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Abstract

Approximation of Absolutely Continuous Invariant measures

for Markov Compositions of Maps of an Interval

Chandra Nath Podder
We study the approximation of absolutely continuous invariant measures of systems
defined by random compositions of piecewise monotonic transformation (Lasota-Yorke
maps). We discuss a generalization of Ulam’s finite approximation conjecture to
the situation where a family of piecewise monotonic transformations are composed
according to a Markov law, and study an analogous convergence result. Also, we

present bounds for the L' error of the Ulam’s approximation.
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Chapter 1

Introduction

General Introduction

A random map is a discrete time dynamical system under considering of a collection
of transformations which are selected randomly by means of probabilities at each it-
eration. Let {T}}%_, be a collection of nonsingular mappings from the unit interval
I into itself. Given an intial point « € I, and a random sequence (k,, k1,--- ,) with
ky € {1,2,--- ,r} for N 2 0, a random orbit by defining the N** point in the orbit to
be xy = zn(kn_1, " ko, %) = Ty_, 0+ 0Tk, 0 T,x. The map Ty, _, that is applied
at time N is chosen so as to depend only on the map applied at the previous time
step, and according to the same probability law for all time. In this situation, the
indices kg, k1, - - - arise as random variables of a stationary first order Markov chain,

and we call such a composition of maps a Markov random composition.



We study the asymptotic behaviour of such systems in situation where the orbits
{zn}%_g C I have the same asymptotic distribution on I for almost all sequences
ko, k1, - - - and almost all starting points z € I, and we discuss the method of Ulam [15]
which produces a rigorous approximation method for absolutely continuous probabil-
ity measures that are invariant on average under the action of the random systems.

In the case of a single mapping (with infzer fb,. b3 [T7(2)] > 1) Li [9] first proved
convergence of Ulam’s approximation to the unique absolutely continuous invariant
measure, following the Lasota and Yorke [8] proof of the existence of an absolutely
continuous invariant measure. The existence of an absolutely continuous invariant
measure for independent identical distributed (iid) random compositions of such map-
pings has been considered in this setting by Pelikan [13].

In the case of random compositions Ulam’s conjecture has been studied by Froy-
land [3]. In our thesis, we follow Froyland [3], where we restrict ourselves by using

Lasota-Yorke type.

Outline of the thesis

In Chapter 2, we introduce the Frobenius-Perron operator, which is a powerful tool
to study the existence of absolutely continuous invariant measures for a large class of
transformations 7, which are piecewise C? and satisfy the condition |7/| > 1, where the
derivative exists. In Section 2.4, we present some well-known results; the Kakutani-

Yoshida theorem, Helly’s Selection Principle and the Lasota-Yorke Theorem, which



are needed for the existence theorem. Section 2.5 deals with approximating the fixed

point of the Frobenius-Perron operator with fixed points of matrices.

In Chapter 3, we give the proof of the existence of absolutely continuous invariant
measures and proof of convergence of Ulam’s method. We begin by proving suitable
inequalities regarding the variation of test functions and their images under an appro-
priate Frobenius-Perron operator. Then, we study a finite-dimensional approximation
of this Frobenius-Perron operator and use the variational inequalities to prove con-
vergence of Ulam’s method. Under slightly stricter conditions, we discuss the rate of
convergence, and in the case where each T} is a C? circle map, we study the bound for
the error in our approximation, in terms of fundamental constants of the mappings

Th, k=1,2--- 7.



Chapter 2

Invariant measures and The

Frobenius-Perron Operator

2.1 Review of Functional Analysis and Statistics

In this section we will briefly state some well-known definitions from measure theory,
dynamical systems and Markov processes. In this chapter we follow: [1],[2],5],6],8],9],

[12],[13],[15].

Definition 2.1 Let X be a set. A family B of subsets of X s called a o-algebra iff
it satisfies:

(i) X € B

(i1) for any B € B, X\B € B

(iii) if B, € B forn=1,2,.-- , then | )., B, € B.



Elements of B are known as measurable sets

Definition 2.2 A real valued function y : B — RY is called measure on a o-algebra
B if :

(i) u(@) =0

(1) u(B) 2 0 for all B € B and

(111) for any sequence {B,} of disjoint measurable sets, B, € B,n=1,2,--+,

w( Bn) =D u(B)

Definition 2.3 If B is a o-algebra of subsets of X and p s a measure on B then

triple (X, B, u) is called a measure space.

Definition 2.4 A measure space (X, B, ) is called finite if u(X) < 0o. In particular,
if p(X) =1, then the measure space is said to be a normalised measure space or

a probability space.

Definition 2.5 Let (X, B, u) be a measure space. The function f : X — R is said
to be measurable if for allc € R, f~'(c,00) € B, or, equivalently, if f~}(B) € B

for any Borel set.

Definition 2.6 Let (X,B,u) be a measure space. A transformation T : X — X is

measurable if

T (A)={zeX: T(x)ecA}eB VAeB.



Definition 2.7 Let (X, B, u) be a normalised measure space and T : X — X be a
transformation. Then T is non-singular if and only if p(T—*(A)) = 0 wherever

w(A) =0, for all measurable subsets A of X.

Definition 2.8 We say the measurable transformation T : X — X preserves mea-

sure p or that p is T-invariant if u(T—(A)) = u(A), for all A € B.

Definition 2.9 Let v and p be two measures on the same measure space (X, B). We
say that v is absolutely continuous with respect to u if for any A € B, such

that u(A) =0, it follows that v(A) = 0 and we write v << p.
If v << p, then it is possible to represent v in terms of u.

Definition 2.10 Let (X, B, 1) be a measure space. By (L, || - ||1) we mean the family

of all integrable functions f on X, i.e.,

(LH1 ) ={f: X >R such that | f H1=/|f($)|dﬂ(x) < 00},

By (L, || + |loo), we mean (L=, || + ||eo) = space of almost everywhere bounded mea-

surable functions on (X, B, u) i.e.,
(L=, ] - lloo) ={f : X = R such that || f ||co= essuplf(x)| < oo}

where essup|f(x)| = inf{M : p{x : [f(x)| > M} = 0}.



Theorem 2.1 Let (X,B) be a space and v and p be two normalized measures on
(X,B). If v << u, then there exmists a unique f € LY(X,B,u) such that for every

A€ B,

v(A) = / fdu.
A
f s called the Randon-Nikodym derivative and is denoted by j—:.

Definition 2.11 Let r 2 1. C"(X) denotes the space of all r-times continuously

differentiable real functions f : X — R with the norm

L (k)
| flle gg:‘g,igg'f (z)],

where f®)(z) is the k-th derivative of f(z) and fO(z) = f(z).

Definition 2.12 A transformation T : X — R is called piecewise C?, if there exists
a partition a = ag < a1 < -+ < a, = b of the closed interval I = [0, 1] such that for
each integer i = 1,2,--- ,n, the restriction T; of T' to the open interval (a;_1,a;) is a
C? function which can be extended to the closed interval [a;_,a;] as a C* function. T

need not be continuous at the points a;.

The Birkhoff Ergodic Theorem [2]
Let 7 : (X,B,p) — (X,B, 1) be measure preserving and £ € B. For z € X,
a question of physical interest is: with what frequency do the points of the orbit
{z,7(z),7%*(z), -+ } occur in the set E7?
Clearly, 7(z) € E if and only if xg(7%(z)) = 1. Thus, the number of points of

7



{z,7(z),7%(z), -, 7 Y(x)} in E is equal to 31— xe("(z)), and the relative fre-
quency of elements of {z,7(z),7%(z), - ,7""}(z)} in E equals to 1 3770 xp(7*(2)).
The following theorem is the first major result in ergodic theory and was proved in

1931 by G.D. Birkhoff.

Theorem 2.2 Suppose 7 : (X, B, u) — (X, B, u) is measure preserving, where (X, B, u)

is o-finite, and f € L*(u). Then there exists a function f* € L'(u) such that

Furthermore, f* o1 = f* p-a.e. and if u(z) < oo, then [, f*du = [, fdu.

Theorem 2.3 (Brouwer Fixed-Point Theorem) /5] Let S be the closed unit sphere
in an n dimensional real Euclidian space; that is, S = [z|z in E, and || z |S 1]. Let
K be a continuous mapping of S into itself so that if | z ||S 1, || K(z) || 1. Then

K has at least one fized point; that is, there is at least one x in S such that K(z) = .

Briefly from Statistics:

We consider a stochastic process {X,,n = 0,1,2,---}, that is, a family of random
variables, defined on the space X of all possible values that the random variables can
assume. The space X is called the state space of the process, and the elements
x € X, the different values that X,, can assume, are called the states.

We seek the conditional probability P{X,11 = Zny1|Xn = zn, Xn-1 = Tn-1, - , Xo =
xg = 1}. If the structure of the stochastic process {X,,n =0,1,---} is such that the
conditional probability distribution of X, ,; depends only on the value of X,, and is

8



independent of all previous values, we say that the process has a Markov property
and call it a Markov chain. More precisely, P{X,+1 = zp41|Xn = Zp, X1 =
Tp-1," "+ ,Xo = Tg = 1} = P{Xn—{—l = :L‘n—f-lan = wn}

Let us now write

Dij ZP{X'fH-l =.7IXTL 22}77’7.7 :071727"' .

Definition 2.13 Let p;; be the probability of a transition from the state i to the state

4, and call P = (p;;) the matriz of transition probabilities:

Poo Poi1 Po2

Pio P12 P13

P is a square matriz (of infinite order since the chain has a denumerable number of
states) with nonnegative elements, since p;; = 0 for all i and j, and with row sums
equal to unity, since Z;io pij =1 for alli. Such a matriz is called a stochastic , or

Markov matriz.

Definition 2.14 A Markov chain is completely defined by a matriz of transition
probabilities P and a column vector, say @ = (g(0),q(1),---), which gives the proba-

bility distribution for the state x =0,1,2,--- at time zero.

In addition to the so-called one-step transition probabilities p;;, it is of interest to

Z(.?) . These express

consider the higher, or n-step, transition probabilities denoted by p
the probability of a transition from the state 7 to the state j in n (n > 1) steps.

9



Definition 2.15 A set of states S € X (state space) is called closed if no one-step
transition is possible from any state in S to any state in X — S, the complement of
the set S. Hencep;; =0 fori € S and j € X — S. If the set S contains only one state,
this state is called an absorbing state. It is clear that a necessary and sufficient
condition for a state i to be an absorbing state is that p; = 1. If the state space X
contains two or more closed sets, the chain is called decomposable or reductible.
The Markov matriz associated with a decomposable chain can be written in the form

of a partitioned matriz; for example,

In the above, P, and P, represent Markov matrices which describe the transitions
within the two closed sets of states. A chain, or matriz, which is not decomposable is
called indecomposable or irreducible, and a chain is indecomposable if and only

if every state can be reached from every other state.

Definition 2.16 Ifi — i, the greatest common divisor of the set of positive integers

(n

n such that pii) > 0 is called the period of the state i. A state that is not periodic is

called aperiodic.

10



2.2 Absolutely Continuous Invariant Measures

Let X = [0,1] and 7 : X — X (not necessarily one-to-one). For A C X, 771(A) =
{z € X : 7(z) € A}. We consider the average amount of time the orbit {7"(z)},
spends in a set B C X. The number of times {7"(z)}22, is in B for n between 0 and

N is

N
> xa(r(@))

Jim Z xs(m"(z)), (2.1)

when limit exists.
A measure y is an absolutely continuous measure iff there is a function f : X —

[0,00), f € L'(X), such that

= /Bf(x)da:, (2.2)

for every Lebesgue measurable set B C X. The density in (2.2) or the corresponding
measure 4 is called invariant (under 7) if u(771(A)) = u(A) for every measurable set
A. The Birkhoff Ergodic Theorem (Theorem 2.2) says that if there exists an invariant
density and the density is unique, then the limit in (2.1) exists for almost all z and

furthermore

N— 1
]\}I_I)I;o-]—v—; /0 9(z)f(z)dz ae.,

11



where ¢ is integrable. In other words, except for z in a set B, u(B) = 0, the time
average limy_,o. Zi\[:-ol g(7"(z)) is equal to the space average fol g(z) f(z)dx.
Therefore, if one can find the absolutely continuous invariant measure (acim) u for 7,

then the problem of finding the limit in (2.1) is transformed into computing [, gdu.

To find the acim p for 7, let g = xg, so

uB) = [ xofhio= im 5> ol (@)

for almost every x in [0,1]. Hence, one might choose almost any z € [0, 1] and calculate

the average time for iterations 7"(z) to recur in B.

2.3 The Frobenius-Perron Operator

2.3.1 Motivation

The Frobenius-Perron operator is a powerful tool to study absolutely continuous
invariant measures.
Let X be a random variable on the space I = [0, 1] having probability density function

f. Then, for any measurable set A C I,
Prob{x € A} = / fdm,
A

where m is Lebesgue measure on I. Let 7 : I — [ be a transformation. We would like

to know the probability that x is in A after being transformed by 7. Thus, we write
Prob{r(x) € A} = Prob{x € 7=1(A)} = / fdm.
T—L(A)

12



Further, we would like to know if there exists a function ¢ such that

Prob{r(x) € A} = /Aqbdm.

Obviously, if such a ¢ exists, it will depend both on f and on 7. Let us assume that

T is non-singular and define

uay= [ sam,

where f € L7 and A is an arbitrary measurable set. Since 7 is nonsingular, m(A) =0
implies m(771(A4)) = 0, which in turn implies that x(A) = 0. Hence u << m. Then,
by the Radon-Nikodym Theorem, there exists a ¢ € L! such that for all measurable

sets A,

u(4) = [ gdm.

¢ is unique a.e., and depends on 7 and f. Set P.f = ¢. Thus, the probability den-
sity function f has been transformed to a new probability density function P, f. P-
obviously depends on the transformation 7 and is an operator from the space of prob-
ability density functions on I into itself.

Thus, P, maps L' into L!. If we let A = [a,z] C I, then

/ P, fdm = / fdm.
a 7=1a,z]

P, is reffered to as the Frobenius-Perron operator associated wth 7. On differentiating
both sides with respect to x, we obtain

d
Pof@) =7 | L i

13



Clearly f is invariant under 7 if and only if P,f = f, i.e., f is a fixed point of the
Frobenius-Perron operator. We study P, because if there exists f € L! with P, f = f
then the measure p = [ fdm is invariant under 7. Thus, to find invariant measures

for 7, we may instead find the fixed points of the Frobenius-Perron operator.

Definition 2.17 Let I = [a,b], B be the Borel o-algebra of subsets of I and let

m denote the normalized Lebesgue measure on I. Let 7 : I — I be a nonsingular

1

transformation. We define the Frobenius-Perron operator P, : L' — L' as

follows:

for any f € L, P, f is the unique (up to a.e. equivalence) function in L' such that

/Pdem=/ fdm
A T-1(A)

for any A € B. The validity of this definition, i.e., the existence and uniqueness of

P f, follows by the Theorem 2.1 (Radon-Nikodym,).

2.3.2 Properties of the Frobenius-Perron Operator

Lemma 2.1 (Linearity) P, : L* — L' is a linear operator.
Lemma 2.2 (Positiwvity) Let f € L' and assume that f 2 0. Then P, f 2 0.

Lemma 2.3 (Preservation of Integrals)
/’Prfdm = /fdm.
I 1

14



Lemma 2.4 (Contraction Property) P, : L* — L' is a contraction, i.e.,

I PrfIhSfll forany fe L

Moreover, P, : L' — L' is continuous with respect to the norm topology since

” P‘rf —PTg ”1§H f—g Hl .

Lemma 2.5 (Composition Property) Let T : I — I and o : I — I be nonsingular.

Then Progf = Pr o Py f. In particular, P f = Pr f.

Lemma 2.6 Let 7 : I — I be nonsingular. Then P, f* = f* a.e., if and only if the
measure = f*m, defined by p(A) = [, f*dm, is 7 invariant, i.e., if and only if

p(t7H(A)) = u(A) for all measurable sets A, where f* 20, f* € L' and || f* |1=1.

2.3.3 Representation of the Frobenius-Perron Operator

Here we present the representation for the Frobenius-Perron operator for piecewise
monotonic transformations.

By the definition of P,, we have

/Pdemz/ fdm
A T=1(4)

for any Borel set A in I. Since 7 is monotonic on each (a;_1,a;),7 = 1,2,--- ,n, we can

define an inverse function for each 7|, , 4. Let ¢; = 77| g,, where B, = 7([ai-1,a4]).

Then ¢; : B; — [a;—1, a;] and



where the sets {¢:(B; N A)}"_; are mutually disjoint. Note that, depending on A,

#i(B; N A) may be empty. We obtain

P, fdm = / dm
/A f ; i(BiﬂA)f

=3[ s,

=1

where we have used the change of variable formula for each ¢. Now

/APdem = Z/f@ z)|xs,(z)dm
- /A ;W%%mx,(ai_l,ai)(x)dm

Since A is arbitrary,

for any f € L.

2.3.4 Markov Transformation and Matrix Representation of
the Frobenius-Perron Operator

Markov trasformation, which theory started with [Renyi, 1956], map each interval
of the partition onto a union of intervals of the partition. Of particular importance
are the piecewise linear Markov transformations whose invariant densities can be
computed easily since the Frobenius-Perron operator can be represented by a finite-

dimensional matrix. Furthermore, the piecewise linear Markov transformations can

16



be used to approximate the long-term behaviour of more complicated transforma-
tions. Therefore, the fixed points of Frobenius-Perron operator associated with gen-

eral transformations can be approximated by the fixed points of appropriate matrices.

Definition 2.18 Let I = [a,b] and let T : [ — 1. Let P be a partition of I given by
the points a = ap < a3 < ++- < ap, =b. Fori=1,2,--- n, let I, = (a;_1,a;) and
denote the restriction of T to I; by 7;. If 7; is a homeomorphism from I; onto some

connected intervals (a;q), ax)), then T is to said to be Markow.

Definition 2.19 Let 7 : I — I be a piecewise monotonic transformation and let
P = {Li}\., be a partition of I. We define the incidence matriz A, induced by

7 and P as follows : Let A, = (aij)1<; j<n, where

1, ’LfI] C ’T(L;),
aij =

0, otherwise.

Now, let us fix a partition P of I and let S denote the class of all functions that

are piecewise constant on the partition P, i.e., the step functions on P. Thus,

fes if and only if f= meh,
i=1

for some constants 7y, - - - , m,. Such an f will also be represented by the column vector

nf = (7, -+ ,m)T, where T denotes transpose.

Theorem 2.4 Let 7 : I — I be a piecewise linear Markov transformation on the

partition P = {I;},. Then there exists an n X n matriz M, such that P, f = MTn/

17



for every f € S and 7 is the column vector obtained from f.

The matriz M, is of the form M; = (my;)<; j<n, where

a5 m(L ﬂT—l(Ij)) .
i — T 5 ) 1= ) < )
S m(L;) =hI=n

where A, = (aij)1<; j<n 15 the incidence matriz induced by T and P.

2.4 Absolutely Continuous Invariant Measures for

Piecewise Monotonic Transformation

Let I = [a,b] C R be a bounded interval and let m denote Lebesgue measure on
I. For any sequence of points a = g < z; < -+- < z, = b, n 2 1, we define a
partition P = {I; = (z;_1,2;) : ¢ = 1,2,-+- ;n} of I. The points {zg, - ,z,} are

called endpoints of P. Sometimes we will write P = P{zo, 1, - ,ZTn}-

Definition 2.20 Let f : I — R and P = P{wxo,z1, -+ ,Tn} be a partition of I.
If there exists a positive number M such that >, |f(zk) — f(zk-1)| £ M for all
partitions P, then f is said to be of bounded variation on [a,b]. In this case

Y opey |f (k) = f(zr=1)| is called the variation of f with respect to P and we write

VEe(F,P) = Sr_  If (k) — f2k-1)|- The number Ve [ = sup 2 (f,P) is called the

total variation or simply the vartation of f on I.

Lemma 2.7 If f € Cla,b] with |f'| > 0, then f is monotonic on [a, b].

18



Lemma 2.8 Let f and g be of bounded variation on [a,b]. Then

\V(f+g) < \/f+\/g,

[a,b] (a,b] [a,b]

and

Lemma 2.9

z € [a,0] = [f(a)| +1f () < \/ f+2Uf(

[a,b]

Lemma 2.10 Let f; be defined on [o, ;] C [a,b] and

1) Tc [aiaﬂi]
xi(z) =
0, otherwise.

Then for f =37, fixi,

)I-

\/ fs Z \/ fi+ Z(lfz(az)| + [£:(B)])-

bl =l s8] =l

Lemma 2.11 If Vg, f S a and || £ |1 b, where || £ |1= [y |fldm, then

1f(z)] Sa+b, Vz€la,b]

Lemma 2.12 Let f : [a,b] — R have a continuous derivative f' on [a,b]. Then

\/ /= /|f )|dm(a

[a,b]

19



Lemma 2.13 Let f : [a,b] — R be of bounded variation. Let x,y € [a,b] and z < y.

Then

|f@)+ 1Y)l = £)|dt.

[z,

Let S C L'[0,1] be the space of functions of bounded variation on [0,1]; every
f € § is differentiable almost everywhere with f' € L![0,1], and the total variation

Var(f) of f is equal to the L! norm of f'. Let Sy be the set of functions in S with

integral zero.

Lemma 2.14 For all g € Sy

1 ) 1
(1) g hs (Supg lnfg)§§Var(g)-

(2) | 9 llos Var(g).

Proof. When g = 0 a.e., then (1) and (2) are trivial. Since g has integral zero, it
must take on both positive and negative values, and thus (2) follows immediately.

Now to prove (1), let A and B be the sets on which g is positive and negative

respectively; then
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and

Jls@ldz = [ o)tz [ gla)da

évwmzﬁmmm—émmm. (2.4)

From (2.3) and (2.4), we obtain

1 1
/ﬂmm=—ngm and -1/mmm=—ugm.
M 2 5 2

Now, for |E| = m(E) = [, dz, we have

Var(g) 2 max(g) — max(g) = max(g) + max(-g)

B

o Lo, Lo _lals, Lol

- |4 | Bl 214 2|B|

- Leb s gz lgha 2y,
where, since |A| + |B| < 1 then 3 + r; 2 4 follows from: since Vab £ # we have
ab < K%b)?, and then 14 1 = ot > g(‘;—f’b)Lf 2 2 =4. Thus, (1) holds. 0

Theorem 2.5 (Helly’s Selection Principle) Let B be a family of functions such
that f € B = V[ = a and |f(2)| £ B, for any z € [a,b]. Then there exists a

sequence { fn} C B such that f, — f* Vz € [a,b] and f* € BV|a,b].

Theorem 2.6 (Kakutani-Yoshida) Let T : X — X be a bounded linear operator
from a Banach sapce X into itself. Assume that there exists M > 0 such that

| T |£ M, n =1,2,--- . Furthermore, if for any f € A C X, the sequence {fn},
where f, = > 7_ T*f, contains a sub-sequence { fn,} which converges weakly in X,
then for any f € A, 30 T*f — f* € X (norm convergence) and T(f*) = f*.
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Recall that a set A C X of a Banach space X is called relatively compact if every

infinite subset of A contains a sequence that converges to a point of X.

Theorem 2.7 (Lasota-Yorke) Let 0 = b; < by < -+ < b, = 1 be the partition
of [0,1] for which the restriction T; of T to the interval (bi_1,b;) is a C*-function
(1 £ i< n) such that inf |7'| > 1. Then for any f € L'[0,1] the sequence = > ,_, PEf
is convergent in norm to f* € L'[0,1]. The limit function has the following properties:
@)f20=f20;

(@) [ frdm = [y fdm;

(158) P, f* = f* and consequently du* = f*dm is invariant under T,

(iv) f* € BVI0, 1]. Moreover there exists c independent choice of initial f such that
Ve f*Scll f s

W) VpyPrf Sall flli +8Vpy fr where a =K +h™t, 8=2(@nf|r|) <1, K=

w9 g = |(r7YY], and h = ming(bi_1,by).

min; ; (o (x)) 1

2.5 Finite Approximation of Invariant Measures

Let [0,1] be divided into n equal subintervals Iy,---, I, with I, = [a;_1,a,] and
m(I;) = - =1, Vi. We define P;; as the fraction of J; which is mapped into interval
I by 7. Let Ay = {z € L|r(z) € L;}. Then, A; = I, N 77(I;). We see that
T(Ay) = (LN 7m(L;)) C 7(I;) N I; C I;. Therefore,

m(Ay) _ m(LinTH(T;))
m(I;) m(I;)

P, =
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Let A, be the n-dimensional linear subspace of L* which is the finite element space g
generated by {x;}%,, where y; is the characteristic function of I;, and define P, (1) :

A, — A, as a linear operator such that

T)Xz = Z BjXJ"
7j=1

We shall often write P, for P,(7) when no clarification is needed.

Ulam conjectured that the sequence of fixed points f, of P, should converge to

a fixed point of P, as n — oo when P, has a unique fixed point.

We will present some important Lemmas before the Theorem which gives a positive

answer to this conjecture.

Lemma 2.15 Let AL ={3"" axi | ¢, 20 and >, a; =1}. Then
B, : AL — Al

Proof. Let f=> " a;x; and > ,a;=1 Then f € Al and

Pnf=Pn(Za/zXz Zaz an _Z Zaz z]
=1

j=1 =1

But,

- “m(LNnTYI)) N
;Pij:; m(I,) =1 foral i=1,---,n

Hence,

S ek = Y a(d R = Y= 1



Therefore, P,f € A}, O
Since P,(Al) C Al by the Brouwer Fixed Point Theorem 2.3, there exists a point

gn € Al for which P,g, = g,. Let f, = ng,. Then f, € A, and

n 1 n
g =) S = [ 13- e
- =1 . ) z=11 .
= n/o ;aixizn;ai/o xi:n%—;ai-——l.

I f |l

Definition 2.21 For f € L' and, for every positive integer n, we define Q, : L' —

A, by

. 1
an = zz:;chz where C; = m /Iz f(S)dS

We see that f 2 0 = Q,f 2 0 and that Q,(af + bg) = a@Q,f + bQ,g. Hence

an = Qn(f+ - f_) and 1anl § an+ + an—
Lemma 2.16 For f € L}, the sequence Q. f converges in L' to f as n — oo.

Proof. Since f € L!, for any ¢ > 0 there exists a continuous function g such
that || f — g ||< £. Since g is continuous in [0, 1], g is uniformly continuous. We

can choose N large enough such that for n > Nwe have |g(z1) — g(22)| < 5 for all

x1,29 € I;, Vi € {1,--- ,n}. It follows that,

~ 1
/Ii|(czng><s>—g<s>|ds -/ 'Z<W /Ijg(t)dt) xi(s) — 9(s)lds

E
B /1 0 /1 dinls) = glo)lds
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since s € I;. Therefore,

/1. (Qng)(s) — g(s)]ds = 0(t) — g(s)|dtds

dtds = m(I;)=.

T
EX
&~

Wl e

A
3| s
QD—‘

Hence,

! - - € €
1 Qo =gll= [ 1Qua == [ 1@ug sl < SomI)5 = 5
i=1 i i=1

And for ¢ € L,

/11 Qno = /Oliz:;(m(lli) /1 gb(t)dt) xi(s)ds

- Z m(lL-) /1 ¢>(t)/0 X:(8)dsdt = Z m(lfi) /1 m(1;)é(t)dt

g/,ﬂ(t)dt:/ol‘”

Il

Then,
1 1 1 1
< + - _ + - _ .
1Quo 1S [ Qo+ [ @uom = [[or+ [ o =l0
Hence,
[ @n(f=g) IS f -9l
Thus,

1 Quf = fll = [ @uf—Qugll+ 1 Qug—gll+1lg—fIl
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Lemma 2.17 For f € A, we have P, f = Qu.P-f

Proof. By Definition 2.17, we have

/PTxiz/ xi(s)ds.
1I; T=1(13))

Therefore,

3

Qn(P’I’X’i) = 1[ )

m(l;

1 /
xi(s)ds| x;-
m(1;) Jr-1(1)) } ’
1

Since m(l;) = m(I;) = = Vi, j, we have,

/ (pfxz-xm)dx] X

[
Il
—

I
NE

1L

[
i

“~m(L; N Y, -
j=1 ! j=1

And so for f = >} ckXxk, we have

an'rf = QnPT(Z Cchk) = Z ckQnPrx
k=1 k=1

= chPnXk = P’n(z ceXxe) = Pof.
k=1 k=1

Lemma 2.18 For f € A, the sequence P,f converges to P, f in L as n — oo.

Proof. By Lemma 2.17, f € A,,,= P.f = Q. P.f.

By Lemma 2.16, Q,P,f — P, f. Thus the statement.
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Lemma 2.19 If f € Ly, then ViQuf S V' f.
Proof. Let ¢; = (3) [} f. Then

n n 1

VoQnf =Vy (ZCiXi) =Z(7)|/ f”/ fl.

i=1 i=1 I; Ii+1

For every 1 £ ¢ < n, there exists m; and M; in [a;_1,a;) such that
1
f(mg) = (7) f = f(My).
I;

For simplicity we assume m; < M; for all ¢, the other case being almost identical.

There are two cases to consider, first

<),

and second, the same equation with the inequality reversed. For case 1

/ /flélﬂmﬁ—ﬂMﬂm
|f(mz) ( )| + |f( ) (ml+1)| + |f(mz+1) f(Mi+1)|7

A

while for case 2,

r/f——[ﬂﬂ<u — Flma).

Hence, in either case, we have

VaQuf < ) (1f(ma) — FM) + [F(M:) — f(mapn)| + | f (miva) — F(Miga)])

=1

A

Vi f.
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Lemma 2.20 If 7 is piecewise C* for partition {by, -+ ,bn} and s = inf |7'| > 2, then

{Vi fa}, is bounded, where Py fn = fu.

Proof. By Lemma 2.17,

fn = Pnfn = QnPTfTw vn.

By Lemma 2.8,

‘/()lQnPTfn g %lprfn-

By Theorem 2.8 (Lasota-Yorke),

Vo Prfa S (K +h7) || fu | +6V5 fn,

with K = 22 loi@] o 0=y b = min;(b; — bi_1) and 8 = 2s~! < 1. Since

min; z(o;(x))? %

| fn l|= 1, we have
Vo fa S (K +h71) + BV fa.
Since f, € Ay, Vg fa < co. Hence,
(L= BVifu S K + b
and

Vi, < BT
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Theorem 2.8 Let 7 : [0,1] — [0,1] be a piecewise C* function with s = inf |7/| > 2.
Suppose P, has a unique fized point. Then, for any positive integer n, P, has a fizred
point fn in N, with || fn [|= 1 and the sequence {fn} converges to the fized point of

P,.

Proof. By Lemma 2.20 and Lemma 2.11, and by Theorem 2.5 (Helly’s Selection
Principle), the set {f,} is relatively compact. Let {f..} C {f.} be a convergent

subsequence and let f = limj_,o0 fn,. Then,

1 f=PF 1 = I f=fou | + [ for = QuiPrf |l

+ || @uPrfar — QuPrf I + | @uP-f =P f |-
By Lemma 2.10,
| fr = QuiPrfry 1=l Pry fre = QuiPrfoy [|I= 0.
Also,
| QuPr(fo = HINSN Qe [ Pr ALl fr = f 120, a8 fo, = f,

and by Lemma 2.9, Q,,P.f — P, f. Hence P, f = f.
Any convergent subsequence of {f,,} converges to a fixed point of P,. By assumption,

P; has a unique fixed point and so we must have f, — f. o
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Chapter 3

Invariant Measures for Markov
Compositions of Maps of an

Interval

3.1 Definitions and Notations

Let S; = {1,---,r},4 =2 0, and Q = [[2, S;. We select a probability measure P on
Q) that is invariant under the left shift o : Q — Q (ie., (0(w;)); = wjt1). The
space §) contains infinite sequences of indices for the maps T(Ty,--- ,T,), and the
shift invariant probability measure P governs the stationary stochastic process that
generates a random index at each time step. We select a stochastic r X r matrix

W with invariant (normalised) left eigenvector (wy,--- ,w,) and define a probability
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measure p on S;,i 2 0, by p({k}) = wg. Denote [ag, - ,a,] = {w € Q : w =
ag,Wi+1 = a1, -+ ,wits = as}, and define P([ag, -+ ,as]) = WauWagay ** Waa_1,005
consistently extending PP to all of €.

Let I = [0, 1]. Define the skew product 7 : QxI — Qx 1 by 7(w, z) = (ow, T, x).
We form a random dynamical system by considering the orbit {Proj;(7N(w, x))}&,
on I wherew € , z € I, and ™ (w,z) = (¢V (W), T,,_, 0+ - -0 Ty, 0T, z). By putting

)T WN-1

zy = Proj(7N(w,x)), we see that zy = T,,,_,

o+--o0T,xfor N 21, with o = z.
Thus the orbit zy is defined by a random composition of mappings 73, --- ,T,; the
orbit is random in the sense that the sequence of maps T,,,,_, o- - - o T,,; has probabilty

P([wo, - -+ ,wn-1]) of occuring. We want to discuss the asymptotic behaviour of the

orbit . Here we follow: [3],[4],[7],[8],[9],[10],{11],[13],[14],[15],[16].

Definition 3.1 We say that an interval map T : I — I is a Lasota-Yorke map if
(i) there is a finite partition 0 = by < by < -+ < by =1 of I such that T|p,_,p), 15 @
C? function and may be extended to a C? function on [b_y,b)] forl=1,--- ,q, and

(7,2) infzef\{bo,...,bq} |T,(£L‘)| > 0.

We denote the partition for the map T}, by 0 =bf < b < ... < b’;k = 1.
Denote by Ti(b"™) and T,(b"), the values that T} takes on either side of the

break point bf, I = 1,---,q; — 1. We define the numbers 6;;, | = 1,--- ,qx — 1, as
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follows:
0, if To((F")=0o0r 1, and T,(bF*) =0 or 1,

Okt = 2, if Tu(bP™) #0or 1, and Ti(bf") # 0 or 1,

1, otherwise

\

For I =0 and | = g, we put 0 = 0 if T(bF) = 0 or 1, and 6;; = 1 otherwise.

There exists a minimal partition 0 = by < b] < .-+ < b, = 1 such that for each

k.:L ,ra,nda,ul:l,"':q*a Tk

(Br_p.br)s 1S @ C? function and may be extended

to a C? function on [b}_,, bf]. This number ¢* will be used in the main theorem.
Definition 3.2 We call a piecewise onto Lasota-Yorke map a circle map.

Definition 3.3 We call C**™P map is such a map whose first time derivative satis-

fies the Lipschitz condition.

3.2 Invariant measures of Markov compositions

We assume that I is a metric space and assume that each of the T} is a Borel mea-
surable mapping on I. Let M(2 x I) be the space of Borel probability measures
on 2 x I. We will define invarint measure for our random maps after the following

Lemmas.

Definition 3.4 We shall say that a probability measure i € M(Q x I) is T- invari-
ant if

(i) for ! =[i and

(it) i(E x I) =P(E) for all measurable E C Q.
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We say that 4 € M(I) is invariant on average, or simple invariant, if there
exists a T-invariant probability measure ji such that p(A) = (2 x A) for all measur-
able A C 1.

We seek to approximate invariant measures p that are absolutely continuous with
respect to Lebesgue measure m on [.

Definition 3.5 Define an operator D* : C(So x I,LR) — C(So x I,R) by

r

(if*g)(wo,x) = Z g(thwa)Wwowl-

UJ1=1

We call probability measure £ € M(Sy x I) D-invariant if

/S 9(un, 2)dsn, ) = / (D) (wo, 7)€ (wo, z) for all g € C(So x I, R). (3.1)

S()XI

The following lemma characterises T-invariant measures on ) X I in terms of D-

invariant measures on the simpler space Sy X I.

Lemma 3.1 Let A € B(Sy x I) (the o-algebra of Borel measurable sets on Sy x I)
and Be B(2 x I). Define the sections A,, = {z € I : (wg,z) € A} and B, ={z € I:
(w,z) € B}. Let {twy }l,,=1 be a collection of Borel probability measures on I. Define

a probability measure £ € M(Sg x I) by

) = | pefe)dplen), (32
and a probability measure it € M(Q2 x I) by

i) = [ n(BIIP(). (3.3

Then & is D-invariant of and only if [ is T-invariant.
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Proof. Let g: ) x I — R be any continuous function and define
o) = ([ ot ap(w)) /B(ie),
where
[ag] = {w € Q: wy = ag}.
Now,

/nng(T((wOWWQ“')’x))dﬂ(w,m)
= //g (wiwy...), Ty ) Apies, (7) dP(w) :/1[/9 9((@rws...), Ton2)dP(w)|djte, (z)

_ /I ZZ / (wrws...), Toy)dP(w)
- / ZZP ol I <<w1wz...>,Twa>dP<w>} LN (P)
- / Z ;_j (w1, Tope)
-/ 5 3 0, Tt ()0 W

T (I )

dptesy (2)P([wown])

wo=1lwi=1

= /Z ( w17Tw0$)Ww0w1> d:u/wo( L)W = Z/D g WO’ )d:u’wo( )wwo
wo=1 \w1=1 wo=1

= [ [ @D ddu@ioton = [ (55w )dk w0, )
SoJI SoxI

Since [, ; 9(T((wowrws...), z))dfi(w, z) equals to [, , g(w,)di(w,z) iff i is 7-
invariant and fsoxl(ﬁ*ﬁ) (wo, x)d€ (wo, ) is equal to fsoxlﬁ(wo, )d€ (wo, z) iff € is D-

invariant. Thus, & is D-invariant iff ji is 7-invariant. O

34



Lemma 3.2 Let {u}r_; be a familly of Borel probability measures on I. Define the
section B, = {z € I : (w,z) € B} where B € B(Q x I) is a Borel measurable subset

of 2 x I. A measure i defined by

i(B) = /Quwo(Bw)dIF’(w), forall BeB(2xI) (3.4)

is T-invariant iff the family of measures {px}req is fixed under the transformation

(V1) oo Up) (Z v o Ty AW, ...,Zyk o Tt rk) v, € M(I)  (3.5)

k=1 k=1

where W), = Wrwy/w, is the transition matriz for the reversed Markov chain.

Proof. We show that the measure £ in (3.2) is D-invariant iff the family {p., }"o—;
is fixed under the transformation (3.5). The result will then follow from Lemma 3.1.
Suppose that & is D-invariant, and choose g(wo, ) = x{j}xalwo, z) for some j € S

and A € B(I). On one hand, we have:

/ g(wr, ) dé(wr, 7).

SlxI

=/S Xy a(wr, z)dé(wr, ) //X{J}xA w1, T)d e, (T)dp(wr)
1X

= ([xoamin) ([ doen)) =tar, (3.5
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On the other hand, we have

| (B5)en)ieen,a)
SoxI

= ,ZS*X{j}XA(wm d§ Wy, T / /Z X{j}xA wawox)ngwldg(wOv )

S()XI wi=1

- / / 3 i1, Ton @) Woon diton (@) ()

w11

= Z/ZX{J}XA w17Tw0m)Wwow1d/J’WO( )wwo

wgl w11

= Z ([X{j}XA(w17Twox)d#wo( )) wojWwo = z o (T Wi Weso

wp=1 wo=1
r

= D oo (To AW w; (3.7)

WQ=1

Now from (3.6) and (3.7), we have

pwi(Ayw; = Zqu To AW, w;

wol

= /j’j(A) = Z y'wo 1A W;wo

wo=1
Since any continuous function can be approximated by the limit of simple func-
tions, property (3.1) also holds for continuous function and thus the above result is
true for all g(wo, x).

Thus { i, }0— is fixed under the transformation (3.5).
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For the converse, suppose that the family {p.,}"¢—; is fixed under the transfor-

mation (3.5) and consider g € C(Sy x I,R). Now choose g(wo,z) = Xx{j}xalwo, ).

Then,
/ (6*/9\) (WO, x)df(w(); m) = ﬁ*X{j}XA(w()’ m)df(wo’ :I;)
SoxI Sox1
3 T AW = 3 il AW
wo=1 wo=1
= pj(A)w,
Again,

/ (wﬁﬁm,)=/ Xm0, )dE(wo, @)
SQXI S()XI

[ [ xomaton o) w)dotan)
So JI

= (/IX{J'}XA(me)deo(x)) (/{j} dP(wo)) = 5 (A)w;,

H

Thus,

ﬁ*X{j}xA(wo,w)dﬁ(wo,x)z/ X{j}xA(wo, T)dE(wo, T),

S()XI S() xT
e., the above equation is true for any simple function and since any continuous

function can be approximated by the limit of simple functions, so for any continuous

gGC(So XI,R)

/ (5°9) (wo, @) dé (o, @) = / 9(wo, @) dE (wo, ).
SoxI SoxTI

Thus {ptw, }ro=; being fixed by (3.5) implies D-invariance of £&. The fact that p =
Y r_1 Weig is invariant follows immediately from Definition 3.3 0
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Definition 3.6 Any probability measure on I of the form:

p=> Wi (3.8)
k=1

that arises as a projection onto M(I) of a measure of the form (8.4), is invariant

on average iff the pg, k =1,--- ,r are fired under the transformation (3.5).

The following Lemma says that all absolutely continuous (with respect to PP x m)

7 invariant measures may be written in the simple form (3.4):

Lemma 3.3 (Kowalski[7]): Assume that each Ty, k = 1,--- |7 is non-singular with
respect to m. Then P x m absolutely continuous T-invariant measure may be written

in the form (8.4).

Thus, finding an absolutely continuous probability measure u of the form (3.8) with
the {ux}r_; being fixed under the action of (3.5) is the only way to construct an

absolutely continuous 7-invariant measure on €2 x 1.

3.3 Frobenius-Perron operator and fundamental re-

sults for Frobenius-Perron operator

We denote the density of v; with respect to Lebesgue measure (as in (3.5)) by f©).
Let BV = [T,._, BV denote the r-fold product of the space of functions of bounded

variation. We endow the space BV with the norm:

|, £ 1= mmasx || 5% [l= max {max{Vax(f%), || 9 |}}

1Zk<r
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Denote by P, : BV — BV, the standard Perron-Frobenious operator for the map
Ty. Following (3.5), we define an operator P:BV — BV by

ﬁ(f(l), v fO) = Z Wi P f®), Z Wi P f®, Z WPy fE) (3.9)

k=1

By Lemma 3.2, we may construct an absolutely continuous invariant probability
measure y from a collection (A1), ...  h(M) of densities that is fixed by P. We will
call the density of 4, h = >_,_, wph® an invariant probability density for our Markov
random compositions.

The following are the fundamental inequalities for Frobenius-Perron operator:

Lemma 3.4 Let ]/”\= (fO fF@A ) e BV. Suppose that each Ty, k=1,2,...,r,
s a Lasota- Yorke map, and set ¢* as in Definition 3.1.

Set BVo={f € BV : [f®dm =0 forallk=12,..,7}

Define
TR o —
pt inf er | T3 ()] '
’ su Tz

Ik
o infeer [T()*

O,
/ = W Zl _Ldl=0 TR
" Z infoer |TL(2)]

with o = max;¢<, o) and ' = max;<<,. 8. Then

(1) max Var(ﬁ)(k) < 20/ max Var(f)
1<k<r 1SkSr
+ max(2q'a + ) max £V, f € BY;
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A~ o~

(@0) IPF < (max(ef +) + 8/2IF|  for f e BV,

If in addition, if each Tx is a C? circle map,

o~~~

(i) IPFIl < (@ + B/2NF) Jor f € BV

Proof. Let By := {[bf,b5], ..., [b* } and B* := {[b}, %], ..., [b * ]} be as in

qr—17 Qk] q—1’ Qk

Definition 3.1. We have

PO, 1P, fO) = Q- WiPef®, Y WP f®,. ZW Pef®),
k=1 k=1
50
(PHO =3 WiPef®,
k=1
where Py : L*(I,m) — L'(I,m) denotes the standard Perron-Frobenious operator

for the map T}, namely

Pef®(z Zf"“’ (@) on(z)xm, (),

where H, = Ty(B)), B, € B*, ¥, = (Tk|g,)™", 01 = |¢]| and xpg, is the characteristic

function of the set H; = Ty([bj._y, b}.]) = Ti(By). Thus,

Var(PHY = Var(} Wi Pif®) £ Y Wi Var(Pif®). (3.10)

k=1 k=1

and we proceed to bound Var(Pf), k = 1,2, ..., 1, individually.

Var(P ) = Vaer( (%)) (x)xm (x) £ Y Varg, ((99) (11(x)) 1 (x)
B,eB*

*

q

+ Y (FPC)low®i-) + 1fP0))lox(®) (by Lemma 2.10)

=1
q* fk b*
= Z Varg, (f%) (¢ (x +Z M b*l‘ ) | .11)
B;eB* 1- 1

40



1st term of (3.11):

Varg, (f%) (y(x))o1(x) = [ |d(fY o ¢i(x))eor(x)| (by Lemma 2.12)

H

H [f® o(@)lloi(@)ldm + | |ou()]|d(f® o pu(z))]. (3.12)

H,y

Here

Y = (Tulp,) " = Ti(ti(z)) ==

= Ti((@)(z) = 1= ¢i(z) = o = T;é(z/)lz(w))
,_ T ((x))¢(=)
=T T (T@)?

Now we consider the 1st term of (3.12):

[f® o (@I T (W (@) 14i(=)]
H, T (% (=) [? '

Changing the variables we obtain:

| PO @ o)
By

1F®) (o 7% ()] m
TP 11O (@) g dm.

T ()2

Also changing the variable in the 2nd term of (3.12) we obtain:

- ® _ (*)
Hl! () [|d(F o pu(x))| = e )|| df*™ (z)|.
Thus from (3.12) we obtain:
Tl/
Vasm () b)) £ [ 1@zl Sean + [ i)
< Sy T"@) [ ___1_ *) (g
= infp, |Tlé($)|2 5, If ( )|dm+ lT’( )| 5, 'df ( )|
_ s @) [
= il [T S )
+ —I—VarBI(f(k)). (by Lemma 2.12)

infp, [T ()]
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Thus,

szk Z Varg, ( f( 1(x)) o (x)

B;eB*
supp, [T"(x 1
< * L < L (k I f(k)
< Swi Y S / e+ W 3 Ve )
= 1

HA

L supg |T
> Wi > ‘—I‘)—B%f,—((“)—izllif(k ||1+ZWzkaar(f(k) (3.13)

inf
k=1 Bep* B

Now for the 2nd term of (3.11):

T S S (O Y A ()
W* q— + { é W - - fk b + f(k) b
Yo T (s ) S S Wi |Z| G121+ 17007)
- 1
< e (k) 11 ¢ (k)
- ;W”“infwe,|T,g(x)|(Var(f ) +2q"[[f¥]|,) (by Lemma 2.13).  (3.14)

Thus, from (3.10) by considering (3.13) and (3.14) above, we obtain

o) < (k)
Var(Pf)Y¥ = (Z WlklnfweI Tl )l) gg(r Var(f'*)

’ (;Wﬁ ( 2 %“ﬂk( )”“’Tﬂe%» e ||

B,B*
— / (k) * ! / (k)
20/ 1rgkangar(f )+ (29 + B]) rgax [f¥,,  forf e BV.

Thus,
max Var(PH)® < 20/ max Var(f®) + max (2q a) + ﬂl) Imax Hf( Il1,

18IS, 1€k<r

for fe BV as required.
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To prove Theorem 3.1(ii) we need to reduce the combination of both the coeffi-

cients of Var(f®)) and || f||;. We use a modification of the inequality (3.11):

Var(PD® = Var(d WiPd®)

< Zw;; 3 Varg, (£9) (@(x))o1(x)
<k><b’“’—> FO )

The first term is bounded as before. From the second term we obtain:

(k) (o= (k) (ot
Zw,kzemmax{ f,(il_>|,|f,(i’+)|}
k=1 T (67) T (6)

Ok,
: Wi max Var(f®
= (kzl lk Z m’Ln{lT’(bk )I |Tk(bk +)’}> 1<k<r ( )
where we use || f®]|o, < Var(f®) as f € BVy (by Lemma 2.14)
e St b
= Kt (T (] ®), 1
= (; Wi, infoc [T)(@)] 123; Var(f™) (3.16)

Thus, from (3.15):

Var(Pf)®

A

(Z W, . IT )I) max Var(f))

+ (Zw”c f;fBl|’$(()|)2') max |79 @)l

B,eB*
= (a;+n) max Var(f(k ) +,8’ max Hf(k)”l

So,

max Var(PH® < max (al + 771) max Var(f(k )+ ﬂ max ||f( Il
1SksSr <k<
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For f € BV, we have ||f®|; < 1Var(f®) by Lemma 2.14. So
|Pf]l = max Var(PH® and |[f|| = max Var(f®)),

1SISr

Now,

1P = meox s Vax BB, [P } = ma Var(P)

/
S max(o+ nl) Iax Var(f®) + é— max Var(f()
1<ISr <r 1<kSr
il ®)
= (;glaﬁ(al +m) + 5) max f

- (maxi+m+5) 1Al o Fe B

18I
as required.
To prove part (iii), since each T}, is C? circle map, we use the bound of part (ii),
and delete the contributions from the branches of monotonicity not being onto (the

second term in the preceding argument). This leaves us with

max Var(Pf)® < max of max Var(f®) + max 4 max [Jf®||,,
18Iy 181y 1ZkEr 1ZISr  1ZkEr

and so
57 — SN0
IPFI = max Var(Pf)
< max o max Var(f®)) + max ﬂx max Var(f())
1S1<r " 1<k<r 1<1<r 2 1<k<r
/
= (' + %—) 12,?§V&r(f(k)) (e + )||f|l, for T € BV,
as required. =]
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3.4 Approximation of ACIM for Markov composi-

tions

Here we discuss the approximation of absolutely continuous invariant measures for
Markov random compositions by means of convergence of Ulam’s finite approxima-
tion scheme. First part of the Theorem assures the existence and then it shows the
approximation of absolutely continuous invariant measures. Second and third part

give us the bounds.

Theorem 3.1 Let {Ti,--- ,T,} be a collection of Lasota-Yorke maps, and assume
that the Markov composition has a unique tnvariant density h. Equipartition the unit
interval into n subintervals I; = [(i — 1)/n,i/n|, it =1,--- ,n and define r stochastic

matrices P,(k), k=1,---,r, by

7.7( ) TTL(L)
Further, define the rn X rn matriz
( WihP(1) Wi P,(1) - WhE.(1) )
g — Wik2pn(2) W§2Pn(2) U :an(2)
| WiPar) WEPAr) - WiE() )
and let s, = [sg)|s$}2)[ e |s$f)] be a fixed left eigenvector of S,,, where each s k=
1,---,7, is a vector of length n satisfying > i, sflkz) = 1. Define the approximate
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mwvariant density
_ "~ Dk wksv(fg
=1

(i) If o’ <1/2, |lhn = hlli = 0 as n — oo;

Then,

(ii) If max; << (o +m;) + B'/2 < 1, and the endpoints of the partition {I1,--- , 1.}
contain all points where there is a break in the C' behaviour of any h¥) (densities),
k=1,---,r, then there exists a constant C < 0o such that ||h, — hl||; < Clog n/n.

(i) If o/ +8'/2 < 1 and each Ty is a C? circle map, then the constant C' above may be
written in terms of fundamental constants of the maps Ty. Set C' = max; <<, Lip(log |Ti|)
where Lip(log |Ty|) is the Lipschitz constant oflog |T}| and A = min; <<, inf; |T;(z)]

(assuming A > 1 ). Then,
— < C/(A=1)n
[ =Rl = (e <11§,?§T Z Wlk)

(e (o 29) (miarsom) 1) -1 o),

where [-] denotes the integer part and o}, 5}, 1] and o/, 3’ are defined as before.

X

Proof. Consider F,, = {f, € BV : fo=n) . | faixs, for some f,; € R}.Denote
E, = [1i-; F» and define the projection Il, : BV — F, by II, ((fO,-, ) =
(I, (FV), -+, (£0)) , where f® € Fp, and T, (f®) = n Y0 (f, f®dm)x;
Note that the matrix representation of [ﬁn’ﬁ] with respect to the basis IIf_ {x7,, -+ , Xn}

is simply S,,. By Lemma 2.17 we have [H 73]1, P, ;; and so

(hﬁf), cee ,hg)) =P, (hgl h(r ) —f,P ((hgll), ces ,hg"))) ]
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Now,
max Var(h(k)) = max Var (ﬁ ﬁ(h(l) . h(r))>(k)
1SkSr " 15Kk<r S

< max VarP(h® ... h®)®, (by Lemma 2.19)

1SkSr

< 20/ max Var(h®) + II<1?,<X(2q*04{ +3) |1h%),, (by Lemma 3.4).
1SISr

max
1SkSr 1SkSr

Thus,

N, Ky < * 1 / (k)
(1 2a)gg§Var(hn) s gféﬁ(?q aﬁﬁ;)gglihn 1

= max Var(h®) € (max 20'of + 8)/ (L~ 20) ) s WP
Thus, the sequence {Var(hg,k))} is bounded. So by Helly’s Selection Principle

(Theorem 2.5), the set C' = {(hg), e ,hg)); n=1,2,---,} is sequencetially compact

(in [T, L.

Let {(hS},}, e ,h£{,3)} be any convergent subsequence of C and let {(hglk), e ,hﬁ,’;’)}

converge to (R ... k() as k — co. Then,

[(RD, .o RDY) = P(RD, ... D))

o~

[0, B = (B0 B+ D, 1)) = T P, B

Ny ? TN Nk ? Vg

A

Be ||ﬁn,c7/5(h(1) ,hffk)) — ﬁnkﬁ(h(l),... RO

ng?
+ IIﬁnk'ﬁ(h(l),-" RO = PR M) (3.17)
Taking into account that (h$,1,3, e ,hgfk) ) is a fixed point of P, and by Lemma

2.17, we obtain

o~ o~

H(h(l) oo h(r)) - ﬁnkp(h(l) tr h(r)>” = “Pnk(h’(l) e 7h£:k)) - ﬁnk'])(hgk), T ’hgc))” =0

ng ) y Mony ng ) » g ng ?
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Also

Han,P(hSle)’ o ’h’SLTk)) - anP(h(l)’ U 7h’(r))|l

S TP RS, - hG)) = (R, - RO = 0,

g ! Y g

as (hq(mlk), e ,h&",f) — (M ... h(M), and also by Lemma 2.16,

-~

anﬁ(h(l), o RO o ﬁ(h(l),--- RO,

Thus, by (3.17), (AD), -+ | hM) = P(RM ... AM),

Therefore any convergent subsequence of C' converges to a fixed point of P By as-

sumption, P has a unique fixed point h, that is |h — hynlly — 0 as n — oo. O
To prove the parts (ii) and (iii) of the above theorem we need to prove some

inequalities. The following subsections are devoted to those.

3.4.1 Sensitivity of finite Markov chains

In this section we give error estimates for eigenvectors of stochastic matrices. The
sensitivity of a finite Markov chain is a measure of how much the invariant density
changes in response to a perturbation in the elements of the transition matrix. When-
ever talking about norms on vectors, we shall denote the standard L! vector norm as
| - |l to avoid confusion with the L! norm on functions, which will be denoted by

[Ee

Our invariant measure yu may be decomposed as Y, _, wiur Where the py are fixed
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under (3.5). We construct matrices

and form
( Wi FPa(1) WiiFa(1) Wi Fa(1) )
o _ | WRP@) WaP() - W)
\ Wikrpﬂ(r) W;rpn(r) T W:TPR(T) )

Let S*) = Wf;glﬁ(k)ij, 1 £4,7<n 15 k1< rbe the (i, )th entry of the

n,1j

(k, 1)1 block.

Let

= [/"“1(-[1)"" a/*”l(In)J/'LQ(Il)f" 7/1'2(171)?"' ,,u'r(Il)a"' hur('[n)]

By §£lkl) := px(l;), we denote the 8 entry of the &*1 block of 3,. Here we have

Z Z Sr(zkzlg) fzkz Z Z ,uk Wllc

k=1 i=1 =1 k=1
i B OTD) S )
= >3 w2 S S w0 1)
i=1 k=1 () i=1 k=1

r r Waw . '
= Z Wi e(T ) = Z A kpk(Ij), (by Ty — invariance of )
= k=1

Wy

<
= w(ly) = ng,)j'

Thus, the vector 3, is a fixed left eigenvector of S,. Let S, and S,, be two matrices

and 3§, and s, their eigenvectors correspondingly.
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An important inequality by Paul J. Schweitzer [13] is

” gn — Sn ||m§]| Sn - Sn Hm” (Im - Sn + Sff)_l ”m

)(l)

where (Sp°);/ = () , time average transition probability matrix S2° = limyy,—400[Sn +

n

-+ (Sp)™]/m exists, SuZ = 2,8, = S + Z. — I, and the fundamental matrix
Zn = (In — Su + 5)™ = 320(5n — SV = Lon + T30 (S — S59)* with 53¢ =
8,8 = 7,5 = §°Z,.

In the following we will bound || II,(h) — h,, ||; and in the later sections we will

bound || S, = S [lm and || Zy ||m.

For || II,(h) — Ay ||1, we have:

710 (8) =l = 3 1 (8) = o

. p 1wk3
= ;/ (Z/ hdm) X1, — ( () X1, | dm
i=1 Y4 I; m(II)
n r r (k)
_ , o h® ) dimy _ 2k WS |
;/f /f <; ) ) - m(I;) XL
= 'f]1 (ZZ=1 wkh(k)) dm — 3 wksffg J
= Z / (Zwkh(k)> dm — Zw S(k) Z (Z (/ h(k))dm (k)>
i=1 i=1 | \k=1 I

-

i=1

Z“’ 58 _ gk

k=1

= ; Zwk (I

Sn )
i=1 k=1

s =1l 80— sn lnSll Sn = Su llm || Za lom -

A
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3.4.2 Renyi estimates for the invariant density

In this section we derive the necessary bounds for the regularity of the invariant
density h in terms of fundamental constants of the maps T}, when each T}, is a C1tLP

expanding circle map.

Lemma 3.5 Suppose that each Ty is an expanding C*tYP circle map. Define \ =

min, <x<, infeer | T ()], and C' = max;<i<, Lip(log [Ty|). Then

Rk ()
AR ()

for all x € I and each k=1,2,...,r.

Proof. Since each T} is expanding, there exists ¢ > 0 such that
|z —y| < e = |Thr — Try| 2 Az —y| for all z,y € I and k=1,2,....r.

We have,

[(Tey_, 0+~ 0 Ti,) (z)]
|(TkN—1 00 Tko)/(y)[
Thy Ty 0+ 0 T ) () - Tg_,(Thy_g © -+ - 0 Tiio J() - - Ty (T ) () - T ()]

S Tiya o 0 Ti)®) - Thy_,Tiwa 0 0 Te) (@) - 11, (Txa) () - Ty )]
= log |TI;N_1(TICN—2 ©:--0 Tko)(w” — log |TI:JN_1(TI€N—2 -0 Tko)(y)| + e

log

= lo

+ log|Ty, (Tiy(2))| — log |Tx, (Te, (y))] + log | T, ()| — log [T, (y)|
N-1

= Z lOg |TI; (Tki—l 00 Tko)(x)l - log iTlgl (Tki—l ©---0 Tko)(y)|
=0
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I(TkN—1 -0 Tko)l(x)l

= log
'(Tkzv—1 ©---0 Tko)/(y)l

N-1

§ Z |10g |TI; (Tki—l ©--+0 Tko)(x)] - log |Tléi(Tki—1 ©--:0 Tko)(y)H
=0
N-1

- Z ’log |T/::(Tki—1 ©--r0 Tko)(x)! - log ’T/;(Tki—l ©--+0 Tko)(y)l’
i=0
N-1

= Z Lip (log ITIQI) ’Tki—l 0.0 Tko(m) - Tki-—l ©---0 Tko(y)l
=0
N-1

é Z C ITki—l ©---0 Tko(x) - Tki—l ©:--0 Tko(y)l . (3'18)
=0

Now, since

Tz — Tryl 2 Az — y|

= ‘(TkN—-l O oTko)(m) - (TkN—l 00 Tko)(y)l

v

)‘|(Tk1v—2 00 Tko)(x) - (TkN—Q ©:-0 Tko)(y)l

v

)‘2|(Tk1v—3 O oTko)(x) - (TkN—a SR OTko)(y)l

= )\N-i|(Tki—1 0-++0 Tko)(w) - (Tki—l 0«0 Tko)(y)'

Thus, by (3.18),

|(TkN—1 O+ 0 Tko),(x)|

log
|(TkN—1 -0 Tko)/(y)l
N-1
= Z C)‘_(N_Z)ITkN—l -0 Tko(m) —Tgy_,0---0 Tko(y)|7
i=0
(provided [T, , o -+ 0 Ty (2) — Tk, 0+ 0 Tio(y)] <€)
C
- mlTkN—l -9 Tko(w) - TkN—1 ©-rr0 Tko(y)]' (319)

Let ¢g = 1 be an initial density that is to be pushed forward and denote by
(bch_l,,,,,ko the push forward of ¢y under Ty, _, o --- o T}, along one of the inverse
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branches of T, _, o+ o Tk,. By (3.19), we have

i ko (%) C
log —~=——=—= < |z -yl
¢kN 1 (y) A—1
?N—ly '7k0(m) < exg—l]w—y|.
ff);cN_l,..‘,ko(y) h
For a fixed sequence ky_1,- - , kg, we may sum over i to obtain

DR P ) BN ()
sz\iol ¢kN 1 ,ko(y) ¢’CN—1,"-,k0(y)

We may combine the contribution from each of the sequences ky_1,--- , kg to obtain

e3= <5 |z Yl

A

ZZO,"',kN_lzl W]:N_l U WZ1]€0¢’°N—17"',]€0 (x) i E\I;)(l‘) < _C
ZZO,"',ICN_;L:I W;:N_l e W:1k0¢kN—11"',k0(y) ¢§]\;)(y) o

Here, ¢ (z) = (PN ¢o)®)(z), so that we have a bound on the distortion of the
uniform density after being pushed forward N times under the Perron-Frobenious
operator.

Since | qbg\’,c)dm =1, drxel, qﬁg\lﬁ) (z) 2 1 and Jy € I such that d)ﬁ{?(y) < 1. We have

(%)

$w)

Z

&
HA
[q+)

I

E)

|

<
HA
>

since |z — y| £ 1, where A = C . That is, qﬁ ( ) S A(bg\l,c)(y) = ¢S\I,C) (y) 2 B where
B = CIf ¢(k)( ) 2 1 we have qbg\’;)(y) + for all y. If ¢(k)( ) < 1 we obtain
¢§5>(m) < Aforall z € I. Thus 1 < ¢ (2) < A.

Let () be the limit of the sequence + 3N * ®)(z) as N — oo, we see that ¢ is

fixed by P and is bounded above and below by A and % respectively.

(k)
Furthermore, ?,% < exgle—yl By uniqueness, ¢ = A*)
N \Y
R(k) o
Thu , E(—Qﬁ(—) S x— 1| y{. 5

53



3.4.3 Bounding || S, — S, ||l. and (-

Lemma 3.6 Let S, and S, be as defined before. Under the assumptions of Theorem
3.1, we have

(0) 155~ Sl S maigug, ((Shy Wi (Lip(h%)/ inf 1 b)) /,

if each T}, is a general Lasota-Yorke map, and the partition {I,,--- ,I,} contains all
points of non-Lipschitzness of every Ty, k =1,--- 1.

(i) 1S, — Sullm = (maxi<e<r 21—y Wi ) (e/0=2m — 1),

if each Ty, is a CHLP ircle map.

Proof. We treat case (i) first

m(LNT') (LN T ')
m(I;) p (1)

Py (k) — Busy(R)] = {

m(I; NT, ') pi( L N T L) m(L)
m(I) m(L; VT L) (1)

-1
= P,(k) |1 / F®dm | (— / A% dm,
’ m(I; ﬂTk i) JrnTo m(L) Jp,

~1
< Pk |1 sup (k) (z) (inf h(k)(w))
e€ T, z€l;
~1
< Pk (Sup R (g ) (inf h(k)(m)>
Thus,

1P (k) = Pa(k)lm

i -1
< (k) e (K) _
= 254 Fris (k) (jggh (5'3)) (;g,fi h (m)) 1 (3.20)
< max Y Pog(k) (7O — 1) = ¥/OIm
18iSn .
]__
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and

150 = Sallm = max Y Wi|[Pa(k) = Pa(k)|lm
1

1SkSr .

(max W*) (ec/(’\"l)" — 1) .
1<kLr =

For the proof of (i), we have from (3.20)

HA

n

- (k) 3 (k)
P8 = BBl S max S Pl SUPser () — infac 7 (2)

1ign &= inf er b0 (z)
= Lip(h®)1 Lip(h®)
< n_ _
= f?i’i] 1P n”(k)infmeIh(k)(x) inf,e A (z) ) /T

where Lip(h*)) is understood to be the maximum Lipschitz constant calculated

over each of the Lipschitz pieces of h(*) seperately. Thus,

150~ Sl = o W) - Pl
- Lip(h®)
< *
1262y (z:: Wlk.(infmej h(¥) (x)) "

Bounding || Z, [|m:

Converting norms: We wish to study the rate of convergence of S¥ to the limiting

matrix S° (defined before) as
18n = sn lmS( Sn = Sa flmll (Tn = S+ S2) 7! [ a8 N — oo,

in terms of the || - [|,, norm where norm on F,, = (fno1, " , fun) Will be || fo [lm=
Y1 | fnil and fn; define f,. At the moment, we have the information regarding the
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convergence of PV | 5v, t0 0 from Lemma 3.4 and in this section, we link these two
types of convergence.

We define an intermediate vector norm || - ||y as || Sp {|mw= maxi<i<, || S o -
But we defined || - = 3 |-|. That is, | - = 51 [ S 7 |- b= - S 7 ]

and || - [lm= 2211 | 2 maxigpsr || - [lm=] - =1l - ImZ| - llrn - That is,

I M S S I e (3.21)
Lemma 3.7 For nr—tuple

Fum (100 S0 8 1B £ 1)
representing a 1 X nr vector and an element of BV , we have the relations
I follwSnll Full and || 21| fo llw -
Proof. We know that
I Flle= max 1| £ Il and | o 1= max ) £

Also, we note that

n
| follw S fallm=n [ falli as | fullm= Zlfn,1|
i=1

= follmsnll folls -

So,

| FallwS | Fo S mex {Var(@),n | & i} =nll
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Again,

Var(fy) = max {78 - &1+ 4118 - 100

1Sk<r

< max {278+ 2141+ 210

1SkSr

= B —ol F I,
1085 2 | 3 lln= 2| fo flw -

So,

| fall = max{Var), | 1 }
< {2 Fo s 2 1 Fo o | =21 7 -

Lemma 3.8
IS = 87 ImS drn || P |y, |1 -
Proof. Let F and II, be as in the proof of Theorem 3.1(i). Define

ﬁn,o={(f£1),--- Y eF, Y =0 forall k=12, ,r}.

i=1

We begin by relating || SY — S3° ||lm and || SY |z [Im - In what follows, we si-

multaneously consider ]’; =(f®,... f,(f)) as a step function, and as the n—tuple
[ f,ﬁll), e ,Y,l], in the latter case the action of matrices is understood to be the left
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multiplication. Now,

| (SY — 5) Fu llm

187 = 83 llm=sup

fREFn H fn ||m
N(F _ Soo/\

— su H S’n (fn/\ nfn) Hm (as SyijZOZSZO)

fnepn H fn ”m

SN ol fo = S Fo I A

< sup LS Il Iy 52, sup L= S

Fa€ln | fo llm gt fallm
S H SN IF “m sup H fn ”m +A|| Srolofn ”m
—_ n n,0 N —~

fu€Fn I fo llm

< S Jgy o sup LI lm I

fneﬁn || f'n ”m
= 21 5% g, llm -
Now we link this result with the bounds that we have for the Perron-Frobenious op-
erator. Recall that the matrix form of II, 7 with respect to the basis I, _, {xr5,," " , x5}

is simply .S,,.

So
2[5 |gy =2 sup 2Pl no |
fn,OEF'n,O “ n,0 ||m
ﬁnA N/;L m’
< 2 sup rli ZD] Sno | (by 3.21)
fn,Oeﬁ'ﬂ,O Il fn,O “ml
~
< 2r sup n [pr] Jno | (by Lemma 3.7)
fn,OEF'n,o ” fn,O ” /2
S drn || [[LPIY (4, IS 4rn | TP |, IV

A

arn || P g, JIVE 4rn || P gy, IV -
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Corollary 3.1 Under the hypotheses of Theorem 38.1(ii) or (iii),
| SN — 8 ||m< 4rny™N, where v = rgla<x(oz; +m)+0'/2 or y=a' + /2 respectively.
1SSy
We now state a result from [10] (Theorem16.2.4 ) to prove the next Lemma:

Lemma 3.9 Suppose that P, is an n X n irreducible, aperiodic stochastic matriz with
fized left eigenvector p,. Define P55 = py ;. Select a number 0 < 6 < 1 and let m,, be

such that

P2 (1—=068)py,; forall 14,5 <n. (3.22)

n,ij =
Then

N 2, if N < my;
| B = B [lmS

§IN/mal i N > m,,.

Lemma 3.10 Under the hypotheses of Theorem 3.1(ii) or (iii), setting

= n<11a<x(oz; +m)+08/2 or y=0o + /2 respectively, we have
1Sisr

| Z, [lm< Jinf { (2 + ié) ([1o-g_(l40rgn{y6)] + 1> ~ 1}

where [-] is the integer part.

Proof. We now find an appropriate m,, to satisfy (3.22) for S,,. A sufficient condition

for (3.22) to be satisfied is that

|Spr — 845 S 6sp; forall 154,57 < n.

1,15
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Summing over j and maximizing over ¢ gives

k13

n n
maxg S s -SE bs -:>ma,xE Smn S < §
1<i<n £ n,tJ “,J! = 4 - n, 1<i<n 4 1| n,13 n ' =
- - = = - - 1=

j=1
= [ S =Sy [ms 6

which implies (3.22) holds. From corollary 3.1 and above, we see that

| S — S2° || < 4rny™  and

IS5 = 52 [lm< 6.

That is, provided 4rnyN < §, (3.22) will hold.

Now we have to find a condition on m,. Suppose 4rny™ < é.

Then, we have

my log v+ log 4rn S log 6

= —my,log v 2 log 4rn —log §

4
= —my,log v 2 log %
log 4n
= m, 2 8 (since 0<y<1
S )
log 4m
= My 2 [t ]
—log v
Thus, 4rny™ < § if
log 4n
2 [—2]+1 2
ma 2 [Cp] 1 (3.23)
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where [-] denotes the integer part.

Thus,

| Zn =l Irn = S+ S =l T+ ) (SN = S2) ||
N=1
My—1 My—1

= 1+Z | Sy — S°°||+Z | SN — 5°°u<1+22+ Z@N/mnl
N=mg N=my,
= 14+2(mp—1)+ [0+ + 6(mytimes) + -+ + " + -+ + §"(my,times) + - - -]
o

=2+ —)m, — L.

= 2mp — 1+ 6my[l+6+6+ ] =2my — 1 + mpé—— T}

1-¢6

Thus,

(A E; {(”1-6—5) ([10g(4r”/6)]+1> —1} by (3.23).

0<é<1 —log v

3.4.4 The difference |h —II,(h)|; :

Lemma 3.11 Under the assumptions of Theorem 3.1

(@) [|h = I, (h)|1 £ Zkaip(h(k))/2n, if each Ty is a general Lasota- Yorke map,
k=1

(i3) |h — a(h)|ls < (eS7O7Im) /2, if each Ty, is a C*+HP circle map.

Proof. First assume that each T} is C1*MP circle map.

Ih = T (R)]l = | Zwkh“’ —1I, (Z wkh<k>) Is
Zwk”h(k) IL,A® ||, = Zwk hk) / (k)dm‘ dm. (3.24)
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Here,

/(h(k) ——n/ h(’“)dm)dm:/ A —/ (n/ h(k)dm> dm

I; I; I; I; I

= / A% dm, — (n / h<k>dm> ( / dm> = / AP dm —n / h®)dm m(I;)
Ii Ii Ii Ii Ii

— /h(k>dm_/ h®)dm = 0.

Ii Ii

Since h(¥) has integral zero, then by Lemma 2.14, we have

= |h®)|dm < ! (sup A¥)(z) — inf K™ (m)) /2.
n i
Thus, by (3.24)
Ih =T £ > wk % <sup h®)(z) — inf A" (w)) /2 (3.25)
SUPge, . h®)(z)
= - (k) L —
Zwk Z;glf h (infzeli R®) (z) 1}/2

< Zwk (eo/()‘“l)") /2 (by Lemma 3.5)

= (e&/O=1m) /2, (3.26)
In case of general Lasota-Yorke maps, by (3.25), we have

|h =T, (R)|1 £ Zkalp (%)) /2n.

k=1
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3.4.5 Proof of (ii) and (iii) of Theorem 3.1

Part (ii):

H hn —h ||1 é H hn - Hn(h‘) ”1 + ” Hn(h) —h “1

A

1 S = Sa llmll Za llm + || Ha(R) = B |1

max ( ZWlk Llp(h(k )/mf B k) )) /

1SkSr

(o) (B ) ) s

A

k=1
1
- - (k) (k)
n%l/?é«(zwlk (Lip(h )/1nfh ))
| ine { (2402 (el 4 g +ZT:wLi (¥ /2)
0<é<1 1-¢6 —log vy — kHID
1 _ logn
< =
= nol 02 +C3a

where

_ ) log(4rn/é6) 4| < logn
0i%£1{(2+1—6) ([ —logy I+1)-1p= Cy '’

and C) = max; <<, (37, Wi)(Lip(h®)/ inf,e; h®))), Cs is a constant.

Thus,

| o — b 1< clog”

where C' = % and for large n we can neglect Cj.
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Part(iii):

I B = h LSl Ao = T (h) [l + || Ta(h) = R ||y

S 1 8n = Sa llmll Zu llm + | Da(h) = B LS (max > W) (eI — 1)

1SkSr

) log(4rn/é)

A R A
(€A=" _ 1) x <(f§3§§rjwﬁc)oi%£1 {(2 + 7 f 5) Ob_g_(ﬁ;mj)] n 1) B 1} N 1/2> .

64



3.4.6 Appendix

Example: Let 7; and 7» be defined by

m1(z) = 62° — 92* + 8z(mod 1) and

.4 06 0.e

Figure 3.1: Graph of 7y
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Here, inf,cr |71(2)| = 3.5 and infeer |75(2)] = 55

Consider the matrix

11
wel 2?2
10
and its fixed left eigenvector w = [%, 1]. So, our of = 0.37 and o = 0.28 and
o =0.37 < 3.

Thus, according to the condition (i) of Theorem, we are guaranteed that there exists

a unique invariant density for our maps.
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Now, we will approximate the invariant density for n = 8.

The transition matrices for 7 and 7 are respectively

Py(1)

0.33 0.32 0.31 0.04
0 0 0

045 013 O 0
0 032 045 0.24
0 0 0
0 0 0 0

025 0.25 025 0.25

0 0 0 0

0.13 0.13 0.14 0.

0.18 0.19 0.20 0.

0.16 0.27 0.28 0.

0.25 024 0.23 0.

017 001 0 oO.

0 016 0.16 0.

0.25 0.25

14

21

011 0 0 0

29

17

05

15

67

0

27 030 0.29

0

0

0 0.11

0

0.15

0.05

0.17

0.29

0.21

0.14

0

0

0

021 0.45 0.34

0

0.16

0.23

0.28

0.20

0.14

0.45

0.25

0.16

0.01

0.24

0.27

0.19

0.13

0.45

0.25

0.17

0.25

0.16

0.11

0.18

0.13

and




and then

.06

.08

.05

07

0

12

.08

0

32

0

44

25

0

Its fixed left eigenvector

.06

.09

13

12

.002

07

32

13

31

25

0

.06

.09

14

11

07

31

25

0

10

0

14

0

.08

.02

07

03

.26

0

23

21

0

25

0

02

.08

14

10

07

.29

25

07

11

14

.09

.06

29

34

10

.25

07

.002

12

13

.09

.06

14

14

44

25

.08

A2

07

09

.08

.06

44

25

.06 .06
.08 .09
05 0
07 .13
0 0
A2 12
.08 .002
0 .07
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

06 .07 .07
09 .10 .02
0 0 .08
14 14 0
0 0 .14
A1 .08 0
0 .02 .10
.07 .070 .070
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

07

11

14

.09

.06

07

.002

12

13

.09

.06

sg = [1.35 0.66|1.35 0.67|1.34 0.67|1.34 0.67|1.33 0.67|1.32 0.67|1.32 0.67|1.31 0.66].

Hence, the approximate invariant density hg = [8.97,8.95,8.94, 8.93, 8.88, 8.85, 8.82, 8.78].
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