A Novel Approach for Generating
Test Suites for
Component-Based Safety Critical Systems

Sudhan Kanade

A Thesis
n
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University,

Montreal, Quebec, Canada

July 2004

(©Sudhan Kanade, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94702-5
Our file Notre référence
ISBN: 0-612-94702-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Novel Approach for Generating Test Suites for
Component-Based Safety Critical Systems

Sudhan Kanade

Safety-critical system is a class of systems whose failure may cause severe conse-
quences as such systems have absolute demands regarding correctness of functional as
well as timing behavior of the system. There are existing informal and formal ways of test-
ing safety critical systems, though formal-methods-based approaches provide rigorous and
provable mathematical model for testing these systems. Nowadays component-based sys-
tems are preferred over monolithic systems because they help us to express complex infor-
mation in more clear and unambiguous manner. But with the increase in size of the system,
the need for proving the correctness of the system tends to be quite complex, thus requiring
some mechanism to show the conformance of the system towards its requirements. Thus
working towards these requirements, we have proposed a methodology for generating test
suites for component-based safety critical system. Our proposed CAGILY framework in-
troduces a formal framework for identifying a set of test cases from a well-specified system
to validate critical functionalities of the system. This framework incorporates the concept
of component identification and specification, and defines contracts/morphisms by adapt-
ing the theories of constraint cross-product in category theory to generate sets of compre-
hensive test suites. The formalization of the system is provided by specifying the system
composition using the specification and verification tool called Specware. Further, we have
developed and implemented Sampurna tool, which generates a set of test cases depending
on the constraints imposed on the system. We illustrate the effectiveness of our proposed
approach by applying it to a case study of mine pump problem. The important feature of
our approach is that, we have been able to decompose the system depending upon their

functional requirements and then testing the system for its critical functionality.

il

ACKNOWLEDGEMENTS

It has been a great privilege for me to work with Dr. Purnendu Sinha, an exceptional
researcher and teacher, who introduced me to real-time systems, fault tolerant systems,
test case generation and component-based design and allowed me to pursue research in
Software Engineering domain, a subject close to my heart. He has been extraordinarily
patient and supportive, have been always available for discussion and responding speedily
to research reports. I would like to take this oppurtunity to thank him for his contiuned
encouragement and guidance throughout the course of my research.

My sincere thanks goes to Professor Rachida Dssouli, with her invaluable insights on
the topic and timely inputs. She was always there to help out at every stage and provide
constructive comments on the research work.

I would also like to thank my fellow graduate student, Mr. Nikhil Varma, for his dis-
cussions concerning my research, that helped focus my efforts towards the completion of
this thesis.

I extend my whole-hearted gratitude to my family for their encouragement and support,
without which it would have been impossible to finish this work. Finally, I would like to
thank my colleagues in the research group and my friends for their valuable discussions,

support and advice.

Sudhan Kanade, July 2004

v

Contents

1 Introduction 1
1.1 Component Based System Design 1

1.2 Software Testing 2

1.3 Need for Functional Testing 3

1.4 Importanceof TestCases 3

1.5 Roleof FormalisminTesting 5

1.6 Different Approaches in Test Case Generation 6
1.6.1 State Machine Approach 7

1.6.2 ModelBased Approach. 9

1.6.3 Category-Partition Testing 9

1.64 Shortcomings of Above Discussed Approaches 11

1.6.5 Generation of Test Cases Using Logical Specification 12

1.7 Background and Motivation 14

1.8 OurContributions 16
1.8.1 SampurnaTool 17

1.9 OutlineoftheThesis 18

2 Background - Category Theoretic Approach for Composition 19
2.1 CategoryTheory 19
2.2 Categories in Category theory 20

2.3 Modularization in Category Theory 21

23.1 Signature 22

232 Specification 22

233 Specification Morphism 22

234 PushoutOperation 23

235 Modulelnterface 24
23.6 Parameter Interface (PAR) 25

23.7 ImportInterface (IMP) 25

23.8 ExportInterface (EXP) 25

239 BodylInterface(BOD) 26

24 Specware 26
3 CAGILY - An Approach for Generating Test Suites 28
3.1 CAGILY Framework 28
3.1.1 Component Identification 29

3.1.2 Component Specification 30
3.12.1 Composition of Module Specifications 30

3.1.2.2 Composition with Constraints 31

3.13 Contract Definition 32

3.1.4 Mapping Contracts to Morphism 32

3.1.5 Test Case Generation Procedure 32
3.1.5.1 Cross Product of Categories 32

3.1.5.2 Constrained Based Cross Product 33

3.1.5.3 Sampurna: Test Suite Generation Tool 33

3.2 Mine Pump Problem - AnOverview 34
3.3 CAGILY - A Detailed Hllustration 36
3.3.1 Component Identification 36

3.3.2 Component Specification 37

vi

3.3.3 ContractDefinition v e e e e e e e e e e 41

3.3.4 Mapping Contracts to Morphism 44

3.3.5 Test Case Generation Procedure 44

3.3.6 Hlustration of Sampurna Tool 46

3.3.7 Effectiveness of CAGILY Framework 47

3.4 Specification and Verification using Specware 47
Implementation of Sampurna Tool 59
4.1 Database Tool for Generating Test Suites 61
4.2 Tables for ComponentModules 62
4.3 Queries for Generating TestSuites 64
43.1 GetAllVariables 65

432 ConstrainedVariables 66

4.3.3 UnconstrainedVariables 66
43.4 Sensors And ControllerModule 66
43.4.1 AirFlowSensorReqType 67

4342 CarbondioxideReqType 67

4343 ManualReqlype 67

4344 MethaneSensorReqType 68

4.34.5 PumpControllerReqType 68

43.4.6 WaterSensorReqType 68

44 ActionQueries 69
44.1 Sampurna Stepl 69

442 Sampurna Step2 e e e e 70

443 Sampurna Step3 1 70
444 Sampurna Step3 2 L. 71

445 Sampurna Step3 3 72

4.5 Applying Resulting Test Suites - AnExample 74

vii

4.6 Effectiveness of Implementated Sampurna Tool

Conclusion

51 Experience

52 Contributions e e e e e

Appendix

A.1 Illustration of Sampurna Tool

Appendix

Appendix

.........................

viii

...............

77
78
79

80
80

89

95

List of Figures

2.1
2.2

3.1
32
33
34
3.5
3.6

4.1
42

Specification L e 23
Module 24
Hierarchical System Decomposition 29
PushOutOperation 30
Compositionof TwoModules 31
Composition of two modules with constraints 31
Mine Pump Controller 34
Hierarchical Decomposition of Mine-Pump System 36
Sampurna Tool-Tables 64
Sampurna Tool -Queries 65

X

List of Tables

42
4.4
4.6
4.8
4.10
4.11
4.12
4.13
4.14

B.1
B.2
B3
B4
B.5
B.6

C.1
C2
C3

WaterSensorModule L 62
ManualModule L 63
CarbondioxideModule, 63
AirFlowSensorModule 63
PumpControllerModule 63
TESTCASEGENERATION 63
RESULTANT TESTCASE 63
TESTCASE 73
RESULTANT TESTSUITE 74
TestCaseGeneration-1 89
TestCaseGeneration-2 90
TestCaseGeneration-3 91
TestCaseGeneration-4 92
TestCaseGeneration-5 93
TestCaseGeneration-6 94
ResultantTestCase-1 96
ResultantTestCase -2 97
ResultantTestCase-3 98

Chapter 1

Introduction

In this thesis, we illustrate the framework to generate functional test suites for component-
based system, which utilizes category theoretic approach for system composition. We begin
with addressing the importance of testing in component based system. Further we discuss
on a need for functional testing and role of formalism in testing. We then explore different
approaches like the state machine approach and model based approach used for generation
of test cases. Finally, we provide short summary of our CAGILY framework for functional

test case generation, followed by the contribution of the thesis.

1.1 Component Based System Design

Component based software engineering is a promising and effective approach, managing
the ever growing complexity of the software system providing a reliable and timely ser-
vices. The overall idea is to partition a system into parts (components) that are language
and machine independent, and can be connected via a network. Offering flexible migration
to legacy systems and enabling reuse of code, component technologies are viewed in indus-
try as a way of speeding up development and organizing systems with increasing size. But
with increase in size of the system, the need for proving the correctness of the system tends

to be more complex. However, the increasing complexity and size of such systems also

1

increases the need for some specification and validation process to prove the correctness of
the system and to show the conformance of the system towards its requirements.

The system decomposition helps us to express complex information in ways that are
easily understood which in turn provides clear and unambiguous definitions of the behavior
of the system. It affects the test case generation process by reducing time required to

validate a batch of test cases, provides scalability and better test coverage.

1.2 Software Testing

Testing is the process of executing a program or system with the intent of finding errors.
It is an indispensable step in the process of software development. Although testing can
only show the presence of errors, not the absence of them, it is still a very effective way
of gaining software reliability and supporting software quality assurance. However, doing
testing is time consuming and expensive. It is widely believed that more than fifty percent
of the time and cost of software development is spent in testing. In the software engineering
area, many research projects are aimed at finding out more cost effective ways of doing
testing.

Testing can be categorized in many different ways. If categorized by testing levels,
there are unit testing, integration testing and system testing and if categorized by code ac-
cessibility, there are white box/structural testing, and black box/functional testing. Various
aspects of software need to be checked with other types of testing, such as stress testing,
usability testing, and performance testing and so on. For example, regression testing is
selective retesting of a software system that has been modified to ensure that any bugs have
been fixed and that no other previously working functions have failed as a result of the repa-
rations and that newly added features have not created problems with previous versions of
the software.

Besides these general categories, special types of software may need to be tested in

more special ways. For instance, there are different approaches for object oriented soft-
ware and real time reactive system testing. Among all categories of tests, one of the most

important categories is black box testing or functional testing.

1.3 Need for Functional Testing

Functional testing is based on some form of specifications of the intended behavior of the
software to be tested. It is implementation independent, as we do not need to know the
internal design, structure or code of the software. Functional testing is important because
after all, its the software’s functions that are delivered to and used by end users, and the
software is expected to act exactly as how it is specified in the original requirements. The
main objective of functional testing is to ensure that every requirement is actually fulfilled.
Other types of test such as white box or structural test, performance test, or stress test are
necessary and effective too, but without black-box testing based on specifications, it is still

possible that the software product is missing functions originally specified.

1.4 Importance of Test Cases

The requirements of the software to be developed may be expressed informally in a natural
language, or rigorously written in a formal language. The requirement documentation then
becomes the basis of the software design as well as the functional black box testing of the
system under test.

There are three main steps in testing, namely defining test cases, doing the tests and
evaluating test results [Edwa96]. Since defining test cases is the first step, it is in fact the
basis of a successful and good test process. With the intent of test in mind, we believe that
the more errors found by executing a set of test cases, the better those test cases are.

One can define test case as:

o A set of test input, execution condition, and expected results description for a partic-

ular objective.

o The smallest entity that is always executed as a unit, from beginning to end.

For different purposes of test, test cases can be organized as one or more test suites where
a test suite is a group of tests with a common purpose. Traditionally, for informal speci-
fication based functional testing, the requirements are analyzed and a test suite is defined
manually by testers. There are many methods used to select test cases. Commonly used
approaches include equivalence partitioning, boundary value analysis and error guessing.
Lesser-used methods include cause effect graphing, syntax testing, state transition testing
and graph matrix [Edwa96]. Obviously, the manual inconsistency and incompleteness in
informal specifications can cause problems in the test case generation and selection proce-
dure. For instance, as the construction of test cases is subjective, each test case designer
may choose different sets of test cases, and it is hard for one to judge what kind of test case
is more effective and complete. Moreover, there is a lack of criteria for the completeness
of a test suite. We know that it is impossible to do exhaustive testing, because from the
technical point of view, we never know whether all errors in system under test are located,
and from the managerial point of view, there is always a time limit for testing. However
we do need some sort of coverage measurement criteria that can help us gain more con-
fidence in the quality of system under test. Although many code and structural coverage
measurement tools are in use today, for black-box testing, it is more meaningful to have
some functional coverage measurement criteria to ensure that no function is missing in an
implementation. Now the question is how? Formal specification based black-box testing

might be the answer.

1.5 Role of Formalism in Testing

Today software is penetrating into more and more areas of our life, and many systems
are safety-critical. They command higher quality and reliability requirements to prevent
human-life and property loss. For the quality assurance of safety-critical systems, func-
tional testing plays a more crucial role in gaining confidence in the systems functional be-
havior correctness. Researchers have been working on the application of formal methods
in the software development life cycle to help reduce errors left in software products.

Ideally, one would like safety-critical systems to be proved correct by formal methods.
But as current techniques of proving the correctness of entire systems using formal meth-
ods are immature, costly, and rarely used in practice, we still need to depend on testing
for the validation of software systems. Fortunately, besides the proof of program correct-
ness, formal methods benefit many other activities in the whole system development life
cycle. A specification written in a formal language eliminates ambiguity and inconsistency.
At the early stage of software development, analysis and design of systems based on for-
mal specifications reduce the likelihood of errors in the products of those periods. And
at later stages, formal specifications can be used to improve the efficiency of the testing
process. Formal specifications can also be used in tasks such as deriving test oracles as
well as deriving test cases in more logical and rigorous ways. They also allow measuring
functional test coverage and quality of testing. More importantly, they make automation of
test oracle derivation and test suite generation possible, thus can improve the efficiency and
effectiveness of the whole testing process.

Research work has been done for methods and tools of deriving test oracles and test
suites from various forms of formal specifications. There are model-based, logic-based or
other forms of formal languages that all have mathematical semantics and syntax. Some
formal languages are executable, making the validation of specifications and simulation of
the system under test (SUT) easier. It takes effort to write formal specifications with most of

the existing formal languages. In some cases, particular forms of formal specifications are

required just for the purpose of performing tasks such as automatic test oracle derivation,

and thus a lot of extra effort of writing such complex specifications is needed.

1.6 Different Approaches in Test Case Generation

Testing is often made more difficult by decisions made during requirements specification
and software design. A method of assessing the testability of requirements specifications
and software architectures would therefore help to further reduce the cost of testing. The
high cost of Verification & Validation (V&V) is also compounded by the fact that it is
often performed on many different iterations of the software. Iterations can be the result
of faults in the software or faults in the requirements specification being detected late in
the development lifecycle. Clearly, a better understanding of the requirements earlier in
the project and a "right first time" approach to coding would dramatically decrease the
recurring costs of V&V. This is obviously an ideal goal and would be difficult to foresee in
practice. The effective test case generation would reduce V&V costs allowing more effort
to be targeted at the requirements specification phase and at designing efficacious testing
criteria.

There are obvious practical difficulties associated with testing software or hardware
systems such as having poorly expressed requirements, informal design techniques and
nothing executable available until the coding stage. On top of these are the various psycho-
logical and managerial problems.

Historically, there have emerged different classifications of testing techniques. Some
approaches make a distinction between static and dynamic testing techniques. Static tech-
niques are those that examine software without executing it and encompass activities such
as inspection, symbolic execution and verification. Dynamic techniques are those that ex-
amine the system with a view to generating test data for execution. There is also one more

distinction between these testing techniques. The test cases that are derived without ref-

erence to the implementation of the system (i.e., they are created with reference to the
specification, or some other description of what the system should do) are termed black-
box techniques. That is, the systems are treated as a black box and its functionality is
determined by supplying it with different combinations of inputs. In contrast to this, test
cases that are derived by examining the implementation of the system are termed "white-
box” (programming style, control method, source language, database design, etc.). Other
terms have been introduced over the years and now black-box techniques are sometimes
called "functional" or "specification-based” and white-box techniques may be referred to
as "structural” or "code-based" or even "glass-box".

Model-based specifications facilitate proof-based analysis and can also provide an ex-
plicit definition of both the control and data parts of the specification for testing purposes.
Model-based specifications are based on predicate logic and set theory. The functionality
of the system is expressed in terms of operations and functions that transform the state-
space of the system. These operations and functions are expressed in terms of a standard
collection of data types and type constructors. The state-space is restricted to valid states
using state invariant predicates. Operations are expressed in terms of a pre-condition over
the state and inputs that must hold before the operation can occur and a post-condition that
restricts the values of the state and outputs following the operation.

Basically two types of testing techniques are present in specification based testing, one
is with using State Machine approach, i.e., techniques for generating tests from FSMs and

EFSMs, and secondly the techniques for generating tests from model-based specifications.

1.6.1 State Machine Approach

Finite State Machines (FSM) is a formal specification method that is widely studied and
used to model software systems, especially sequential circuits and communication proto-
cols. FSM is broadly used perhaps partly due to the fact that at a low level of abstraction, a

system is often most easily understood as a finite state machine [Dss097]. Because confor-

mance testing for protocols is of great importance, researchers have been studying the ways
to automate conformance testing tasks such as to generate test sequences (test cases) based
on FSM specifications. The techniques developed in the past for generating test sequence
for FSM all require that an FSM model has some properties or can be transformed to an
FSM that has such properties. Generally, to test a system specified in FSM, two things need
to be checked. One is to verify that the transition produces the expected output, and the
other is to identify that the transition leads to the correct target state.

A state transition diagram or a state table is used to represent an FSM. A state transition
diagram is a directed graph whose vertices correspond to the states of the machine and
whose edges correspond to the state transitions; each edge is labeled with input and output
associated with the transition [Lee96], while a state table is a table used to represent the
same states, input/output and state transitions in text format.

In [Sidh89], author describes the four most used protocol conformance test sequence
generation techniques: T-method, U-method, D-method and W-method, and the prerequi-
sites for the implementation of each method. The T-method, also called Transition Tour
method, was originally proposed by Naito and Tsunoyama [Nait81]. This method is equiv-
alent to a solution to a graph theory problem of searching for the shortest covering path
of a directed graph. Here, checking of next state might be omitted. This method gener-
ates the shortest test sequence among the four aforesaid methods. Although the T-method
cannot guarantee the fault coverage and sometimes additional tests are required. It has
been deemed as the best and most practical test sequence generation method, and many
researchers showed interest in it and have developed variants based on it.

Although there are many FSM-based automatic test case generation methods and tools
implemented, they all have some limitations. First, these methods all make certain assump-
tions of an FSM model, e.g., requiring minimal, strongly connected, completely specified
FSM, and secondly the FSMs structure is flat and non-hierarchical. It can only be used to

model sequential systems without concurrency. Moreover, FSM specifications only deal

with control flow, not the data flow, for example, it cannot have variables in states nor
operations determined by variable values.

Extended Finite State Machine extends original FSM model in two ways. First, a tran-
sition has a function (with variable) rather than a single pair of input/output values and
second, each state represents a set of values (with variable) for the internal state rather
than a single value. In other words EFSM extends FSMs by adding three elements: hier-
archy, concurrency and communication, making them suitable for specifying the behaviors

of complex reactive systems [Dss097].

1.6.2 Model Based Approach

Testing based on Z specifications was first proposed by Hayes [Hayes86] in the context of
testing abstract data types. Hayes described the testing problem as checking that the state
invariants and pre-conditions are maintained in the implementation as well as the input-
output relation.

Hall [Hall88] first described the possibilities for automatically generating test domains
for Z specifications based upon the partitioning of input sets, output sets and states. He
suggested automatically parsing the specification while applying attributed grammar style
operations to develop the partitions.

Dick and Faivre [Dick93] suggested partitioning the specification into disjunctive nor-
mal form as a means of automatically extracting test cases from VDM-SL specifications.
However, this leads to unstructured test sets with limited fault detection properties. The

paper also described a method by which test cases could be sequenced.

1.6.3 Category-Partition Testing

The category partition method [Ostr88] is based on partition testing and equivalence classes.
The principle of partitioning the input domain with respect to properties of the specification

was first introduced in 1975 in a paper by Goodenough and Gerhart [Good75]. Equivalence

9

classes are formed by partitioning the input domain into sets of data that exhibit similar be-
havior in the specification. It is then assumed that only one test point needs to be selected
from each equivalence class to verify the implementation against the specification. The
first step of the category partition method consists of decomposing the specification into
functional units that can be independently tested. The functional units are then analyzed
to identify the parameters and environment conditions that affect the function’s behavior.
Parameters are explicit inputs to operations and environment conditions are properties of
the system state which hold when the function is executed. The next step is to choose cat-
egories of information that characterize major properties of the parameter or environment
condition. Each category is then partitioned further into choices which represent sets of
similar values (equivalence classes). The individual test cases can then be created by se-
lecting values from choices for each category, taking into account the constraints on how
the different choices interact.

Amla and Amman [Amla92] took Ostrand and Balcers [Ostr88] description of the cat-
egory partition method and used it as the basis for a method of deriving tests from Z spec-
ifications. They suggested that category partition method is applicable to natural-language
functional specifications, which may be incomplete and unstructured. The testers will need
undue effort to define testing requirements, thus hampering the effectiveness of the method.
On the other hand, they argue that testing requirements are, to a large extent, already cap-
tured in formal specifications. They analyze the feasibility of applying category partition
method to Z specifications and verify that testing requirements can be derived from the
formal specifications more easily.

Using the notion of test templates, Stocks and Carrington [Stock96] developed a uni-
fied, flexible, and formal framework for specification-based testing. Their framework pro-
vides not only a formal model of tests and test suites, but also a method for applying the
model in testing. In this way, test suites can be constructed in a concise and formal manner.

They also investigate several application areas of the framework, including test oracles, re-

10

finement and regression testing (defined earlier in section 1.2). However, the heuristics used
to partition the specification were left informally specified and the scope for automating the
partitioning process itself was left unexplored.

The Classification Tree Method [Groch93] is a similar technique for repeatedly apply-
ing test heuristics to a specification to derive a hierarchy of abstract test case specifications.
Leaves in the tree are combined and instantiated to form the test data. Tool support has
been developed for this method and allows a tester to structure and select test cases using
an intuitive user interface. The testing heuristics used by the method were restricted to type
analysis and reduction to disjunctive normal form.

The approach presented in [Chen03] is an extension of Ostrand and Balcers [Ostr88]
approach which captures different constraints among various ranges of values of the param-
eters and environment conditions (choices) and then combines these to form test frames.
The algorithm checks for consistency and performs automatic deductions of relations be-
tween the choices. In [Ostr88], where the number of generated test frames can only be
reduced by means of incorporating additional constraints among choices, as a result, the
tester does not have a direct control on the exact number of test frames generated. Also,
after all the constraints have been taken into consideration, further reduction will not be
possible. But in [Chen03], the authors claims that there is a systematic approach in reduc-
ing the number of test frames from the choice relationship which in turn are controlled by
constraints. This is done by prioritizing the individual choices depending upon the software
testers expertise and experience in the application domain. In this way, the choices with
higher priorities can first be used to generate test frames, thus respecting both the resource

constraints and the relative importance of the choices.

1.6.4 Shortcomings of Above Discussed Approaches

The techniques described above have addressed the problem of constructing test cases but

have not included the issues of selecting test data or checking the outputs of the imple-

11

mentation against the input/output relations given in the specification. The ability to select
representative test data and to check the results of the tests against some correct implemen-
tation of the requirements is essential to be able to implement a complete testing strategy.
Therefore it is important to ensure that test case generation techniques are compatible with
appropriate test oracle and test data generation techniques.

Apart from these methods used to generate test cases, we also discuss one more ap-
proach which has received widespread recognition in the researching community and in

the industry.

1.6.5 Generation of Test Cases Using Logical Specification

The method presented in [Mand95] is a novel approach for semi-automatically generating
the test case by proposing a tool for functional test case generation for real time systems.
This is done by using formal specification language TRIO, which is an extension of tem-
poral logic defined to deal with strict timing requirements. The proposed method can be
applied to verification of any kind of system, not explicitly to software/hardware verifica-
tion. As the TRIO formulas are executable, they can be easily used to check validity or
satisfiability.

If A is a formula and ¢ is a term of the temporal type, Futr(A,t) and Past(A,t) are
formulas: their intuitive meaning is that the formula A holds at an instant ¢ time units away
in the future (resp., in the past) with respect to the current time value. This can be shown
by:

in «— Futr(out,b) 43}

Here the time dependent predicate in means that a message has arrived at one end at
the current time and the predicate out means that a message is emitted from the other end
in 5 time units.

A leaf tableau is generated by decomposing the TRIO formula which we get from the

logical specification of the system. These tableaus are infact properties that hold at a certain

12

point in time, where each property is called an event, and further each set of events is called
a history.

A history is complete if it contains a unique truth value for each predicate of the formula
at each instant of the time domain. A complete history satisfies a formula F’ at time i if its
evaluation in which predicate values are defined by the events of the history yields a frue
value. Thus, each leaf tableau that does not contain any contradiction contains a history.

The algorithm that checks the satisfiability of a TRIO formula is called a history gen-
erator. The history generator produces the elementary test cases from the specification
provided by the user. The subset of test case is called partial test case. Also the complex-
ity of the history generation algorithm is exponential with respect to both the number of
quantifications in the formula and the cardinality of the interpretation domains. This inter-
pretation algorithm is called a history checker. Thus the history generator and the history
checker are used as the core for this tool for systematically generating functional test cases
from TRIO specification.

During the interpretation of a formula F’ specifying a given property of a system, be-
haviors (i.e., simulations) of the specified system compatible with F' are generated, they
are called histories. The main idea underlying this approach is to use histories as test cases
for the system implementation. A test case for a given formula F is a complete history
that satisfies F' at one or more instants of the time domain and this test case doesnt have
classification of input events and output events separately.

In general, there is hardly any need of testing the complete expected system behavior.
Here they try to identify a limited number of relevant events and check the system behavior
against them and try to extrapolate the behavior under all remaining circumstances.

The paper supports the proposed approach by providing two case studies. The first
case study (Therac-25) describes about the accident that occurred at the East Texas Cancer
Center in Tyler, Texas. This study illustrates, how test cases could have been generated that

would have uncovered the flaws that led to the accidents reported in the literature of the

13

Therac-25 mission. They showed, how the related functional requirements can be easily
specified in TRIO and suitable test cases can be produced in a simple and natural way from
such specifications.

The second case study illustrates about ELSA (Experimentation of a logical approach
to the specification and verification of automation control systems), an industrial project re-
cently conducted in the framework of the European Union program ESSI. This project con-
cerned specification, design and verification of the system controlling load balance in the
energy production station of pondage power plants operated by the Italian Energy Board.

TRIO has proved to be an adequate language for real-time specification. However, its
use becomes difficult when considering large and complex systems, because TRIO speci-
fications are very finely structured and the language does not provide powerful abstraction

mechanisms and lacks an intuitive and expressive graphical notation.

1.7 Background and Motivation

There are continuing efforts in component based system for composition of systems using
different approaches [Berg96]. The paper presents generic object-oriented models which
are useful in analyzing and relating synchronization and real-time constraint-inheritance
anomalies in a uniform way. Based on these generic models, a number of important syn-
chronization and real-time inheritance anomalies are identified and discussed. They present
a few possible solutions to both synchronization and real-time constraint-inheritance anoma-
lies and propose modular and composable synchronization and real-time specification ex-
tensions to the object-oriented model using the concept of composition-filters. The applica-
bility of the proposed mechanisms has been illustrated through various examples. Contin-
uing along the same theme, we started exploring the use of category theory in composing
modules having real time and synchronization constraints [Varm03]. The paper introduces

the formal framework to facilitate the composition process using category theoretic ap-

14

proach, and show the correctness of composition with constraints using these concepts.
Even though the concept of contracts has been introduced and widely used in the com-
puting world [Raus02], the [Varm03] approach utilizes the concept quite effectively. The
contracts, which are basically a sets of constraints defined from the system specification,
which play important role in composition of different modules of the system.

We have taken Mine pump problem [Jose97] as the classical example to formulate and
use it as the case study for the proposed approach. Firstly, all the components of the mine
pump system are identified and each of these components are specified formally with sorts,
operations and equations for their parameter, import and export interfaces. A set of con-
tracts or constraints for each of these components are defined along with their specification.
Then the internal and external contracts are defined based on the requirement of the mine
pump system. These contracts are set of constraints which a component or a system has
to satisfy. Furthermore, internal contracts are the constraints imposed on the stand-alone
component; this generally deals with the initial values and constraints on the operations that
can be performed by the component. External contracts are introduced as a result of inter-
component interaction. The resulting constraints being imposed effect on the operation of
the interacting components.

These contracts are then mapped with morphism function, such that two categories or
components combine to form a composed category or subsequently reusable component.
In other words, morphism that combines two components is the functional implementation
of the internal and external contracts that exist in each of the components. Thus, it can
be summarized that morphisms are derived from the contracts that exist in each of the
components.

The morphism function which gets defined above, play important role in composition
of system. The composition of each module is done using union operation and morphism
governs the exposition of contracts of different modules. The final resultant composition

should provide the correctness of the composed module. The benefit of this framework

15

is that it facilitates tracing of impacts of influences of a specific constraint imposed on a
module could have on other modules over an interaction. The proposed approach takes
into account the real time and synchronization constraints imposed on the system. Once
the system is composed using the category theoretic approach, the need of verification
and validation of the composed system is very essential to prove the correctness of the
composition. So the need for testing in component based system arised in our ongoing

research work.

1.8 Our Contributions

As compared to other approaches which were discussed above, ours approach attempts to
integrate component-based design of complex systems and constraint-based test generation
into a unified framework. The proposed framework CAGILY, that incorporates the con-
cept of component identification and specification, and defines contracts/morphisms and
constraint-based cross-product in category theory. The component identification is done by
decomposing the system hierarchically into their primitive subcomponents. The identified
components are then specified using four interfaces Parameter, Import, Export and Body.
Contracts are introduced as a result of inter-component interaction and are derived from the
specification. The morphisms define a rule in which two categories or components interact
to subsequently form a system or a reusable component. This morphism that combines
two components is the functional implementation of the contracts that exist in each of the
components.

The first step in test case generation procedure is the constraint cross products between
the components, which is done till we get composite constraint cross products of all the
components. The purpose of introducing cross product in the cagily framework is to capture
all the necessary and possible set of variables covering different scenarios. Constraints

are used to restrict the irrelevant and unnecessary sets of variables still satisfying the test

16

coverage. Finally, Sampurna Tool is used to generate the final set of test suites from the

composite component.

1.8.1 Sampurna Tool

Once we arrive at the sets of variables/export functions, which form the final constrained-
cross product for the entire composite system. The first step in Sampurna tool is to bring
(import) the relationship chain (sets of variables associated to respective export functions)
to the final sets of variable considering all the possible combination of values/range for
which the variables may attain. This ensures that we arrive at the end values which are the
actual inputs to the system.

After constraining the cross product between the categories, we arrive at a smaller list
of relationships which are still having some sets of test cases which are meaningless and
redundant. There is a need to reduce this set of test cases so as to optimize set of test cases
which will satisfy the functional aspects of the system. This is achieved by using a priori
knowledge of the system such that the variable-value pairs that are not attainable/possible
with respect to the system specification are not included in the resulting test cases.

The final step in Sampurna tool is to parse the set of test cases with respect to con-
tracts so as to obtain the expected output of the system. This associated values/range of
the variables will steer the system through different state and will help in finding any dis-
crepancies as compared to the correct behavior of the system. The final resultant test suite
which we get after this iteration is a complete set of test cases which targets the critical
functional testing of the system. This framework is illustrated by using the classical mine
pump problem.

The proposed framework is specifically used to test the functional aspects of the system.
And this functional aspect can only be tested if the system is specified correctly. Also to
make the test case generation process more robust, the process should be made automated,

which will reduce the chances of human errors during the testing process.

17

We have specified and verified the composition of the system using the Kestral Insti-

tute’s Specware tool. And finally implemented the Sampurna tool using database tool.

1.9 Outline of the Thesis

In Chapter 2, we provide definition and concepts of category theory, which we used for
our proposed approach. This is followed by discussion on Specware Tool, which is used
for proving the correctness of the formal specification we have derived. Chapter 3, de-
scribes the CAGILY approach for generating functional test cases using category theoretic
approach. This will be followed by a case study of classical mine pump problem involving
decomposition, component specification and generating set of constraints from the given
specification. Further, we have shown the correctness of the composed specification using
Specware. The implementation of the Sampurna Tool is illustrated in Chapter 4. We have
illustrated how Sampurna Tool can be used for generation of functional test cases. Finally

Chapter 5 concludes with discussions and future research directions.

18

Chapter 2

Background - Category Theoretic

Approach for Composition

In this chapter, we explain a formal framework utilizing concepts of category theory. At
first, we provide an overview of the modularization in category theory by providing differ-
ent building blocks of the modules and further providing details regarding different terms
and definations. Next we introduce the algebraic specification of modules using category
theory along with their interconnections. Lastly we provide details about the Specware fool
that we have used in this thesis for the purpose of specifying and proving the correctness

of the composed modules.

2.1 Category Theory

In this section, we will explain the formal role of category theory concept which forms the
basis of the approach presented in this thesis.

Category theory is a relatively young branch of mathematics stemming from algebraic
topology, and designed to describe various structural concepts from different mathematical
fields in a uniform way. Category theory provides a bag of concepts and theorems about

those concepts that form an abstraction of many concrete concepts in diverse branches

19

of mathematics including computing science. Hence it will come as no surprise that the
concepts of category theory form an abstraction of many concepts that play a role in algo-
rithmics.

Quoting Hoare [Hoare89]“Category theory is quite the most general and abstract branch
of pure mathematics. The corollary of a high degree of generality and abstraction is that
the theory gives almost no assistance in solving the more specific problems within any of
the sub disciplines to which it applies. It is a tool for the generalist, of little benefit to the
practitioner {.......}".

The language of category theory facilitates an elegant style of expression and proof
(equation reasoning) for the use in algorithmics, this happens to be reasoning at the function
level, without the need (and the possibility) to introduce arguments explicitly. Also, the
formulas often suggest and ease a far-reaching generalization, much more so than the usual
set-theoretic formulations.

Category theory has itself grown to a branch in mathematics, like algebra and analy-
sis that is studied like any other one. One should not confuse the potential benefits that
category theory may have (for the theory underlying algorithmics) with the difficulty and

complexity, and fun, of doing category theory as a specialization in itself.

2.2 Categories in Category theory

A category is a collection of data that satisfy some particular properties. So, saying that
such-and-so forms a category is merely short for asserting that such-and-so satisfy all the
axioms of a category. Since a large body of concepts and theorems has been developed
that are based on the categorical axioms only, those concepts and theorems are immedi-
ately available for such-and-so if that forms a category. For an intuitive understanding in
the following definition, one may interpret objects as sets, and morphisms as typed total

functions, we shall later provide some more and quite different examples of a category, in

20

which the objects arent sets and the morphisms arent functions.

It has been lately established that the mathematical axioms present in category theory
can be used in the field of computer science. The concepts proposed by category theory
have been identified by various people [Guo02, Willi99]. The concepts have been widely
used in many researches which aim to propose a formal methodology to the development
process of software systems. We try to exploit the mathematical axioms in our proposed
CAGILY framework and the reason for choosing Category theory is the ease in translating

functional aspects of the system to mathematical notations.

2.3 Modularization in Category Theory

Modularization is an important aspect in component based system. Modularization helps
us in identifying different building blocks of the systems, thus achieving decomposition of
the system. But this modules when combined together to form a composite system, yields
to provide better understanding of the system. Modularity is maintained by structuring
the description of the system in terms of modules that allows very precise description. A
module comprises of three components, Interface - which collects all the resources includ-
ing internal and external relationships, Construction - this defines individual functioning
and denotation of resources, Behavior it represent the particular semantic view of the mod-
ule. These components form the conceptual units which are syntactically and semantically

provided. The basic components of the modules are:

e Module Modules - form the building blocks of a modular system. They represent

particular system components that should be seen as a unit.

e Module Interconnections - It forms the architectural structure of the module. They

represent the way of interaction between the modules.

e Operations on Modules - Operations define the modules and their interconnections

21

and they are given syntactically and semantically.

A Category [Pier91] consists of a collection of C' objects and C arrows (morphism) between

objects. And these two collections have to respect the following properties:

e (' -arrows are composable. In other words, each morphism f is associated with an
object A that is its domain and an object B that is its codomain. i.e., for all morphisms

f:A—Bandg: B—C, there exists a composed morphism gof : A — C.
e Arrow composition is associative, forall h : C— D, h o (gof) = (hog) o f.

e There is a C -arrow from each object to itself. This is called the identity morphism.

2.3.1 Signature

A signature SIG = (S, OP) consists of a set S, the set of sort, and a set OP, the set of

constant and operation symbols. The structure SIG is called a signature.

2.3.2 Specification

A specification SPEC = (SIG, AX) consists of two parts: the signature SIG and a set of

axioms AX which describes the behavior of the system with respect to the environment.
Thus a signature defines only the syntax of a solution and extending the signature with

axioms gives the signature operations. Further, this extension with their respective axioms

gives specification.

2.3.3 Specification Morphism

A specification morphism is a map from the sorts and operations of one specification to the

sorts and operations of another similar specification such that,

1. axioms are translated to theorems, and

22

2. source operations are translated compatibly to target operations.

The operation by which the objects can be linked together or manipulated is shown in the

following subsection.

2.3.4 Pushout Operation

Module specifications are defined by utilizing the notion of push-out operation from cate-
gory theory. Given specifications A and B, and a specification R describing syntactic and
semantic requirements along with two morphisms f and g, the push-out operation gives

specification P which contains A and B.

\\
* hl
‘\

| -

Figure 2.1: Specification

Formally, given specification morphism f : R —A and g : R— B, a specification P to-
gether with specification morphisms 4 : A—P and k : B— P is called the push-out of f
and g, provided that the module commutes, i.e., hof = kog, where denotes composition.

Furthermore the following universal condition holds:

23

Jor all objects P1 and all morphism Hl1: A—P1 and KI: B— P1 such that Hl oF = KI o
G, there exists an unique morphism I : P — PI suchthat I o K =K1 andIo H = HI.

The later part of the pushout definition ensures that the P chosen to construct the pushout
is the minimal. Module specifications are defined by utilizing the notion of push-out oper-

ation.

2.3.5 Module Interface

The term module interface itself defines what services a module provides and what it re-
quires in order to be used in a system. These module interfaces helps in interacting with
other modules using export and import interfaces that are essentially specifications and the

sorts and operations linked together through specification morphisms.

(Resource provided by
f this module)
Parameter (R) Export (A)
g h
Import (B) Body (P)
(Resource provided
by other modules)

Figure 2.2: Module

An algebraic module specification consists of components, called import, export, pa-
rameter and body. A module specification MOD = (PAR, EXP,IMP, BOD, f, h, g, k)
consists of four specifications:

a) PAR, parameter specification

b) EX P, export interface

c) I M P, import interface specification

d) BOD, body specification

24

And their four mapping morphisms f, k, g and k& such that the following diagram com-
mutes, i.e., foh=gok.

The brief description of all the modules is given below:

2.3.6 Parameter Interface (PAR)

The parameter module is the combination of import and export modules and sometimes
intersection of both the modules. With this parameter part, divide and conquer abstraction
is enhanced, as well as reusability of a module is obtained. It can be seen as the parameter

of the whole module as it appears to the outside by its interface.

2.3.7 Import Interface (IMP)

The import interface is used to specify those resources which are to be provided by other
modules which are further used in the modules body for construction of the resources to
be exported. It is an algebraic specification consisting of a signature, which names and
types the resources to be imported and eventually lists properties of these resources, which
form restrictions for the import of actual resources and provide information for the use of
these resources in the body of the module. The explicit formulation of an import interface
is especially useful in the stepwise development of a modular system. It allows a top down
way of construction where resources are named and used, but only later to be realized by

other modules.

2.3.8 Export Interface (EXP)

The export interface contains those resources which are realized by the module and are
to be used by other modules or an application environment. In a module specification
these resources are declared in the same way as the resources of the import interface. It

restricts sorts and operations treated in a module to those which are visible for the user

25

of the module. This realizes hiding of resources, which serves the purpose of protection
of resources, abstraction from internal details, and independence from particular forms of

construction in the body of the module.

2.3.9 Body Interface (BOD)

The body part of a module contains the construction of the resources declared in the spec-
ification of the export interface. For this purpose, the body may contain auxiliary sorts
and operations which do not belong to any other part of the module but depend on the
particular choice of construction. The realization of sorts and operations declared in the
specification of the export interface is encapsulated in the module, not accessible to the
user of the module

All the above concepts are expressed and implemented in Slang language using Specware

tool.

2.4 Specware

In this section we discuss importance of Specware Tool and its usage in specifying and
verifying the concepts of our approach.

Specware is an automated software development tool that allows users to preceisely
specify the desired functionality of their applications and to generate provably correct code
based on these requirements[Srini96]. The foundations of Specware are category theory,
sheaf theory, algebraic specification and general logics. Using Specware, one can con-
struct formal specifications modularly and refine such specifications into executable code
through progressive refinement. Further, Specware allows you to express requirements
as formal specifications without regard to the ultimate implementation or target language.
Specifications can describe the desired funcitonality of a program independently of such

implementation concerns as architecture, algorithms, data structures, and efficiency. This

26

makes it possible to focus on the correctness, which is crucial to the reliability of large soft-
ware systems. Using Specware, the analysis of the problem can be kept separate from the
implementation process, and implementation choices can be introduced piecemeal, making
it easier to backtrack or explore alternatives.

Specware can be further catagorized into

e Description : Descriptions in Specware are written in one of several logics. They
basically represent a collection of properties, which we intend to build. Descriptions
are then progressively refined by adding more properties, till a model is reached

which satisfes these properties.

o Composition: Refinement, complexity and scale are handled well by utilizing the
composition operators which allows complex descriptions to transform into smaller
ones. The colimit operation from category theory is pervasively used for composing

structures of various kinds in Specware.

Besides composition operators, one needs bookkeeping facilities and information presen-
tation at various abstraction levels. Specware uses category theory for bookkeeping and
abstraction.

Specware allows to articulate software requirements, make implementation choices,
and generate provably correct code in a formally verifiable manner. The progression of
specifications forms a record of the system design and development that is invaluable for
system maintenance.

Thus, in this chapter we have tried to discuss the concept of category theory which is
used for our proposed approach. We have given a brief description on the formal verifica-
tion tool Specware. Further, in next chapter we will discuss our approach (CAGILY) and

illustrate the framework using a case study of Mine Pump Problem.

27

Chapter 3

'CAGILY - An Approach for Generating

Test Suites

In this chapter, we propose the framework for generating test suites for component based
system using category theory. We then describe various steps involved in generation of test
suites. Next we illustrate our proposed approach by providing a case study of mine pump
problem. And finally we provide formal specification and verification of the illustrated case

study using Metaslang language of Specware.

3.1 CAGILY Framework

Testing is an important phase in software development process to identify any discrepan-
cies between the actual behavior of the implemented system’s functions and the desired
behavior as described in the system’s functional specification.

The objective of the CAGILY (CAteGory framework for Identifying test cases for-
malLY) framework is to present a systematic and methodological approach for functional
test case generation from a system specification. The CAGILY framework involves the fol-
lowing five steps in test case generation of a specified system as discussed in the subsequent

subsections,3.1.1 through3.1.5.

28

3.1.1 Component Identification

The first step in the CAGILY methodology is component identification by decomposing
the system. System decomposition requires domain knowledge and tends to be somewhat
complex as the present day systems span across various domains. We follow a formal
methodology to decompose the system. Essentially, we view the system as being struc-
tured in a hierarchical manner. We first sub-divide the system into components and then
further continue to sub-divide these components until the primitive components that can be

implemented as single artifacts are found.

(S, <IE , C>)

(S <IR, G >) (8 <IP, G>) B I8, 62

AN A

Figure 3.1: Hierarchical System Decomposition

In order to represent the hierarchical design process a system is represented not by
a single structural design (I P,C) (IP is the set of interaction points, and C is the set
of components), but rather by a set of structural designs {(/P{,C{),..., (I Pn,Cn)} where
each element of the set represents the design at a particular level of the design hierarchy. For
example, assume that the structure of a system $ is to be specified. The first step is to derive
the top level structural specification (I Pg,Cs) which defines the structrual decomposition
of S. Given that Cs= (Cq1,..., Csn) structural specifications can be created for Cs1s - >
C'sn which gives the decomposition of the components of S. The decomposition process

then proceeds to the required level of granularity. The Graphical representation of the

decomposition process is as shown in Figure 3.1.

29

3.1.2 Component Specification

In our framework,v a component (or module) consists of four interfaces, namely Param-
eter, Import, Export and Body (See Figure3.2 and refer to[Ehrig90] for further details).
Formally, given specifications 4 and B, and a specification R describing module’s require-
ments along with two morphisms f and g, the push—out operation gives the component
specification P which contains 4 and B.

R— A

N f

\
\
‘. ht
\
\

Figure 3.2: PushOut Operation

As shown in Figure3.2, given specification morphism f: R — Aandg: R — B, a
specification P together with specification morphisms 2 : A — P and k: B — P is called
the push—out (of f and g), provided that the module commutes, i.e., h o f = k o g, where o

denotes composition.

3.1.2.1 Composition of Module Specifications

As illustrated in [Ehrig90], the composition scheme allows two modules to be intercon-
nected via export and import interfaces. The push-out of the two modules is the resulting
specification of the composed module. Figure3.3 depicts the composition operation, where
Module 1, My= (Rq, Ay, By, Py) and Module 2, My= (Ry, Ay, By, P5). Modulel

imports via specification Bj whatever Module2 exports via specification A,. The resulting

30

composed module M1,is (R, Ay, By, P1y), where P{;is the push-out of Pjand Pyover

B;.
f
Ry ! Ay
g, 1 MOI\‘/iIUIe 1 h]
1 f]
By B R, A

m ¢
Fig (2) Fig (b)

Figure 3.3: Composition of Two Modules

3.1.2.2 Composition with Constraints

Given two module specifications with constraints MC 1and MCj, the resultant module
specification with constraints can be given as MC1p={(R},CR1),(41,Ca1),(B1,Cr2),P12}-
The graphical representation of this composition with constraints is as shown in figure3.4.

The detail description of the concept is given in [Ehrig90].

P f
R, , Coy) LR, , Cp) (4, ,Cy,)

g MG Iy

(B, , Cgy) k, P

N

f
R, , Cpy)——= (4, Cyy) m,
& MC2 hz
(BZ b CB2) kz P2 m; P12

Figure 3.4: Composition of two modules with constraints

31

3.1.3 Contract Definition

A software component can be defined as an independently deployable unit of composition
with contractually specified interfaces[Szyp97]. In component-based engineering, con-
tracts are the services that suppliers offer to potential clients[Raus02].

We define contracts as a set of constraints which a component or a system has to satisfy.
Contracts are introduced as a result of inter-component interaction and are derived from
the specification. The resulting contracts are imposed on the operation of the interacting

components.

3.1.4 Mapping Contracts to Morphism

Morphisms define a rule in which two categories or components interact to subsequently
form a system or a reusable component. Contracts play an important role in the morphism
function definition. The morphism that combines two components is the functional imple-

mentation of the contracts that exist in each of the components.

3.1.5 Test Case Generation Procedure

The concept of cross product is introduced in this framework to capture all the possible
combination of variables so as to generate set of test case scenarios. The constraints are
applied over this cross product to restrict the irrelevant test cases thus achieving compre-
hensiveness and still satisfying test coverage. After obtaining the final constraint-cross
product, based on a priori knowledge of the working principle of the system, the redundant

and irrelevant test cases are being removed.

3.1.5.1 Cross Product of Categories

As illustrated in[Pier91], the Product Category of any pair of categories C' and D has an

object pair (A, B) such that A is an object of category of C and B is an object of category

32

of D, and the morphisms are also pairs, consisting of one morphism in C and one in D.

Such pairs can be composed component-wise.

3.1.5.2 Constrained Based Cross Product

The objective of having constraint-based cross product is to ensure that operations are only
applied to expressions that are relevant[Doye97]. Large sets of test cases will be generated
by taking cross products between the modules, and will be impractical to apply all those
test cases. By doing a constraint-based cross product between the modules, we thereby

remove some combination of variables which are not relevant.

3.1.5.3 Sampurna: Test Suite Generation Tool

Sampurna generates a set of test cases from the final category obtained as shown in the
previous Section3.1.5.2. Further, it eliminates the variable-value pairs that are not attain-
able/possible with respect to the system specification by using a priori knowledge of the
system.

Finally, it parses and generates a suite of test cases with respect to the specified set of
constraints. The expected output of the tool is a test case containing variables and their
associated values/range of values that would steer the system through different states so as
to detect any discrepancies with respect to the expected correct behavior of the system. We
have discussed test case generation procedure and Sampurna Tool in subsequent sections
using a case study of classical mine pump problem.

The fundamental rule (rule extraction) used in this Sampurna tool can be written as
follows. Consider a set of condition : A+B = C , where A, B and C denotes the variables
used in the set of constraints. So when we take value C’ then behaviour does not have
values of A’ and B’ into its equation. Likewise we identify all such sets of variable value

pairs and remove them from the set of test cases.

33

Water Sensor &

/ Controller E

Pump Pump Controller i E

———._1 | Methane Sensor &
Controller

CO Sensor &

/ Controller

Alarm Manual \E\Air Flow Sensor &

g Controller

.................................... P .

Figure 3.5: Mine Pump Controller

3.2 Mine Pump Problem - An Overview

We illustrate our proposed approach through the case study of mine-pump system. Water
percolating into a mine is collected in a sump to be pumped out of the mine (See Figure3.5).
There are certain safety requirements associated with the operation of the pump[Jose97].
The system has four sensors: a water-level sensor, a methane sensor, a carbon-monoxide
sensor, and an airflow sensor. The different sensors are considered as independent modules.
All sensors read data periodically. Like the water level sensor detect when water is above
a high and a low level. A pump controller switches the pump on when the water reaches
the high water level and of f when it goes below the low water level. If, due to a failure of
the pump, the water cannot be pumped out, the mine must be evacuated within certain time
T'. Similarly when any of the other three sensors go high, then an alarm must be raised and
the operator informed within one second of any of these levels becoming critical so that the
mine can be evacuated within one hour. To avoid the risk of explosion, the pump must be

operated only when the methane level is below a critical level.

34

Human operator can also control the operation of the pump, but within limits. An
operator can switch the pump on or of f if the water is between the low and high water
levels. A special operator, the supervisor, can switch the pump on or of f without this
restriction. In all cases, the methane level must be below its critical level if the pump is to
be operated. Reading from all the sensors, and a record of the operation of the pump, must
be logged for later analysis.

There are certain other information which the specification does’nt provide accurately.
For example, the pump may fail when the water is at any level, does the time of one hour
for the evacuation of the mine apply to all possible water levels? More crucially, how is
pump failure detected? Is pump failure always complete or can a pump fail partially and be
able to displace only part of its normal output? And what is the gurantee that the sensors
will always work correctly. Similarly, the controller system obtains information about he
level of water from Highwater adn Lowwater sensors and of methane from Methane sensor.
Detailed data is needed about the rate at which water can enter the mine, and the frequency
and duration of methane leaks; the correctness of the controller is predicated on the accu-
racy of this information. But finally, to satisfy the safety requirements of the mine pump,
we have identified certain operating condition of mine pump, which needs to be fulfilled
for proper functioning of the mine pump system.

The operating conditions of the mine-pump are:

1. The water should be pumped out whenever the water level rises above the high-water

level.
2. The pump must not be operated if the methane level or any air level is critical.

3. The pump can also be operated manually. An operator can switch the pump on when
water level is between low-water and high-water levels. However, a supervisor can
switch the pump on without any restrictions.

4. Both the users should check the methane level and other air-levels before switching

35

(Mine Pump, <IP, C>)

(Manual, <IR,, G;>) (Sensor, <II; , (% >) (Pump Controller, <Hr)’c’ (1:>c>)

PN

WS MS AFS COS
(and their IPs)

Figure 3.6: Hierarchical Decomposition of Mine-Pump System
pump on.

These conditions are the system requirements and the set of test cases that are to be gen-
erated should cover these scenarios while testing the implemented system Next, we follow

the steps outlined in Section3.1 to generate test cases for the mine-pump system.

3.3 CAGILY - A Detailed Illustration

3.3.1 Component Identification

System functionalities, as identified by interaction (or interface) points, can be used by
external entities (as in the case of the supervisor) or by other methods within the system.
Based on the requirements, we identify following interface points for the mine pump sys-

tem.

o Interface Points (IP) = {GetdirLevel(ReadAirSensor), GetMethaneLevel
(ReadMethaneSensor), GetCOLevel(ReadCOSensor), GetWaterLevel(ReadWaterSensor),

GetUserInput(), StartPump(), StopPump(), StartAlarm(), StopAlarm()}

In the next step, we identify objects or components which will possess these IPs. Note
that there can be many other internal functions that might exist in the components besides
these external functionalities. The Figure3.6 illustrates the component identification of

mine pump system.

36

e Components (C) = Sensors with IPs {GetAirLevel(ReadAirSensor), GetMethaneLevel
(ReadMethaneSensor), GetCOLevel(ReadCOSensor), GetWaterLevel(ReadWaterSensor),

ManualOperator with IPs {StartAlarm(), StopAlarm()},
Controller with IPs {StartPump(),StopPump()}

Here, for IPs and Cs, the notation X(Y'), Y denotes the name of the function that the
interface function X invokes. After having identified IPs and Cs for the mine pump system,
we further sub-divide the Sensor component into different sensor modules. The following

are the constituent components for the mine-pump system.
1. Water Sensor (WS) module
2. Methane Sensor (MS) module
3. Carbon Monoxide Sensor (COS) Module
4. AirFlow Sensor Module (AFS) Module
5. Manual Module (M) Module

6. Pump Controller (PC) Module

3.3.2 Component Specification

Each of these six components are specified formally with sorts, operations and equations
for their parameter, import and export interfaces. Then the contracts are defined based on
the requirement of the mine-pump system. In our framework, these contracts get specified
in temporal logic. Note that the contracts which are mentioned are only from the purview
of intercomponent interaction and not for the stand alone components.

Water Sensor (WS) Module: The water level should be read every dwtime units, and
information be sent out every d,; time units. The specification uses the variable wl, Lwl

and Hwl to represent the water level, low water level and high water level.!

Note that w, 6m , dco, 0, are the period of 100ms, and O and . .are the deadlines of 60ms.

37

WS-Parameter =
Sorts Real : wl,Lwl,Hwl
enum : resultw {low, high, ok}
Opns : Val-resultw : wl, Lwl, Hwl — resultw
Eqns : Val-resultw(wl, Lwl, Hwl) = resultw
WS-Import = WS-Parameter
WS-Export = WS-Parameter +
Sorts : enum : signalw {true, false}
/*The function InformPCW informs the pump controller about a critical water level*/
/*The function InformLwl informs the pump controller about a low water level*/
/*The function AHowOp sets a variable which determines the permission for the operator to operate the
pump*/
/*The function AllowSup sets a variable which determines the permission for the Supervisor to operate the
pump*/
/*The function Readwl reads the present water level*/
Opns : Readwl : — real
InformPCW, InformLwl : resultw — signalw
AllowOp, AllowSup : resultw — signalw
Eqns : InformPC(resultw) = signalw
InformLwl(resultw) = signalw
AllowOp(resultw) = signalw
AllowSup(resultw) = signalw
Readwl() = wl

Methane Sensor (MS) Module: The methane level should be read every dpy time
units, and information be sent out every d,,; time units.

MS-Parameter =
Sorts : Real : ml,Cml

enum : resultm {low, high}
Opns : Val-resultm : ml, Cml — resultm
Eqns : Val-resultm(ml, Cml) = resultm
MS-Import = MS-Parameter
MS-Export = MS-Parameter +

38

Sorts : enum : signalm {true, false}
/*The function Readml reads the present methane level*/
/*The function InformPCM informs the pump controller about a critical methane level*/
/*The function InformSupOpM sets a variable which determines the permission for the operator or supervisor
to operate the pump™*/
Opns : Readm! : — real
InformPCM : resultm — signalm
InformSupOpM : resultm — signalm
Eqns : Readml() = ml
InformPCM(resultm) = signalm

InformSupOpM(resuitm) = signalm

Carbon-monoxide Sensor (COS) Module: Initially, the CO level is below the critical
level. No information should be sent out by the controller. The CO level should be read

every d¢co time units, and information be sent out every 0o time units.

COS-Parameter =
Sorts: Real : col,Ccol
enum : resultco {low, high}
Opns : Val-resultco : col, Ccol — resultco
Eqns : Val-resultco(col, Ccol) = resultco
COS-Import = COS-Parameter
COS-Export = COS-Parameter +
Sorts : enum : signalco {true, false}
/*The function InformSupOpCO informs the supervisor or operator about a critical CO level*/
Opns : Readcol : — real
InformSupOpCO : resultco — signalco
Eqns : Readcol() = col
InformSupOpCO(resultco) = signalco

Airflow Sensor (AFS) Module: Initially, the airflow level is below the critical level.
No information should be sent out by the controller. The airflow level should be read every

d,f time units, and information be sent out in d,f time units.

39

AFS-Parameter =
Sorts : Real : afl,Cafl

enum : resultaf {low, high}
Opns : Val-resultaf : afl, Cafl — resultaf
Eqns : Val-resultaf(afl, Cafl) = resultaf
AFS-Import = AFS-Parameter
AFS-Export = AFS-Parameter +
Sorts : enum : signalaf {true, false}
/*The function InformSupOpAF informs the supervisor or operator about a critical Air-flow level*/
Opns : Readafl : — real

InformSupOpAF : resultaf — signalaf
Eqns : Readafl() = afl

InformSupOpAF(resultaf) = signalaf

Manual (M) Module: Initially it is assumed that neither the operator or the supervisor
are giving a request for the pump or the alarm to be switched on or off. Whenever a
condition for switching the pump or alarm, on or off is satisfied the request should be sent

. time units.

out in 5sa1

M-Parameter =
Sorts : Int : IDUser
enum : mode {operator, supervisor, none}
Opns : Findmode : — mode
Eqns : Findmode() = IDUser
M-Import = M-Parameter
M-Export = M-Parameter
Sorts : enum : signalMM {true, false}
enum : signalA,signalPC {reqOn,reqOff,noReq}
/*The function ReqPumpC takes the values from signalPC(reqOn,reqOff,noReq)to signify
the request sent to the pump controller */
/*The function ReqAlarm takes the values from signalA(reqOn,reqOff,noReqg)to signify
the request sent to the Alarm */

Opns : ReqPumpC : — signalPC

40

ReqAlarm : — signalA

Pump Controller (PC) Module: Whenever a condition for switching the pump on or

off is satisfied the request should be sent out in 5pi time units.

PC-Parameter =
Sorts : Int : State
enum : PState {on, off, fail}
Opns : PumpState: — PState
Eqns : PumpState() = State
PC-Import = PC-Parameter
PC-Export = PC-Parameter +
Sorts : enum : PumpReq {onReq, offReq, noReq}
/*The function InformPump takes one of the values from PumpReq(onReq,offReq,noReq) to signify
the present request given to the pump

Opns : InformPump :— PumpReq

3.3.3 Contract Definition

The following are the contract relationships that exist between the various modules in the
mine-pump system. Contracts 1 to 5 belongs to Manual Module and from 6 to 9 belongs

to Pump Module.

1. The operator cannot send any request to the pump, if their exists a critical state at

time T.
Vt[findmode = operator, AlowOp = false At = T

— Q(ReqPumpC = noreg AT <t < T + 854;)

2. The operator can send a request only if a critical state does not exist.

Vt[findmode = operator, AlowOp = true At = T]
— $(ReqPumpC = reqOn AT <t < T + 85a:)

41

. The supervisor can send a request only if a critical state does not exist.

Vi[findmode = supervisor, In formSupOpM = false,
InformSupOpCO = false, InformSupOpAF = false Nt =T
— O(ReqPumpC =reqOn AT < t < T + 045)

. The operator cannot send a request if a critical state exists.

Vt[findmode = operator, InformSupOp = true At = T
— O(ReqPumpC = noReq AT <t < T + §,4;)

In formSupOp = (InformSupOpM AInformSupOpAF AInformSupOpCO)

. If the methane level is high, the alarm should be switched on manually within the

time Jsai'

Vi[signalm = True At =T
— O(ReqAlarm = reqOn AT <t < T + 654i)

. If the water level is critical ,the methane level is not critical and the pump is not on,

then the pump should be switched on in duration 5pi'
Vt[InformPCW = true, InformPCM = false, State = of f At = T]
— O(InformPump = pOnReg AT <t < T + 6,)
. The pump should not operate when the methane level is critical.
(a)
Vt[InformPCW = false, InformPCM = true, State = of f ANt = T)

— $(UnformPump = noReg AT <t < T + 6,)

42

(b)

Vi[InformPCW = false, InformPCM = true, State = on At = T]

— QUnformPump =pOffReg NT <t < T +)

8. The pump should be switched off when the water level goes below the low level.

(a)
Vt[InformLwl = true, InformPCM = false, State = on At = T)
— $(InformPump = pOffReq AT <t < T +)
(b)
Vt[InformLwl = false, InformPCM = false, State = on At = T)
— O(InformPump = noReqg AT <t < T +)
(c)

Vi[InformLwl = false, InformPCM = true, State = on At = T)

— OUnformPump = pOffReq AT < t < T + 0,)
9. The pump should respond to manual requests in time 5pi'

(2)

Vt[ReqPumpC = reqOn At = T]
— O(InformPump = pOnReg AT <t < T + &)

(b)

Vt[ReqPumpC = reqOff At = T)|
— S(UnformPump = pOffReg NT <t < T + 8,)

43

3.3.4 Mapping Contracts to Morphism

The contracts identified will be used for defining the morphism functions which ensure the
constraint imposition on the category cross product. Specifically, the morphism function
does not select the value of the variables which are not identified as potential values that
could have an impact on the system behavior. It should however be noted that the categories
which have no contracts binding between them would follow a normal cross product be-
cause the constraining function has no parameters. We give below an example to illustrate

a mapping between the contracts and the morphism function.
Vt[signalm = True At = T)
— O(ReqAlarm = reqOn AT <t < T + §541)
This is an interaction between the methane sensor module and the manual module.
The morphism function would constrain the other value of signalm (i.e., false) in the cross

product between the two modules.

3.3.5 Test Case Generation Procedure

In this section we constructively take the constrained cross product of individual component

(category), to build up a final category. The following illustrates the steps that are followed.

1. As there are no contract relationships that exists between different sensor modules,
the cross product of sensor modules without constraints will produce combination
of all the variables present in the composition of different sensor module called
Composite-Sensor module. To show all the possible combination of variable sets
present in the Composite-sensor category is not feasible (looking at the size of gen-
erated variable sets). Hence we illustrate only one of the cross product relationship
of Water Sensor module and Methane Sensor module, which would give the fol-

lowing set of relationship.

(@) (InformPCW=true/false, InformPCM=true/false)

44

(b) (InformLwi=true/false, InformPCM=true/false)

(c) (AlowOp=true/false,InformPCM=true/false)

2. We then take the constrained cross product of the Composite-sensor module with the
Manual module. This relationship is constrained with contracts relations 1 through
5 as mentioned in Section3.3.3. We call the module obtained from the cross product
as Sen-Manual. As explained earlier, the constraints block the unwanted combina-
tions of test cases. For example in relation (a) mentioned below, the combination
of cross product of the variables has two sets (AllowOp = false, X) which is the
set generated from the earlier Composite-sensor module and the (findmode =
operator), which is variable from Manual module. In which the value of X can be
InformPCM = true which says that critical methane level is high, and so inform

the pump controller. Similarly, we have other sets of variables as shown below.

(a) ((AlowOp=false, X),findmode=operator)

(b) ((AlowOp=true,X) findmode=operator)

(©) ((InformSupOpM=false,InformSupOpCO=false,InformSupOpAF=false),
findmode=operator)

(&) (InformSupOp=True findmode=operator) Where InformSupOp =
(InformSupOpM A InformSupOpAF A InformSupOpCO)

(e) ((Signalm=true,L),Y)

X.L,Y is used to denote all other combinations of variable values of other categories
along with the variable value. For example, X can take variables such as Inform-
SupOpM, InformSupOpCO and so on. Similarly L and Y takes different variable

with respective variable values.

3. Finally we take the constrained cross product of the modules Sen-Manual and Pump

Controller, constrained with contract relationships 6 through 9 as mention in Sec.3.3.3.

45

As explained above the variable set obtained in relation (a) as shown below has
(InformPCW = true,InformPCM = false, X) which is from Sen-Manual
module and State=off is a variable from Pump Controller module. Again, here the
value of X can be AllowOp = false, which is the variable from the water sensor
module of Composite-Sensor module.

Similarly, we have other sets of variables which form the final constrained-cross

product for the entire composite system.

@) ((InformPCW=true InformPCM=false,X),State=0ff)
(b) ((InformPCW=false,InformPCM=true,X),State=0ff)
(©) ((InformPCW=false, InformPCM=true,X),State=0n)
(d) ((InformLwi=true,InformPCM=false X),State=0n)
(&) ((InformLwi=false, InformPCM=false, X),State=0n)
® ((InformLwl=false, InformPCM=true,X),State=0n)
(8) ((ReqPumpC=reqOn,Y),Z)

(h) ((ReqPumpC=reqOf},Y),Z)

XY is used to denote all other combinations of variable values of other categories

along with the variable value.

3.3.6 Illustration of Sampurna Tool

The objective of Sampurna tool is to generate sets of test suites which are comprehensive
and complete. To aid readability to the reader, the detailed illustration of all three steps of

Sampurna tool is given in Appendix A.

46

3.3.7 Effectiveness of CAGILY Framework

The objective of the CAGILY framework is to obtain a complete and comprehensive set
of test cases using a formal approach. One way of testing is to come up with an erroneous
scenario which must be detected by set of test suite of this framework. For example if we
take the external contract condition (6) from Section3.3.3, in which pump is operated only
when there is a high level of water and the methane level is false. But if the critical carbon
monoxide (Ccol) level is true (high) then the overall scenario changes. The erroneous value
of variable Ccol will become true which will lead to a state in which pump will remain in
off state despite of high water level and non critical methane level, i.e., (Hwl = true and
Cml = false). This state has been detected by our test suite generated in Step 3(a)(iii)
of Section3.3.6 and the pump will not switch to on state. The above mentioned example is

illustrated in next chapter.

3.4 Specification and Verification using Specware

In this section, we provide the specification and verification of the properties for mine pump
system. We have used Kestrel’s Specware tool [Srini96] for the formal specification and
verification of the case study. Specware is a refinement-based approach to software devel-
opment that supports rigorous and explicit modularity in the specification and development
of software components. There is also a provision for refinement of an abstract specifica-
tion, primarily done by refining algorithms and data structures. We emphasize that each
step in the refinement process is constrained to preserve correctness.

We start with specification of individual modules using sorts, operations and axioms.
Further, we will try to compose different modules till we get a resultant composite module

of all the modules. This module provides the information for water level in the mine pump.
WSM = spec % Water Sensor Module
sort wl = Nat sort Valresultw = Boolean

[)

% The operation Valresult takes values of wl, Lwl and Hwl to signify

47

%present water level

op WLevel : wl -> Nat

% say wl = x and value of wl > x is Hwl and wl < x is Lwl

sort signalw = Boolean

op InformPCW : signalw -> Boolean % Informs the pumpcontroller about
%High Water Level

op Informlwl : signalw -> Boolean % Informs the Pump Controller about
%the Low Water Level

op AllowOp : signalw -> Boolean % Assigns the permission for Operator
%to operate the Pump

op AllowSup : signalw -> Boolean % Assigns the permission for Supervisor

%to operate the Pump

Having specified the parameters and operations needed for formalizing the Water Sensor
Module, we now specify various attributes (properties) of the module in terms of its ax-
ioms. The axioms used in this modules specify the low water level and high water level in
the tank. The axioms HWaterLevel and NoHighLow specifies effect of high water level will
effect into permission denied for operator to operate the pump and when there is normal
water level in the tank, there should not be any signal sent to pump controller to operate the

pump respectively.

op Lwl : Valresultw -> Boolean
axiom Lwl is fa (v:Valresultw) ~(Hwl(v)) & Lwl(v)
op Hwl : Valresultw -> Boolean

axiom Hwl is fa (v:Valresultw) ~(Lwl(v)) & Hwl (v)

$When there exists High Water Level equals true then Operator should

%not operate the pump.

op HWaterLevel : Valresultw x signalw -> Boolean

axiom HWaterLevel is fa (wh:Valresultw,ws:signalw)

Hwl (wh) & ~(AllowSup(ws))

%if there exists normal level of water in the tank, then no signal should
%be sent to pump controller to operate the pump.

op NoHighLow : Valresultw % signalw -> Boolean

axiom NoHighLow is fa (hl:Valresultw,h2:signalw)

48

Hwl (hl = false) & Lwl(hl = false)

=> InformPCW(h2 = false) & InformLwl(h2 = false)

endspec

The translation of water sensor module is done to ensure that the properties i.e., the ax-

ioms can be used in other modules to prove the module properties and their theorems.
WSM_to_ ALL_TRANSLATION = translate(WSM) by {wl +-> wl, Valresultw +->
Valresultw, signalw +-> signalw, WLevel +-> WLevel, Lwl +-> Lwl,
Hwl +-> Hwl, InformPCW +-> InformPCW, InformLwl +-> InformLwl, AllowOp

+-> AllowOp,AllowSup +-> AllowSup, HWaterLevel +-> HWaterLevel,

NoHighLow +-> NoHighLow}

The next module specified using the formalised sorts and operations is the Methane Sensor
Module. Here the translation for water sensor module is imported and included in the this

specification for future use.
MSM = spec % Methane Sensor Module
import WSM_to ALL_TRANSLATION
sort Valresultm = Boolean
sort signalm = Boolean
op Cml : Valresultm -> Boolean

op InformPCM : signalm -> Boolean

op InformSupOpM : signalm -> Boolean

we now specify various attributes (properties) of the module in terms of its axioms. The
axiom HMLevel signifies the high methane level and a signal is send to pump controller to

act accordingly.
%If the critical Methane level exists the signal should be sent to pump
%controller for not operating the pump
op HMLevel : Valresultm * signalm x Valresultw -> Boolean

axiom HMLevel is fa (vl:Valresultm,sl:signalm,vv:Valresultw)

49

Cml(vl = true) & Hwl (vv)

=> InformPCM(sl = true) & InformSupOpM(sl = true)

endspec
We need to compose the water sensor module with methane sensor module, which can be
done by specifying the morphisms that links them. We formalize the morphisms between

these two specifications in the following manner:

WSM_to_MSM = morphism WSM -> MSM

{ HWaterLevel +-> HWaterLevel,NoHighLow +-> NoHighLow }

We then define the diagram with WSM and MSM specifications as the nodes, and the

morphisms as the link between them.

MSMm = diagram { a +-> WSM, b +-> MSM, i: a->b +-> morphism WSM->

MSM { HWaterLevel +-> HWaterLevel, NoHighLow +-> NoHighLow }}

We finally construct the composite specification of the WSM and MSM modules by taking
the colimit of the diagram as shown below:

MSMmm = colimit MSMm

The translation is done the same way as before, but this time it would have what WSM

module had translated, and also the sorts, operations and properties of the MSM module.
MSMmm_to_ALL_TRANSLATION = translate (MSM) by {Valresultm +-> Valresultm,

signalm +-> signalm, Cml +-> Cml, InformPCM +-> InformPCM, InformSupOpM +->

InformSupOpM, wl +-> wl, Valresultw +-> Valresultw, signalw +-> signalw,
WLevel +-> WLevel, Lwl +-> Lwl, Hwl +-> Hwl, InformPCW +-> InformPCW,

InformLwl +-> InformLwl, AllowOp +-> AllowOp, AllowSup +-> AllowSup,

HWaterLevel +-> HWaterLevel, NoHighlLow +-> NoHighLow }

Here we specify all the sorts and operations for Carbon Monoxide Sensor Module as spec-

50

ified in earlier two modules.
CMSM = spec % Carbon Monoxide Sensor Module
import MSMmm_to_ ALL TRANSLATION
sort Valresultco = Boolean
op Ccol : Valresultco -> Boolean

sort signalco = Boolean

op InformSupOpCo : signalco -> Boolean

The property for this module is specified by HCDLevel, which informs the operator / su-

pervisor and the controller about the critical level of carbon monoxide level.
op HCDLevel : Valresultco * signalco » Valresultw -> Boolean
axiom HCDLevel is fa (val:Valresultco,sil:signalco,vvl:Valresultw)

Ccol(val = true) & Hwl(vvl) => InformSupOpCo(sil = true)

endspec

Here the composition of methane sensor module and carbon monoxide module is done
similar to the way explained before by specifying the morphism that links between them.
And finally constructing the composite specification of MSM and CMSM, where MSM
already includes specification for WSM, by taking the colimit of the diagram. Further, we
need to translate this composed specification with sorts and operations of all the previous

modules.
MSM to CMSM = morphism MSM -»>
CMSM {HMLevel +-> HMLevel}
CMSMc = diagram { a +-> MSM, b +-> CMSM, i: a->b +-> morphism MSM->
CMSM {HMLevel +-> HMLevel}}
CMSMcc= colimit CMSMc
CMSMcc_to_ALL_TRANSLATION = translate(CMSM) by {Valresultm +->
Valresultm, signalm +-> signalm, Cml +-> Cml, InformPCM +-> InformPCM,
InformSupOpM +-> InformSupOpM, wl +-> wl, Valresultw +-> Valresultw,

signalw +-> signalw, WLevel +-> WLevel, Lwl +-> Lwl, Hwl +-> Hwl,

51

InformPCW +-> InformPCW, InformLwl +-> InformLwl, AllowOp +-> AllowOp,
AllowSup +-> AllowSup, HWaterLevel +-> HWaterLevel, NoHighLow +->

NoHighLow, Valresultco +-> Valresultco, Ccol +-> Ccol, InformSupOpCo +->

InformSupOpCo, HCDLevel +-> HCDLevel}

The specification for Air Flow Sensor Module is given below with their respective sorts
and operations defined. The translation of carbon monoxide module is imported in this

module to include all the modules specified earlier.
ASM = spec % Air Flow Sensor Module
import CMSMcc_to ALL_TRANSLATION
sort Valresultaf = Boolean
op Cafl : Valresultaf -> Boolean

sort signalaf = Boolean

op InformSupOpAf : signalaf -> Boolean

The axiom for air flow module HCAfl signfies critical air flow level in the mine pump

and transmits signal to operator/Supervisor and controller to act accordingly.
op HCAfl : Valresultaf » signalaf » Valresultw -> Boolean
axiom HCAfl is fa (al:Valresultaf,a2:signalaf,vv2:Valresultw)

Cafl{al = true) & Hwl(vv2) => InformSupOpAf (a2 = true)

endspec

Then we will compose the air flow sensor module with the carbon monoxide moduel which
is already composed with other modules. This composition is done by specifying the mor-
phisms linked between the modules. Further, we define the diagram CMSM and ASM
specifications as the node and morphisms as the link between them. Then the final com-
posite module is generated using the colimit of the diagram defined earlier. Finally, the
translation of this composite module is done with sorts and operations of this module aswell

as all the previous modules.

52

CMSM_to_ASM = morphism CMSM -> ASM {HCDLevel +-> HCDLevel}
ASMs = diagram { a +-> CMSM, b +-> ASM, i: a->b +-> morphism
CMSM->ASM{HCDLevel +-> HCDLevel}}
ASMss = colimit ASMs

ASMss_to ALL TRANSLATION = translate (ASM) by {Valresultm +-> Valresultm,
signalm +-> signalm, Cml +-> Cml, InformPCM +-> InformPCM, InformSupOpM
+-> InformSupOpM, wl +-> wl, Valresultw +-> Valresultw, signalw +->
signalw, WLevel +-> WLevel, Lwl +-> Lwl, Hwl +-> Hwl, InformPCW +->
InformPCW, InformLwl +-> InformLwl, AllowOp +->
AllowOp, AllowSup +-> AllowSup, HWaterLevel +->
HWaterLevel, NoHighLow +-> NoHighLow, Valresultco +->
Valresultco, Ccol +-> Ccol, InformSupOpCo +-> InformSupOpCo, HCDLevel

+-> HCDLevel, Valresultaf +-> Valresultaf, Cafl +-> Cafl, signalaf +->
signalaf, InformSupOpAf +-> InformSupOpAf, HCAfl +-> HCAfl}
The manual module is specified with different sorts and operations along with the importing

the air flow sensor composite module as shown below:
MM = spec % Manual Module
import ASMss_to_ALL TRANSLATION
sort Findmode = Boolean
op Operator : Findmode -> Boolean
op Supervisor : Findmode -> Boolean
sort signalMM = Boolean
sort signalA = Nat % 1 = reqgOn, 2 = regOff, 3 = noReq
sort signalPC = Nat % 1 = regOn, 2 = reqOff, 3 = noReq

op RegPumpC : signalPC * signalMM x Nat -> Boolean

op RegAlarm : signalA x signalMM » Nat -> Boolean

The axioms for manual module are SendRequest and NoRequest. For Send Request, for
any operator or supervisor, if any sensor value is not critical then the operator can put the
pump in ON state . Similarly, when the critical level is high, the operator or supervisor

cannot send any request to put the pump in ON state.

53

%$Operator can send a request only if a critical state does not exists
op SendRequest : Findmode x signalaf x signalco * signalm * signalMM =
signalPC % Valresultw -> Boolean

axiom SendRequest is fa(f:Findmode,af:signalaf,co:signalco,m:signalm,
mm:signalMM,pc:signalPC,vvm:Valresultw)

Operator (f) or Supervisor(f) & InformSupOpAf (af=false) &

InformSupOpCo (co=false) & InformSupOpM (m=false) & Hwl (vvm)

=> ReqPumpC (pc,mm, 1)

%0Operator cannot send a request if a critical state exists

op NoRequest : Findmode % signalaf * signalco * signalm * signalMM
signalPC » Valresultw -> Boolean

axiom NoRequest is fa (fl:Findmode,afl:signalaf,col:signalco,ml:signalm,
mml:signalMM, pcl:signalPC,vvml:Valresultw)

Operator (fl=true) & InformSupOpAf (afl=true) or InformSupOpCo (col=true)

or InformSupOpM (ml=true) & Hwl(vvml) => ReqPumpC (pcl,mml, 3)

endspec

We will compose the manual module with air flow sensor module which itself is com-
posed with other sensor modules. After composing the specification using the morphisms
between the two modules, we will define the diagram between these modules to construct

the composite manual module by taking the colimit of the diagram.
ASM_to_MM = morphism ASM -> MM {HCAfl +-> HCAfl}
MMm = diagram { a +-> ASM, b +-> MM, i: a->b +-> morphism ASM-> MM

{HCAf1l +-> HCAfl}}

MMms = colimit MMm

The translation of the composite manual module is done as shown below:
MMms_to ALL TRANSLATION = translate(MM) by {Findmode +-> Findmode,
Operator +-> Operator, Supervisor +-> Supervisor, signalMM +-> signalMM,
signalA +-> signalA, signalPC +-> signalPC, RegPumpC +-> RegPumpC,

RegAlarm +-> RegAlarm, SendRequest +-> SendRequest, NoRequest +->

54

NoRequest,Valresultm +-> Valresultm, signalm +-> signalm, Cml +-> Cml,
InformPCM +-> InformPCM, InformSupOpM +-> InformSupOpM, wl +-> wl,

Valresultw +-> Valresultw, signalw +-> signalw, WLevel +-> WLevel,

Lwl +-> Lwl, Hwl +-> Hwl, InformPCW +-> InformPCW, InformLwl +-> InformLwl,

AllowOp +-> AllowOp, AllowSup +-> AllowSup, HWaterLevel +-> HWaterLevel,
NoHighLow +-> NoHighLow, Valresultco +-> Valresultco, Ccol +-> Ccol,
InformSupOpCo +-> InformSupOpCo, HCDLevel +-> HCDLevel, Valresultaf +->

Valresultaf, Cafl +-> Cafl, signalaf +-> signalaf, InformSupOpAf +->
InformSupOpAf, HCAfl +-> HCAfl}
The final speciﬁcation' of pump controller module is done as shown below. This is done by
specifying the different sorts and operations along with importing the composite manual

module.
PCM = spec % Pump Controller Module
import MMms_to ALL_TRANSLATION
sort PState = Nat $ 1 = on, 2 = off, 3 = fail

op State : PState » Nat -> Boolean

sort PumpReq = Nat % 1 = pOnReq, 2 = pOffReq, 3 = noReq

This operation takes place when the controller needs to send OnRequest/OffRequest/noRequest
to the pump.

op InformPump : PumpReq » Nat -> Boolean

This action of operation PumpOnState takes place the controller receives high water level
with all other critical value of sensors as normal, it sends request to put the pump into ON

state.
% If the water level is critical, the methane level is not critical and

%the pump is not on the pump should be switched on

op PumpOnState : signalw » signalm x PState x» PumpReq «

Valresultw -> Boolean

axiom PumpOnState is fa (sw:signalw,sm:signalm,ps:PState,pr:PumpReq,

55

vvpl:Valresultw)

InformPCW(sw=true) & InformPCM(sm=false)& State(ps,2) & Hwl(vvpl) =>

InformPump (pr,1)

The operation PumpOff results when the pump controller receives critical value of sen-

sor values then the controller sends a signal to put the pump into Off state.
% The Pump should not operate when the methane level is critical
op PumpOff : Valresultm % Valresultco * Valresultaf x PumpReq -> Boolean
axiom PumpOff is fa(vam:Valresultm,vac:Valresultco,vaa:Valresultaf,
pur: PumpReq)

Cml (vam) or Ccol(vac) or Cafl(vaa) => InformPump (pur,2)

endspec

The morphisms between the composite manual module and pump controller module is

formally specified by composition as shown below:

MM to PCM = morphism MM ->

PCM {SendRequest +-> SendRequest, NoRequest +-> NoRequest}

We define the diagram with MM and PCM specifications as the nodes and the correspond-

ing morphisms as the links between them. This is formally represented as:

PCMm = diagram { a +-> MM, b +-> PCM, i: a->b +-> morphism MM->

PCM{SendRequest +-> SendRequest, NoRequest +-> NoRequest}}
We finally construct the composite specification of the MM and PCM modules by taking
the colimit of the diagram, which is specified as:

PCMmm = colimit PCMm

The translation provided by the composed module which will be used by other modules

56

for their operation is shown below:
PCMmm_to_ALL_TRANSLATION = translate(PCM) by {Findmode +-> Findmode,
signalA +-> signalA,signalMM +-> signalMM, signalPC +-> signalPC,
Operator +-> Operator, Supervisor +-> Supervisor,ReqPumpC +-> RegPumpC,

RegAlarm +-> RegAlarm, SendRequest +-> SendRequest,NoRequest +-> NoRequest}

PPCM = spec

import PCMmm

% The Pump should be switched off when the water level goes below
%the low level or the pump should operate accordingly when the critical

%$state exists

The final theorem that is to be proved from the composed specification is given below:
theorem OnOffPump_for CriticalState is fa
(vw2:Valresultw,vm2:Valresultm,veco2:Valresultco,vaf2:Valresultaf,
sw2:signalw, sm2:signalm,ps2:PState,pr2:PumpReq, co2:signalco,af2:signalaf,
mm2:signalMM, pc2:signalPC, fm2:Findmode)

HMLevel (vm2, sm2,vw2) or HCDLevel (vco2,co2,vw2) or HCAfl (vaf2,af2,vw2) or
Hwl (vw2) => ~(Lwl(vw2)) => NoRequest (fm2,af2,co2, sm2,mm2,pc2,vw2)

=> PumpOff (vm2,vco2,vaf2,pr2)

endspec

The theorem, OnOffPump for CriticalState shows the final condition of the pump con-
troller to make the pump to On or Off state, which states that when their exists high level of
methane level or high level of carbon monoxide level or high level of air flow level and ei-
ther the water level is high or low then this leads to low water level low or high respectively,
depending of upon the Hwl(high water level). This further implies to operation NoRequest
of the manual module in which no request can be sent to the pump controller under this

critical condition. Finally this leads to the condition in pump controller modules, were the

57

operation PumpOff will send a signal to put the Pump in the Off state. We finally verify the
above mentioned property by processing the above specification along with the theorem in
Specware with a built-in interface to Snark theorem prover. The statement for the proof of

this property is given below:

Pl = prove OnOffPump for CriticalState in PPCM using Hwl, Lwl, PumpOff

Till now in this chapter, we discussed the CAGILY framework and illustrated the ap-
proach using the classical mine pump problem. We have shown the formal specification
and verification of the composed system and showed the correctness of the composed sys-

tem using Specware tool. In next chapter, we discuss the implementation of Sampurna

testing tool and will illustrate how faulty condition can be tested using it.

58

Chapter 4

Implementation of Sampurna Tool

In this chapter, we provide a brief overview of the CAGILY framework discussed earlier.
We further discuss the need for implementing the proposed sampurna tool and why the
MS-Access database was selected to generate the test suites. Next we, explain the gener-
ation of the database and its design and implementation efforts required for generation of
test suites, and finally discuss, the effectiveness of the sampurna tool by providing suitable

example.

The objective of functional test case generation has been studied in great deal in the past.
The basic requirement of all testing processes involves a complete set of test suite which
explores all requirements which the system has to satisfy. However, the completeness of
test suite cannot be determined easily.

The approach proposed for generating test suite in the thesis, involves a careful ob-
servation of all the possible combinations that can exist in the system and based on that
a test suite 1s generated. The CAGILY framework is presently generating test cases for
critical functional properties only , however since the generation of the test cases is driven
by the set of contracts for critical behavior this can be extrapolated to cover all functional

properties.

59

The test generation is based on characterization of the contracts, which are generated
directly from the system requirements. These contracts are relationships between various
variables in the components. These components are identified formally from the system de-
composition. The components are comprised of the system, and their variables are actually
the system variables which control the behavior of the system.

The constrained cross product amongst the component variables limits the size of the
actual set of relationship which is obtained. These relationships would finally comprise the
test suite after a few rounds of iterations to filter out redundant test cases. This is done to
have a small size of the test suite and also maintaining the completeness of the test suite.

The test case generation procedure processes the large set of test cases obtained in the
constrained cross product to the SAMPURNA test generation tool, which through a few
rounds of iterations filters out the unwanted/redundant test cases so as to achieve the final
test suite.

The following are the steps in the Test Case Generation Procedure:

1. The Constraint based cross product is taken between the two modules or categories.
If the modules dont have any external contracts then normal cross product is fol-
lowed. The purpose of constraining the cross product is to come up with the set
of test cases which are relevant to the functional specification of the system. These
constraint cross product is done till we get single resultant category which is a com-

bination of all the categories (modules).

2. The next step is the introduction of Sampurna test tool. This tool can further be sub-

divided into three different sections depending upon their functional classification.

(a) Once we arrive at the sets of variables, which form the final constrained-cross
product for the entire composite system. The first step in Sampurna tool is to
bring (import) the relationship chain (sets of variables associated) to the final

sets of variable considering all the possible combination of values/range for

60

which the variables may attain. This ensures that we arrive at the end values

which are the actual inputs to the system.

(b) After constraining the cross product between the categories, we arrive at a
smaller list of relationships which are still having some sets of test cases which
are meaningless and redundant. There is a need to reduce this set of test cases
so as to optimize set of test cases which will satisfy the functional aspects of
the system. This is achieved by using a priori knowledge of the system such
that the variable-value pairs that are not attainable/possible with respect to the

system specification are not included in the resulting test cases.

(c) The final step in Sampurna tool is to parse the set of test cases with respect
to contracts so as to obtain the expected output of the system. This associated
values/range of the variables will steer the system through different state and
will help in finding any discrepancies as compared to the correct behavior of
the system. The final resultant test suite which we get after this iteration is
a complete set of test cases which targets the critical functional testing of the

system.

The steps (a),(b) and (c) needs some form of iteration process. And looking to the frame-
work proposed in this thesis, the want for generating a program for Sampurna Tool de-
manded a efficient tool which will generate the required set of test cases. We explored
different approaches, finally deciding on using MS-Access database application for gener-

ating test suites.

4.1 Database Tool for Generating Test Suites

The important reason for using MS-Access for generating the test suites for our proposed
approach was to come up with exact set of test cases which will test the functional behavior

of the system under test. And the database tool provides flexibility and ease for generating

61

these test suites efficiently. Here we assume that we have a set of variables which are
already defined a priori depending upon the system specification. This variables are stored
in different tables depending upon there functionalities. And finally queries are posed to
retrieve the desired set of test cases.

The first step towards generating the Sampurna Tool is to have a detailed study of
the requirements and depending upon these requirements, we need to design the layout
of the tool. We started with designing the layout for different tables depending upon the
components of the system. The next step is to design the SQL queries, which takes the
tables defined in previous step as its input and using some logical functions generate set
of test cases iteratively. There are more than one query used to generate the desired set
of test cases. The final output of this queries can be stored in the table and reports can be

generated, which can be used by a tester or user of the system.

4.2 Tables for Component Modules

The tables are generated or assigned statically depending upon the modules or components
identified earlier in our proposed approach. Here we start with generating six static tables
in which particularly the variables defined earlier will be stored. The following tables are
shown with their fields and variables.

This table stores the values of variables which fall into the module and which are al-
ready defined in the system specification. The graphical presentation of the table is shown

below :-

WaterSensor
InformI.WL=False
InformIL WL=True
InformPCW=False
InformPCW=True

Table 4.2: WaterSensorModule

62

Manual
ReqPumpC=NoReq
ReqPumpC=ReqOff
ReqPumpC=ReqOn

Table 4.4: ManualModule

Carbondioxide
InfoSupCo=False
InfoSupCo=True

Table 4.6: CarbondioxideModule

AirFlowSensor
InfoSupAf=False
InfoSupAf=True

Table 4.8: AirFlowSensorModule

PumpController
State=Off
State=On

Table 4.10: PumpControllerModule

This constitutes the static tables which form the basic platform to construct the desired
test cases. The following are the tables which are generated when the above tables are

queried using certain constraints depending upon the system specification.

AirFlowSensor || Carbondioxide || Manual || MethaneSensor || PumpControlier || WaterSensor

Table 4.11: TESTCASEGENERATION

AirFlowSensor || Carbondioxide || Manual || MethaneSensor || PumpController || WaterSensor || OutPut

Table 4.12: RESULTANT TESTCASE

63

WaterSensorModule
ManualModule
CarbondioxideModule
MethaneSensorModule
PumpControllerModule
AirFlowSensorModule

TESTCASEGENERATION
RESLLTANT TE

e e I

Figure 4.1: Sampurna Tool - Tables

The TESTCASEGENERATION Table4.11 acts as a static table and stores all the pos-
sible set of test cases which are generated using the constraint based cross product between
different modules. The RESULTANT TESTCASE Table4.12 comes into picture when the
unattainable and redundant test cases are removed from the resultant test cases. And finally
the expected output is generated and stored in the field OutPut column of this table. So this
forms the final and resultant set of test cases which we get at the end of our implementation.

The overall graphical representation of the tables in Sampurna tool is shown in Figure4.1.

4.3 Queries for Generating Test Suites

Queries form the important part of test case generation process. Depending upon how the
queries are posed, the test cases are generated. The primary aim of these queries is to

take all the possible combination of test cases which the system could generate and then

64

narrow down the test cases to attain the resultant test suites by eliminating the redundant
and un-attainable test cases from the set. Hence we will discuss the different queries used
for the generation of test suites. Graphical representation of the Queries in Sampurna Tool

is shown in Figure4.2.

AirFlowSensorReqType
CarbondioxideReqType
ManualReqType
MethaneSensorReqtype
PumpControllerReqType
WaterSensorReqType
GetAllvariables

Unconstrainedvariables

@
3

—
BEE
At
an

22

S&MPURNAstep2
SAMPURNAstep3 1
SAMPURNAstep3_2
SAMPURNAstep3_3
Constrained¥ariables

Figure 4.2: Sampurna Tool - Queries

4.3.1 GetAllVariables

The query performs a union operation on all the tables for each component. This process
makes sure that all the variable values are covered during the test case generation process.
SELECT AirFlowSensor AS DifferentTypes
FROM AirFlowSensorModule
UNION (SELECT WaterSensor AS DifferentTypes FROM WaterSensorModule)
UNION (SELECT MethaneSensor AS DifferentTypes FROM MethaneSensorModule)

65

UNION (SELECT Carbondioxide AS DifferentTypes FROM CarbondioxideModule)
UNION (SELECT Manual AS DifferentTypes FROM ManualModule)
UNION (SELECT PumpController AS DifferentTypes FROM pumpControllerModule);

4.3.2 ConstrainedVariables

Here all the constrained variables are gathered from the user and accordingly, the variables
are then processed to get the constraint-cross product of the variables along with uncon-
strained one. The following is the SQL Query used to generate the constrained variables.

SELECT DifferentTypes

FROM GetAllVariables

WHERE DifferentTypes=TypeA Or DifferentTypes=TypeB Or DifferentTypes=TypeC;

4.3.3 UnconstrainedVariables

The output of this query is generated using the previous GetAllVariables and Constrained-
Variables queries. It consists of the variables which are unconstrained. The following is
the SQL Query used for generating the unconstrained variables.

SELECT GetAllVariables.DifferentTypes

FROM GetAllVariables

WHERE GetAllVariables. DifferentTypes<>[TypeA]

And GetAllVariables.Different ypes<>[TypeB]

And GetAllVariables.DifferentTypes<>[TypeC];

4.3.4 Sensors And Controller Module

The query will find out if there are any constrained variables for the respective module.
Depending upon the query, it will take only the constrained variables for generating the test

suites, else it will use all the unconstrained variables for the generation of test suite.

66

4.34.1 AirFlowSensorReqType

SELECT *
FROM AirFlowSensorModule
WHERE AirFlowSensor Not In
(SELECT AirFlowSensor
FROM AirFlowSensorModule, UnconstrainedVariables
WHERE AirFlowSensor=DifferentTypes
And Exists (select * from AirFlowSensorModule, ConstrainedVariables

where AirFlowSensor = DifferentTypes));

4.3.4.2 CarbondioxideReqType

SELECT *
FROM CarbondioxideModule
WHERE Carbondioxide Not In
(SELECT Carbondioxide
FROM CarbondioxideModule, UnconstrainedVariables
WHERE Carbondioxide=DifferentTypes
And Exists (select * from CarbondioxideModule, ConstrainedVariables

where Carbondioxide = DifferentTypes));

4.3.4.3 ManualReqType

SELECT *

FROM ManualModule

WHERE Manual Not in
(SELECT Manual
FROM ManualModule, UnconstrainedVariables
WHERE Manual=DifferentTypes And Exists

67

(select * from ManualModule, ConstrainedVariables where Manual = DifferentTypes));

4.3.44 MethaneSensorReqType

SELECT *
FROM MethaneSensorModule
WHERE MethaneSensor Not in
(SELECT MethaneSensor
FROM MethaneSensorModule, UnconstrainedVariables
WHERE MethaneSensor=DifferentType
And Exists (select * from MethaneSensorModule, ConstrainedVariables

where Methanesensor = DifferentTypes));

4.3.4.5 PumpControllerReqType

SELECT *

FROM PumpController Module

WHERE PumpController Not in
(SELECT PumpController FROM PumpControllerModule, UnconstrainedVariables
WHERE PumpController=DifferentTypes
And Exists (select * from PumpControllerModule, ConstrainedVariables

where PumpController = DifferentTypes)),

4.3.4.6 WaterSensorReqType

SELECT *
FROM WaterSensorModule
WHERE WaterSensor Not In
(SELECT WaterSensor
FROM WaterSensorModule, UnconstrainedVariables

68

WHERE WaterSensor=DifferentTypes
And Exists (select *
Jrom UnconstrainedVariables:- WaterSensorModule, ConstrainedVariables

where Watersensor = DifferentTypes));

4.4 Action Queries

These are the queries which play important role in test case generation. They try to update
existing tables or insert some of the fields in existing fields. These queries take all the
queries discussed in Section 4.3 and Tables 4.2, 4.4, 4.6, 4.8 and 4.10 as their inputs and

insert or update the tables according to the conditions imposed in them.

4.4.1 Sampurna_Stepl

It forms a base query for taking the inputs from the tester. It can take three different con-
straint variable form the tester and then using different combination of queries embeded in
it, generates a set of test cases which are stored in a Table 4.11. Mathematically the query
does the cross product of constrained and unconstrained variables to generate a resultant
test case, the variables of this resultant test case are stored in the existing Table 4.11. This
includes all the possible combination which the test case can attain. As there are no vari-
ables functions involved in this process, during implementation we have merged the first
step of Sampurna Tool with the test case generation process.

INSERT INTO TESTCASEGENERATION

SELECT DISTINCT *

FROM AirFlowSensorReqType, CarbondioxideReqType, ManualReqType,

MethaneSensorReqType, PumpControllerReqType, WaterSensorReqType;

69

4.4.2 Sampurna_Step2

The query will try to remove the unattainable combination of variables. Like for example
certain variable combinations of variables cannot co-exist at a same time in a test case, such
test cases are removed in this step.

INSERT INTO RESULTANT TESTCASE

SELECT *

FROM TESTCASEGENERATION

WHERE ((TESTCASEGENERATIONUnconstrainedVariables:-

.Manual)="ReqPumpC=ReqOff")

AND ((TESTCASEGENERATION.Pump Controller)<>"State=0ff"))

OR ((TESTCASEGENERATION. Manual)<>"ReqPumpC=ReqOff")

AND ((TESTCASEGENERATION.PumpController)="State=0ff"))

OR (((TESTCASEGENERATION. Manual)="ReqPumpC=ReqOn")

AND ((TESTCASEGENERATION.PumpController)<>"State=0On"))

OR (((TESTCASEGENERATION. Manual)<>"ReqPumpC=ReqOn")

AND ((TESTCASEGENERATION.PumpController)="State=0n"))

OR (((TESTCASEGENERATION. Manual)<>"ReqPumpC=ReqOn"

And (TESTCASEGENERATION. Manual)<>"ReqPumpC=ReqOff")

AND ((TESTCASEGENERATION. UnconstrainedVariables :-

PumpController)<>"State=On"

And (TESTCASEGENERATION.PumpController)<>"State=0ff"));

4.4.3 Sampurna_Step3 1

This query is based on Sampurna tool step 3. It forms the first iteration of the step3. The
posed query will try to check the constrained variables and then will set the output of the
pump to PState = On. This is done, depending upon the conditions mentioned in the

system specification for making the pump in On state.

70

UPDATE RESULTANT TESTCASE

SET [OutPut] = "PState=0ff"

WHERE ((RESULTANT TESTCASE.AirFlowSensor="InfoSupAf=True"
OR RESULTANT TESTCASE.Carbondioxide="InfoSupCo=true"

OR RESULTANT TESTCASE. MethaneSensor="InformPCM=true"

OR RESULTANT TESTCASE.WaterSensor="InformLWL=True")

OR (RESULTANT TESTCASE.WaterSensor<>"InformPCW=True"
AND RESULTANT TESTCASE.Manual="ReqPumpC=ReqOff"))

OR OutPut IN (SELECT OutPut

FROM RESULTANT TESTCASE WHERE OutPut<>"PState=0On");

4.4.4 Sampurna_Step3 2

This forms step 3 of Sampurna tool but it falls in the second iteration of the step 3 of the
tool. The query checks the variable values and depending upon the constraints gathered
from the system specification, generates the desired output for PState = Of f.

UPDATE RESULTANT TESTCASE

SET [OutPut] = "PState=0On"

WHERE ((RESULTANT _TESTCASE.AirFlowSensor<>"InfoSupAf=True"

AND RESULTANT TESTCASE.Carbondioxide<>"InfoSupCo=true"

AND RESULTANT TESTCASE. MethaneSensor<>"InformPCM=true")

AND RESULTANT _TESTCASE. WaterSensor<>"InformLWL=True"

AND ((RESULTANT _TESTCASE. Manual<>"ReqPumpC=ReqOff"

OR (RESULTANT TESTCASE.WaterSensor="InformLWL=False"

AND RESULTANT TESTCASE. WaterSensor="InformPCW=False"))

OR RESULTANT TESTCASE. WaterSensor="InformPCW=True"))

OR OutPut IN (SELECT OutPut

FROM RESULTANT TESTCASE WHERE OutPut<>"PState=0ff");

71

4.4.5 Sampurna_Step3 3

In this iteration the test cases which are still redundant and missed out in the earlier step are
removed by parsing the test cases with the constraints. The resultant test cases generated
forms the test suites for testing the critical functionality of the system. This forms the final
iteration of step3 of Sampurna Tool.

SELECT RESULTANT TESTCASE.AirFlowSensor,

RESULTANT TESTCASE.Carbondioxide,

RESULTANT TESTCASE.Manual,

RESULTANT TESTCASE. MethaneSensor,

RESULTANT TESTCASE.PumpController,

RESULTANT TESTCASE.WaterSensor,

RESULTANT TESTCASE.OutPut

FROM RESULTANT TESTCASE

GROUP BY RESULTANT TESTCASE.AirFlowSensor,

RESULTANT TESTCASE.Carbondioxide,

RESULTANT TESTCASE.Manual,

RESULTANT TESTCASE. MethaneSensor,

RESULTANT TESTCASE.PumpController,

RESULTANT TESTCASE.WaterSensor,

RESULTANT TESTCASE.OutPut;

The following Table 4.13 illustrates the number of test cases generated at the end of
Stepl of Sampurna tool. Here we have shown sample of test cases generated, the full set

of test cases are attached in Appendix B

72

AirFlowSensor Carbondioxide Manual MethaneSensor l PumpController WaterSensor
InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq { InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=Faise | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InforSupAf=False | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=True InfoSupCo=True | ReqPumpC=NoReq | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=True } ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=True InfoSupCo=True | ReqPumpC=ReqOn { InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=False InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAF=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=True InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=Off InformPCW=False
InfoSupAf=True InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAf=True InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=On InformPCW=False
InfoSupAF=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False

Table 4.13: TESTCASE

At the end of Step 2 and 3, we eliminate the redundant test cases and generate the
output value for the test cases by parsing the constraints imposed by system specification.
The values obtained at the end of Step3 are the expected values which the system should
satisfy. The following is the Table (See Table 4.14) illustrating the final set of test cases after
removing redundant data. This is the sample taken from the full set of test suites generated

at the end of final round of iteration of Sampurna tool which are shown in Appendix C.

73

L AlrFlowSensor Carbondioxide Manual MethaneS: I PControll | WaterS: I OutPut I
InfoSupAfwFalse InfoSupCo=False RegPumpC=NoReq InformPCM=False State=0ff InformPCW=True PState=On
InfoSupAf=False InfoSupCo=False ReqPumpC=ReqOn InformPCM=False State=0ff InformPCW=True PState=On

InfoSupAf=False InfoSupCo=True ReqPumpC=NoReq InformPCM=False State=0ff InformPCW=True PState=0ff
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOn InformPCM=False State=0ff InformPCW=True PState=0ff
InfoSupAf=True InfoSupCo=False ReqPumpC=NoReq InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOn InformPCM=False State=Ofl’ InformPCW=True PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=NoReq InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=NoReq InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=ReqOn InformPCM=True State=Off’ InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=NoReq InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=NoReq InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=NoRegq InformPCM=True State=Off InformPCW=False PState=Off’
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOn InformPCM=True State=0ff InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=NoReq InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=ReqOff InformPCM=True State=On InformPCW=False PState=Off’
InfoSupAf=False InfoSupCo=True ReqPumpC=NoReq InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=NoReq InformPCM=True State=0On InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOff’ InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=NoReq InformPCM=True State=On InformPCW=False PState=0Off
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOff InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=NoReq InformPCM=False State=On InformLWL=True PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=ReqOff InformPCM=False State=On InformLWL=True PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=NoReq InformPCM=False State=On InformLWL=True PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff InformPCM=False State=On InformLWL=True PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=NoReq InformPCM=False State=On InformLWL=True PState=Off

Table 4.14: RESULTANT TESTSUITE

4.5 Applying Resulting Test Suites - An Example
The user or the tester can use this test cases as illustrated below:

e The only parameters the tester has to see initially are the parameters in Manual and
PumpController (PController) column(See Table 4.14). Where PController variable

is showing the present state of the pump, while Manual variable is showing the values

74

of the variables by which the the Operator/Supervisor can change the state of the

pump manually.

e Now in this step, depending upon the values of all the sensor values, like the Air-
FlowSensor, Carbondioxide Sensor, Methane Sensor and Water Sensor, the tester
has to check the expected behaviour by observing values given in the QutPut vari-

able column(See Table 4.14).

e So if the expected behaviour of the pump does not reflect the pump condition prop-
erly, then the tester can infere that their are some failures or malfunctioning of some

sensors or other equipments.

4.6 Effectiveness of Implementated Sampurna Tool

As discussed in Section 3.3.7, depending upon the contract condition (6) when the there is
high level of water and methane level is low, the pump should go in On state. But as stated
earlier, if the carbon monoxide level goes critical then this condition is detected by our
Sampurna tool shown in Table 4.14 (with highlighted rows - 3rd and 4th row specifically),
and the Pump instead of going into On state goes in Off state. If the Pump does not turn Off
during say time 7' then we can infer that there is some failure in the system. And immediate
action is needed to be taken to avoid any incidents. Also when the the carbon dioxide level
retains its normal value, the pump might not go into the On state which in our case can be
detected by the the Sampurna tool. This is shown by first two rows of Table 4.14, which
are marked in bold letters(See rows 15¢ and 229 in Tabled.14). Similarly, we can detect
different faulty scenarios using the testing tool.

The only drawback of the proposed tool is that, the system under test, requires compo-
nent identification by decomposing the system hierarchically. This decomposition requires
domain knowledge and tends to be somewhat complex as the present day systems span

across various domains. In other words if the system can be decomposed and identified

75

into their primitive components then we can use the Sampurna tool for generation of test
suites. It is important to mention that the Sampurna tool process involved in building the
test suites are generic for specific class of system. The implementation of Sampurna tool
suggested in this chapter using MS-Access does involve some sort of hard coding, but these
can changed to other options by providing inputs from the user. This can be achieved by
parsing the specification file generated from the Specware tool and generating a file format

readable by our MS-Access or any other database.

76

Chapter 5

Conclusion

This thesis aims at the generation of test suites for component-based system using category
theoretic approach. The generation of test suits is based on intra-component interaction
between the components. Further, the test case generation process is based on character-
ization of the contracts, which are generated directly from the system requirements. The
CAGILY framework is used to generate test suites for critical functional properties of the
system. However since the generation of the test cases are driven by the set of contracts,
the framework can be extrapolated to cover all the functional properties.

The reason for targeting the functional area of testing is mainly because, we all know
that it is impossible to do exhaustive testing. This is restricted by different factors such as
location, technical point of view, managerial point of view and amount of time invested
in testing the system. So, it is meaningful to have some functional coverage measurement
criteria to ensure that no function is missing in an implementation. Based on this require-
ments, we proposed a framework which generates a set of test cases to test the critical
functional aspect of the system.

In this chapter, we first discuss some of the insights obtained from the generation of test
cases for component based system using category theoretic approach in terms of experience

gained through the proposed approach and proposing the Sampurna testing tool followed

77

by the contributions of this thesis. Finally, we put forth new directions for further research.

5.1 Experience

Our aim in this thesis has been to integrate component-based design of complex systems
and constraint-based test generation in to a unified framework. Concepts of category theory
provide a unique approach for defining a module structure and operations for composing
modules together. Specifically, we proposed the CAGILY (CAteGory framework for Iden-
tifying test cases formalLY) framework for generation of test suites. In this thesis, we
have shown how concept of constraint-based cross product in category theory and system
contracts play important role in generation of proposed approach.

The major obstacle which we overcame was related to the process of identifying the
various primitive components of the system and also specifying this components formally
with sorts, operations and equations for their parameter, import and export interfaces. We
have outlined five steps for generating the set of test cases using this framework. This steps
are generic in nature as far as the system under test can be decomposed into there primative
components. We have shown that how set of constraints (contracts) can be mapped to mor-
phism function, which further can be used for generation of comprehensive set of test cases
using constraint cross-product. In the test case generation procedure, we arrive at compre-
hensive set of test cases. Here we have proposed a test case generation tool - Sampurna
tool. Which removes the unattainable and redundant set of test cases which gets generated
in first round of iteration. We have used classical mine pump problem for our case study.
Using this case study, we show the feasibility and effectiveness of our approach and have
shown, how some errenous condition can be detected by our tool. To generate a component
specification of the system, firstly we need to specify the system using some specification
language. We have shown the formal specification for the mine pump, which has been writ-

ten in an algebraic language, namely, MetaSlang. We have made full use of the Specware

78

development system, which provides for a rigorness in establishing the overall correctness

of the composition, and moreover, facilitates further transformation into executable code.

5.2 Contributions

In this thesis, we have shown the generation of test cases for critical functional areas of the
system. In Chapter 2, we have shown the concepts of category theory used for composition
of modules (components). We also discuss some aspects of Specware tool used to formally
specify the system composition. In Chapter 3, we proposed our CAGILY framework for
generation of test suites using category theory. We first identify the primitive component of
the system and then specify them formally. We then try to define the set of constraints from
the system specification, which are further mapped to morphism functions. We then show
how the constraint-based cross product can be utilized for generation of comprehensive set
of test cases. We, further provide the effectiveness of the proposed framework, illustrating
the faulty scenario. In this chapter, we also specify the composition of different modules
using Specware tool. This helps us in proving the correctness of the composition. In
Chapter 4, we implement the Sampurna tool using MS-Access application.

Our future research directions include finding a generic way of using the Sampurna
tool for other systems. Investigating the possibility of automatically generating contracts
from the requirements as well as identifying equivalent classes of test cases to eliminate

redundant test cases by exploiting deductive processing capabilities of formal techniques

as illustrated in [Sinha99].

79

Appendix A

Appendix

A.1 TIllustration of Sampurna Tool

1. Step 1: The tool imports the relationship chain in final group of variable values
considering all possible combinations.
Importing the relationship chain refers to gathering of all the sets of variables and
their values from all the modules (like Sensor, Manual and Pump module) which are

in fact the part of condition set and still satisfy the condition set.

(a) Doing an import chain on the relation set: ((Inform PCW = true, InformPCM =
false, X), State = Of f) We get:
i. ((Hwl = true,Cml = false,Ccol = false,Cafl = false, ReqPumpC =
noReq/reqon/reqof f), State = Of f)
. ((Hwl = true,Cml = false,Ccol = false, Cafl = true, ReqPumpC =
noReq/reqon/reqof f), State = Of f)
iii. ((Hwl = true,Cml = false, Ccol = true, Cafl = false, ReqPumpC =
noReq/reqon/reqof f), State = Of f)
iv. ((Hwl = true,Cml = false, Ccol = true, Cafl = true, ReqPumpC =

noReq/reqon/reqof f), State = Of f)

80

(b) Doing an import chain on the relation set: ((InformPCW = false, InformPCM =
true, X), State = Of f) We get:
i. ((Hwl = false,Cml = true, Ccol = false, Cafl = false, ReqPumpC =
noReq/reqon/reqof f), State = Of f)
ii. (Hwl = false,Cml = true,Ccol = false, Cafl = true, ReqPumpC =
noReq/reqon/reqof f), State = Of f)
iii. ((Hwl = false,Cml = true, Ccol = true, Cafl = false, ReqPumpC =
noReq/reqon/reqof f), State = Of f)
iv. ((Hwl = false,Cml = true, Ccol = true, Cafl = true, ReqPumpC =
noReq/reqon/reqof f), State = Of f)
(c) Doing an import chain on the relation set: ((InformPCW = false, InformPCM =
true, X), State = On)We get:
i. ((Hwl = false,Cml = true,Ccol = false, Cafl = false, ReqPumpC =
noReg/reqon/reqof f), State = On)
ii. (Hwl = false,Cml = true,Ccol = false, Cafl = true, ReqPumpC =
noReg/reqon/reqof f), State = On)
iii. ((Hwl = false,Cml = true, Ccol = true,Cafl = false, ReqPumpC =
noReq/reqon/reqof f), State = On)
iv. (Hwl = false,Cml = true,Ccol = true, Cafl = true, ReqPumpC =
noReq/reqon/reqof f), State = On)
(d) Doing an import chain on the relation set: ((InformLwl = true, InformPCM =
false, X), State = On) We get:
i. ((Lwl = true,Cml = false,Ccol = false, Cafl = false, ReqPumpC =
noReg/reqon/reqof f), State = On)
il. ((Lwl = true,Cml = false, Ccol = false, Cafl = true, ReqPumpC =

noReq/reqon/reqof f), State = On)

81

iii. ((Lwl = true,Cml = false, Ccol = true,Cafl = false, ReqPumpC =
noReq/reqon/reqof f), State = On)
iv. ((Lwl = true,Cml = false, Ccol = true,Cafl = true, ReqPumpC =

noReq/reqon/reqof f)State = On)

(e) Importing the chains for the relation ((In formLwl = false, InformPCM =
false, X), State = On) we get :
i. ((Lwl = false,Cml = false,Ccol = false,Cafl = false, ReqPumpC =
noReq/reqon/reqof f), State = On)
ii. ((Lwl = false,Cml = false, Ccol = false,Cafl = true, ReqPumpC =
noReq/reqan/reqo ff), State = On)
iii. ((Lwl = false,Cml = false, Ccol = true,Cafl = false, ReqPumpC =
noReq/reqgon/reqof f), State = On)
iv. ((Lwl = false,Cml = false, Ccol = true,Cafl = true, RegPumpC =
noReq/reqon/reqof f), State = on)
(f) The chain import of the relation ((InformLwl = false,InformPCM =

true, X), State = On)generates the followings set:
i. ((Lwl = false,Cml = true,Ccol = false,Cafl = false, ReqPumpC =
noReq/reqon/reqof f), State = on)
ii. ((Lwl = false,Cml = true,Ccol = false,Cafl = true, ReqPumpC =
noReq/reqon/reqof f), State = on)
iti. ((Lwl = false,Cml = true,Ccol = true,Cafl = false, ReqPumpC =
noReq/reqon/reqof), State = on)
iv. ((Lwl = false,Cml = true, Ccol = true,Cafl = true, ReqPumpC =

noReq/reqon/reqof f), State = on)

(2) Importing the relationship chain for ((ReqPumpC = reqon, Y, Z) we get:

82

i. ((Lwl/Hwl = false/true,Cml = true/ false, Ccol = false/true, Cafl =
false/true, ReqPumpC = reqon), State = on)
ii. ((Lwl = true,Cml = true/ false,Ccol = false/true, Cafl = true/ false,
ReqPumpC = reqon), State = of f)
ili. ((Hwl = true, Cml = true/ false, Ccol = false/true, Cafl = true/ false,
ReqPumpC = reqon), State = of f)
iv. (Lwl/Hwl = false/true,Cml = true,Ccol = true/false,Cafl =
false/true, ReqPumpC = reqon), State = of f)
v. (Lwl/Hwl = false/true,Cml = true/false,Ccol = true,Cafl =
true/ false, ReqPumpC = reqon), State = of f)
vi. ((Lwl/Hwl = false/true,Cml = true/ false, Ccol = true/false, Cafl =
true, ReqPumpC = reqon), State = of f)
(h) Finally, importing the chain for ((ReqPumpC = reqoff,Y), Z) We get
i. (Lwl/Hwl = false/true,Cml = true/ false, Ccol = false/true, Cafl =
false/true, ReqPumpC = reqof f), State = of f)
ii. ((Lwl = true,Cml = true/ false, Ccol = false/true, Cafl = true/ false,
ReqPumpC = reqof f), State = on)
iii. ((Hwl = true, Cml = true/ false, Ccol = false/true, Cafl = true/ false,
ReqPumpC = reqof f), State = on)
iv. (Lwl/Hwl = false/true,Cml = true,Ccol = true/false,Cafl =
false/true, ReqPumpC = reqof), State = on)
v. ((Lwl/Hwl = false/true,Cml = true/false,Ccol = true,Cafl =
true/ false, ReqPumpC = reqof f), State = on)
vi. ((Lwl/Hwl = false/true, Cml = true/ false, Ccol = true/ false, Cafl =
true, ReqPumpC = reqof f), State = on)

&3

The variable set (InformPCW = true, InformPCM = false, X) holds when
water level is equal to Hwl. Considering all the different values which X variable
may take to satisfy the above condition, X could be variables Cml, Ccol, Cafl and
ReqPumpC' and their associated values to make a separate test case, such that the

variable set (State = Of f) still satisfies.

. Step 2: Based on the test cases generated in Step 1, the tool filters out the test cases
which are meaningless and irrelevant. This is achieved by using a priori knowledge
of the system such that variable-value pairs that are not attainable/possible with re-
spect to the system specification are not included in the resulting test cases. For
example, the three combinations for the variable ReqPumpC in Step 1 (a) are not re-
quired. The values noReq and reqon are the only significant values when the pump is
in off state i.e., State=off. It would be irrelevant to have value reqoff for ReqPumpC
when the variable state is already State=off. Likewise, we eliminate all such condi-

tions and arrive at a smaller set of test cases.

. Step 3: The reduced set of test cases are parsed again with respect to the constraints
to generate final relevant test cases. For example, as shown below in(a)i, the final
test case which we get, consists of value noReqg for variable ReqPumpC, which is
achieved by parsing the test cases generated in Step 2 with respect to set of contracts.
Note that these resulting test cases form a complete test suite for critical functional

testing of the mine-pump.

(a) We have,

i. ((Hwl = true,Cml = false,Ccol = false,Cafl = false, ReqPumpC =
noReq), State = Of f) — {(PState = on))

ii. ((Hwl = true,Cml = false,Ccol = false, Cafl = true, ReqPumpC =
noReq), State = Of f) — O(PState = of f))

84

iti. ((Hwl = true,Cml = false, Ccol = true, Cafl = false, ReqPumpC =
noReq), State = Of f) — {$(PState = of f))
iv. ((Hwl = true,Cml = false,Ccol = true, Cafl = true, ReqPumpC =
noReq), State = Of f) — $(PState = of f))
(b) We have,
i. ((Hwl = false,Cml = true, Ccol = false,Cafl = false, ReqPumpC =
noReq), State = Of f) — {(PState = of f))
ii. ((Hwl = false,Cml = true,Ccol = false, Cafl = true, ReqPumpC =
noReq), State = Of f) — $(PState = of f))
iii. ((Hwl = false, Cml = true, Ccol = true,Cafl = false, ReqPumpC =
noReq), State = Of f) — {(PState = of f))
iv. ((Hwl = false,Cml = true, Ccol = true, Cafl = true, ReqPumpC =
noReq), State = Of f) — $(PState = of f))
(c) We have,
i. (Hwl = false,Cml = true,Ccol = false, Cafl = false, ReqPumpC =
noReq), State = on) — {(PState = on))
ii. ((Hwl = false,Cml = true,Ccol = false, Cafl = true, ReqPumpC =
noReq), State = on) — {(PState = on))
iii. ((Hwl = false,Cml = true, Ccol = true,Cafl = false, ReqPumpC =
noReq), State = on) — $(PState = on))
iv. ((Hwl = false,Cml = true, Ccol = true, Cafl = true, ReqPumpC =
noReq), State = on) — $(PState = on))

(d) We have,

i. ((Lwl = true,Cml = false, Ccol = false, Cafl = false, ReqPumpC =
noReq), State = on) — {$(PState = of f))

85

il. ((Lwl = true,Cml = false,Ccol = false, Cafl = true, ReqPumpC =
noReq), State = on) — {(PState = of f))
ili. ((Lwl = true,Cml = false, Ccol = true,Cafl = false, ReqPumpC =
noReq), State = on) — $(PState = of f))
iv. ((Lwl = true,Cml = false, Ccol = true,Cafl = true, ReqPumpC =
noReq), State = on) — O(PState = of f))
(e) We have,
i. ((Lwl = false,Cml = false,Ccol = false,Cafl = false, ReqPumpC =
noReq), State = on) — {(PState = of f))
ii. ((Lwl = false,Cml = false,Ccol = false, Cafl = true, ReqPumpC =
noReq), State = on) — $(PState = of f))
ili. ((Lwl = false,Cml = false, Ccol = true, Cafl = false, ReqPumpC =
noReq), State = on) — O(PState = of f))
iv. ((Lwl = false,Cml = false, Ccol = true, Cafl = true, ReqPumpC =
noReq), State = on) — {(PState = of f))
(f) We have,
i. ((Lwl = false,Cml = true,Ccol = false,Cafl = false, ReqPumpC =
noReq), State = on) — {(PState = of f))
ii. ((Lwl = false,Cml = true,Ccol = false, Cafl = true, ReqgPumpC =
noReq), State = on) — O(PState = of f))
iii. ((Lwl = false,Cml = true, Ccol = true, Cafl = false, ReqPumpC =
noReq), State = on) — $(PState = of f))
iv. ((Lwl = false,Cml = true, Ccol = true, Cafl = true, ReqPumpC =

noReq), State = on) — (PState = of f))

(g) We have,

86

i. ((Lwl/Hwl = false,Cml = false,Ccol = false,Cafl = false,
ReqPumpC = regon), State = of f) — $(PState = on))

ii. ((Lwl = true,Cml = true/false,Ccol = false/true, Cafl = true/ false,
ReqPumpC = reqon), State = of f) — {$(PState = of f))

ili. ((Hwl = true,Cml = false,Ccol = false,Cafl = false,
ReqPumpC = regon), State = of f) — {O(PState = on))

iv. (Lwl/Hwl = false/true,Cml = true,Ccol = true/false,Cafl =
false/true, ReqgPumpC = reqon), State = of f) — {(PState =
of f))

V. (Lwl/Hwl = false/true,Cml = true/false,Ccol = true,Cafl =
true/ false, ReqPumpC = reqon),State = of f) — <{(PState =
of f))

vi. ((Lwl/Hwl = false/true,Cml = true/ false,Ccol = true/ false,
Cafl = true, ReqPumpC = reqon), State = of f) — {(PState =
off))

(h) We have,

i. ((Lwl/Hwl = false/true,Cml = true/ false, Ccol = false/true,

Cafl = false/true, ReqPumpC = reqof f), State = on) — {(PState =
of f))

il. ((Lwl = true,Cml = true/ false, Ccol = false/true,
Cafl =true/false, ReqPumpC = reqof f), State = on) — {(PState =
of f))

ili. ((Hwl = true,Cml = true/false,Ccol = false/true,
Cafl = true/ false, ReqPumpC = reqof f), State = on) — {(PState =
on))

iv. ((Lwl/Hwl = false/true,Cml = true,Ccol = true/ false,

87

Vi.

Cafl = false/true, ReqPumpC = reqof f), State = on) — {(PState =
off))

((Lwl/Hwl = false/true, Cml = true/ false, Ccol = true,

Cafl = true/ false, ReqPumpC = reqof f), State = on) — {(PState =
of f))

((Lwl/Hwl = false/true,Cml = true/ false, Ccol = true/ false,

Cafl = true, ReqPumpC = reqof f), State = on) — {(PState =
of f))

88

Appendix B

Appendix

AirFlowSensor | Carbondioxide Manual MethaneSensor | PumpController WaterSensor

InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=Off InformLWL=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformLW1=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformLWL=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=True

89

Table B.1: TestCaseGeneration - 1

AirFlowSensor Carbondioxide Manual l MethaneSensor PumpController WaterSensor

InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=0ff InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=0ff InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=0Off InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=False { InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=False State=On InformLWL=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL=True

Table B.2: TestCaseGeneration - 2

90

l AirFlowSensor Carbondioxide Manual MethaneSensor PumpController WaterSensor
InfoSupAf=False | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=False State=On InformL. WL=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL~=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformL.WL=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=False State=On InformLWL=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=False State=On InformLWL=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL~=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL~True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=False State=On InformLWL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL~=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL~False
InfoSupAf=False { InfoSupCo=True | ReqPumpC=NoReq | InformPCM=False State=On InformLWL=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL~=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=False State=On InformLWL~False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL~=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=False State=On InformLWL=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL~=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=On InformLWL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformLWL~False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=On InformLWL~=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformLWL=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=NoReq | InformPCM=True State=On InformLWIL~False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformLWL=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformLWIL~=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=NoReq | InformPCM=True State=On InformLWL~=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=True State=On InformL.WL=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL~=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformL. WL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformLWL=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL~=True

Table B.3: TestCaseGeneration - 3

91

AirFlowSensor Carbondioxide Manual MethaneSensor PumpController WaterSensor

InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformLWL~=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformL.WL=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformLW1=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformLWL=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformLWEL=True
InfoSupAf=False { InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformLWL=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformLWL=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL~=Faise
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformL.WL=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformLWL~=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformL.WL=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=False State=On InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformL.WL=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformLWL=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL~False

Table B.4: TestCaseGeneration - 4

92

AirFlowSensor Carbondioxide Manual MethaneSensor PumpController WaterSensor
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL=True
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformLWL=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformLWL=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL~=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformLWL~=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=False State=On InformPCW=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformLWL~=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformLWL=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=Off InformPCW=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformLWL=True
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=False
InfoSupAf=True | InfoSupCo=True | ReqPumpC=ReqOn | InformPCM=True State=On InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=Off InformLWL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=Off InformLWL=True
InfoSupAf=False | InfoSupCo=False { ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformLWL~=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=Off InformLWL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=Off InformL WL=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=Off InformPCW=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformLWL=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformLWL~=True
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=Off InformLWL=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=Off InformLWL=True
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=False
InfoSupAf=False | InfoSupCo=True | ReqPumpC=ReqOff | InformPCM=False State=Off InformPCW=True

Table B.5: TestCaseGeneration - 5

93

AirFlowSensor

Carbondioxide

Manual

MethaneSensor

PumpCeontroller

WaterSensor

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=On

InformLWL=False

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=On

InformLWL=True

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=On

InformPCW=False

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=On

InformPCW=True

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformLWL=False

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformLWL=True

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformPCW=False

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformPCW=True

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=On

InformLWL~=False

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=On

InformLWL=True

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=On

InformPCW=False

InfoSupAf=False

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=On

InformPCW=True

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=False

State=Off

InformLWL=False

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=False

State=Off

InformLWL=True

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=False

State=Off

InformPCW=False

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=False

State=Off

InformPCW=True

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=False

State=On

InformLWL=False

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=False

State=On

InformLWL=True

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=False

State=On

InformPCW=False

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=False

State=On

InformPCW=True

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformLWL=False

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformLWL=True

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformPCW=False

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformPCW=True

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=True

State=On

InformLWL=False

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=True

State=On

InformLWL=True

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=True

State=On

InformPCW=False

InfoSupAf=True

InfoSupCo=False

ReqPumpC=ReqOff

InformPCM=True

State=On

InformPCW=True

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=Off

InformLWL=False

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=Off

InformLWL=True

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=Off

InformPCW=False

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=Off

InformPCW=True

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=On

InformLWL~=False

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=On

InformLWL=True

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=On

InformPCW=False

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=False

State=On

InformPCW=True

InfoSupAf=True

InfoSupCo=True

ReqPumpC=ReqOff

InformPCM=True

State=Off

InformL.WL=False

Table B.6: TestCaseGeneration - 6

94

Appendix C

Appendix

95

AirFlow$S Carbondioxide M 1 MethaneS | PController l ‘WaterSensor l OutPut |
InfoSupAf=False } InfoSupCo=False ReqPumpC=NoReq InformPCM=False State=Off InformPCW=True PState=On
InfoSupAf=False InfoSupCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=On
InfoSupAf=False InfoSupCo=True ReqPumpC=NoReq InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=NoReq InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=True SupCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=NoReq InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=False InfoS =False ReqPumpC=NoReq InformPCM=True State=Off InformPCW=False PState=Off'
InfoSupAf=False | InfoSupCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False | PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=NoReq InformPCM=True State=Off InformPCW=False PState=Off'
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=NoReq InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOn InformPCM=True State=Off' InformPCW=False PState=Off
InfoSupAf=True SupCo=True ReqPumpC=NoReq InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=NoReq InformPCM=True State=On InformPCW=False PState=Off
pAf=False InfoSupCo=False ReqPumpC=ReqOff InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=NoReq InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False | PState=Off
InfoSupAf=True InfoSupCo=Faise ReqPumpC=NoReq InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOff InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=NoReq InformPCM=True State=On InformPCW=False | PState=Off
SupAf=True SupCo=True ReqPumpC=ReqOff InformPCM=True State=On InformPCW=False PState=Off
pAf=False InfoSupCo=False ReqPumpC=NoReq InformPCM=False State=On InformLWL=True PState=Off
SupAf=False InfoSupCo=False ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=True PState=Off
InfoSupA f=False InfoSupCo=True ReqPumpC=NoReq InformPCM=False State=On InformLWL=True PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=True PState=Off
InfoSupAf=True SupCo=False ReqPumpC=NoReq InformPCM=False State=On InformLWL=True PState=Off'
pAf=True SupCo=False ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=True PState=Off
SupAf=True InfoSupCo=True ReqPumpC=NoReq InformPCM=False State=On InformLWL=True PState=Off
InfoSupAf=True ipCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformL WL=True PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=NoReq InformPCM=False State=On InformLWL=False PState=On
InfoSupAf=False InfoSupCo=False ReqPumpC=ReqOff | InformPCM=False State=On InformL.WL=False PState=Off
pAf=False pCo=True ReqPumpC=NoReq InformPCM=False State=On InformL.WL~False PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=NoReq InformPCM=False State=On InformLWL=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOff InformPCM=False State=On InformLWL=False PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=NoReq InformPCM=False State=On InformLWL=False PState=Off

Table C.1: ResultantTestCase - 1

96

AirFlowS dioxid M 1) MethaneS, PController ‘WaterSensor OutPut
InfoSupAf=True ipCo~True ReqPumpC=ReqOff InformPCM=False State=On InformLWL=False PState=Off
InfoSupAf=False ipCo=False ReqPumpC=NoReqg InformPCM=True State=On InformLWL~=False PState=Off’
InfoSupAf=False pCo=False | ReqPumpC=ReqOff | InformPCM=Tre State=On InformLWL=False PState=Off
InfoSupAf=False ipCo=True ReqPumpC=NoReq InformPCM=True State=On InformLWL=False PState=Off
InfoSupAf=False SupCo=True ReqPumpC=ReqOff | InformPCM=True State=On InformLWL=False | PState=Off
InfoSupAf=True SupCo=False RegPumpC=NoReq InformPCM=True State=On InformLWL=False PState=Off
InfoSupAf=True pCo=False ReqPumpC=ReqOff InformPCM=True State=On InformLWL=False PState=Off'
InfoSupAf=True pCo=True ReqPumpC=NoReq InformPCM=True State=On InformLWL=False PState=Off
InfoSupAf=True pCo=True ReqPumpC=ReqOff | InformPCM=True State=On InformLWL=False PState=Off
InfoSupAf=False pCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformL.WL=False PState=On
InfoSupAf=False pCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformLWL=True PState=Off
InfoSupAf=False pCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=False PState=On
InfoSupAf=False | I pCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=On
InfoSupAf=False pCo=False ReqPumpC=ReqOn InformPCM=True State=Off’ InformLWL=False PState=Off’
InfoSupAf=False | InfoSupCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformL.WL=True PState=Off
InfoSupAf=False ipCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=False pCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=True PState=Off
InfoSupAf=False ipCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformLWL=False PState=Off
InfoSupAf=False pCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformLWL=True PState=Off
InfoSupAf=False pCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=False PState=Off
InfoSupAf=False pCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=0ff
InfoSupAf=False pCo=True ReqPumpC=ReqOn InformPCM=True State=Off Informl WL~False PState=Off
InfoSupAf=False ipCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformLWL=True PState=Off
InfoSupAf=False ipCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=False pCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=True PState=Off
SupAf=True I pCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformLWL=False PState=Off
InfoSupAf=True I pCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformLWL=True PState=Off
InfoSupAf=True I pCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=Faise PState=Off
InfoSupAf=True I pCo=False ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=Off
InfoSupAf=True I pCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformLWL=Faise PState=Off
InfoSupAf=True 1 pCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformLWL=True PState=Off
pAf=True ipCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=True ipCo=False ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=True PState=Off
InfoSupAf=True pCo=Tre ReqPumpC=ReqOn InformPCM=False State=Off' InformLWL=False PState=Off
InfoSupAf=True pCo=True ReqPumpC=ReqOn InformPCM=False State=Off’ InformLWL~=True PState=Off
InfoSupAf=True pCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=False PState=Off
InfoSupAf=True pCo=True ReqPumpC=ReqOn InformPCM=False State=Off InformPCW=True PState=Off
pAf=True pCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformLWL=False PState=Off
InfoSupAf=True pCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformL.WL=True PState=Off

Table C.2: ResultantTestCase - 2

97

AirFlowS: Carbondioxid M] MethaneS: PController ‘WaterSensor OutPut
InfoSupAf=True SupCo=True ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=False PState=Off
InfoSupAf=True pCo=Tme ReqPumpC=ReqOn InformPCM=True State=Off InformPCW=True PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=Faise PState=Off
InfoSupAf=False InfoSupCo=False ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=True PState=Off
SupAf=False InfoSupCo=False ReqPumpC=ReqOff InformPCM=False State=On InformPCW=False PState=Off
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=Faise State=On InformPCW=True PState=On
InfoSupAf=False ipCo=False ReqPumpC=ReqOff InformPCM=True State=On InformLWL=False PState=Off
InfoSupAf=False | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformLWL=True PState=Off
InfoSupAf=False foSupCo=False ReqPumpC=ReqOff' InformPCM=True State=On InformPCW=False PState=Off
pAf=False I pCo=False ReqPumpC=ReqOff InformPCM=True State=On InformPCW=True PState=Off’
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformL WL=False PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On Informl. WL=True PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformPCW=False | PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformPCW=True PState=Off
InfoSupAf=False pCo=True ReqPumpC=ReqOff InformPCM=True State=On InformLWL=False PState=Off
InfoSupAf=False pCo=True ReqPumpC=ReqOff InformPCM=True State=On InformLWL=True PState=Off
InfoSupAf=False InfoSupCo=True ReqPumpC=ReqOff InformPCM=True State=On InformPCW=False PState=Off
InfoSupAf=False SupCo=True ReqPumpC=ReqOff InformPCM=True State=On InformPCW=True PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=False PState=Off
InfoSupAf=True InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=False State=On InformL. WL=True PState=Off
InfoSupAf=True SupCo=False ReqPumpC=ReqOff | InformPCM=False State=On InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOff | InformPCM=False State=On InformPCW=True PState=Off
InfoSupAf=True InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformLWL=False PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOff InformPCM=True State=On InformLWL=True PState=Off
InfoSupAf=True | InfoSupCo=False | ReqPumpC=ReqOff | InformPCM=True State=On InformPCW=False | PState=Off
InfoSupAf=True InfoSupCo=False ReqPumpC=ReqOff InformPCM=True State=On InformPCW=True PState=Off
InfoSupAf=True I pCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformL.WL=False PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformLWL=True PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformPCW=False PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOff | InformPCM=False State=On InformPCW=True PState=Oft
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOff InformPCM=True State=On InformL.WL=False PState=Off
InfoSupAf=True pCo=True ReqPumpC=ReqOff InformPCM=True State=On InformLWL=True PState=Off
InfoSupAf=True InfoSupCo=True ReqPumpC=ReqOff InformPCM=True State=On InformPCW="False PState=Off
pAf=True pCo=True ReqPumpC=ReqOff InformPCM=True State=On InformPCW=True PState=Off

Table C.3: ResultantTestCase - 3

98

Bibliography

[Amla92] Nina Amla and Paul Ammann. Using Z Specifications in Category Partition

[Berg96]

[Chen03]

[Dick93]

Testing. Proceeding of COMPASS 1992, Seventh Annual Conference on Com-

puter Assurance, pages 310, 1992,

L. Bergmans, M. Akshit, Composing Synchronization and Real-Time Con-

straints, Journal of Parallel and Distributed Computing, 36(1), pp. 32-52, 1996.

T.Y. Chen, Pak-Lok Poon, T.H. Tse, A Choice Relation Framework for Sup-
porting Category-Partition Test Case Generation , IEEE Trans. On Software
Engg, June, 2003.

J. Dick and A. Faivre, Automating the Generation and Sequencing of Test Cases
from Model-Based Specifications. In J. C. P. Woodcock and P. G. Larsen, ed-
itors, FME’93: Industrial-Strength Formal Methods, Formal Methods Europe,
Springer-Verlag, Lecture Notes in Computer Science 670, pp. 268-284, April
1993.

[Doye97] N.J. Doye, Order Sorted Computer Algebra and Coercions, Ph.D. The-

[Dss097]

sis,University of Bath, 1997.

C. Bourhfir, R. Dssouli, E1 M. Aboulhamid and N. Rico, Automatic Executable
Test Case Generation for Extended Finite State Machine Protocols, IFIP In-
ternational Workshop on Testing Communicating Systems, [FIP IWTCS’97,
Korea, 1997.

99

[Edwa96]

[Ehrig90]

[Good75]

[Groch93]

[Guo02]

[Hall88]

[Hayes86]

[Hoare89]

[Jose97]

Edward Kit, Software Testing in the Real World Improving the Process, ACM
Press - Addison- Wesley, 1996.

H.Ehrig and B. Mahr, Fundamentals of Alg. Spec.2, Module Specifications and

Constraints, New York: Springer-Verlag,1990.

John B. Goodenough and Susan L. Gerhart, Towards a Theory of Test Data
Selection, IEEE Transactions on Software Engineering, 1(2), pp 156-173, June
1975.

Matthias Grochtmann and Klaus Grimm, Classification Trees for Partition Test-

ing, Software Testing, Verification and Reliability, pp. 63-82, 1993.

Jiang Guo, Using Category Theory to Model Software Component Dependen-
cies, 9th Annual IEEE Intl. Conference and Workshop on the Engineering of
Computer-Based Systems (ECBS 2002), pp. 185-192, April 2002.

P. A. V. Hall, Towards Testing with Respect to Formal Specifications, Second

IEE/BCS Conference on Software Engineering, pp. 159-163, 1988.

Ian Hayes, Specification Directed Module Testing, IEEE Transactions on Soft-

ware Engineering, 12(1), pp. 124-133, January 1986.

C.AR. Hoare, Notes on an Approach to Category Theory for Computer Sci-
entists, In M. Broy, editor, Constructive Methods in Computing Science, pages
245{305. International Summer School directed by F.L. Bauer [et al.], Springer
Verlag, 1989. NATO Advanced Science Institute Series (Series F: Computer

and System Sciences Vol. 55).

M. Joseph, Real-Time Systems: Spec., Verification and Analysis , Prentice
Hall, London, 1997

100

[Lee96]

[Mand95]

[Nait81]

[Ostr88]

[Pier91]

[Raus02]

[Sidh89]

[Srini96]

[Sinha99]

[Stock96]

D. Lee and M. Yannakakis, Principles and Methods of Testing Finite State
Machines-A Survey. Proceedings of the IEEE, vol. 84, no. 8. pp. 1090-1123,
1996. ‘

D. Mandrioli, S. Morasca, A. Morzenti, Generating Test Cases for Real-Time
Systems from Logic Specifications, ACM Trans. On Computer Systems, Vol
13, Issue 4, pp. 365-398, 1995.

S. Naito and M. Tsunoyama, Fault Detection for Sequential Machines by
Transition-Tours, Proceedings of 11th IEEE Fault Tolerant Computing Con-
ference, pp. 238-243, 1981.

Thomas J. Ostrand and Marc J. Balcer, The Category-Partition Method for
Specifying and Generating Functional Tests, Communications of the ACM,

31(6), pp. 676-686, June 1988.

B.C. Pierce, Basic Category Theory for Computer Scientists, Cambridge, MA:
M.LT. Press, 1991.

Andreas Rausch, Design by Contract + Componentware-Design by Signed
Contract, Journal of Object Technology, 1(3), pp. 19-36, 2002.

Deepinder P. Sidhu and Ting-Kau Leung, Formal Methods for Protocol Testing:
A Detailed Study, IEEE Trans. Soft. Eng., Vol. SE-15, pp. 413-426 , April 1989.

Y.V. Srinivas and J.L.. McDonald, The Architecture of SPECWARE, a Formal

Software Development System, Technical Report, Kestrel Institute, 1996.

P. Sinha, N. Suri, Identification of Test Cases Using a Formal Approach, FTCS-
29, Madison, USA, pp.314-321, 1999,

P. Stocks, D. Carrington, A Framework for Specification-Based Testing, IEEE
Transactions on Software Engg., 22(11), pp 777-793, 1996.

101

[Szyp97]

[VarmO03]

[Willi99]

C. Szyperski, Component Software, Beyond Object-Oriented Programming,
Addison Wesley Longman Limited ,1997.

N. Varma, S. Kanade, P. Sinha, Composition of Modules with Synchronization
and Real-Time Constraints, Technical Report at Concordia University, Mon-

treal, Canada., Jan 2003.

K. Williamson, M Healy, Industrial Applications of Software Synthesis via Cat-
egory Theory, 14th IEEE International Conference on Automated Software En-

gineering, pp. 35, Oct. 1999.

102

