A Tuple Space Based Agent Programming Framework

Yu Zhang

A Thesis
in
The Department
of

Computer Science

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Computer Science
Concordia University
Montreal, Quebec, Canada

April 2004

© Yu Zhang, 2004



3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94761-0
Our file  Notre référence
ISBN: 0-612-94761-0

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.






Abstract

A Tuple Space Based Agent Programming Framework

Yu Zhang

Software agent has become a research focus in distributed systems in recent years. This
thesis aims at developing a methodology that facilitates the design and implementation of
distributed agent applications. We propose an agent programming model called TSAM,
which is a development framework for building distributed agent systems. TSAM
provides an agent architecture that distinguishes three types of agent behaviors as (i)
sensory behaviors, (ii) reactive behaviors, and (iii) proactive behaviors. Role models are
used to design different proactive behaviors assigned to an agent. TSAM supports agent
couplings with both message passing and distributed tuple spaces. A tuple space
facilitates dynamic coordination among a group of agents that work together towards a
common goal. We apply TSAM to an example of an e-market system to validate its
usefulness, simplicity and support for dynamic couplings among application agents.
Performance testing is conducted on the implemented system to demonstrate that the
flexibility of tuple space based coordination does not incur significant runtime overhead

when compared with message passing.

111



Acknowledgments

1 would like to express my gratitude and respect to my thesis supervisors Dr. Hon F. Li
and Dr. T. Radhakrishnan for their invaluable guidance, encouragement and support

during the whole period of the research work.

I would also like to thank my colleagues in my research group for their suggestions,

discussions and help on my thesis.

v



Table of Contents

LAStS OF FIGUIES...eeiieiicieiiice ettt e e a e e e enee e s esanaee s viii
LASE OF TaBIES.cciuieiiiicriiicieceteee et e s eene e s X
PrEfACE . e eeeeeiteete ettt s e ane s enes 1
Chapter 1 Introduction ... 4
1.1 MIOTIVALIOTIS ..eoviiiiiieitiectc ettt et sa e eamee bt asen e e saeaeseaantsnnesnesnseesnensnnans 4
1.2 Role based Agent Design Methodologies........coovviiciviiiiiiiiicciieie s 6
1.3 Agent Frameworks for Developing Agent based Applications ........c.cooceeveveneeee. 10
1.3.1 Architecture based Agent Frameworks......c.cccccveeviiiiiiniiienniie e, 11
1.3.2 Platforms based Agent Programming Environment .........ccccccovveriieienecnnnn. 14

1.4 Message Passing based Agent INteractions ........c.cccecveerirenniicieniienrrneee e 15
1.5 Contributions of the Thesis Work ... 16
Chapter 2 Tuple Space based Agent Programming Model........................... 18
2.1 Agent ATCRITECTUIE ...oiiiiiiiiiii ettt sttt st ae e sne et anees 19
2.1.1 Current Agent ATCRITECTUTES ....eeviiiiiriiii et see e 19
2.1.2 Agent Architecture in TSAM ..o 22

2.2 Agent Programming Framework .........ccccooiiiiniiiciee e 28
2.3 Tuple Space based Coordination Model........c.cccoovvviininiinniiniiiececeecreeee 31
2.3.1 Coordination Model in Multi-Agent Systems .......c.cccoevveevvennen. ..................... 31
2.3.2 Why Use Tuple Space as the Coordination Model? .........cccoooevovieiicicienne 32
2.3.3 How Tuple Space Supports Coordination in TSAM? ..o, 33

2.4 Comparison with Other Agent Programming ModelS.........ccoooevevvviiicveieeceenne. 34
Chapter 3 Case Study: an E-Market Application.........ccc.cccevveveiivecrneennnne, 37
3.1 Electronic Markel ...ttt 37
3.1.1 Electronic MAarket .........ccccoiiiiiiairiiiiiie ettt 37



3.1.2 Trading Transactions on E-Markets ........ccccooiviviiniiinienniiniecrciceneceenes 38

3.2 Requirement ANALYSIS..c.or ittt ettt et ee s ene e esne e 40
3.3 ROIEMOTEL ..ot 43
3.3.1 Roles in the B-markel .......cocooiiiiiiioiiiciciee e 43
3.3.2 Relationships among RoOIes. ..o 46
3.4 Agent MOAE] ....cooiiiiiiiiiiii et 50
3.4.1 Make Agents t0 Play RoOIes.......ooiiiiiiiiii e 50
3.4.2 Agent Software ATCRItECTUIE ....c..ooviiiiiriiriiieiieirii et e 52
3.4.3 Agent Behavior Model.... ..ot 53
3.5 CONCIUSION .ottt ettt sttt ettt ee et sme st bbb see s e tenesneneens 61
Chapter 4 Implementation of the E-market Application ........cccoceceevveencneens 62
4.1 Systerm ATChITECTUTE ......eoiiiiiiiiiiii ittt ettt n ettt e e et e n e 62
4.2 JADE PIAtIOITI. .....ooiiiiiiiiciie ittt sttt saeaieas 64
4.3 Tuple Space based Agent Coupling Primitives .......cccooiocmniinincniineceeeiee e, 65
4.4 Implementation of the E-Market Aents ........c..cocovvvieriiiiinieriiere e 76
4.4.1 Implementation of the SensoryBehavior of E-market Agents..............ooccocee. 76
4.4.2 Implementation of the ProactiveBehavior of E-Market Agents ...........c..cc...... 78
4.4.3 Implementation of the ReactiveBehavior of E-Market Agents .........c.cco..c...... 80
4.5 CONCIUSION ..ottt ettt ae e s st eas e se et esseanas 81
Chapter 5 Performance Test.......covveveieiieeiiecieeccie e 83
5.1 Data GEeneTating ....cocceorerienrereiirtieeeresteeieseeee s e seente st et assesessssseste e st eseeseateassarens 83
5.1.1 ConsumEr TASK ...eoveeiiiiiiii ettt eeas 83
5.1.2 Supplier Product Data......c..coooviiviiiriiiiice ettt 84
5.1.3 E-Market Place Running Data .......ccoccooviiiiiinviicn e 85
5.2 TS PIAN .ottt et 86
5.2.1 Application Performance ..........cccocviiiiniiniiiiie e 86

5. 2.2 TESEDALA oottt ettt 87
5.3 Test Results and ANalysis ...t 88

Vi



5.3.2 Distributed Market P1aces........c.ccccooiiriicinriinices e 950
5.3.3 Group PUIChase .....coueiiiiiiiieiiiees ettt st ere e 92

5.4 CONCIUSION ..ottt ettt ettt ettt ee et seesen et e seetenae 93
Chapter 6 ConCIUSION .....cc.ceiciiriirieiicrccie e 94
6.1 SUMIMATY ..ottt sttt ettt se et e e e en st eeenean 94
6.2 FUUre WOTK .....ccoceuiiiiiiiiiiiieie ettt 95
BIbHOZIAPNY ..ottt e 97

vii



Lists of Figures

Figure 1-1 Gaia’s MOELS ...ocoiiiiiiiiiiiiit ettt sn e e seeas 7
Figure 1-2 Role Model in Supply Chain Application .........ccceeiiiiiiiiiineninnesine e 9
Figure 1-3 Role-based InfrastruCtire .........occooviiiiiiiiniriee e 10
Figure 1-4 JAFIMA Agent ArchiteCture.......coccoveiuiiiiininriir ittt eeisea v s 12
Figure 1-5 Abstract Architecture of a ZEUS AENt ....cccoiviiviviiinieniiniieesce e 13
Figure 2-1 Structure 0f TSAM ..ottt e 18
Figure 2-2 Basic Action-Perception CyCIe ......ccoocviiiiiniiiniiieiccec e 20
Figure 2-3 InteRRAP SITUCIULE ....cc.oiiiiiiiiiiiiiiecesneste et eva s 21
Figure 2-4 Agent Architecture of TSAM.....ccooiiioiiiiiiie e 23
Figure 2-5 An Agent’s Life CYCle ....ocoiiiiiiiiiiiiiieeceeeee e 27
Figure 2-6 Role-based Behaviors.......cccoocoiiciiriciiiiicinee et 28
Figure 2-7 Agent Class DIagram .......cccocoooioiiioiiiiiiieie e 29
FIgure 3-1 ROIE TTEE .. viiiiiiiicciee ettt 44
Figure 3-2 Static Relationships among RoOIES ......oocueuviviieiciiiecececcceeeeve v, 47
Figure 3-3 Interactions between ROIES .......ccooviiiiiiiic e, 48
Figure 3-4 Mapping Relations between Roles and Agents..........cocoeeoveveeieioinviveeeenee, 51
Figure 3-5 Software Architecture of an E-Market Agent ..........c.oocoovvvviviivivieieceiieeen 52
FIgure 3-6 Petrl INELS ...o.iiuiiiiiiiiie ettt ettt ettt ee e nae st enene 53
Figure 3-7 Agent Behavior Model for Public Special Sale .........ocoooovioviiiviicieeen 55
Figure 3-8 Agent Behavior Model for Group-Buying Negotiation ............cccccovvveevnen.. 57
Figure 3-9 Agent Behavior Model for English AUction ..........cc.ooooooiviioiieevice e 59
Figare 4-1 System ArchiteCture ....oovocuioiiiiie ettt 63
Figure 4-2 Use of Tuple Space in the E-Market............oocoovivieiioiiiecie e 64

vili



Figure 4-3 Code Fragment of a Buyer Agent in Public Special Sale ..........ccococoovvvivennnen. 69

Figure 4-4 Code Fragment of Agents in Group AUCHON ......oovvvveivev et 71
Figure 4-5 Code Fragment of a Seller Agent in Negotiation ............cocvoiveeeereeeeeceneeann. 72
Figure 4-6 Code Fragment of a Buyer Agent in Information Search .......ococveoveeennen... 74
Figure 4-7 Code Fragment of a Seller Agent in Registering a Reactive Tuple................. 75
Figure 4-8 Code Fragment of a Sensory Behavior of a Seller Agent..........cocoveveeeeeenen... 77
Figure 4-9 Code Fragment of a Role-based Behavior of a Buyer Agent.......................... 78
Figure 4-10 Code Fragment of a Main-Role Behavior of a Buyer Agent......................... 79

Figure 4-11 Code Fragment of a Reactive Behavior of a Seller Agent in Group Auction81

Figure 5-1 Curves of Performance in a Centralized Market Place with Small Market Size

................................................................................................................................... 90
Figure 5-3 Curves of Performance in Distributed Market P1aces..........cccovvvereeevevennnn... 91
Figure 5-4 Curves of Performance in a Group Purchase .............cccoocoeeoeoveeersenn, 92

iX



List of Tables

Table 4-1 Tuple Space Primitives.. ..ottt reee st see e sne e 66
Table 4-2 Behaviors of E-Market AZentS.....ocoooviveeieiriiecieecteeceeeir e recssves e 76
Table 5-1 Performance in a Centralize;d Market Place with Small Market Size .............. 88
Table 5-2 Performance in a Centralized Market Place with Large Market Size .............. 89
Table 5-3 Performance in Distributed Market Places..........ccccoceivvvvvniiiniiencieeee. 91
Table 5-4 Performance in a Group Purchase .......c.ccooecivireniiennieece e, 92



Preface

Software agent has become the subject of much research in a wide range of fields,
especially in distributed system design. The objective of developing methodologies for
building distributed agent systems pulls research results from agent theory, agent
languages, and agent based applications. However, two major limitations have blocked
the extensive use of multi agent systems in applications. First, there is a lack of general
agent programming models enabling designers to clearly define agent behaviours in a
multi-agent system. Second, traditional agent interaction models are based on message
passing that may not efficiently support complex collaborations among agents. This
thesis is aimed at these problems by proposing a tuple space based agent programming
model that is a development framework for building distributed agent systems. The main
results include the following two parts:

(1) We provide a tuple space based agent programming model, called TSAM, which
includes an agent architecture separating agent behaviors into sensory behaviors, reactive
behaviors and proactive behaviors. In TSAM, we incorporate role models for analysis
and design of proactive behaviors. In addition, we use tuple space as the agent coupling
medium supplementing message passing to support dynamic couplings among agents.

(2) In order to validate the usefulness of TSAM, we apply it in an e-market application to
build a distributed agent system. Through the design and implementation of this example
system, we try to show that TSAM can simplify the development process and facilitate
the design and implementation of flexible agent collaborations. We also perform
simulation tests on our implemented system to ascertain that tuple spaces need not induce

performance overhead when compared with message passing counterpart.



The thesis is organized into six chapters introduced briefly in the following.

Chapter 1 (Introduction) reviews the relevant works on agent-oriented methodologies for
development of agent-based systems. These include role based agent design
methodologies, agent frameworks for developing agent based applications and
comparisons between message passing and tuple space based agent interaction. Based on
the reviews and analysis, the contributions of this thesis are introduced.

Chapter 2 (Tuple Space based Agent Programming Model: TSAM) presents in detail the
agent programming model. For the agent architecture, we model the behaviors of an
agent in three distinct forms. This characterization captures both the reactivity and the
mission-oriented life cycle of an agent. Role models are used to analyze and design
proactive behaviors. In the implementation level, tuple space is adopted as a coordination
medium for dynamic couplings among agents. Finally, the distinctive characteristics of

TSAM are analyzed.

Chapter 3 (Case Study: An E-Market Application) introduces an example application of
an electronic market. Role analysis is applied for the construction of proactive behaviors
of agents of the e-market. The collaboration protocols among agents are described using
colored Petri Net. The semantics of the agent model enables the concurrent agent
behaviors to evolve with minimal internal synchronization. The objective of this case
study is to show the simplicity of the design and the support of dynamic couplings among

agents through TSAM.

Chapter 4 (Implementation of the E-market Application) describes the process of
implementing the example system through TSAM. We show how tuple space can easily
be used to realize dynamic information sharing, asynchronous couplings, and concurrent

(bulk and logic template) retrieval of information in the application. In addition, we



demonstrate how to implement e-market agent behaviors through TSAM agent behavior

classes.

Chapter 5 (Performance Test) reports performance tests conducted with the implemented
system. We wish to ascertain the performance implication when agents communicate
through tuple space rather than message passing. While it is not the intention that tuple
space will completely replace message passing, it is useful to validate whether the tuple
space lowers the system performance significantly. Different operating environments are
tested. These include different number of agents, different sizes of markets/malls and

multiplicity of markets. The results do not turn up with many surprises.

Chapter 6 (Conclusions) summarizes the results and draws conclusions that TSAM can
simplify the development of agent applications and can effectively support dynamic
couplings among agents without incurring performance degradation at reasonable system

size.



Chapter 1 Introduction

1.1 Motivations

Software agent has become the subject of much research in a wide range of fields,
especially in distributed system design. Agents provide a high level of abstraction for
developing software to simplify the design of complex systems. Researchers generally
agree that an agent is a software object located in a dynamic environment. An accepted
description proposed by Wooldridge & Jennings [43] portrays an agent with the
following characteristics:

(1) Autonomy: is the ability of an agent to be active without relying on direct and
continuous intervention of its environment (human or other agents). With autonomy, an
agent is responsible for its behaviors and internal state. It knows its goal, and makes
decisions in order to move toward its goal. In other words, autonomy is a self-control
feature that makes an agent adapt itself in a dynamic and complex environment.

(2) Reacrivity: is the ability of an agent to sense and react (stimulus-response) to external
stimulus with appropriate simple actions. An agent receives stimulus through its sensory
and communication ports.

(3) Pro-activeness: is the ability of an agent to manage a set of behaviors to perform a
mission. It exhibits appropriate behaviors based on monitored conditions and interacts
with other agents in order to achieve common goals.

(4) Sociality: is the ability of an agent to coopérate with humans or other agents. Agents

must interact and cooperate with other agents when they perform their tasks.



The agent paradigm has led to new and promising research on agent-oriented
methodologies for design and development of application systems. Traditionally, a
process-based model is used to build software systems. In such cases, the design process
involves functional decomposition. It is unnatural to handle the inherent complexity of
some open and dynamic systems, such as complex information system, e-commerce, and
business processes management. On the other hand, aforementioned characteristics of an
agent can be meaningfully applied to capture the presence of such real-life applications.
The success of an agent-based system depends on a thorough and integrated agent based
design methodology.

Generally, an agent-oriented methodology involves an agent architecture and a
corresponding programming framework to support the analysis, design and
implementation of an agent application at multiple levels of abstraction. In the literature,
there are diverse researches on agent methodologies and a lot of efforts have been
devoted into agent programming frameworks. However, there are relatively few
systematic research results on practical methodologies for analyzing and designing a
multi-agent system in the software development process. The social abilities of agents
involve interaction protocols and behavioral coordination. This in turn leads to more
complex software development associated with agents. The following two aspects in
developing an agent-based application remain as important research focus:

(1) First, an agent programming model is needed that combines all meaningful
mainstream technologies.

(2) Second, traditional agent interaction models are based on message passing that may
not efficiently support the flexible requirements and dynamic coordination among agents.

A complementary facility to efficiently support agent couplings is desirable.



Our aim is to address the two issues. We hope to develop a model that is flexible and
easy to use, and at the same time will not incur much degradation in performance in the
resulting implementation.

For this purpose, an agent programming model called TSAM, is developed in this thesis.
TSAM provides not only agent architecture in abstraction, but alsoc an easy to use
programming environment for implementing the resulting design. The incorporation of
role models derived from object-oriented methodologies into the design of agent
behaviors supports the analysis and design of multi-agent systems from the perspective of
agent-oriented software engineering. In the implementation level, TSAM also supports
tuple space based agent coupling mechanism. This leads to some positive effects as
illustrated through a case study of an e-market application in this thesis.

The remaining sections review the relevant developments of agent-oriented modeling
methodologies, agent programming frameworks, and agent interaction methods based on

message passing. Finally, the contributions of the thesis work are presented.

1.2 Role based Agent Design Methodologies

Object-oriented role modeling is a software engineering technique for specifying,
analyzing, and designing systems in object-oriented way. Whereas classes describe the
capabilities of individual objects, roles emphasize collaboration relationship between
objects and offer a more goal or action-oriented perspective [14][37]. Generally, a role
specifies a set of possible behaviors of an agent at an appropriate abstraction level and its
high-level interactions with others. Over the past few years, various research results on
how to use object-oriented role models in agent systems have appeared. According to
Kendall [22], a role is characterized by its responsibilities, collaborators, and

relationships to other roles. A role model describes roles and the relationships between



the roles. In the agent-oriented modeling approach of Zamboneli [46], role models are
used to express organizational structures of multi-agent systems. The following
discussions review some example models and issues of relevance.

The Gaia Methodology for Agent-Oriented Analysis and Design

Wooldridge [44] presents a general methodology, Gaia, for agent-oriented analysis and
design that can be used to systematically develop an implementation—ready design based

on system requirements. The main models are shown in Figure 1-1.

requEreIBents

statpment

interactions
madel

agent model services model acquaintanice
1 maodel

Figure 1-1 Gaia’s Models

analysis

) design

In Gaia, the objective of the analysis stage is to capture system organization structure

through abstract entities of roles (roles model) and interactions (interactions model). A
roles model identifies key roles in the system, which can be viewed as an abstract
description of an entity's expected functionalities. The interaction model represents the
interaction links between the various roles. The process of Gaia’s design is to map roles
into agents. It involves generating three models: (1) the agent model identifies the agent

types that will make up the system; (2) the services model identifies the main services



that are required to realize the roles assigned to an agent; (3) and finally the acquaintance
model documents the lines of communication between the different agents.

Gaia is concerned with how a society of agents cooperates to realize the system-level
goals. However, it is not concerned with how an agent realizes its services, and leaves
this problem to specific applications. In TSAM, a generic role-based agent architecture is
provided for analysis and design of agent behaviors, and an agent programming
framework can directly support the deployment of agent systems.

Role Models as Patterns for Agent Analysis and Design

Kendall [22] describes role modeling as a software engineering technique for analysis,
design and implementation of multi-agent systems. She extends role models to represent
patterns of agent interactions that can be identified and reused in the design of agent
applications. Collaborations among agents are emphasized and abstracted by role models.
A supply chain is selected as an example for the role models of agent systems. At the
highest level, a supply chain is made up of three roles — Supply Chain (SC) Head, SC
Tail and SC participants, and the pattern of interaction has been represented in terms of a
role model of Predecessor-Successor. A set of agents (aCustomer, Enterprisel and
Enterprise2) can be arranged to play these roles as shown Figurel-2. Enterprisel is a
manufacturing company with a hierarchical structure of Manager-Subordinate pattern.
The relevant roles appear in the upper half of the diagram. The dashed arrows indicate
role assignments. An agent can play more than one role (for example, aPlantManager can
play the roles of a Successor in the supply chain and as a Manager in the bureaucracy

management).



Figure 1-2 Role Model in Supply Chain Application

This approach emphasizes the analysis and design phase of agent-based systems. In
TSAM, besides using role models to build the system organization, we also extend them
in the definition of agent proactive behaviors as role-based behaviors. The beliefs, plans
of an agent are partitioned on the basis of the roles the agent plays into different role-
based behaviors. The role model can also support the couplings among different role-
based behaviors within one agent.

Role-based Infrastructure for Agents

According to Cabri [4], roles are used to construct an infrastructure between applications
and environment to simplify the design and implementation of agent applications. In the
role-based infrastructure, four levels are proposed as shown in Figurel-3. The agent level
is the application level where agents live. The infrastructure level contains the roles the
agents will play. The policy & mechanism level defines the relationships among the roles
and the policies related to the environment. Finally, the resource level contains the
resources related to implementations. The infrastructure level is not bound to a given
application or to a given environment. However, it can be adapted to different

implementations of the policy and mechanism level.



agent level v % #a
9 S N’

infrastructurs @ %? Rss‘e?i\
level Reet = -y
i

L

T \/‘/' [T
me;:e;r; m \\ /

jesource resaurces

iavel

Figure 1-3 Role-based Infrastructure
The objective of the infrastructure is to achieve the separation of concerns between
matching agents to roles and the actual implementation of the policies & mechanism
level. The role-based behaviors of an agent are the external behaviors that are captured by
roles, and they can be generated by the definitions of roles and their concrete
implementations. However, the coordination of the different role-based behaviors within
an agent is not considered. In TSAM, the definition of a role-based behavior in a high-
level is provided. Role-based behaviours of an agent can be implemented according to the
different roles the agent plays, and they are conformable with the internal mechanisms of
an agent, such as the management of the execution of each behavior and the couplings

among the behaviors.

1.3 Agent Frameworks for Developing Agent based

Applications

There is an emerging need for agent frameworks in developing agent-oriented systems.
The objectives of agent frameworks are to provide a rapid prototyping development
environment for the systematic construction and deployment of agent-oriented

applications and to encourage code reuse and standardization of agents.

10



Many agent frameworks consider both architecture and implementation of agents. They
all have agent behavior engine, communication interface, and corresponding primitive
processing objects. However they differ in the prominent issues they address. Agent
frameworks may be categorized into: (a) architecture based agent frameworks that put
agent architectures as the basis of development, and (b) platform based agent
progra{mming environments that provide an agent programming and execution
environment. JAFIMA [23], ZEUS [31], and AA [28] are the typical architecture based
frameworks, whereas JADE [59], Aglet [48], Ajanta [49], and Grasshoper [56] are
platform based agent programming environments. In the following part, some

representative agent frameworks are reviewed.

1.3.1 Architecture based Agent Frameworks

JAFIMA [23]—Java Framework for Intelligent and Mobile Agent

The efforts of JAFIMA concentrate on developing architectures, the associated tools and
techniques for development of agent systems. In its agent architecture, an agent is
decomposed into seven layers shown in Figurel-4.

In the layered architecture, the higher-level behavior depends on the lower-level
capabilities and there is two-way information flow between the neighboring levels. In
bottom-up transactions (following the arrows in the figure along the right side), an
agent’s Beliefs layer is based on the input from its Sensory layer. Then, the Reasoning
layer may reason about its beliefs to determine what to do based on which the Action
layer will decide on an action. If the agent has no capabilities to perform the action, the
Collaboration layer will decide how to collaborate with other agents. These will involve
the Translation layer to formulate the actual messages, and the Mobility layer to transport

agents to distinct societies. In top-down transactions (following the arrows on the left side

11



of the figure), an incoming message enters into the Mobility layer and is translated into
the agent’s semantics. Then there is an information flow from the higher layer to lower

layer to determine each layer’s works.

Top Down Bottom U
E— MOBILF > | Layer7: transporis the agent to

Layer 7: brings in messages from ) o
¥ ngs i 9 distant societies

distant agent societies

Layer 6: tiranslates incoming
messages

TRANSLATION Layer 8: ranslates the agenf's messages

i to another agent’s semantics {ontologies)
Layer 8. detemmines whether an
incoming message should be
processed

Layer 5:verifies & directs outgoing messages
{o distant and local agenis

Layer 4:stores and carries ouf the intentions
Layer 4: takes in pending actions being undertaken by the agent

Layer 3: processes the beliefs to determine
what should be done next; stores the
reasoner and the plans

Layer 3: reasons regarding the
selected action

Layer2: updates beliefs
according fo reasoning

Layer 2: stores the agent's beliefs, updates

SE,UEFS ; betiefs according to sensor input

= Layer 1. senses changes inthe
SENSORY o

Layer 1: gathers regiiar sensor ;
¥ s g environment, messages updates

updates

Figure 1-4 JAFIMA Agent Architecture

JAFIMA provides a layered architecture of an agent. Each layer is formed of sub-
frameworks and contains design patterns. Unfortunately, it lacks support of system
analysis, and the behaviors of each layer take place by a sequence according to the
information flow. In TSAM, we add role models in the analysis of agent behaviours, and
separate reactive behaviors from proactive behaviors. As a result, TSAM explicitly

supports concurrent executions of agent behaviors.

ZEUS [31]: An Advanced Tool-Kit for Engineering Distributed Multi-Agent Systems
ZEUS provides an integrated environment for the rapid deployment of distributed multi-
agent systems through capturing user specification of agents and automatically generating

the executable source code of the user-defined agents. In the architecture of a ZEUS

12



agent, a layered approach is also adopted (shown in Figure 1-5), and each of the layers is
similar to JAFIMA.

o commuricati orme with
pthar agents

Coaoardinotion Layor

Crgantsston Layer

Definition Layer

effzctors SENSOS

Figure 1-5 Abstract Architecture of a ZEUS Agent

Unlike JAFIMA, ZEUS provides a generic and customized tool-kit to facilitate the
development of complex agent applications and automatic code generation. Because of
the layered architecture of an agent, ZEUS has the same limitations in supporting
concurrent behaviors of an agent as JAFIMA. In the ZEUS architecture, the sensory part
is not considered, so an extra agent called Database Proxy agent is needed to deal with
the application environment. On comparison, TSAM incorporates the sensory part and
communication part in an agent, and does not need special agents to perform the sensory
actions.

AA [28]: Agent Academy

AA, an integrated framework for constructing multi-agent applications, is implemented
upon JADE [59] infrastructure. It provides an integrated GUI-based environment that
enables the design of a single agent or multi-agent communities using common drag-and-
drop operations. Application developers even do not need to write a single line of source
code through the set of graphical tools. In terms of architecture, AA pays attention to the

reasoning capabilities of an agent, and implements a “training module” to embed

13



essential rule-based reasoning into agents. An AA agent comprises a set of behaviors that
are created by Behavior Type Design Tool in advance. These behaviors are not
necessarily reactive behaviors or proactive behaviors, and AA does not consider in detail
the concurrence of multi role-based behaviors of an agent. Moreover, like JAFIMA and
ZEUS, AA supports message passing based agent interactions, which are totally different

from the way of agent couplings in TSAM. We will discuss this point in section 1.4.

1.3.2 Platforms based Agent Programming Environment

A multi-agent system platform is a software infrastructure used as an environment for
development and execution of agent systems. These platforms concentrate on providing
an environment for agent programming and execution. There exist a number of platforms,
which may be regarded as middleware residing between the application layer and the
underlying host and network operating systems. The general criteria, according to which
to evaluate the platforms, are their standard compatibilities, communication, agent
mobility, security policy, availability, usability and documentations, and development
issues [16]. Even though these platforms may not provide concrete agent architectures,
their support services and the reuse of code are useful in building agent based systems.

In this thesis, an agent platform—IJADE is selected to implement TSAM and the
application system. JADE is a Java Agent Development Framework for developing
multi-agent systems. It simplifies the implementation of multi-agent systems through a
middleware and a set of graphical tools that supports the debugging and deployment
phases.

The reasons why we select JADE as the programming environment are the following.
First, JADE supports agent mobility and JADE agents can run in a dynamic environment.

Second, implementing agent behaviors from a hierarchy of support classes of JADE is

14



simple. These classes offered by JADE are the primitive classes. Although they do not
offer programmers much in terms of reusable code, they can provide a flexible
mechanism for a user to implement role-based behaviors by simple class extension.
Finally, JADE is a free and open source software. This allows us to change the source

code by embedding other agent interaction medium, such as distributed tuple spaces.

1.4 Message Passing based Agent Interactions

The software agent paradigm strongly relies on the interaction of autonomous and
cooperating processes. Currently, the common interaction mechanism is message passing.
It is a high level and structured communication between a source (sender) and a
destination (receiver). There are three main agent standardization groups: KQML [60],
OMG’s MASIF [61] and FIPA [62], which address message passing based
communication among agents. KQML is a high-level, message-oriented, communication
language for exchanging information independently of content syntax and ontology. The
detailed descriptions of the syntax, collection of performatives, and semantics of KQML
are introduced by Labrou and Finin [25]. FIPA (The Foundation for Intelligent Physical
Agents) is a non-profit organization. The standard FIPA Agent Communication
Language is FIPA ACL whose syntax is similar to that of KQML. MASIF is a standard
for mobile agent systems. It addresses the interfaces between agent systems, and restricts
the interoperability of agents based on CORBA. Today, many agent frameworks and
programming platforms support the message-passing based interactions between agents.

Message passing allows agents to communicate through channels or ports. However, as
message passing is a lower level form of synchronization, global coordination of agents

through message passing may be more complex.

15



Exploiting parallel and distributed systems requires programming models that deal with
the coordination of large numbers of concurrently active entities. This has led to find a
coordination model that effectively supports to coordinate existing (sequential or paraliel)
components.

Gelernter [13] proposes a shared repository based coordination model named tuple space.
It is the indirect coordination model. The coordination medium is a shared data space
(associative blackboard) made of tuples inserted by means of ‘out’ operations, and
retrieved by means of ‘in’/’read’ operations. In TSAM, we use tuple space for agent
couplings. From the surface, tuple space just supports the interactions between agents
instead of message passing; however from the viewpoint of coordination, tuple space is
expected to simplify the design and programming of complex coordination (dynamic
coupling) among agents. The realization of the tuple space based agent coupling facilities
is a separate project [64] and is performed by another student, Y. Li, who implemented
the tuple space services on top of JADE. The details of how to use tuple space in TSAM

will be introduced in Chapter 2.

1.5 Contributions of the Thesis Work

This thesis work is to develop an agent programming model based on tuple space that is a
development framework for building distributed agent systems. It represents a
considerable contribution to agent system analysis, design and implementation in the
following aspects: First of all, in TSAM, we use role models to support the analysis of
agent proactive behaviors. Second, we provide a generic agent architecture and an agent
programming environment for programming agent behaviors consisting of three distinct
types (sensory behaviors, reactive behaviors and proactive behaviors). Third, we adopt

tuple spaces for agent couplings to support complex coordination among agents.

16



In this thesis, TSAM has been utilized to develop an agent-based e-market application in
order to demonstrate the power of TSAM in design and implementation of agent based
applications. As a tuple space is a centralized resource that facilitates agent coordination,

we also wish to establish that it does not necessarily cost us performance loss.

17



Chapter 2 Tuple Space based Agent Programming
Model

While Chapterl provides an introduction and overview of the thesis, in this chapter we
introduce our agent programming model—TSAM in detail. Agent oriented programming
relies on the assumption that a complex distributed software system can be programmed
as a set of interacting software entities, called (software) agents. Generally, agent-
oriented methodologies include agent architecture and agent programming frameworks
that support analysis, design and implementation of agent applications at different levels.
Agent architecture is in the abstract level of agent model, while an agent programming
framework is in the implementation level and supports building practical agent
applications from the perspective of software engineering. TSAM is such an agent-
oriented methodology that incorporates the agent architecture in the abstract level and an
agent programming framework in the implementation level for building multi-agent
systems. Besides, it support tuple space based agent coupling mechanism. The structure

of TSAM is shown in Figure 2-1.

TSAM:

Agent architecture

Agent programming framework

1

l Tuple space I

Agent development platform

Figure 2-1 Structure of TSAM

18



We will explore TSAM in the following sections. In section 2.1, we present the agent
architecture and its components and explain the rationale of separation of three different
agent behaviors. Then, in section 2.2, we explain how the agent programming framework
supports building software agents in a concrete way, which includes how to establish an
agent class based on agent behavior components, and how to support the concurrent
activities of an agent. In section 2.3, we describe how the tuple space based coordination
model supports flexible collaborations among agents, and finally in section 2.4, we

compare TSAM with other agent programming models in many aspects.

2.1 Agent Architecture

2.1.1 Current Agent Architectures

Even though different approaches to the construction of multi-agent systems impose
different requirements on the individual agents, an agent is generally defined as an
autonomous, collaborative and adaptive computational entity with reactive and proactive
behaviors. How to construct an agent with the properties we expect of them? Agent
architectures can be thought of as software engineering models for constructing the
needed agents.

Many early researches on agent architecture combine the psychological and behavioral
studies of human beings, and describe agent models as cognitive behaviors [27][41] of
the brains of human beings. According to the features of agents, an agent is composed of
at least three basic parts: sensory part, communication part and decision part, whose
actions are compatible with the basic action-perception cycle of cognitive brain functions
shown in Figure 2-2. The sensors perceive information from the environment, the

effectors affect the environment through activities, and the part of central processing

19



makes decisions of what actions will be taken by the effectors according to the acquired

information through sensors.

Agent

Central processing

: !

Sensors Effectors

4 |
| v

Environment

Figure 2-2 Basic Action-Perception Cycle
With the property of autonomy, an agent needs cognitive abilities to reason about
complex situations and reactive abilities to respond to some changes of the environment.
Therefore, in the part of central processing, an agent may have two kinds of behaviors:
reactive behaviors and proactive behaviors. All the reactive behaviors are described as
simple stimulus-response actions to react to the external stimulus, and the proactive

behaviors need deliberate plan to achieve the goals of the agent.

Many agent architectures in the literature extend the above basic agent model with
different emphasized issues. The BDI (belief-desire-intension) is one of the most adopted
architecture of agents that describes agent model with mental factors like belief,
preference and intension (Rao and Georgeff [341[35]). The AI oriented consideration of
BDI model makes it clear to express agent behaviors. However, it is expensive to
represent the intensions of agents clearly.

Hierarchical Agent Behavior Control Architecture described in [29] is a general method
specifying agent behaviors. It focuses on analysis of agent behaviors and their
relationships, and provides a generic specification of agent behaviors with a vertical four-

layer agent structure shown in Figure 2-3. The behavior layer performs reactive activities;

20



the local planner layer performs regular planning to achieve agent goals; and the
cooperation layer is responsible for interactions and cooperation among agents. Each
layer corresponds to their knowledge bases, which are the abstractions of the
environment in different levels. When an agent perceives information from the
environment, if the event is just for reactive activity, the agent can do it directly. If the
reactive activity is not enough, the planner layer will be activated. Moreover, when the
local planner can’t solve the problem, the control will move to the high layer—

cooperation layer, which is in charge of the cooperation with other agents.

e S

. Cboperation
ICooperatlon layer! < »|  knowledge

Plan knowledge |

<——-———-——'> World: model l
(R '

l Communication layer j

A |

A4

input output

Planner layer

v

Figure 2-3 InteRRAP Structure
The layered architecture directly represents the natural rule of functional decomposition
of agent behaviors. However, the interaction design within an agent is complex.

Whenever there is an input, all the layers may be involved in generating an output.

The above agent architecture is based on the AI perspective, which describes agents as
entities with knowledge to be able to reason in a human-like way. Agent-oriented
software engineering is centered on the design of autonomous, active and interacting
agents. It mainly cares about how to design flexible and interactive entities with clear

definitions of agent’s behaviors and their interaction protocols. Development of

21



distributed software is complex and it requires clear configuration and easy programming,.
In multi-agent based applications, the uncertainty of the dynamic environment, the
complexity of coordination among autonomous agents and the multiple roles played by
each agent further necessitate the agent architecture to simplify the process of
development. The layered architecture does not scale well on electronic commerce, and
other applications that involve a number of independently designed and operated
subsystems.

In TSAM, we aim at these requirements of a software engineering process to provide

different agent architecture. The following section will elaborate this architecture in detail.

2.1.2 Agent Architecture in TSAM

As an agent-programming model, the primary goal of TSAM is to provide a means for
building agent applications to facilitate analysis, design and implementation of software
agents in a relatively rapid and easy way. The agent architecture of TSAM is proposed as
in Figure 2-4. Based on the basic agent model of action-perception cycle, the
communication part and central processing part are still included in the architecture;
however, they are deliberated in different ways from the traditional layered architecture
for easily building a software agent.

As a software entity, an agent generally has three types of behaviors: sensory behaviors,
reactive behaviors, and proactive behaviors. Accordingly, in the agent architecture, we
classify an agent’s behaviors into three categories, which are sensory part, reactive part

and proactive part.

22



External

—»t Sensory part
object

Coupling part G T &
| N

———

Shared data
asynchronously notify ) synchronously/
¢ ¢ asynchronously

1 L oo
L couple
Reactive part Proactive part

l reactive behavior 1 I main role behavior|
reactive BehaviorZ : | Py
External ! ik Eﬁ'ﬁm or 11

{role behavior 2

object role behavior 3
[reactive behavior m | .

Figure 2-4 Agent Architecture of TSAM

Sensory Part:

The sensory part includes agent sensory behaviors that periodically sense the changing
environment where the agent lives. The adaptability of agents enables them to readjust
themselves to adapt to the environment. In this case, we assume that an agent often
knows quite a bit about its environment and knows how to adapt to its environment. For
example, a mobile information agent in an e-commerce application may need to sense its
operating environment to decide whether to move away from some sites. Meanwhile, it
also keeps sensing the status of local data resource. If it knows that the accessed data
sources are problematic, it may stop searching activity immediately, and move to other
places.

Reactive Part:

The reactive part includes reactive behaviors that can be regarded as stimulus-response
pattern. The stimulus may be from the external objects sensed by the sensory part or from
the other agents’ notifications through the coupling part. Therefore, the reactive
behaviors are divided into two different types. One type includes simple behaviors that

are triggered by other behaviors of the agent. For example, they may be triggered by the

23



sensory behavior to react to the external environment, or by the proactive behaviors to
react to some internal results. The other type is as asynchronous listeners to other agents
to perform collaborations with other agents. The latter can be realized through reactive
tuples.

A reactive behavior is a precise and deterministic action without long-term proactive
protocols needed to interact with other agents. It may be a simple activity starting at once,
like stopping some actions, sending alarm signals, or just triggering an agent’s proactive
behavior. For example, in e-market application, a seller agent as an auctioneer may have
three reactive behaviors. One may be triggered by an abort event of a buyer agent to stop
all transactions with the buyer agent. The second one may be triggered by a change of a
price level of a product in the market to readjust its selling price for this product. The
third one may be triggered by a new bidding request from a buyer agent to activate an
auction behavior.

Proactive Part:

Proactive part includes agent proactive behaviors that implement the deliberate part of an
agent. Proactive behaviors are task initiative behaviors that do not simply act in response
to their environment, but are able to exhibit goal-directed behaviors to perform particular
tasks. Collaborations with other agents to perform such a task are often needed. An agent
can be defined to have multi-capabilities or to play multiple roles. As a result, each role-
based behavior can be defined to perform a specific task. The main role behavior in
Figure 2-4 is a proactive behavior that runs periodically as a dispatcher of other role-
based behaviors. In the e-market application, for example, a seller agent can be defined to
have the capabilities of advertising product prices, as well as auctioning and negotiating
with buyers. In tum, a buyer agent may have at least three role-based behaviors:

searching information, bidding for products, and negotiating with seller agents.

24



The following are the main points of the agent architecture of TSAM compared with the
traditional layered architecture. |

(1) Separate Sensory Part from the Coupling Part

There are two ways for an agent to learn about its outside environment. One is to sense
the dynamic environment through the sensory part. The other one is to interact with other
agents for a particular task through the coupling part. Some agent architecture put the two
parts together in one communication module because both of them can be regarded as the
same thing of interacting with the outside world of agents. However, we separate the two
parts for the following reasons. First, they reflect totally different behaviors with
distinguished issues, so it is much clearer to model them separately. The sensory part
performs the works of periodically perceiving the environment for some specific
parameters and keeping them in the internal shared database for successive stages of
decision-making or reactions. On the other hand, an agent still faces one or more tasks to
be solved through collaborating with other agents. The coupling part just performs this
work to provide unified interfaces for couplings among a group of agents. Moreover, the
sensory part and coupling part may often lead to concurrent behaviors. While an agent
coupling with other agents, it may sense the environment at the same time. The
independence of the two parts reflects the natures of agents’ behaviors. Therefore, their
separation simplifies the underlying implementation of the two parts and facilitates the
design of the reactive behaviors and proactive behaviors of agents.

(2) Separate Reactive Part from the Proactive Part

Generally, an agent may combine aspects of both reactive and proactive behaviors so that
it can make use of the best features of both behaviors. Some agent architecture process
the two types of behaviors in the same workflow. In the layered architecture, for example,

any event, no matter what behaviors it will cause, is in turn sent to each layer and is

25



processed by each layer. In TSAM, however, we separate the reactive part from the
proactive part, define them separately, and activate them concurrently if necessary.

First of all, the separation of the two parts simplifies the design process because it
supports the concurrent execution of the two types of behaviors. In traditional

<

architectures, the actions of reactive or proactive behaviors are started by a “central
scheduler”. This is in fact a sequential mechanism that is not suited for the nature of
agent’s behaviors. Separating reactive behaviors from proactive behaviors allows a
developer to manage different behaviors simply, and results in a better structured design
with explicit concurrency that is more easily implemented in an agent. This is a
fundamental aspect of our TSAM framework.

Second, when designing a software agent, it is important for agents to be as easily
configurable and scalable as possible. This requirement needs the fact that, for building a
new agent, it must be easy to establish its components through behaviors definition; for
extending an existing agent, it must be simple to add new role-based behaviors to. scale
up the agent when it plays additional roles. The separation of reactive behaviors from
proactive behaviors makes it easy to change/add/delete different role-based behaviors
without interfering with other components in the architecture.

Finally, from the perspective of the life cycle of an agent, reactive behavior and proactive
behavior have different effects on the state transition of an agent. Figure 2-5 shows a
typical life-cycle model of an agent [59], where an agent has a basic life cycle with six
states (Initiated, Active, Waiting, Suspended, on the Move and Unknown). To build a
complete agent, it is necessary for the agent architecture to support the state transitions
very well. Proactive behaviors can change the agent’s state according to its role-based
protocols. However, to avoid directly affecting the on-going execution of a proactive

behavior, a reactive behavior may inform the proactive behavior its intention through the

26



shared object rather than directly change the agent’s internal state. For example, in an e-
market application, when a buyer agent moves to the location of a local market and
begins to negotiate with a seller agent, the local market is down. In this situation, a
reactive behavior is activated immediately to inform the proactive behavior, which then
may decide to wait for the market recovery or move to another market. The different
influences of reactive behaviors and proactive behaviors on agent state transition make it

necessary to separate them in agent architecture.

L
A >

Unknown
Desiroy

Create

¥ Exocute
- b e
G the Move

Figure 2-5 An Agent’s Life Cycle

initiated

(3) Support Definition of Role-based Behaviors

In agent-based systems, a role model identifies and describes a structure of interacting
entities in terms of roles that will be played by agents. The capabilities of roles represent
a set of actions that are needed for an agent to achieve its tasks. In the agent architecture,
the proactive behaviors are role-based behaviors that are defined according to the
responsibility of roles. The start of role-based behaviors is based on couplings with the
environment or other agents. Each role-based behavior can be modéled as a sequence of
tasks related to a role. It involves a partial order of tasks and is mapped to one thread

when running. The model of role-based behaviors is shown in Figure 2-6 similar to [15];

27



Engine Engine
data: data
taskl ———p> | jtaskl
...... G e s
task?2 task?2
behaviorl behavior2

Figure 2-6 Role-based Behaviors
Using role model in the analysis and design of agent proactive behaviors is an essential
part of agent-oriented software engineering. In the analysis stage, an agent is defined to
play one or more roles in applications. In the design stage, each proactive behavior is
defined separately in accordance with the role-related tasks. In the implementation stage,
when creating an agent playing a set of roles, the corresponding predefined role-based
behaviors are simply assembled into an agent class. Therefore, the definitions of role-

based behaviors make the development of agent systems faster and clearer than otherwise.

2.2 Agent Programming Framework

Figure 2-7 is the class diagram of an agent in TSAM. An agent class is mainly composed
of three types of behaviors: Sensory Behavior, Reactive Behavior and (Proactive) Role
Behaviors. The class of the Shared Data is used in the couplings among the behaviors
within an agent, while the Coupling class facilities the couplings between the agents. The

Coupling class is an interface class that is implemented by tuple space services.

28



Agent

o 0 ) > 3
1 1
; IMainRoleBehavior
SensoryBehavior i .
------------ p| _ Coupling
\\ m . '
K ZlRoleBehavior] |  ___.---7T <
\\‘ ’,/ p- -~ P e A
A P ’ n l . :
A 1 7 ReactiveBehavior{ ,-” ’ !
’ ’ .
Shared Data { ./ .- :
B -7 '
e Tuple Space
& pic op

Figure 2-7 Agent Class Diagram
The main framework of class definitions used in our agent programming model is as
follows:
public abstract class TSAM_SensoryBehavior extends JadeCyclicBehaviour{
TSAM_SensoryBehavior (Agent agent, long p); //construction
public void action();

public abstract void myaction(); // perceive actions implemented by application agents

public abstract class TSAM_MainRoleBehaviour extends JadeCyclicBehaviour{
public TSAM_MainRoleBehaviour (Agent agent, long p); //construction
public void action();

public abstract void myaction(); //dispatch strategy implemented by application agents

29



public abstract class TSAM_RoleBehavior extends JadeSimpleBehaviour{
public TSAM_RoleBehavior (Agent agent); /construction
public void action();

public abstract void myaction(); //role based tasks implemented by application agents

public abstract class TSAM_ReactiveBehavior extends JadeSimpleBehaviour implements

IReactive{
TSAM_ReactiveBehavior (Agent agent); //construction
public void reactTo(AgentReactionEvent e);

public void action();

public abstract void myaction(); //concrete reactions implemented by application agents

Coupling class (interface of tuple space service){
TupleSapcelD TSCreate(String name);
TupleSapcelD TSFind(String name);
//synchronous access of tuple spaces

30



2.3 Tuple Space based Coordination Model

2.3.1 Coordination Model in Multi-Agent Systems

Agents in a multi-agent system usually need to communicate amongst themselves, to
coordinate their activities and to negotiate once they find themselves in conflict. The
collaborative features of agents in multi-agent system make the coordination model a
crucial factor in the design of agent systems. A common coordination in multi-agent
system is that agents collaborate to achieve a goal. Coordination problems are the
management of dependencies amongst activities of agents, which includes resource
allocation, notification, synchronization, decomposition, and so on. In the literature, there
are different coordination models for different purposes. Iﬁ TSAM, however, the
objective of the coordination model is to reduce design complexity and simplify the
programming tasks.

Coordination models for multi-agent systems can be broadly classified into direct
coordination model and indirect coordination model. Direct coordination means that
agents explicitly initiate a communication via message passing and explicitly name the
mvolved partners. The significant advantages of a direct coordination model are to permit
explicit control of all interactions, which are not influenced by external entities, and to
induce low overhead in the hosting execution environments [6]. However, the apparent
drawbacks of direct coordination model are that the direct communication needs
localizing both partners and the repeated interactions highly depend on network
reliability. Some of the agent programming frameworks support the message-passing
based direct coordination. For example, Agent TCL [17] provides direct communication

between agents, and JADE supports the FIPA ACL compatible coordination standard.

31



In indirect coordination, agents interact via information spaces, like blackboard, where
messages are stored and retrieved locally. A blackboard approach provides a solution to
eliminate the tightly bound interaction links that many distributed technologies require
during inter-process communication. It uncouples agent-to-agent interactions in time and
space. This suits many application scenarios where agents do not know exactly the apriori
identity of the collaborators. For example, when an auctioneer agent wants to invite a
public bidding, it just publicizes the bid price of products, and does not know which
bidders will participate. If the messages on blackboard are associative and if agents
access the content via pattern-matching mechanism, this information space can follows
Linda semantics [7] of ‘in()’, ‘out()’, read() etc. In TSAM, we use this type of indirect

coordination model based on tuple space for agent couplings.

2.3.2 Why Use Tuple Space as the Coordination Model?

With the increasing complexity of applications, we need programming models to deal
with the coordination of large numbers of concurrently active entities. An infrastructure
of coordination model is needed to meet the complex requirements. Tuple space that
supports inter-agents coordination is an attractive solution.

In the case of a complex application environment with dynamic and heterogeneous
factors, tuple space can simplify the design and programming of complex coordination
(dynamic coupling) among agents because of the following reasons:

First, tuple space based coordination model promotes dynamic information sharing, so
that information is available to any intended agents and every agent can modify the
information from the tuple space.

Second, tuple spaces free the designer from the burden of keeping track of explicit or at

least implicit addressing knowledge in agent couplings. An agent needs to communicate

32



with a group of agents or an arbitrary member of agents rather than a particular target
agent. In such cases, if the sender must name all the potential recipients, a level of
abstraction is lost.

Finally, the reactive tuples of tuple space support event-driven coordination among
agents with triggering corresponding reactions. The reactions are defined based on the
roles an agent plays. They can access the tuple space, change its content and influence the
semantics of the behaviors to achieve better control. In addition, reactions can adapt the
semantics of the interactions to the specific agent environment, thus simplifying the agent

programming.

2.3.3 How Tuple Space Supports Coordination in TSAM?

Some researchers have reported their work on tuple space based agent coordination.
MARS [5] proposes a reactive model to manage secure access of tuples. WCL [38]
proposes a monitor to react and notify waiting agents, and JavaSpace [58] implements a
notifying method in object-oriented method. Even though models of reactive tuples have
been proposed and some notifying mechanisms have been implemented, there is no
complete agent programming model using reactive tuples reported. In TSAM, we
incorporate tuple space as agent interaction medium, and support the creation of reactive
behaviors through reactive tuples. The main functions of a tuple space based coordination
model include:

(1) A set of programming interfaces for data sharing. Agents can synchronously/
asynchronously read/write/remove tuples from a shared tuple space to cooperate with
other agents. Moreover, tuple space supports for matching logical template of tuples. This

improves flexibility of the framework to support agent coupling.

33



(2) Asynchronous notifications of exceptional conditions via reactive tuples. The
behaviors of reactive tuples can be programmed through registering reactive behaviors
predefined by agents. Whenever there are some changes in a reactive tuple, its intended
behavior can be triggered.

(3) An infrastructure that enables location transparent inter-agent communication. A tuple
space manager manages the name service of distributed tuple spaces. It establishes a
dynamic coordination environment without knowing the exact physical locations of each

tuple space.

2.4 Comparison with Other Agent Programming Models

To satisfy the requirements of software engineering, a successful agent programming
model may address the practical concerns of real-world applications. There are plenty of
developments in agent-oriented engineering products and research projects. Different
agent programming models may have different concerns on agent systems, so they have
different focus on agent technologies for developing software agents. Here, we will make
comparisons between TSAM and some other frameworks.

AgentBuilder [50] is a commercial product with an integrated tool suite for constructing
intelligent software agents. When defining behaviors of an agent, AgentBuilder provides
an Agent Manager that concentrates on creating various mental constructs including
initial beliefs, initial commitments, initial intentions, capabilities and behavioral rules. In
addition, the Agent Manager supports tools of adding planning and learning capabilities
to an agent to build an intelligence-oriented system. Agents communicate using message
passing.

Agent Building Shell (ABS) [51], developed by Enterprise Integration Laboratory,

University of Toronto, provides several reusable layers of languages and services for

34



building agent systems. Different from Agent Builder, ABS employs a unified
description language that specifies behaviors as consisting of sequential, parallel and
choice compositions of actions. Constraint-based mechanisms are used to determine
which actions will be executed. For coordination, it emphasizes on constraint-directed
coordination based on relationships among the agents, and provides coordination
language built on top of the agent communication language to support the definition,
execution and validation of complex speech-act based cooperation protocols.

AgentTool [47] is a Java-based graphical development environment to help users to
analyze, design, and implement multi-agent systems. Developers define high-level
system behaviors graphically using the Multiagent Systems Engineering methodology
(MaSE) {42], which utilizes role models in the analysis process. Different from TSAM, it
has a component for message checking and routing, and a rule container represented by
formal operation definitions. It does not separate the reactive behaviors from proactive
behaviors.

FIPAOS [52][57], ZEUS [31] and JADE [59] are agent programming tools for building
FIPA-compliant agent systems. FIPAOS is a component-oriented toolkit enabling rapid
development of FIPA compliant agents. ZEUS is a 'collaborative' agent building
environment written in Java. They all have agent architectures in the high level for
building agent behaviors. However, the different emphases on their agent architectures
lead to their different agent behavior subsystems. Different from TSAM, both FIPAOS
and ZEUS have layered agent architectures. One of the important layers of a FIPAOS’
agent is Task Manager that constructs agents from primitive work units called tasks. The
main layer of a ZEUS agent (definition layer) represents the agent reasoning and learning
abilities, which adapt to knowledge based programming. Similar to TSAM, JADE

provides a behavior engine for programming agent behaviors using homogeneous

35



processing elements that are executed in concurrent fashion. However, JADE agent
architecture does not consider the essential differences between the three types of agent
behaviors. It just provides a homogeneous behavior definition and leaves the task of
creating different behaviors to application developers. ZEUS considers the sensory
property of agent systems, but it sets an additional agent for sensing and affecting without
built-in sensory behaviors.

In comparison to other frameworks, TSAM is an agent programming model that
incorporates role model in agent behavior design, supports the definition of three types of
agent behaviors, and utilizes tuple space based coordination model for agent interactions.
In thé following chapters, these important points will be elaborated and demonstrated

through an example of an electronic market system.

36



Chapter 3 Case Study: an E-Market Application

In this chapter, we introduce electronic market (e-market) as an agent application, and
demonstrate how the agent programming model (TSAM) proposed in Chapter 2 supports
the development of the e-market application. Electronic market is a software tool with
trading functions that enable buyers and sellers to effectively reach their trading
objectives. The main trading activities, such as online pricing, need complex cooperation
and coordination process among buyers and sellers. TSAM help designers to establish
flexible and dynamic protocols for the complex trading transactions in the e-market. The
objective of the case study is to show how TSAM simplifies the design process and
facilitates agent programming in complex collaboration through role modeling techniques

and tuple space-based agent coupling facilities.

3.1 Electronic Market

3.1.1 Electronic Market

Generally, a marketplace is comprised of consumers (single buyer and groups of buyers),
and merchants (single seller, stores and malls), and there are many transaction types
among these participants, such as information searching, product exchanges, online
shopping, etc. An e-market is a system that supports all participants in a market to
perform their trading transactions through software technologies. All the participants can
benefit from the e-market. From the point of view of consumers, an e-market provides
services to find products and merchants rapidly, to easily purchase products and to place

orders safely. From the point of view of merchants, an e-market allows them to easily

37



publicize their products, to sell their products while maximizing their profits and, at the

same time, to satisfy consumers.

3.1.2 Trading Transactions on E-Markets

To satisfy the objectives of consumers and merchants, generally e-markets provide the
following services for the participants.

(1) Product Information Search

In many industries, the main inefficiency is the lack of updated information concerning
available products on markets. Relevant product information facilitates sale processes,
and global knowledge of the market creates efficiency in all transactional activities.
Consumers usually need the e-market to provide product information as rapidly and
completely as possible. However, it is usually costly for suppliers to provide updated
product information to customers. E-market supports these services at a low cost.

(2) On Line Pricing

E-markets provide pricing mechanism that can support transactions of online pricing for
buyers and sellers. The main on-line pricing strategies include negotiation, on-line
auction and fixed price sales.

A. Negotiation

Negotiation is a flexible way to trade. It is often used for the exchange of products and
services. During the negotiation, both sides can change the price, and finally accept a
negotiated price or fail to get an agreement. The typical negotiation types are one-to-one
negotiation and group-buying negotiation.

One-to-one negotiation is a price negotiation between a buyer and a seller. A seller
quotes a price for some goods or services. A buyer may also initiate the negotiation by

proposing a start price for some products. They can come to an agreement through many

38



rounds of negotiation. Any side may refuse the negotiated price and terminate the
negotiation process.

Group-buying negotiation is an alternative strategy for buying products. Before starting
a negotiation, a buyer, as a coordinator, may collaborate with other buyers to form a
group with a great amount of buying in order to get a good discount. The coordinator is a
representative of all buyers in the group and is responsible for negotiating with a seller
like one-to-one negotiation. When the negotiation is finished, the coordinator will inform
all the buyers in the group the negotiation result. Any buyers can enter/quit the group.
However, once the negotiation begins, no one is allowed to enter or quit. They have the
obligation to take the result of the negotiation.

B. On-Line Auction

It is another trading scheme, where more than one buyer tries to get products through
bidding. English Auction and Group-buying auction are usually used in on-line auction.
English auction is a selling, single-item, ascending-bid auction, where a set of bidders
beat the current bid. Each bidder is allowed to place a bid that must increase the current
price by a predefined increment. The product is sold to the bidder who placed the highest
bid when the auction ends.

Group-buying auction is a selling, group-based descending-bid auction, which provides
buyers an opportunity to collaborate with others to get lower prices. First, an auctioneer
publicizes auction information including items, start price, and the starting/ending time.
As more buyers join the group, the price drops according to a predetermined price change
trajectory. In the end, everyone in the group will be charged the same final low price even
if some of them indicated a willingness to buy at a higher price.

C. Fixed Price /Limited Time Sale

39



Fixed price selling is a limited time sale for special offers, where the price can’t be
negotiated. A seller posts all the items he wants to sell, along with the price, quantity
available, and the starting/ending time. Any buyer can buy the products as first come first
served.

(3) Order Placing and Receiving

In a traditional market, it takes time for buyers to place orders with many different
suppliers, and it is also expensive for sellers to process orders. E-markets provide
solutions to reduce both purchasing and processing costs. Buyers may place orders
rapidly and safely, while sellers receive orders in a standardized format. Both the errors

and the cost of processing orders can be reduced.

3.2 Requirement Analysis

Because of the complexity of the trading transactions between buyers and sellers, a well-
designed e-market is needed to improve the efficiency of the whole market. The
requirement analysis of e-markets is to present what type of an agent based application
will be built, and as a result, to show how TSAM supports to easily design and implement
such a multi-agent system.

(1) Dynamic Information Sharing

The dynamic shared information is a shared data area, where each participant can
dynamically write data to it or read/withdraw data from it. Through dynamic information
sharing, buyers and sellers can search and get the information promptly, such as check
the stock levels, track deliveries or view their order records directly. They can also
modify the shared information whenever they need. Hence, with dynamic information
sharing, an e-market facilitates information exchange between two parties without

incurring heavy cost on them.

40



(2) Collaboration among Participants

Collaborations among buyers and sellers are necessary in trading transactions whether in
traditional markets or in e-markets. Some examples of collaborations among buyers and
sellers are as follows:

Collaboration among buyers in group-buying negotiation

In group-buying negotiation, a coordinator of the buyers takes charge of negotiating with
a seller. In traditional markets, it is hard to form such a group of buying. An e-market is
needed to support the easily formation of a group buying and the sharing of the
subsequent negotiation results among buyers.

Collaboration among bidders and an auctioneer in on-line auction

In on-line auction, collaborations exist between an auctioneer and a group of bidders. E-
markets are expected to support the auction process effectively, so that each bidder may
search the current price and place its bid safely, and the auctioneer can catch the bidding
prices and post the current price more easily.

(3) Dynamic Relations among Participants

There are dynamic relations among market participants that are not well supported in
traditional e-markets. For example, in on-line auction, the number of bidders in an
auction is fixed before the start of an auction. However, it is more flexible if a bidder can
Jjoin and quit from the auction dynamically. Similar situation can be conceived in a group
buying where a buyer can decide to join a group at any time. To support these types of
dynamic relations that may improve the efficiency and flexibility of the market, the
design of an e-market should consider supporting dynamical relations among participants.
(4) Reactivity of Agents

With complex trading activities, an e-market is often faced with both unexpected and

expected events. Unexpected events include changes in the external environment,

41



resource problems, buyer/seller failure, etc. These events may badly affect the trading
transactions in markets. It is important for an e-market to support a reactive mechanism
to sense and to react to these unexpected events properly without affecting the rest of
community in conducting their businesses. Expected events are caused by other agents.
An agent can sample them and react to them to perform collaboration with other agents
for some particular role-based tasks. Therefore, reactivity of agents is an important

functionality to which an e-market is needed to make transactions safely and efficiently.

In order to satisfy the above requirements, an e-market is actually built as a distributed
system with multiple collaborations, concurrent activities and complex couplings among
subsystems. In the recent past, agent technologies have been applied to e-market systems
[26][53][54]. Using software agents adds a new and revolutionary dimension to
electronic marketplaces. Agents have the distinguishing ability to automatically finish
repetitive and time-consuming tasks, including searching, buying and selling products
over the Internet. Here, we select a multi-agent based system to realize an e-market
application, and use the proposed agent programming model (TSAM) to design and
implement the example system.

In the following sections, we show how TSAM supports the design of the e-market
application and simplify the design process through the following processes:

(a) Analysis of roles and their relationships in the e-market

(b) Definition of agent behaviors

(c) Design of flexible agent behavioral protocols based on reactive tuple space to support

complex collaborations among agents

42



3.3 Role Model

Role based analysis and role model in the e-market describe agent systems in an
appropriate abstraction level. In this section, we formulate and analyze roles in the e-
market and present their relationships, which are the basis of design of agent behaviors in

section 3.4.

3.3.1 Roles in the E-market

There are three sides (purchase side, market side, and sale side) in the application.
Although each side has different benefits and is responsible for different roles, they also
collaborate to get their objectives.

On the purchase side, two roles are involved: (a) a role of customer manager responsible
for management of buying task, (b) a role of buyers to perform buying tasks. The
customer manager generates buying tasks according to the consumer’s requirements and
assigns tasks to appropriate buyers. A buyer competes for tasks and performs the tasks
through different buying strategies.

On the market side, two roles are involved: (a) a role of trading recorder, and (b) a role of
market manager providing services to all the participants (buyers and sellers), which
includes:

(1) Registration. When a buyer or a seller enters a market for the first time, it must
register to the market. The market manager will record its information related to the
identification, authority, credit, and quality of service.

(2) Information providing. Any participant can inquire information from the market
manager.

(3) Trade monitoring. The market manager monitors the trading actions of all the

participants.

43



On the sale side, a role of sellers is in charge of selling products to buyers.

According to the above application scenarios, we formulate the roles by describing
structured interacting entities and their capabilities. Figure 3-1 is a hierarchical
description of the roles in the e-market. Roles in a higher level are the abstract description
of roles below. The roles at the leaf nodes are the roles that ultimately emerge to be

separately mapped to agents.

! |
M:Jrket Trading History
Jay

Manager Recorder

|
Customer | I

Manager
£ |Auctioneerl Seller Fixed Price

Negotiator Seller

l | I |
Information| {Bidder Buyer Fixed Price
Searcher L——] Negotiator Buyer

Figure 3-1 Role Tree
Each role is described by its responsibilities, knowledge and collaborators, which will be
introduced in followings.
(1) Customer Manager

o Responsibilities. It assigns tasks to buyers, receives task results, and monitors the

activities of its registered buyers.
e Knowledge. It knows how to create tasks, assign tasks, and monitor buyers.
e Collaborators are roles of Information Searcher and Buyer.
(2) Information Searcher
o Responsibilities. It provides service to get information from markets.

o Knowledge. It knows where to get products information (itinerary).

44



o Collaborators are roles of Customer Manager, Market Manager and Trading History
Recorder.
(3) Bidder
o Responsibilities. It bids for some products through on-line auction.
o Knowledge. It knows how to determine its bidding price.
o Collaborators are roles of Customer Manager, Market Manager and Auctioneer.
(4) Buyer Negotiator
e Responsibilities. 1t negotiates with Seller Negotiators to get a good discount for
products.
o Knowledge. It knows how to adjust the negotiated price.
o Collaborators are roles of Customer Manager, Market Manager and Seller
Negotiator.
(5) Fixed Price Buyer
e Responsibilities. It buys products through public special sale.
o Knowledge. It knows how to buy.
o Collaborators are roles of Customer Manager, Market Manager and Fixed Price
Seller.
(6) Market Manager
e Responsibilities. It manages all its participants (buyers and sellers) in a market,
including register/un-register, information providing, monitoring, and authority and
credit checking.
e Knowledge. It knows how to do the management works.

e Collaborarors include all other roles involved in the market.

(7) Trading History Recorder

45



e Responsibilities. It records trading histories in the market and provides search results
to the one who needs.
o Knowledge. It knows how to record.

o Collaborators are roles of Information Searcher and Market Manager.

(8) Auctioneer
e Responsibilities. 1t sells some specific products through auction.
o Knowledge. It knows the auction strategy.

e Collaborators are roles of Market Manager and Bidder.

(9) Seller Negotiator
e Responsibilities. It negotiates with Buyer Negotiators to sell products with negotiated
prices.
o Knowledge. It knows how to adjust the negotiated price.

e Collaborators are roles of Market Manager and Buyer Negotiator.

(10) Fixed Price Seller
o Responsibilities. It sells products with fixed prices.
o Knowledge. It knows how to sell.

o Collaborators are roles of Market Manager and Fixed Price Buyer.

3.3.2 Relationships among Roles

Once the roles in an application are captured, the relationships among the roles can be
formulated as well. The relationships among the roles are so important that they are the
basis of the organizational structure of multi-agent systems, and the basis of agent
interaction protocols.

There are two types of relationships among roles: (a) static relationships are stable, and

can’t be changed forever; (b) dynamic relationships are established dynamically and can

46



be changed at runtime. For example, a seller has a static relationship with a market
manager when it registers in the market, but the relationship between a buyer and a seller
may be established dynamically according to their trading needs. Figure 3-2 shows the
static relations in an e-market, and Figure 3-3 shows the dynamic relations.

Static Relationships

Customer

: ]
: 1
: !
: !
: 14 \ ]
- . 1
\—l Information Searcher] E Trading History :
: Recorder :
Customer Bidder 1 | Market i
: C Auctioneer !
; "
: !
: 1

4
! i
; 1
: !
‘ :

Manager

[ Fixed Price Buyer]) \ J ———[Seller Negotiator]

Figure 3-2 Static Relationships among Roles

In Figure 3-2, Customer Manager, Information Searcher, Bidder, Buyer Negotiator, and
Fixed Price Buyer belong to a customer. They share some static information about the
customer, such as customer ID and descriptions of the customer. In the market side, some
information of the market is shared by all its participant roles, and the market manager
provides services to all its registered participants.

Dynamic Relationships

Figure 3-3 shows the dynamic relationships among roles, where couplings among roles
take place dynamically. Each of the interaction actions will be explained with action
description, returned values and the parameters. The interactions between roles may be
relations of one to one, one to many, many to one and many to many. The arrows show

the initialization direction of interactions.

47



O R A wlrnd T T T T T T T e S e e 2

Customer : Market
)
Initializing searching Product information acquisition

IEEE— .[ Information Searcher}: *o| Trading History Recorder}

Customer
Manager
\..

[

i

[

]

!

!

1

L]

L}

1}

1

'

]

{ 1

PR . ® Initializing fixed rww

Initializing buying e buy: . ) '
i ' uying T n Register 4714

L————>o Fixed price buyer .EEE‘E_}.’.P_;.__,[ Fixed Price ) o gl l '

L]

i

i

13

1

14

i

1

¥

L]

L]

3

[}

§

1

i

Register

lProducts information acq uiring
¥ @] Market
» @] Manager

Register

- Initializing auction - i
> 8 Bidder 04————3—;——-—— Auctioneer | o Register

B 1

1 o
i ! Register
§

- .[ Bu:y:e:r Negotiator Initializing negoﬁangn Seller Negotiator | e Register

1

Initializing collaborationl .L ! : Register
T
i

Initializing buying

Initializing buying

for group buying

» @| Buyer Negotiator

Initializing buying

Figure 3-3 Interactions between Roles
Interaction Actions:
(1) Register
o Description: registration of any participant in the market.
e Returned value: true (success) or false.
 Parameters: information about identification, authority, and credit.
(2) Initializing a searching task
o Description: a Customer Manager assigns a searching task to an Information
Searcher.
o Returned value: search results.
e Parameters: products name, products price range, and itinerary (seller’s name).
(3) Product information acquisition
e Description: an Information Searcher asks for information from Trading History
Recorder.

¢ Returned value: product information.

48



e Parameters: product name, product price range, and seller name.
(4) Initializing a buying task
e Description: a Customer Manager assigns buying tasks to a Buyer (Bidder, Buyer
Negotiator, or Fixed Price Buyer).
e Returned value: buying results.
e Parameters: products, quantity and price ranges.
(5) Initializing fixed price buying
o Description: a Buyer indicates its willingness to buy some products at a special price.
o Returned value: acceptance/rejection.
s Parameters: product name and amount of purchase.
(6) Initializing auction
o Description: an Auctioneer posts its current price to start an auction for a product.
o Returned value: null.
e Parameters: product name and current price.
(7) Initializing negotiation
e Description: a Buyer Negotiator negotiates with a Seller Negotiator.
o Returned value: acceptance/rejection of a negotiated price.
e Parameters: products, quantity and negotiated price.
(8) Initializing collaboration for group buying
o Description: a Buyer invites other Buyers to join the group for a better discount
through negotiation.
o Returned value: buyer name and the amount of purchase.

o Parameters: products and price range within which the negotiated prices may vary.

49



3.4 Agent Model

3.4.1 Make Agents to Play Roles

Role models are the basis of the design of agent systems. Basically, the roles that an
agent plays must be identified in design. The proactive behaviors of agents are role based,
and can be defined based on the individual roles, knowledge, and protocols already
designed. Therefore, based on role models, the proactive behaviors of an agent are simply
the totality of its assigned role behaviors.

Just as in some other previous related works [4]{22], when mapping roles to agent classes,
there are generally a one-to-one, one-to-many and many-to-one mapping strategies
between roles and agent classes. One-to-one mapping method is a simple mapping
process that defines an agent to play one specific role. However, the designer may
combine multiple roles in a single agent class or map a single role to multiple agent
classes for the reasons of (a) reducing couplings among agents; and (b) improving the
concurrency for efficient problem solving. Here, we will consider both of the above
factors and try to get a reasonable balance between them.

On the one hand, it is desirable to allocate totally different roles to different agent classes
when their coupling is infrequent. This may improve the system efficiency through
concurrent activities of agents. For example, the roles of Market Manager and Seller
(Fixed Price Seller, Auctioneer, and Seller Negotiator) have different goals and
responsibilities. They need to run concurrently even if they interact sometimes.

On the other hand, since any dependency between two roles leads to a conversation
between their mapped agent classes, it is recommendable for designers to combine two
roles that share frequent communications. For example, the role of Trading History

Recorder periodically asks for the information from Market Manager. Using one agent

50



class to play these two roles will decrease the exchange of messages between agents. The
same reason in mapping four roles of Information Searcher, Fixed Price Buyer, Bidder,
and Buyer Negotiator in a buyer class, and mapping three roles of Fixed Price Seller,
Auctioneer, and Seller Negotiator in a seller class.

Figure 3-4 presents the mapping relations between roles and agent classes in the e-market.

We choose four types of agent classes to play the roles captured in the above role model.

Roles:
fm = e e
Customer ' Market i
? :
' i
i . .

.[ TInformation searcher] :——-—:————————»0[ Trading History Recorder) E

- ]
Customer : I B @{ Market E
Manager l : » @} Manager |

1
1 A®) S :
L———> ® l Fixed price Buyer ’o —-——:———->| Fixed Price Seller ] e —-—-——f 2 E

1
1 1
' ‘
P '[ Biddér ]O : o L‘ Auctibneer Io :
i : :
! ¥
»o( Buyer Negotiator | — { Seller Negotiator Je :
t i !
e e S T P

Agents:
- .l MMAgent
A
®

— ol BAgent Ia . II SAgent |o NE——

Figure 3-4 Mapping Relations between Roles and Agents

(1) CMAgent class plays the role of the Customer Manager.

(2) BAgent class is allocated four roles. When performing a buying task, a BAgent will
first start the behavior of Information Searcher, and then choose a behavior of one of
Fixed Price Buyer, Bidder, and Buyer Negotiator according to the search results by the
behavior of Information Searcher. They share the buying task and the searching results

through a shared internal object.

51



(3) SAgent class plays three roles. The behaviors of the roles can run concurrently and
share the selling items of the seller agent through a shared internal object.
(4) MMAgenr class is assigned two roles. The behaviors of the roles can run concurrently

and share the trading records of the market through a shared internal object.

3.4.2 Agent Software Architecture

Based on TSAM, each type of agents in the e-market is designed consisting of several
behaviors, among which the sensory behavior, proactive behaviors and reactive behaviors
are implemented by inheriting corresponding behaviors of TSAM. In TSAM, the sensory
behavior and proactive behaviors are inherited from SimpleBehavior of Jade, and the
reactive behaviors are implemented by tuple space services. Figure 3-5 presents the

software architecture of an e-market agent.

LJade Simple Behaviors ] lTuple Space Services
TSAM \ !
1)
‘TSAMﬂSensoryBehavior] [ TSAM_RoleBehavior | E
) . !
TSAM_MainRole [TSAM_ReactiveBehavior
Behavior
e-market agen
Proactive behaviors:
| Sensory behavior ’ | Role-based behaviorl | Reoeive rehaviore:
{ Role-based behavior2 | lReactive bahaviorl |
| Main role behavior ] [Reactive bahavior?]

IReac[ive behavior n'

l Role-based behavior m ]

Figure 3-5 Software Architecture of an E-Market Agent

52



3.4.3 Agent Behavior Model

Agent behavior model includes agent inner role-based behavior protocols and agent
interaction protocols. In the following section, we use Colored Petri Net (CPN) to
describe agent behaviors, and especially present the interaction protocols made by agents.
The objective is to show how TSAM-based agent behavior model facilitate the design of
flexible behavior protocols for dynamic couplings among agents.

3.4.3.1 Colored Petri Net (CPN)

Effective modeling of complex concurrent systems requires a formalism that captures
essential properties such as non-determinism, synchronization and parallelism. Multi-
agent systems generally are distributed systems with many complex and concurrent
processes. To model the complexity of agent systems clearly, we select CPN to describe
the agent behaviors.

Petri Nets [30] are a formal and graphically appealing language, appropriate for modeling
concurrent, distributed, and asynchronous behaviors in distributed systems. The Petri Net
graph consists of places, transitions and arcs that connect them. Input arcs connect places
with transitions, while output arcs start at a transition and end at a place. The movement
of tokens enables the execution of the Petri Nets. A transition is enabled when each of the
input place has a token. When the transition fires, it removes tokens from each of its input
places and adds some at all of its output places. Tokens are used to simulate the dynamic

and concurrent activities of systems. Figure 3-6 shows how to fire a transition in a Petri
Net.
p1 p2 pt p2
Onn® O—=®
)——» » ®
1 t1

Petri Net before t1 fires Petri Net after t1 fires

Figure 3-6 Petri Nets

53



Colored Petri Nets [12][55] are a generalization of ordinary Petri Nets, allowing
convenient definition and manipulation of data values of tokens. However, the main
difference between Petri Nets and CPNs are tokens. In Petri Nets, all the tokens are the
same type, which are used in state transitions. To enrich the information carried by tokens,
CPNss establish a distinction between the tokens in a place. A color with structured data is
associated to a token. Transitions can be fired in different manners according to the
different colored tokens associated with the transitions. Different tokens in the input
places may enable different transitions selectively, concurrently and possibly non-
deterministically. For example, in the e-market, a tuple space can be taken as a special
place with many different tuples (colored tokens) shared by agents. These tuples may
enable different transitions (agent behaviors) concurrently, and as a result, change the

system’s state.

3.4.3.2 Agent Behavior Protocols

(1) Dynamic Information Sharing

Dynamic Information sharing is used in many scenarios of the e-market. The case of
Public Special Sale is a representative use of dynamic information sharing, where all the
buyer agents share the special sale information, and buy (take out) the products from the
market whenever they want. The buying actions of the buyer agents are concurrent with
non-deterministically modifying the shared product tuples. In Figure 3-7, we describe the
behaviors of buyer agents and seller agents in Public Special Sale by CPN.

In the CPN, the big circle (place) represents a tuple space, as a shared information area
with different tuples (colored tokens). The tuple space is created by a market manager
agent and is shared by the participants (ABuyer/ASeller agents). In the diagram, the net is

‘dynamic’ as ABuyer/ASeller agents may be added/deleted at different time in Public

54



Special Sale. The tuples in the tuple space includes: (I ) product information (pi)

publicized by seller agents, (II) public special sale information (ps), (III) available

number (an) modified by buyer agents, and (IV) buying result (br) placed by buyer agents.

Tuple Space
N
ABuyer N
{run ABuyer]
AEuyer,Stans@——»Cl pi pipi...;

ABuyer is runnin
pi (in)
End request
\
Selecting Pub;c

@\
e
Special Sale
O
ABuyer_out

[end the l
buying]

br br br ...;

products]

T

N\__br (out)

Market Tuple Space shared by an AMManager, one or more
Abuyers and ASellers.

Main tokens involved in market management are:

pi = product information including ps

ps = public special sale information with available number (an);
br = buying result;

/.

i (in) br (in)
flush - OASeller is running
- <
pi
ug) O @
‘ { End fequest
P
Teset
L] ]
Special Sale] +\[record br] | [end djd
agent]
an=0 an>0
pi (in)
\ ASeller_out
[end the Public :
Special Sale] l [—T——I

ASeller
pi (ouf)
s (register) [run ASeller]
P I— @ ASeller_Starts

Figure 3-7 Agent Behavior Model for Public Special Sale

A ABuyer Agent in Public Special Sale

A ABuyer agent starts at running state. It may search product information on the tuple

space by reading product information tuples and select to move to one of different states

according to the buying strategy it selects. If the ABuyer agent decides to buy a product

through Public Special Sale, it will be in the state of ‘selecting Public Special Sale’. At

this time, the agent will extract the corresponding public special sale information (ps)

from the tuple space and move into one of two states. In one of the states, the available

number is zero (an=0), in which case, the agent will end the buying and move to the

running state for the next buying selection. In the other state, when the available number

55



is not zero (an>0), the agent will buy the product, change the available number on tuple
space (ps(out)) and inform the seller agent the buying result (br(out)). Each buyer agent
does not consider whether the other buyer agents buy the same products at the same time.

TSAM supports first come and first served among all buyer agents.

A ASeller Agent in Public Special Sale

When a ASeller agent starts, it will proceed to do two things. One is to publicize its
product information (pi) including Public Special Sale information (ps). The other is to
register a reactive tuple (br) in the tuple space so that it can react to the reactive tuple of
buying results (br (register)). Whenever a buyer agent buys a products and inserts a
buying result tuple (br) in the tuple space, the seller agent reacts to it by removing the
buying result tuple (br) from the tuple space, recording it and moving to the running state
until the available number is zero. In the latter case, it will end the Public Special Sale for
that product.

A ASecller agent may set a time for the special sale of some products. After the time, it
will stop the Public Special Sale. A ASeller agent may also set a flush time for resetting
the sale information of all its sold products by removing all relevant product information
from the tuple space (pi (in)) and inserting new product information into it (pi (out)).

(2) Collaborations among Agents

Collaborations are the key for the agents in a group to move forward in their respective
goals. A transaction can’t be realized if collaborations among agents are not supported. In
Figure 3-8, a CPN of group buying describes the collaboration of agents in a group
buying.

In the CPN, the big circle represents a tuple space that stores different tuples

corresponding to: (I ) product information (pi) publicized by ASeller agents, (1I)

56



invitation request (ir) publicized by the buyer coordinator, and (IIl) invitation answer (ia)
placed by any buyer who wants to join the group. The tuple space is created by a
customer manager agent and is shared by its participants (ABuyer agents). In the diagram,

the net is ‘dynamic’ as any buyer agent may enter/quit the group purchase at different

time.
Market Tuple Space shared by an AMManager, one or
more Abuyers and ASellers. Main tokens involved in

Tuple Space market management are:
pi = product information;
\ ir = invitation request;
ABuver (coordinator): \ ia = invitation response (answer) for ir;

np_b= negotiation proposal from ABuyer;
pipipi..; np_s= negotiation proposal from ASeller;
I .12 a1 ...5\ pr = negotiation result

np_b np bmpbi
np_s np_sap_s ...;
na na na.

[run ABuyer]
—
ABuyer_Starts

ABuyver (participant)

[run ABuyer]
D ¢———{ @ JABuyer_Starts

:fnd request

groupbuying ") L]
negotiation ‘[end the hgen]
[invite other ¢
buyers to join
the groun] ABuyer jout
ABuyer ot | g | )
viting . O negotiation O tirne out
L result

| [ﬁ/ \ 2

+\\

\ negotiation
P d——
2 N —

nc_p negotiate with|
hy er agent]
(out) 7\ agent]
firform other buyers
the negofiation result} \ ar (out) negotiation is finished

Figure 3-8 Agent Behavior Model for Group-Buying Negotiation
A ABuyer Agent (Coordinator) in a Group Buying
A ABuyer agent starts at the running state. Whenever there is product information (pi) in
the tuple space, and if an ABuyer agent decides to buy through group buying, it can

become a coordinator to establish a group of buyers before it negotiates with a seller

57



agent. As a coordinator, the buyer agent will invite other buyers to join the group buying
by inserting an invitation request tuple into the tuple space (ir (out)). The coordinator
does not know who will join the group in advance. When the waiting time is over, the
coordinator agent will collect all the invitation answer tuples from the tuple space (ia
(bulkIn)) to establish a group. Then, as a representative of the group, the coordinator
agent will negotiate with a seller agent and inform all the participant agents when the

negotiation is finished. Then it moves to the running state again.

A ABuyer Agent (Participant) in a Group Buying

Alternatively, a buyer agent may choose to look for a group by searching for invitation
requests for a product from a tuple space. If it does not find any invitation request within
a period of time, it will negotiate with the seller agent by itself. If it finds a proper
invitation request, it may join the group by inserting an invitation answer tuple (ia (out)).
Then it retrieves the negotiation result from the tuple space.

When the waiting time is over and the negotiation result tuple is not found, the buyer
agent will negotiate with the seller agent by itself. The coordinator agent should be
responsible for this situation of too long time of negotiation. If the buyer agent gets the
negotiation result within the waiting time, it will move to one of two states: (a). if the
negotiation is successful, the buyer agent will move to the running state again; (b)
otherwise, it has to negotiate with the seller agent by itself and move to the negotiation
state. When the negotiation ends, the buyer agent will return to the running state again.
(3) Dynamic Relationships among Agents

In many transactions, the relations among agents are dynamic and can be changed at run

time. Here we select an English auction to show how TSAM easily supports the design of

58



dynamic collaboration among agents. The CPN of Figure 3-9 describes the agent

behaviors in an English Auction.

In Figure 3-9, the big circle represents a tuple space containing: (I ) product information

(pi), (It ) the current bid (cb) publicized by the auctioneer, (lil ) proposed bids (pb) placed

by bidders and (IV) the auction commitment (ac) placed by the auctioneer. The tuple

space is created by a market manager agent and is shared by all its participants. The

interaction protocols are different from the FIPA English auction protocols, where the

auctioneer is responsible for gradually raising the price and broadcasting the current price

to all the participants. Here, the bidders are allowed to enter or quit an auction at any time

and the auctioneer does not know the participants in advance. Therefore, in the diagram,

the net is ‘dynamic’. Any bidders can be added/deleted dynamically.

Tuple Space

ABuver (bidder)

End request

O

ABuyer_out

Audmn}
;t"
nt]

elecnng

\

(oft)

pi pi pi .

cpepep ..
pb pb pb ..

pb
(out

Auction,
timeout

{analysis cb]
accept cb eject cb
heat th [exit the
theatthe [ ] [T 0 cont

A

Market Tuple Space shared by an AMManager, one
or more Abuyers and ASellers.

Main tokens involved in market management are:
pi = product information

<p = current price

pb = proposed bid

ac = auction commitment

1 (out)

ASeller

[reset] .
(auctioneer);
flush
Otimeout

[run ASeller]
D — ASeller_Starts

OASeller is running

End request

Waitin /
timeout :][end
fselect l agen

aurent bid]
O

ASeller _out

&

Figure 3-9 Agent Behavior Model for English Auction

59



ASeller Agent (Auctioneer) in English Auction

First, when an ASeller agent starts, it will publicize its product information (pi), which
includes current price of a specific product in an English Auction (cp) by inserting a
product tuple into the tuple space (pi (out)). In fact, it initializes an online auction as an
auctioneer, but still does not know who will enter the auction beating the current bid price.
Any bidder can beat the current price by proposing a higher bid. Whenever the cycle time
is over, the auctioneer will extract all the proposing bids from the tuple space (pb (bulklIn))
and select the highest bid as the current price. When the auction time is closed, the
auctioneer agent will select a winner with the best (highest) price and inform all the
bidders the auction result (ac (out)). Then it closes the auction and moves to the running

state for selling other items.

A ABuyer Agent (bidder) in English Auction

A bidder agent looks for appropriate product information in the tuple space. If it decides
to buy a product through an on-line Auction, it may read the current price from the tuple
space, analyze it and plan the next step. It can propose a higher bidding price and move to
the English Auction state. It can also decide to give up and move to the running state
again. When the bidder agent proposes its bidding price, it can obtain an auction
commitment and become the winner, or fail to become a winner. In either case, the buyer
agent moves back to the running state to do other possible activities.

(4) Reactivity of Agents

Tuple space based coordination model provides reactive tuples that allow an agent to
react to asynchronous notifications from other agents as part of the collaboration with
other agents. This type of protocols is easily designed under TSAM. For example, during

the Public Special Sale, a seller agent may register a reaction with a reactive tuple of a

60



buying result. When a buyer agent finishes buying a product through Public Special Sale,
it will write a reactive tuple of a buying result into the tuple space. Then, the seller agent
reacts to the availability of the reactive tuple by activating its relevant registered reactive
behavior to record this transaction. Figure 3-7 is the CPN of Public Special Sale, where
the state transition of a seller agent is shown. The reactive mechanism of tuple space can
improve the flexibility of collaborations among agents and make the design process

simpler.

3.5 Conclusion

TSAM simplifies the design of an e-market application. In particular, role analysis and
role mapping to agents provide the designer clear separation of concern in designing
efficient collaboration protocols among agents. At the same time, the availability of tuple
space as an interaction medium facilitates the dynamic information sharing and hence
non-deterministic progress of the application. As non-determinism promotes performance
(relative to static scheduling), the resulting e-market can achieve results not obtainable by

static synchronous protocols.

61



Chapter 4 Implementation of the E-market Application

In this chapter, we present the implementation of the e-market multi-agent system. The
objective of this chapter is to show how TSAM facilitates the implementation of e-market
agents. To present the context of our work clearly, section 4.1 describes the system
architecture of the e-market application. Section 4.2 introduces JADE platform through
which we implement the e-market application. In section 4.3, we show how tuple space
services are used to support programming flexible and efficient agent interaction
protocols in the e-market application. Finally, section 4.4 illustrates how TSAM supports

the implementation of agent behaviors.

4.1 System Architecture

To provide services for consumers and vendors to perform trading transactions, our e-
market system is mainly composed of four types of agent objects: Customer Manager
Agent (CManager), Buyer Agent (ABuyer), Market Manager Agent (MManager) and
Seller Agent (ASeller). Figure 4-1 is a graphical representation of the system architecture.
It is a distributed multi-agent system, where agents are separate entities running
concurrently, and are possibly distributed on different nodes.

A CManager is a mediator between consumers and buyer agents (ABuyers). It receives
purchase requests from consumers, assigns buying tasks to buyer agents and returns the
purchase results to the consumers. In the e-market, stores are basic unit represented by a
seller agent (ASeller). Some stores are located in the same location called ‘mall’ to give
buyers more convenience of searching and buying. A MManager is responsible for
management of such a mall (local market). Generally, malls are distributed on different

locations, so MManager are distributed. The relationship between a MManager and a

62



ASeller is logical. As a participant of more than one mall, a ASeller may register to more

than one MManager.

E-market multi-agent system
mult-agent sy Mall

o

Consurher

-t CManager \
S \

Mall

MManager ASeller

Figure 4-1 System Architecture
The architecture of the e-market is tuple space based communication system. Logically,
as a shared space, one tuple space can be used by a group of agents with collaboration
relations. However, the e-market is a distributed system, where multiple agents execute
concurrently in different nodes, and there are different sets of tuples shared by different
group of agents. Hence, physically more than one tuple space may improve the
concurrency and enhance the efficiency of matching the associated tuples. In the e-
market, each CManager has one tuple space shared with its registered buyer agents, and
each local market shares a separate tuple space with all its participants. A buyer agent can
access different tuple space to interact with seller agents. The system architecture of

using tuple space is shown in Figure4-2.

63



Customer side Market side

CManager MManager

X mAB I -AS 11

T N

Tuple Space Tuple Space

[ ABuyer | | ABuyer |/

[ABuyer]

Figure 4-2 Use of Tuple Space in the E-Market

4.2 JADE Platform

As TSAM is developed on top of JADE (Java Agent Development Framework), JADE
plays an important part of the e-market. JADE is a software development framework
aimed at developing multi-agent systems conforming to FIPA standards. It includes two
main products: a FIPA-compliant agent platform and a developing package to develop

Java agents. We briefly review the key features of JADE in the following.

Execution Platform:

JADE offers a distributed agent platform that can be split among several hosts provided
they can be connected via RMI. Agents are implemented as Java threads and live within
Agent Containers that execute on the agent platform. A container of agents provides a
complete run time environment for agent execution and allows several agents to
concurrently execute on a same host.

Developing Package:

The developing package includes an agent foundation class for creating customized
agents, a library of protocol skeletons for tailoring agent conversation and a suite of

development tools. The tools provide runtime agent management, directory service,

64



message exchange debugging, agent life-cycle control, and a conversation monitor tool
that graphically displays agent interactions in the form of a separate diagram.

Agent Behavior Model:

JADE supports the execution of multiple, parallel and concurrent agent activities via the
behavior model. It uses one thread per agent instead of one thread per behavior to limit
the number of threads running in the agent platform. A scheduler, hidden to the developer,
schedules the agent behaviors in a non-preemptive way.

FIPA-Compliant Communication:

JADE supports the FIPA standard interaction protocols to build agent conversations. It
provides ready-made behavior classes for agent interactions following most of the FIPA

specified interaction protocols.

In the implementation of our e-market system, we extend the basis JADE agent behavior
classes for the definitions of TSAM agent behaviors, but use tuple space to implement
agent couplings. Tuple space does not provide predefined interaction protocols like FIPA.
However, the coupling primitives provided by tuple space support the implementation of
more flexible interaction protocols. Section 4.3 and section 4.4 will present the details of

how the agent behaviors and agent interaction protocols are easily implemented via

TSAM.

4.3 Tuple Space based Agent Coupling Primitives

The services of tuple space provide basic means of agent couplings. Table 4-1 outlines
the set of primitives of tuple space services, where a Tuple is an ordered collection of
Fields each of which has a type and a value associated with it, and a Template is similar

to a Tuple except that its Fields do not necessarily have values associated with their types.

65



/tuple space management permitives
TupleSapcelD TSCreate(String name);
TupleSapceID TSFind(String name);

// synchronous single tuple access permitives

void out(TupleSapcelD tsId, Tuple tuple); /write tuple into tuple space
Tuple in(TupleSapcelD tsld, Tuple template); Zextract tuple from tuple space
Tuple in(TupleSapcelD tsld, Tuple template, long timeout);

Tuple read(TupleSapcelD tsld, Tuple template); /read tuple from tuple space
Tuple read(TupleSapcelD tsld, Tuple template, long timeout);

// synchronous bulk access permitives, which manipulate more than one tuple at a time
TupleSet bulkInWithoutWait(TupleSpaceID tsID, Tuple template);
TupleSet bulkReadWithoutWait(TupleSpacelD tsID, Tuple template);

// logic-template-based synchronous access permitives
TupleSet in(LogicTemplate logic_template);

TupleSet in(LogicTemplate logic_template, long timeout);
TupleSet read(LogicTemplate logic_template);

TupleSet read(LogicTemplate logic_template, long timeout);

Hogic-template and bulk based synchronous access permitives
MultipleTupleSet bulkInWithoutWait(LogicTemplate logic_template)
MultipleTupleSet bulkReadWithoutWait(LogicTemplate logic_template)

Hasynchronous single tuple access permitives

void  asynOut(TupleSapcelD tsId, Tuple tuple);
Future asynIn(TupleSapcelD tsid, Tuple template);
Future asynRead(TupleSapcelD tsld, Tuple template);

Hasynchronous bulk acces permitivess, which manipulate more than one tuple at a time
Future bulkAsynIn(TupleSapcelD tsid, Tuple template);
Future bulkAsynRead(TupleSapcelD tsId, Tuple template);

/ logic-template-based asynchronous access permitives
Future asynIn(LogicTemplate logic_template);
Future asynRead(LogicTemplate logic_template);

Hogic-template and bulk based asynchronous access permitives
Future bulkAsynIn(LogicTemplate logic_template)
Future bulkAsynRead(LogicTemplate logic_template)

/ reactive tuples permitives

RegisterID register(TupleSapcelD tsId, Tuple template, ReactionRef ref);
RegisterID register(TupleSapcelD tsId, EventChecker checker, ReactionRef ref);
void deregister(RegisterID register_id);

Table 4-1 Tuple Space Primitives

These primitives can be classified into four categories: management primitives,
synchronous access, asynchronous access and reactive (notification) primitives. The
management primitives are used to create tuple spaces or find existing tuple spaces. The

synchronous and asynchronous access primitives are used to access tuples. A

66




synchronous primitive blocks the process until a tuple is available, whereas, an
asynchronous primitive allows an agent to access tuples without being blocked if the
results are not available. Reactive primitives facilitate spontaneous couplings between
agents in reactive behaviors.

In order to facilitate programming, the access primitives can be classified into three sub-
categories: (i) single access, (i) bulk access and (iii) logic-template-based access. Bulk
access allows multiple tuples to be retrieved in a single operation. Logic-template-based
access provides associative search of tuples via a logic-template to improve the flexibility
of agent collaboration protocols.

The access of tuple spaces includes three main types of operations: (i) ‘in’ operations
extract tuples from tuple space, (ii) ‘out’ operations write tuples into tuple spaces and (iii)
‘read’ operations read tuples from tuple spaces without withdrawal of them. We elaborate
a subset of the primitives in the following part.

in(TupleSapcelD tsld, Tuple template, long timeout) is a synchronous primitive to
retrieve a tuple that matches the template in a tuple space. The agent will block until a
matched tuple is available or timeout is triggered.

asynln(TupleSapcelD tsld, Tuple template) is an asynchronous primitive to retrieve a
tuple that matches the template in a tuple space. It returns a tuple-holder object (called
‘future’), which can be checked later by the agent. This enables an agent to
asynchronously interact with another agent without stalling when the latter is not ready.
register(TupleSapcelD tsld, Tuple template, ReactionRef ref) primitive registers a
reaction (ReactionRef ref) to a tuple space. If a tuple that matches the template becomes
available, the reaction referenced by ‘ref” is triggered. This primitive enables the reactive

behaviors of an agent to react to stimulus from other agents.

67



MultipleTupleSet bulkInWithoutWait(LogicTemplate logic_template) is an access
primitive with bulk and logical-template facilities. It returns a set of tuples that match the

logical-template involving more than one tuple space.

Based on the tuple space primitives, we implement agent interaction protocols in the e-
market system. We choose the following aspects to show how the implementation of
flexible agent interaction protocols is simplified using the above tuple space services than
otherwise using message passing.

(1) Dynamic Sharing

Tuple space supports the concurrent and non-deterministic modifications of the shared
tuples with simple operations (‘out’, ‘read’ and ‘in’). For example, in Public Special
Sales, a set of product tuples with Public Special Sales information in a tuple space are
shared by all buyer agents. Any buyer agent can buy the product through non-
deterministically removing (‘in’) the product tuple from the tuple space. Figure 4-3
illustrates the code fragment of a buyer agent in Public Special Sale.

In the implementation of a buyer action in Public Special Sale, three main steps are to be
taken. First, it constructs a tuple template with fields and associated values of seller agent
name, item name, product information and price information. Then, it retrieves a tuple
that matches with the constructed tuple template from the tuple space. Because the
buying actions of buyer agents are concurrent, the shared tuples can be removed non-
deterministically by any buyer agent. Hence, the returned tuple may be a matched tuple
or null. If the returned value is null, the buyer agent fails in the Public Special Sale;
otherwise, the buyer agent can proceed with the third step successfully and informs the
seller agent the buying result by inserting a reactive tuple into the tuple space. If the

required quantity of the product is less than the amount available, the buyer agent must

68



send back the remaining quantity of the product to the market by constructing and
sending a remain_tuple that is the same as the takeout_tuple except a changed amount of

the product in the field of ProductInfo.

// actions of a buyer agent in a Public Special Sale
//stepl: contructs a tuple template for Public Special Sale
Tuple takeout_tuple=new Tuple();
Field to_fl=new Field(TupleType.SELLER_PRICEINFO);
Field to_f2=new Field(sellerAgent);
Field to_f3=new Field(itemName);
Field to_fd=new Field(Productinfo);
Field to_f5=new Field(Pricelnfo);
takeout_tuple.Add(to_f1);
takeout_tuple.Add(to_f2);
takeout_tuple.Add(to_f3);
takeout_tuple.Add(to_f4);
takeout_tuple.Add(to_f5);

/step2: takes out the tuple from the tuple space, and return immediately (1 ms waiting time)
Tuple return_tuple=myAgent.in(tsld, takeout _tuple,1);

llstep3:informs the seller agent by inserting a reactive tuple and put back the tuple with the
remain amount available for further buying
if (return_tuple!=null) {
Tuple toseller_tuple=new ReactiveTuple();
Field ts_fl=new Field(TupleType. BUYER_PUBLICSALE);
Field ts_f2=new Field(sellerAgent);
Field ts_f3=new Field(itemName);
Field ts_f4=new Field(myAgent.getl.ocalName()); //buyer agent
Field ts_fS5=new Field(buyingPrice);
Field ts_foé=new Field(buyingNum);
toseller_tuple.Add(ts_f1);
toseller_tuple. Add(ts_f2);
toseller_tuple. Add(ts_{3);
toseller_tuple. Add(ts_f4);
toseller_tuple. Add(ts_f5);
toseller_tuple.Add(ts_f6);
myAgent.out(tsld,toseller_tuple); Vinserts a reactive tuple
}
if (remain-number>Q) {
Tuple remain_tuple=new Tuple();
myAgent.out(tsld,remain_tuple);

-

Figure 4-3 Code Fragment of a Buyer Agent in Public Special Sale

69



Tuple space makes the implementation of dynamic sharing among agents easier than
message passing. Using message passing, a seller agent has to define a separate behavior
to receive and deal with the buying requests from the buyer agents, and it has to consider
the coordination among the behaviors for data consistency. As a result, a seller agent may
become a bottleneck in the transaction. Tuple space relieves the seller agent from this
work, and provides application developers simple and intuitive ways via dynamic sharing.
(2) Global Information Sharing

Tuple spaces can facilitate global information sharing for agents. The global information
includes up-to-date information and persistent information. For up-to-date information,
such as “global state” or other global information, they are available to all agents. For the
persistent information (storage), like the results of previous calculations, they can be
easily shared. Any agent who wants to post its information only uses ‘out’ operation to
write tuples into a tuple space without indicating the recipient agents. Any agent who
wants to get the global information only uses ‘read’ operation without knowing the exact
one who modifies the information.

For example, in a group auction of the e-market, a buyer agent may join the auction any
time. Often modified by an auctioneer, the on-line bidding price and the available amount
of the product are shared by all the bidders. Figure 4-4 shows the implementation of a
group auction. When a buyer agent wants to join a group auction, it constructs a reactive
tuple of group auction request in the tuple space. As a result, the reactive tuple will
trigger a reactive behavior of the seller agent (auctioneer) to receive the bidding request
and publicize a changed bidding price through putting a price infonnation tuple into the

tuple space.

70



// actions of a buyer agent in a group auction
Tuple gaRequest_tuple=new ReactiveTuple(); # constructs a reactive tuple of group
auction request
Field gafl= new Field(TupleType. BUYER_GROUPAUCTION);
Field gaf2= new Field(sellerAgent);
Field gaf3= new Field(itemName);
Field gaf4= new Field(buyerAgent);
Field gaf5= new Held{quantity);
gaRequest _tuple.Add(gafl);
gaRequest _tuple.Add(gaf2);
gaRequest _tuple.Add(gaf3);
gaRequest _tuple.Add(gaf4);
gaRequest_tuple.Add(gaf5);
myAgent.out(tsid, gaRequest_tuple); // joins the group auction

// waits for the result through reading the group auction result tuple

/freactions of a seller agent in the groupAuction

String itemName=(String)(reactiveTuple.GetField(3)).getValue();

String buyerName=(String)(reactiveTuple.GetField(4)).getValue();

int buyingNum=((Integer) (reactiveTuple.GetField(3)).getValue()).intValue();
int index=siTable.getCurrentIndex(itemName);

pricelnfo pri=siTable.getPricelnfo(index);
sellingPrice=gaStrategy.getGroupPrice(pri. getCurrentNum()+buyingNum);

// does changes on price information
pri.setAvailableNum(availableNum-pri.getAvailableNum());
pri.setCurrentPrice(sellingPrice);
pri.setCurrentNum(currentNum);

Figure 4-4 Code Fragment of Agents in Group Auction
If we use message passing to implement the group auction, some extra work has to be
done. From the market side, a separate mailbox manager agent is needed to be
responsible for broadcasting the price information to all the buyer agents. This adds the
burdens of considering explicit or at least implicit addressing knowledge of buyer agents
to programmers. From the purchase side, each buyer agent has to communicate with the
auctioneer asking for the price information before it enters a group auction. This may cost

extra time.

71



(3) Asynchronous Access

Tuple space provides an asynchronous coupling mechanism that does not enforce
synchronization between the coupling partners. For example, the asynchronous access
primitive, ‘asyIn()’, allows an agent to retrieve a tuple without being blocked In the e-
market, when a seller agent sells its products through negotiation, it may use ‘asyIn()’
operation to retrieve the result from a buyer agent. The use of the asynchronous operation
enables a seller agent to asynchronously interact with a buyer agent without waiting for
the latter to become ready.

Figure 4-5 describes the use of asynchronous operation for a seller agent in negotiation.
When a seller agent receives a negotiation request from a buyer agent, it starts to
negotiate with the buyer agent. When the seller agent sends back a new negotiated price
i the form of a negotiation-tuple, it will asynchronously retrieve the response-tuple from
the buyer agent via the operation of ‘asynIn()’. The returned value ‘fr’ is held by the tuple
space. The seller agent can check the availability of ‘fr’ when needed. If the fr is
available, the seller agent will proceed with the negotiation process. Otherwise, the seller

agent may proceed with its other tasks.

/o seller agent’s actions in negotiation

myAgent.out(tsld, negotiation_tuple); /sends back the negotiated price to the buyer agent

Tuple response_tuple=new Tuple(); //constructs an response template

Future fr = myAgent.asynIn(tsId, response_tuple); /asynin the response tuple

if (fr.isAvaliable()) { // checks if the response tuple is available
Tuple answer_tuple=fr.getSingleTuple(); //gets the answer tuple from fr

}
else block (2000);

Figure 4-5 Code Fragment of a Seller Agent in Negotiation

72



In contrast to message passing, tuple space server holds a separate thread for each of
asynchronous access and keeps the context of each of the accessed tuple until it is
available and is fetched by relevant agents. This simplifies the code of asynchronous
couplings in the application.

(4) Bulk and Logic-Template based Access

Bulk access primitives allow multiple tuples to be retrieved in a single operation. Logical-
template is a concept that defines logic operations to match multiple requirements on
multiple tuple spaces to promote flexibility of associative search. The bulk and logic-
template based access primitives support programmers to build more efficient codes in
agent couplings.

For example, in the e-market, when a buyer agent wants to search for product information
of a particular product from distributed marketplaces, the retrieved muitiple tuples that
match the requirements (e.g. product name, and price range) from distributed tuple spaces
can be returned in a single operation of ‘bulkReadWithoutWait (LogicTemplate)’. The
search process is shown in Figure 4-6. In the code fragment, there are two market places
associated with two separate tuple spaces (tsld1, and tsId2). A buyer agent wants to search
for a product from these two tuple spaces. First, it constructs a search tuple with search
requirements. Then it constructs two search templates (templatel and template2) for
searching the product from each of the tuple spaces. A logic template combining the two
templates is created using logic operator ‘and’. The semantic of ‘and’ operator is that it
supports retrieval of ‘n’ tuple spaces. Finally, a bulk synchronous access operation is used

to perform the actual search. The returned future object contains a set of tuples.

73



Hconstructs a search tuple for information searching

Tuple search_tuple=new Tuple();

Field search_fl=new Field(TupleType.SELLER_PRICEINFO);
Field search_f2=new Field(String.class); /seller agent name
Field search_f3=new Field(String.class); /item name

Field search_fd=new Field(pro); /product information

Field search_fS5=new Field(Pricelnfo.class); #price information
search_tuple.Add(search_f1);

search_tuple.Add(search_f2);

search_tuple.Add(search_f3);

search_tuple.Add(search_f4);

search_tuple.Add(search_f5);

Hceonstructs different search templates for different tuple spaces
Template templatel= new Template (tsId1, search_tuple);
Template template2 = new Template (tsId2, search_tuple);

/eonstructs a logic template
LogicTemplate sLogicTemplate = new LogicTemplate();
sLogicTemplate.and (templatel, template2);

//searches the logic tuples through bulk primitive
MultipleTupleSet multiTSet = myA gent.bulkRead WitheutWait (sLogicTemplate);

Figure 4-6 Code Fragment of a Buyer Agent in Information Search
The above use of bulk and logical template based access primitive provides efficiency and
programmability in the implementation of information retrieval process. When using
message passing to perform the same function, at least two things are needed: (1) a set of
‘send ()" and ‘receive ()’ operations are used for searching each of the market places; (2)
extra burdens are considered for managing the recciving channel of each of the agents.
Hence the codes of using message passing will be more complex.
(5) Reactive Primitives
Reactive primitives are yet another concept introduced in tuple space based coupling
mechanism that we use to implement asynchronous notification couplings among agents.
Figure 4-7 shows an example of how a seller agent registers a reactive tuple through the
‘register’ primitive in Public Special Sale. First the seller agent constructs a reactive tuple

of a buying request for Public Special Sale. Then it defines a reactive behavior to deal

74



with a reaction of the reactive tuple. Finally it associates the reactive tuple with the
reactive behavior through ‘register (tsld,reactive_tuple,RB)’ in the tuple space. When a
buyer agent buys a product through Public Special Sale, it will write a reactive tuple of
buying request in the tuple space. At this time, the associated reactive behavior (RB) of

the seller agent will be activated to record and confirm this purchase.

//creates a reactive tuple of a buying request forPublic Special Sale proposed by buyer agents
Tuple reactive_tuple=new Tuple();

Field rfl=new Field(TupleType.BUYER_PUBLICSALE);
Field rf2=new Field(this.getLocalName()); /seller agent
Field rf3=new Field(String.class); Vitemname

Field rf4=new Field(String.class); /buyer agent

Field rf5=new Field(Double.class); #/buying price

Field rf6=new Field(Integer.class); /buying number
reactive_tuple. Add(rf1);

reactive_tuple. Add(rf2);

reactive_tuple.Add(rf3);

reactive_tuple. Add(1f4);

reactive_tuple. Add(zf5);

reactive_tuple. Add(rf6);

//creates a reactive behavior reacting to buying request tuples of public special sale
Seller_RectiveBehaviour_PublicSale RB=new Seller_ReactiveBehaviour PublicSale (this);

//registers the Reactive Behavior in the tuple space
register (tsld, reactive_tuple, RB);

Figure 4-7 Code Fragment of a Seller Agent in Registering a Reactive Tuple
The asynchronous notification among agents can be programmed easily via the reactive
primitive. First, tuple space can support the location transparency of agents with reactive
behaviors. Programmers do not need to consider the exact locations of reactive behaviors.
They can concentrate on the stimulus-response relationship among reactive tuples and
reactive behaviors. Second, the reactive primitives save time for programmers to
implement asynchronous notifications. If we use message passing, an additional register
agent is needed for the registration and retransmission of the triggers to respective

reactions of agents.

75



4.4 Implementation of the E-Market Agents

In the e-market, four types of agents are created (presented in Table 4-2). Based on
TSAM, each agent consists of three types of behaviors. The different behaviors of each e-

market agent are also listed in Table 4-2. In the following subsections, we will elaborate

the implementation of each of the agent behaviors via TSAM.

Agent Functionalit Proactive Reactive Behavior Sensory
Name Y Behaviors Behavior
Responsible for the MainRoleBehavior | AgentRegister SensoryBehavior
CMAgent . .
(Customer management of buying TaskAssign
Manager tasks of consumers and | AssignTask BuyerAgentAbort
& the registration of buyer TaskResult
Agent)
agents.
Responsible for the MainRoleBehavior |AgentRegister SensoryBehavior
MMAgent jmanagement of local Pricelnfo
(Market imarket and the HistoryRecorder | SellerTransaction
Manager |(registration of the BuyerAgentAbort
Agent) participants of the SellerAgentAbort
market place
As arepresentative of | MainRoleBehavior |BuyerAgentAbort  |SensoryBehavior
consumer, responsible CustomerAbort
for buyir}g Pde‘_lCtS ~ {CompeteForTask |MarketAbort
BAgent through interacting with |1y, o earch SellerAbort
ge seller agents. . .
(Buyer EnglishAuction
Agent) GroupAuction
GroupBuying
Negotiation
PublicSpecialSale
As a representative of a |MainRoleBehavior |BuyerAgentAbort  |SensoryBehavior
SAgent |vendor, responsible for MarketAbort
(Seller  |selling P.YOdUCtS EnglishAuction GroupAuction
Agent) th'rough mteracting Negotiation NegotiationRequest
with buyer agents. PublicSpecialSale

Table 4-2 Behaviors of E-Market Agents

4.4.1 Implementation of the SensoryBehavior of E-market Agents

An agent has its external environment. It lives in the environment and is affected by it. In
the application, the external environment is implemented as an external object that may

include some resources data (e.g. factors affecting the market prices) and some

76



unexpected accidents (e.g. troubles in systems). The task of the sensory behavior is to
check the external environment and to trigger some reactions.

A sensory behavior of e-market agents can be implemented by extending the abstract
class of TSAM_SensoryBehavior. Figure 4-8 describes how to create a sensory behavior
of a seller agent via TSAM. A seller agent senses the external environment through
checking an environment file. If it senses that an exception will cause an abort, it will

trigger a reaction to stop all its transactions and inform other agents of this situation.

public class Seller_SensoryBehaviour extends TSAM_SensoryBehaviour{
public Seller_SBehaviour(Agent a, long p) {// creates a new instance of Seller_SBehaviour
super(a,p);
myAgent=(SellAgent)a;
}
public void myaction() { /supplied by application programmers
sense (); /senses the environment object of the seller agent

/ triggers a reaction to stop all its transactions if it will aborrt,
If (abortName.equals(myAgent.getLocalName())&&abort Type.equals("abort™))
{

/ deals with the exception

}

/checks other environment parameters

Figure 4-8 Code Fragment of a Sensory Behavior of a Seller Agent
TSAM simplifies the implementation of the sensory behavior of an e-market agent. A
sensory behavior is a special behavior because of its periodicity of running. Without
TSAM, the management of its execution must be considered explicitly. TSAM performs
these by encapsulating them in the class TSAM_SensoryBehavior. Application

programmers only need to code the functions of sense and reactions in the method of

‘myaction()’.

77



4.4.2 Implementation of the ProactiveBehavior of E-Market Agents

In TSAM, two types of proactive behaviors are created for each e-market agent: (a) one
main-role behavior, (b) a set of role-based behaviors. The role-based behaviors perform
role-related tasks, while the main-role behavior is responsible for dispatching the role-
based behaviors. We select a buyer agent in the e-market to show how the main-role
behavior and the role-based behaviors are created.

Role-based Behaviors:

In the e-market, a buyer agent plays seven roles. The corresponding seven role-based
behaviors (listed in Table 4-2) are created, each of which performs different role-related
tasks coded in the method of ‘myaction()’ of each behavior class. Figure 4-9 describes a
code fragment of a role-based behavior (Buyer_PBehaviour_DirectSearch). It is
implemented by extending the abstract class of TSAM_RoleBehavior. TSAM
differentiates role-based behaviors from other types of behaviors in the implementation

and simplifies couplings among the role-based behaviors through internal shared objects.

public class Buyer_PBehaviour_DirectSearch extends TSAM_ProactiveRoleBehaviour {
/creates a new instance of Buyer_PBehaviour_DirectSearch
public Buyer_PBehaviour_DirectSearch(Agent a, int i, String taskname) {
super(a);
myAgent=(BuyerAgent)a;
index=i;
currentTaskName=taskname;
}

public void myaction() { /supplied by application programmers to perform the search task

Figure 4-9 Code Fragment of a Role-based Behavior of a Buyer Agent

Main-Role Behavior:
Each agent in the e-market has one main-role behavior responsible for dispatching the
role-based behaviors. Figure 4-10 describes the implementation of a main-role behavior

of a buyer agent via TSAM.

78



public class Buyer_PBehaviour_MainRole extends TSAM_MainRoleBehaviour{
Il creates a new instance of Buyer_ProactiveBehaviour_MainRole
public Buyer_PBehaviour_MainRole(Agent a, long p) {
super(a,p);
myAgent=(BuyerAgent)a;
H
public void myaction() {/dispaich algorithm supplied by application programmers
BuyerTaskTable btTable=((BuyerAgentymyAgent).getBuyerTaskTable();
if btTable is empty { Zactivates a role-based behavior for competing for a task
Buyer_PBehaviour_CompeteForTask PB 1=new Buyer_PBehaviour_CompeteForTask (myAgent);
myAgent.addBehaviour(PB1);
}
for (int i=0;i<btTable.size();i++) { /dispatches the role-based behaviors
taskState=btTable.getTaskState(i);
switch (taskState) {
case 0: /starts to search for the price information
Buyer_DirectSearch PB2=new Buyer_DirectSearch(myAgent,i,taskName);
myAgent.addBehaviour(PB2);
exit=1;
break;
case 1: /is searching
exit=1;
break;
case 2: //has finished searching
btTable.setTaskState(i,3); /begins to buy
exit=1;
break;
case 3.//starts to buy, activates role-based behaviors to perform buying task
startBuyingBehaviors (i,taskName);
exit=1;
break;
case 4.//already starts to buy and may be receive part result
exit=1;
break;
case 5: // ends one buying
btTable.setTaskState(i,-1); #sets end state
sendBackTaskResult(i);
exit=1;
break;
} switch
if (exit==1) break;
Hifor

Figure 4-10 Code Fragment of a Main-Role Behavior of a Buyer Agent
In the code fragment, the work of the main-role behavior is to dispatch all the role-based

behaviors according to the current buying task and the internal state of the agent. It is

79



created through extending the TSAM_MainRoleBehavior. In the method of ‘myaction()’,
a dispatch algorithm is implemented. First, a role-based behavior of CompeteForTask is
activated to compete for a new buying task. Then, a role-based behavior of DirectSearch
is triggered for searching price information. Afterwards, a proper role-based behavior
(PublicSale, EnglishAuction, GroupAuction, Negotiation, or GroupBuying) is started
based on a selected buying strategy. During the buying, the internal state of a buyer agent
is changed. Specifically, when the internal state=1, the agent is in the searching state;
when the internal state=2, the agent has finished searching. The internal state=3,4,5
means the agent is in the state of start of buying, buying and completion of buying

respectively.

TSAM supports application programmers to implement the proactive behaviors more
clearly and easily. On one hand, both the main-role behavior and role-based behaviors are
roles related. They belong to the same proactive part of an agent. On the other hand, the
main-role behavior is different from the role-based behaviors. It runs continuously
whereas the role-based behaviors start and stop when the task is completed. TSAM
separates them with distinct implementations, so that application programmers can

concentrate their efforts on the implementation of the respective role-related tasks.

4.4.3 Implementation of the ReactiveBehavior of E-Market Agents

The reactive behaviors of an agent are specific behaviors that support the asynchronous
notifications  from  other agents. TSAM provides an  abstract class
TSAM_ReactiveBehavior for creating reactive behaviors. In section 4.3, we have

described the use of the reactive primitive to register a reactive behavior of an agent. In

80



Figure 4-11, we describe how to create a reactive behavior of a seller agent in a group
auction.

A reactive behavior of a seller agent is obtained by extending the abstract class of
TSAM_ReactiveBehavior. A seller agent first registers a reactive tuple of a bid request
and its reactive behavior in a tuple space. Whenever a buyer agent writes reactive tuple in
the tuple space, the reactive behavior of Seller_RBehaviour_GroupAuction is triggered.
This leads to a decrease of the current bid price and possibly the remaining amount of the
product, which are shared by the buyer agents in the group. The codes in the method of

‘myaction()’ have been presented and explained in Figure 4-4.

public class Seller_RBehaviour_GroupAuction extends TSAM_ReactiveBehaviour {
/creates a new instance of Seller_RBehaviour _GroupAuction
public Selier_RPBehaviour_GroupAuction(Agent a) {
super(a);
myAgent=(SellerAgent)a;
i)ublic void myaction() {/reactions supplied by application programmers
if (reactiveTuple!=null) {

// reads the content of the reactive tuple

Y 1iAf

Figure 4-11 Code Fragment of a Reactive Behavior of a Seller Agent in Group Auction

4.5 Conclusion

In this chapter, we choose an e-market application as an example to illustrate the use of
TSAM in the implementation of agent behaviors. In summary, TSAM facilitates the
programmability of agents in the following aspects:

(I) TSAM provides a set of abstract classes of agent behaviors that simplifies the

implementation of agent behaviors.

81



(2) Tuple space based agent coupling primitives support programmers to easily
implement efficient agent interaction protocols. However, in order to use the TSAM
model, the programmer has to construct the different fields of the tuples for each

primitive.

82



Chapter 5 Performance Test

In Chapter 3 and Chapter 4, we presented how TSAM makes the design and
implementation of multi-agent systems relatively easier. In this chapter, a set of
simulation experiments of our prototype system will be introduced. In these experiments,
we conduct performance tests based on two agent couplings media: tuple space and
message passing. The objective of the comparison tests is to show how tuple space
affects the application performance compared with massage passing. Section 5.1
describes the generation of test data in the market model. Section 5.2 introduces the test
plan of how to select test data and application scenarios in the experiment. The test
results and their analysis are presented in section 5.3. Lastly, the conclusions of the tests

are summarized in section 5.4.

5.1 Data Generating

In the e-market model of our prototype system, three types of data are included to keep
the system running in a simulation environment: (1) Consumers task data, (2) Supplier
product data, and (3) E-market place running data. Consumers and Suppliers are both

customers of the e-market to achieve their different objectives.

5.1.1 Consumer Task

A task of consumers is abstracted as a purchase request that includes the following
information:

e Task name: indicates a task of buying products. It is exclusive in buyer’s task list.

e Buying strategy: is used to calculate the price in price negotiation.

e Quantity: is the number of items to buy for each product.

83



e Permitted high price: is the upper limit price. Any price exceeding it can’t be accepted
to the consumer.

¢ Lower limit price: is the minimal permitted buying price that can be set to zero.

e Expiry date: is the deadline of the task. After this date, the task fails if it is not finished.

e Product name, product brand, product model, manufacturer, and product functions: are
requirements for each buying task.

These data are generated automatically for the simulation test in the following ways: (1)

the product name, product brand, product model, manufacturers and product functions are

selected randomly based on suppliers’ data; (2) the quantity of each buying task can be

generated as an integer in the range (1 to x) where ‘x’ is the quantity of product in the

suppliers’ data; (3) the upper limit price of each task is generated randomly in the range

of (LLP, LLP+3) where LLP is the lower limit price of each item in the suppliers’ data

and & is a designated overlap rate of buying and selling prices; (4) the expiry date is

" generated by considering the time period of simulation.

5.1.2 Supplier Product Data

The supplier product data are the basis for any transactions in the e-market system. Each
seller agent sells product items that may belong to different suppliers. In the simulation
test, we put all the suppliers’ data into one data source that include all the products items
sold in the e-market. The data of each seller agents can be generated based on the
suppliers’ data source where at least the following information is included:

¢ Item name: is the unique identity of the selling item.

¢ Product name, product brand, product model, manufacturer, and product functions: are

product characteristics of this item.

84



e Strategy selection: in the application, we developed four strategies for selling each
item: Negotiation, English Auction, Group Auction and Public Special Sale.

e Lower limit price (LLP): is the minimal permitted selling price, under which no
buying request can be accepted.

e Available number: is the available quantity of this item.

e Expired date: is the end time of selling this item.

e Group-buying strategy: is a selection of strategies for determining a group-buying
price.

When n product items are available for selling, the related data can be generated: (1) each

item name is created as ‘item-no’, where the ‘no’ can be generated as an integer value

from 1 to n; (2) the product brand, product model, manufacturer and functions are

generated by numbering from 1 to 5; (3) the selling strategy is generated as integer value

from 1 to 4 for the four types of transactions; (4) the lower limit price is generated in the

range of the average price +/- variable range; (5) the group-buying strategy is randomly

selected from three predefined functions to calculate group price. Here we use three

calculation functions (two exponential functions and one linear function) with the

quantity of buying as the variable.

5.1.3 E-Market Place Running Data

When the e-market system runs, the following data are needed to characterize the market:
e Number of physical hosts in the system.

e Number of distributed markets, each of which can be taken as a mall.

e Number of seller agents.

e Number of buyer agents and size of group purchase.

85



Based on the above data, the e-market running data is generated randomly. This
generated data comprises two parts:

(1) Seller’s Data

Based on the number of the seller agents, a seller’s data is generated. Each seller agent
randomly selects product items and the available quantities from the suppliers’ data. The
total quantity of the item to be sold by all the seller agents equals to the total amount of
the item in the suppliers’ data. The selling strategy can be generated based on the
suppliers’ data.

(2) Agents Running Data

Before the system runs, a set of running configuration data must be determined. These
data are system wide: (i) random distribution of markets (malls) and agents across the
physical nodes, and (ii) random logical distribution of sellers registered in different

markets.

5.2 Test Plan

5.2.1 Application Performance

For e-market applications, in highly competitive business environments, application
performance is critical to the business success. Poor performance can result in lost time,
lost customers and lost market revenue. Application performance represents the
performance of the entire market that includes high level of user satisfaction and
maximizing efficiency and productivity of the whole market.

(a) The Quality of Consumers’ Satisfaction

From the point of view of consumers, the response time is the main factor to evaluate the

e-market. In the simulation test, we select two parameters to express the satisfaction

86



quality of consumers: (i) average waiting time for consumers to get the final purchases,
and (ii) possible successful number of transactions within a specified period of time.

(b) The Quality of Suppliers’ Satisfaction

From the point of view of suppliers, the whole market sale is what they care about. That
is the actual revenue and successful number of transactions within a specified period of

time.

5.2.2 Test Data

In the simulation, we consider centralized market place, distributed market places and
group purchases to demonstrate how the tuple space and message passing affect the
application performance as the number of buyer agent changes.

(1) Centralized Market Place

There is only one market place in the system. All the agents buy and sell their products
through this market.

(2) Distributed Market Places

There are more than one market place in the system. All the agents register and trade on
different market places. Concurrent transactions happen on different markets.

(3) Group Purchase

Group purchase involves collaborations among buyer agents before they interact as a
group with seller agents. The objective of group purchases is to show the different effects
of tuple space and message passing on agent collaborations.

In each of the above situations, three types of application performance (response time,
number of transactions and market revenue within a specified period of time) are
obtained as the number of buyer agents increases. In each case, we plot two curves

corresponding to results of tuple space and message passing.

87



5.3 Test Results and Analysis

5.3.1 Centralized Market Place

(1) Test Data
Market size; 500 items
Number of physical nodes (machines): 8
Number of seller agents: 10
Number of buyer agents: 10, 30, 50, 70, 100
(2) Test Results

(ACL: message passing based Agent Communication Language, TS: Tuple Space)

performance
number of customer market
:gt;ﬁ; aver. waiting time(ms)}trans. numbers(within 150s] market revenue(within 150s)
ACL. T8 ACL TS ACL T8
10 368216 | 439798 97 86 831258 734780
30 196975 | 159084 241 271 1820741 2150704
50 121170 | 117051 422 441 3058159 3235605
70 118824 | 109006 469 519 2940827 3678215
100 103215 | 221668 552 134 3260555 771755

Table 5-1 Performance in a Centralized Market Place with Small Market Size

average waiting time of each buying market revenue
500000 4000000
’Eg 450000 + 3500000 £
~ 400000
L 350000 4 " . . L ::::1) 3000000 . .
g $ 2500000 [
:O 300000 : @— ACL E
£ 250000 P = 2000000 b
200000 i £ 1500000
g 150000 E
E‘ 100000 - ! 1000000
% 50000 500000
4] } t 4 } 0 ; ; L .
10 30 50 70 100 10 30 50 70 100
nuwber of buyer agents number of buyer agents

Figure 5-1 Curves of Performance in a Centralized Market Place with Small Market Size

88



(3) Analysis

In the case of message passing, all the agents in a container share one sending buffer,
which needs to be synchronized when they send messages. When the number of buyer
agents is small (smaller than 20), the couplings among agents tend to favor sequential
process, in which message passing has more advantage than tuple space.

When using tuple space, all the agents in one container can access the tuple space
concurrently. In addition, the bulk tuple match and reactive tuples improve the concurrent
couplings among agents. When the number of agents lies in a proper range (20 to 70), the
application performance of using tuple space is better (better around 13%).

However, tuple space needs to synchronize the concurrént accesses from agents. When
the number of buyer agents is increased to the limit (70), the number of synchronized
accesses of tuples also increases. In turn, this causes a longer waiting time. As a result,

the performance with tuple spaces is not as good as the message passing.

The same test data are applied with the market size is increased to 3000 items. Table 5-2

and Figure 5-2 shows the test results.

performance
gfu::::z; customer market
agents aver. waiting time{ms}|trans. numbers(within 150s), market revenue{within 150s)
ACL TS ACL 18 ACL. s
10 342944 | 363147 110 105 2010506 2002420
30 136877 | 146109 323 296 6013648 5493972
50 121515 | 122140 511 410 7767212 6474508
70 119370 | 192897 447 173 8469838 3334072
100 92007 579 8559111

Table 5-2 Performance in a Centralized Market Place with Large Market Size

89



average waiting time of each buying market revenue
@ 9000000
a -
: 500000 -mre 8000000 T ,
8 450000 + L 7000000 1 g
= o000 § 6000000 4
5 200000 1 —@— ACL B 5000000 4o i 1| —@—ACL
= 200000 s TS £ 4000000 7 e TS
£ 150000 = 3000000
100000 o ” 4
% 50000 , g 2000000 +-4;
2 i i T ' 1000000 -
10 30 50 70 100 0 } } } +
number of buyer agents 10 30 50 70 100
number of buyer agents

Figure 5-2 Curves of Performance in a Centralized Market Place with Large Market Size

When the market size is large, the ACL always performs better than the TS (better around
6%). The difference between the two performances is more pronounced as the number of
buyer agents increases. The time spent on synchronized access to tuple space is the main
factor that counteracts the tuple space positive effects. The market size also affects the
breakpoint at which the tuple space performance would start to decrease. The breakpoint
is at 70 (number of buyer agents) when the market size is 500, whereas the breakpoint is
lowered to 50 when the market size is 3000. This result is attributed to the increases of
templates in the tuple space when the market size increases. Distinct templates lead to

distinct entities to be matched and this may increase the associative search time.

5.3.2 Distributed Market Places

(1) Test Data
Number of physical nodes (machines): 8
Number of seller agents: 10
Number of distributed market places: 4

Number of buyer agents: 10, 20, 30, 50, 70

90




(2) Test Results

number performance

of customer market
buyer [aver. waiting time(ms)|trans. numbers(within 150s)| market revenue(within 150s)

agents| ACL TS ACL TS ACL TS
10 450111 413242 78 89 675435 762207
20 240706 225689 163 191 1279286 1522138
30 172531 160746 248 270 1944340 2143410
50 121803 154060 413 328 3208497 2514843
70 103485 298107 488 110 3649476 916084

Table 5-3 Performance in Distributed Market Places

average waiting time of each buying market revenue
. 500000 4000000 g
£ 450000 © 3500000 4=
4060000 3 i
| :
L 300000 - ——ACL o ‘ ACL
2250000 + - 2000000 e -
g 1 TS T 1500000 i TS
= .
100000 g 1000000
g 50000 500000
% 0 ' : 4 } 0 " 4 ; '
10 20 30 50 70 10 20 30 50 70
number of buyer agents number of buyer agents
Figure 5-3 Curves of Performance in Distributed Market Place
(3) Analysis

When the number of buyer agents is not large (less than 50), the application performance

of tuple space is not worse than that of ACL. As we already know that, in message

passing, agents in one container send their messages sequentially. In the case of using

distributed tuple spaces, the agents in a container can access the different tuple spaces

concurrently. This provides real concurrent activities of agent couplings.

When the number of buyer agents exceeds 50, the performance of tuple space becomes

worse because more synchronized access to the distributed tuple spaces block the

accessing processes. Distributed market place seems to result in a lower breakpoint (from

91




70 to 50 compared with centralized market place). This may be attributed to the
behavioral pattern of agents in the use of these markets and the actual concurrency that is

achieved.

5.3.3 Group Purchase

(1) Test Data
Number of physical nodes (machines): 8
Number of seller agents: 10
Number of distributed market places: 4
Totai number of buyer agents: 30

Group size (number of buyer agents in a buying group): §, 10, 20, 30

(2) Test Results
number of performance
buyer customer market

agents in |aver. waiting time(ms)| trans. numbers({within 150s)| market revenue({within 150s)
the group [ acL TS ACL TS ACL TS

5 150885 | 135345 197 207 1625932 1844710

10 140766 | 117205 213 240 1914060 2041876

20 137192 | 113694 226 247 1888201 2261942

30 136178 | 104737 228 254 2010117 2326894

Table 5-4 Performance in a Group Purchase

average waiting time of each buying market revenue
:‘Ej 200000 o T ., 2500000 pmmmeosmcan:
W 150000 - @ g 2000000 T e 1
g $ 1500000 1 ¥ o o e,
= £ 100000 -
§= E 1000000 = TS
o 50000 5 500000
[} =
= 0 , , . 0 : : 5

5 10 20 30 5 10 20 30
nunber of buyer agents in a nunber of buyer agents in
group a group

Figure 5-4 Curves of Performance in a Group Purchase

92



(3) Analysis

Tuple space supports the agent collaborations more efficiently than message passing in
all cases of group buying. When the group size increases, more buyer agents join the
group of buying. Once the group relationship is established, communication loads
between agents decrease as much less number of buying transactions are involved. As a
result, the performance gets better. Moreover, the characteristics of tuple space (global
information sharing, bulk template match and reactive tuples) introduced in this thesis

seem to have a strong positive impact on agent collaborations.

5.4 Conclusion

From the simulation test and the comparison of the test results by two (tuple space via
message passing) agent coupling media, we can draw the conclusions that using tuple
spaces as the agent coupling medium does not produce worse application performance. In
case when distributed tuple spaces exist and when agents require tighter coordination as
in group buying, tuple space has a performance advantage over message passing.
However, when heavily synchronized communication is involved, there is a breakpoint,
beyond which the load increases induce sharp decline in performance due to the

associativity semantics a tuple space.

93



Chapter 6 Conclusion

6.1 Summary

Agent oriented software development is gaining importance in building complex
distributed systems. In order to support simple design and implementation of agent based
applications, this thesis provides a new agent based programming model — a tuple space
based agent-programming model (TSAM), to facilitate the development of multi-agent
systems in a systematic way.

TSAM supports the development of agent based systems in two levels: (a) in the abstract
level, TSAM provides separate definitions of the three main agent behaviors namely
sensory behaviors, reactive behaviors and proactive behaviors, and uses role model for
analysis and design of agent proactive behaviors; (b) in the implementation level, TSAM
uses tuple space as a complementary agent interaction medium, which is different from
the traditional message-passing based agent coupling manners.

To validate the functions for which TSAM is particularly fitted in the development of
agent based systems, the thesis has applied TSAM in developing an e-market application.
Through the design and implementation of the e-market, TSAM is shown to be able to
facilitate the development process, specifically support efficient agent couplings. Further,
performance testing on the resulting system confirms our expectations that tuple space
does not cost us more than message passing unless the system size has grown to become
too large. In summary, TSAM is a practical solution for the development of complex
multi-agent based applications. Specifically, we draw the following key conclusions:

(1) TSAM facilitates the design and implementation of agent based systems.

94



Unlike other agent model [1]{8][10][[27][29]{34], TSAM describes the agent architecture
with three main agent behaviors and supports role based analysis in the design of
proactive role-based behaviors. These simplify the design process and help designers to
concentrate on the design of flexible collaboration relationships among agents. Moreover,
using tuple space as the agent interaction medium simplifies the design and
implementation of dynamic agent couplings. In the implementation stage, TSAM has
facilitated the creation of agent behaviors, and the rich tuple space primitives (e.g. bulk
and logical template, asynchronous access) simplify the coding efforts needed.

(2) Tuple space has compatible performance as message passing based agent interaction
at reasonable system sizes.

The characteristics of tuple space services, namely dynamic information sharing,
asynchronous access, bulk and logical template match and reactive tuples, efficiently
support the concurrent couplings among agents, which make the application performance
not worse than that of message passing. Distributed tuple spaces in the form of multiple
market places improve performance and in some cases may even lead to better results
than message passing based counterpart. Moreover, in the case of tighter coordination
among agents, tuple space has an obvious performance advantage over message passing.
However, each tuple space manager has to synchronize the access of tuples in the tuple
space, which will affect the performance when the number of access requests increases.
This can instruct the designer to select appropriate schemes according to the real

application situations.

6.2 Future Work

This thesis has proposed a practical solution for developing agent-based systems. Our

approach is intended to complement current practices of agent oriented engineering by

95



providing a general agent programming model, within which the development process
can be simplified and the complex collaboration among agents can be more effectively
managed. The following are some future research works.

(1) Combination of the two agent coupling mechanisms for a better performance.

The openness of ubiquitous computing presents a set of challenges for agents to engage
in complex collaborations. Although we have described some of advantages of tuple
space in supporting agent interactions, costs on tuple matches and heavy synchronized
access are possible problems. In peer-to-peer interaction, message passing seems to be
more direct and effective. Hence, a method of combining the two coupling mechanisms
under different interaction protocols will get better performance.

(2) Development of agent building tool and agent running environment for TSAM that is
a more general environment than JADE.

TSAM is built on top of JADE because JADE is open source written in Java that can be
modified easily. However, the agent behavior classes in JADE do not offer programmers
much in terms of reusable code. A next phase is to build a complete TSAM on top of the
Java platform directly so that other aspects of distributed systems can be more directly

manipulated and supported.

96



Bibliography

[1] M. S. Atkin, G. W. King and D. L. Westbrook, “Hierarchical Agent Control: A
Framework For Defining Agent Behavior”, AGENTS 01, Montreal, Quebec, Canada,
May 28-June 1, 2001.

[2] F. M. T. Brazier, B. Dunin-Keplicz, and N. Jennings, and J. Treur, “DESIRE:
Modelling Multi-Agent Systems in A Compositional Formal Framework”, Int. J., of
Cooperative Information Systems, vol. 6, pp. 67-94, 1997.

[3] M. Becht, T. Gurzki, J. Klarmann, and M. Muscholl, “ROPE: Role Oriented
Programming Environment for Multiagent Systems”, in Proc. 4th IFCIS Conf. on
Cooperative Information Systems (CooplS'99), Edinburgh, Scotland, September 1999.

[4] G. Cabri, “Role-based infrastructures for agents”, 8th IEEE Workshop on Future
Trends Distributed Computing System, Bologna, Italy, Oct.31-Nov. 02, 2001.

[5] G. Cabri, L. Leonardi, and F. Zambonelli, “MARS: A programmable coordination

architecture for mobile agents”, Internet Computing, vol. 4, no.4, pp. 26-35, 2000.

[6] G. Cabri, L. Leonardi, and F. Zamboneli, “The Impact of the Coordination Model in
the Design of Mobile Agent Application”, in Proc. 22th Annual Int. Computer
Software and Applications Conference (COMPSAC 98), Vienna (A), August 1998,
IEEE CS Press.

[7] N. Carriero, D. Gelernter, “Linda in Context”, Communication of the ACM, vol. 32,
no.4, pp. 444-458, April 1989.

[8] S. Donikian, “HPTS: A Behaviour Modelling Language for Autonomous Agenis”,
AGENTS 01, Montreal, Quebec, Canada, May 28-June 1, 2001.

[9] R. Depke, R. Heckel, J. M. Kuster, “Improving the Agent-Oriented Modeling Process
by Roles”, AGENTS 01, Montreal, Quebec, Canada, May 28-June 1, 2001.

{10] M. Fisher and C. Ghidini, “The abc of rational agent modelling”, AAMAS’ 02,
Bologna, Italy, July 2002.

97



{11] R. A. Flores-Mendez, "Towards the Standardization of Multi Agent Systems
Architectures: An Overview", ACM Crossroads - Special Issue on Intelligence

Agents, vol. 5, no. 4, ACM Press, Summer, 1999.

[12] J. M. Fernandes, O. Belo, “Modeling Multi-Agent Systems Activities through
Colored Petri Nets: An Industrial Production System Case Study”, in Proc. 16th
IASTED Int. Conf. on Applied Informatics, February23-25, 1998, Anaheim, CA, pp.
17-20, 1998.

[13] D.Gelemter, “Generative communication in Linda”, ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 7, pp: 80-112, 1985.

[14] G. Gottlob, M. Schrefl, B. Rock, “Extending Object-oriented Systems with Roles”,
ACM Trans on Info. Sys., Vol.14, No.3, July, 1996, 268-296.

[15] Z. Guessoum and J. P. Briot, “From Active Objects to Autonomous Agents”, [EEE
Concurrency, vol.7-1, pp. 68-76, 1999.

[16] N.T. Giang, D.T. Tung, “Agent Platform Evaluation and Comparison”, Institute of
Informatics of Slovax Academy of Science, June 2002.

[17] R.Gray, “Agent Tcl: A flexible and secure mobile-agent system,” 4th Annual Tcl/Tk
Workshop (TCL’96), Monterey (CA), July 1996.

[18] N. R. Jennings, P. Faratin, T, J. Norman, P. O’Brien, B. Odgers and J. L. Alty,
“Implementing a Business Process Management System using ADEPT: A Real-

World Case Study”, Intl. Journal of Applied Al, vol 14, no.5, pp. 421-465, 2000.

[19] N. R. Jennings, “On agent-based software engineering”, Artificial Intelligence, vol.
117, pp. 277-296, 2000.

[20] N. R. Jennings and M. Wooldridge, “Agent-Oriented Software Engineering”,
Handbook of Agent Technology, AAAI/MIT Press.

[21] E. A. Kendall, “Role model designs and implementations with aspect-oriented
programming”, in Proc. ACM Conf. Object-Oriented Systems, Languages, and
Applications, Denver, Colorado, United States, 1999, pp. 353-369.

[22] E. A. Kendall, “Role models — patterns of agent system analysis and design”, BT
Technol. J., vol. 17, no.4, October 1999.

98



[23] E.A Kendall, P.V.Murali Krishna, C.V.Pathak, and C.B.Suresh, “An Application
Framework for Intelligent and Mobile Agent Systems”, ACM Computing Surveys
(CSUR), vol. 32, March 2000.

[24]17. Lind, “Issues in Agent-Oriented Software Engineering”, in Proc. 1th International

Workshop on Agent-Oriented Software Engineering (AOSE 2000), 2000.

[25] Y. Labrou and T.Finin, “KQML as an agent communication language”, in

Bradshaw.J., Software Agents, The MIT Press, 1997.

[26] P. Maes, R. H. Guttman, A. G. Moukas, “Agents That Buy and Sell”,
Communications of the ACM, 1999, pp 81-91.

[27] H.A. Mallot, “Behavior-Oriented Approaches to Cognition: Theoretical
Perspectives”, Theory in Biosciences, vol.116, pp. 196-220, 1997.

[28] P. A. Mitkas, D. Kehagias, A. L. Symeonidis, and I. N. Athanasiadis, “A Framework
for Constructing Multi-Agent Applications and Training Intelligent Agents”, in Proc.
4th Int. Workshop on Agent-oriented Software Engineering (AOSE-2003), 2003.

[29] J. P. Muller and M. Pischel “Modelling reactive behaviour in vertically layered agent
architectures,” Intelligent Agent: Theories, Architectures, and Language (LNAY vol.
890), pp. 261-276. Springer-Verlag: Berlin, Germany, 1995.

[30] T. Murata, “Petri Nets: Properties, Analysis and Applications”, in Proc. of the IEEE,
vol.77, no.4, pp.541-580, April 1989.

[31] H. S. Nwana, D. T. Ndumu & L. C. Lee, “ZEUS: An Advanced Tool-Kit for
Building Distributed Multi-Agent Systems”, in Proc. 3th Int. Conf. on Autonomous
Agents (Agents'99), 1999,

[32] C. Petrie, “Agent-Based Software Engineering”, Agent-Oriented Software
Engineering, Lecture Notes in Al, Springer-Verlag, 2001, pp. 58-76, Stanford
Networking Research Center, Stanford, CA 94305-2232.

{331 S. Poslad, P. Buckle, and R. Hadingham, “The FIPA-OS agent platform: Open
Source for Open Standards”, Nortel Networks. Manchester, UK. April 2000.

99



[34] A. S. Rao and M. P. Georgeff, “Modelling rational agents within a BDI architecture”,

in Proc. Int. Conf. on Principles of Knowledge Representation and Reasoning, San

Mateo, Kaufmann, 1991, pp. 473-485.

[35] A. S. Rao and M. P. Georgeff, “BDI Agent: From Theory to Practice”, ICMAS-95,
San Francisco, USA, June, 1995.

[36] M. J. Raphael and S. A. Deloach, “A Knowledge Base for Knowledge-Based
Multiagent System Construction”, National Aerospace and Electronics Conference

(NAECON), Dayton, OH, October 10-12, 2000.

[37] D. Riehle and T. Gross, “Role Model Based Framework Design and Integration”, in
Proc. 1998 Conf. Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA "98), ACM Press, 1998, pp. 117-133.

[38] A. Rowstron and S. Wray, “Run-Time System for WCL”, Internet Programming
Languages, Springer-Verlag, Lecture Notes in Computer Science 1968, 1999, pp.73-
96.

[39] Y. Shoham, “Agent-oriented programming”, Artificial Intelligence, vol. 60, no.1, pp.
51-92, March 1993.

[40] Y. Shoham, “Rational Programming”, http://cs.stanford.edu/»shoham, June 5, 2003.

[41] G Wagner “A Logical and Operational Model of Scalable Knowledge-and
Perception-Based Agent”, in Proc. 7th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World: Agents Breaking Away, Einhoven, The
Netherlands, 1996, pp. 26-41.

[42] M. F. Wood, S. A. Deloach, “An Overview of the Multiagent Systems Engineering
Methodology”, in Proc. 1th Int. Workshop on Agent-Oriented Sofiware Engineering
(AOSE 2000), 2000.

[43] M.Wooldridge and N.R. Jennings. “Intelligent agents: Theory and practice,” The
Knowledge engineering Review, vol.10, no. 2, pp.115-152, 1995.

[44] M. Wooldridge, “The Gaia Methodology for Agent-Oriented Analysis and Design”,
Autonomous Agents and Multi-Agent Systems, vol. 3, pp. 285-312, 2000.

100



[45] H. Xu, “Multi-Agent System and Agent Based Software Engineering”, Advanced
Software Engineering, December 11, 2003.

[46] F. Zambonelli, N. R. Jennings, M. Wooldridge, “Organisational Abstractions for the
Analysis and Design of Multi-Agent Systems”, Ith Int. Workshop on Agent-Oriented
Software Engineering (AOSE 2000), 2000.

{47] Agent Tool: http://www cis.ksu.edu/~sdeloach/ai/download-agentool.htm

[48] Aglet community http://aglets.sourceforge.net/

[49] Ajanta: http://www.cs.umn.edu/Ajanta/

[50] Agent Builder: http://www.agentbuilder.com/

[51] Agent Building Shell: http://www.eil.utoronto.ca/aac/abs/index.html

[52] Agent Technology Research: http://www.emorphia.com/research/overview.htm

[53] Autonomous Systems of Trade Agents in E-Commerce (ASTA):
http://www.cwi.nl/projects/ASTA/

[54] e-AEC Research at Stanford: http://e-aec.stanford.edu/index .htm
[55] Colored Petri Nets: http://www.daimi.au.dk/CPNets/

[56] Grasshopper — the agent platform: http://www.grasshopper.de/
[57] FIPA-OS: http://fipa-os.sourceforge.net/

[58] JavaSpace: http://www.cdegroot.com/cgi-bin/jini/JavaSpace

[59] JADE: http://jade.cselt.it

[60] KQML: http://www.cs.umbc.edu/kgml

[61] MASIF—the Object Management Group’s Mobile Agent System Interoperability
Facility: http://www.omg.org/

[62] Publicly Available Implementations of FIPA Specifications: http://www.fipa.org/

{64] Yu Li, Master of Computer Science Thesis in Progress, Dept. of Computer Science,

Concordia University.

101



