, to work with them during my Ph.D. Their many meetings were a source of
motivation and inspiration throughout my research. Moreover, their insistence on
excellent and quality is a learned lesson which I will carry during the rest of my career. 1
consider Dr. Radhakrishnan and Dr. Seffah to be much more than supervisors. They are a

big brother figure who cares very deeply about the welfare of their students.

I would like to express my sincere thanks to the Human-Centered Software
Engineering Group and all the graduate students and staff of the Computer Science

Department for their friendship and support.

Financial support in the form of a scholarship from Kuwait University is

gratefully acknowledged.

Last, and the most, I would like to express my appreciation to my family for their
love and care without which the completion of this program would not have been
possible. I like to give a special thanks to my husband Husam who was always there
whenever times become difficult. I deeply appreciate his care, warmth, and moral support
during my studies. Finally, I am grateful to my lovely daughter Munirah and my sun

Fahd for their love and patience.

iv

TABLE OF CONTENTS

List of Figures X

List of Tables Xil

Acronym Xiii

Glossary X1v

Chapter 1

Introduction

11 Research Objectives 4

1.2 Thesis Outline 6

1.3 Publications 7

Chapter 2

Literature Review

State of Art in Scenario-Based User Interface Requirements 8

2.1 Introduction

2.2 Requirements Engineering (RE) 11
2.2.1 Requirements Engineering Definition 11
2.2.2 'The Three Dimensions of Requirements Engineering 12
2.2.3 Activities of the RE Processes 14

2.3 User Participation in Requirements Engineering 17
2.3.1 The Challenge of User Participations in Requirements 18
2.3.2 Scenarios: Bridging the Gap 19

24 Scenarios in User Interface Requirement Engineering__ 21
2.4.1 Scenarios in Task Analysis for Human Interaction 23
2.4.2 Scenarios in Storyboarding and Prototyping 29
2.4.3 Scenarios in Use cases 31

2.5 General Discussions 39

2.5.1 Scenario Representations: Informal versus Formal 39

2.5.2 Common Pitfalls in Developing Scenarios-Based RE 40
2.6 Conclusions 43
Chapter 3
Use Case Maps: A Roadmap for Integrated Specifications of Software and its
Usability 44
3.1 Introduction 45
3.2 Use Case Maps Original Notation 47
3.2.1 Why Consider UCMs for User Interface Requirements? 50
3.2.2 User Interface Requirements- Three Dimensions 51
3.2.3 UCMs Extensions for UI Requirements (UCM-UI) 52
3.3 An Illustrative Example 57
3.3.1 Task and Dialog Dimension 56
3.3.2 Task and Presentation Dimension 57
3.4 Conclusions 61
Chapter 4
SUCRE: Scenario and Use Case-Based Requirements Engineering Framework 62
4.1 Introduction 63
4.2 SUCRE Framework Architecture 65
4.2.1 Scenario Analysis 66
4.2.2 UCM-UI Model Construction 69
4.2.3 Requirements Validation 71
4.2.4 Predicting Usability of UCM-UI Model 72
4.3 AnIllustrative Example: Library System 73
4.3.1 Scenario Analysis 73

43.2 UCM-UI model Construction 74

vi

4.4

Conclusions

80

Chapter 5
Combining UCMs and Formal Methods for Representing and Checking the Validity

of Scenarios as User Requirements 81
5.1 Introduction 82
52 Heuristics for Formal Specification, Validation and Code Generation 84
5.3 Operators to Validate UCM-UI model 90
5.3.1 Consistency 90
5.3.2 Completeness with Respect to URS 93
5.3.3 Self-Completeness 95
5.3.4 Precision 96
54 Analysis of the Library System 98
5.5 Conclusions 101
Chapter 6
Supplementing Scenarios and Use Case Maps with Predictive Metrics 162
6.1 Introduction 103
6.2 Usability Assessment and Metrics 105
6.3 The Proposed Usability Metrics Suite for UCM-UI 109
6.3.1 New Metrics for UCM-UI Model 110
6.3.2 Basic Metrics 118
6.3.3 UCM-UI Metric Suite Discussion 122
6.4 An Illustrative Example: Movie Recommender System 124
6.4.1 Task Analysis 126
6.4.2 UCM-UI Consistency 127
6.4.3 UCMs Model-Completeness 128
6.4.4 Task Performance (TP) 129

Vil

6.4.5 Task Simplicity (TS) 130

6.4.6 Use Case Complexity (UCC) 136
6.4.7 Layout Uniformity (LLU) 136
6.4.8 Task Visibility (TV) 137
6.4.9 Visual Coherence 138
6.4.10 Task Effectiveness (TES) 138
6.5 Conclusions 140
Chapter 7
Towards Formal Specifications 141
7.1 Introduction 142
7.2 Avenue 1: The Extension of UML: with UCM-UIL 144
7.2.1 Brief Introduction to UMLJ 145
7.2.2 Linking UCM-UI Concept to UML and UML; 146
7.3 Avenue 2: UCM-UI to LOTOS 152
7.3.1 Overview of LOTOS 153
7.3.2 UCM-UI to LOTOS Transformation 154
74 Avenue 3: UCM-UI to Linear Textual Form 158
7.4.1 UCM Navigator Tool 161
7.5 Conclusions 163
Chapter 8
Conclusions and Future Research 164
8.1 Summary of the Thesis 165
8.2 Contributions 167
8.3 Future Research 169

References 170

viil

LIST OF FIGURES

Figure 2.1 Project Failure Factor.

Figure 2.2 The RE process within the three dimension

Figure 2.3 Challenges and approaches in scenario-based design.

Figure 2.4 Example on GOMS.

Figure 2.5 The standard operation symbols of OSD.

Figure 2.6 MAD task body attributes.

Figure 2.7 Example on use case.

13
22
25
26
27

32

Figure 2.8 Essential use cases for getting cash.

Figure 2.9 Sample dialog Map.

33

34

Figure 2.10 Extended tabular representation for the RequestBook use case.

Figure 2.11 Element cluster for the RequestBook use case.

37

38

Figure 2.12 Various scenario representations.

Figure 3.1 Basic UCMs notation

Figure 3.2 UCM-UI notation for a question-and-answer dialog.

40

48

53

Figure 3.3 UCM-UI dialog notation.

Figure 3.4 UCM-UI notation for the presentation of the user interface.

Figure 3.5 Task and dialog UCM for Filter Agent.

Figure 3.6 UCM explaining the dialog between the agent and the user.

Figure 3.7 Task and presentation UCM for Filter Agent.

54

56

59

60

61

Figure 4.1 SUCRE Framework.

Figure 4.2 The root CUCM for the LS.

Figure 4.3 The CUCM for searching for a book by authors' name.

69

77

78

Figure 4.4 The second level of the CUCM for searching for a book.

78

ix

78

Figure 4.5 The PUCM for LS.

Figure 4.6 PUCM converted to a Paper Prototype.

79

Figure 5.1 Example of inconsistency between two use cases.

91

Figure 5.2 A UCM-UI model constructed from a number of use cases

Figure 5.3 The complete and consistent CUCM of the LS.

94

99

Figure 6.1 Analysis of Taski.

Figure 6.2 Task Analysis Template.

Figure 6.3 UCM-UI Consistency Template.

110
111

112

Figure 6.4 UCM-UI Completeness Template.

Figure 6.5 Task Performance Template.

117

118

Figure 6.6 A simple use case with a UCC of 3.

Figure 6.7 CUCM of the MRS software.

Figure 6.8 TA metric for two tasks in MRS software.

Figure 6.9 UCM-UI Consistency metric for MRS.

120

126

127

127

Figure 6.10 Improved CUCM of the MRS software.

Figure 6.11 UCM-UI Completeness metric for MRS.

Figure 6.12 Sample of the Task Performance metric for MRS.

Figure 6.13 PUCM of the MRS software.

Figure 6.14 Paper prototype of PUCM of Figure 6.13.

Figure 6.15 Improved PUCM of the MRS system.

Figure 6.16 Improved paper prototype of PUCM Figure 6.15.

Figure 6.17 CUCM for Rate a movie.

128

129

130

131

132

134

135

136

Figure 7.1 The Gap in requirements and design of interactive systems.

Figure 7.2 Extending Activity Diagram with Dialog Concept.

143

149

Figure 7.3 CUCM for search a book.

Figure 7.4 Activity Diagram for search a book.

Figure 7.5 LOTOS specification.

Figure 7.6 UCM for return a book to a library.

Figure 7.7 LOTOS Structure of Components of the RenewBook Use Case.

Figure 7.8 LOTOS Component Behavior of BookDatabase Process.

Figure 7.9 XML representation for UCM.

Figure 7.10 XML representation for plugin-binding.

150

151

153

156

157

157

159

159

Figure 7.11 XML representation for model.

160

xi

LIST OF TABLES

Table 2.1 The problems and solutions of requirements elicitation.

19

Table 3.1 Basic UCM path elements.

49

Table 5.1 Heuristics for formal specifications

90

Table 6.1 Usability defined by ISO 9241-11, Nielsen, and Shneiderman.

Table 6.2 Summary of the UCM-UI Metric Suite

Table 6.3 Use cases and scenarios of the MRS software.

108

120

126

Table 6.4 Tasks frequencies and number of steps for the MRS software.

Table 6.5 Tasks frequencies and number of steps of the improved design.

Table 6.6 Visibility of the enacted steps.

Table 7.1 UMLI User Interface Diagram Components.

133

133

137

145

Table 7.2 Mapping UCM concepts to Activity Diagram meta-classes.

148

Table 7.3 Mapping UCM-UI dialog notation to UML Activity Diagram.

Table 7.4 Mapping UCM-UI tasks notation to UMLi Activity Diagram

149

149

Xii

ACRONYMS

The following alphabetical contractions appear within the text of this thesis:

CASE Computer-Aided Software Engineering.

CTT ConcurTaskTrees.

CUCM | Conceptual Use Case Map.

GOMS Goals, Operators, Methods, and Selection Rules, the components of GOMS model.

HCI Human-Computer Interaction.
HTA Hierarchical Task Analysis.
LS Library System

LOTOS | Language of Temporal Ordering Specifications.

MAD Meéthode Analytique de Description des taches.

MRS Movie Recommender System
OSD Operational Sequence Diagrams.
PU Presentation Units.

PUCM Physical Use Case Map.

RE Requirements Engineering

RUP Rational Unified Process.

SCRAM | SCenario-based Requirements Analysis Method.

STD State Transition Diagram.

SUCRE { Scenario and Use Case Requirement Engineering.

UAN User Action Notation.

UCM Use Case Map.

UCM-UI | Use Case Map for User Interfaces.

Ul User Interface

UML Unified Modeling Language.

UML: The Unified Modeling Language for Interactive Applications.

URS User Requirement Specifications

XML eXtensible Markup Language.

XUL XML for User-interface Language.

x1ii

GLOSSARY

The following alphabetical glossary terms appear in the text of this thesis

CASE tool A computer-based product aimed at supporting one or more
software engineering activities within a software development
process.

End-user A customer who interacts with a system either directly or
indirectly.

Formal Written using a notation that has precise syntax (grammar,

Specification language rule, and sentence structure) and semantics (meaning).

Framework A specification or implementation (i.e., a collection of classes) that
provides a general solution to some problem or aspect of
applications.

Functional A statement of a piece of required functionality or a behavior that a

requirement system will exhibit under specific conditions.

Informal Written in a natural language.

Specification

Model A representation of a problem or subject area that uses abstraction
to express the relevant concepts. A model is often a collection of
schema and other documentation.

Paper prototype A non-executable low fidelity mock-up of a software system’s user
interface using inexpensive, low-tech screen sketches.

Prototype A partial, preliminary, or possible implementation of a program.
Used to explore and validate requirements and design approaches.

Requirement (1) A condition or capability needed by a user to solve a problem
or achieve an objective. (2) A condition or capability that must be
met or possessed by a system or system component to satisfy a
contract, standard, specification, or other formally imposed
documents. (3) A documented representation of a condition or
capability as in (1) or (2).

Requirement The process of classifying requirements information into various

Phase categories, evaluating requirements for desirable qualities,
representing requirements in different forms, deriving detailed
requirements from high-level requirements, negotiating priorities,
and so on.

Requirements The process of studying user needs to arrive at a definition of

Analysis system, hardware, or software requirements. It is also the process
of studying and refining system, hardware, or software
requirements.

Requirements The process of identifying software or system requirements from

Elicitation various sources through interviews, workshops, workflow and task
analysis, document analysis, and other mechanisms.

Scenario A sequence of interactions happening under certain conditions.

Xiv

Semi-formal

Written using a notation with precise syntax but imprecise

Specification semantics

Specification. A document that specifies, in a complete, precise, verifiable
manner, the requirements of a system or component.

Stakeholder person, group, or organization that is actively involved in a system
development, is affected by its outcome, or can influence its
outcome

Storyboard Series of illustrations that represent the steps of interacting with a
computer or {frames from an animation.

SUMI The Software Usability Measurement Inventory is a method of
measuring software quality from the end user’s point of view

Task Analysis Is the study of how people perform a task and obtaining a deep
understanding of it.

UML The standard object-oriented modeling language from the Object

Management Group (OMG).

Usability Engineer

Usability engineer is the role that is played when a person
implements the human interfaces of one or more applications. The
usability engineers typically have the following role-specific
responsibilities: with a goal to (a) implement the human interfaces
(e.g., GUIs), (b) optimize the human interface to the platform (i.e.,
hardware, operating system, and browser), and (c) collaborate with
the programmers.

Usability a methodical "engineering" approach to user interface design and

engineering evaluation involving practical, systematic approaches to
developing requirements, analyzing a usability problem,
developing proposed solutions, and testing those solutions.

Usability metric Formal measurements that are used as guides to the level of
usability of a product.

Use Case A collection of possible scenarios between the system and actors,
characterized by the goals the primary actor has.

Use Case Map | The technique of modeling requirements by producing use case

Modeling maps models.

User Interface

Refers to the parts of a hardware and/or software system that allow
end-user to communicate with it.

User Interface

Designer

User interface designer 1s the role that is played when a person
designs the UI components of one or more software.

The user interface designer typically have the following role-
specific responsibilities: (a) understand and evaluate the relevant
Ul requirements, (b) design all or part of the Ul components, and
(c) informally evaluate the Ul design.

User Requirement
Specifications

A statement of the end-user need or objective, or of a condition or
capability that a product must possess to satisfy such a need or
objective. It is a statement of end-user wish without specifying
how that wish will be implemented

Xv

Chapter 1

Introduction

Considerable effort has been devoted over the past three decades towards improving the
development of interactive computing systems. Interactive computing systems consist of
two components, a functional application and a user interface. The user interface lies
between the user and the functional application, and it is designed to facilitate user-
system communication. Hence, the ultimate success of an interactive system depends on
this crucial component. However, in reality, developing user interfaces often relies too
much on trial-and-error techniques. The methods and techniques for user interface
development need to be improved in order to systematically develop better interactive
systems. Eliciting, documenting and validating the user interface requirements at early
stages improves the quality of the initial design and reduces the number of iterations

needed to develop usable and useful systems.

The user interface requirements process is challenging due to the necessity of
matching concepts understood by users with concepts implemented by user interface
designers. The past two decades have seen a great deal of Human-Computer Interaction
(HCI) research effort in the search for appropriate representations to support user
interface requirements. Informal requirement representations, such as statements in
natural language, are often supportive in overcoming the difficulty of communication
between people with different backgrounds. However, natural languages suffer from
ambiguity and imprecision. Formal requirement representations, on the other hand,
provide a solution to the ambiguity problem and facilitate formal proof and analysis of
properties of requirements. Such requirements form the basis of formal software

development and verification of implementation correctness, however, such requirements

are often difficult to understand and develop for newcomers to this area. Semi-formal
requirement representations such as scenarios and use cases are promising vehicles for
eliciting, specifying and validating user interface requirements. User interface designers
look at scenarios and use cases as an effective means to discover user needs, to better
embed the use of systems in work processes, and to systematically explore system
behavior under both normal and exceptional situations. Scenarios and use cases have
gained enormous popularity after Ivar Jacobson introduced use case modeling which is
now an important feature of the Unified Modeling Language (UML) for systems
engineering based on object-oriented approaches. Scenario and use case-based
approaches have proved to be an effective mechanism to capture requirements and make
them available for review without any implementation bias in the requirement. They offer
a significant and unique leverage on some of the most characteristic challenges of
requirements engineering (Pomerol, 1998; Carroll, 2002; Sutcliffe, 2003). In spite of that,
practical application of the scenario and use case-based approaches to real-life interactive

systems turns out to be confusing for the following main reasons:

— the lack of proper definitions of the technique's constructs to suit user

interfaces,
— the lack of a well defined process for practically applying the technique, and
— the unclear relation between requirements, scenarios, and use cases.

Although there are a considerable number of scenario and use case-based
approaches published in the literature as discussed in Chapter 2, either they are not
readily suitable for the user interface requirements elicitation and specification, or they
are not well integrated with techniques for modeling the functional application part of the

interactive systems.

Considering the inadequacy of scenario and use case-based approaches and their
poor integration with techniques for modeling the underlying functional application of
the interactive systems, the main aim of this thesis is to remove this dichotomy using an

appropriate approach for modeling the entire interactive system. This thesis describes a

scenario and use case-based requirement engineering framework for user interfaces. The
framework covers the important aspects from scenario analysis to prototype evaluation.
The main idea behind the framework is that a firm understanding of the users’ needs is
the proper basis for interactive systems development. With a systematic process of
building user interfaces to support users' tasks, a higher level of usable and useful
systems can be achieved. Scenarios and use cases are not the only existing approach for
handling user interface requirements. However, most approaches cover only specific
aspects or activities in the requirement process. The framework presented in this thesis

builds on existing techniques, but it also adds several original insights and techniques.

1.1 Research Objectives

The ultimate goal of this research is to develop techniques for capturing user interface
requirements and to build a framework for documenting and validating the requirements
of interactive systems where the user interface designers, the software engineers, and the
end-users can collaborate to produce a well-integrated system. The outcome of the
requirement phase is the foundation for the whole subsequent development process. In

particular, we will focus on four areas:

— Developing techniques that are used for gathering the necessary information to
build a consistent and complete use case model. Although scenarios and use cases
are old approaches to describe requirements, they have not been developed far
enough to be of sufficient value to interface requirements. Techniques such as
task analysis, prototyping, essential use cases, use case storyboards will be
explored in order to highlight their pros and cons and then build on top of this

knowledge.

— Effective employment of scenarios and use cases in the design of the actual
product. Most scenario and use case approaches are weak on the topic of how the
results lead to new or improved systems. Consequently, scenario and use case
approaches often do not contain the knowledge that is needed in later stages of the
design. In this thesis, we attempt to effectively utilize scenarios and use cases to

cover the entire user interface requirement process from early analysis to
prototyping.

— Investigate metrics to predict system usability in the requirements phase. High
quality requirements are an essential success factor for the interactive software
developments. Therefore, it is important to evaluate the quality of the
requirements early in the development process. Metrics are a means to evaluate
the requirements. In this thesis, we will build a metrics suite to predict usability

from requirements documented as scenario and use cases.

— Reducing the effort of developing a detailed use case. Partially because of poor
techniques, performing an effective use case model takes too much effort. This
often leads to rejection of the entire activity. In this thesis, we’ll present the
conceptual issues related to building a tool that will reduce the effort of

developing the UCM-UI model.

1.2 Thesis Outline

This thesis is structured as follows:

Chapter 2 surveys the scenario and use cases literature with the aim of identifying

issues underlying the scenario and use case-based approaches in user interface

requirements engineering and proposing a framework for their classification.

Chapter 3 develops UCM-UI which is a conservative extension of UCM that provides

new notation to model high-level requirements of user interfaces.

Chapter 4 proposes a new framework for eliciting and specifying user interface and

usability requirements. The goal is to build a complete and consistent user interface
requirement framework that is simple, intuitive, unambiguous and verifiable with the
help of the extended UCM-UI notation to better suit interactive systems, and by

providing step-by-step guidance for the employment of use cases.

Chapter 5 presents a number of heuristics for constructing a formal specification and

demonstrates that these heuristics are used to build operators that validate the UCM-UI

model.

Chapter 6 develops a practical suite of metrics; the UCM-UI Metrics Suite; to predict

usability from scenarios documented as use case maps.

Chapter 7 illustrates that the UCM-UI models can form the basis for further

developments and presents how the new framework bridges the gap between informal
requirement representations and formal requirement representations offered by UML,

LOTOS specifications, and XML.

Chapter 8 concludes the thesis by discussing the contributions achieved throughout this

research along with directions for future work.

1.3

Publications

The chapters of this dissertation are largely based on previous published work or

submitted for publication. This section lists the publications this dissertation is based on:

|

van Der Poll, J.; Kotzé, P.; Seffah, A.; Radhakrishnan, T.; & Alsumait, A. (2003).
Combining UCMs and Formal Methods for Representing and Checking the
Validity of Scenarios as User Requirements. In Proceedings of SAICSIT 2003,
September 17 — 19, 2003, Gauteng, South Africa. 111 -113.

Alsumait, A.; Seffah, A.; & Radhakrishnan T. (2003). Use Case Maps: A Visual
Notation for Scenario-Based Requirements. In Proceedings of HCI International

2003, June 22-27, 2003, Crete, Greece. 3-7.

Alsumait, A.; Seffah, A.; & Radhakrishnan T. (2002). Use Case Maps: A
Roadmap for Usability and Software Integrated Specification. In Proceedings of
IFIP World Computer Conference, August 25-30, Montreal, Canada. 119-131.

Alsumait, A.; Radhakrishnan, T.; & Seffah, A. (2001). Enhancing Use Case
Maps for User Interfaces Requirements Engineering. In Symposium on Human-

Computer Interaction Engineering, May 11-13, 2001, Toronto, Canada.

Also two papers are recently submitted:

Seffah, A.; Alsumait, A.; & Radhakrishnan, T.; van Der Poll, J. & Kotzé, P.
(2004). User Requirements via Use Case Maps and Formal Methods: A Mixed
Approach. ACM Transactions on Computer-Human Interaction TOCHI.
(Submitted, February 2003).

Alsumait, A.; Seffah, A.; & Radhakrishnan T. (2004). Supplementing Scenarios
and Use Case Maps with Predictive Metrics. Requirements Engineering. (In

preparation).

Chapter 2

Literature Review

State of Art in Scenario-Based User Interface
Requirements

The elicitation, analysis, and documentation of user interface requirements for complex
systems are crucial and non-trivial tasks. Well-defined concepts and methods are needed
when constructing formal, agreed upon specifications that represent the requirements in a
clear, consistent, and complete manner. It is also important to have representations of the
requirements that are easily understood by all parties involved in the requirement phase.
In practice, there are diverse scenario-based approaches and representations that model
the user interface. This chapter is an attempt to explore and examine some of the issues
underlying scenario-based approaches in user interface requirements engineering and to

propose a framework for their classification.

2.1 Introduction

A survey over 8000 projects undertaken by 350 US companies revealed that one third of
the projects were never completed and one half succeeded only partially, that is, with
partial functionalities, major cost overruns, and significant delays (Standish Group,
1998). The executive managers of those projects identified that poor requirements were
the major source of problems; about half of the responses. The lack of user involvement
(13%), requirements incompleteness (12%), changing requirements (11%), unrealistic
expectations (6%), and unclear objectives (5%) were major causes of poor requirements,
see Figure 2.1. Thus, success or failure of software development project greatly depends
on the requirement process where the user should be actively involved. The requirement
process should focus on user characteristics, tasks, work environment as well as usability

goals such as effectiveness, efficiency and user satisfaction.

25.00% -

20.00% -

15.00% A

10.00% -

5.00%

1

J

0.00%

Fot
o
k=1
<

Lack of User Input
Incomplete Req
Changing Req
Lack of Resources |
Unrealistic Expectations F |- |
Unclear Objectives
Unrealistic Time Frames |
New Technology u

Lack of Executive Support
Technology Incompetence. ||

Figure 2.1 Project Failure Factors (Standish Group, 1998).

Requirement engineering has traditionally been concerned with investigating the

goals, functions, and constraints of software systems. RE tasks includes elicitation of

informatidn related to the problem domain, modeling of the problem; analysis of costs,
completeness, and consistency; and verification and validation. These tasks cover the
way to generate complete, consistent, and unambiguous specifications of system behavior
that aid in the design and implementation activities. A major motivation for spending
time and effort on requirements engineering and its improvement comes from the
objective of doing the software development right from the beginning, instead of
patching at the end. Experiments show that the cost of detecting and repairing errors
increases dramatically as the development process proceeds (Davis, 1993; Nuseibeh and

Easterbrook, 2000).

When applying requirement engineering to interactive systems, there is also a
need to focus on multiple aspects that captures user interface requirements. People get
frustrated with systems that do not adequately support them in their work. Often the
software is of high internal quality, but when the system does not match the users’ tasks
and needs, internal software quality becomes almost irrelevant (Bevan, 1999). Users will
try to avoid using such systems if they can, or may even reject using them at all. Success
in different studies reset on the realization that user interface development is not software

development.

This chapter is organized as follows: Section 2.2 describes the role of
Requirements Engineering (RE) in software and systems engineering, the many
disciplines upon which it draws, and the core of the RE activities. We also discuss the
essential need of user participation during the RE process. In Section 2.3, we review
several representations of scenario-based approaches for user interfaces. Our goal is not
to conduct an exhaustive survey, but to show how the different goals of scenario analysts
affect the representations they choose. In Section 2.4, we discuss when should scenarios
be represented formally, when informally, and the pitfall of current scenario-based
approaches for user interfaces. Section 2.5 concludes with a summary of the state of the
art in scenario-based approaches, and offers a view of the key challenges for future

scenario-based research.

10

2.2 Requirements Engineering (RE)

Requirements engineering has been recognized during the past 30 years to be a real
problem. Bell and Thayer (1976) determined that inadequate, inconsistent, incomplete, or
ambiguous requirements have a critical impact on the quality of the resulting software.
By investigating different projects, they concluded that “the requirements for a system do
not arise naturally; instead, they need to be engineered and have continuing review and
revision” (Bell and Thayer, 1976). Several studies estimated that the late correction of
requirement errors could cost up to 200 times as much as correction during such
requirements engineering (Boehm, 1981; Davis, 1993; Nuseibeh and Easterbrook, 2000).
Therefore, it is reasonable to believe that efforts spent on improving requirements
engineering will pay off. In this section, the definition and dimensions of requirements
engineering are discussed. After a short discussion on the RE activities we dispute the

vital need of user participation during the RE process.

2.2.1 Requirements Engineering Definition

Within software development lifecycle the early phase discipline, which comprises of the
process of (a) analyzing and describing the problems a software and hardware based
system has to solve in a given application domain and then, (b) prescribing the
constraints and specifications for a new or changed system by transforming fuzzy initial
ideas into precise, commonly agreed specification, is called Requirements Engineering
process. The use of the term “engineering” implies that systematic and repeatable
techniques should be used to ensure that system requirement are complete, consistent,

relevant, etc.

There is no commonly accepted definition for Requirements Engineering,
although there exist several standards. For instance, the IEEE standards (IEEE, 1984;
IEEE, 1991) define RE as follows:

11

“(1) the process of studying user needs to arrive at a definition of system,
hardware, or software requirements. (2) the process of studying and refining system,

hardware or software requirements.”
A requirement is defined as:

“(1) A condition or capability needed by a user to solve a problem or achieve an
objective. (2) A condition or capability that must be met or proposed by a system or
system component to satisfy a contract, standard, specification, or other formally imposed

document. (3) A documentation representation of a condition or capability as in (1) or
(2)"’

The result of the RE process is an unambiguous and complete specification
document. This should help: the end-user to accurately describe what they wish to obtain
from the system; the stakeholder to understand exactly what the end-user needs. It also
helps the software engineers to develop a standard software requirements specification
(SRS), define the format and content of their specific software requirements
specifications; and develop additional local supporting items such as an SRS quality

checklist, or an SRS handbook.

2.2.2 The Three Dimensions of Requirements Engineering

At the beginning of the RE process unclear personal views of the system exist. Those
views are usually recorded using informal languages, whereas at the end of the RE
process a complete specification expressed using formal languages on which an
agreement should be reached. Based on this characterization three dimensions of the RE
are identified in (Pohl, 1994): (1) Specification, (2) Representation and (3) Agreement

dimensions (See Figure 2.2).

~ The Specification dimension: As identified by many researchers, the first main
goal of RE is to build a requirements specification, according to the standard and
guideline used. The degree of the specification (unclear to complete) is captured

by this dimension.

12

~ The Representation Dimension: During the RE pfocess different representation
languages are used. At the beginning of the process the knowledge about the
system is expressed using informal representations, while at the end of RE
process the specification must be formally represented. Thus, the second main
goal of the RE process is threefold. First, different representations must be
offered. Second, the transformation between the representations (e.g., informal to
semi-formal, informal to formal) must be supported. Third, the different

representations must be kept consistent.

— The Agreement Dimension: This dimension is as important as the representation
and specification dimension. The coexistence of different views has positive
effects on the RE process. Allowing different views and supporting the evolution

from the personal views to a common agreement on the final specification is the

third main goal of RE.
Specification

A . desired
output

complete < E i

fair
I‘"m’a[COmMmonN view 1 e i
- T i i -
opaque | 1 ;- | ’//’
L personal view b) .
' F p- Representation

L !
informal semi-formal formal

Figure 2.2 The RE process within the three dimensions (Pohl, 1994).

13

Looking at RE using these three dimensions, the main tasks and goals to be
reached within each dimension during the RE process is identified. But RE is not only
driven by its goals, it is also influenced by the environment. There are five main factors
influencing the RE process: (1) methods and methodologies, (2) tools, (3) social aspects,
(4) cognitive skills and, (5) economical constraints (Pohl, 1994). Accordingly, the first
step into getting to the heart of RE is to distinguish between two kinds of problems:

— Original requirements engineering problems, and
— Problems caused by approaches which try to solve the original problems.

Making the original RE problems and the goals to be reached during the process
explicit provides the basis for classifying the research of the RE area and for guiding a

RE process.

2.2.3 Activities of the RE Processes

According to Pohl (1996), requirements engineering is a systematic process of
developing requirements through an iterative co-operative process of analyzing the
problem, documenting the resulting observations in a variety of representation formats,
and checking the accuracy of the understanding gained. Improving the quality of
requirements is thus crucial; however, it is a difficult objective to achieve. RE is
inherently iterative and consists of a number of interrelated sub-processes. A correct,
consistent, and complete method to collect, understand, specify, and verify requirements
is important. To achieve well-defined document containing the user requirements that
satisfies these prerequisites, van Lamsweerde in (2000a) has tackled the RE process as

follows:

~ Domain analysis: in this process, existing system in which the software should be
built is studied. The relevant stakeholders are identified and interviewed.
Problems and deficiencies in the existing system are identified; opportunities are

investigated; general objectives on the target system are identified there from.

14

Elicitation: in this process, alternative models for the target system are explored
to meet such objectives; requirements and assumptions on components of such
models are identified, possibly with the help of hypothetical interaction scenarios.
Alternative models generally define different boundaries between the software-to-

be and its environment.

Negotiation and agreement: in this process, the alternative
requirements/assumptions are evaluated; risks are analyzed; and the best tradeoffs

that receive agreement from all parties are selected.

Specification: in this process, the requirements and assumptions are formulated in

a precise way.

Specification analysis: in this process, the specifications are checked for
deficiencies, such as inadequacy, incompleteness or inconsistency. Moreover,
specifications are checked for feasibility in terms of resources required,

development costs, and so forth.

Documentation: in this process, the various decisions made during the previous
processes are documented together with their underlying rationale and

assumptions.

Evolution: in this process, the requirements are modified to accommodate

corrections, environmental changes, or new objectives.

Requirements engineering is a systematic process in which requirements

engineers use different kinds of techniques or methods to achieve the real requirements of

a system, which make it potentially successful. However, requirements derived from the

use of traditional methods tend to subordinate user interface requirements to the core of

system functional requirements. As a result, visual and auditory features of the user

interface, together with dialog design, are added late in the development process, without

proper integration into the system requirements (Parker et al., 1997). Moreover, these

traditional methods lack user involvement and offer scant advice on the investigation of

15

user-centered requirements. Their treatment of user interface development is inadequate,
as is their treatment of non-functional, qualitative requirements relating to system and
user performance (Bickerton and Siddiqi, 1993). Actually, from a user's point of view, a
requirement stage is necessary because it helps to understand the user’s needs and to
identify how they can be satisfied. Lutz (1993) studied the software errors in NASA’s
Voyager and Galileo programs and determined that the primary cause of safety-related

faults were errors in functional and interface requirements.

16

2.3 User Participation in Requirements Engineering

User participation in developing complex systems has evolved rapidly over the past
years. The user's role has changed from a passive one, with little or no involvement in
software development lifecycle, to that of an active partner. Designing for product quality
requires extracting detailed knowledge of the users. Thus, user participation is advocated
in order to discover users’ needs and points of view, validate specifications, resolve
conflicts, and hence build better systems (Darke and Shanks, 1997; Koh and Heng, 1996;
Vredenburg et al., 2002).

The lack of user input contributes to incomplete requirements and specifications,
because only the system users collectively have the necessary understanding of the needs
to be fulfilled and was considered to be at least partially responsible for considerable
increases in the costs of developing systems at ITT and IBM (Clavadetscher, 1998;
Herlea, 1999; Mumford, 1985). Moreover, the process of developing the AS/400 system
was deemed successful, at least in part, due to intensive early user participation (Pine,
1989; Sulack et al., 1989). Consequently, the user participation and influence are
expected to increase the likelihood of user acceptance of the solution and of improved
system quality (Berry, 1994; Vanlommel and de Brabander, 1989; Torkzade and Doll,
1994). In fact, there is a great deal of literature supportive of user participation or
involvement in the requirement process of software developments (Amoroso and Cheney,
1992; Avison and Fitzgerald, 1995; Iivart and Hirschheim, 1996; Kujala, 2002). For
example, studies on software projects in USA show that user involvement is one of the
three major reasons to succeed, beside executive management support and a clear
statement of requirements (Standish Group, 1998). RE is not an activity one single person
performs, but it is a rather cooperative and interdisciplinary endeavor. One of the most
important aspects of this process is to achieve a shared understanding of the system to be

built.

Nevertheless, well-known problems of communication occur due to the diversity

of professional expertise and organizational roles that confer users' different views and

17

expectations of the system to be developed. The users will always play the roles of
problem owners, customers and actors, and identifying whether they formulate the right
problem or formulate the problem right is anything but straightforward (Checkland,
1981). Also, interpersonal as well as political problems develop and make this process
difficult. In this context, the requirements are regarded as a result of continuous
negotiation, a process that goes beyond the one-way transfer of knowledge from the users
to the user interface designers, but is about developing an understanding of each other's
views and perspectives, about sharing knowledge and about learning as a result of shared

experience (Macaulay, 1996; Mumford, 1984; Haumer, 2000; Kujala, 2003).

2.3.1 The Challenge of User Participations in Requirements

A basic question in requirements engineering is how to find out what users really need.
However, the elicitation of requirements information from users is frequently
problematic, as discussed in (Palmer, 1987; Goguem and Linde, 1993; Kujala, 2003). The
problem can be attributed to poor communication between users and designers.
Misinterpretations are inevitable between them as both sides have different backgrounds,
knowledge, vocabulary, and goals. The most frequently mentioned requirements

elicitation problems and possible solutions are summarized in Table 2.1.

Problem Solution

Users do not know what they want, | Alternative elicitation techniques such as field
or they cannot articulate it. studies provide a more complete picture
without the need for users to express their
needs. Users are recognized as experts in their
tasks; the focus is on their goals, present
processes and context of use.

There are too many users to study. Identify the various kinds of users and sample
representative users from all essential groups. It
is important to know how to determine who the
users should be and how to elicit information
from them.

18

Problem

Solution

A new product will provide a new
way of carrying out the existing
tasks.

In order to understand the user needs:
- The pros and cons of the present way of
achieving the user goals must be identified;
- The future context of use must be identified;
- Users should be allowed to use their skills,
the advantages of the cumrent processes
should be saved and the problems fixed.

Users have poor understanding of
computer capabilities and
limitations. Users may request a

The user needs should be discovered. The users
may believe this feature solves their problems
but it may not be an optimal solution.

designers speak different languages.

specific ~ feature or technical
solution.
End-users and user interface | The language used to express the requirements

back to the user may be too formal or too
informal to meet their needs because of the
diversity of the communities. L.anguage and
terminology understandable by both the users
and the user interface designers should be used.

Users do not have the ability to

abstract and structure their
knowledge nor understand
abstraction, made by the

requirement engineer.

User reacts to concrete instance and examples
especially when they come from their own
familiar working environment.

Table 2.1 The problems and solutions of requirements elicitation.

2.3.2 Scenarios: Bridging the Gap between User Needs and

Requirements

Early user involvement plays a role in understanding user needs, including context of use,
in the early stages of product development. Field methods can be recognized as most
promising in understanding user needs as users are studied in their own environment.
However, field studies are generally considered time consuming and effort intensive and

thus they add to product development costs (Bly, 1997).

19

Scenarios are a possible solution to bridge the gap between user needs and
requirements. In general, scenarios represent concrete examples of current and future
system usage. A scenario is a partial description of system behavior which, when
combined with other scenarios, should provide a more complete system description. This
makes scenarios particularly well suited for incremental requirement elicitation. In
addition, the use of scenarios improves the quality of RE process and the descriptions
produced. Scenarios usually are less abstract and therefore easier to develop and
communicate; especially by those with less formal training but important domain
knowledge (Cockburn, 1997; Haumer et al., 1999; Ben Achour et al., 1999; Hertzum,
2003, Sutcliffe, 2003).

Scenarios are used for a variety of different tasks and to accomplish a variety of
specific goals, for example: (1) in requirement phase, to represent the needs apparent in
current work practice (Jacobsen, 1995); (2) in end-user/ user interface designer
communications, as a mutually understood means of illustrating important design issues
or possible designs (Kyng, 1995); (3) in software design, as a means to identify the
central work domain objects that must be suitably included in the system; (4) in
documentation and training, as a means to bridge the gap between the system as an
artifact and the tasks that users need to accomplish using it; and (5) in evaluation, as a

means of defining the tasks the system has to be evaluated against (Mayhew, 1999).

Accordingly, using scenarios during the requirements discussion phase provide
stakeholders and end-users with a deeper understanding of the requirements, provide
answers to questions about requirements, and help them notice inconsistencies or missing
requirements. Research literature offers an increasing number of scenario related

methods, models and notation that are reported in the next section.

20

2.4 Scenarios in User Interface Requirements
Engineering

In the past thirty years, Human-Computer Interaction (HCI) community has been
considerably attracted by the use of scenarios. The HCI community proposes a large
variety of scenario-based approaches emphasizing more on user-oriented perspectives in
developing software systems. Scenarios promote shared understanding of the current
situation and joint creativity toward the future (Weidenhaupt et al., 1998, Jarke, 1999;
Robotham and Hertzum, 2000). The main purpose of introducing scenarios is to stimulate
thinking, e.g. scenarios are “a creative tool that facilitates the leap from observation to
invention” (Burns et al., 1994). This is also apparent in Carroll’s definition of the
concept: “The defining property of a scenario is that it projects a concrete description of
activity that the user engages in when performing a specific task, a description

sufficiently detailed so that design implications can be inferred and reasoned about”

(Carroll, 2002).

Five key properties of scenarios that motivate their widespread use in HCI
specifically in user interface design are addressed in (Carroll, 1999): (1) scenarios evoke
reflection in the content of design work, helping developers coordinate design action and
reflection and address some of the most difficult properties of design. (2) scenarios are a
concrete design proposal that a user interface designer can evaluate and develop, but it is
also rough in that it can be easily altered and allows many details to be deferred. (3)
scenarios afford multiple views of an interaction, diverse kinds and amounts of detailing,
helping user interface designers manage the many consequences entailed by any given
design move. (4) scenarios can also be abstracted and categorized, helping user interface
designers to recognize, capture, and reuse generalizations, and to address the challenge
that technical knowledge often lags behind the needs of technical design. (5) scenarios
promote work-oriented communication among stakeholders, helping to make design

activities more accessible to the great variety of expertise that can contribute to design,

21

and addressing the challenge that external constraints designers and users often distract

attention from the needs and concerns of the people who will use the technology. The

five key properties of scenarios are illustrated in Figure 2.3.

\6‘“‘%@
Q8
RN .
\i@f‘f’ vivid
?5@0"‘ descriptions of

end-user experiences
evoke reflection about
design issues

O.
(S
&{9’?
/‘Oé!@
- Ky
scenarios @fb{,
concretely fix an Y

interpretation and a
solution, but are open-ended
and easily revised

‘%} scenarios amj;h'a{ design { gcenario-Based | scenarios can be written Q‘??
>\ discussion in work, Design at muttiple levels, from /&
2.\ upgerteng participation many perspectives, §
% among st'ak@ho!ciers and for many
Q ﬁaf‘{d appropr zatg purposes
= esign outcomeg scenarios

can be abstracted
and categorized to help
design knowledge cumulate

£
s
9
$
S
across problem instances déf'

Scientific Knowledge Lags Design Application
Figure 2.3 Challenges and approaches in scenario-based design (Carroll, 1999).

Scenarios for user interface design may be represented in a variety of media,
either natural language text, graphics, images, videos or designed prototypes.
Furthermore, scenarios can be represented by semi-formal languages. Descriptions may
also be informal as they are expressed using concrete terms of the reality. The purpose of
this section is not to simply survey scenario-based approaches, but rather to indicate
where and how user interface designers use scenarios. Additionally, we examine how

their individual goals affect the

representations they choose.

22

2.4.1 Scenarios in Task Analysis for Human Interaction

Scenarios specify how users carry out their tasks in a specified context. They provide
examples of usage as an input to design, and provide a basis for subsequent usability
testing. Thus, much of the HCI work involving the use of scenarios does not refer to them
by name, but instead uses the term task. A task description can be a scenario by another
name, since it describes a single trace of behavior, or a narrow range of alternatives.
Also, task description provides an explanation of how the user interacts with a system to
perform a high-level task and incorporates all the envisaged contingencies and
alternatives (Antén and Potts, 1998). Task analysis is the process of gathering data about
the tasks people perform and acquiring a deep understanding of it. Several methods can
be used to gather the data, including interviewing, observation, talk aloud protocols, and
ethnographic work place studies. While these techniques each have their own
characteristics and problems, documenting the data and being able to write down the
understanding gained is another problem. This section presents some of the task;

scenario-like; modeling techniques that are used once data is available.

One of the oldest general-purpose task description techniques and contains many
ideas found in later techniques is the Hierarchical Task Analysis (HTA), proposed by
Annett and Duncan in 1967. HTA is a process of developing a description of tasks in
terms of operations and plans. Operations are things people do to reach goals, and plans
are statements of conditions that tell when each operation is to be carried out. The
operations can be hierarchically decomposed and with each new sub-task, a new plan
exists. In HTA, tasks are defined as activities that people do to reach a goal. A goal is
then defined as a desired state of the system under control or supervision. However, in
the notation used, only a task hierarchy is modeled and the goals are not explicitly

represented.

Another example of a task specification formalism that uses a narrow, scenario-
like sense of the term task is GOMS (Goals, Operators, Methods, Selection Rules) a

method for specifying task-specific user/computer interaction sequences and evaluating

23

user interface designs (Card et al., 1983). GOMS is a representation of the “how fo do it”
knowledge that is required by a system in order to get the intended tasks accomplished.
Briefly, a GOMS model consists of descriptions of the Methods needed to accomplish
specified Goals (e.g., moving the mouse and clicking a button for selecting a displayed
object). The Methods are a series of steps consisting of Operators that the user performs.
A Method may call for sub-Goals to be accomplished, so the Methods have a hierarchical
structure. If there is more than one Method to accomplish a Goal, then the GOMS model
includes Selection Rules that choose the appropriate Method depending on the context,
e.g., deleting a paragraph by repeatedly deleting text lines or by marking its beginning
and end and then cutting the selected text (John and Kieras, 1996).

Today, there are several variants of the GOMS analysis technique (e.g.
Keystroke-Level Model (KLM), Cognitive-Perceptual-Motor (CMN-GOMS), Natural
GOMS Language (NGOMSL), etc.), and many applications of the technique in real-
world design situations. Most of the GOMS analysis techniques are related to a general
task-analysis approach. This general approach emphasizes the importance of the
procedures for accomplishing goals that a user must learn and follow in order to perform
well with the system. By using descriptions of user procedures, the techniques can
provide quantitative predictions of procedure learning and execution time and gualitative
insights into the implications of design features. While other aspects of system design are
undoubtedly important, the ability of GOMS models to address this critical aspect makes
them not only a key part of the scientific theory of human-computer interaction, but also

useful tools for practical design.

GOMS grows out of an engineering psychology approach to the design of user
interfaces; the user’s behavior is modeled in great detail, down to the quantification of
basic parameters and the assignment of probabilities to selection rules or parameter
ranges. For example, GOMS tries to estimate learning time, execution time and mental
workload solely by counting steps. It is assumed that the steps modeled by GOMS
statements normally take 0.1 sec and primitive operators such as mouse movements take

between 0.2 and 1.1 sec. Mental operators are estimated to take 1.2 sec in case of lack of

24

any other information. For experienced users this time should sometimes be zero seconds.
The assumed values for operators have been heavily criticized in (Nielsen, 1993). Their
values have proven to be rather variable and unpredictable which makes the foundation
for estimating user performance weak, if not invalid. Other criticisms concern the fact
that GOMS assumes error-free behavior and does not distinguish novice and expert
behavior. The entry point for GOMS is the user’s assumed goal in performing a task.
Task descriptions are hierarchical descriptions of the methods (sequences of steps) that
can be performed to accomplish the goal. In GOMS, a scenario is referred to as a task

instance. An example of GOMS analysis is shown in Figure 2.4.

Method for goal: edit the document
Step 1: Get next unit task information from marked-up
manuscript.
Step 2: Decide: If no more unit tasks, then return with goal
accomplished.
Step 3: Accomplish goal: move to the unit task location.
Step 4: Accomplish goal: perform the unit task.
Step 5: Goto 1.

Selection rule set for goal: perform the unit task

If the task is moving text, then
Accomplish goal: move text.

if the task is deletion, then
Accomplish goal: delete text.

If the task is copying, then
Accomplish goal: copy text.
...etc...

Return with goal accomplished.

Figure 2.4 Example on GOMS.

Operational Sequence Diagrams (OSD) is another human performance
engineering approach to design and evaluate interfaces using task models. It presents the
information from the point of view of the user. OSDs are extended forms of Flow Process

Charts, which provide a graphic presentation of the flow of information, decisions, and

25

activities in a system, using a set of five basic graphic symbols and an associated
grammar (Kurke, 1961; Kirwan and Ainsworth, 1992). The technique is tailored for the
representation of the flow of information, with symbols for the transmission, receipt,
processing, and use of previously stored information. The diagrams show the sequence of
tasks or actions in a vertical sequence, they can be annotated with time information or a
time line. The standard operation symbols of OSD are shown in Figure 2.5. It shows the
vertical time line, the scenario components, and the allocation of responsibility between

user and system.

Havigation Shudant Inatructon
syatem ingtruct student
O operator decision 1o do Omega 9
posgition check
D action, e.g., contrdl gperation receive &
tansmittad infomation aclnovledge
V control head
received information, e.g. meany
O from a display
gelect Omega
U previously stored infomation from contral head
e.g., lnowledge meny

single lined symbds represent
manud cpeations

teceive command
£ 10 display Omega;
retieve COU &

double fined symbols represent

(]

automnatic operations pouch o
sclid symbals indicate Ev a SMS
inacticn or no information ybos

= receive ‘pog’ ey

= interrupt; iluminate
[E ley, assign conticl
%/ of COU W student

sees key illuminate
& control assigned

fidf-filled symbals indicate
partid infomation or incorect
opergtions due 1o noise of ermor
souCas in the system

AR |

retieve & display
position coondinates

O gees posifion
coordingtes

displayed

]
"&l

Figure 2.5 The standard operation symbols of OSD.

Méthode Analytique de Description des taches (MAD) is example on task
modeling part of a larger method for designing interactive systems (Scapin and Pierret-
Golbreich, 1989). In MAD, task models are similar to HTA models except that the plan

has been replaced by constructors. A constructor specifies the time dependencies of a

26

task’s subtasks i.e. a constructor scopes over all subtasks. The constructors are used to
specify the time order in which tasks are executed. Additionally, pre-conditions can be

specified for each task in order to “tune” the time ordering.

The most interesting aspect of MAD is the fact that templates are used to describe
the task details (Figure 2.6). Details include pre- and post-conditions, initial and final
states, task types, and priorities. In MAD, a task consists of two parts: a condition part
and a body part. In most other methods a task is regarded as a “black box” but MAD has
shown that there are many relevant aspects of a task to be described. Moreover, tasks are

modeled in great detail but no other concepts are modeled, i.e., no roles or objects.

Task Body attributes

Identification number Alphanumeric
Name Alphanumeric
Goal Alphanumeric
Comments Alphanumeric
Degree of Freedom {Optional, Obligatory}
Interruptability {True, False}
Upper Task Identification Number
Priority Integer
Modality { Automatic, Interactive}
Type {Cognitive, sensors-motor}
Frequency {High, Medium, Low}
Centrality {Important, Not important}
Experience {User: novice, occasional,

expert}
Mandatory sub-tasks finished | Integer

Figure 2.6 MAD task body attributes (van Welie, 2000).

27

User Action Notation (UAN) was developed out of the need of communication
between implementers and designers (Hix and Hartson, 1998). UAN is a tabular notation
in which the user, interface, and underlying computation are treated as three agents
involved in a scenario. The user operations are specified in great detail. The interface
operations (e.g., changes to display) and its state (e.g., change of mode) are specified
informally or by reference to separate pictures, and the underlying computation is
described informally also. The technique consists of two types of diagrams; interaction
templates and composite templates. Interaction templates are used for describing the
actual interaction in detail using four columns (user action, system feedback, interface
state and connection to computation). The composite template is used to describe a
hierarchical decomposition of interaction templates. UAN focuses on the interaction
between user and the system instead of the system’s states as State Transition Diagrams
(STD) do. van Welie et al. (2000) developed an extension to the UAN, called New User
Action Notation (NUAN) to improve and overcome some of the problems in UAN. This

made UAN more suitable for task-based design.

A final example of a human performance-engineering notation for tasks is the
ConcurTaskTrees (CTT) (Paterno, 1999). The purpose of a task model specified in CTT
is to provide a description of how the activities should be performed in order to reach the
user’s goals. Such activities are described at different abstraction levels in a hierarchical
manner, represented graphically in a tree-like format. In contrast to previous approaches,
ConcurTaskTrees provides a rich set of operators with a precise semantics to describe the
temporal relationships among such tasks. The notation gives also the possibility to use
icons or geometrical shapes to indicate how the performance of the tasks is allocated: (a)
only to the user, (b) only to the application, (c) interaction between user and application,
(d) abstract tasks, i.e., they have subtasks allocated differently. For each task it is possible
to provide additional information including the objects (for both the user interface and the
application) manipulated. Moreover, the notation is supported by the ConcurTaskTrees

Environment (CTTE), a set of tools supporting editing and analysis of task models.

28

Task Analysis Discussions

All examples HTA, GOMS, OSD, MAD, UAN, and CTT seek to achieve highly precise
procedural specifications, so that a task analyst knows exactly what steps to perform, how
to perform them, and what order to perform them in. This is highly desirable, and
especially important if the task analyst is only marginally competent or not very creative.
This is where structured methods really prove their value. However, the cost or downside
of well-specified method scripts is that they lack flexibility. Also, most task analysis

techniques assume error-free, non-interrupted action sequences.

Some examples of tasks analysis techniques such as GOMS models are quite
effective because they capture procedural speed and complexity. But other aspects of
human performance with an interface are not addressed by the simple cognitive
architectures underlying the current GOMS variants. Also, the estimation part of GOMS
remains controversial even after almost twenty years of research. However, it can still be
used to compare design alternatives against each other to see which requires the minimal

number of steps.

2.4.2 Scenarios in Storyboarding and Prototyping

Scenarios help requirements engineering team handle the complexity of user interfaces
by clarifying the actual behavioral penalty of requirements proposals. Another related
design strategy that does this is prototyping. In fact, one of the principal outputs of
scenario development is a road map for prototyping activities. Prototypes are built to
support a variety of system life cycle activities including marketing, user requirements
definition and validation, user-system interface design, system sizing, usability testing,
documentation and training. One of the most productive uses of prototyping to date has
been as a tool for iterative user requirements engineering and user interface design

(Overmyer, 1999; Weidenhaupt et al., 1998; Elkoutbi et al., 1999; Harel, 2001).

Prototypes can be generally classified into two categories: low-fidelity and high-

fidelity. Low-fidelity prototypes or storyboards segment behavior into several discrete

29

frames. Each frame uses a mixture of text and pictures to depict the system. They are
constructed to depict concepts, design alternatives, and screen layouts, rather than to
model the user interaction with a system (Rudd et al., 1996). In contrast, high-fidelity
prototypes are fully interactive representing the core functionality of the product’s user
interface. High-fidelity prototypes are typically built with fourth-generation programming
tools such as Smalltalk or Visual Basic, and can be programmed to simulate much of the

function in the final product (Rudd et al., 1996).

Low-fidelity prototypes and storyboards are inexpensive and can be build fast, but
they fail to show navigation and flow. They are usually demonstrated by the user
interface designer rather than tested by a user providing limited usefulness for usability

tests and user evaluation (Nielson, 1990).

On the other hand, usability testing can be conducted early in the design process
with the high-fidelity prototype as a test vehicle. Realistic comparisons with competing
products can be made via the prototype to ensure that the program is marketable and
usable before committing the resources necessary to develop the product fully. However,
high-fidelity prototypes are more expensive and time consuming to construct than low-
fidelity prototypes. Since high-fidelity prototypes represent function that will appear in
the final product, prototype development becomes a development effort in itself,
sometimes requiring many weeks of programming support. The cost and time saving for
high-fidelity prototypes can be achieved by somehow reducing the prototype as
compared to the full functional system either by developing vertical prototype; an
interactive high-fidelity prototype of only a subset of the product’s available function, or
by creating horizontal prototypes; prototypes that contain high-level functionality, but do

not contain the lower-level detail of the system.

Virzi and his colleagues in (1996) conducted experiments to compare the usability
problems uncovered using low- and high-fidelity prototypes. In both experiments,
substantially the same sets of usability problems were found in the low- and high-fidelity
conditions. Moreover, there was a significant correlation between the proportion of

subjects detecting particular problems in the low- and high-fidelity groups. Individual

30

problems were detected by a similar proportion of subjects in both the low- and high-
fidelity conditions. Finally, they concluded that the use of low-fidelity prototypes can be
effective throughout the product development cycle, not just during the initial stages of

design.
Prototypes and Storyboard Discussions

Scenarios can be used independently of prototyping, and prototypes can be used in the
absence of scenarios. In spite of this, Weidenhaupt and his colleagues in (1998) examined
15 projects in four European countries. In two-thirds of the projects, scenario generation
interrelated with prototyping. The initial scenarios served to validate the prototypes and
indirectly the requirements specification. Moreover, validating prototypes against the
initial scenarios allows the user interface designers to validate the initial scenarios
themselves to detect missing functionality, over-specifications, errors, and even
unintended side effects. Thus, scenarios and prototypes complement each other in a
symbiotic manner. It remains an open issue, however, how to apply scenario

representations and prototyping in a controlled and beneficial way.

2.4.3 Scenarios in Use Cases

Jacobson (1992) introduced use cases as a part of object-oriented methodology. The idea
was to capture brief narratives describing possible uses of the system under design as
distinct cases; these could then be implemented in the design one at a time. There is no
one agreed definition on scenarios and use cases. However, in this thesis we use
(Cockbum, 2001) definition, “each use case is a collection of possible scenarios between
the system and actors, characterized by the goals the primary actor has, while a scenario
is a sequence of interactions happening under certain conditions”. Jacobson (1995)
employs a graphical use case model, which includes the system as bounded by a box,
each actor represented by a person outside the box, and use cases represented as ellipses
inside the box. Rumbaugh (1994) complemented the model by proposing a written
description of use case including name, summary, actors, preconditions, description,

exceptions, and post conditions.

31

</%

Actor 1 : \ ©
/ Use Case 2

e

Actor 2 Use Case 3

Figure 2.7 Example on use cases.

Ever since Jacobson introduced use cases, they have been considered to be a good
way of capturing the users' needs and requirements and of modeling functional
requirements (Rumbaugh and Booch, 1996; Chandrasekaran, 1997). Jacobson's original
idea was that by use cases the whole system development starts from what the users wish
to be able to do with the system. In this way, the system is built from the users' point of
view. However, in practice it is different, use cases are written without any knowledge of
user needs and the documents are not read by users as Jacobson recommended. Use cases
are written from a technical or interface point of view, but not from the user point of
view. The resulting use cases are nearly impossible to understand by users (Lilly, 1999;
Lee and Xue, 1999). The rest of this section presents examples on use cases that elicit and

represent user interface requirements.

Constantine in (1995) proposed Essential Use Cases, a technology-free, idealized,
and abstract descriptions of user interfaces. Essential use cases highlight the purpose,
what it is that users are trying to accomplish, and why they are doing it. The resulting
design models leave more options open making it easy to accommodate changes in
technology. Essential use cases are based on the purpose or intentions of a user, rather
than on the concrete steps or mechanisms by which the purpose or intention might be

carried out. It has been recommended by Constantine to use essential use cases as a

32

starting point to capture the requirements and then evolve them into system use cases
during the analysis and design efforts. An example of essential use cases for getting cash

from an ATM machine is illustrated in Figure 2.8.

Getting Cash
User Action System Response
Identify self
Verify identity
Offer choices
Select
Give money
Take money

Figure 2.8 Essential use cases for getting cash (Constantine, 1995).

As shown in Figure 2.8, essential use cases are documented in a format
representing a dialog between the user and the system. The general format divides the use
case into two columns user intention and system responsibilities. The new labels indicate
how essential use case support abstraction by allowing the interaction to be documented
without describing the details of user interface. In fact, the abstraction does not really
relate to use case as whole, but more to the steps of the use case. In this way, an essential

use case does not specify a sequence of interaction, but a sequence with abstract steps.

Conversely, Wiegers in (1997) used Dialog Maps; a method for modeling user
interfaces. Wiegers emphasizes on the goal of having the software developers and their
customers achieve a shared vision of the product being created by conducting use case
workshops to walk through use cases in order to identify the actual functional
requirement, exception and decision situations. Dialog map is a modification of the state

transition diagram (STD). A user interface resembles a finite state machine in that only

33

one screen (state) is active at any given instant, and a set of defined navigation pathways

and triggers (transitions) exists for moving from one screen to another (Wiegers, 1997).

As shown in Figure 2.9, each screen (rectangle) is identified only by name, with

no detail at all shown about its fields or layout. The connections between one screen or

window and another are shown as transition lines connecting the states. Dialog maps can

be structured hierarchically to further control the degree of detail revealed at any specific

level (Wiegers, 1997).

With the dialog map, common or similar interface features can be identified and

built as reusable components. Any duplicated or missing functionality can be detected

and corrected well before implementation. Dialog maps can be drawn with CASE tools,

or they can be drawn with a pencil and paper.

Fifsend
F3fexit
F 3fcancel F8
Send a Main Menu I Main Menu
Feedback Note |le—o8w——— Page 1 < Page 2
F12 i F7
Fa Fa
¥
F12frename 4| File Options | F12/delete
3 Menu <
F3icancel F3/cancel
ENTER/ ENTERY
action=R action=D
Rename a < - Delete a
File Window File Window

Figure 2.9 Sample Dialog Map (Wiegers, 1997).

34

The Rational Unified Process (RUP) is another use case driven iterative software
engineering process. User Interface design within the RUP involves user interface
modeling and user interface prototyping. The main input to these activities is the use case
model, which describes how the system is used. At the user interface modeling stage,
each use case is described via a use case storyboard, which is a conceptual description of
how a use case is to be supported by the user interface (Krutchen et al., 2001). Phillips
and Kemp in (2002) describe two support artifacts (1) the extended tabular use cases and
(2) the UI element clusters. The artifacts provide bridge between the two central activities
within the RUP. These artifacts provide support for “flow of events” storyboarding, the
clustering of user interface elements identification of UML boundary classes, and the

initial sketching of user interface prototypes.

The extended tabular use case representation provides a flow of events
storyboard, which is graphical as well as textual. The visual depiction of Ul elements
makes this easy to understand by all involved in the development process. It also
provides the basis for the generation of the set of transactions for testing the
implementation. The Ul element cluster is used by the user interface designer to proceed
to user interface sketches and low-fidelity prototypes that support the activities of the use
case. These sketches tie down the “look and feel” of the interface, and are concerned with
space allocation and layout, the behavior and appearance of widgets, and navigation
between contexts. Figures 2.10 and 2.11 illustrate an example of the extended tabular use

case and the Ul element cluster of a library system.

35

Request Book: Permit a library user to request unavailable book

Actor: Library User

Precondition: Book details Are currently displayed and book status is “unavailable”

Postcondition: None

Library User System Ul Elements

Main Flow Wl

At any time, may: Title

- request a printout of Author
book details (S1) Publisher
- cancel the request ISBN
(582). Copy no.
Call no.
Location
Selects a copy of the book. Status
A 4
E dat w2
e ate
nter a (mm/dd/yy)
Submit the request Y T
o User-ID/password —® E1
Identify library user (E1)
£

Confirms request and X
informs library user to W4

check lending record twice
weekly.
The use case ends

Request confirmed

Sub flows
S1: Request printout.

S2: Cancel request. The use
case ends

PRINT
CANCEL

Exception flows
E1: Enters Invalid ID

Display message
The use case ends

Invalid User-ID or
password

i

Figure 2.10 Extended tabular representation for the Request Book use case (Phillips and

Kemp, 2002).

Book Request w4
Request
w1 confirmed
Title Message
Author & W5
Publisher Invalid User-ID
ISBN or password
Copy no.
Call no.
Location
Status
W3
User-ID/password
User ID
€7
- N [R
SELECT SUBMIT
w2
(mm/dd/yy) ~ 7N <
e N ™
PRINT CANCEL
. J y,

Figure 2.11 Element cluster for the Request Book use case, with the boundary classes

labeled (Phillips and Kemp, 2002).

SCRAM (SCenario-based Requirements Analysis Method) is another method that
uses scenarios with early prototypes to elicit requirements. The approach is based on the
hypothesis that “fechnique” integration provides the best avenue for improving RE and
that active engagement of users in trying out designs is the best way to get effective
feedback for requirements validation (Sutcliffe and Ryan, 1998; Sutcliffe 2003). SCRAM

is based on four “techniques” for requirements capture and validation:

(1) Use of prototypes or concept demonstrators: a key concept is providing a designed

artifact which users can react to.

37

(2) Scenarios: the designed artifact is situated in a context of use, thereby helping users

relate the design to their work/task context.

(3) Design rationale: the user interface designer’s reasoning is deliberately exposed to the
user to encourage user participation in the decision process. A QOC (Questions, Options,

Criteria) notation is used to illustrate the various trade-offs.

(4) Whiteboard summary: the user interface designer’s requirements are summarized on a
whiteboard to identify dependencies and priorities. SCRAM, however, gave only outline

guidance for a scenario-based analysis.
Use Case Discussions

Use cases help ensure that the correct system is developed by capturing the requirements
from the user's point of view. Use cases are efficient and effective technique for
collecting essential requirements from a group of end-users, helping to focus on their real
needs, not just what they initially say they want. It will help all those involved to arrive at
a common, shared vision of what the product they are specifying will be and do which is
the key to constructing quality software. Consequently, use cases have proven to be a
popular and effective approach for capturing requirements and providing traceability that
facilitate testing and validation (Hurlbut, 1997). On the other hand, studies in this area
indicate that the current use case modeling techniques lack the level of formalism
necessary to adequately support user interfaces (Chin et al., 1997; Wiegers, 1997;
Constantine and Lockwood, 1999). Also, the transformation of the use case description of
how the system behaves from the user point of view to the more formal languages is not
trivial. This transition also causes problems when it comes to using use cases for the
specification of acceptance tests, because the criteria for passing those tests may not be

adequately defined.

38

2.5 General Discussions

In this section we discuss when should scenarios be represented informally/formally,
managing the transition between informal and formal representations, and the appropriate
level of abstraction in a scenario, given a certain purpose. We also summarize the general

pitfalls of current scenario-based approaches for user interfaces.

2.5.1 Scenario Representations: Informal versus Formal

There is a wide range of scenario representations including (1) raw information, (e.g.,
video recordings, literal transcripts) (2) free format data (e.g., pictorial descriptions, free
form text), (3) structured representation, (e.g., structured texts, templates/ forms), (4)
semi-formal syntax with some semantics (e.g., process maps in system analysis, message
sequence diagrams, state charts with embedded text, pseudo code), and (5) formal
languages with well-defined semantics (e.g., state charts, Petri nets, logic of action)
(Jarke et. al., 1998; Bramble et al., 2003). Figure 2.12 illustrates the different scenario

representations.

In practice, scenarios have been described in a variety of media. Narrative text is
probably the most common, as many authors associate scenarios to narration of “stories”
(Carroll, 1999). Jacobson et al. in (1992) express use cases and event traces with
structured English with the claim that narrative texts facilitate the capture of
requirements. There are a number of formatted variants such as tables (Potts et al., 1994),
structured texts (Regnell et al., 1995) or scripts (Rubin and Goldberg, 1992). Scenarios
can also run as simulations to present a future vision of how the system will behave. For
example, Benner et al. (1993) make scenarios themselves executable or visualized in
order to watch the system as it runs, and detect weather or not the behavior patterns
described in scenarios occurs. Also, the underlying language of scenario descriptions
proposed by Glinz (1995) is a state-chart-based model. In the same line, Hsia et al. (1994)
show that a scenario can be adequately represented by a regular grammar from which a

conceptual machine for prototyping may be constructed.

39

Informality Formality

! | |]]
D— 1 | ! l >
Raw data Free format Structured Semi- formal Formal
data representation syntax language

Figure 2.12 Various scenario representations.

Based on the purpose and on the intended users of the scenarios, the degree of
scenario formality would change. For example, in cases where there is a need to represent
the result of an agreement process, or a consolidated view is required, formal scenario
representations are need. Also, formality is used when there is a strong need for
traceability and unambiguity. On the other hand, in cases where eliciting a specific view,
or setting of particular views sufficiently, informal representations are recommended.
Also, informality is used when there is a need for rapid feedback cycles between interface

user interface designers and stakeholders.

Effective use of scenarios depends on how the representation of the scenario
accords with the purpose of the requirement engineering team. Sometimes there is a need
for precision while creativity often asks for informal techniques. Most representations of
scenarios in practice have been found to be ‘informal’. However, if these scenarios
become too many, too broad or too deep, it is time for more general conceptual models
validated against individual scenarios in a more formal manner. Yet, formalization is by
no means synonymous with greater coverage or more detail. Accordingly, semi-formal
representations will be sufficient to adequately represent structural constraints within and

between scenarios (Jarke et. al., 1998; van Lamsweerde, 2000b; Antén et al., 2001).

2.5.2 Common Pitfalls in Developing Scenarios-Based RE

Scenarios are a process, not a product. The process demands significant effort, thought,
and creativity of the requirement-engineering team. An important question when
applying scenario-based requirement engineering for user interfaces is: What criteria

should we have for creating and describing scenarios for user interfaces? From the

40

viewpoint of HCI, dealing with scenarios; non-formal narrative descriptions; is not
considered an option but obligatory on research by practice (Jarke et al., 1998). To help
the requirement-engineering team avoid mistakes made by others, common pitfalls are

listed below:

— Scenarios do not produce action plans; they help requirement engineering team
imagine what will happen. The methodology is not suited to addressing specific
planned issues. It is meant to provide a broad view of the uncertainties facing an
intervention. Strategic decisions flow from this understanding, but they are not a

direct product of the exercise.

— Deriving scenarios from user interface perspective rather than from the actual user
goals and objectives yields too much implementation and specific details which

should be addressed during software design, not requirements engineering (Lilly,

1999).

— A weakness of the scenario-based approach in practice is that the gap between a
textual/informal description and the more formal representation of a scenario is
very wide. Traceability between scenarios at these varying levels of detail

becomes a concern.

— Considering the difficulties in comprehending scenarios written in a natural
language it may be worthwhile to invest in implementing a prototype that
visualizes the system. The prototype may be employed in preliminary usability

tests (Zowghi et al., 2001).

— Failure to tell a dynamic, internally consistent story. Scenarios should be movies,
not still frames. Each scenario should be a smooth narrative that makes intuitive
sense to the reader. The main aspects of the future should be internally consistent;
the outcomes assumed for the two key uncertainties should be able to coexist; and
the actions of all team members should be compatible with their interests (Maack,

2002).

41

— Lack of diversity of inputs. If the scenario team members are of homogeneous
educational backgrounds and institutional affiliations, they will be much less
likely to come up with innovative solutions. To build successful scenarios, the

participation of a diverse group of people is essential.

— Large number of scenarios typically required for real-world applications can be
particularly difficult to read and understand. A suitable CASE tool would allow
for selecting an actor or user role and seeing the associated use cases highlighted,
but in paper or static diagrams, they are usually omitted (Hausmann et al., 2002;

Nasr et al., 2002).

42

2.6 Conclusions

As scenario-based approaches attract increasing interest among user interface designers,
the literature on scenario methods, models, and notations expands. Scenarios have
become popular notably in HCI field. In this chapter, we discussed how and why
scenarios have been advocated as an effective means of communicating between users
and requirements engineers and anchoring requirements analysis in real world
experience. We also explained how scenarios play a role in task analysis, in storyboards
and prototyping, and in use cases. Effective use of scenarios depends on how the
representation of the scenario accords with the purpose of the scenario analyst. Thus, the
representations chosen for scenarios are crucial in promoting this understanding. In this
chapter, the frequently trade-offs to be achieved in practice between the level of formality

and precision that a scenario reveals has been discussed.

Scenarios have been advocated as a means of improving requirements engineering
for user interface design. However, the current challenge facing the HCI community is
making scenario usage more effective and efficient. Unfortunately, few concrete
recommendations exist about how scenario-based requirements engineering should be
practiced, and even less tool support is available. In next chapter, we extend a scenario-

based notation; the Use Case Maps for user interface requirements.

43

Chapter 3

Use Case Maps: A Roadmap for User
Interface Requirements

In this chapter, we explore use case maps and the proposed extension for user interface
requirements. Our research responds to major gaps in user interface specifications in
HCI, in software development methods for interactive software, and in the
communication between user interface designers and software engineers. First we
introduce the original UCM notation proposed by Buhr (1998). The Use Case Maps
(UCMs) is a scenario-based notation for describing, in an abstract way, how the
organizational structure of a complex system and the emergent behavior of the system are
inter-twined. It provides a first-class design model for the “how it works” aspect of both
object-oriented and real time systems. Use case maps give a road-map-like view of the
cause-effect paths traced through a system by scenarios or use cases (Buhr, 1998). In this
chapter, we emphasize the great need to enrich the notation to capture user interface
requirements; in particular, for dialog, task and presentation aspects. We illustrate, via a
concrete example, the usage of use case maps as an approach for specifying user interface

requirements.

44

3.1 Introduction

In our research, we investigated the possibility of making use of the prospective standard
Use Case Maps (UCMs) for the support of user interface requirements. UCMSs are
scenario-based notation that describe end-to-end causal scenarios at any level of
abstraction, allowing the behavior of complex systems to be described with ease (Buhr,
1998). Details of inter-component communication are considered lower level detail that
can be determined at a later phase. UCMs are intended to be useful for different software
development phases such as requirement specification, design, testing, maintenance,
adaptation, and evolution. Already UCMs are used in some of these phases. Buhr (1998)

summarize the main properties of UCMs as:

— UCMs describe, in an abstract way, how the organizational structure of a complex

system and the emergent behavior of the system are intertwined.

— UCMs aim to leverage human understanding of the big picture during all phases of
the lifecycle, not just to specify scenario sequence by combining a set of scenarios in
a single diagram, which enables designers to express scenarios and scenario

interactions in a graphical manner.

— The construction of UCMs reveals problems with use cases, which may be

incomplete, incorrect, ambiguous, inconsistent, or at different levels of abstraction.

— UCMs notation is lightweight enough to learn quickly and to be useful for sketching
design ideas or explanations quickly in back-of-the-envelope fashion. A novel and
powerful feature of the notation is the way it represents highly dynamic situations in a

direct and understandable way.

— UCMs are inherently object-oriented because they are concerned with systems of

collaborating objects.

45

— Finally, UCMs notation is gaining popularity and notoriety. Several studies are
focusing on how to integrate UCMs to UML and how to formalize UCMs in XML
(Amyot, 1999).

In this chapter, we focus on the analysis and requirement phase to specify user
interfaces. The analysis concerns an internal view of the system described in the language
of the designers, while the requirements concern an external view of the interface
described in the language of the users/customer In Section 3.2, we study the original
UCMs notation and consider the strengths and weakness of UCMs. Also in Section 3.2,
we discuss the vital to enhance the notation for user interface requirements. In Section
3.3, we present a new proposal notation specifically adapted to develop interactive
systems. Section 3.4 outlines the semantics of the UCMs extensions. In Section 3.5 we
present an example of our approach and, finally, in Section 3.6 we discuss the

conclusions and further developments.

46

3.2 Use Case Maps Original Notation

Use Case Maps (UCMs) notation was invented by Buhr and his co-workers at Carleton
University, to capture designer intentions while reasoning about concurrency and
partitioning of a system, in the earliest stages of design. A UCM is a visual notation to be
used by humans to understand the behavior of a system at a high level of abstraction. It is
a scenario-based approach intended to explicate cause-effect relationships by traveling
over paths through a system. The basic UCM notation is very simple, and consists of
three basic elements: responsibilities, paths and components. A simple UCM
exemplifying the basic elements is shown in Figure 3.1. Responsibilities are generic and
denoted by crosses, representing actions, activities, operations, tasks, etc. Components
are also generic and they represent software entities (objects, processes, databases,
servers, etc.) as well as non-software entities (e.g. actors or hardware). The relationships
are said to be causal because they link causes (filled circles, representing pre-conditions
or triggering causes) to effects (bars, representing post-conditions and resulting events)
by arranging responsibilities in sequence, as alternatives, or concurrently (Buhr and
Casselman, 1996). Essentially, UCMs show related use cases in a map-like diagram,
whereas UCM paths show the progression of a scenario along a use case. As shown in
Figure 3.1, a UCM is intended to be intuitive, and high-level. Details can be represented,

but that is not the purpose.

UCMs can be hierarchical, top-level UCMs are called root maps. All levels of
UCMs can include some containers (called stubs) for sub-maps (called plug-ins). Plug-ins
can be used and reused in appropriate stubs. A map including a stub is called the parent
map of the plug-ins that can be contained in this stub. There are two kinds of stubs

(Amyot, 1999).
— Static stubs: represented as plain diamonds. They can contain only one plug-in

— Dynamic stubs: represented as dashed diamonds. They can contain several plug-ins,

whose selection is determined at run-time according to a selection policy.

47

UCMs can represent systems at different levels of abstraction. A UCM can
describe features of a system in general terms at a very early stage even when the
architecture of the system is unclear. At such a stage, UCMs are called Unbound UCMs
since no components are defined. Unbound UCMs are very useful in the first stage
description of service functionalities, which focuses on causality and responsibilities
without reference to architecture or components (Buhr, 1996). Basic UCM notation
elements, including start point, end point, responsibility and component, are shown in

Figure 3.1. Other UCM path elements are presented in Table 3.1.

c2
Cl1 || Responsibility

Start Point —
C3-1 /

d N

Component |
i

—\
\

End Point

Figure 3.1 Basic UCMs notation

Compared to the Unified Modeling Language (UML), UCMs fit in between Use
Cases and UML behavioral diagram. Use cases often provide a black-box view where the
system is described according to its external behavior. UML Class Diagram have a glass-
box view, they are used to describe how a system is constructed, but do not describe how
it works; this task is taken up by the UCMs. Thus, UCM view represents a useful piece of
the puzzle that helps bridge the gap between requirements and design. UCMs can provide

a gray-box view, a traceable progression from functional requirements to detailed views

48

based on states, components and interactions, while at the same time combining behavior

and structure in an explicit and visual way (Amyot and Mussbacher, 2001).

Name

Notation

Description

Static Stub

<

Static stub contains only one plug-in (sub
UCM), hence enabling hierarchical
decomposition of complex maps.

Dynamic Stub Dynamic stubs may contain several plug-ins,
/m whose selection can be determined at run-
S~ -—[:: time according to a selection policy (often
described with pre-conditions).
OR-Fork A single path segment splits into several
_< alternative path segments.
And-Fork A single path segment splits into several
concurrent path segments.
Abort Z Top path aborts bottom path.
¢
Waiting Place Top path waits a triggering event at some
7? point for carrying on the path.
OR-Join Several alternative path segments join in to a
>—— single path.
And-Join — Several parallel or concurrent path segments
— synchronize into a single path.
Timer If a timeout occurs, the path goes on the
timeout path.
Timeout
path
Loop Part of path can be repeated before carrying

Q>N

on the rest of the part.

Table 3.1 Basic UCM path elements

49

3.2.1 Why Consider UCMs for User Interface Requirements?

One important goal of user interface requirements engineering is to ensure that a
consistent and feasible requirement specifications can be developed, while ensuring that
the specification is a valid reflection of user requirements. To achieve this goal, we
considered the possibility of making use of the prospective standard Use Case Maps

(UCMs) for the support of user interface requirements.

Based on previous studies (Buhr, 1998; Amyot and Mussbacher, 2001), we
believe that the UCMSs notation is easily understandable by both the end-user ,
stakeholders and designers. In fact, this helps user interface designers to handle different
users’ understanding and expectation of the interface, and bridge the gaps by refining the
requirements earlier. Moreover, if the software engineer is using UCMs, this will support
the idea of concurrent engineering where a whole overview of the system (functionality
and user interface) can be presented using one abstract model. Consequently, this
improves the probability that software and the interface will be correct when it is finally
put together, since contradictions in the requirement can be captured in early stages. It
will also help to reduce the chances of introducing errors when changes are made.
Furthermore, many studies are focusing on how to integrate UCMs to UML and how to
formalize UCMs in XML (Amyot and Mussbacher, 2001), this is discussed in Chapter 7.
Finally, a major strength in our proposed extension to the UCM:s is its ability to capture

most of the user interface requirements as shown in the next section.

On the other hand, the support of UCMs for designing user interactive systems is
still acknowledged to be insufficient. The current UCMs notation does not support
presentational aspects of the interface. Also, it is very weak in describing dialog
modeling between the user and the system. We aim to enrich UCMs for user interface
requirements by presenting new notation that assist to capture the complete user interface
requirements. The enriched UCMs should focus on three dimensions the rask, dialog, and

presentation of the user interface structure. .

50

3.2.2 User Interface Requirements-Three Dimensions

User interface requirements explicitly answers the following questions: Who are the users
of the interface? What tasks do the users perform using the interface? How does user
communicate with the interface? How are the interface components presented to each
user? What commands and actions can the user perform on the interface?. In this section,
we present an extension to the UCMs to accommodate three dimensions of the user

interface to answer the above questions.

Task Dimension

This dimension describes the tasks that users are able to perform using the application, as
well as how the tasks are related to each other. A user task has a goal associated with it, it
may include number of subtasks, which are executed according to a particular procedure,
and it may have to satisfy a number of conditions before it can be completed by the user.
The user task definitions are applied during the interface generation process to derive the
interface dialog. UCMs are used as a simple and expressive visual notation that allows
describing task scenarios at an abstract level in terms of sequences of responsibilities and

tasks over a set of components.

Dialog Dimension

In the dialog dimension all communication between the user and the system takes place.
It specifies the user commands, interaction techniques (e.g., keyboard techniques, mouse-
based techniques, pen-based techniques, voice-based techniques), and interface responses
and command sequences that the interface allows during user sessions. The dialog

specifications can be derived in good part from the task dimension.

Consequently, the dialog dimension is intended to explain the style of dialog
interaction techniques such as: the dialog type and techniques (e.g., alphanumeric
techniques, form filling, menu selection, icons and direct manipulation, generic functions,
natural language), explain the navigation and the orientation in dialogs, error

management, and illustrate the multi-user dialogs

51

Presentational Dimension

The presentational dimension provides a conceptual description of the structure and
behavior of the visual parts of the user interface. In this dimension, the interface is
described in terms abstract objects. It is a view of the static characteristics of an interface,
mainly its layout, organization. It identifies the objects comprising the user interface,
their grouping and specifies their layout, e.g. by indicating approximate placement or by
indicating topological relations between groups. This dimension represents the space
within the user interface of a system where the user interacts with all the functions,
containers, and information needed for carrying out some particular task or set of
interrelated tasks. Moreover, successive displays of different screens and interactive

objects are presented.

3.2.3 UCMs Extensions for Ul Requirements (UCM-UI)

The UCMs core notation has been extended over the years to cover different fields of
applications such as performance analysis at the requirements level (with timestamps)
and agent-oriented design (Amyot, 2000). Due to the inherent complexity and scale of
emerging user interface features, special attention has to be brought to the early stages of
the development process. The focus should be on understanding the overall behavior of
the interface rather than on details belonging to a lower level of abstraction, or to later
stages in this process. Many user interface designers and usability experts recognize the

need to improve such process in order to cope with the new realities cited above.

In our research, we focused on what notation may be developed to complement
UCMs in capturing user interface requirements in the early stages of development where
very little design detail is available. In this section, new notation is suggested to support
the UCMs for user interface requirement. The extended notation is expressive, compact,
understandable and flexible notation representing concurrent and interactive activities by
the user and the interface of the system. The extended notation provides UCMs with
more expressive power for interactive systems. Even people without formal background

easily interpret the new notation.

52

Dialog Notation

UCMSs notation are weak in representing dialogs, which are a central aspect in user
interface requirements. Thus, we introduced a new simple notation for dialog that
explains the initiator of interactions between the user and the sysiem. Figure 3.2
represents a dialog notation where the initiator of the dialog has to be on the left side (in
this figure it is the system). The system initiates a question-and-answer dialog. In reality,
richer styles of communications between the user and the interface have now become
commonplace. Common dialog styles include: natural language, command language,
query language, questions/answers, function keys, menu selection, form filling, direct
manipulation, iconic interaction...etc. Properties of the dialog are presented in Figure 3.3

(a, b, ¢, and d) whereas the style of the communication is presented in Figure 3.3 (e, and

f).

System

Figure 3.2 UCM-UI notation for a question-and-answer dialog.

Presentational Notation

Once the appropriate dialog style has been selected and the task analysis has been
completed, we are ready to build the user interface presentation. The presentation of the
user interface is recursively structured into Presentation Units (PU). By definition, a PU
consists of an input/display world decomposed into windows (not all necessarily
presented at the same time). Common presentation units include: menu windows, form
filling window, spreadsheets window, multimedia windows, etc. These types of PU are

presented in Figure 3.4.

53

© 5 = Oy

A dialog 1s repeated n A dialog is repeated as
times many times as needed

I O] AT

Dialog is optional Proactive message is
passed

MO

A form-filling dialog A menu dialog

Figure 3.3 UCM-UI dialog notation.

Tasks Notation

Tasks or actions in UCMs are responsibilities represented by a cross. To express temporal
execution of a task, we pass a variable with the responsibility. These styles of executions
are: iteration, choice, exception, repetition, and undo. The temporal relationships in the

enriched UCMs for user interfaces are described bellow:

— Iteration (R)” — denotes the responsibility (R) is performed repeatedly until the task is

deactivated by another task;

— Finite Iteration(s) (R)"- same as iteration but the responsibility (R) is performed n

times;

— Optional responsibility ([R]) — denotes that the performance of a responsibility is

optional.

54

— Undo responsibility (R (UJ)) — denotes that the responsibility (R) effect may be

reversed.

PU for menu window.

PU for a form-filling

window.

| Mesg

PU for message window.

PU for a question and answer
window

ES

PU for spreadsheet/ table
window.

[H]

PU for multimedia window.

Figure 3.4 UCM-UI notation for the presentation of the user interface.

55

3.3 An lllustrative Example

As an example, the Filter Agent (FA) aims to assist the user with email management
using a memory based learning technique. It learns by continuously “looking over the
shoulder” of the user as the user is performing actions. The interface agent monitors the
actions of the user over long periods of time, finds recurrent patterns and offers to
automate them. If the user drags and drops a particular electronic mail message to a
specific folder, the mail agent adds a description of this situation and the action taken by
the user to its memory of examples. The agent keeps track of the sender and receiver of a
message, the Cc: list, the keywords in the Subject: line, whether the message has been
read or not, whether it is a reply to a previous message, and so on. If a new mail arrives,
the agent predicts which action is appropriate for the current situation and also measures
its confidence in each prediction by determining how many examples the agent has
memorized. If the agent is confident, then it will autonomously take the action on behalf
of the user. Otherwise, the agent either offers suggestion to the user and wait for the

user's confirmation to automate the action, or wait and observe the user action.

3.3.1 Task and Dialog Dimension

The behavior of the filter agent and consequently the relationship among the functions
mentioned earlier are better understood by following the UCMs flows shown in Figure
3.5. Based on the root map in Figure 3.5, users and designers can consider early decisions
regarding the sequence in which functions are performed. This map describes the system
behavior that starts when a pre-condition is satisfied, for example, new email arrives

(filled circle labeled MA).

A dialog illustrates that a conversation between the user and the agent is taking
place where details are delayed to a sub-UCMs. The dialog notation is applied to our
work not only to hide details, but also to decompose the system into small manageable
units. This scenario ends when one or two of the following triggering events occur: user

exits the email application (bar labeled E7) or an email is stored in a folder (bar labeled

56

E2). These events are represented by post-conditions in the UCMSs. A route is a path that
links an initial cause to a final effect. For example, <MA, AR, UR, US, D, E2> represents
a route that starts when new email arrives (AR), user reads the mail (UR) and stores it in

folders (US), followed by a dialog (D) between the user and the agent.

Figure 3.6 depicts the second level of the requirement model when a conversation
or a dialog goes on between the agent and the user. The agent offers it suggestion to the
user waiting for a confirmation. The user either confirms the suggestion or denies it.
Alternative paths (called OR-forks) represent composite UCMs that can be split into two
different paths (no level of concurrency is associated with them). For instance, a
responsibility point (cross-labeled AA in the figure) is activated along the [bI] path to
decide whether the user confirms the suggestion or deny it. The alternative sub-paths

(labeled [b2] and [b3]) are generated after this suggestion.

3.3.2 Task and Presentation Dimension

The enriched UCMs not only describe the sequence of tasks and dialogs that can take
place between the user and the system, but also help to understand and reason about the

requirements of the user interface, including presentational aspects.

Figure 3.7 shows the user interface structure of the email application that consists
of a tool bar, folder menu, mailbox, and an agent window. Figure 3.7 describes the
approximate position of the components of the user interface and the user/system
behavior that starts when a user opens the email application. The user downloads new
arrived mails using the tool bar menu. Then the user continuously reads a mail then stores

it in a folder until either the agent initiates a dialog or the user quits the application.

57

AR: Agent Reads the email

[al]: Agent is sure where to folder the mail

[a2] : Agent is not sure where to folder the mail.
AS: Agent Sends the mail to a specific folder
AW: Agent Waits and observes the user behaviour.
UR: User Reads the mail

[a3]: User does nothing with the mail

[a4]: User decides where to send the mail.

US: User sends the mail to a specific folder.

[a5]: Agent initiates a question and answer dialog
[a6]: User participates in the dialog

E3: Wait for new mail arrival.

POP3 lilter Agent
MA @— 4 AR
a2 al
B AW AS Mailbox
4
1P ——————-i E2
as
t a6 ser
{ UR
ad
9 a
\g F O XUS
S
E1
T
Legend
MA: New eMail Arrives

Figure 3.5 Task and dialog UCM for Filter Agent.

58

b4

AID

®
bl
X AS
b3 || b2
UD X X UcC
E2 K1

Agent

User

Legend

AID: Agent Initiates a question &
answer Dialog.

[b1]: Agent asks for clarification.

AS: Agent provides the user
with Suggestions.

[b2]: User agrees with the agent.

UC: User Confirms the
Suggestion.

[b3]: User disagrees with the
agent.

UD: User Denies the suggestion.

[b4]: Agent asks for more
clarifications.

E’1: Agent is confident.

E’2: Agent is not confident.

Figure 3.6 UCM explaining the dialog between the agent and the user.

59

Sl" .

Toolbar | ' I

E1" |

X DNM

Agent

Folder Menu N
(FM)*

Ll
[

K [AD]

Mailbox

®RM)* X

S1'"': User opens the application.

DNM: user Downloads New Mail using toolbar.
(RM)*: user Reads the Mail.

(FM)*: user Files the Mail.

[AD]: Agent initiates a Dialog with the user (optional).
WM: user continues to Work with the Mail.

E1'"': user exist the application.

N A LN =

Figure 3.7 Task and presentation UCM for Filter Agent.

60

3.4 Conclusions

We presented the development and analysis of a UCMs notation for high-level
requirements of user interfaces. Our extended UCM-UI notation dealt with three
dimensions of user interface requirements including the task, the dialog, and the structure
of the user interface. In this manner, functions and tasks are distributed over the use case
map defining how the users will be permitted to move among various tasks and how and
when the user will move from one object to another in the interface. Moreover, the
enriched UCM-UI captures the initiator and style of interactions between the user and the
system. The UCM-UI notation has also the potential to capture a complete picture of user

interface requirements by describing how a system will be used and to what ends.

61

Chapter 4

SUCRE: Scenario and Use Case-
Based Requirements Engineering
Framework

In this chapter, we propose a new framework for eliciting and specifying user interface
requirements. Among the popular and potential applications, scenarios and use cases
provide an understanding of the whole process of the user activities. Our goal is to build a
complete and consistent user interface requirement framework that is simple, intuitive,
unambiguous, and verifiable with the help of the extended UCM-UI notation to better suit
interactive systems, and by providing step-by-step guidance for the employment of use

cases.

62

4.1 Introduction

Scenarios have been used in both HCI and software engineering, sometimes with
different meanings (Benner et al., 1993; Rolland et al., 1998; van Lamsweerde, 2000a;
Carroll, 2002; Sutcliffe, 2003). Although there is no widely accepted definition of the
terms scenario, many software engineers consider scenarios as a collection of instances
of use cases, while many others use them as interchangeably. The main purpose of
developing scenarios in requirements engineering is to stimulate thinking about possible
occurrences, assumptions relating these occurrences, possible opportunities and risks, and

courses of action.

An important question when applying use case modeling for user interfaces is:
What criteria should we have for creating and describing use cases for user interfaces?
From an HCI viewpoint, dealing with scenarios and use cases — narrative, rich and non-
formal descriptions is not considered a choice but forced on research by practice (Jarke,
1998; Carroll, 2002; Hertzum, 2003). HCI as well as software engineers need to

understand and document:

— Who and what is involved in each use case;

— What the use case is trying to achieve, and why;

— How often the use case occurs;

— What are the activities carried out by each participant in each use case;
-~ How activities depend on each other;

— What the requirements are for each activity and how they relate to the overall goals of

the use case.

These questions must be detailed enough for user interface designers and usability
engineers to design the activity as an isolated unit. Requirements experts in software
engineering and HCI, on the other hand, are faced with problems such as: How to deal

with collections of scenarios (i.e. collections of only weakly structured text)? How to deal

63

with coverage (writing a comprehensive set of use cases)? What are the boundary
conditions for the applicability of use case-based approach? How much the details
provided by a use case or a set of use cases are essential, and what is inconsequential?
Use cases can represent different levels of task details and determining the level such
detail remains a challenge for designers. Moreover, for large software systems, there may
be a very large number of use cases. The next section is an attempt to solve such

problems using the proposed SUCRE framework.

This chapter is organized as follows: Section 4.2 introduces Scenario and Use
Case Requirements Engineering (SUCRE, in English Sugar) as a novel framework that
makes use of the extended UCM-UI notation of Chapter 3. The aim is to bridge the gap
between users’ needs and requirements. We present the general idea, principle and
concepts of SUCRE framework. Example on how to build a use case model according to

the SUCRE framework is described in Section 4.3. Section 4.4 concludes this chapter.

64

4.2 SUCRE Framework Architecture

The novel SUCRE framework divides the process of transforming requirements

statements in a natural language to formal specifications through a number of iterated

phases. Figure 4.1 depicts the main components of the SUCRE framework we are

proposing. The framework starts with the informal description of users’ needs and

requirements. At the end of each phase in the framework the formality of the

requirements representation has been increased by a small step. The process includes

three typical phases:

Scenario Analysis Phase: Starting from the User Requirement Specification (URS) of
the required system, identify a set of scenarios, i.e. a set of situations having common
characteristics. Each scenario is examined separately to elicit more information.
Complicated problems are decomposed systematically and naturally. Information
from different sources is elicited independently. Finally, use cases are created from

the descriptions of the scenarios.

UCM-Model Construction Phase: From the use cases, SUCRE builds two types of
maps using the extended UCMs notation, namely, a Conceptual Use Case Map
(CUCM) and a Physical Use Case Map (PUCM). These two maps capture a
comprehensive picture of the user interface and usability requirements. The CUCM
and PUCM visually integrate behavior and structural components in a single view.
This helps to analyze the level of consistency between requirements of different use
cases, it helps to resolve conflicts between different types of users, different use
purposes, and different operation conditions. CUCM and PUCM analysis furthermore
provides a basis for requirements validation. By analyzing the consistency,
completeness and precision of UCM-UI model with respect to the initial user

requirement specifications of the system, the UCM-UI can be validated and verified.

Formal Requirements Phase: During this phase any informal and undefined

terminology used in the framework is transformed into a formal specification

65

language, e.g. UML and LOTOS. These formal specifications allow the use of
validation and verification techniques such as step-by-step execution (simulation),
random walks, testing, expansion, and model checking. Moreover, there are tools that
can be utilized for the automation of these techniques, and several development
cycles based on stepwise refinement are available. This is discussed in detail in

Chapter 7.

In our proposed process of developing SUCRE framework, the designers repeat
the cycles of inputting information, checking consistency, completeness, and precision of
the information and making modifications to resolve conflicts and cut down on
incompleteness. Information is presented in different forms during the different stages of
requirements elicitation, analysis and specification. Once the use case models are
constructed and validated, further requirements analysis and specification activities can
start to produce formal requirement specifications according to SUCRE. These activities

are discussed in Chapter 5 and Chapter 7.

4.2.1 Scenario Analysis

Scenario analysis is a user-centred process that can play an important role in
requirements engineering. At this stage, only very limited information is available. A
process model of scenario analysis consists of the following interactive and iterating

activities:

— Identification of users’ requirement specifications (URS): the users’ requirement
specifications of the required system is collected and documented in natural language.
The URS is identified by interviews, focus groups, analyzing end-users in their work,

etc.

— Elicitation of information and description of scenarios: for each requirement
specification, scenarios are elicited and described so that further analysis can be

conducted on the basis of the description.

66

— Build use cases: use cases are created where each use case is a collection of related
scenarios between the system and end-users, characterized by the goals the primary-

user has showing how this goal might be delivered or might fail.

67

Users and Customers Needs and Inputs
[Informal descriptions of early user requirements]

1

Scenarios Capturing and Analysis

1. Identification of users’ requirement specifications
2. Elicitation of information and description of scenarios.
3. Build use cases.

Original UCM
Notation

I

Extensions

Use Case Maps Modeling
1. Conceptual Use Case Maps (CUCM).

UCM-UI Notation
(Chapter 3) 3. Physical Use Case Maps (PUCM).

A

2. User Interface Prototype.

CUCM and PUCM Usability Prediction | Formal Specification
Formal Validation from CUCM and | (Chapter 7)

(Chapter 5) PUCM
(Chapter 6)

Figure 4.1 SUCRE Framework.

68

4.2.2 UCM-UI Model Construction

From the use cases we build two maps, the Conceptual Use Case Map (CUCM) and the
Physical Use Case Map (PUCM). The two maps capture a complete picture of user

interface requirements.

Conceptual Use Case Map (CUCM)

The CUCM reflects the needs of the system and the user in their interaction with one
another. It represents tasks that are relevant for interactions by describing task scenarios
at an abstract level in terms of sequences of responsibilities and tasks over a set of
components. Tasks can be split up into subtasks (actions, operations) or inherited from
“super”’-tasks. CUCM is also intended to explain style of human-computer interaction
while describing the sequence and type of dialogs that can take place between the user
and the system. The proposed model helps to provide a logical order to the conceptual
design and to provide overview on what information will be needed from the user and the

system to accomplish a task. Steps to create the CUCM:
— Partition the use case model: Consider only the use cases with human actors.

— Decompose use case into tasks/subtasks: This helps in determining the minimal
information necessary at each task. It also helps to determine the minimal content as

well as the sequencing.

— Determine information content: Tasks represent decision points in the use case. At a
decision point, the end-user must be presented with the information necessary to
make the decision. This information is in the task itself or in prior tasks. After the
decision is made, information acknowledging the decision is often returned to the

end-user.
— Create dialog model: three areas are considered.

* Information presented to the user in a previous/upper level task and required

by the user in the activities associated with the current task.

69

» [Information elements delivered as part of this task.

= User responds to system request. Information returned to the system.

Physical Use Case Map (PUCM)

Once a complete understanding of the CUCM is developed, the physical user interface
layout may start. The PUCM can greatly benefit from the graphical representation of use
cases. PUCM deals with the selection of actual user interface components (user interface
structure/layout). It represents the space within the user interface of a system where the
user interacts with all the functions, containers, and information needed for carrying out
some particular task or set of interrelated tasks. Moreover, successive display of different
screens and interactive objects are presented. Before starting the physical map, it is
important to understand what information is needed by the user and the system, and at

what time. This idea is the essence of the conceptual map. Steps to create the PUCM:

— Identifies user interface objects and components: indicate the approximate placement
or topological relations between group of objects and components constructing the
user interface. Also, represent the space within the user interface of a system where
the user interacts with all the functions, containers, and information needed for
carrying out some particular task or set of interrelated tasks. This step can benefit

from the graphical representation of use cases.

— Establish logical screen order: the order of the screens will follow the order of the

tasks themselves.

— Convert the use case model into prototype: manually or by using a graphical user
interface development tool convert the PUCM into a low fidelity prototype. At this
stage, usability experts and customers may examine the prototype to clarify their

needs and explore alternative designs for satisfying them.

70

4.2.3 Requirements Validation

To validate a use case model, there are two major approaches: experimental evaluation,
or theoretical evaluation. The experimental evaluation involves building a tool as a
starting point for demonstrating and testing use cases. These are then exposed to expert
critiques or lab experiments, prior to their use in industrial case studies. Experimental
evaluations usually construct industrial prototypes for further development into the
commercial arena, or facilitate ongoing projects, or try a rational reconstruction of a past

process (Zhu and Jin, 2000).

The theoretical evaluation approach investigates use case models independently
of support tools. Often, theoretical evaluation is elaborated into checklists which can
directly be applied to laboratory experiments or industrial case studies, without
necessarily going through a mediating tool (Wixon, 1997; Jarke et al., 1998). In both
approaches, valuable insights can be drawn from comparative evaluation with competing
claims, tools, or checklists. However, this is difficult due to the complexity of problems
addressed by use cases models, and there have been few such studies to date. More often

than it should, validation has therefore been restricted to the conceptual level.

In Chapter 5, new operators are defined for the SUCRE framework to verify and
validate the consistency, completeness and precision of the UCM-UI model. The
operators are used to validate the UCM-UI model is validated against the initial identified
scenarios by analyzing whether the model is consistent with respect to scenarios. If the
model is inconsistent, then go back to the information elicitation and scenario description
to resolve the conflicts. The adequacy of such validation is also analyzed, for example, by
checking the completeness of the scenarios and use cases with respect to the UCM-UI
models. If incompleteness is discovered, then return to the scenario identification to

identify new scenarios and use cases that cover the missing situation.

71

4.2.4 Predicting Usability of UCM-UI Model

Traditional approaches to evaluating software usability have centered on testing.
However, because testing depends on having something to test such as a software
prototype, or simulation it is difficult to conduct testing early in the development process.
Ideally, user interface designers would like to be able to predict usability based on
metrics computed from visual designs or paper prototypes. In Chapter 6, a pragmatic
suite of metrics; the UCM-UI Metrics Suite; has been developed to predict usability from

scenarios documented as use case maps.

72

4.3 An Illustrative Example: Library System

In this section, a library system example is used to identify user interface modeling
problems. The Library System (LS) in the illustrative example could be considered too
simple to catch real problems faced during the modeling of user interfaces. There are two
types of users for the LS: Librarians and Borrowers. The LS must guarantee that only
registered users can log into the system. Further, the system must guarantee that
Borrowers can only perform services associated with Borrowers, and that Librarians can
only perform services associated with Librarians. Librarians and Borrowers are allowed
to search for books, check the status of a book, and views users' library record. Moreover,
only Librarians are allowed to check books in and out of the system, check users late
fees, and extend due dates of borrowed books. The User Requirement Specifications

(URS) of the LS are:

— URSI: The LS allows Librarians to perform services associated with Librarians and

Borrowers to perform services associated with Borrowers.

— URS2: Librarians and Borrowers can search for books by author, title, year, or a

combination of these.

— URS3: Librarians and the Borrower can list the books on loan by the borrower from

the library.
— [URS4: Librarians and Borrowers can view the status of a book.

~ URSS5: Librarians manage the book catalogue and the loan records. Librarians only
need to inform to the LS when books are checked into and checked out of the system

to be able to manage loan records. Librarians check for late fees.
— URSG6: Librarians extends due date for a loan upon the request of the borrower.
4.3.1 Scenario Analysis

From the user requirement specifications six major use cases are identified each having a

number of scenarios:

73

UC1: ConnectToSystem (3 scenarios)
= SI: A librarian log into the system.
= S2: A borrower log into the system.
® §3: A user fail to log into the system
UC2: SearchBook. (8 scenarios)

= §]-S4: 4 scenarios when the user chooses a search for a book by (Author,

Title, Year, or combination of these), views the list.

= $5-§8: 4 scenarios when the user chooses a search for a book by (Author,

Title, Year, or combination of these), refine the list.
UC3: CheckBookStatus (1 scenario)

= SJ: user enters book title, views book status, returns to beginning of the

system.
UC4: BorrowBook (2 scenarios)
« S]: Librarian checks book status, check book out and updates the database.

= $2: Librarian checks book status, book is not allowed to be borrowed, system

refuses to loan the book.
UCS5: ReturnBook (1 scenarios)

® SI: Librarian checks due date for late fees, check book in and updates the

database.
UC6: ListBooksBorrowedByUser (1 scenario)

= S]:system verifies the user information and view a list of borrowed books.

4.3.2 UCM-UI Model Construction

In this section, the Conceptual Use Case Maps (CUCM) and a Physical Use Case Map
(PUCM) are developed.

74

Developing CUCM

From the six use cases, we can develop the root CUCM represented in Figure 4.2. The LS
may be decomposed into six main tasks, namely, (1) login to LS, (2) search for a book,
(3) view book status, (4) view borrowers' record, (5) borrow a book, and (6) return a
book. Each task can be further decomposed into sub-tasks that are delayed to sub-UCMs.
The behavior of the LS is better understood by following CUCM flows instead of reading
the use cases above. The CUCM describes the system behavior that starts when a pre-
condition is satisfied. Figure 4.3 illustrates the flow of one scenario where the user
searches for a book by the author name upon which the system presents such a list. The

user then selects to refine the search. Then the user views the status of a selected book.

Figure 4.4 depicts the second level of the CUCM for the scenario of Figure 4.3.
When a search for a book function is selected, the system initiates a menu dialog (SM)
where the user enters key information for his search. The searched list is presented (VL),

then the user chooses to either end the search or refine his search.

75

Borrower

Librarian

Connect

SearchBook

Author
%

Title
Y:

to LBS

El

Year
Ea)

Cembinatio)
A

BT

BookStatus

Book Title

ViewStatus

ViewUserRecord

Verify users’ info.

ViewBorrowedB ooks

Connect
toLBS

A

T L

E5

A\ 4

A

Tl

E4

ReturnBook

Book title

B2

BorrowBook

E6

Book title
¥

Check out

Book E7

Figure 4.2 The root CUCM for the LS.

76

LS
SearchBook

Borrower

v

Author
Connect
to LBS

BookStatus

Book Title Vich\tlatus

N l_l—
E4

Figure 4.3 The CUCM for searching for a book by authors' name.

NELC

A

L a3

Legend:
S1: Start Search

SM: initiate a menu dialog between
user and system.

VL: view searched list
al: user selects to exist the search.
a2: user selects to refine his search.

RS: initiate a form filling dialog to
refine the search.

a3: user selects to view refined search
list.

Figure 4.4 The second level of the CUCM for searching for a book.

Developing the PUCM

The PUCM of the LS in Figure 4.5 describes the scenario where a borrower searches for a
book and refines his search. The user interface consists of two windows. The main
window is for book searching, and the secondary window is to view the borrower library
record. One scenario starts when the user logins' into the LS, selects to search for a book
(PU1), enters Authors' name (AN) in (PU2). A new window appears (PU3) presenting the
list of books (BL). The user refines the search (RS) in (PU4) and (PU3) would appear
with the refined list. Another scenario is when the user logs into the system, selects to
view his library record in the secondary window (PUS5). All the physical units in Figure
4.5 are form filling windows. The PUCM can be converted into a paper prototype as

shown in Figure 4.6 so that usability experts can measure the usability of the interface.

LS Screen
Main Window

PUL [=]pu2 [=]

Sl SB AN
X

P4 5,
LAY Lt

PU4 [=]

J X (Refine)*
X >

, PU3 (=11

BL X

Y]
El ~

Secondary Window
PU5 =

VUR

-1
E2

4

Figure 4.5 The PUCM for LS.

78

LS Screen

Search Window

1. By Author
2. By Title
3. By Year
4. BY All

View Uses' Record Window

fView my library record

(@)

LS Screen

Book List

1. Book 1 ..
2. Book 2 ..
3. Book 3 ..

Refine Back

View Uses’ Record Window
View my library record

(c)

LS Screen

LS Screen

Search by Author

search

1. Enter Authors' name

Back
View Uses’ Record Window
View my library record
(b)
LS Screen
Refine
1. Title ..
2. Year ..
Back

View Uses' Record Window

View my library record

(d)

Refined Book List

1. Book 1 ..
2. Book 2 ..
Refine

Back

(e)

Figure 4.6 PUCM converted to a Paper Prototype.

4.4 Conclusions

This chapter proposes SUCRE; a scenario and use case based requirements engineering
framework. The new framework ensures that: (1) a consistent and complete requirement
specification can be captured using scenarios and use cases, (2) the specification is a

valid reflection of user requirements, (3) the derivation of low fidelity prototypes.

SUCRE divides the process of transforming users' requirement statements in a
natural language to formal specifications through a number of iterating phases. The
process includes five typical phases: (1) scenario analysis, where scenarios are identified
from the users’ requirement specification of the required system, (2) UCM-UI model
construction, where two types of maps are easily constructed using UCM-UI notation,
CUCM and PUCM. These two maps capture a comprehensive picture of user interface
requirements, (3) formal validation of the UCM-UI model, (4) early usability prediction,
and (5) deriving formal specifications from the UCM-UI models. This chapter provided a
step-by-step guidance on how to perform the first and second phase, while the remaining

phases are discussed in the next chapters.

80

Chapter 5

Combining UCM-UI and Formal
Methods for Representing and
Checking the Validity of Scenarios

Formal approaches in requirements engineering, often based on logic, attack problems
with inconsistent, incomplete, and ambiguous requirements. However, it requires highly
specialized experts to write and reason about such requirement specifications. In this
chapter, we discuss how UCM-UI models; that enable the specification of user interface
requirements and operational scenarios, can lead to a comprehensive framework for
representing and validating scenarios while improving and mediating the communication
between user interface designers and software development teams. This chapter presents
number of heuristics for constructing a formal analysis of the requirements and
demonstrates that these heuristics may be used to build operators that validate the UCM-

UI model as part of the SUCRE framework.

81

5.1 Introduction

The past two decades bear witness to a large amount of human-computer interaction
(HCI) and software engineering research efforts in the search for appropriate
requirements methods for interactive systems and in particular for representations
(Nuseibeh and Easterbrook, 2000; Amyot and Eberlein, 2003; Carroll, 2002; Benyon and
Macaulay, 2002; van Lamsweerde, 2000b). The representation of the requirements for
new systems is often informal and possibly vague, as Jackson puts it a “rough sketch”
(Jackson, 1995). Requirements engineers need to examine this incomplete and often
inconsistent brief expression and based on the available knowledge and expertise, and
possibly on further investigation, to transform this “rough sketch” into a requirement
model that reflects the stakeholders’ and users’ needs. As the model is validated with the
stakeholders and users, new requirements are identified that should be added to the
requirement model, or some of the previously stated requirements may need to be deleted
in order to improve it. Thus, at each step of the evolution of requirements, the model can
lose requirements as well as gain some. One of the critical tasks of requirements
engineers in this process is to ensure that requirement model at each step remains correct,
or at least that errors are found as early as possible, their sources are identified, and their

existence is tracked for future discussion.

On the one hand, supporters of formal methods in requirements engineering have
claimed to solve the problem of requirements, in particular, by providing unambiguous
and mathematical notations and verification techniques. However, among HCI practices,
the penetration of these methods in industry and in standardization bodies, especially in
North-America, remains low (Ardis et al., 1996; Somé et al., 1996). In the field of HCI,
formal specifications of user interfaces are generally presented to be easily
communicable, mathematical, precise, and unambiguous and they support the analysis,

reasoning and prediction (Rouff, 1996; Duke et al., 1999).

On the other hand, as discussed in Chapter 2, scenario-based approaches have

been largely promoted as a semi-formal or informal vehicle: (a) to support user interface

82

and functional requirements elicitation, analysis, and modeling (Hsia et al.,1994; Carroll,
2002; ITU-T, 2003), (b) to bridge HCI and Software design (Benyon and Macaulay,
2002), and (c) to close the current gap between requirements and design steps (Sutcliffe,
2003) while automating the generation of user interface prototypes (Elkoutbi et al. 1999;
Gervasi and Nuseibeh, 2002).

Even if scenarios-based approaches are less precise than formal methods, they are
convivial. Their application to requirements at the early stages of the design process
raises new hopes for the availability of concise, descriptive, maintainable, and consistent
documents, standards, and design specifications that need to be understood by a variety
of readers including end-users, stakeholders and usability professionals. In this chapter,
we argue that scenarios pave the way towards the construction of detailed (formal)
models and implementations through analytic and synthetic approaches. These
constructive approaches promise hope to generate models and implementations that are
faster and at a lower cost while improving their correctness and traceability with respect

to the requirements.

The layout of this chapter is as follows: Section 5.2 below provides some
heuristics for constructing a formal specification. In Section 5.3 we argue that these
heuristics may be used to build operators to validate the UCM-UI model as part of the
SUCRE framework. This is followed by an example in Section 5.4. We conclude the

chapter with an analysis and some pointers for future work.

83

5.2 Heuristics for Formal Specification, Validation
and Code Generation

The process of constructing UCM-UI model may sensibly be augmented by a set of
heuristics for setting up a formal specification. In this section, we trace the development
of such a suite of design principles for formal specification and show the utility of these
heuristics for UCM-UI model construction. In total ten heuristics were proposed by van

der Poll and Kotzé (2002) and developed from various sources:

1. A number of Z (Spivey, 1992) specifications in the literature was analyzed for
possible weaknesses, and mechanisms for addressing these weaknesses were
considered. Z is based on first-order predicate logic and a strongly typed fragment

of Zermelo-Fraenkel set theory (Enderton, 1977).

2. Ideas from researchers in the area of software design were considered for

incorporation into a formal specification.

3. Principles put forward by researchers in the arca of general design were
investigated and ways on how these could enhance the utility of a formal

specification were proposed.

4. The performance of a resolution-based theorem prover, OTTER (Wos, 1998), in
proving properties arising from the construction of a formal specification was
investigated and based on the results, heuristics for the structure of a formal

specification were put forward.

The aim of the heuristics was to: (1) Incorporate some established software
engineering design principles normally presented at the requirement phase, (2) Apply a
number of HCI and general design principles in the construction of a formal
specification, (3) Facilitate the initial stages of a subsequent refinement process, and (4)

Structure the specification so as to facilitate the process of automatic proof.

84

Table 5.1 introduces set of ten heuristics proposed by (van der Poll and Kotzé,
2002) to enhance the usefulness of a requirement. We found six of these heuristics to be
related and useful in validating the proposed UCM-UI model as well. The next section
presents how to use these heuristics to build operators that validates the consistency,

completeness, and precision of the UCM-UI model

85

-0A0qR 7# onsunay spoddns onsunay
STy} MOY 9J0N "UONIPUOD JOIID 9y} Ioj pauljepun
ge pajouap oq Apnrdxe mdmo yons jeyl sised3ns
onsunay S1gl (UONIPUOD JOID UE '9T) POLSHES
jou st uonipuooard oyl usym jndino Je[rwis noqe
Juayis s11nq (payysnes st uonipuosard 9°'7) UONNOIXd

"SON[BA PAUIJOPUN O] MOT[e
0] popualXo aIe pojerouad oq Arul

ndinQ pauyspup) Jo anjBA

190100 Sutmp ndino sajereusd usjjo uonerado Uy mdino yorym woly s39s [[e ey} aInsuy C# ONISLINAFY
Anpiqrssod
SI] JO SIEME ST Josn-pus oy} JI A[Uo nq ‘uonse
1oSN-pUs £Qq Pouelsel 9q ABUI JUSAD U Sumeg3uy,
Iosn

‘wraysks oy Jo uorsioa Suruuni v ULNp oW s J9sn
-pus oy3 Sunses Ul Funinsar ‘GUIPLS[SIUI IO gurssmu
0q SSWNSWOS ABUI I9SN-PUS B 0 JOBGPI] wolsAS

: "w9)sA's a1y JO Jasn
oyl WIM UONEOIUNIIUIOD QZIWIXBIA

-pus oY} YIm UOIBDIUNUILIOD)

T4 ONSLNA

*ap0o snonSiqure 9jeIoues Aew
sdoys juoureuryel jusnbasqns Jeyy s1 2onoeid SU
JO oFRIUBAPESIP QUL "POIA0D JOU JIE $ISEI UTEHDD
Jey) 9SUSS Ay} UI [EJ0 JOU I8 IO ‘dB[ISA0 SIUWIOWOS
uonerado T30} € JO Sued JUSIRHIP 0) SUORIPUOOAI]

*9[qeIISapun S WISTUTULIIOP
-uou 1aAsuaym uonnred e st uonerado
2101 B 0) wonipuodaxd ayj Jeyy amsuyg

UOTIIPUODAIJ TBULIO]

T# ONSLINAEY

uoneuedxy dUSLINIH

wonIuLa(y dYSLINSEY

QWEN] JIISLINIH

86

" Joalqo o[3uis v
pue gioA S[3urs e Surureiuod aousjuss o[dwis e, Aq
possaxdye oq ued asodimd s31 J1 UOISEYOD [eUOTIOUNJ
pood sey ompouwr y ‘109[qo ue jo sssussodind
-o[8uls,, oy} SB PIqUOSIP UAJO ST UOISIYOD

"uonIuIyap Jo uonerado d12109Y)
108 prepuels e Suisn juouoduwrod
owls ouo jsowr Je sojendruewr
oanmuud A10as jeyy yons soannuud
jo 9ouanbas v se oje3s oy} uo uonerado
Aoas Sumugep Aq uoneonioads
[BUWIIO] B Ul UOTISAYOD YSIY UIBIUTEIA]

UOISaY0)) [BUONOUN]

S# OnSHMOY

-opdny xe81e ‘Burso[ous ue jo
0JRUIPIOOD PUOd2s Ay} ST Ied © yons aroym ‘rred e Jo
9JBUIPIO0D PUOD3S B Yiim payuasald J1 pojeaei3se st
wojqoxd sny], "uone[aI B ST ‘eIousd ul yorym ‘pasn
ST UONOUNJ Y} JO 9SISAUIL 9Y) JOUIS SIUSUIS[O UTRWOP
Surpuodsari0d UIRIGO 0} pIey 99 PInod 31 uay) ‘ofuel
Syl WOI] JUSWIS® UB USAIS oI oM JI ‘IOAIMOL]
JUSWS[D urewop 9yl 01 uonouny oyl Suikdde
Adwis Aq ‘JuoWIo[e UIRWIOP B puB UONIULIP
uonounj e UAAIS juowoe ofuel Surpuodsariod
e umlqo 03 Yse} [elAl] B Afjpuuou ST)]

uonouny
9y Jo o3uel oY) JO JUSWI[D UB SB A[9[0S
pardoooe st uonouny e Surajoaur ndur
ou ey amsue ‘ojerdordde aroym

uoneorddy uonoung

p# dpsUneH

uonjeue[dxy S1SLINSH

uonIuga(J SYSLIMIY

JUIBN] JISLINRY

87

‘'soanmuind o
10J oUISLINSY STY) 01 sn Surpes] ‘Ayorelory ooueILIayul
oy ur dn 1oy3ry oq p[noys syuLWIEIs 9sIY)
oyey ($66] ‘UOPINOX) POYdW € Ul SJUSWOIRIS
ASVD 10 gSTA-NHHIL-Jl 9AISSedXa ploAe pue
opdurs spoyjewr doey 01 aureping uSISop UOPINO X
-peoD ® st 3] "seanmuud oy} ur jou pue suoperado
1oaa[-doy oyy ur sjusweless asoyy ind ‘rernonyed uf

-soanyruaird oy ur jou pue suonerado
[oas[-dol oyl Ul SJUSWIEIS IS}
nd ‘repnoned uy s[qrssod se AyoIeIaIy
oy ur dn ySrg se uoneoyroads
[eWIIO] B UT SJUSWIIRIS [ONUOD 9 Ing

s1usuIo)R)S [0onuo)) Suroeld

8# dNSLIMAK

* PISIOAQI 9q Jouued
JTeyM Op 01 Jopiey 31 ayew (01) 10 — WY} opun
0] — SUOTOE 9SIOAdL,, 0} 9]qe 3q 03 juepoduwr ST 11
1ey1 Sune)s (866T) UBULION Yim oul] Ul 33ueyd 2jels
® JO 109]J9 9y} 9SI2ASI 0] SI JIISLINSY ST} JO BapI AY],

"28uryd
Q1BIS B JO 109JJ° QU) 9SISAI O} ST BIpI
oy -orels oyl seSueyo jey) uonerado
£10A9 10] 1edIaiunoo opun ue Ajoodg

EALA AN ur

syjuouodwo))
soduey) opuf)

*,Jsouoy,,
pa[[eo oI ousuNey sy} 03 Sulaype suoneadQ “Iesn
-puo oy} 01 9[qIsIA s3ury) Sumyew ‘I ‘SUONIPUOD
-1s0d oy eia uonerado ue Jo 109JJ° oY) Sulmoys
Aprordxa 103 N0 apeW 9q UED 9580 Y "d[qeoridde s
uonerodo UB SUONIPUOD YDIYM ISpUN FUIMOYS JOU JO
109]J0 9[qRIISOpUN oY) SBY II ‘[BWIUIU uoneoyroads
e Surdesy yYm QUi ur 9q AvW S SIYM
-uoneoryoads oyy ur sejeorpard oyl woxy d[qeaord
st jey) uonipuodcald B WO sewnewos suoneiddQ

‘uoneayroads oY) woly
Slqeaord Lqses, st drysuonear
yons sso[un ‘onfeA 2Jels Iaje S
pue jusuodurod 2je)s padueys yoed
uoomiaq diysuoneyar o) suipnpout
suonpuodlsod e Suimoys —

pue
‘Aprordxe suonipuodaxd e Sunsy -

Kq
jseuoy a1e suonerado e jeyy ainsuyg

pue

L# dNSLINDK

sdigsuoneoy
suonipuooalg Irondxgg

19# JUSLIMAY

uoneue[dxy onSLINDE

UONIU3(] dUSLINDY

JwreN SIJSLINaH

88

(Z00Z ‘97103 Pue [[0d Iop UBA) SUOBOIJIOadS [BULIO] JOF SONSUNSH °C 9[qEL,

“9A0QE C# ONISLINOY [JIM SUI] Ul pauygapun 3q Aewt
vonerado ue woix ndmo 1Yy seeorpurInding
19S POpUSIXe OUJ, UOHRI[ep Yons JO 090 oyl
9SI19A0I 0) popaau Apjuonbasqns pue JUSWUOIIAUD
a1 ur 1doY UOTBULIOJUI PRJO[OP 2ASLHRI 0} OfduIeyd
10] ‘Aressooou oq Aewr ji ueym uonersdo opun ue
Suunp posn st 1ewered (JUSWUOIIAUS Ue FUOUSD)
Aug oyy 7 ur suoneredo [ejo) jJo oymponns Y}

noge JusuIalels B Se [[om SE SOUSLINaY wﬂOTwDH& Jo

Toquinu e 193030) sBuLIq A[9AN091J0 OUSLINAY SIYJ,

23DSSIP
x mdimg x v . o 2wis X mduy : §

'JeULIO] [eJouod 93 Uo paseq ‘ J
Kes ‘vonerodo Jeas[-rosn AI19A2 auya(

uoneiad(Q ue jo amjeusdig

0T# ONSHNAEY

(2007)Z103 PuE [[0d 1P UBA UI USALS ST o[npow
jonuos e jo ojdwexs Uy -JUSWNOOP UOHEIPIoAds
e ur Sunwooupoys 9o[qissod yons s9sSAIPpE
onSLINGY SIY], “TISISAS B YONS JO UOISISA SANORISNUI
ue ‘ordwexe 0] ‘ul I0Uje50) payur| o suonerado
2101 91 [[B MOy MOys A[2INu2 JOU S90p OS[E I
pUEB SUOIIPUOD JOIIS PNoul jou seop N ‘9[qeordde
ore suonerado uoym Jumoys ur Aem Suoj
e so08 Arewwins ® yons y3noyyy -suonipuooaid
pue ‘sindino ‘sindur oanoadsar 1oyl YIM I93050)
suonerado Tenred oyl [[B JO SoWRU Y] SUIZLIBUIUINS
o[qes ® Jo osn oy saquosaxd uoneoryoads
7 © Gunuesaxd 10y ABojens paysijgeiss 9yJ,

"PONOAUT 918 UOTIBOIJ102dS [RULIO)
e ur suonerado [9Ad[-IOSM OU) UIYM
SMOUS YOTYA 2[NpoW [01U00 B AJ10adg

9[MPOJA [0TIU0)) B SUIAJ103dg
6# ONISLINOH

uonjeue[dxy SNSIANdY

UONIULJA(] dUSLINAH

sure) SHSHNAY

89

5.3 Operators to Validate UCM-UI model

For the UCM-UI model, and generally for the UCMs model, we introduced some
operators to help identify possible inconsistencies, incompleteness and ambiguities in the
UCM-UI model. We also show how the heuristics discussed in Section 5.2 may help to
improve the overall quality of the model. An advantage of using the proposed operators
during the requirement phase is that the user interface designer can reason about the
UCM-UI model formally. Reasoning about the properties of a UCM-UI model is an

important activity early in the process of constructing a reliable user interface.

5.3.1 Consistency

There are two notions of consistency related to use cases,: (1) the consistency between
two use cases, and (2) the consistency of a UCM-UI model. Both these consistency issues

may be validated in our proposed model.

The Consistency of Two Use Cases

The consistency between two use cases is a property whereby the information contained
in one use case does not conflict with information in the other use case. In this chapter,
we are concerned with two aspects of use case consistency, namely, path consistency and

precondition consistency.

Definition 1a: Consider two use cases A and B with responsibilities a and b in each. Use
case A is path consistent with respect to use case B, written A <path B, iff every path from
a to b in A is matched by a corresponding path from a to » in B. Also, use case A is
precondition consistent with respect to use case B, written A <pre B, iff their
preconditions are disjoint and if A and B are the only use cases in the system then the

disjunction of their preconditions is a tautology.

Definition 1b: Use case A is consistent with respect to use case B, written A < B iff A

<path B and A <pre B.

90

R1 R2

AV

S@——x¢— A ________l B
AVA
N

R3

(A)

RS RO
E”

RI R2 R4

AV 4 AV 4
’ N/ N\ N\ s
S@ ¢ [——————{E
N\

R3

(B)

Figure 5.1 Example of inconsistency between two use cases.

For example, the use case (A) in Figure 5.1 is not path consistent with the use case
(B), since the path from RI to E’ in (A): <RI1,(R2, R3), E’> is not exactly matched by a
corresponding path from R/ to E’ in (B): <RI, (R2R4, R3), E’>, the extra responsibility
R4 can possibly interfere leading to inconsistency resulting in possible inconsistent
action. These two use cases are also not precondition consistent since both are triggering
by the same precondition, S°. A high degree of consistency between use case A and use
case B may be achieved by removing any inconsistencies between A and B. Heuristics #1

and #6 in Section 5.1 can be used to minimize possible inconsistencies as follows:

~ Apply the first part of heuristic #6 (explicit preconditions and relationship) by
explicitly stating the preconditions of each use case at its start point. Therefore, the
conditions under which either A or B are applied are known and visible to the

engineer.

91

— Apply heuristic #1 (format of precondition) by ensuring that the conjunction of the
precondition of A and the precondition of B is false (i.e. the preconditions are
disjoint). If A and B are the only two use cases in the system then ensure that the
disjunction of their preconditions is true. Hence their preconditions form a partition.

The Consistency of a UCM-UI Model

A UCM-UI model is consistent if the set of use cases making up the model are consistent
among themselves; i.e., if for any two uses cases A and B in the model we have both path
consistency and precondition consistency between them. Hence, the set of use cases do
not contain conflicting information among themselves. This notion of distributed

consistency can be formalized using the notion of consistency between two use cases.

Definition 2: A set of use cases X = {UCI, UC2, . . ., UCn} is consistent iff there exists a
syntactically correct UCM-UI model Y such that UCk <Y, forallk=1,2,...,n.

The following algorithm builds a consistent UCM-UI model from a set of use
cases X = {UCI, UC2, ..., UCn} if X is consistent; otherwise an error condition is

raised.
Algorithm 1: Checking the consistency of a UCM-UI model.
Input: A set of use cases X = {UCI, UC2, .. ., UCn}.
Output: A consistent UCM-UI model Y = Yn, or confirmation of inconsistency.
Begin
Let YI =UCI, ause case in X,
Fork:=1ton-1do
If Yk is consistent with respect to UCk+1
then Yk+1 = Yk L UCk+1
Else error

End For

92

Figure 5.2 illustrates how to create a consistent UCM-UI model from a set of use
cases, we start with a use case UCI equal to Y/ and then check if UC2 is consistent with
Y1. If consistent, form Y2 = Y1 U UC2. If any UCi is not consistent with Yi-1, then fix the

inconsistency and repeat the test.

Verifying the consistency of a given UCM-UI model is an extension of the above
process involved by verifying the consistency of each use case with a partially completed
UCM-UI model. Again heuristic #1 (format precondition) and heuristic #6 (explicit
preconditions and relationships) are useful in this regard. Once a syntactically correct use
case (Y above) has been identified, the consistency of each pair of use cases (UCk, Y) for

k=1,2,...,nis verifiable.

5.3.2 Completeness with Respect to the User Requirement
Specifications

There are two notions of completeness related to use cases: (a) completeness of a UCM-
UI model with respect to the User Requirement Specifications (URS)? of the system as
discussed in this section and (b) self-completeness discussed in section 5.3.3. Both may

be validated in our proposed UCM-UI model.

Verifying the completeness of a UCM-UI model against the requirement
specifications of the system boils down to checking the adequacy of validation. For
completeness we check whether any given piece of information contained in the
requirement specifications of the system is covered by at least one use case in the UCM-

Ul model.

Definition 3: The UCM-UI model X = {UCI, UC2, . . ., UCn} is complete with respect

to a user requirements specification URS, if:

— For all tasks (and sub-tasks) ¢ in URS, there is UCk in X such that UCk contains

responsibility r that represents the tasks (or sub-tasks) #; and

2 The User Requirement Specifications are the preliminary statements of a customer (end-user or
stakeholder) need or objective, or of a condition or capability that a system must possess to satisfy such a
need or objective. See URS in Section 4.3 for the LS.

93

For all task-flows f in URS, there is UCk in X such that UCk contains path p that

represents the flow f.

Use Case Set

Figure 5.2 (a) A set of use cases. (b) Building Y, a consistent UCM-UI model from a

sequence of ¥i, 1 <i<n.

94

To check whether all the information contained in the requirements specification
document is covered by the UCM-UI model, we have to establish whether all relevant
use cases were indeed incorporated into the construction of the UCM-UI model. A

possibility is to consider the precondition to each use case as follows.

— Use heuristic #1 (format precondition) and heuristic #6 (explicit preconditions and
relationships) to ensure that the preconditions of the individual use cases are pair wise

disjoint and their disjunction true.

— Calculate the precondition (say S) of the UCM-UI model by taking the disjunction of
the preconditions of all individual uses cases used to synthesize the model. S will be a

partition; if not, then at least one use case is not covered by the UCM-UI model.

5.3.3 Self-Completeness

Given a set of use cases produced from a user requirement specification URS to build a
UCM-UI model, we require that the resultant UCM-UI model (1) includes all the
information contained in URS, (2) but at the same time contains no information that
cannot be inferred from URS. (3) Moreover, the UCM-UI model must be consistent with
respect to all the use cases. This leads to the definition of self-completeness of a set of use

Cases.

Definition 4: A set of use cases X= {UCI, UC2Z, . . ., UCn} is self-complete, if X is
consistent with respect to Y, Y is complete with respect to URS and URS is complete with
respect to the UCM-UI model Y, where Y is the simplest set of use cases that contains Y&*
(i.e., X <Y)for Yk =< Rk, Pk>, k= 1,2, ..., n and Rk the set of responsibilities in ¥ and
Pk the set of paths in Y.

In other words, to create a UCM-UI model from a set of use cases X, (1) we need
to build the UCM-UI model Y following Algorithm 1. (2) check if the UCM-UI model Y
is complete with the URS. If not, the information contained in Y is incomplete in the
sense that there are paths not covered by any use case and we need to add new use cases

to Y. (3) check if URS is complete with respect to Y. if not, then Y contain information

95

that cannot be inferred from URS. To verify the self-completeness of a set of use cases

one may use heuristics #1, #2 and #6 as follows.

~ Use a “high level” version of heuristic #2 (communication with the end-user) to

check with the user that all possible use case scenarios have been covered.

— By using heuristic #1 (format precondition) and heuristic #6 (explicit preconditions
and relationships), establish for each use case identified its precondition such that the
collection of all these preconditions form a partition (i.e. they are pair wise disjoint
and their disjunction is true). This particular set of use cases is then complete at least
as far as the conditions under which they are applicable (i.e. their preconditions) are
concerned. More research is needed aimed at formulating heuristics to check

(formally) the completeness of the paths and responsibilities of a set of use cases.

5.3.4 Precision

Precision is the absence of ambiguity in the semantics of a representation. A use case
representation is precise if the use case analyst can answer questions such as these: ‘What
happens next?’, ‘What can happen next other than what appears in this use case?’, “Who
or what is responsible for doing this?’, “What are the consequences of this event?’. Use
case representations fall on a spectrum with some representations having the goal of
giving the user interface designer or the end-user a ‘feel” for the envisaged system, while
others are essentially trace specifications (Anton and Potts, 1998). We believe that our
proposed model is precise since it describes end-to-end causal scenarios at different
levels of abstraction, allowing the behavior of complex systems to be described
effectively. To verify precision, let’s consider how some of the heuristics previously

defined may help us to answer some of the questions above:

1. What happens next? Design heuristic #5 (functional cohesion) advocates breaking up
an operation into a sequence of smaller operations giving us the benefit of being able
to talk about a previous, a current and a next operation. Being a current element of an

operation sequence uniquely defines any next operation. Therefore, given any current

96

point in a sequence of events, “What happens next” can be defined as far as a next

operation is concerned.

2. Who or what is responsible for this? This question could sometimes be translated to:
‘Under what conditions can this happen’. Therefore, heuristic #1 (format of
precondition) and the 1st part of heuristic #6 (explicit preconditions and relationship)
may help in establishing the precondition, i.e. telling us the conditions that must

prevail for the operation to be applicable.

3. What are the consequences of this event? The consequence of an event is directly
related to the post-condition of such event. Therefore, applying the second part of
heuristic #6 (explicit preconditions and relationship) helps in finding an answer to this

kind of question.
Two additional issues are in order:

4. System output is often generated in the Dialog dimension of the UCM-UI model and
since heuristic #3 (value of undefined output) advocates that undefined output be
explicitly shown, we propose that the extended UCM-UI notation be further extended

to make provision for undefined output.

5. A responsibility in UCMs is a generic process, represented by a cross, and like any
other process its effect may have to be reversed in line with design heuristic #7 (undo
changes in state components). Therefore, for every such responsibility one could add

an adjacent symbol to this effect (e.g. O indicating a generic undo).

97

5.4 Analysis of the Library System

In this section we analyze the consistency, completeness, and precision of the CUCM for

the Library System (LS) presented in Chapter 4-Figure 4.2.

Consistency between two use cases

Applying Definition 1a, we found that ‘update database’ in UC4 (BorrowBook) is a stub’
and is inconsistent with ‘update database’ in UCS (ReturnBook), which is a

responsibility. Therefore, we had to change ‘update database’ in UCS5 to a stub.

Consistency of a UCM-UI model

By applying Definition 2 we can increase confidence in the consistency of our UCM-UI
model. For example, let Y1 be UCI (ConnectToSystem). Then compare Y1 with UC2
(SearchBook). Since Y1 is consistent with UC2, add UC2 to Y1 to obtain Y2 = Y1 U UC2.
Next Compare UC3 to Y2. As UC3 and Y2are are consistent, create Y3 = Y2 U UC3. This
procedure is repeated till Y = Y6 = (UCI L UC2 U ... U UCH).

Completeness of a set of use cases

Validate the completeness of a set of use cases with respect to the requirements model by
applying Definition 3. We find that according to the requirements specification R6 the
Librarians extends due date for a loan upon the request of the borrower whereas the task
‘extend loan due date’ is not in any use case. Therefore, we have to add this task to the

appropriate use case, namely, UC5.
UCS: ReturnBook (2 scenarios)

— SI: Librarian checks due date for late fees, check book in and updates the

database.

? Recall that a stub is a container for sub-maps called plug-ins (see Chapter 3).

98

— 8§2: Librarian checks due date for late fees, extend due date for the loan, and

updates the database.

Self- Completeness

Applying Definition 4 we find that the set of use cases U = {UCI, UC2, UC3, UC4, UCS,

UC6} is self-complete. The complete and consistent root use case map is shown in Figure

5.3.

X

Borrower

Connect

LS

to LBS

!

Librarian

Connect
to LBS

SearchBook
Author
*®
Title
% @
BT
Year
X
A 4
A
Book Status
A 4 .
Book Tide ViewStatus
) Tl
ViewUserRecord
E4
Verify users' info. ViewBorrowedBooks
° L
E5
ReturnBook

Book title

E2

BorrowBook

\ 4

Book title
3sp
X

Check in Book

Figure 5.3 The complete and consistent CUCM of the LS.

99

Precision

To examine the precision of the CUCM we answer the following questions.

— What happens next? For example, in Chapter 4-Figure 4.2 the CUCM-root map
describes end-to-end causal scenarios at different levels of abstraction, allowing the
behavior of the systems to be described effectively. Figure 4.3 and Figure 4.4 breaks
up stubs into a sequence of smaller operations giving the benefit of being able to talk

about a previous, a current and a next operation/responsibility.

~ Who or what is responsible for this? In Figure 5.3 each responsibility in the UCM is
bounded to a component that is in charge to perform the tasks and actions associated

with that responsibility.

— What are the consequences of this event? In Figure 5.3 each use case describes end-
to-end causal scenarios. Thus, the consequence of any responsibility is directly
related to the ending point of its causal path. For example in Figure 5.3, when a user
searches for a book by entering the author name, the consequence of this event is

viewing a list of books.

— Undo effect: According to design heuristic #7 (undo changes in state components) ,
we must add for every responsibility an adjacent undo symbol to this effect (e.g. O

indicating a generic undo).

100

5.5 Conclusions

It is frequently the case that in an attempt to maintain consistency within the
requirements, one or more requirements from the requirement model are removed and
fail to preserve its completeness. Conversely, when a new requirement is added to the
requirement model to make it more complete, it is possible to introduce inconsistency in
the model. Moreover, the fast evolutions of the requirements may lead to ambiguous
requirements. We investigated the possibility to adequately address the consistency,
completeness, and the precision of the UCM-UI model simultaneously. The contribution
of this chapter is the embedding of a set of heuristics for drawing up operators as part of
the SUCRE framework. The proposed operators allow for a formal analysis of the
consistency, completeness and precision of the UCM-UI model. The analysis of the
Library System example illustrates that the use of the proposed operators had facilitated
in generating models and implementations faster and at a lower cost while improving
their correctness and traceability with respect to the requirements. However, the amount
of work it generates shows the vital need for a CASE tool to manage the UCM-UI model

along with additional information pertinent to user interface development.

101

Chapter 6

Supplementing Scenarios and Use

Case Maps with Predictive Metrics

Although metrics have long played an important role in computer science and software
engineering, little has been done in applying metric strategies in the requirement
specification phase. Traditional approaches to measuring software usability have centered
on testing, and the schemes for laboratory and field-testing are well established.
However, because testing depends on having something to test like software, prototype,
or simulation it is difficult to conduct testing early in the design process. Ideally, user
interface designers would like to be able to predict usability based on metrics computed
from visual designs or paper prototypes. In this chapter, we present a pragmatic suite of
metrics; the UCM-UI Metrics Suite; to predict usability from scenarios documented as
Use Case Maps. This suite of metrics is part of the Scenario and Use Case Requirements
Engineering (SUCRE) Framework, however, it is also applicable for usability prediction
from other scenario and use case based approaches. The metrics suite includes simple

structural measures as well as content-sensitive and task-sensitive metrics.

102

6.1 Introduction

As quality factor, usability of interactive systems is currently receiving more and more
attention. In particular, industry now recognizes the importance of adopting usability
methods during the development cycle for increasing the acceptability of new products
on the market (Madsen, 1999). However, one of the main complains of industry is that
cost-effective usability evaluation tools are still lacking. This inhibits most companies
from actually performing usability evaluation, with the consequent result that a lot of

software is still poorly designed and unusable.

Usability depends on the match between the product and the users under the
particular constraints of the environment and tasks being performed with the product. The
problem is that usability, seen like this, depends on the world when the product is used
not when it is designed. So if we want to design better products, foresight has to be used.
Foresight can be based on case histories from previous product evaluations; sometimes
foresight can be focused by general psychological or socio-technical knowledge. In most
approaches, design for usability requires considerable expertise and commitment to
usability, neither of which is conventionally nor realistically available in the crucial early
stages of the design. Often one therefore seeks improvements in usability after the initial
stages of design, that is once a prototype exists. Many usability-driven design insights
come too late to address core issues. At the time of evaluation, prototypes may be
considerably advanced in development, so changes suggested by the results of evaluation
may be too expensive to implement or strongly resisted because of the investment of time
and effort in the existing system (Ruthford, 2002; Grice, 2003; Medina-Mora and
Denger, 2003).

Predictive metrics are an emerging and promising approach to solve some of these
problems while assessing the quality of software from early requirements design artifacts
including user interface prototypes. Predictive metrics does not guarantee usability, but it
can help to reduce the costly usability problems that can be discovered latter after

developing a fully functional prototypes.

103

We are concerned with methods to improve usability that can be employed as
early as possible in our proposed Scenario and Use Case Requirements Engineering
(SUCRE) Framework. The motivation of the presented work is to make a contribution to
user interface design, specifically to discuss ways of measuring usability from
requirement specifications rather than implementations. The aim is to show that
interesting results can be obtained with very simple and general assumptions, and to
illustrate certain usability criteria that can be established in the requirement phase.
Ideally, user interfaces should be empirically evaluated and then improved. However, in
practice many products are designed and then fobbed off to users, with little opportunity
for improvements. It is therefore crucial to have support for usability measurement early

in the requirement phase.

The reminder of this chapter is organized as follows. Section 6.2 focuses on
understanding usability, why and how to evaluate and predict usability. This section, also
discusses briefly usability assessments and metrics. Section 6.3 is the core of the chapter,
since it describes the UCM-UI metric suite. Section 6.4 illustrates via an example how to
use the UCM-UI metric suite in the requirement phase. Finally, Section 6.5 gives the

conclusions.

104

6.2 Usability Assessment and Metrics

There is not one agreed upon definition of usability. Several authors have proposed
definitions and categorizations of usability and there seems to be at least some consensus
on the concept of usability and they mostly differ on more detailed levels. The
International Organization for Standardization (ISO) defines usability as: “the
effectiveness, efficiency and satisfaction with which specified users can achieve specified
goals in particular environments” (ISO 9241-11, 1991). Here, the effectiveness of a
system relates to the accuracy and completeness with which users achieve specified goals
whereas efficiency is the resources expended in relation to the accuracy and completeness
with which users achieve goals. Satisfaction, according to ISO 9241-11 is the comfort
and acceptability of use. The ISO definition approaches usability from a theoretical

viewpoint and may not be very practical.

Nielsen (1996) has a slightly different definition that is specified in elements that
are more specific. Nielsen only regards expert users when talking about efficiency
although learnability is also directly related to efficiency. Memorability mainly relates to
casual users and errors deal with those errors not covered by efficiency, which have more
catastrophic results. A similar definition is given by Shneiderman (1998). Shneiderman
does not call his definition a definition of usability but he calls it “five measurable human
factors central to evaluation of human factors goals”. As seen from Table 6.1,
Shneiderman’s definition is essentially identical to Nielsen’s definition and only differs

in terminology.

ISO 9241-11 Nielsen Shneiderman
Efficiency Efficiency Speed of performance
Learnability Time to learn
Effectiveness Memorability Retention over time
Errors/Safety Rate of errors by users
Satisfaction Satisfaction Subjective satisfaction

Table 6.1 Usability as defined by ISO 9241-11, Nielsen, and Shneiderman.

105

A wide range of usability evaluation techniques has been proposed. Some
evaluation techniques, such as testing with users using software or paper prototypes are
the traditional ways of evaluating usability. A disadvantage of testing with software
prototypes is that it can only be done late in the design process when a lot of design
choices have already been made. Testing with paper prototypes has the disadvantage that
it still does not feel like a real system and data obtained in testing can only be used to
evaluate general concepts. Ideally, user interface designers should be able to evaluate
their design solutions early in the design process when only high level and abstract
specifications exist. However, if no users are involved, evaluation should be done
carefully with regards to valid interpretations (Shneiderman, 1998; Ivory and Hearst,

2001; Bamum, 2002).

Usability evaluation during the design process is more problematic than
evaluating with users. Although mockups and paper prototypes can be tested with users,
the usability of the interface cannot be evaluated directly. What can be done is looking at
the means that influence the usage indicators. Using walkthroughs and scenarios each of
the means can be evaluated by looking at the way they are present in the design and by
estimating the positive or negative impact on the usage indicators. This kind of early
evaluation does not replace the need for late evaluation with users but can contribute

when good choices of means can be made.

Another way of ensuring usability during the design process is by using formal
design models. Many models and techniques exist for describing designs using formal
notations. State charts, GOMS (Card et al., 1983), Task-Action Grammar (TAG) (Payne
and Green, 1989), ConcurTaskTree’s (Paterno, 1999) and similar notations are used to
describe designs. These kinds of notations are usually strong in describing structural
aspects of a design; the dialog structure; and very weak at describing presentational
aspects. Payne and Green in (1989) say, “as far as TAG is concerned, the screen could be
turned off”. Measuring usability is not always easy. Task performance times are easy to
measure but satisfaction and memorability are harder to quantify. More standardized

measurement can be obtained using questionnaires such as the Questionnaire for User

106

Interaction Satisfaction (QUIS) (Harper and Norman, 1993) and the Software Usability
Measurement Inventory (SUMI) (Preece et al., 1994). However, these questionnaires are

only valid for certain classes of systems.

Usability metrics are another method of quantifying a qualitative evaluation
process of the interface. They are software quality metrics that measure or estimate some
factors or dimensions of the software quality. Usability metrics offers user interface
designers additional tool to help guide them towards more usable solutions (Nielsen

1996; Contantine, 1996, Bevan and Curson, 1997).

Thomas and Bevan (1996) defined Usability Metric as “a number expressing the
degree or strength of a usability characteristic, possessing metric properties, obtained by
objective counting rules, and with known reliability and validity”. Usability metrics have
known maxima and minima, their scale of measurement is known, they possess scale
metric properties. They are gathered by objectively verifiable rules of counting, and have
demonstrated reliability and validity. Usability metrics are said to instantiate or
operationalise a characteristic of usability and must be interpreted according to the

context in which they were measured.

Constantine and Lockwood (1999) classify usability metrics for user interfaces
into: (1) interface structural metrics, (2) semantic metrics, and (3) procedural metrics.
Interface structural metrics, which are based on surface properties of the configuration
and layout of the user interface architectures that can simply be counted or toted. Various
metrics have been devised and tried, including: (i) number of visual components or
widgets on a screen or dialog. (i1) amount and distribution of white space between
widgets. (iii) alignment of widgets relative to one another. (iv) number of adjacent
screens or dialogs directly reachable from a given screen or dialog. (v) longest chain of
transitions possible between screens or dialogs. Structural metrics do not typically
address questions of great significance in everyday design problems. User interface
designers are confronted with more vexing and substantive problems than how many

widgets are on a dialog box or amount of white space surrounding them.

107

Semantic metrics, which are content-sensitive that take into account the nature of
user interface components or features in terms of their function, meaning, or operation.
Semantic metrics can measure aspects of user interface designs that depend on the
concepts and actions that visual components represent and how user makes sense of
component and their intetrelationships. Procedural metrics, which are task-sensitive on
aspects of the actual tasks or scenarios that may be carried out with a user interface.
Procedural metrics deal with the fit between the various tasks and a given design in terms

of its content and organization.

In general, we can expect that user interface designers to get more practical
direction from context-sensitive and task-sensitive measures than from simple interface
structural metrics. Effective metrics should reliably predict important aspects of the
usability of software in actual application, such as task performance, learning time, or
error rates. User interface design metrics need also to be sufficiently sensitive to
distinguish between similar designs that are likely to differ in ultimate usability. Ideally,
the metrics itself or the process by which it is computed should provide information that

suggests ways to improve a design (Constantine and Lockwood, 1999).

108

6.3 The Proposed Usability Metrics Suite for UCM-
Ul

There is no one metric that can encapsulate enough of the detail and complexity of a user
interface design to serve as a global indicator of quality. It takes a suite of metrics to
cover the various factors that make for a good user interface design. In our research, we
constructed a UCM-UI Metrics Suite for guiding user interface design. The goal of the
suite was to develop design metrics that are straightforward to use, are conceptually
sound, and have a clear and transparent rationale connecting them to establish principles
of good design. Constantine and Lockwood in (1999) pointed up that practical metrics

should be solid, simple, and easy to use and should fulfill the following criteria:
- Easy to calculate and interpret.

- Apply to paper prototypes and design models.

- Have a strong rationale and simple conceptual basis.

- Have sufficient sensitivity and ability to discriminate between designs.
- Offer direct guidance for design.

- Effectively predict actual usability in practice.

- Directly indicate relative quality of designs.

The UCM-UI Metrics Suite has evolved considerably using four metrics from the
literature and adding six new metrics to it. Currently ten metrics are included that
together cover assortment of measurements likely to be significant to user interface
designers seeking to improve the usability of their software. Those metrics are selected
and defined based on their ability to be applied to our proposed UCM-UI model and their
valuable interpretation for the interfaces. The UCM-UI Metrics Suite does not guarantee
usability, but it can help to reduce the costly usability problems that can be discovered

latter after developing the actual interface.

109

6.3.1 New Metrics for UCM-Ul Model

In this section, we defined six new metrics that can help with the four metrics defined in
the next section in building a metrics suite to predict usability of the UCM-UI models
early in the requirement phase. The six new metrics are: Task Analysis, UCM-UI

Consistency, UCM-UI Completeness, Task Simplicity, and Use Case Complexity.

Task Analysis (TA)

Task Analysis (TA) metric makes it possible to define and allocate tasks appropriately
within the new software. The functions to be included within the user interface and the
underlying software can then be accurately specified. TA can be conducted to understand
the current software and the information flows within the user interface. Failure to
allocate sufficient resources to this activity increases the potential for costly problems

arising in later phases of development.

Why this task? What happened before?

E
i What is done or to be done? |
| i doncorto b doe? |

How to perform this task? What happens next?

Figure 6.1 Analysis of Taski.

Definition: Task Analysis is the study of what a user is required to do in terms of actions

and/or responsibilities to complete a task. See Figure 6.1

110

Formula: Using the TA metric as a formal way to analysis tasks can be of a significant
value on focusing attention to relevant issues considered when designing products from

the users’ point of view.

Taski Why is this What What What Responsibilities
task? scenario scenario scenario in the scenario
happened done or to be | happens to perform this
before? done? next? task?
Taskl To pay a bill | S, S3 S [a;i], ro[az],rs
Task2 To ... S2 S5 Ez [ag], s, ¥8
Task,, To... S5 S7 E3 [(12], r6,[a5],r9

Figure 6.2 Task Analysis Template (TAT).

Scale: In terms of the scenarios, TA provides detailed knowledge of the tasks that the user
wishes to perform on the interface. Thus, it is a reference against which the value of the
interface functions and features can be tested. Incomplete cells in the TA metrics template
indicate areas where tasks are poorly understood, or specified. Thus, zero incompleted
cells is the target for the TA metric. The number of non-zero values is the TA template is
an approximate measure of the incomplete specification of the tasks in terms of the

scenario used for analysis.

UCM-UI Consistency

There are two notions of consistency related to use cases as discussed in Section 5.3.1:
(a) consistency of two use cases, and (b) consistency of a UCM-UI model, both can be

predicted in our proposed model.

The consistency between two use cases is a property whereby the information
contained in a use case does not conflict with other use case. Consider two use cases A

and B with responsibilities @ and b in each. Use case A is consistent with respect to use

111

case B, written A < B, if: A is a sub-graph of B, i.e., each path from a to b in A is matched

by a corresponding path from a to b in B.

The second notion of consistency; that is consistency of UCM-UI model; can be
formally defined by using the notion of consistency between two use cases as follows. A
UCM-UI model 1s consistent if the set of use cases constructing the UCM-UI model is
consistent; i.e., if the set of use cases does not contain conflicting information among

themselves.

Definition: The UCM-UI Consistency metric gives a quick handle on the coherence of

the set of use cases constructing the UCM-UI model.

Formula: To ensure the construction of consistent UCM-UI model, we need to guarantee
that the requirements captured by the set of use cases are not in conflict with each other.
Thus, we consider use cases with shared responsibilities. If the use cases are inconsistent,
it will be necessary to go back to the information elicitation and scenario description to

resolve the conflicts. See Figure 6.3.

UCl1 UcCl1

Uucz2 C Ucz

UCs - T UC3

UCn-1
UCn C vl - -

-: the two use cases do contained shared responsibilities, thus we do not check their consistency.
: the two use cases are consistent.
: the two use cases are inconsistent.

Figure 6.3 UCM-UI Consistency Template.

Scale: The metric used to evaluate consistency is a count of the & symbol used in the
template. The & symbol is used to indicate that two use cases with shared responsibilities
are inconsistent with each other and inconsistency need to be solved. The target value for

the UCM-UI Consistency metric is get zero & symbol.

112

UCM-UI Completeness

Completeness of the requirement specification of the new system means the validation of
the requirement specification of the new system against the UCM-UI model is adequate.
On the other hand, checking such completeness also means checking if the requirement
specifications of the new system contain information not contained in the UCM-UI
model. Assuming a set of use cases is complete in the sense that it already contained all
the information of the new system; incompleteness then means that the model must

contain unnecessary or incorrect information.

Definition: the UCM-UI Completeness metric examines the comprehensiveness of the
UCM-UI model X = {UCI, UCZ, . . ., UCn} with respect to the user requirement

specifications (URS)of the new system, such that:

— For all tasks (and subtasks) ¢ in URS, there is a UCk in X such that Uk

contains responsibility r that represent the tasks (or subtask) ¢; and

|

For all flows fin URS, there is a UCk in X such that UCk contains path f.

Formula: to ensure completeness, all tasks (including their sub-tasks) in the user
requirement specifications of the new system must be covered by at least one use case

following the correct order of task performance. See Figure 6.4.

All use cases not marked in the metric must be reviewed to check their
significance to keep or remove from the UCM-UI model. Moreover, if incompleteness is
discovered, it will be necessary to go back to the scenario identification to create new

scenarios that cover the missing situations.

Scale: If UCM-UI model is complete, it means that all of the tasks and their sub-tasks
specified in adequate detail in the use cases to allow design and implementation to
proceed. The metric used to evaluate completeness is a count of the TBA (To Be Added)
acronyms used in the template. The TBA symbol is used to indicate that a task or a sub-
task must be added at some future time to a use case in the UCM-UI model. The target

value for the UCM-UI Completeness metrics is zero TBA symbol.

113

System UCM-UI Completeness Metric

Tasks (sub-task) | UC! UucC2 UcCs3 UCn Comments
TBA=to be added

Task 1

Sub-task 1.1 Y

Sub-task 1.2 Y

Task 2

Sub-task 2.1 Y

Sub-task 2.2 Y

Sub-task 2.3 TBA

Task n Y

Figure 6.4 UCM-UI Completeness Template.

Task Performance (TP)

Task Performance (TP) metric specifies the scenarios that different types of users will
follow to perform a task. The most critical tasks are identified so that more attention can
be paid to them during usability testing later in the development process. Moreover, the
user interface designers can compare different scenarios to perform a task and decide the

best scenario that is used for a specific type of users.

Definition: Task Performance is a study and examination of the task accomplishment

procedure by different types of users.
Formula: see the TP template in Figure 6.5.

Scale: This metric is useful for systems where there are number of possible scenarios to
perform a specific task and where the range of tasks that the user will perform is well

specified. In these situations, the TP metric can be used to trade-off different scenarios, or

114

to add scenarios depending on their value for supporting specific tasks. Most importantly,

it is useful for multi-user systems to ensure that the tasks of each user type are supported.

Users and Tasks

Use Case/Scenario

Comments

Novice User A

Task A UCi-Sx*
Task B UCj-Sy

Task C UCk-Sy
Intermediate User B

Task A UCi-Sx

Task B UCj-Sr

Task C UCI-Sy

Expert User C

Task A UCi-Sy

Task B UCk-Sr
Task C UCn-Sy

Figure 6.5 Task Performance Template.

Figure 6.5 above shows the structure of a TP metric. It is important that input

from different user groups (novice, intermediate, and expert)-users are obtained in order

to complete the metric fully.

Task Simplicity (TS)

Good design makes more frequent tasks easier and simpler. This metrics shows how well

a user interface reduces the number of steps to complete more frequent tasks

Definition: Task Simplicity is an index of how well the expected frequency percentage

of the tasks matches their difficulty.

* UCi-Sx= this task is performed using Scenario x in Use case i.

115

Formula:

_ FPxNs
100

TS

FP = Frequency percentage of performing a task’
Ns = the number of steps to complete a task

Thus, the total task simplicity of a design for an interaction context could be computed by

summing recursively over all tasks:

5 (FPixX NS1)

Total TS = =L . fortasks t1,12,...tn
100

When more frequent tasks are shorter than less frequent tasks the interface structure is

simpler and easy to use.

Scale: The interface is perfect in terms of 7'S when every task is simply completed in one
step, i.e. 7S = 1. Longer, more complex tasks may legitimately need to perform more
steps. As a consequence, Task Simplicity is an index of how well the expected tasks

percentage frequency matches their difficulty.
Use Case Complexity (UCC)

Use Case Complexity (UCC) metric is one measure of constructional complexity of a use
case. The UCC metric corresponds to the number of possible execution paths specified in
the use case and therefore can be used to determine the number of test cases required to
obtain complete coverage of a use case. The assumption regarding this metric is that use
cases with high UCC are more difficult to understand and consequently maintain than use

cases with low UCC.

Definition: Use Case Complexity is defined as the number of decisions (or predicates)

specified in a use case.

> The frequency percentage of the tasks can be estimated by conducting a questionnaire, or observing users
while performing their tasks.

116

Formula: The UCC is calculated from a starting point (pre-condition) of the use case
Use Case Complexity (UCC) = OR_F+ AND_F — AND_J +1.
where OR_F = number of OR-forks

AND_F = number of AND-forks

AND_J = number of AND-joins

Scale: The complexity number is generally considered to provide a stronger measure of a
use case structural complexity. A low complexity of (1 <UCC < 10) contributes to a use
case's understandability and indicates it is amenable to modification at lower risk than a

more complex use case of (UCC > 10).

R7 Rg

Figure 6.6 A simple use case with a UCC of 3.

The UCC complexity of the use case shown in Figure 6.6 is 3 (OR_F) + 0 (AND_F) —
1 (AND_J) +1 = 3+ 0- 14 1 = 3. There are three independent paths for the use case in
Figure 6.6.

— Path 1.< S, RI, R2, R3, EI>
~ Path 2:<§,RI,R2, R4, E1>

— Path 3:< 8, RI, R5, (R6, R7R8), E2>

117

6.3.2 Literature Metrics

In this section, four metrics defined in the literature are added to the UCM-UI metric
suite. The four metrics are: Layout Uniformity, Task Visibility, Visual Coherence, and
Task Effectiveness. Those metrics are added to our usability metrics suit based on their
ability to be applied to our proposed UCM-UI model and their valuable interpretation for

the interface design.
Layout Uniformity (LU)

Layout Uniformity (LU) metric defined by Constantine and Lockwood (1999) is based on
the rationale that usability is held up by highly disordered or visually messy arrangement.
LU measures only selected aspects of the spatial arrangement of the interface components
without taking into account what those components are or how they are used; it is neither
task sensitive nor content sensitive. This metric assesses the uniformity or regularity of

the user interface layout.

Definition: Layout Uniformity is an interface structural metric that gives a quick handle

on how well visual components of interface are arranged.

Formula:

LU= 1OOX(l_Nh+Nw+Nt+Nl+Nb+Nr-M)

6.Nc-M

M=2++2x|¥Nc]

Nc= total number of visual components on screen, dialog box, or other interface

composite.

Nh, Nw, Nt, NI, Nb, and Nr are respectively, the number of different heights, widths,
alignments, left-edge alignment, bottom-edge alignments, and right-edge alignments of

visual components.

118

LU is concerned with the interface appearance and can be useful to the user
interface designers who lack an eye for layout to know when a visual arrangement might

be improved.

Scale: A review of well-designed dialogs suggests that, in general, a value of LU
anywhere between 50% and 85% is probably reasonable (Constantine and Lockwood,

1999).
Task Visibility (TV)

Task Visibility (TV) metric defined by Constantine and Lockwood (1999) shows how
many percent of necessary features (objects or elements) to complete a task or a use case
are visible to the user and it is reduced when we get unnecessary features on the user
interface. The visibility principle in 7V is that user interfaces should show users exactly

what they need to know or need to use to be able to complete a given task.

Definition: Task Visibility is a metric grounded in the visibility principle. It measures the
fit between the visibility of the features and the capabilities needed to complete a given

task or a set of tasks.

Formula:

TV= IOOX(——E—X Vi) -
S _total v

S_total=Total number of performed steps to complete the use case
Vi=Feature visibility (0 or 1) of performed step i°.

The formula for TV is expressed as a percent of the total number of steps. TV
reaches a maximum of 100% when everything needed for a step is visible directly on the
user interface as seen by the user at that step. Task Visibility takes into account only one

aspect of the concept WYSIWYN or What You See Is What You Need. It ignores

8 How to count performed steps and allocate a visibility value to them is defined by some rules in the
{Constantine and Lockwood, 1999). Visibility Score Vi for each enacted step i is: O if recall is needed
(Hidden); 0.5 if it is available but needs to be exposed (Exposing), or if the interaction context is changed
(Suspending); and 1 if visible (Direct).

119

whether things that are not needed are also found on the user interface. In principle, we
could reduce TV whenever unused or unnecessary features are incorporated into the user

interface.
Scale: TV ranges from 0% (poor) to 100% (good).
Visual Coherence (VC)

Visual Coherence measures how well a user interface keeps related components together
and unrelated components apart (Constantine and Lockwood, 1999). More specifically, it
is a semantic or content-sensitive measure of how closely an arrangement of visual

components matches the semantic relationship among those components.

Definition: Visual Coherence is the ratio of the number of closely related pairs of visual

elements to the total number of enclosed pairs.
Formula:

VC =100 x—
N(N-1)/2
G = the number of related pairs in the group.

N = the number of visual components in the group.

Total Visual Coherence of a design for an interaction context could be computed by

summing recursively over all the groups at each level of grouping:

> Gk

VC =100 x vk , where k is a group of component.
2. NE(Nk—1)/2
vk

with Gk= X Ri;

Vi, jli#j

Scale: The overall visual coherence of each interface depends on the semantic relatedness
among the features or components contained or enclosed with in each of its visual group.
Based on the principle that well-structured interfaces group together components that

represent closely related concepts, Visual Coherence reflects important and fundamental

120

aspects of user interface architecture that strongly affect comprehension, learning, and

- use.

Task Effectiveness (TES)

Task Effectiveness (TES) comes from MUSIC project (Bevan, 1999). It relates the goals
or sub-goals of using the system to the accuracy and completeness with which these goals

can be achieved.

Definition: Task Effectiveness with which a user uses a product to carry out a task is
comprised of two components: the Quantity of the task the user completes, and the
Quality of the goals the user achieves. Quantity is a measure of the amount of a task
completed by a user. It is defined as the proportion of the task goals represented in the
output of the task. Quality is a measure of the degree to which the output achieves the
task goals. As Quantity and Quality are both measured as percentages, TES can be

calculated as a percentage value.

Formula:

Quantity x Quality
100

TES =

Quantity = Percent of task completed.
Quality = Percent of goals achieved.

It is sometimes necessary to calculate effectiveness for a number of sub-tasks, for
instance this might be the individual element in a drawing task. The average effectiveness
across sub-tasks is a useful measure of the product's capabilities, but may not reflect the
effectiveness of the final task output. For instance, if the user were unable to save the
final drawing, the overall effectiveness would be zero. Similarly, the effectiveness may

be reduced if the final drawing contains additional unwanted elements.

Scale: A TES value of less than 25% should be considered completely unacceptable

because it means that the users were unable to achieve at least half of the task goals with

7 How to specify and measure quality and quantity is discussed in a great detail in (Bevan, 1995).

121

at least 50% acceptability. If TES reaches 50%, then use of the product can be considered
a reasonably effective way for the users to achieve their task goals. When TES reaches

100%, the product has enabled the users to attain all the task goals perfecily.
6.3.3 UCM-UI Metric Suite Discussion

Table 6.2 summarizes the metrics type and the usability measure of each metrics in the

UCM-UI metric suite.

Metric Name Metric Type® Usability Measurement

Task Analysis Procedural metric | Indicate where tasks are poorly

understood, or specified.

UCM-UI Consistency | Procedural metric Examine the coherence of the set of use

cases constructing the UCM-UI model.

UCM-UI Procedural metric Examine the comprehensiveness of the
Completeness UCM-UI model.
Task Performance Semantic metric Examine the task accomplishment

procedure by different types of users.

Task Simplicity Procedural metric Examines how well the expected
frequency percentages of the tasks match

their difficulty.

Use Case Complexity | Semantic metric Measures the number of decisions (or

predicates) specified in a use case.

Layout Uniformity Interface structural | Gives a quick handle on how well visual

metric components of interface are arranged.

8 Recall that metrics are classified into three types: Interface structural metrics which are based on surface
properties of the configuration and layout of the user interface, Semantic metrics which are content-
sensitive that take into account the nature of user interface components or features in terms of their
function, meaning, or operation, and Procedural metrics which are task-sensitive on aspects of the actual
tasks or scenarios that may be carried out with a user interface.

122

Metric Name Metric Type Usability Measurement

Task Visibility Interface structural | Measures the fit between the visibility of
metric the features and the capabilities needed

to complete a given task or a set of tasks.

Visual Coherence Semantic metric Relate the ratio of the number of closely
related pairs of visual elements to the

total number of enclosed pairs.

Task Effectiveness Procedural metric Relates the goals of using the interface to
the accuracy and completeness with

which these goals can be achieved.

Table 6.2 Summary of the UCM-UI Metric Suite.

123

6.4 An IHlustrative Example: Movie Recommender

System

This section illustrates the usage of the UCM-UI metrics suite via an example, a Movie
Recommender System (MRS) software of a handheld computer (PDA). The MRS
software provides recommendations for movies based on preferences of other users. The
user of MRS has the option of getting recommendations for movies of a certain genre,
new movies of certain genre, and of movies that are similar to some movie in their theme.

The User Requirement Specifications (URS) of the Movie Recommender System are:

— URSI: The user gets recommendations (list of movies) for the Latest movies by

looking for a All, Action (A), Drama (D), or Comedy (C).

— URS2: The user gets recommendations (list of movies) by searching for All or

specific type.
— URS3: the user is able to refine his search until he is satisfied with the results.
— URS4: The user creates his own favorite movie list.
—~ URSS5: The user rates a movie.

On choosing either of URSI or URS2, the user can get movie detailed information of a
selected movie. For this example there are five major use cases illustrated in Table 6.3.

Figure 6.7 presents the CUCM of the MRS software.

Use Case Scenarios
UCI: List Latest movies S1-54: 4 scenarios when the user chooses one type (All, A,
(8 scenarios) D, C) from latest movie list, view the list and end the
software.

S$5-58: 4 scenarios when the user chooses one type (All, A,
D, C) from latest movie list, view the list and returns to
beginning of the software.

124

Use Case

Scenarios

UC2: Search for a movie (12
scenarios)

S1-S4: 4 scenarios when the user searches one type (All, A,
D, C) from search menu view the list and end the software.

§5-88: 4 scenarios when the user searches one type (All, A,
D, C) from search menu, view the list, refine the search, and
view the refined list and end the software.

S9-S12: 4 scenarios when the user searches one type (All, A,
D, C) from search menu, view the list and refine the search
and just quit

UC3: To See

(2 scenarios)

S1: User adds a movie to the “To See” list.

S2: User views the “To See” list.

UC4: View a movie detailed
information

(1 scenario).

S1: User views detailed information of a selected movie.

UCS5: Movie Rating

(1 scenario)

S1I: User views the rating of a movie.

Table 6.3 Use cases and scenarios of the MRS software.

125

MRS

To_See A
Add to list
N
> ¥ View list o
- A_L Movie
B4 Name

Start MRS . .
P Movie Rating
atest N
All
A
> tew list &—
D l Movie E
» E Name ¢
c,,
ra ‘}
Movielnfe,
” View Film Info.
AL
Es

Figure 6.7 CUCM of the MRS software.

The usage of the UCM-UI metrics defined in Section 6.3.1 and 6.3.2 is illustrated next.

6.4.1 Task Analysis

Task Analysis (TA) metrics is conducted to understand the MRS software and the

information flows within the user interface. TA is useful to identify the pre-conditions and

how use cases are interrelated to perform a task. For the sake of simplicity, the TA

metrics in Figure 6.8 illustrate only analysis of two tasks.

126

Taski | Why is What What What Responsibilities in
this scenario scenario scenario the scenario to
task? happened done or to happens perform this task?

before? be done? next?

Taskl | Add a Start MRS UC3-§1 UC5-52 Start MRS, Add to see
movie to list, view to see list,
“To See” E3
List

Task2 | Rate a UCL, UC2,0or | UC5-S2 E4 Insert Movie name,
Movie Ucs rate, B4

6.4.2 UCM-UI Consistency

Figure 6.8 TA metric for two tasks of the MRS software.

The UCM-UI Consistency metric ensures that the requirements captured by the use cases

are not in conflict with each other, so a consistent UCM-UI model can be synthesized

from the use cases. After filling the UCM-UI Consistency metric template in Figure 6.9,

we found that there was inconsistency in (view list) in the (To See) use cases with (view
list) in UCI and UC2. In UCI and UC2 (view list) is a stub while in UC3 (view list) is a
responsibility. Thus, the CUCM of the MRS System is improved in Figure 6.10.

UCI (Latest Movies) UcCli
UC2 (Search for a Movie) Uucz2
UC3 (To See) a

ucs

UC4 (View Movie information)

Uc4

UCS5 (Rate a Movie)

Figure 6.9 UCM-UI Consistency metric of the MRS.

127

MRS

ol

tart MRS . .
3 arO Movie Rating
Latest h
All @ o
e 5
A (V3
> ” iew list .__-_' R S
> i
D 0 :}IE_ Movie
1 Name
C.
v
Search
AIJA
Mevie Info.
> View Film Info.
A~ L
A E5
B—
. Movie
Refine Name
To See A
Add 1o list
N
— ¥
> iew list .Movie
E,4 Name

tasks is examined:

6.4.3 UCM-Ul Completeness

Figure 6.10 Improved CUCM of the MRS software.

To ensure completeness, all tasks (including their subtasks) in the requirement
specifications of the new system must be covered by at least one use case following the

correct order of task performance. For the sake of simplicity, the completeness of two

~ Task 1: User selects latest Comedy movies and gets movie recommendations, then

views details of a recommended movie.

— Task 2: User enters an actor name, gets movie recommendations, then add the

movies to his “To See” list.

128

— Task 3: User loads the latest Drama movies, list and rate as many movies as he

carn.

User Tasks

uc,

UC,

UCs

UCy

UCs

Task 1: User views latest list of Comedy movies

Subtask 1.1: User selects latest comedy movies

Subtask 1.2: System lists movie recommendations

Subtask 1.3: User views information on Movie Mi

Task 2: User search for a Action movie for a specific
Actor and adds the movie to his “To See” list

Subtask 2.1: User selects search for Action movies

Subtask 2.2: User enters the Actor name

=

Subtask 2.3: System lists of movie recommendations

Subtask 2.4: User views information on Movie Mi

Subtask 2.5: User adds the movie to his “To See” list

Task 3: User loads the latest Drama movies list and rate
as many movies as he can

Subtask 3.1: User selects latest drama movies

Subtask 3.2: System lists of movie recommendations

Subtask 3.3: User rates movie Mi

Figure 6.11 UCM-UI Completeness metric for MRS for three tasks.

To ensure the UCM-UI Completeness we need to examine all possible task that

can be performed by in the user interface of the MRS software. However, examining all

possible tasks can be time consuming. Therefore, user interface designers are encouraged

to apply the completeness metrics for important and complicated use cases.

6.4.4 Task Performance (TP)

In this metric, the most critical tasks are identified so that more time can be paid to them

during usability testing later in the design process. The user interface designers can also

compare different scenarios to perform a task and decide the best scenario that is used for

129

a specific type of users. To complete this metric, we must obtain input from different user
groups (novice, intermediate, expert users). In our case, this usability test was not

performed; however, Figure 6.12 shows a sample of the TP metric template.

Users and Tasks Use Case/Scenario Comments

Novice User A
User views latest list of Comedy movies
User search for a Action for a specific Actor

User search for latest dram movie by the Actor
X and adds the movie to his “To See” list

Intermediate User B
User views latest list of Comedy movies
User search for a Action for a specific Actor

User search for latest dram movie by the Actor
X and adds the movie to his “To See” list

Advance User C
User views latest list of Comedy movies
User search for a Action for a specific Actor

User search for latest dram movie by the Actor
X and adds the movie to his “To See” list

Figure 6.12 Sample of the Task Performance metric for MRS.

6.4.5 Task Simplicity (7S)

With the use of the TS metric, we’ll try to make more frequent tasks easier and simpler.

The Task Simplicity formula is:

FPxNs o
100

I§=

? FP = Frequency percentage of performing a task, Ns = the number of steps to complete a task.

130

The PUCM of the MRS software is shown in Figure 6.13. The paper prototype of
the PUCM is demonstrated in Figure 6.14. The TS for the five main tasks of the MRS

software are calculated in Table 6.4.

PDA Screen
Main Window
PUL [=] PU2 [=]
S1 SM CM
X g PU4 [=]
J . X Refine
A 4
PU3 [=]|
ML X
RL PU5 [=]
RM X i Rate
> 3 J_
El

Figure 6.13 PUCM of the MRS software.

Legend
S1: User starts MRS.
PU1: Main Window of MRS.

SM: user chooses to Search for
a Movie.

PU2: Search Movie window.

CM: user chooses Comedy
Movies from the list.

PU3: Movies List window.
ML: Movie List appear.

RL: user Refines the List.
PU4: Refine List window.
Refine: user Refines his search.

RM: user selects to Rate a
Movie.

PUS: Rate a Movie window.
Rate: user Rates the movie.

El: End of the scenario.

131

PDA Screen

PDA Screen

Main Window

1. Latest Movies

3. To See
4. Rate a Movie
5. Exist

2. Search for a Movie

PDA Screen

Search Window

1. Al
Action

. Comedy
Drama
Back

o s w N

Comedy Movies

1. Movie 1 ..
2. Movie 2 ..
3. Movie 3 ..

Refine Rate

Back

PDA Screen

PDA Screen

Refine

1. Actor ...
2. Year ..

3. Director ..

Back

Comedy Movies

PDA Screen

1. Movie 1 ..
2. Movie 2 ..
3. Movie 3 ..

Refine Rate

Back

Rate

1. Movie Name ..
2. Rate (1, 2, 3)

Back

Figure 6.14 Paper prototype of PUCM of Figure 6.13.

132

Task No. | Description of the Task Frequency% | Steps
No.
Task 1 The user gets recommendations for the Latest movies | 30 2
by looking for a genre or specific type.
Task 2 The user gets recommendations for movies by | 25 2
searching for a genre or specific type.
Task 3 The user is able to refine his search. 20 4
Task 4 The user has his own favorite movie list where he | 15
can also add a movie to the list.
Task 5 The user rates a movie. 10 4

Table 6.4 Tasks frequencies and number of steps for the MRS software.

TS = (30*%2 +25%2 +20*4 + 15*4 +10*4)/100

= 29

To improve our design, we try to simplify each task. Task 1 and Task 2 are simple

since each task is performed in two steps and cannot be performed in a less number of

steps. However, the number of steps to perform Task 3, Task 4, and Task 5 can be

reduced. Figures 6.15 and 6.16 show the improved user interface design. Table 6.5

indicates the number of steps to perform each task in the improved design.

Task No. | Description of the Task Frequency% | Steps
No.
Task 1 The user gets recommendations for the Latest movies | 30 2
by looking for a genre or specific type.
Task 2 The user gets recommendations for movies by |25 2
searching for a genre or specific type.
Task 3 The user is able to refine his search 20 3
Task 4 The user has his own favorite movie list where he | 15 2
can also add a movie to the list.
Task 5 ‘The user rates a movie. 10 2

Table 6.5 Tasks frequencies and number of steps of the improved design.

133

TS = (30%2 +25%2 +20*3 + 15*2 +10*2)/100

= 2.2, which is an improvement at the end of the day.

PDA Screen
‘m
Tool Bar N Legend
3 Search M S1: User Start MRS
e N sy
Search: user select Search from
Tool bar
Main Window CM: user select Comedy Movie
PU1L: Search Movie window
PU1L = PU2 ML: view Movie List
MLX RS: user select to Refine his
RS Refine] Search
N X
RT{ PU2: Refine List window
E Refine: user Refines his search
RT: user RaTes the movie
E1l: End of the scenario
Sub tool bar (Add to list, Back)

Figure 6.15 Improved PUCM of the MRS system.

134

PDA Screen

f Latest

‘Search | To See

rAdd to lisf—]

[Exist J

PDA Screen

{ Latest

Search

To See

Rate to-Rate
Rate to-Rate
Rate to-Rate
Rate to-Rate
Rate to-Rate

Refine

Movie 1
Movie 2 .
Movie 3 ..
Movie 4 _.
Movie 5 ..

! Add to list

l Exist [

PDA Screen

lﬂ‘re st

Search

To See

Actor...
Director..

Year

Refine

Movie Name ...

] Add to list 1

| Exist]

PDA Screen
Latest Search To See
Al
Action
Comedy
Drama
Add to list | | Bxist]
PDA Screen
{Lafesf Search To See]
Rate to-Rate Movie 1 ..
Rate to-Rate Movie 2 ...
Rate to-Rate Movie 3 ..
Rate to-Rate Movie 4 ..
Rate to-Rate Movie D ..
Refine
| Add to list] | Exist]
PDA Screen
Latest Search To See
Rate to-Rate Movie 1 ..
Rate to-Rate Movie 2 ...

Rate to-Rate
Rate to-Rate

Refine

Rate to-Rate Movie 3.

Moavie 4 ..
Movie 5 ..

[Add to list]

{ Exist]

Figure 6.16 Improved paper prototype of PUCM Figure 6.15.

135

6.4.6 Use Case Complexity (UCC)

The complexity number is generally considered to provide a stronger measure of a use

case structural complexity. For example, the UCC complexity of UC5 (Rate a movie)

shown in Figure 6.17i1s 2(OR_F) + 0 (AND_F) -0 (AND_J) + 1 =2+ 0~ 0+ 1 =3; ie,,

there are three independent paths for UCS5 which contributes to a use case's

understandability and indicates it is amenable to modification at lower risk. During

analysis of the use cases, any use case with a UCC> 10 should be simplified since it is

more difficult to understand and consequently maintain.

N o

A

\

y a2
0 s

A
Y

a3

El B

Legend:

S1: Movie is selected.

ROV: A question and answer
dialog to Rate Or View movie
ratings.

al: User selects to view the
rating of a movie.

a2: User selects to rate a movie.

RMR: System initiate a Menu
dialog to Rate a movie.

a3: User selects to view the
rating of a movie.

VMR: View the Movie Rating.

Figure 6.17 CUCM for UC5 (Rate a movie).

6.4.7 Layout Uniformity (LU)

Layout Uniformity goes up when visual components are lined up with one another and

when there are not too many different sizes of components. The role of LU metric can be

applied to user interface of Figure 6.16 as follows.

M =2+2x[¥Nc]

136

=2+2x[3/61=6.898

Nh+ Nw+ Nt + NI+ Nb+ Nr-M
6Nc-M

LU = 100 X (1—)z 79.03%. As Constantine and

Lockwood (1999) discussed, a value of LU anywhere between 50% and 85 % is probably

reasonable.

6.4.8 Task Visibility (TV)

Task Visibility can be evaluated for individual use cases or for extended task scenarios
that might incorporate any number of use cases. For the use cases expressed in Figures
6.15 and 6.16 the visibility of the enacted steps to complete the use case are calculated in

Table 6.6.

Enacted Step Type Visibility
1. Open Search menu Exposing | 0.5
2. Open Comedy Movie List Suspending | 0.0
3. Click on Refine button Exposing | 0.5
4. Fill the Form Direct 1.0
5. Click Search button Exposing | 0.5
6. Open drop-down list Exposing | 0.5
7. Rate the selected movie Direct 1.0
8. Click Exist to close dialog Suspending | 0.0
Total =140

Table 6.6 Visibility of the enacted steps.

Since there are eight steps in this enactment, the task visibility 7V = 50 %. This
indicates that for the above use case, 50 % of the icons needed for a step are visible on

the user interface as seen by the user at that step.

137

6.4.9 Visual Coherence (VC)

Visual Coherence is a semantic or context-sensitive measure of how closely an
arrangement of visual components matches the semantic relationships among those

components. The VC of the tool bar in Figure 6.16 is calculated as follows:

N = 3 components.

VC =100x 6 , with G= YR
N(N-1)/2 Vi, jli#
= 10057170 _ 66.66%
3x2/2

To evaluate VC, the list of concepts is scanned to determine with which concept
each visual component is most closely related. If two components are both determined to
be most closely related to concepts in the same cluster, then they are considered to be
substantially related and are assigned as Ri,j =1 if they are associated from different

clusters, then Ri,j = 0.

The visual coherence of the tool bar in Figure 6.16 is 66.66%, but to get a real
feeling of the coherence of the interface we need to compute the overall visual coherence
of the interface starting from the innermost visual groups, and then repeat the same thing

for the next level outward, until the complete interaction context is covered.

6.4.10 Task Effectiveness (TES)

Task Effectiveness is a metric that gives a measurement of how well a user achieves the
goals of an evaluation task, irrespective of the time needed or the difficulties
encountered.

Quantity x Quality
100

TES =

Where Quantity is a measure of the amount of a specified task that a user

attempts. It is defined as the proportion of the task goals represented in the output of a

138

task and Quality is a measure of how good the task goals represented in the output are
compared to their ideal representation. It is defined as the degree to which the task goals

represented in the output have been achieved.

Before the usability sessions take place, the evaluation team must identify the
goals of the evaluation task and how the users will represent them in the task outputs.

Then the user interface designer analyzes the task output and measures:
— Quantity (how many goals the user attempts)
— Quality (how successfully the user completes those goals)

of the task output that the user produces and thus can calculate the Task
Effectiveness. For this example case, this usability test was not performed and therefore

the TES was not calculated.

139

6.5 Conclusions

In this chapter, we build UCM-UI Metrics Suite to predict usability early in the
requirements phase. The UCM-UI Metrics Suite has evolved considerably using four
metrics from the literature and adding six new metrics to it. Those metrics are included to
cover assortment of measurements likely to be significant to usability engineers and user
interface designers seeking to improve the usability of their software. This metrics suite
complements rather than replace empirical evaluation of user performance and
satisfaction. An illustrative example on how to predict usability using the UCM-UI

metrics suite was also presented in this chapter.

The UCM-UI metrics suite as shown in the example allows user interface
designers using the SUCRE framework (a) to predict and improve the interface quality,
(b) to control and improve the requirement processes, and (c) to decide on the acceptance
of the interface. However, the UCM-UI Metrics Suite does not guarantee usability, and
user interface designers should be wary of allowing metrics to cloud their judgment.
Quantitative comparisons are no substitute for thought, careful design, systematic review,

and judicious testing.

One of the important factors we would like to explore is the effectiveness of
metrics initiatives and in particular how the numbers are put to use, and usability
prediction is certainly not expectation to that. Utilized inappropriately, predictive metrics
can take on exaggerated significance and may come to dominate design decisions. Given
instance numeric feedback on their layouts, user interface designers can sometimes
unconsciously work to maximize their score rather than derive the best design. The result
can be good looking numbers but poorer interfaces when all factors are taken into

account.

140

Chapter 7

Towards Formal Specifications

The process of going from informal requirements to a high-level formal specification is a
difficult and nontrivial task. Designers often using informal requirements complain of the
lack of straightforward transition to formal requirements. This chapter points toward
avenues to build formal requirements from UCM-UI models. One way to bridge the gap
separating requirements and use cases from more detailed views is to link the UCM-UI
concepts to UML and UML: for the modeling of complex user interfaces. Another
avenue that smoothen the transition to a formal specification language is to define an
intermediate method to translate UCM-UI to LOTOS automatically. LOTOS is an
appropriate formalism that supports many UCM and UCM-UI concepts directly, and it
allows a formal validation and verification of requirements and specifications of
interactive systems. Finally, the generation of linear textual forms from UCM-UI models
can be used as a front end for other software engineering tools. This enables the
validation of requirements and facilitates the transition from requirements to design.
UCMs are already represented in XML by the tool UCMNav according to the XML Data
Type Definition for UCMs. This chapter presents how to generate XML and XUL files
from UCM-UI models.

141

7.1 Introduction

The transition from semi-formal requirements to a high-level formal specification is a
research subject where much work has been done. However, user interface designers are
faced with challenges when deriving formal specification from the informal/semi-formal
requirements. The UCM-UI is semi-formal requirement models that facilitate abstract
thinking at a high level of detail for interactive systems. UCM-UI allows the user
interface designers to model the essential structure of the interface tasks without hidden
and premature assumptions about design details. After number of refinement phases of
the UCM-UI models with the user more detailed views and models in other
modeling/specification languages may be derived. This will certainly improve the
validity of the UCM-UI models and detect undesirable interactions early in the
development cycle. The UCM-UI is used to model the interrelationships among user
interface scenarios, mapping the overall structure of the tasks to be supported by

interface.

The proposed UCM-UI model can be used to bridge the gaps between: (a) users’
needs and requirements (b) the user interface requirements and its underlying functional
application, and (c) between requirements and design (Figure 7.1). This chapter
investigates how UCM-UI fits in many different software engineering methodologies and
design processes. Section 7.2 presents how to link UCM-UI to UML and UML; for
modeling interactive systems to reduce the gap between user interface requirements and
detailed requirements of the system. To allow a formal validation and verification of
requirements and specifications of interactive system, Section 7.3 presents a method to
translate UCM-UI to LOTOS automatically. Moreover, Section 7.4 investigates the
possibility to produce a textual linear form for UCM-UI expressed in XML and XUL,
and adds the UCM-UI notation to the UCMNav tool.

142

[Interactive Systems

User & Ul Requirements GAP Functional Requirements

Design

Figure 7.1 The Gap in requirements and design of interactive systems.

143

7.2 Avenue 1: The Extension of UML:{ with UCM-
Ul

The Unified Modeling Language (UML) is a notation for creating software application
designs in object-oriented manner. User interface designers should be able to model
complete applications using UML. There are several necessary concepts appear to be
absent from UML, but present in the UCMs notation. In particular, UCMs allow
scenarios to be mapped to different architectures composed of various component types.
The UCMs notation supports structured and incremental development of complex
scenarios at a high level of abstraction, as well as their integration. UCMs specify
variations of run-time behavior and scenario structures through sub-maps “pluggable”
into placeholders called stubs. Amyot and Mussbacher (2001) presented how UCM
concepts could be used to extend the semantics and notation of UML for the modeling of
complex reactive systems. Absolutely, adding a “UCM view” to the existing UML views
can help bridging the gap separating requirements and use cases from more detailed

views (e.g. expressed with interaction diagrams and state-chart diagrams).

On the other hand, UML suffers from its lack of support for modeling user
interfaces (Paterno, 2001; Srdjan, 1998). For example, class diagrams are not entirely
suitable for modeling Ul presentation. As a result of these difficulties, research has taken
place with a view to improving the effectiveness of UML for Uls. The Unified Modeling
Language for Interactive Applications (UML) is a research project that has been
developed in the Information Management Group of the University of Manchester since
1998. UML: extends UML, to provide greater support for UI design. It aims to show that
using a specific set of UML constructors and diagrams it is possible to build declarative

Ul models.

This section builds on top of the research developed on the extension of UML
with UCMs concepts (Amyot and Mussbacher, 2001), and the extension UML: (Pinheiro
da Silva, 2000; Pinheiro da Silva and Paton, 2003).

144

7.2.1 Brief Introduction to UML)/

UML.i is a UML extension for modeling interactive applications. UMLiI makes extensive

use of Activity diagram during the design of interactive applications. Well-established

links between use case diagrams and Activity diagram explain how user requirements

identified during requirements analysis are described in the application design. UMLI

provides two additional facilities for user interface design: (1) a new diagram for

modeling Ul presentations called a user interface diagram. (2) a new set of activity

diagram constructors for modeling Ul behavior.

Table 7.1 illustrates the components of the user interface diagram. The user

interface diagram constructors are Interaction-Classes that are specialized UML Classes.

The instances of these Interactive-Classes are the interaction objects (or widgets).

Component Symbol Comments

One F== A top-level “window”; FreeContainers may

FreeContainer e contain Containers , Editors , Displayers , Inputters
and ActionInvokers;

Displayers A Displayers are responsible for sending visual
information to users

Inputters v Inputters are responsible for receiving information
from users

Editors <> Editors are interaction objects that are
simultaneously Inputters and Displayers.

ActionInvokers E> ActionInvokers are responsible for receiving
information from users in the form of events

Containers o Containers may contain other Containers, Editors,

U Displayers, Inputters and Action Invokers

Table 7.1 UMLI User Interface Diagram Components.

145

The new set of activity diagram constructors for modeling UI behavior in UML
provides: (1) new activity diagram Pseudo-State for modeling common UI behavior
called selection states; (2) new stereotypes for modeling object flows of UI objects.
These stereotypes identify the interaction object flows and they are responsible for
specifying the collaboration among interaction objects, and the collaboration between

interaction objects and objects from the domain.

The UML: user interface diagram introduced for modeling abstract user interface
presentations simplifies the modeling of the use of visual components (widgets).
Additionally, the UMLi activity diagram notation provides a way for modeling the
relationship between visual components of the user interface and domain objects. Finally,
the use of selection states in Activity diagram provides a simplification for modeling

interactive systems (Pinheiro da Silva, 2000; Pinheiro da Silva and Paton, 2003).

7.2.2 Linking UCM-UI Concept to UML and UML/

A UCM-UI model is characterized by the dialogs, the user tasks it supports, and the
presentations of information that it generates for capturing and documenting the user
interface requirements. The description of these aspects could be represented by UML
and UMLi. However, the effort to link the presentation aspects; the Physical Use Case
Map (PUCM) to UML and UML.i model does not seem to be justified because we obtain
models that describe features that can be easily translated to paper prototypes and be
understood by direct inspection of the implemented user interface. Whereas in the case of
user interface dialogs and task representations, the Conceptual Use Case Map (CUCM),
there are aspects that are more difficult to grasp in an empirical analysis because when
users navigate in an application they follow only one of the many possible paths of
actions. In addition, CUCM models are highly concurrent systems because they can
support the use of multiple interaction devices, they can be connected to multiple
systems, they can support the performance of multiple tasks, and they often can support

multi-user interactions.

146

The UCM-UI concepts can be linked to UML and UML. by taking the advantage
of similarities between the CUCM in UCM-UI and UML and the new set of activity

diagram constructors in UMLI.

Activity diagram share many concepts with UCMs, in general, as described in
(Amyot and Mussbacher, 2000). They have common constructs and even the notation are
alike, to some extent. A UCM can effectively be described in terms of Activity diagram
without any difficulty. The suggested uses of these notation are however slightly
different. UCMs and Activity diagram both target the modeling of system-wide
procedures and scenarios, but Activity diagram focus on internal processing, often found
in business-oriented models (e.g. workflows), whereas UCMs are also concerned with
external (asynchronous) events, which are essential to interactive systems modeling.
Table 7.2 presents, through a simple mapping, how Activity diagram meta-classes

already support many UCM concepts.

UCM Concept Corresponding Meta-classes

Map Activity-Graph (from Activity diagram), a child class of
State-Machine.

Path Element State-Vertex (from State Machines), the parenf class of
State and Pseudo- State, which is also similar to a node in a
graph.

Start Point Simple-State (from State Machines), a State without nested
states.

End Point Simple-State (from State Machines), a State without nested
states. ‘

Action Element Action-State (from Activity diagram), an atomic action. In

UML, an Action-State is a Simple-State with an entry
action whose only exit transition is triggered by the
implicit event of completing the execution of the entry
action. This 1s similar to a UCM responsibility.

Responsibility Associated with Action-State (from Activity diagram), an
atomic action referenced by an Action Element (in UCM
terms).

147

UCM Concept Corresponding Meta-classes

Continuation Element | State-Vertex (from State Machines), the parent class of
Pseudo-State and (indirectly) of SubActivityState.

OR Pseudo-State (from State Machines), of kind choice for an
OR-fork and of kind junction for an OR-join.

AND Pseudo-State (from State Machines), of kind fork for an
AND-fork and of kind join for an AND-join.

Stub Composite-State (from State Machines), which may
contain sub-machines.

Static Stub SubActivityState (from Activity diagram), which may
reference only one sub-Activity-Graph, just like a UCM
static stub contains only one plug-in.

Dynamic Stub Dynamic Stub is a new child class of Composite-State.
Dynamic stubs may reference possibly many sub-maps,
and they handle a binding relationship for each reference
(instead of only one as in Sub-activity-State and Sub-
machine-State). A Selection-Policy, which is an abstract
Relationship, is associated to each dynamic stub.

Table 7.2 Mapping UCM concepts to Activity diagram meta-classes (Amyot and
Mussbacher, 2001).

For UCM-UI there are two concepts to be mapped to UML, the dialog concept,
and the task concept. A dialog is a stub to which multiple Maps (plug-ins) are bound and
to which a Selection Policy is associated. A selection policy instance should be defined as
a potentially reusable object rather than as a mere attribute. As for dialog stubs,
extensions to the UML meta-classes appear necessary. Figure 7.2 proposes a solution
with dialog as a new child class of Composite-State. Dialog may reference possibly many
sub-maps, and they handle a binding relationship for each reference, instead of only one
as in Sub-activity-State and Sub-machine-State. A Selection-Policy, which is an abstract
Relationship, is associated to each dialog. Table 7.3 presents, how Activity diagram

meta-classes can support many of the dialog concepts

148

StubmachmeState
(from State Machines)

i

Activity Graphs

0.* Stubactivity state

(from Activity Graphs)

(from Activity Graphs)

({JCM Siub)

Composite State Relationship
> (from State Machines) (from Core)
JA A

Figure 7.2 Extending Activity diagram with Dialog concept.

UCM-UI

Concept Corresponding Meta-classes

Dialog

Dialog is a new child class of Composite-State. Dialog may reference
possibly many sub-maps, and they handle a binding relationship for
each. A Selection-Policy, which is an abstract Relationship, is
associated to each dialog

Table 7.3 Mapping UCM-UI dialog notation to UML Activity diagram meta-classes.

Activity diagram in UMLi extend Activity diagram in UML. In fact, UML{

provides a notation for a set of macros for Activity diagram that is used to model

behavior categories usually observed in user interfaces: optional, order-independent, and

repeatable behaviors. Using these macro notation, Activity diagram in UMLi can cope

better with the tendency that Activity diagram have to become complex even when

modeling the behavior of simple user interfaces. Table 7.4 presents, through a simple

mapping, how the new UMLI set of macros support UCM-UI tasks concepts.

UCM-UI UML: Concept Corresponding Meta-classes
Iteration A(*), and The repeatable selector additionally
Finite iterati A requires a REP constraint used for

inite iteration(s) A(X) [REP=X] specifying the number of times that

the associated activity should be
repeated.

149

UCM-UI UML: Concept Corresponding Meta-classes

Optional responsibility The optional selector which identifies
(A, B]) an optional selection state is rendered
’ A as a circle overlaying a minus signal.
(B]
Undo responsibility <<cancels>> A <<cancels>> is an interaction
(A (U)) object flow that relates an instance of

Actionlnvoker to any composite
activity or SelectionState. It specifies
that the activity has not finished
normally.

Table 7.4 Mapping UCM-UI tasks notation to UMLI Activity diagram meta-classes.

Figures 7.3 and 7.4 illustrate a simple example of mapping the CUCM of borrow
a book in Figure 5.3 to a UML. activity diagram.

User Interface Database

EnterAuthor

EntertTitle
X
A 4 A

v
4

SearchQuery BuildList

\ 4

AV B LV
N L

Activate Search Function i

EnterYear
. X

X
Refine o gt

a

(V3 <
< A |
Y

Enﬁg;rch

Cancel

Figure 7.3 CUCM for search a book.

150

pnon -nuq

"' " £<presents>>

: SearchBook

-

SearchBook

@ >

SpecifyBookDetails

)

E Search

_ ®

<<confirm>> /
Q)e(.—_) m

nteract>>

................

AuthorParam

<<Interact>>

TltleParam

<Interact>> v

:YearParam

E:> <<cancel>>
L

: Cancel

bgp: BookQueryParameter

A
)(bap.doQuerv()

)

: v

A

bq: BookQuery

:ResultValues

Figure 7.4 UMLI Activity Diagram for search a book.

151

7.3 Avenue 2: UCM-UI to LOTOS

The Language of Temporal Ordering Specifications (LOTOS) is an algebraic
specification language and a Formal Description Techniques (FDT) standardized by ISO
for the formal specification of open distributed systems (OSI-1089). LOTOS is
executable and its models allow the use of different validation and verification
techniques. Several tools can be utilized for automating these techniques (e.g. LOLA,

ELUDO).

UCM-UI help user interface designers capture the user interface requirements to
visualize the interface design in early stages before implementation starts. UCM-UI
mostly focus on interface functionality and presentation, and they are easily learnable and
understandable. However, UCM-UI has no formal semantics. They are not created for
presenting detailed information. Therefore, they are not suitable for detailed analysis and
design. On the other hand, LOTOS provides a solid platform for detailed analysis of
functionality and protocols. It permits to perform validation and verification. Although

LOTOS has many benefits, its complexity keeps user interface designers from using it.

Over the past years, much work has been done on the derivation of LOTOS
specifications from UCMs (Amyot et al., 1999; Guan, 2002). LOTOS is an algebraic
language that can formalize the ordering of events found in UCMs, even in the absence of
a component structure. This enables formal verification and verification of requirements,

specifications, and designs, something that lacks from many case tools.

In this section, we will propose a method for the generation of LOTOS
specifications from UCM-UI The key idea of the translation is to establish a relationship
between UCM-UI and LOTOS and then automatically translate UCM-UI to LOTOS
specification. There has been already some research on automatic generation of LOTOS
specification from UCMs (Guan, 2002). Based on his contributions we will build our
method to translate UCM-UI to LOTOS.

152

7.3.1 QOverview of LOTOS

LOTOS is a language for formal specification and formal modeling systems. By “formal
specification” we mean that it specifies the behavior of a system with a sound semantic
basis. By 'formal modeling' we mean that a LOTOS specification is executable, thus it
constitutes an “abstract model” of the system. A number of LOTOS tutorials exist in the
literature (Logrippo et al., 1992; Bolognesi and Brinksma, 1987). Therefore, we limit
ourselves to a very brief overview of the language and of its use in the context of our
research. A LOTOS specification as shown in Figure 7.5 consists of two main parts: the

Abstract Data Types part and the Control part.

specification systemName[gatel, ..., gateN]: <exit-behavior>
(* Abstract Data Type part: data types and value expressions *)
behavior

(* Control Part: system behavior *)

endspec

Figure 7.5 LOTOS specification.

The Abstract Data Type Part defines the data types and value expressions needed
to specify the behavior of a system. It is based on the formal theory of algebraic abstract
data types ACT-ONE. The most commonly used predefined libraries are Boolean and
Natural Number. The library Boolean defines the constants true and false and defines the
not operation that complements a Boolean value. The Natural Number library defines

positive numbers (including zero).

The Control Part is the part of the specification that describes the internal
behavior of the system. It is defined by a behavior expression followed by possible
process definitions. A behavior expression is built by combining LOTOS actions by
means of operators and possibly instantiations of processes. By composition we mean

sequence, choice or parallelism.

153

7.3.2 UCM-UI to LOTOS Transformation

The UCM-UI to LOTOS transformation is performed following multiple steps:

— Analysis of the UCM-UI by looking at the decomposition of the maps into stubs

and at the components involved in each map.

— Representation in a graph of the decomposition of the UCM-UI maps and the

stubs into stubs/plug-ins.

— Establishment of mapping rules between UCM-UI and LOTOS elements.

Dealing with the Difference of Abstraction Levels

UCM-UI is abstract and is not meant to be very detailed. For this purpose, they are
suitable for requirement specification. On the other hand, LOTOS specifications can be
very detailed; they represent the interactions among system components in terms of
message passing, rendezvous and synchronization. One of the reasons for this difference
is that LOTOS specifications are executable, UCM-UI are not. When transforming UCM-
Ul into LOTOS, messages and other design details are added into the specification. This
step must be done in full interaction with the UCMs designers in order to represent

faithfully the system’s expected behavior.

UCM and UCM-UI to LOTOS Mapping

The transformation from the semi-formal notation UCM-UI to the formal language
LOTOS is not straightforward. Some mapping rules that transform UCM-UI into LOTOS
elements were set up for this purpose. The mapping presented below is partially based on

previous work by Amyot (1994) and Charfi (2001) to transform UCM to LOTOS.

— start point: It is most generally a LOTOS action having the start point’s label. It
could also be a sequence of actions, a guarded behavior, or nothing if the start

point’s label is empty.

154

end point. Tt is most generally a LOTOS exit action carrying a value having the
end point’s label. It could also be an action or sequence of actions, or nothing if

the end point’s label is empty.

responsibility: A LOTOS action having the responsibility’s label or sequence of

actions.

= Some of the UCM-UI responsibilities such as those for indicating optional
and iterative responsibilities need to be mapped onto LOTOS expressions.
An example is in the translation of the Responsibility iterative operator
(*), its translation into LOTOS just requires a recursive call of the LOTOS
process associated with the responsibility in order to simulate the behavior
of restarting an activity just after the completion of an its previous

execution.

or-fork: LOTOS choice operator [] preceding each branch that represents a path
on the right side of the or-fork.

and-fork. Parallel composition operator preceding each branch that represents a

path on the right side of the and-fork.
or-join, and-join: Enable operator (>>).

components CI, C2: Processes C1 and C2. If there is a direct UCM path from C1

to C2 in the map then processes C1 and C2 communicate through the gate C1 to
C2.

static stub: plug-in Process having the stub’s label. Responsibilities in the stub

must be in the process gate list.

dynamic stub: Process having the stub’s label and composed of processes

representing each plug-in of this dynamic stub.

alternative: between plug-ins []

155

— timed waiting place: [] between sequences of actions representing each alternative

UCM path from the timed waiting place.

— access to database: The database is represented by a LOTOS process. Each
LOTOS action in this process corresponds to an action performed on the database

of the UCM.

— dialog: The dialog is represented by a LOTOS process. Each LOTOS action in
the process corresponds to an action performed in the dialog of the UCM-UI All

responsibilities in the dialog must be in the process gate list.

A simple example on the transformation from a CUCM to LOTOS specification is
illustrated using the ReturnBook use case in the CUCM of library system Figure 5.3.
First, all stubs of the CUCM are flattened to represent in one map all the design details
that are hidden by the stubs of the ReturnBook use case. The process of flattening stubs is
the process of replacing the stubs of a map by their internal behavior. Figure 7.6 covers
all the possible behaviors of stubs. Figure 7.7 and 7.8 show the derived LOTOS
specification of Figure 7.6 CUCM using the mapping presented above.

Librarian BookDatabase UserDatabase
BookTitle CheckLateFees CheckBookIn UpdateUDB
Renew End
X

Figure 7.6 UCM for Return a book to a library.

156

specification RETURNBOOK][BookTitle, CheckLateFees, CheckBookIn, Renew,
UpdateUDB,End}: noexit:

(* Abstract Data Types here... *)

behaviour

hide Chanl, Chan2 in

(Librarian [BookTitle,Chan1] ||| UserDataBase[UpdateUDB,End,Chan2]

I [Chanl, Chan2]|

BookDatabase[CheckLateFees, CheckBookIN,Renew,Chanl,Chan2])

where

(* Component processes here... *)

endspec (* ReturnBook *)

Figure 7.7 LOTOS Structure of Components of the RenewBook Use Case.

process BookDatabase[Checkl ateFees, CheckBookIn,Renew,Chanl,Chan2] : noexit:=
Chanl !LibrarianToBookDatabase ! m1; LateFees;

(

BooklIn; Chan2 ! BookDatabaseToUserDB ! m2; (* PROBE_¥*)

BookDatabase [ChecklLateFees, CheckBookIN,Renew,Chan1,Chan2]

(l

Renew; Chan2 ! BookDatabaseToUserDB ! m3; (* PROBE_*)

BookDatabase [CheckLateFees, CheckBookIN,Renew,Chanl,Chan2]

)

endproc (* BookDatabase *)

Figure 7.8 LOTOS Component Behavior of BookDatabase Process.

157

7.4 Avenue 3: UCM-UI to Linear Textual Form

UCM-UI models describe user interface requirements and high-level designs with causal
paths overlaid on a structure of components. The generation of linear textual forms from
UCM-UI models can be used as a front end for other software engineering tools. This
also enables the validation of requirements and facilitates the transition from
requirements to design. In this section, we address the challenges faced during the
automated generation of such linear textual forms. Scenario definitions and traversal
algorithms are first used to extract individual scenarios from UCM-UI and to store them
as' XML files. Transformations to other scenario languages (for instance, Message
Sequence Charts) are then achieved using XSLT, however this is beyond the scope of this
thesis. A number of research efforts were carried out on the transformation of UCMs to
eXtensible Markup Language (XML) (Miga, 1998; Miga et al., 2001, Amyot and
Eberlein, 2003). XML is a markup language for documents containing structured
information. XML was created to structure, store and to send information. It is a common

tool for all data manipulation and data transmission.

Guan (2002) represented UCM in XML format by the tool UCMNav according to
the XML Data Type Definition for UCMs. Figures 7.9, 7.10, and 7.11 show parts of the
data structure for UCM in XML. The elements in XML are shown in boxes and their
attributes are listed below them. A UCM model is called an UCM-Design in XML. It
contains root-maps and plugin-maps, which are represented as Models in XML. In the
UCM-Design, Components, Responsibilities and Plugin-bindings are also specified. Each
Model is made up of a collection of nodes (hyperedges) connected together (hyperedge-
connection). For UCM-UI models the CUCM model can be easily represented by the
XML using the Data Type Definition for UCMs. On the other hand PUCM are not.
Therefore, we've chosen XUL a linear transformation language to transform PUCM to

XUL.

158

component-specification?

A 4

(Component-id, component-
name, description)

responsibility-specification? |

(resp-id, resp-name,
description, exec-sequence)

(Design-Id,dtd-version)

plugin-bindings?

(parent-map-id, submap-id,
stub-id)

root-maps

(model-id, model-name,
title, description)

plugin-maps?

Figure 7.9 XML representation for UCM (Guan, 2002).

—» instace-values? |

(formal-param, value)

#{ in-connection-list? |

n-conn '

(stub-entry-id, hyperedge-id)

L out-connection-list?

(stub-exit-id, hyperedge-id)
Figure 7.10 XML representation for plugin-binding (Guan, 2002).

159

A

—» structure-spec? —® component-ref*

responsibility-list?

(component-ref-id,
reference-component)

other-hyperedge-list?

path-label-list?

\ 4

L path-spec? Hypergraph? # hyperedge-connection™®

(hyperedge-iQ}
hyperedge-name)
description)

in |

Figure 7.11 XML representation for model (Guan, 2002).

XUL stands for XML User-interface Language. XUL provides the ability to
create most elements found in modern graphical interfaces. It is generic enough that it
could be applied to the special needs of certain devices and powerful enough that
designers can create sophisticated interfaces with it. XUL is an XML language; therefore,
all features available to XML are also available to XUL. The transformation of PUCM
model to XUL can be implemented quickly and easily. Readers are referred to

www.xulplanet.com for more information and examples on XUL.

160

7.4.1 UCM Navigator Tool

The challenge of extracting scenarios from UCMs was first tackled by Miga et al. in
(2001), and their solution was prototyped in the UCM Navigator (UCMNav) tool.
UCMNav is a multi-platform tool written in C++. This tool can highlight the UCM paths
traversed according to scenario definitions, and generate individual scenarios in the form
of Message Sequence Charts using the Z.120 textual syntax. The UCM Navigator tool

offers the following features:

— Creation and manipulation of Use Case Maps that are always syntactically

correct.

— Path transformations and path connections based on internal hypergraph-based

semantics.

— Nested levels of stubs and plug-ins (sub-maps), with explicit binding of plug-ins

to stubs.
— Exporting and importing of root and plug-in maps to/from files.

— Separation of responsibility definitions from inclusion along paths, allowing

reuse.
— Binding of path elements to Buhr's architectural notation:

— Component attributes (type, formal, anchored, fixed, replicated, color, etc.) are

automatically reflected visually.

— Components can be nested inside other components (warnings can be displayed

for invalid bindings).
~ Pools and information on dynamic responsibilities are supported.
— Moving a component moves all its sub-components, elements, and path segments.
— Resizing a component can automatically reshape the paths bound to it.

— Support of extensions for agent systems and performance modeling.

161

Comment fields for almost any part of a map (path elements, components, goals,

etc.).
Pre/post conditions which can be attached to many path elements.

XForms-based GUI with scalable maps, large drawing area, zoom, and scroll

bars.

Generation of XML files valid with respect to the UCM Document Type

Definition.
Flexible report generation in PostScript:

Selection of sections to include: map description, responsibilities, path elements,

components, stub descriptions, and goals.

Ready for PDF generation: index, map stubs, and plugin names are hyperlinks.

(Very useful for on-line presentations.)
Option for maps on separate pages.

Exports maps in Encapsulated PostScript (EPS) and Maker Interchange Format
(MIF)

Easy-to-install binaries available for three platforms: Solaris, Linux (Intel and

SPARC), and HP/UX

The UCM Navigator is designed to handle any valid UCM as well as software

components. It is capable of binding these UCM elements to components. UCM

Navigator is also capable of creating multi-level maps in which sub-maps of a lower level

are expressed as stubs in a higher-level map. The editor currently supports nested levels

up to 10 deep. UCM Navigator generates industry-standard XML files which can be used

as input to other tools, including Agent generation tools and performance simulators.

More research is needed to extend the UCM Navigator to handle UCM-UI models.

162

7.5 Conclusions

UCM-UI was never intended to be a stand-alone model but rather a complement to
traditional requirement specification techniques. UCM-UI fit in many different software
engineering methodologies and design processes. For example, Section 7.1 shows the

smoothly integration of the UCM-UI concepts into UML and UML,.

In this chapter we also show that from the UCM-UI models a LOTOS
specification can be derived. The translation from UCM-UI to LOTOS corresponds to the
transformation and formalization of an abstract, semi-formal model into a less abstract,
formal and executable one. First, the UCM-UIs are analyzed; design errors can already be
corrected at this stage. Second, a LOTOS specification is derived following some UCM-
Ul to LOTOS mapping rules. In this experience, the LOTOS specification that we
obtained from the UCMs was hand-prepared. However, some work has been done by
Amyot (2000) to formalize the transformation of a UCM map into a LOTOS
specification. In addition, the automation of the transformation of UCMs into a skeleton
of LOTOS specification is currently being investigated within the LOTOS research group

of the University of Ottawa. However, this automation is not part of our work.

We also show that a textual linear form for UCM-UI expressed in XML and XUL
can be defined. This form is suitable for input to different tools and for generating
documentation. Having this XML and XUL Document Type Definition also enables an
easier integration of UCM-UI with upcoming standards for UML such as the XML
Metadata Interchange (XMI) and the UML eXchange Format (UXF).

163

Chapter 8

Conclusions and Future Research

This chapter summarizes the previous chapters that discussed various aspects of Scenario
and Use Case-Based for User Interface Requirement Engineering. On the one hand this
thesis shows the benefits of scenario and use case based requirements but on the other
hand it shows that many improvements can still be made. We first summarize the work
and state the main contributions of this thesis. Since the field of user interface
requirements is still developing rapidly, we discuss some ideas for future research on

scenario-based approaches.

164

8.1 Summary of the Thesis

Better techniques for improving human understanding and communication will result in
better user interfaces built faster with fewer design errors. This dissertation offers the
prospect of having a significant impact on representing and understanding user interface
requirements by proposing a new framework. The new framework SUCRE (scenario and
use case based requirements engineering) defines a set of extensions to UCM in order to
improve the support it provides for modeling interactive systems. The necessity of
extending UCM comes from the shortcomings of UCM identified in Chapter 3. We build
a complete UCMs notation for high-level requirements of user interfaces, complete in the
sense we put together three dimensions of user interface requirements including the task,

the dialog, and the structure of the user interface.

The SUCRE framework ensures that: (1) a consistent and complete requirement
specification can be captured using scenarios and use cases, (2) the specification is a
valid reflection of user requirements, (3) design artifacts such as low fidelity prototypes
are derived for early evaluations. SUCRE also, defines operators for a formal analysis of
the consistency, completeness and precision of the UCM-UI models. Chapter 5 illustrates
that the use of the proposed operators had facilitated in generating models and
implementations faster and at a lower cost while improving their correctness and

traceability with respect to the requirements.

In the proposed framework, we also aim at rapid prototyping for the purpose of
end-user validation at an early stage of development. The generated prototype serves as a
vehicle for evaluating and enhancing the user interfaces and the underlying specification.
When only paper mockups are available, it is possible to ask users to perform their tasks.
This usually leads to high level comments about the interface. When a running prototype
is developed, detailed usability testing can be done. In early requirement phases, we use
the UCM-UI usability metrics suite presented in Chapter 6 to predict usability and to look

for problems or possible improvements.

165

This thesis also argues that detailed requirements need a mix of informal and
formal representations. Sometimes there is a need for precision while creativity often
asks for informal representation. UMLi, LOTOS, and XML are precise techniques that
allow bridging the gap between use case modeling for user interface and detailed design.
There notation are suitable for the proposed UCM-UI model. Techniques to link UCM-

UI model to the above precise representations has been described in Chapter 7.

Concisely, SUCRE framework provides rich and precise mode of expression that
not only meets the needs of user interface designers and software engineers, but is also
easily understood and validated by end-users. It acts as an effective bridge between
usability engineering and user interface design on the one hand and software engineer on
the other. For usability engineers, it provides a concise medium for modeling user
requirements. In the hands of user interface designers, it is a powerful task model for
understanding user needs and guiding user interface design. For software engineers, it

guides the design of communicating objects to satisfy functional requirements.

166

8.2

Contributions

This thesis discusses a scenario and use case based framework for specifying user

interface requirements. In Chapter 2, the main pitfalls of current scenario-based

approaches for user interfaces are presented. Chapter 3 illustrates a general outline of the

framework; each of the main framework activities is discussed in detail. Not only the

theoretical aspects of the framework are discussed but also practical aspects such as

representation techniques and tool support. Next we discuss our contributions to solve

these problems:

Improving the available techniques of scenario and use cased-based models for
user interfaces. Developing better techniques has been done by first addressing
the most significant and missing aspects in the current use of scenarios and use
case-based models for user interface descriptions. A detailed study of the existing
models for user interface was carried out in Chapter 2. The different scenario and
use case-based models are evaluated and their pros and cons are highlighted.
Then, we built on top of this knowledge the Use Case Maps for User interface
(UCM-UI) model; a comprehensive proposal for improving the supporting UCM
to model interactive systems. The model is based on common concepts in
scenario analysis techniques and has been developed further over the duration of
the research project. Using the UCM-UI model we have looked at representations
(2) for user interface designers to answer the question how and what can be
modeled for user interfaces and (b) for users to easily read and understand the

requirement model.

Reducing the effort of developing detailed use case models. The effort to develop
a user interface requirement document is reduced in several ways (a) by offering
improved techniques and models, user interface designers have a much better idea
on how to model a user interface. It gives them conceptual methods to start

building use case model, and (b) the manual activities such as creating and editing

167

the UCM-UI models can be supported by the UCM Navigator tool. We
demonstrate how UCM-UI can be implemented in the UCM Navigator tool.

Formal validation of the requirements. The process of constructing UCM-UI
model may sensibly be augmented by a set of heuristics for setting up a formal
analysis. Chapter 5 demonstrates that these heuristics may be used to build
operators that validate the UCM-UI model and improve the overall quality of the
requirement. The use of the operators results in a consistent, complete, and
precise user interface requirement model. This model is generated faster with

fewer design errors.

Investigate metrics to predict system usability in the requirements phase. Chapter
6 of this thesis is entirely devoted to this issue. We have developed a metrics suit,
the UCM-UI metrics suite, to allow user interface designers using the SUCRE
framework to predict and improve the interface quality, to control and improve
the requirement processes, and to decide on the acceptance of the interface. This
metrics suite gives guidance when making design decisions and when evaluations

are done.

Effective employment of use cases in the design of the actual product. One of the
difficult steps in the user interface development process is the transition from the
informal to formal requirements. This transition must be characterized by a
combination of engineering and creativity in order to incorporate requirement
results in a concrete design. Chapter 7 developed strategies for (a) linking UCM-
UI to UML,, (b) generating LOTOS specifications from UCM-UI, and (c) storing
UCM-UI scenarios in XML and XUL files.

168

8.3

Future Research

Developing a requirement framework almost never ends. There are still many areas that need to

be improved both on the theoretical and the practical side. Theories are important to link together

many aspects in the process of requirements. With the help of sound theories, we can develop

practical techniques that make improvements of the requirement process possible. Many items

left for future work are distributed among the previous chapters. The following list recalls the

most important ones, which target the automation and generalization of this work:

Bringing SUCRE to the work practice. In the area of user interface requirement
engineering this thesis has made advances both on theory and on practical techniques.
Nonetheless, those techniques probably need to be refined through many applications
before they are established techniques that every designer uses. Extensive application

experiences can show missing aspects, tune techniques and improve insights.

Integrated tools supporting several activities of the SUCRE framework. This tool could
be part of the existing UCM Navigator tool that was developed by Andrew Miga in 1998.
UCM Navigator needs to be extended to support the UCM-UI models. Moreover, a data
dictionary for early usability prediction of the UCM-UI scenarios must be defined. The
current UCM Navigator is a prototype that is not finished and more development could
lead to a tool of commercial quality. Tools are nowadays essential elements in most
design processes. Any method or framework for software development could greatly

benefit from tool support both for the process itself and for acceptance in the industry.

The development of automated tools supporting consistency, completeness and precision.
Developing a tool that check the UCM-UI model at each step of evolution would provide
an automated proof of the UCM-UI correctness. Such automated support will allow us to
test the validity of our argument by applying it in a case study over an entire release of a

product family that can be developed with the UCM Navigator.

169

REFERENCES

Alsumait, A., Seffah, A, & Radhakrishnan, T. (2003). Use Case Maps: A Visual Notation for
Scenario-Based Requirements. In Proceedings of the 10th International Conference on
Human - Computer Interaction, Crete, Greece, June 22-27, 3-7.

Alsumait, A., Seffah, A., & Radhakrishnan, T. (2002). Use Case Maps: A Roadmap for Usability
and Software Integrated Specification. In Proceedings of IFIP World Computer
Confference, Montreal, Canada, 119-131.

Amoroso, D., & Cheney, P. (1992). A Report on the State of End-User Computing in Large North
American Insurance Firms. Journal of Information Management, 8(2), 39-48.

Amyot, D. (1994). Formalization of Timethreads Using LOTOS. Master Thesis, Dept. of
Computer Science, University of Ottawa, Ottawa, Canada.

Amyot, D. (1999). Use Case Maps and UML for Complex Software-Driven Systems. Technical
Report, August 1999. www.usecasemaps.org.

Amyot, D. (2000). Use Case Maps as a Feature Description Language. In: Language Constructs
for Designing Features, S. Gilmore and M. Ryan, Eds. Springer-Verlag, 27-44.

Amyot, D., & Eberlein, A. (2003). An Evaluation of Scenario Notations and Construction
Approaches for Telecommunication Systems Development. Telecommunications Systems
Journal, 24(1), 61-94.

Amyot, D., & Mussbacher, G. (2001). Bridging the Requirements/Design Gap in Dynamic
Systems with Use Case Maps (UCMs), Tutorial in: 23rd International Conference on
Software Engineering (ICSE 2001), Toronto, Canada.

Amyot, D., Andrade, R., Logrippo, L., Sincennes, J., & Yi, Z. (1999). Formal Methods for
Mobility Standards. In Proceedings of IEEE 1999 Emerging Technology Symposium on
Wireless Communications & Systems, Dallas, Texas, USA, April 1999. Editor: Traci

Annett, J., & Duncan, K. (1967). Task analysis and training in design. Occupational Psychology,
41, 211-221.

Antén, A., & Potts, C. (1998). A Representational Framework for Scenarios of Systems Use.
Requirements Engineering Journal, 3, 219-241.

Antén, A., Carter, A., Dagnino, A. Dempster, J., & Siege, D. (2001). Deriving Goals From a Use-
Case Based Requirements Specification. Requirements Engineering Journal, 6 (1), 63—
73.

Ardis, M. A., Chaves, J. A., Jagadeesan, L. J., Mataga, A, P., Puchol, C., Staskauskas, M. G., &
Olnhausen, J. V. (1996). A Framework for Evaluating Specification Methods for Reactive
Systems - Experience Report. {EEE Transactions on Software Engineering, 22 (6), 378-
389.

Avison, D., & Fitzgerald, G. (1995). Information Systems Development: Methodologies,
Techniques and Tools. McGraw-Hill, Maidenhead, UK.

Bamum, C. (2002). Usability Testing and Research. Allyn and Bacon, NY.

170

Bell, E.,, & Thayer, A. (1976). Software Requirements: Are They Really a Problem?. In:
Proceeding ICSE-2: 2nd Intrnational Conference on Software Enginering, San Francisco,
USA, 61-68.

Ben Achour, C., Souveyet, C., & Tawbi, M. (1999). Bridging the Gap between Users and
Requirements Engineering: the Scenario-Based Approach. [International Journal of
Computer Systems Science and Engineering, 379-385.

Benner, K. M., Feather, M. S., Johnsin, W. L., & Zorman, L.A. (1993). Utilizing Scenarios in the
Software Development Process. In Proceedings of of IFIP WG 8.1 Working Conference
on Information Systems Development Process, 117-134.

Benyon, D., & Macaulay, C. (2002). Scenarios and the HCI-SE Design Problem. Interacting with
Computers, 14(4), 397-405.

Berry, D. (1994). Involving Users in Expert System Development. Expert Systems, 11(1), 23-28.

Bevan, N. (1999). Quality in Use: Meeting User Needs for Quality, Journal of System and
Software, 49(1), 89-96.

Bevan, N., & Curson, 1. (1997). Who Needs Usability Metrics?. INTERACT. 123-125.

Bickerton, M., & Siddiqi, J. (1993). The Classification of Requirements Engineering Methods,
Requirements Engineering, 182-186.

Bly, S. (1997). Field Work: Is it Product Work? Interaction, 4(1), 25-30.
Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Bolognesi, T., & Brinksma, E. (1987). Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN systems, 14, 25-59.

Bramble, P., Cockburn, A., Pols, A., & Adolph, S. (2003) Patterns for Effective Use Cases.
Addison Wesley.

Buhr, R. (1996). Use Case Maps for Attributing Behaviour to System Architecture. In
Proceedings of Fourth International Workshop on Parallel and Distributed Real Time
Systems (WPDRTS), Honolulu, Hawaii, 15-16 April.

Buhr, R. (1998). Use Case Maps as Architectural Entities for Complex Systems. [EEE
Transactions on Software Engineering, 24(12), 1131-1155.

Buhr, R., & Casselman, R. (1996). Use Case Maps for Object-Oriented Systems, Upper Saddle
River, NJ, Prentice Hall.

Burns, C., Dishman, E., Verplank, W., & Lassiter, B. (1994). Actors, Hairdos & Videotape-
Informance Design, In Conference Companion on Human Factors in Computing Systems,
April 24-28, Boston, Massachusetts, USA. 119-120.

Card, S., Moran, T., & Newell, A. (1983). The Psychology of Human-Computer Interaction,
Lawrence Erlbaum Associates.

Carroll, M. (1999). Five Reasons for Scenario-Based Design. In: Proceedings of the 32nd Hawaii

International Conference on Ssystems Sciences, Wailea, HI. January 5-8, IEEE CS Press,
3051.

171

Carroll, M. (2002). Scenarios and Design Cognition. In Proceedings IEEE Joint International
Conference on Requirements Engineering (RE'02). Essen, Germany 9-13 Sept, 3 - 5.

Chandrasekaran, P. (1997). How Use Case Modeling Policies Have Affected the Success of
Various Projects. In Proceedings Addendum to the 1997 ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Langauages, and Applications. 6-9.

Charfi, L. (2001). Formal Modeling and Test Generation Automation With UCMs and LOTOS.
Master Thesis, Dept. of Computer Science, University of Ottawa, Ottawa, Canada.

Checkland, P. (1981). Systems Thinking, Systems Practice. Wiley, Chichester, UK

Chin, G., Rosson, M., & Carroll, M. (1997). Participatory Analysis: Shared Development of
Requirements from Scenarios. In Proceedings on Human Factors in Computing Systems,
Atlanta, Georgia, United States, 162-169.

Clavadetscher, C. (1998): User Involvement: Key to Success. [EEE Software, Requirements
Engineering, 2, 30-33

Cockburn, A. (1997). Structuring Use Cases with Goals. Journal of Object-Oriented
Programming,, 10(5), 56-62.

Cockburn, A. (2001). Writing Effective Use Cases. Addison-Wesley. Boston, Massachusettes.

Collins, D. (1995). Designing Object-Oriented User Interfaces. Benjamin/Cammings, Redwood
City, CA.

Constantine, L. (1995). Essential Modeling: Use Cases for User Interfaces. ACM Interactions, 2,
34-46.

Constantine, L. (1996). Usage-Centered Software Engineering: New Models, Methods, and
Metrics. In Software Engineering: Education and Practice, M. Purvis, Ed. IEEE
Computer Society Press. Los Alamitos, California.

Constantine, L., & Lockwoaod, D. (1999). Software for Use: A Practical Guide to the Models and
Methods of Usage-Centered Design. Addison-Wesley Publishing ACM Press.

Darke, P, & Shanks, G. (1997). User Viewpoint Modelling: Understanding and Representing
User Viewpoints during Requirements Definition. Information System Journal, 7(3),
213-239.

Davis, A. M. (1993). Software Requirements-Objects, Functions and States. Prentice Hall.

Duke, D. J., Fields, R. E, & Harrison, M. D. (1999). A Case Study in the Specification and
Analysis of Design Alternatives for a User Interface. Formal Aspects of Computing,
11(2), 107-131.

Elkoutbi, M., Khirss, 1., & Keller, R. (1999). Generating User Interface Prototypes from
Scenarios. In Proceedings of the IEEE International Symposium on Requirements
Engineering, Limerick, Ireland. 150.

Enderton, H. (1977). Elements of Set Theory. Academic Press, London, UK.

Gervasi,V., & Nuseibeh, B. (2002). Lightweight Validation of Natural Language Requirements.
Software: Practice and Experience, 32(2), 113-133.

172

Glinz, M. (1995). An integrated formal Model of Scenarios based on Statecharts, Lecture Notes in
Computer Science, 254-271.

Goguem, J., & Linde, C. (1993). Techniques for Requirements Elicitation. In: First International

Symposium on Requirements Engineering. IEEE Computer Society Press, Los Alamitos,
CA, 152-164.

Grice, R. (2003). Comparison of Cost and Effectiveness of Several Different Usability Evaluation
Methods: A Classroom Case Study. In Proceedings of IEEE International Professional
Communication Conference, Sept. 21-24, 140 — 144.

Guan, R. (2002). From Requirements to Scenarios through Specifications: A Translation
Procedure from Use Case Maps to LOTOS. Master Thesis, Dept. of Computer Science,
University of Ottawa, Ottawa, Canada.

Harper, B. D. & Norman, K. L. (1993). Improving User Satisfaction: The Questionnaire for User
Interaction Satisfaction Version 5.5. In Proceedings of the 1st Annual Mid-Atlantic
Human Factors ConferenceVirginia Beach, VA., 224-228.

Harel, D. (2001). From Play-In Scenarios to Code: An Achievable Dream. IEEE Computer,
34(1), 53-60.

Haumer, P. (2000). Requirements Engineering with Interrelate Conceptual Models and Real
world Sense. Ph.D. Thesis. Dept. of Information Systems, Technical University of
Aachen, Aachen, Germany.

Haumer, P., Heymans, P., Jarke, M., & Pohl, K. (1999). Bridging the Gap Between Past and
Future in RE: a Scenario-Based Approach. In Proceedings of the Fourth IEEE

International Symposium on Requirements Engineering (RE'99), Limerick, Ireland, June
7-11, 66-73.

Hausmann, J., Heckel, R. & Taentzer, G. (2002). Detection of Conflicitng Functional
Requirements in a Use case-Driven Approch: A Statistic Analysis Technique Based on
Graph Transformation. In Proccedings of International Conference on Software
Engineering (ICSE'02), May 19-25, Orlando, Florida, USA, 105-115.

Herlea, D. (1999). User participation in requirements negotiation. ACM SIGGROUP Bulletin, 20
(1),30-35.

Hertzum, M. (2003). Making Use of Scenarios: A Field Study of Conceptual Design.
International Journal of Human-Computer Studie, 58 (2), 215-239.

Hix, D., Hartson, H. (1998). Developing User Interfaces: Ensuring Usability Through Product
and Process. John Wiley and Sons Inc.

Holzblatt, K., & Beyer, K. R (1995). Requirements Gathering: the Human Factor.
Communication of the ACM, 38 (5), 31.

Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., & Chen, C. (1994). Formal Approach to
Scenario Analysis. IEEE Software, 11(2), 33-41.

IEEE-610.12. (1991). IEEE Standard Glossary of Software Engineering Terminology.
IEEE-830. (1984). Guide to Software Requirements Specification, ANSI/IEEE Std. 830.

livari, J, & Hirschheim, R. (1996). Analysing Information Systems Development: A Comparison
and Analysis of Eight IS Development Approaches. Information Systems, 21(7), 551-5735.

173

ISO 9214-11. (1991). Ergonomic Requirements for Office Work with VDT’s — Guidance on
Usability.

ITU-T (2003) Recommendation Z.150, User Requirements Notation (URN) - Language
Requirements and Framework. Geneva, Switzerland. http://www.UseCaseMaps.org/urn/.

Ivory, M., & Hearst, M. (2001). The State of the Art in Automating Usability Evaluation of User
Interfaces, ACM Computing Surveys (CSUR), 33 (4), 470-516.

Jackson, M. (1995). Software Requirements and Specifications: A Lexicon of Practice, Principles
and Prejudices. Addison Wesley, Great Britain.

Jacobson, I. (1992). Object-Oriented Software Engineering. Addison-Wesley, Readin, MA.

Jacobson, L. (1995). The Use-Case Construct in Object-Oriented Software Engineering. In
Scenario-Based Design, Envisioning Work and Technology in System Development, M.
Carroll, Ed. John Wiley and Sons, New York, 309-336.

Jarke, M. (1999). Scenarios for Modeling. Communications of the ACM 42(1), 47-48.

Jarke, M., Bui, X., & Carroll, J. M. (1998). Scenario Management: An Interdisciplinary
Approach. Requirements Engineering, 3, 155-173.

John, B. E., & Kieras, D. E. (1996). The GOMS Family of User Interface Analysis Techniques:
Comparison and Contrast. ACM Transactions on Computer-Human Interaction, 3, 320~
351.

Kirwan, B., & Ainsworth, 1. K. (1992). A Guide to Task Analysis. Taylor and Francis,
Washington, DC.

Koh, S., & Heng, M. (1996). Users and Designers as Partners: Design Method and Tools for User
Participation and Designer Accountability within the Design Process. Information System
Journal, 6(4), 283-300.

Kruchten, P., Ahlgvist, S., & Bylund, S. (2001). User Interface Design in the Rational Unified
Process, In Object Modeling and User Interface Design, M. Van Harmelen, Ed. Addison-
Wesley, Reading, Massachusetts.

Kujala, S. (2002). User Involvement: A Review of the Benefits and Challenges. In Preprints,
Software Business and Engineering Institute, T. Soininen, Ed. Helsinki University of
Technology, HUT-SoberIT-B1. Espoo, Finland, 1-32.

Kujala, S. (2003). User Involvement: a Review of the Benefits and Challenges. Behavior and
Information Technolog, 22(1), 1-16.

Kurke, M. I. (1961). Operational Sequence Diagrams in System Design. Human Factors, 3, 66-
73.

Kyng, M. (1995). Creating Contexts for Design. In Scenario-Based Design: Envisioning Work
and Technology in System Development, M. Carroll, Ed. Wiley, New York, 85-107.

Lee, J., & Xue, N. (1999). Analyzing User Requirements by Use Cases: A Goal-Driven
Approach. IEEE Software, 16(4), 92-101.

Lilly, S. (1999). Use Case Pitfalls: Top 10 Problems from Real Projects using Use Cases. In
Proceedings of Technology of Object-Oriented Languages and Systems, TOOLS, 174-
183.

174

Logrippo, L., Faci, M., & Haj-Hussein, M. (1992). An Introduction to LOTOS: Learning by
Examples. Computer Networks & ISDN Systems, 23(5), 325-342.

Lutz, R. (1993). Analyzing Software Requirements Errors in Safety-Critical, Embedded Systems.
In: Proceedings of First International Symposium on Requirements Engineering, San
Diego, 126-133.

Maack, J. (2001). Scenario Analysis: A Tool for Task Managers. In Social Analysis: Selected
Tools and Technique, R. Krueger, M. Casey, J. Donner, S. Kirsch, and J. Maack, Eds.
Social Development. World Bank (36), Social Development Department, Washington,
D.C.

Macaulay, L. A. (1996). Cooperation, Requirements Analysis and CSCW. In CSCW
Requirements and Evaluation, P. Thomas, Ed. Springer-Verlag, London.

Madsen, K. H. (1999). The Diversity of Usability Practices. Communications of the ACM 42(5),
60-62.

Mayhew, D. (1999). The Usability Engineering Lifecycle: A Practitioner's Handbook for User
Interface Design. Morgan Kaufmann Publishers.

Medina-Mora, M., & Denger, C. (2003). Requirement Metrics An Initial Literature Survey On
Measurement Approaches for Requirement Specifications. Kaiserslautern 2003, IESE-
Report 096.03/E.

Miga, A. (1998). Application of Use Case Maps to System Design with Tool Support. Master
Engineering Thesis, Dept. of Systems and Computer Eng., Carleton University, Ottawa,
Canada.

Miga, A., Amyot, D., Bordeleau, F., Cameron, C., & Woodside, M. (2001). Deriving Message
Sequence Charts from Use Case Maps Scenario Specification. In Tenth SDL Forum
(SDL'01), Copenhagen, 2001. LNCS 2078, 268-287.

Mumford, E. (1984). Participation: From Aristotle to Today. In Beyond Productivity: Information

Systems Development for Organizational Effectiveness, T. Bemelmans, Ed. Elsevier
Science Publishers, 303-312.

Mumford, E. (1985). Defining System Requirements to Meet Business Needs: A Case Study
Example. The Computer Journal, 28(2), 97-104.

Nasr, E., McDermid, J., & Bernat, G. (2002). A Technique for Managing Complexity for Large
Complex Embedded Systems. In Proceedings of the Seventh International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS 2002). 29 April-1 May,
Washington, D.C., USA, 225-232

Nielsen, J. (1993). Usability Engineering. Academic Press.

Nielsen, J. (1996). Usability Metrics: Tracking Interface Improvements. I[EEE Software, 13(6),
12-13.

Nielson, J. (1990). Paper Versus Computer Implementations as Mockup Scenarios for Heuristic
Evaluation. In Proceedings of the Third International Conferences on Human-Computer
Interaction, 1-8.

Norman, D. A. (1998). The Design of Everyday Things. The MIT Press.

175

Nuseibeh, B., & Easterbrook, S. (2000). Requirements Engineering: A Roadmap. .In Proceedings
of International Conference on Software Engineering (ICSE-2000), ACM Press, 4-11
June, Limerick, Ireland.

Overmyer, S. P. (1999). The Use of Scenarios in Developing, Validating, and Specifying
Requirements for Interactive Systems: A Case Study from a NASA Project. In
Requirement Engineering: Foundation for Software Quality REFSQ'99, Heidelberg,
Germany. http://www.ifi.uib.no/konf/refsq99/papers.html.

Palmer, J. D. (1987). Uncertainty in Software Requirements. Large Scale Systems, 12, 257-270.

Parker, H., Roast, C., & Siddigi, J. (1997). Towards a Framework for Investigating Temporal
Properties in Interaction. SIGCHI Bulletin, 29(1), 56-60.

Paterno, F. (1999). Model-Based Design and Evaluation of Interactive Applications. Springer-
Verlag, London, UK.

Paterno, F. (2001). Towards a UML for Interactive Systems. In Engineering Human Computer
Interactions HCI '01, Lecture Notes Computer Science, Springer Verlag, Toronto, 7-18.

Paterno, F., Mori, G., & Galimberti, R. (2001). CTTE: An Environment for Analysis and
Development of Task Models of Cooperative Applications. In Proceedings ACM CHI'0I,
March 2001, Seattle, 21-22.

Payne, S., & Green, T. (1989). Task-Action Grammar: The Model and its Developments, In Task
Analysis for Human-Computer Interaction, D. Diaper, Ed. Ellis Horwood, Cambridge
MA.

Phillips, C., & Kemp, E. (2002). In Support of User Interface Design in the Rational Unified
Process. In ACM International Conference Proceeding, Third Australasian conference on
User interfaces, Melbourne, Victoria, Australia, 21-27.

Pine, B. (1989). Design, Test and Validation of Application System/400 Through Early User
Involvement. IBM Systems Journa, 28(3),376-385.

Pinheiro da Silva, P. (2000) UMLi: Integrating User Interface and Application Design. In
Electronic proceedings of the UML2000 Workshop on Towards a UML Profile for
Interactive Systems Development (TUPIS2000), York, United Kingdom.

Pinheiro da Silva, P., & Paton, N. W. (2003). User Interface Modeling in UMLI. IEEE Software,
20(4), 62-69.

Pohl, K. (1994). The Three Dimensions of Requirements Engineering: A Framework and its
Applications. Information Systems, 19(3), 243--258.

Pohl, K. (1996). Process Centered Requirements Engineering. I. Wiley and Sons Ltd.

Pomerol, J. (1998). Scenario Development and Practical Decision Making under Uncertainty:
Application to Requirements Engineering. Requirements Engineering, 3,174-181.

Potts, C., Takahashi, K., & Anton A. (1994). Inquiry-Based Requirements Analysis. IEEE
Software, 11(2),21-32.

Preece, J, Rogers, Y, Sharp, H, Benuyon, D, Holland, S, and Carey, T (1994). Human Computer
Interaction. Addison-Wesley.

176

Regnell, B., Kimbler, K., & Wesslen, A. (1995). Improving the Use Case Driven Approach to
Requirements Engineering. In Second [EEE International Symposium On Requirements
Engineering, York, England, March 1995, 1. C. S. Press, 40-47.

Robotham, T., & Hertzum, M. (2000). Multi-Board Consept- A Sacenario Based Approach for
Supporting Product Quality and Life Cycle Oriented Design. In Proceedings of TMCE
2000: Third International Symposium on Tools and Methods of Competitive Engineering,
Delft, The Netherlands, April 18-21, 2000, I. Horvth, A. Medland, and J. Vergeest, Eds.
763-774.

Rolland, C., Ben Achour, C., Cauvet, C., Ralyte, J., Sutcliffe, A. G., Maiden, N., Jarke, M.,
Haumer, P., Pohl, K., Dubois, E., & Heymas, P. (1998). A Proposal for a Scenario
Classification Framework. Requirements Engineering Journal, 3(1}, 23-47.

Rouff, C. (1996). Formal Specification of user interfaces. SIGCHI Bulletin, 28(3), 27-33.

Rubin, S., & Goldberg, A. (1992). Object Behaviour Analysis. Communications of the ACM,
35(9), 48-62.

Rudd, J., Stern, K., & Isensee, S. (1996). Low vs. High Fidelity Prototyping Debate. Interactions,
3,76-85.

Rumbaugh, J. (1994). Getting Started-Using Use Cases to Capture Requirements. Journal of
Object-Oriented Programming, 7, 8-23.

Rumbaugh, J., & Booch, G. (1996). Unified Method, Notation Summary Version 0.8. Rational
Software Corporation.

Ruthford, M. A. (2002). Mix and Match Usability Methods: Picking the Pieces for our Project In
Proceedings of IEEE International Professional Communication conference, 17-20 Sept,
343 - 351.

Scapin, D., & Pierret-Golbreich, C. (1989). Towards a Method for Task Description: MAD, Work
With Display Units, 89, 371-380.

Seffah, A., & Hayane, C., (1999). Integrating Human Factors in Use Case and OO Methods. In
Proceedings of Integrating Human Factors in Use Case and OO Methods-13th ECOOP.
June 14-19, Lisbon, Portugal, 240-254.

Shneiderman, B. (1998). Designing the User Interface, Addison-Wesley Publishing Company,
USA.

Somé, S., Dssouli, R., & Vaucher, J. (1996). Toward an Automation of Requirements
Engineering using Scenarios. Journal of Computing and Information, 2(1), 1110-1132.

Sprivey, J. M. (1992). The Z Notation: A Reference Manual, 2nd edition, Prentice-Hall.

Srdjan, K. (1998). UML and User Interface Modeling. In Proceedings of The Unified Modeling
Language, «UML»'98: Beyond the Notation, First International Workshop, Mulhouse,
France, June 3-4, J. Bézivin,& P Muller, Eds. 253-266.

Standish Group, (1998). Software Chaos. http://www.standishgroup.com/chaos.htmil.

Sulack, A., Lindner, R., & Dietz, D. (1989). A New Development Rythm for AS/400 Software.
IBM Systems Journal, 28(3), 386-406.

177

Sutcliffe, A. (2003). Scenario-Based Requirements Engineering. In Proceedings of the 11th IEEE
International, Requirements Engineering Conference. 8-12 Sept., 320 - 329.

Sutcliffe, A., & Ryan, M. (1998). Experience with SCRAM, a Scenario Requirements Analysis
Method. In Proceedings: IEEE International Symposium on Requirements Engineering:
RE '98, Colorado Springs C., Los Alamitos, CA. 6-10 April, 164-171.

Thomas, C., & Bevan, N. (1996). Usability Context Analysis: A practical guide, Version 4.
National Physical Laboratory, Teddington, UK.

Torkzadeh, G., & Doll, W. (1994). The Test-Retest Reliability of User Involvement Instruments.
Information and Management, 26, 21-31.

van der Poll, J., & Kotzé, P. (2002). What Design Heuristics May Enhance the Utility of a Formal
Specification? In Proceedings of SAICSIT 2002: Enablement Through Technology. Port
Elizabeth, South Africa. 179 — 194.

van der Poll, J., Kotzé, P., Seffah, A., Radhakrishnan T., & Alsumait, A. (2003). Combining
UCMs and Formal Methods for Representing and Checking the Validity of Scenarios as
User Requirements. In Proceedings of South African Institute of Computer Scientists and
Information Technologists SAICSIT 2003, 59-68. .

van Lamsweerde, A. (2000a). Requirements Engineering in the Year 00: A Research Perspective.

In: Proceedings of the 22nd International Conference on Software Engineering, June
2000, 5-19.

van Lamsweerde, A. (2000b). Formal Specification, In: Proceedings of the conference on The
future of Software engineering. May 2000, 147-159.

van Welie, M. (2000). Task-Based User Interface Design. Ph.D. Thesis, Vrije University,
Amsterdam .

van Welie, M., van der Veer, G., & Koster, A. (2000). Integrated Representations for Task
Modeling, In Proceedings of the ‘Tenth European Conference on Cognitive Ergonomics,
Linkoping, Sweden, 129-138.

Vanlommel, E., & de Brabander, B. (1975). The Organization of Electronic Data Processing
(EDP) Activities and Computer Use. Journal of Business, 48(2), 391-410.

Virzi, R., Sokolov, J., & Karis, D. (1996). Usability Problem Identification Using Both Low- and
High-Fidelity Prototypes. In Proceedings of the SIGCHI conference on Human factors in
computing systems: common ground.Vancouver, British Columbia, Canada. 236-243.

Vredenburg, K., Mao, J., Smith, P., & Carey, T. (2002). A Survey of User-Centered Design
Practice. In Proceedings of Computer Human Interaction CHI2002, April 20-25, 2002,
Minneapolis, Minnesota, USA, 471-478.

Weidenhaupt, K., Pohl, K., Jarke M., & Haumer P. (1998). CREWS team. Scenarios in System
Development: Current Practice. IEEFE Software, 15(2), 34-45.

Wiegers, K. (1997). Use Cases: Listening to the Customer’’s Voice. Software Developmet, 5, 49-
62.

Wixon, D., Jones, S., Tse, L., & Casady, G. (1994). Inspections and Design Reviews:
Framework, History, and Reflection. In Usability Inspection Methods, J. Nielsen and R.
Mack, Eds. New York-John Wiley and Sons.

178

Wos, L. (1998). Programs that Offer Fast, Flawless, Logical Reasoning, Communications of the
ACM, 41(6), 87 - 95.

Yourdon, E. (1994). Object-Oriented Systems Design: An Integrated Approach. Prentice Hall
PTR, Yourdon Press Series, Englewood Cliffs, New Jersey.

Zhu, H., & Jin, L. (2000). Scenario Analysis in an Automated Tool for Requirements
Engineering. Journal of Requirements Engineering, 5, 2-22.

Zowghi, D., Gervasi, V., & McRae, A. (2001). Using Default Reasoning to Discover
Inconsistencies in Natural Language Requirements. In Proceedings of the 8" Asia-Pacific
Software Engineering Conference, Macau, China, December 2001.

179

