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Abstract

Concatenated Channel Coding and Orthogonal Space-Time
Block Coding for MIMO Systems: Antenna Selection and

Performance Bounds

Xiangnian Zeng

In this thesis, we study the performance of orthogonal space-time block codes (ST-
BCs) over Rayleigh fading channels with receive antenna selection. For a given num-
ber of receive antennas M, we assume that the receiver uses the best L of the available
M antennas, where, typically, L < M. The selected antennas are those that maximize
the instantaneous received signal-to-noise ratio (SNR). In our analysis we consider 1)
orthogonal STBCs only, and 2) concatenated channel coding with STBCs. For both
coding schemes, we consider uncorrelated and spatially correlated fading channels.
We derive explicit upper bounds on the bit error rate (BER) for the above schemes
with antenna selection. We also derive exact analytical results for special cases. Our
results show that the diversity order, with antenna selection, is maintained as that
of the full complexity system, i.e., when the receiver uses all the available antennas,
whereas the deterioration in SNR due to receive antenna selection is upper bounded

by 10log,q(M/L) dB. We also present numerous examples that validate our results.
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Chapter 1

Introduction

1.1 MIMO Systems

Multiple-input-multiple-output (MIMO) wireless systems are those that have mul-
tiple antenna elements at both the transmitter and receiver. They are now being
used for third-generation cellular systems (W-CDMA) and are discussed for future
high-performance modes of the IEEE 802.11 standard for wireless local area network.
The multiple antennas in MIMO systems can be exploited in two ways. One is the
use of multiple antennas to increase capacity. This can effectively meet the rapidly
increased capacity demands driven by cellular mobile, Internet and multimedia ser-
vices in wireless communication. Several different data streams can be transmitted
parallel from the different transmit antennas. At the receiver, multiple receive anten-
nas are used to separate the different data streams. Thus, a drastic increase in the

channel capacity can be achieved through MIMO systems, as shown by Telatar (1],



and Foschini and Gans [2].

The other use of MIMO systems is to create antenna diversity. The challenge of
achieving reliable data transmission over wireless links stems from the fact that, in a
wireless environment, unlike other applications, achieving reliable communication be-
comes much more difficult due to the possibility that received signals from multipaths
may add destructively, which, consequently, results in a serious performance degra-
dation. It has been shown that a key technique for achieving reliable communication
over wireless links is to introduce antenna diversity into the system.

Antenna diversity is achieved by employing spatially separated antennas at the
transmitter and/or at the receiver. The separation requirements vary with antenna
height, propagation environment and frequency so that the subchannels are uncor-
related. At the receiver, multiple replicas of the transmitted signals are available,
all carrying the same information but with small correlation in fading statistics since
they transmit via different subchannels. The basic idea of antenna diversity is that, if
two or more independent subchannels are available, these subchannels will fade in an
uncorrelated manner, e.g., some subchannels are severely faded while others are less
attenuated. This means that the probability of all the subchannels simultaneously
fade below a given level is much lower than the probability of any individual subchan-
nel fades below that level. Thus, a proper combination of the signals from different
subchannels results in greatly reduced severity of fading, and correspondingly, im-
proved reliability of transmission. Another advantage of antenna diversity compared

with time and frequency diversity is that, antenna diversity does not induce any loss



in bandwidth efficiency. This property is very attractive for future high data rate

wireless communications.

1.2 Space-Time Codes

1.2.1 Development of Space-Time Codes

Inspired by the promised increase in capacity, a large number of papers have been
published recently on the use of antenna diversity for achieving reliable communica-
tion over wireless links. These include the early work by Guey, et al. {3] in which
they consider signal design techniques that exploit the diversity provided by employ-
ing multiple antennas at the transmitter. Then Tarokh, et al. introduced in 1998
[4] the class of space-time trellis codes (STTCs), by jointly designing the error con-
trol coding, modulation, transmit and receive diversity. STTCs are very efficient for
systems with multiple transmit and receive antennas. The encoding and decoding
complexity is comparable to that of conventional trellis codes.

A few months later, in [5], Alamouti introduced a very simple, and yet efficient,
scheme which involves using two transmit antennas at the base station (BS) and
one receive antenna at the other end of the downlink. A simple decoding algorithm
based on a linear receiver was introduced for this scheme, which can be extended for
an arbitrary number of receive antennas. This scheme is significantly less complex
than STTCs using two transmit antennas, although there is a loss in performance.

Motivated by the simplicity of the Alamouti scheme, Tarokh, et al. [6] generalized



that scheme to an arbitrary number of transmit antennas, resulting in the so-called
space-time block codes (STBCs). Since the discovery of space-time codes, many
papers have appeared in the literature in which various space-time coding schemes
were considered in an effort to maximize the diversity order and coding gain for a
given number of transmit and receive antennas, see [7]—[11] and the references therein.

Despite the low complexity STBCs enjoy, such codes do not provide any coding
gain, unlike the case for STTCs. Therefore, a STBC, if considered, may need to
be combined with an outer channel coding scheme in order to provide such coding
gains. To this end, a few papers have appeared recently in the literature in which var-
ious coding schemes concatenated with STBCs were considered, including [12]—[17],
among others. It was observed in these works that substantial coding gains can be
achieved. In some cases, it was demonstrated that a STBC used in conjunction with
an outer channel code can be superior, in terms of performance, to a STTC at even
a lower complexity [17]. In most of these works, however, the conclusions were based

on computer simulations and no analytical performance analysis was performed on

BER.

1.2.2 Space-Time Block Codes

In general, a STBC is defined by an N x p transmission matrix X. Here N repre-
sents the number of transmit antennas and p represents the number of time periods
for transmission of one block of coded symbols. The transmission matrix describes

the relationship between the original transmitted signal xy, s, ...,z and the signal



replicas artificially created at the transmitter for transmission over various diversity

channels. Each entry of the matrix is constituted of linear combinations of the k

input symbols z1, 2, ...,z and their conjugates zy,x3,... ,z;.
gun 12 - Gip
921 G922 - G2
Xy =
gN1 gnN2 " GNp

The encoding diagram is shown in Fig. 1.1. Assume the signal constellation
consists of 2™ points. At each encoding operation, a block of km information bits are
mapped into signal constellation to select £k modulated signals, where each group of
m bits selects a constellation signal. The k modulated signals are encoded by a space-
time block encoder to generate N parallel signal sequences of length p according to
the transmission matrix X . These sequences are transmitted through N transmit

antennas simultaneously in p time periods. So, the code rate of STBCs is k/p.

Data Space-time
Source [ Modulator — Block Encoder
Xn

l=. K\,

Figure 1.1: Space-time block encoder.

In order to achieve the full transmit diversity, the transmission matrix Xy is



constructed based on orthogonal design such that [6]

Xy - X% =cC (|$1|2 + |$2|2 +- 1t |$k|2) Iy

where cis a constant, Xﬁ is the Hermitian of Xy and Iy isan N X N identity matrix.
This means that in each block, the signal sequences from any two transmit antennas
are orthogonal. The orthogonality enables to achieve the full transmit diversity for a
given number of transmit antennas. In additional, it allows the receiver to decouple
the signals transmitted from different antennas and consequently, a simple maximum

likelihood decoding, based only on linear processing of the received signals.

1.2.3 Alamouti Scheme

We use the Alamouti scheme, which is the STBC for two transmit antennas with
one receive antenna to show the decoding procedure of STBC. This can be readily
extended to an arbitrary number of receive antennas. The transmission matrix for

the Alamouti scheme is as follows.

Denote a;,% = 1,2 as the fading coefficient between the ** transmit antenna and
receive antenna. Assume the fading coefficients are constant across the corresponding

two consecutive time slots. Then the received signal at the first and second time slot



can be represented as

Y1 = T + 0y + W

Yo = —Q1T5 + Q%] + W

where w; and ws are independent noise samples added by the receive antenna in each

time slot. In order to extract signal x; and x4, the received signal y; and y, are

combined according to

* *
Ty = oqY1 + Y

= (|a1|2 + |a2|2) T + ojwy + apw;

* %
Ty = oY — 1Yy

= (|041|2 + |a2|2) Ty + ajw; — aqws.

The decision statistics Z; and Z, are then passed to the maximum-likelihood (ML)
detector to determine the most likely transmitted symbols.
Now, let us assume binary phase-shift keying (BPSK) modulation scheme. The

decision statistics can be reduced to the real part of the signals out of the combiner,



i.e.

&1 = Re{ajy +opys}
= (‘041|2 + 1012l2) 1

+Re{m} Re{wi} +Im {0y} Im{w;} + Re{aa} Re {wo} + Im {ao} Im {wy} .

Let us model the noise w; and w, as independent samples of a zero-mean complex
Gaussian random variable (rv) with variance Ny/2 per dimension. Assume symbol
x1 = 1 is transmitted. Then, Z; is a Gaussian rv with mean (|a1|2 + |a2|2) and
variance ZJ2 (]a1|2 + |a2|2) . According to the ML detector, the conditional BER con-

ditioned on fading coefficients can be represented as

Pye| @) =Q Wz% (loaf* + laz|2)> , (1.1)

where @) (z) is the area under the tail of the Gaussian PDF and defined as

Q(z)= \/%_ﬂ/ e /24, z >0,

o ={aj,as}, and E; is the energy of the symbol transmitted from each transmit
antenna. This can be generalized to any STBC with multiple receive antennas as we

will show later in Chapter 2 expression (2.2).



1.3 Antenna Selection for MIMO Systems

One of the drawbacks of using multiple antennas is the associated complexity and
the increased cost. While additional antenna elements are usually inexpensive, and
the additional digital signal processing becomes even cheaper, the RF chains, which
include low-noise amplifiers, downconverters, and analog-to-digital converters, are
expensive and do not follow Moore’s low. So the complexity that arises from using
a separate RF chain for every employed antenna results in a significant increase in
the implementation cost. In addition, in some cases, it may be prohibitively complex
to use many RF chains, such as the case in mobile phones. With this motivation,
antenna selection has been introduced recently as a means to alleviate this complexity,
while exploiting the diversity provided by the transmit and receive antennas [18]—[35].
The idea behind antenna selection centers around using only a subset of the available
antennas in MIMO systems. The implication of this selection is that the number
of RF chains required is reduced to as few as the number of selected antennas, and
thereby the deployment of MIMO systems would become less expensive and more
feasible.

Here we emphasize that the conventional topic of selection diversity improvement
and maximal ratio combining improvement for single-input-multiple-output (SIMO)
Rayleigh fading channel has already been well studied in [36]. But it is definitely
different from our topic of antenna selection for MIMO systems. For example, the

average signal-to-noise ratio (SNR) improvement offered by choosing one out of M



available receive antennas compared with one out of one receive antenna is shown
to be Y = for SIMO systems [36]. The derivation is quite straightforward due to
the fact that there is only one transmit antenna. So, the signal envelop picked up by
each receive antenna is with Rayleigh distribution, which is in the form of exponen-
tial expression. It is this exponential distribution that makes the antenna selection
for SIMO systems a mathematically tractable topic. However, in the case of MIMO
systems, such like that STBCs are used, the signal energy picked up by each receive
antenna is Chi-square distributed, which is in the form of gamma distribution and
consequently make the analysis quite difficult as will be shown in the later chap-
ters. So, recently, antenna selection at the transmitter and the receiver under certain
channel conditions has been considered for STTCs and STBCs extensively.

In [18], the authors consider the joint transmit and receive antenna selection based
on the second order channel statistics, which is assumed to be available to the trans-
mitter. The authors in [19] consider antenna selection for low rank matrix channels
where selection is performed only at the transmitter. In [20], antenna selection is
considered only at the transmitter with the assumption that the channel statistics
are available to the transmitter. In [21], the authors show that, for full-rank STTCs
over quasi-static fading channels, the diversity order is the same as that of the full-
complexity system. The authors in [22] consider receive antenna selection for STTCs
over fully interleaved channels. It was shown that the resulting diversity order with
antenna selection is dependent upon the number of selected antennas and not on the

number of available antennas, i.e., the diversity order is not maintained with antenna

10



selection. In (23], Molisch et al. studied the effect of antenna selection from a channel
capacity perspective. It was shown that only a small loss in capacity is suffered when
the receiver uses a good subset of the available receive antennas. Other work related
to antenna selection for STTCs can be found in [24]—[30].

In [31]—[33], the authors consider antenna selection for STBCs at the transmitter.
They show that the performance is improved by increasing the number of transmit
antennas while keeping the number of selected antennas fixed. In [34], antenna selec-
tion is considered at the transmitter (with the full knowledge of the channel statistics)
or at the receiver for orthogonal STBCs with particular emphasis on the Alamouti
scheme [5]. In their analysis, they adopt a selection criterion that maximizes the chan-
nel Frobenius-norm and, accordingly, derive expressions for the improvement in the
average signal-to-noise ratio (SNR) and outage capacity. They use outage probability
analysis to argue that the spatial diversity, when the underlying space-time code is
orthogonal, is maintained with antenna selection. In [35], the authors consider the
concatenation of an outer convolutional code (CC) and a STBC. It was demonstrated
that the diversity order is maintained with antenna selection.

In [37], the authors propose a new scheme that involves using hybrid selection/max-
imal-ratio transmission where the transmitter uses a good subset of the available an-
tennas and the receiver uses maximum-ratio combining. They investigate this scheme
in terms of signal-to-noise ratio (SNR), bit error rate, and capacity. They demon-

strate the effectiveness of their scheme relative to already existing schemes. The same

11



scheme was also treated in [38] but when the transmitter selects the best single an-
tenna. Other schemes that use hybrid selection/maximal-ratio combining were also
considered in [39]—[42]. A nice overview of antenna selection for MIMO systems can
be found in [43].

In most of the above work on antenna selection, it has been assumed that the sub-
channels fade independently. The implication of this assumption is that the adjacent
antenna elements are assumed to be placed far enough from each other so that they
experience completely different fading. However, it may be difficult to satisfy this
condition in practice, particularly when the wireless device is relatively small where
it is not possible to keep enough distance between adjacent antennas. Also, the
assumption of independent fading no longer holds in an environment where scattering
is not rich. In [44] and [45], the authors present a model for a correlated Rayleigh
fading channel, and study the effect of correlation from a channel capacity perspective.
In [46] and [47], the error probability of space-time codes in correlated fading channels
is studied. Furthermore, in [48], the authors consider antenna selection for space-time

trellis codes over correlated fading channels.

1.4 Thesis Outline

In this thesis, we present a comprehensive performance analysis of space-time block
coded MIMO system with receive antenna selection. In the following chapters, we

analysis the effect of receive antenna selection for four kinds of MIMO system models

12



respectively. In each chapter, we make the system model a little more complex or
practical than that in the previous chapter, which enables us to study the topic step
by step.

In Chapter 2, we consider the simplest MIMO system employing a STBC over
independent flat Rayleigh fading channel.

In Chapter 3, we improve the performance of the system studied in Chapter 1 by
concatenating an outer channel code with STBC. We consider the convolutional code
(CC) and trellis code modulation (TCM) as an outer channel code, respectively.

In Chapter 4, to make the system model more practical, we consider the MIMO
system in Chapters 1 and 2 over space correlated flat Rayleigh fading channel.

In Chapter 5, conclusions are made and directions for future work are suggested.

1.5 Thesis Contribution

This thesis presents the BER performance bounds for receive antenna selection of
MIMO systems employing STBCs over flat Rayleigh fading channel based on the
existing coding, decoding and antenna selection algorithm. The main contributions

of the thesis are listed as follows:

e For STBC-only systems over independent fading channels, we present two gen-
eral upper bounds for any N, M and L; a tighter upper bound for any N, and
M when L = 1; and exact analysis for the Alamouti scheme when the best

antenna is selected.

13



¢ For combined CC and STBC systems over independent fading channel, we derive
a general upper bound for any N, M and L; a tighter upper bound for the special
case of any IV, and M when L = 1; and another tighter bound for the Alamouti

scheme when the best antenna is selected.

e For combined TCM and STBC systems over independent fading channel, we
also derive a general upper bound for any N, M and L; a tighter upper bound
for the special case of any N, and M when L = 1; and exact analysis for the

Alamouti scheme when the best antenna is selected.

e For STBC-only systems, and combined CC and STBC systems over space cor-
related fading channels, general upper bounds are presented for any N, M and

L.
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Chapter 2

Receive Antenna Selection for

Space-Time Block Codes

2.1 Introduction

In this chapter, we present a comprehensive performance analysis of orthogonal space-
time block codes (STBCs) with receive antenna selection. We limit our analysis
to orthogonal STBCs simply because they are easy to design and they achieve the
maximum diversity order possible for a given number of transmit /receive antennas. In
our analysis, we assume that, for a given number of receive antennas M, the receiver
uses L out of the available M antennas where the selected antennas are those whose
instantaneous signal-to-noise ratios are the largest. This is achieved by comparing the
sums of the magnitude squares of the fading coefficients at each receive antenna and

selecting those (L of them) corresponding to the largest sums. The adopted selection

15



criterion is clearly optimal in the sense that it maximizes the SNR at the receiver. We
acknowledge, however, that the adopted selection criterion does not necessarily result
in the best performance, but our interest here is to quantify the impact of antenna
selection on the overall diversity order of the system.

We derive two explicit upper bounds on the BER performance for any N, M, and
L < M, where N denotes the number of transmit antennas. The first bound is based
on using order statistics, whereas the other bound is based on a simple idea which
leads to a relatively tighter bound at low SNR. We show that, with antenna selection,
the resulting diversity order is the same as that of the full-complexity system for
any number of selected antennas. We also show that the degradation in SNR due to
antenna selection is upper bounded by 10log,,(M/L) dB. Additionally, we derive a
tighter upper bound for the BER performance for any N and M when L =1 and an
exact expression for the BER performance for the Alamouti scheme when L = 1. We
finally present simulation results that support our analysis.

We remark that the problem under consideration is equivalent to receive antenna
selection for multiple antenna systems over Nakagami-m fading channels with a single
transmit antenna, which has been treated in [41]. Both problems become equivalent
when m = N. In [41], exact analysis was given for the following cases: any m and M
with L = 1; and any m, with M = 3,4 and L = 2. However, their approach is quite
difficult and cannot be extended to the more general case, which is any N , M, and

L.
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2.2 System Model

1 1
1
/ Flat Yz\ i
2 ; Choose —*iCombiner
Data | | STBC /Y fading | . bestL |: | and ML | ggt:
Source encoder |  © | channel M _Jout of M|__, | detector n
~y v

Figure 2.1: System block diagram of STBCs MIMO system.

The system under consideration is shown in Fig. 2.1, which models a wireless com-
munication system that employs NV antennas at the transmitter side and M antennas
at the receiver side. As shown in the figure, the incoming data is encoded by the
STBC encoder according to the encoding mechanism presented in [6]. The outputs
of the encoder, which consist of N parallel streams, are then transmitted from the
N transmit antennas simultaneously. Blocks that involve modulation, demodulation,
etc., have been suppressed from the figure due to their irrelevance in the analysis.

At the receiver, after demodulation, matched-filtering, and sampling, the signal

! received by antenna j at time ¢t is given by
- N .
=Yy qit)c +w (2.1)
i=1

where ¢! is the signal transmitted from antenna i at time #; the noise w! at time ¢
is modeled as independent samples of a zero-mean complex Gaussian random vari-
able with variance Ny/2 per dimension. The coefficients a; ;(t) model fading between
the i*" transmit and j** receive antennas at time ¢ and are assumed to be complex
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Gaussian random variables with variance 0.5 per dimension. This is for the channel
gain normalization so that the received signal power is the same as the transmitted
one. We assume that the fading coefficients are constant over a block of consecu-
tive N symbols and vary independently from one block to another, similar to the
channel model adopted in [5] and [6]. This is a necessary assumption to allow for
signal decoupling at the receiver. Moreover, the subchannels are assumed to fade

independently.

2.3 Performance of Full-Complexity System

Assuming binary phase-shift keying (BPSK) signaling, maximum-likelihood (ML) de-
coding, and that the channel state information (CSI) is known exactly at the receiver,

the conditional BER, conditioned on the channel gains, is expressed as

E, N M 0
Blela) = Q{425 X X2 laul
0 i=1 ;=1
E. NM
= Q (« /27\[—8- ) \ak|2> (2.2)
0 k=1
where o ={ay1,... ,annm}, and E, is the average energy per transmitted symbol.

To compute the average bit error rate, we need to average the expression in (2.2) with

respect to the random variables |ock|2 for Kk =1,...,NM. To simplify the analysis,
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we first introduce an auxiliary random variable that we denote Y, defined as
NM o
Y =5 jou|”. (2.3)
k=1

Note that Y is a Chi-square random variable with 2NM degrees of freedom with

probability density function (pdf) given by [49]

fly) = (NM—l_l)‘!yNM_le_yy y = 0. (2.4)

Consequently, the average BER performance can be shown to be [49]

Ao = |3 1-1)] o (M) paen) T )

where

s [
I+,

w

The term ~, = —%E (Iak|2) = 7"\3,—’5 represents the average signal-to-noise ratio (SNR)
and F (-) is the expectation operator. When the SNR is sufficiently large, the expres-
sion is (2.5) can be approximated by [49]

a~ (M ) @™, (26)

which clearly shows that the diversity order is N M, which is the maximum achievable

diversity order, for a given N transmit and M receive antennas.
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2.4 Performance Analysis with Antenna Selection

2.4.1 Upper Bounds on BER for Any N, M, and L

In this section, we derive upper bounds on the BER performance of the system
described above for any N, M, and L. Specifically, we derive two bounds using two
different approaches. The first approach uses order statistics, whereas the second

approach uses a simple idea and results in a relatively tighter bound.

Approach 1

Let us define Y; as
N .
Y}':;Iai,ﬂ ) .7:172a"'aM (27)

which represents the amount of energy picked up by the j** antenna. Recall that
when we select the best L antennas, we observe the sequence Y1, Y, ... , Yy and select
those antennas corresponding to the largest L terms of this sequence. To simplify the

analysis, we introduce a sequence of M auxiliary random variables, that we denote

by X, Xo,..., X, such that
X1 £ X< < Xy

This new sequence is obtained by arranging the random sequence Y;,Y,,... ,Yy in

a decreasing order of magnitude. Such a sequence may be considered as a random
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sample from an absolutely continuous population with pdf [49]

f(z) = —1—.mN"le‘I (2.8)

N-1 xke—a:
Flz)=1- o ® > 0. (2.9)
k=0 )
The joint density function of the ordered random variables X, Xs,... , X can be

shown to be [50]*

M
Fxo xa (21, 2m) = 3=1

0, otherwise
(2.10)

where fx;(x;) is given by (2.8). To find the joint density function of (Xpr—r41,... , Xnm),
which we will need later to find the average BER performance, we integrate the joint

density function in (2.10) with respect to the variables (Xi,... ,Xy-1) as follows.

Tt is important to note that the random variables X1, X3,..., Xas are no longer independent
due to the ordering.

21



Ixneritn Xag (BM—L415 -+ M)

TM—L+1 Zo
= le,...,XM(-'L'l,... ’xM)dmldx2"'d$M_L
0 0
M TM—L+1 T2 pr
:M'< H fXj(l'j)> / / H 37] ) dxydxe - - dxp_g
j=M—L+1 4 =1
H Ix;(@; ) F(zp-r41)" (2.11)
(M L <J M-L+1

When the best L antennas are selected, the conditional probability in (2.2) becomes?

Ple| Xporr1 < - < Xy)=@Q (\/Q’Ys % Xj)

j=M—L+1

<

exp (—fys f: Xj), (2.12)

j=M—L+1

DN =

where the last inequality is obtained by applying the Chernoff bound to the first line
in (2.12) [49]. To compute the average BER performance, we average the expression in
(2.12) with respect to the random variables (Xps—z41,- .. ,Xa), whose joint density

function is given by (2.11), as follows.

oo Lps TM—L+2

A = [ [ / Py(e | Xnopor < - < Xar)

'fXM—L+1,---,XM ($M—L+1> . ,QIM)d.’L‘M_L+1 e d.’L‘M (213)

?When L antennas are selected at a time, there are () subsets to choose from, but we assume
here that the selected subset is the one that results in the maximum SNR at the receiver.
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Obtaining a closed-form expression for the integral in (2.13) is cumbersome and com-
plicated due to the fact that the random variables Xi, Xs,..., X are no longer
independent. We remark, however, that exact evaluation of a similar expression was
done in [41] but only for special cases of M and L. Even for these special cases,
the analysis was quite involved. Therefore, to simplify the analysis, we perform the

integration over the whole space, resulting in a looser bound. Accordingly (2.13)

becomes
Ble) < // / (| Xarps1 <+ < Xn)
0 0
'fXM_L+1,... X (Tmor1, - Tm)dTy—py1 - ATy
L-2 %
—YsTM—L+1 M~-L
/ e Fxnop (@v-r41) (Fxpop (@M-r41))”  d@mop1
0
(2.14)
Note that since the random variables X for j =1,2,... | M are identical, and so are
their distributions, (2.14) may be written in a compact form as
M!
By(e —I ! .
) < s (215)
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where
o0

I, = /e_%mM_L“fXM_Hg(xM—L+2)dxM—L+2

0
= (1+%)7", (2.16)

and
~YsTM—L+1 M-L
L= [e U fxtnre i @ar—r41) [Fxagopy (@v-r41)] dxp—r41.
0
(2.17)

It is possible to further simplify the expression in (2.17), but we first need the

following result [24].

Lemma 1 Define

(v poga
glv)=1-¢€" —.
=0 k!
Then
oN
g(v) < NT forv > 0.

Proof. Observing that g(v) is the incomplete Gamma function, the proof follows
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easily, i.e.,

1 Y N1 -
— vd
g(v) (N—l)!/ou e “du
1 v
< N-1g
= (N—l)!/o e
Y

With simple mathematical manipulations, we can re-write (2.17) as

r 1 N—1 N=Y 37?\4 Ly1€ ML M Ld
— —VsTM—L+1 - M-+ | 1 = - _
I '0/6 (N — 1)!$M—L+1e ( kZ=:0 Kl ) TM—-L+1,
(2.18)
which can be upper bounded, using the above lemma, as
o0 1 N M-L
— YT AL — N-1 —Tar— M—-L+1
I, < /e YsTM L+1me_L+1e M—L+1 <T> dxM—L+1
0
NINM-L+1)-1]! _N(M—
— [ ((N')M—L+1) ] (1 +’Ys) N(M-L+1) (219)
By substituting the above expressions for I; and I, into (2.15), we arrive at
MININ(M—-L+1)-1]! _
Pyle) < IV ) 1] (1+7)~". (2.20)

2 (M — L)1 (N)M-L+1

The expression in (2.20) suggests that the diversity order is maintained with antenna

selection for any number of selected antennas. As for the degradation in SNR due
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to antenna selection, it is not straightforward to quantify this loss from the above
expression. As an alternative, we use.another bound that we will derive in the
next subsection which shows explicitly that the loss in SNR is upper bounded by
10log,o(M/L) dB. In addition, as we will demonstrate later, this bound is relatively

loose at low SNR, but becomes tighter at high SNR, especially for low values of L.

Approach II

By knowing that the sum of the largest L out of M nonnegative numbers is always
greater than or equal to the average of these M numbers multiplied by L, we have
N

L N M
i S Jausl® < > agl

i=1j=1 i=1 j=M—L+1

Ay

and consequently the expression in (2.2) can be upper bounded as

L NM o
Ble|a)<Q (\/2‘1\2% 3 o] ) . (2.21)

By comparing the right-hand side of the expression in (2.21) with that in (2.2), we
notice that both are the same except that the SNR in the former expression is scaled
by L/M . Therefore, the average BER performance, with antenna selection, will have

a similar expression as that in (2.5), namely

s o] () frs]

k=0
(2.22)
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where
,u/ é %’YS
1+ £,
To clearly see the impact of antenna selection on the BER performance, we further

approximate the expression in (2.22) by

Pye) < (2]\%\4— 1) <4%%> - (2.23)

By comparing (2.6) and (2.23), it is obvious that the diversity order is maintained
with antenna selection as that of the full-complexity system for any L < M. Moreover,
it is now easy to see that the reduction in SNR due to antenna selection is upper
bounded by 10log,,(M/L) dB. We remark that this bound is tighter than that given
by (2.20) for all range of SNR but for larger values of L. Both bounds, however, come

within 1 dB from each other at high SNR.

2.4.2 Tighter Upper Bound for Any N and M When L =1

In this subsection, based on the order statistic approach, we derive a tighter upper

bound for the BER performance for any N and M when L = 1.% As such, we define

3We acknowledge that this case is similar to a system with one transmit antenna and M receive
antennas when L = 1 over Nakagami-N fading channels. The latter case was considered in [41]
where exact analysis was carried out. However, our approach here is much simpler and, as we will

demonstrate later, the resulting upper bound is very close to the exact analysis at medium to high
SNR.
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Z =Xy (2.24)

where, as mentioned above, X;, is the largest term in the sequence Y7, Ys, ..., Y.

It can be shown that the pdf of Z is given by [50]

pz(2) = MF ()7 f(2), (2.25)

where f(z) and F'(z) are given by (2.8) and (2.9) respectively.

The conditional BER performance conditioned on Z is then given by

Bile|2)=Q(V2nZ). (2.26)

To compute the average BER performance, we average the expression in (2.26) with

respect to the random variable Z as follows.

Pe) = f@(¢%§ 2(2)dz
0

NM T s
W/Q 2’)’s NM 16 dz
0

B (NM NM-1 1) 1/2
= o ( Z N 1+7)z+1/2> (2.27)

(A

where the above inequality is obtained by applying the result of Lemma 1 to pz(2),
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ie.,

M -1 _—=z
pz(z) < (N|)M—1 (N — 1)!zNM ‘e z > 0.

and I'(z) is the gamma function, defined as
[(z) = /t’”“le‘tdt, z > 0. (2.28)
0

Although the above expression does not reveal much information about the resulting
diversity order with antenna selection, as we will demonstrate later, this expression

yields the tighter BER performance for small values of N and M with L = 1.

2.4.3 Exact Analysis for the Alamouti Scheme When L =1

In this subsection, we derive an exact expression for the BER performance for the
Alamouti scheme when L =1, i.e., the case N =2, any M, and L = 1. When N = 2,

the expressions in (2.8) and (2.9) become

f(@) = ze~*

and
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respectively. By substituting the above expressions for f(z) and F(z) into (2.25), we

arrive at
pz(z) = MF(z)M_lf(z)
M-1 j
= M Z ZAj,iZi+16_(j+l)z
=0 i=0
where

e (5)0)

By averaging the expression in (2.26) with respect to the random variable Z, we

arrive at

Pye) = /Q (\/2'ysz) pz(2)dz
0
M-1 j %
= M Aj,i/Q (\/Q%z) ZHle Utzgy, (2.29)
=0 =0 3

The integrand in the above expression can be evaluated using integration by parts as

shown in method 4 of Appendix B, and we have

/Q (\/277) Sitle—(H+)z g,
0

i+ 1)1 z+1' o T(+1/2
= z+2 - Z z+2—l . +1/2°
2(]+1 JUG+1) (14+7+7)

(2.30)

Finally, the average BER performance can be obtained by substituting the expression
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given by (2.30) into (2.29). Although the above expression does not reveal much

information about the resulting diversity order with antenna selection, as we will

demonstrate later, this expression yields the exact BER performance for the cases

N = 2, any M, and L = 1, which is essentially the Alamouti scheme when the

receiver uses the best antenna.*

2.5 Simulation and Numerical Results

Figure 2.2:

Two transmit antennas, N=2
10- T T T T T T

& ||~ M=3, L=1: Simulation

10° | -+ M=3, L=1: Eqn. (2.20) ) E
-©~ M=3, L=2: Simulation g
-0- M=3, L=2: Eqn. (2.20) .
—— M=3, L=3: Simulation -
- M=3, L=3: Eqn. {2.20) -

10'7 T T 1 1 1 V Q

0 2 4 6 8 10 12 14

E /N, (d8)

BER performance comparison between various antenna selection scenarios

for N =2, M = 3 along with their upper bounds given by Eqn. (2.20).

In our computer simulations, we used the system model depicted in Fig. 2.1. In

41t should be pointed out that Eqn. (2.29) is similar, after proper normalization, to Eqn. (18) in
[41] where the latter was derived for a single-transmit, M-receive antenna system when L = 1 over
Nakagami-N fading channels.
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all cases, where applicable, antenna selection is based on maximizing the SNR. In Fig.
2.2, we plot the BER against E;/Ny in dB for the cases N =2, M =3, L =1,2,3.
We also plot on the same figure the upper bounds for these cases given by (2.20). We
observe from the figure that all performance curves have the same slope, suggesting
that the antenna diversity is maintained with antenna selection. We also observe
from the figure that the upper bounds are loose at low SNR, but become tighter at

medium to high SNR, especially for small values of L.

. Two transmit antennas, N=2
10 T T T T T T

: Simuiation

. M=3, L=1

10 -+ M=3, L=1: Eqn. (2.22) . E
—©— M=3, L=2: simulation + ]
SO M=3, L=2: Eqn. (2.22) . R
v M=3, L=3; simulation % ]
- % M=3, L=3: Eqn. (2.22) ©

10'7 T T | L 1 1

0 2 4 6 8 10 12 14

E,/N, (¢B)

Figure 2.3: BER performance comparison between various antenna selection scenarios
for N =2, M = 3 along with their upper bounds given by Eqn. (2.22).

In Fig. 2.3, we plot the BER performance for the same cases considered in Fig,.
2.2, but here we compare these simulation results against their upper bounds given by

(2.22). It is clear from the figure that the diversity order is maintained with antenna
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selection. It is also observed from the figure that these upper bounds are tighter for
all range of SNR relative to the upper bounds in Fig. 2.2. Moreover, the loss in
SNR due to antenna selection for L = 2 and L = 1 are about 1.0 dB and 3.0 dB at
P, = 1073, respectively, relative to the case L = 3. These losses are smaller than their
upper bounds (i.e., 10log,4(3/2) = 1.76 and 10log;(3) = 4.77 dB.) We point out
here that the gap between this bound and simulations gets smaller as L approaches
M. This is simply because the approximation we used to reach at (2.21) becomes

more accurate as L increases.

i Two transmit antennas, N=2
10 T T T T T

@
. L3
10'252«1: TR J
R
O :}
¥ g
w0k W 8 T 4
L ~e., *
¥ R &
& 10tk ‘ g @ 4
v e e
e e ®
10-5 E * "@_~ ®. E-
O M=2, L=1: Simulation e 9
-+ M=2, L=1: Eqn. (2.29) %.. .
o] © M=2, L=2: Simulation
10 -0 M=2, L=2: Egn. (2.5) ..‘V Q__ g
O M=3, L=1: Simulation :
<% M=3, L=1: Eqn. (2.29) .
Vv M=3, L=3: Simulation % &
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Figure 2.4: BER performance comparison between the full-complexity system and
that when the reciever uses the best reveive antenna along with their exact theoretical
results given by Eqn. (2.29).

We plot in Fig. 2.4 simulation results along with their theoretical performance

based on the expression given by (2.29) for the cases N =2, M =2,3,and L = 1,3.
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It is clear from the figure that the simulation results match perfectly their theoretical
results, as expected.

We plot in Fig. 2.5 the BER performance for the case N =3, M =2 and L = 1.
We also plot on the same figure the corresponding upper bounds given by (2.20),
(2.22), and (2.27). It is observed from the figure that all curves have the same slope.
More importantly, we observe that the upper bound in (2.27) is very tight and almost

overlaps with simulations at high SNR.

N=3, M=2, L=1

T T T T T T T T

BER

— Simulation * b
O Egn. (2.20) ’ g
v Eqn. (2.22) N
| L*_Ean @27) ik
10' T 1 1 1 1 L 1 1 1
o 1 2 3 4 5 6 7 8 9 10

E /N, (dB)

Figure 2.5: BER performance for the case N = 3, M = 2, and L = 1 along with its
corresponding upper bounds given by Eqn. (2.20), (2.22), (2.27).

We compare in Fig. 2.6 the asymptotic behavior of the upper bounds given by
(2.20) and (2.22) for various cases of antenna selection, particularly, N = 4, M = 4,

and L = 1,2,3. We also add to the same figure the upper bound in (2.27) for the
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case L = 1. We observe from the figure that the bound given by (2.20) is quite loose
at low SNR, but it falls within 1 dB from that given by (2.22), and it becomes even
tighter for the case L = 1. This behavior was also observed for other cases of N and
M. We attribute this behavior to the fact that the approximation we used to simplify
(2.13) (i.e., integrating over the whole space) becomes more accurate as L decreases.
It is also clear from the figure that, when L = 1, the bound given by (2.27) is the

tightest.

10

1: Egn. (2.20)
2: Eqn. (2.20)
3: Eqn. (2.20)
1: Eqgn. (2.22)
2: Eqn. (2.22)
3. Egn. (2.22)
1: Egn. (2.27)
T

.
0 2 4 6 8 10 12 14
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Figure 2.6: A comparison between the asymptotic behavior of the upper bounds
given by Eqgns. (2.20), (2.22) and (2.27) for various selection scenarios. [Eqn. (2.27)
is applicable to the L = 1 case only.]
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2.6 Conclusions

In this Chapter, we analyzed the performance of orthogonal STBC codes with antenna
selection at the receiver. We used a pragmatic selection criterion that maximizes the
SNR at the receiver. We derived two explicit upper bounds on the BER performance
for any number of transmit and receive antennas and any number of selected antennas.
We showed that the diversity order with antenna selection is maintained as that of
the full-complexity system, whereas the SNR deteriorates by a value upper bounded
by 10log,q (M/L) dB. We also derived a tighter upper bound for any N and M when
L = 1. Furthermore,We derived an expression for the exact BER performance for
the Alamouti scheme when L = 1. We presented several examples to validate our

analysis.

36



Chapter 3

Receive Antenna Selection for
Concatenated Channel Codes and

Space-Time Block Codes

3.1 Introduction

In Chapter 2, we consider antenna selection for STBCs only. In this chapter, we
present a comprehensive performance analysis of the concatenation scheme that com-
prises an outer channel code and an inner orthogonal STBC with receive antenna
selection. For the outer code, we consider both convolutional code (CC) and trellis-
coded modulation (TCM) codes.! The latter codes are attractive because they main-

tain the full-rate feature of orthogonal STBCs, unlike the case of CC codes. In

10ther types of codes fall under either of these two classes of codes. Thus, their performance
analysis follows immediately from the analytical techniques presented in this paper.
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particular, we derive upper bounds on the bit error rate (BER) for this concatenation
scheme with receive antenna selection. In our analysis, we assume that 1) the receiver
uses only L out of the available M receive antennas, where, typically, L < M, 2) the
selected antennas are those that maximize the instantaneous received signal-to-noise
ratio (SNR), 3) the channel state information (CSI) is perfectly known at the re-
ceiver, and 4) the underlying channel is fully interleaved. We derive an explicit upper
bound on the BER for the above concatenation scheme for any N, M and L, where
N denotes the number of transmit antennas. We show that the diversity order, with
antenna selection, is maintained as that of the full complexity system, whereas the
deterioration in SNR is upper bounded by 10log,,(M/L) dB. These results are valid
for any outer code and any underlying fading channel model. Motivated by the fact
that the above upper bound is relatively loose for small values of L, we also derive
tighter upper bounds for the following special cases: any N and M when L = 1; and
N =2, any M when L = 1. The former case corresponds to generalized orthogonal
STBCs, whereas the latter is essentially the Alamouti scheme when the receiver uses
the best antenna. These upper bounds can be extended in a straightforward manner
to other types of outer codes and fading channels. Finally, we present simulation

results that validate our analysis.
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3.2 System Model

The system under consideration is shown in Fig. 3.1, which models a wireless commu-
nication system that employs N transmit and M receive antennas. As shown in the
figure, the incoming data is encoded by a channel code of rate r, interleaved, and then
encoded by the STBC encoder. The output of the STBC encoder is then transmitted
from the N transmit antennas. Blocks that involve modulation, demodulation, etc.,
have been suppressed from the figure due to their irrelevance in the analysis.

At the receiver, after demodulation, matched-filtering, and sampling, the signal

Tf received by antenna j at time t is given by

where ¢ is the signal transmitted from antenna 7 at time #; the noise w? at time ¢ is

. N .
ri =Y a;(t)d +w]
=1




modeled as independent samples of a zero-mean complex Gaussian random variable
(rv) with variance Ny/2 per dimension. The coefficients a; ;(t) model fading between
the ™" transmit and j** receive antennas at time instant ¢ and are assumed to be
complex Gaussian random variables with variance 0.5 per dimension. In addition,
the fading coefficients are assumed to be constant over a block of N consecutive
symbols within a frame and vary independently from one block to another. This is a

necessary assumption to allow for signal decoupling at the receiver.

3.3 Performance Analysis of the Full-Complexity

System

For the purpose of making this chapter self-contained, we review in this section some
of the main results, related to our work, on the performance of the above concate-
nation scheme without antenna selection. We refer to this system as full-complexity.
When an outer channel code is concatenated with a STBC over fading channels, both
time and space diversity gains can be achieved [49]. In such cases, the maximum
diversity order that can be achieved is NMdy;,, where dp;, denotes the minimum
Hamming distance of the outer channel code. For CC codes, dy, is simply the mini-
mum Hamming distance of the code, whereas it represents the minimum symbol-wise
Hamming distance for TCM codes. Such diversity gains may be achieved when the
underlying STBC is orthogonal and the channel is fully interleaved. The latter condi-

tion is normally referred to as ideal interleaving, which can be accomplished by using
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proper interleaving between the two codes (see Fig. 3.1.) Throughout our analy-
sis, we shall assume that ideal interleaving is achieved, and then later consider more
realistic channel models, e.g., block fading.

We remark that the approaches we follow in analyzing the CC and TCM cases
are somewhat similar. However, because the resulting upper bounds for one case are
not directly applicable to the other, we opt for keeping the analyses of the two cases

separate throughout the chapter. We shall start with the CC case.

3.3.1 CC Codes

Let s and e denote the transmitted and erroneously decoded codewords, respectively.
Also, let ¢ (s, e) denote the set of time indices at which s and e differ and d = |¢ (s, €)]
denote the size of ¢ (s, e). Assuming binary phase-shift keying (BPSK), maximum-
likelihood (ML) decoding, and that the channel state information (CSI) is perfectly
known at the receiver, the conditional pairwise error probability that the receiver will

select e over s conditioned on the channel gains is given by [35]

Pid]a) = Q \2%% 5 3 lanf

nep(s,e) j=1 i=1

NMd
T Eb

= Q| 25w 2 bl |, (3.)
\*N % &

where a ={an;;:n€p(s,e), 1=1,2,... ,N, j=1,2,... ,M}. To compute the

average pairwise error probability, we average the expression in (3.1) with respect
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to the probability density function (pdf) of the rvs |ak‘2 fork =1,... , NMd. To
simplify the analysis, we first introduce an auxiliary rv that we denote by X, defined

as

NMd

X = Z Iak|2.
k=1

Note that X is Chi-square distributed with 2N Md degrees of freedom and whose pdf
is given as [49)

1 NMd—1 -z
—_— > 0.
fx(z) (NMd 1)!x e x>0

Consequently, the average pairwise error probability can be shown to be [49)

1 v \1"MéNMa-1 ANMd—1+EK\ [1 7 \1°
=|=(1- - {1 s
B2l [2 (1 1+'ys)] kzzo k AR AET)

where v, = %%Eﬂakﬁ = %% and E[-] is the expectation operator. When the SNR

is sufficiently large, the expression in (3.2) can be approximated by [49]

ONMd —1 r B\ VM
Pg(d)~< Nd )(4—]\7%) . (3.3)

Clearly, at high SNR, the performance is dominated by the minimum Hamming dis-
tance of the outer code, which we denote by dpni,. Consequently, the maximum diver-

sity order is NMd,. The average BER for this scheme is then upper bounded as
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49]
P<t 3 BiPid), (3.4

where k is the number of bits shifted into the shift register of CC encoder each time,
and By is the multiplicity corresponding to distance d, and represents the coefficients

of the derivative of the CC transfer function.

3.3.2 TCM Codes

Similar to the above case, let ¢ (s, e) denote the set containing the time indices at
which the codewords s and e differ and d denote the size of this set. As such,
d represents the symbol-wise Hamming distance between s and e. The conditional
pairwise error probability that the receiver will select e over s conditioned on the

channel gains is given by

1 E M N
Pd]|a)=Q sz\;o S 3D ol Isn — eal? (3.5)

negp(s,e) j=1 i=1

where |s, — e,|* is the normalized squared Euclidean distance between the signal on
the correct path and that on the error path at time index n, and E,/Nj is the average
energy per transmitted symbol. As shown in [51], Chernoff bound of pairwise error

probability for TCM will lead to a quite loose BER bound due to the relative low
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dmin compared to CC, we use Craig’s formula for @ (z) [52]

So, the conditional pairwise error probability given in (3.5) can be represented as

w/2
1
- - =z n,e n n do
Pla) = 1 [en|-Fmemm ¥ SO anis o — enl
0 nep(s,e) j=1 i=1
w/2
1
- }/ H exp( N4N sin? Ozzlan”| [5n = x| )d9
0 nEp(se) =
17r/2 M N
-/ O exp< T cw) (3.6)
0 nEp(s.e) Jj=1 i=1
where &2 £ & B |s, — en|®. Now let us define Y, as

Y, = ZZ lomis|?, neo(se). (3.7)

i=1 i=1

Clearly, the rvs Y, are independent and Chi-square distributed, each with 2NM

degrees of freedom and a pdf given by

'y(NM_l)e_y. (3.8)
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In order to evaluate the average pairwise error probability, we average (3.6) with

respect to the distributions of Y,, as

w/2 o)

1 1
0 n€e(se)y
/2

1 1 —-NM
= 2
= W/ | | (1+————Sm205n> do (3.9)

0 ne‘P(S7e)
At high SNR, (3.9) can be approximated as

/2

1 1 —NM
0 nEp(s.e)
w/2
1 . 2NMd o —NM
= ;/(sme) db H (62)
0 ney(s,e)
2NMd -1 M\ (1 B\ TV
neyp(s,e)

The last line of (3.10) is obtained by changing the variable ¢t = ctg6, and then applying
the definite integration method 3 in Appendix B. It suggests that the diversity order
is NMdmin, where dp, is the minimum symbol-wise Hamming distance of the TCM

code.?2 An upper bound on the BER can then be found as

/2
PbS%/%T(D_(—éS,I)‘ df (3.11)

0

2We point out that the maximum diversity order, i.e., NMdpy;y, is achieved only in the case of
ideal interleaving. On the other hand, when the channel is quasi-static fading, the resulting diversity
order is NM. Also, for block fading, the diversity order is anywhere between NM and NMdpyn,
depending upon how fast fading is relative to the codeword length. We will elaborate on this later.
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where k denotes the number of bits per transmitted symbol, T'(D (6), I) is the transfer
function of the TCM code, which is obtained directly from the corresponding error

state diagram [51]. The branch labels of the error state diagram, denoted by D (8),

after being averaged with respect to the fading coefficients, are given by
1 ~-NM
D(9) = (1 + ———52> : (3.12)

The definite integral in (3.11) can be evaluated to any degree of accuracy by numerical
integration methods, see [53] and [54]. That is changing the variable t = cos(26), and

then applying the numerical integration method 5 in Appendix B.

3.4 Upper Bounds on the BER with Antenna Se-

lection

3.4.1 General Upper Bound for Any N, M and L

In this section, we derive an upper bound on the BER for the above concatenated
coding scheme with antenna selection. That is, the case when the receiver uses only
L out of the available M receive antennas, where 1 < L < M. Note that there are

(AL/I ) subsets to choose from, but we assume here that the selected subset is the one
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that results in the maximum SNR at the receiver. Let us define W, ; as

N
Waj =Y lansil’, nep(se), j=12,...,M, (3.13)

i=1

which represents the amount of energy picked up by the j* receive antenna at time

index n. Without loss of generality, let us assume, at time index n, that we have
Wn,l S Wn,2 S e S Wn,Ma ne (,O(S,G) . (314)

By knowing that the sum of the largest L out of M nonnegative numbers is always

greater than or equal to the average of these M numbers multiplied by L, we have

M N

M N
> Slanil 21 3D il (3.15)
j=1 i=1

j=M—-L+1 =1

Armed with the above simple result, we shall now proceed to derive an upper bound

on the BER for both the CC and TCM cases.

CC Codes

When the receiver selects the best L antennas, the conditional pairwise error proba-

bility given by (3.1) can be upper bounded as

r [ E, ¥4
< —=2 2. .
Pd|a)<Q 2NMNO;|%| (3.16)
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By averaging the the expression in (3.16) with respect to the rvs ]ak|2, we get [49]

NMd
L NMd-1 T
=y, — 1 =Y
Pyd) < 1 M'Z Z (NMd 1+k> 1y MZ
2 L+ 277 k=0 k 2 L3

k

(3.17)
At high SNR, (3.17) can be approximated as
ONMd -1\ [, r L E\ "
< =
Py(d) < ( NMd ) (4NMN0> . (3.18)

By comparing (3.18) with (3.3), it is obvious that the diversity order is maintained
with antenna selection for any L < M, whereas the SNR is degraded by 10log,,(M/L)
dB. As for the BER, it can also be upper bounded by using the expression in (3.4)

with P,(d) replaced by its expression in (3.17).

TCM Codes

When the receiver selects the best L antennas, the conditional pairwise error proba-

bility given by (3.5) can be upper bounded as

L E
Rle) < @y O S5 lanisl o - ol

nep(s,e) j=1 =1
/2

_ %/ T exp( - 0M222|an”|)d9 (3.19)

) =1 =1
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Averaging (3.19) with respect to the channel gains yields

/ exp (— : 75 AL/[ )fy (yYn) dyndf
0

1 L —N]\l
- / H < sin20 M " > (3.20)
0 nEp(se)

P, (d)

IA
3 |-

(o]

F’n

©
o
]

where fy (y,) is defined by (3.8). When the SNR is sufficiently large, the expression

in (3.20) can be approximated by

ONMd — 1 wm) /1 L E,\ VM
< _ 2 s
b (d)~< NMd ) IT (0 =eal) (NMNO) '

(3.21)

which clearly shows that the diversity order is maintained with antenna selection,
and the loss in coding gain is upper bounded by 10log,,(M/L) dB. An upper bound
on the BER can be found by following similar steps that led to (3.11). In this case,

the branch labels in (3.12) are replaced with

sin® 6

D(6) = <1+ = —A%é,i>_NM. (3.22)

As we will demonstrate later, the above upper bounds are somewhat loose for
small values of L. This motivates us to derive tighter upper bounds for special cases,
including generalized orthogonal STBCs and the Alamouti scheme when the receiver

selects the best antenna, i.e., L = 1.
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3.4.2 Tighter Upper Bound for Any N and M When L = 1:

Bound 1

In this section, we take the approach of order statistics to derive an upper bound on
the BER for any N and M when L = 1. The sequence W, ; for n € ¢ (s,e), j =
1,2,..., M, defined by (3.13), may be considered as a random sample from an ab-

solutely continuous population with pdf
1 N-1_—w
flw)=s—xw" e, w>0 (3.23)

and cumulative distribution function (cdf)

-1

= whe v
Flw)=1— w > 0. (3.24)
k!
k=0
Let us define Z,, as
Zn = Imax (Wn,l, Wn,g, . ,Wn,M) . (325)
The pdf of Z, is then given by [50]
pz(z) = MF(2)"71f(2)
- M N-1_-—z —z N= zk M
= o 1)!z e (1 —e P (3.26)
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where z > 0. Let us also define U as

U= ZZ’“ neE p(s,e). (3.27)

Since the rvs Z,, for n € ¢ (s, e), are independent and identically distributed, the pdf

of U may be expressed as

pu(u) = pz (v) @ pz (v) ®pz (u) ® - ®pz (u), (3.28)

where pz (u) is defined by (3.26) and ® denotes convolution. To find the average
pairwise error probability, we will eventually need to do the averaging with respect
to py(u) as given by (3.28). However, doing so is very difficult because obtaining a
closed-form expression for py(u) involves convolving n complex terms (see (3.26)),
which is cumbersome and complicated to carry out. To simplify the analysis, we first
find an approximation of py(u) using the following simple result and then use this
approximation in the averaging process instead.

Applying the result of the Lemma, 1 in Chapter 1 to the right side of (3.26) yields

M
pz(z) < TiLEe 1)'ZNM-16_Z, z>0. (3.29)

Let us denote the right side of (3.29) by h(z). As such, py(u) can be upper bounded
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as

pu(u) = pz(u)®pz(w) ®pz(u)® - ®pz (u)
< h(u)@h(w)®h(w)®- - ®h(u)
= FH{IF )]
- Fl{ Tk <1+j1w>”M]d}
!

M I NMd-1_—y

where F and F~! denote the Fourier transform and inverse Fourier transform, re-

spectively, and I' (-) is the gamma function, as defined in (2.28) Chapter 2.

CC Codes

When the receiver selects the best antenna, the conditional pairwise error probability

(3.1) can be expressed as

P(d|0)=Q(vV2nD). (3.31)
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The average pairwise error probability is then computed by averaging (3.31) with

respect to the pdf of U as

B(d) =

Q (V) pu(w)du

((x!)’")d ) (NlMd) ZQ (\/57_“) uNMd-1emugy,

l (NM)' d ~ NMlid-1 T (l + %) 73/2
2 ((N')M> (1 Z ﬁl' (1 + 7s)l+1/2 (332)

=0

IA

where the above inequality is obtained by substituting the last line of (3.30) for py(u)
in the above expression. The BER can be upper bounded using (3.4) and the last line

of (3.32).

TCM Codes

Let us define Z as

Z={Z,: neyp(se)}, (3.33)

53



where Z, is given by (3.25). When L = 1, the conditional pairwise error probability

conditioned on Z can be represented as

1 E, )
= — Z — ey,
Py(d | Z) Q N 2N, W lsn — e
ney(s,e)
w/2
1 1 B, 1 )
= - I n|9n 7 €n 0
W/exp N 4N, sin® 0 Znls enl” | d
0 nep(s,e)
w/2
1
= = / 1T exp( . 5gz)d9. (3.34)
T 0
o nEp(se)

exp< 6,2LG> 7(2n)dz,d0
sin? @

Pyd) = -71;/ H

2
n ndn
exp( = 95nz) h(z,)dz,df

(%?)4 ( +8m1 952> ‘NM)de. (3.35)

The upper bound in (3.35) can be approximated at high SNR as

IA
N |
—
—

IS
3
m
€
0
tb

I/H

nep(s,e)

ONMd — 1 _NM Ny g\ T

ney(s,e)
(3.36)

By comparing (3.36) with (3.10), we can easily see that selecting the best receive

antenna results in a coding gain loss of 10 log( 1\2%';1 /,/VNM) dB, which is tighter than
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the upper bound suggested by (3.21), that is, 10log,o(M/L) dB. For instance, when
N =4 and M =4, as per (3.36), the loss in coding gain is 4.25 dB, whereas it is 6.0
dB in (3.21). Additionally, an upper bound on the BER can be obtained by following
similar steps that we used to arrive at (3.11), where the branch labels of the error

state diagram, defined by (3.12), are modified as

D(6) = M)t (1 + -1——52> - : (3.37)

3.4.3 Tighter Upper Bound for the Alamouti Scheme When

L =1: Bound I1

In this section, we derive a tighter upper bound on the BER for the case when
N =2, any M, and L = 1, which is essentially the Alamouti scheme when L = 1.

When N = 2, the expressions in (3.23) and (3.24) become

and
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respectively. As defined by (3.25), the pdf of Z, is given by

f2(2) = MFw(2)" " fw(2)

= MY Y Ajatte Ut (3.38)

§=0 =0
Where AJ,?, = (_]‘)] (Mj_l) (Z)'

CC Codes

When L = 1, the conditional pairwise error probability conditioned on Z can be

represented as

d
Pd|2Z) = Q[ \|2%)_Z
n=1

d
1
S 5 €xp (——’Ys ; Zn)

d
1
= s [Texe (=220, (3.39)
n=1

where Z is defined by (3.25). The average pairwise error probability is then given by

n=1

P2<d)=/---/cz 20> 2 | falm) - falea)da - da
0 0

(3.40)
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Substituting (3.38) and (3.39) into (3.40) yields

P(d) < %( / exp(—%Z)-fz(Z)dZ)

0

- (MZZA], Hl))M). (3.41)

7=0 =0 ]+1+78

It is not possible to simplify this expression further in order to obtain a tighter upper
bound on the loss in coding gain due to antenna selection. Nevertheless, as we will
demonstrate later, this new upper bound is very tight at all SNR. As for the BER, it

can be upper bounded by using the expressions in (3.4) and (3.41).

TCM Codes

When L = 1, averaging (3.34) over Z with pdf fz(z,) given by (3.38) yields

Py(d) = / 11 / exp( g0 ) fz(zn)d2,d0
0 nEp(s,e)
-1 j 1 —(i+2)
M A i 1! ' dé.
( Z s (04 ( sin? 6 ”) )

n/2
7=0 =
(3.42)

1
(s

0 nE€p(se)

As for the BER, we upper bound it using (3.11), with D (6) replaced by

M-1 j ' ‘ 1 —(i+2)
- (M SN A+ 1) ( 7 n) ) . (3.43)

j=0 =0
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As we will demonstrate later, the expression in (3.42) yields ezact analytical results,

where it can be easily evaluated using numerical techniques.

3.5 Simulation and Numerical Results

In our simulations, we use the system model depicted in Fig. 3.1. In all cases, it is
assumed, unless otherwise stated, that the channel fading coefficients remain fixed
over a block of N consecutive symbols and change independently from one block
to another. It is also assumed, where applicable, that antenna selection is based
on maximizing the SNR. For the CC code, we use a rate 1/2 code with generator
polynomials (7,5)0e, and use BPSK modulation. The minimum distance for this
code is dp,;, = 5. Since the underlying STBCs are orthogonal, the maximum diversity
order is 5N M. For the TCM code, we use a rate 2/3, 4-state, 8—PSK TCM scheme
presented in [55]. The effective length for this code is dmin = 2. Consequently, the
maximum diversity order is 2N M. More detailed elaboration on these two codes, e.g.,

transfer function can be found in Appendix A.2 and A.3.

3.5.1 Interleaver Effect on Performance

Throughout our analysis above, we assume that the underlying channel is fully in-
terleaved. However, in our simulation model, we assume that the fading coefficients
remain constant over a block of at least N consecutive symbols in a frame. (We

denote the length of this block by L'.) Clearly, to achieve ideal interleaving (or at
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least get close to it), one must use interleaving between the outer channel code and
the orthogonal STBC. However, the effectiveness of interleaving greatly depends on
the value of L’ relative to the codeword length, denoted by N’. In this subsection,

we investigate the effect of interleaving on the achievable diversity order.

CC Code: N=2,M=1,2,3
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Figure 3.2: BER performance comparison of the full-complexity system with block
interleaving (CC case).

In Fig. 3.2, we plot the BER performance against E,/Ny in dB for the cases N = 2,
M =1,2,3 when the receiver uses all available antennas with block interleaving (for
the CC case). By block interleaving, we mean that the employed interleaver swaps
the odd indexed convolutional coded symbols between two consecutive convolutional
frames before they are fed into the STBC encoder. Thus, independent fading is

guaranteed among coded symbols within a frame. On the same figure, we plot the
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performance bounds for these cases using (3.2) and (3.4) (only the first 5 terms in the
sum are considered). It is clear from the figure that, the maximum diversity order,
which is 10M, is achieved. We also observe the bound is loose for BER ranging from
107! to 1073, This is because the union bound does not account for the intersection

of the pairwise decision region.

CC Code with Block/Random interleaver: N=2, M=1, N'=20000, L'=10
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Figure 3.3: BER performance comparison of the full-complexity system with and
without interleaving (CC case).

We also examine the performance of the above concatenation system when there is
no interleaving and compare it with the case of block interleaving. In our simulations,
we assume a block of length L' = 10 within a frame of length N’ = 20000. The
simulation results are plotted in Fig. 3.3 (for the CC case). On the same figure, we

also plot the simulation results for the case when the block interleaver is replaced
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with a pseudo-random interleaver. We observe from the figure that both random
and block interleaving achieve the maximum diversity order, whereas much of the
available diversity is lost in the absence of interleaving. We attribute this to the fact
that L' < N’, which makes interleaving effective. Though, we expect the achievable
diversity order to deteriorate as L’ increases with a fixed N’, and the diversity order
becomes exactly NM when L' = N’. Similar results were observed for the TCM case.
For the rest of the simulations, we assume that L' = N, and therefore the maximum

diversity order can be easily achieved with block or pseudo-random interleaving.

3.5.2 (General Upper Bound

CC Code: N=2, M=3, L=1,2,3
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Figure 3.4: BER performance comparison between various antenna selection scenarios
along with their upper bounds (CC case).
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In Fig. 3.4, we plot the BER performance for the cases N =2, M =3,L =1,2,3
along with their general upper bounds derived above (for the CC case). It is clear from
the figure that all curves have the same slope, suggesting that they have the same
diversity order as that of the full complexity system, which agrees with our analytical
results derived above. Moreover, the loss in SNR. due to antenna selection for L = 2
and L = 1 are about 0.8 dB and 3.0 dB at P, = 1075, respectively, relative to the

case L = 3 (i.e., no selection.) These losses are smaller than their upper bounds (i.e.,

101og;4(3/2) = 1.76 and 10log,o(3) = 4.77 dB.) We also observe from the figure that
the gap between the simulations and their upper bounds gets smaller as L approaches
M. This is simply because the approximation we used to arrive at (3.15) becomes more

accurate as L increases.

TCM Code: N=2, M=3, L=1,2,3
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Figure 3.5: BER performance comparison between various antenna selection scenarios
along with their upper bounds (TCM case).
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We repeat the above experiment for the TCM case. The simulation results along
with their respective general upper bounds are plotted in Fig. 3.5. It is clear from the
figure that all curves have the same slope, which, again, suggests that the diversity
order is maintained with antenna selection. Moreover, the loss in SNR due to antenna
selection for L = 2 and L = 1 are about 0.8 dB and 3.0 dB at P, = 107°, respectively,

relative to the case L = 3 (i.e., no selection.)

3.5.3 Tighter Upper Bounds

Bound |, TCM code: N=3, M=2, L=1
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Figure 3.6: BER performance comparison between simulations, general upper bound,
and Bound I for the cases N =3, M =2,L = 1,2 (TCM case).

We plot in Fig. 3.6 the BER performance for the cases N =3, M =2, L = 1,2

(for the TCM case.) We also plot on the same figure the corresponding general upper
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bound and tighter upper bound (Bound I) derived above.We observe from the figure
that all curves have the same slope. More importantly, we observe that Bound I is

looser at low SNR. but becomes tighter at high SNR.

Bounds i & I, CC Code: N=2, M=3, |.=1

10™ == L=1, Simuiation \ K q

—%= L=1, General Bound A X ANERY
45 || =9 L=1, Bound | \ AN AN

10" H —+— L=1, Bound If N ok
O L=3, Simulation \\ 3*\\ \
— - L=3, General Bound N Vo

10'20 T T I L 1 L 1 L ¥

2 0 2 4 6 8 10 12 14 16
E,/N, (dB)

Figure 3.7: BER performance comparison among the general bound, Bounds I and
II for the cases N =2, M =3,L = 1,3 (CC case).

In Fig. 3.7, we compare the three bounds for the CC code for the case N =
2,M = 3,L = 1,3, along with the corresponding simulation results. We observe from
the figure that Bound II is the tightest at all SNR but Bound I catches up with it at
high SNR.

In Fig. 3.8, we plot the BER performance along with the corresponding Bound
IT for the TCM scheme for the cases N = 2, M = 3, L = 1,3. We observe from the

figure the perfect match between the simulation results and their theoretical results.
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Bound Il, TCM Code: N=2, M=3, L=1
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Figure 3.8: BER performance comparison between simulations and Bound II for the
cases N =2, M =3,L =1,3 (TCM case).

3.6 Conclusions

In this chapter, we analyzed the performance of combined channel coding and space-
time block coding with receive antenna selection. We derived upper bounds on the
BER performance of this concatenation scheme, including two tighter bounds when
the receiver uses the best antenna. We showed that the diversity order with antenna
selection is maintained as that of the full-complexity system, whereas the coding gain
deteriorates by a value upper bounded by 10log,, (M/L) dB. These results can be
extended in a straightforward manner to other types of codes, as well as other types of
fading. We also presented several examples through which we validated our analytical

results.
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Chapter 4

Receive Antenna Selection for
Space-Time Block Codes Over
Correlated Rayleigh Fading

Channels

4.1 Introduction

This chapter studies the performance of combined convolutional coding and orthog-
onal space-time block coding with receive antenna selection over correlated Rayleigh
fading channels. In particular, we derive upper bounds on the bit error rate (BER)
for the above concatenation scheme with antenna selection. In our analysis, we con-

sider transmit correlation, receive correlation, or joint transmit-receive correlation.
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We also assume that the receiver uses only L out of the available M receive anten-
nas, where, typically, L < M. The selected antennas are those that maximize the
instantaneous received signal-to-noise ratio (SNR). Our analytical bounds show that
the diversity order, with antenna selection, is the same as that of the full complexity
system, whereas the deterioration in SNR is upper bounded by 10log,o(M/L) dB. We
also quantify the loss in coding gain due to the presence of spatial correlation. This
result holds for any N, M and L, where N denotes the number of transmit antennas.

We also present several numerical examples that validate our analysis.

4.2 System Model

The systems under consideration in this chapter are the same as those considered
in Chapters 2 and 3 except that the subchannel fading coefficients are no longer
independent. A widely accepted model for the correlated Raylaigh fading channel is

given by

H = R}’GR}/? (4.1)

where H represents the M x N MIMO channel matrix with entries o;;,% = 1,2,... , N,
j = 1,2,...,M. The entries a;; model fading between the i** transmit and j*
receive antennas. Ry = E [HFH] is the N x N transmit correlation matrix, and
R,=F [HHH ] is the M x M receive correlation matrix. The superscript H denotes

Hermitian transpose, and F [-| denotes expectation. G is the M x N i.i.d. complex
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Gaussian matrix with zero mean and unit variance entries.

This model incorporates three assumptions as explained explicitly in [44], 1) the
correlation between the fading from two transmit antennas to the same receive an-
tenna is transmit correlation and does not depend on the receive antenna; 2) the
correlation between the fading from a transmit antenna to two different receive an-
tennas is receive correlation and does not depend on the transmit antenna; 3) the
correlation between the fading of two distinct antenna pairs is the product of the
corresponding transmit correlation and receive correlation. So, we have the correla-
tion matrix of the vectorized channel R = vec(H)vec(H)¥ = R; ® R, [47], where
vec(-) denotes vectorization operation and ® denotes Kronecker product. In the case
R, = I, and R; = Iy, the model simplifies to the ideally uncorrelated MIMO chan-
nel. If R, = I, and R; # I, the model represents transmit correlation only. That
is, the receive antennas are assumed to be placed in a rich scattering environment,
whereas there are not many scatterers around the transmit antennas, which is typical
in the downlink channel in mobile communication systems. On the other hand, the
case R, # Iy, and R; = Iy represents the receive correlation only scenario. The
Joint transmit-receive correlation represents the scenario when both the transmit and

receive correlation exist. That is when R, # I, and R; # Iy.
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4.3 Performance Analysis of the Full-Complexity

System over Correlated Channels

We review in this section the performance of the above coding scheme without antenna
selection. We refer to this system as full-complexity. First, we consider orthogonal
STBC-only system. Then we extend the analysis to the combined CC and STBC
scheme. We remark that the approaches we follow in analyzing these two systems are
somewhat similar. However, in order to show the antenna diversity contributed by the
MIMO channel and time diversity introduced by CC, we opt for keeping the analyses
of the two systems separate throughout the chapter. We shall start with the STBC-
only case. We assume in our analysis binary phase-shift keying (BPSK) signaling,
maximum-likelihood (ML) decoding, and that the channel state information (CSI) is

known exactly at the receiver.

4.3.1 Orthogonal STBC-Only System

The conditional BER, conditioned on the channel gains, can be expressed as

Plela)=Q (|25 Do Lol (42)

7=1 i=1
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where, E, is the average energy per symbol per each transmit antenna. By using

Craig’s formula for @) (z) [52], we have

n/2

P (e|a)=1/exp —ELEM:EN:M--\? do
b T Ny sin? 0 4 i '
0 Jj=1 =1
Denoting E [] as the expectation operation with respect to channel coefficients

a={a;;: j=1,2,... ,M,i=1,2,... ,N}, the average BER can be expressed as

w/2

exp 2oL ifya.iﬁ dé.
Ny sin? 6 »

j=1 d=1

It can be expressed in the form of the correlation matrix of the vectorized channel by

using the characteristic function of quadratic form of complex normal variable [56],

w/2
1 E, 1 -1
P = - det [ I =Z=__—_R do
b (€) W/[e (MN+Nosin29 )]
0
/2 r(m) -1
1 FE 1
= - 1+= M (R do 4
7T/k—1[ +N0Sin29 k( )] ( 3)
o k=

where r(X) denotes the rank of matrix X, and \(X), £ = 1,2,--- ,r(X) are the

eigenvalues of X.

Let R; = UA, U and R, = VA, V¥ where U and V are unitary, and A; and A,

are diagonal. By using the following property of Kronecker products (A ® B) (F ® G)
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= (AF) ® (BG), we have
R=R,®R.=(URV)(A®A4A,) (U@ VH). (4.4)

Since U and 'V are unitary, it follows that (U ® V) is unitary as well. Hence (4.4)
is an eigenvalue decomposition of R and the diagonal matrix (A; ® A,) contains the

eigenvalues of R. So the expression in (4.3) can be represented as

1 /2 r(R¢) r(Rr)
Pb (6) / H

=1 j=1

[ Fo ain? eA (R (Rr)} Tw )

At high SNR, (4.5) can be approximated as

2r®R)r(R) -1\ | | o
ne ~ (M ) ]| T

HA | (4%) — . (4.6)

This suggests that the diversity order in the case of joint transmit-receive correlation
is 7(R¢)r(R,). Clearly if the matrices R; and R, are full rank, then the diversity
order in this case will be NM, which is the diversity order achieved with independent

fading. However, the penalty due to correlation is a loss in coding gain. In contrast,

when there is no correlation, (4.6) simplifies to

Py(e) = (2N]34M_ 1) (4-%) —NM. (4.7)
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By comparing (4.6) and (4.7), we can see that the loss in coding gain due to the

presence of correlation is given by

r(Re) —?(11175 r(R,) _TGITJ
101og; H Ai (Re) H A (Ry) dB. (4.8)
i=1 i=1

4.3.2 Combined CC and Orthogonal STBC System

Let s and e denote the transmitted and erroneously decoded codewords, respectively.
Also, let ¢ (s, e) denote the set of time indices at which s and e differ and d = |¢ (s, e)|
denote the size of ¢ (s, ) . The conditional pairwise error probability that the receiver

will select e over s conditioned on the channel gains is given by

d

Pl = 0|25 E S S S o

n—l 7j=1 i=1

where o = {anij:n € @(s,e), i=1,2,... ,N, j=1,2,... ,M} and E, denotes the
average bit energy.
To compute the average pairwise error probability, we average the expression in

(4.9) with respect to a.
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With ideal interleaving, the fading coeflicients experienced by each symbol within a
codeword are independent, and thus the average pairwise error probability can be

represented as

P(d) — %/

j=1 i=1
/2 4
— ;/[det <IMN+'J%7€”ZSIS29 )] do
_ lfﬁ”ﬁ [Hiﬂ-—l_x(m)x(m)}_dde (410)
B 7T0 gl N Nysin?6™* J ’ )

The average BER for this scheme is then upper bounded as

P, < i BaP, (d) (4.11)

d=din

where (3 is the multiplicity of CC corresponding to distance d.

At high SNR, (4.10) can be approximated as

r(Re) T(+Rt)
_(2r(Ry)r(Ry)d~1
P~ (T [T (0
—r(Re)r(Rr)d

1
"(Re) R

. 1:[1 ) (Ry) (4%%) . (4.12)

Therefore, for combined CC and orthogonal STBC, the diversity in the joint transmit-

receive correlation case is r(Ry;)r (R, )dpy,. Similar to the STBC-only case discussed
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in the previous section, assuming that the correlation matrices are full rank, the loss

in coding gain due to correlation is the same as that shown in (4.8).

4.4 Performance Bounds of the Antenna Selection

System over Correlated Channels

In this section, we derive upper bounds on the BER performance for the above systems
with antenna selection. That is, the case when the receiver uses only L out of the
available M receive antennas,where 1 < L < M. Note that there are (ALl ) subsets to

choose from, but we assume here that the selected subset is the one that results in

the maximum SNR at the receiver.

4.4.1 Orthogonal STBC-Only System

Without loss of generality, we can assume that

N N N
Z|a1,i|2 < Z Ia2,i|2 <-.- < Z ]aM,ilz-
=1 =1 =1

By knowing that the sum of the largest L out of M nonnegative numbers is always

greater than or equal to the average of these M numbers multiplied by L, we have

2 M N 2
logal” < X0 Y layal”. (4.13)

i=1 j=M—L+1i=1

Mz

L
M

J

i
—

74



By choosing the largest L terms in the sequence SO lojil®,5 = 1,2,..., M, the

conditional BER, conditioned on the channel gain, can then be upper bounded as

LEMN
Ble|la)<Q zﬁﬂ%%;é;aﬂ . (4.14)

By comparing the right-hand side of the expression in (4.14) with that in (4.2), we
notice that both are the same except that the SNR in the former expression is scaled
by L/M. Therefore the average BER performance, with antenna selection, will have

a similar expression as that for the full-complexity system, namely

”Mm Or LR 1 -1
+ ===\ (Ry) ) de.
/ H;l[ M Ny (Fe) % ()
(4.15)
At high SNR, (4.15) can be approximated as
T(Rt T(Rt)
27"(Rt)7"(R7-) - 1)
Pyle) =~ Ai (Ry)
0~ (" )| @
=) ﬁ r(Re)r(Ry)
i " ( LE,
jl;[l A (Ry) (‘Wﬁo) (4.16)

This expression suggests that the diversity order with antenna selection is the same as
that of the full complexity system, whereas the loss in coding gain is upper bounded

by 10log,,(M/L) dB
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4.4.2 Combined CC and Orthogonal STBC System

We can assume without loss of generality that at a certain time index n,

N N N
Z |an,1,i,2 < Z |an,2,il2 <. < Z Ian,M,il2
=1 =1 —1

Consequently, we have

L M N 9 M N 9
2 2 2 lemail < 30 3 Jaml” (4.17)
Jj=1li=1 j=M-L+1i=1

By choosing the largest L terms in the sequence sz\;1 ]an,j,¢|2 ,J=1,2,... ,M,at each
time index n, the conditional pairwise error probability, conditioned on the channel

gain, can be upper bounded as

E d M
P(dle)<Q | |2~ FZZZIM
n=1

7=1 i=1

ilh

N

The average pairwise error probability, with antenna selection will also have a

similar expression as that for full-complexity system, namely

(4.18)

As for the BER, it can also be upper bounded by using the expression in (4.11) with
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P, (d) replaced by its expression in (4.18).

At high SNR, (4.18) can be approximated as

1
r(Re) T(R¢)
_(2rR)r(R,)d -1 .
P2 (d) ~ ( T(Rt)T(RT)d E )\z (Rt)

1 -Tr Rt T R/,- d

L) h LB (Re)r(Rr)
; —_— . 4.1

I[» ) (%375 (4.19)

By comparing (4.12) with (4.19), it is obvious that the diversity order is main-
tained with antenna selection as that of the full-complexity system for any L < M,
and the reduction in SNR due to antenna selection is upper bounded by 10 log,, (M/L)

dB.

4.5 Simulation and Numerical Results

Figs. 4.1 and 4.2 show the BER performance of the full-complexity system over vari-
ous transmit correlation only channel. In Fig. 4.1, we consider the STBC-only system.

The underlying transmit correlation matrices and their corresponding eigenvalues are
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STBC only: Transmit Correlation, N=2, M=3, L=3
10" T T T T T

e

Ll O Simulation: R=0
—— Bound: R=0
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— — Bound: R=0.6
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T
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Figure 4.1: BER performance comparison of the full-complexity system over various
transmit correlated channel for N = 2, M = 3 along with their exact bounds (STBCs
only).

listed as follows.

10
R} = , with Ay =1, Ay =1
0 1
1 06
R? = , with Ay = 1.6, A\, =04
06 1
1 08
R} = , with \; = 1.8, Ay = 0.2
08 1
1 095
R = , with \; = 1.95, Ao = 0.05
095 1
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Combined CC and STBC: Transmit Correlation, N=2, M=3, L=3
10 T T T T T T
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Figure 4.2: BER performance comparison of the full-complexity system over various
transmit correlated channel for N = 2/ M = 3 along with their transfer function
bounds (Combined CC and STBCs).

Note that R} is an identity matrix, which represents the correlation matrix of the
independent fading channel. Whereas R?, R3) R} represent the correlation matrix
of the fading channels with transmit correlation, but they are all full rank. We
can observe that the BER performance curve corresponding to R2? has the same
slope as that corresponding to R} at high SNR, and the loss of the coding gain
due to transmit correlation is about 10log;, (1.6 X 0.4)_1/2 = 0.97 dB relative to
the independent channels. However, this observation is not straightforward for the
curves corresponding to R} and R}. This is simply because the SNR we considered
for simulation purposes is not high enough.

In Fig. 4.2, we consider the combined CC and STBC system. On the same figure,
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we plot the performance bounds using (4.10) and (4.11) (only the first 5 terms in the
sum are considered). The observation is the same as that for Fig. 4.1. Furthermore,
by comparing Figs. 4.1 and 4.2, we can observe that this combined coding scheme

provides more diversity order compared with that of the STBC-only scheme.

STBC only: Transmit Correlation, R=0.6, N=2, M=3, L=1,2, 3
10 T T Y T T T

BER

10”7 F -6 Simulation: L=1 N N N 4

—O- General Bound: L=1 N N N N

—%— Simulation: L=2

—¥— General Bound: L=2 N N N

vV Simulation: L=3 \

— — General Bound: L=3 N A ®
T

0 2 4 6 8 10 12 14
E/N, (dB)

Figure 4.3: BER performance comparison between various antenna selection scenarios
over transmit correlated channel for N = 2) M = 3 along with their upper bounds
(STBCs only).

In Figs. 4.3 and 4.4, we plot the simulation results and the general bounds for
antenna selection system over transmit correlation only channel with transmit corre-
lation matrix R2. It is clear from each of the figures that all curves have the same
slope, suggesting that they have the same diversity order as that of the full complexity

system, which agrees with our analysis above. Moreover, for the STBC-only system,

the loss in SNR due to antenna selection for L = 2 and L = 1 are about 0.4 dB and
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Combined CC and STBC: Transmit Correlation, R=0.6, N=2, M=3, L=1,2, 3

T T

BER

10" H -©- Simulation: L=1 é\ \ \ E

-0~ General Bound: L=1 \ * e

~%-~ Simulation: L=2 \

—¥— General Bound: L=2

v Simulation: L=3

— = General Bound: L=3 \ \
T T T

-3 -2 -1 0 1 2 3 4 5 6 7 8
E /N, (dB)

Figure 4.4: BER performance comparison between various antenna selection scenarios
over transmit correlated channel for N = 2, M = 3 along with their upper bounds
(Combined CC and STBCs).

3.5 dB at P, = 1075, respectively, relative to the case L = 3 (i.e., no selection). For
the combined CC and STBC system, the corresponding loss in SNR due to antenna
selection are about 0.4 dB and 2.5 dB respectively. These losses are smaller than their
upper bounds (i.e., 101og;((3/2) = 1.76 and 101og;,(3) = 4.77 dB.) We point out here
that the gap between this bound and simulations gets smaller as L approaches M.
This is simply because the approximation we used in (4.13) and (4.17) becomes more
accurate as L increases.

We repeat the above experiment for the receive correlation only scenario and joint
transmit-receive correlation scenario. In Figs. 4.5 and 4.6, we plot the simulation re-

sults and the general bounds for the antenna selection system over receive correlation
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STBC only: Receive Correlation, N=2, M=3, L=1, 2, 3
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Figure 4.5: BER performance comparison between various antenna selection scenarios
over receive correlated channel for N = 2, M = 3 along with their upper bounds
(STBCs only).

only channel with receive correlation matrix

Rl=1|06 1 045,

04 045 1

where the eigenvalues are A\; = 1.9720, A, = 0.6321, A3 = 0.3959. In Fig. 4.5, we
consider the STBC-only system. It is easy to observe that the BER curve of the
full-complexity system over the correlated channel has the same slope as that of
the independent channel and the loss of the coding gain is about 101log,,(1.9720 x

0.6321 x 0.3959)~1/3 = 1.02 dB relative to the independent channels at high SNR.
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Combined CC and STBC: Receive Correlation, N=2, M=3, L=1, 2, 3

T T
~ —©— Simulation: L=1
x ~o. -O- General Bound: L.=1

~ ~ —¥— Simulation: L=2
oy ~%- General Bound: L=2
~ v Simulation: L=3 H

~ — — General Bound: L=3

Q ¢ Simulation: L=3, independent

N -— - General Bound: L=3, independent

E,/N, (49B)

Figure 4.6: BER performance comparison between various antenna selection scenarios

over receive correlated channel for N = 2, M = 3 along with their upper bounds
(Combined CC and STBCs).

We also observe that all the curves have the same slope. It suggests again that
the diversity order is maintained with antenna selection and the loss in SNR due to
antenna selection is upper bounded by 10log,, (M /L) dB. In Fig. 4.6, combined CC
and STBC system is considered over receive correlation only channel with receive
antenna selection and we can have the same observation as that for Fig. 4.5.

In Figs. 4.7 and 4.8, we plot the simulation results and the general bounds for
the antenna selection system over joint transmit-receive correlation fading chan-
nels with transmit correlation matrix R? and receive correlation matrix R.. In
Fig. 4.7, we consider the STBC-only system. It is easy to observe that the BER

curve of the full-complexity system over the correlated channels has the same slope
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STBC only: Joint Correlation, N=2, M=3, L=1,2, 3
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Figure 4.7: BER performance comparison between various antenna selection scenarios
over joint correlated channel for N = 2, M = 3 along with their upper bounds (STBCs
only).

as that over the independent channels, and the loss of the coding gain is about
10log,, [(1.6 x 0.4)72 % (1.9720 x 0.6321 x 0.3959) /3| = 1.99 dB relative to the
independent channels. We also observe that all the curves have the same slope. It sug-
gests again that the diversity order is maintained with antenna selection and the loss
in SNR due to antenna selection is upper bounded by 10log, (M/L) dB. In Fig. 4.8,
combined CC and STBC system is considered over joint transmit-receive correlation

channel with receive antenna selection and we can have the same observation.
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Combined CC and STBC: Joint Correlation, N=2, M=3, L=1,2, 3
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Figure 4.8: BER performance comparison between various antenna selection scenarios

over joint correlated channel for N = 2,M = 3 along with their upper bounds
(Combined CC and STBCs).

4.6 Conclusions

In this chapter, we analyzed the performance of combined convolutional coding and
orthogonal space-time block coding with receive antenna selection in correlated fading
channel. We used a pragmatic selection criterion that maximizes the SNR at the
receiver. We derived an upper bound, which explicitly showed that the diversity order
with antenna selection is maintained as that of the full-complexity system, whereas
the coding gain deteriorates by a value upper bounded by 10log;, (M/L) dB. We
also quantified the loss in coding gain due to spatial correlation, provided that the

correlation matrices are full rank. We also presented several examples through which
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we validated our analytical results. The analysis used in this chapter can be easily

applied to the combined TCM and STBC in the face of antenna selection.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we present a comprehensive performance analysis of the receive antenna
selection for MIMO systems. We considered STBC-only systems, and the combined
outer channel coding with STBC systems over independent and correlated Rayleigh
flat fading channel respectively. At last, we get a conclusion which can be applied
to all of these scenarios that the antenna diversity gain is maintained with receive
antenna selection for any number of selected antennas, whereas the SNR deterioration
due to antenna selection can be upper bounded by 10log,, (M /L) dB. So, the receive
antenna selection is an effective scheme for reducing hardware complexity in MIMO

system.
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5.2

Future Work

The next step in our work is to study the antenna selection at the transmitter
side based on full or limited channel information fed back by the receiver. In
practice, the feedback channel has a very limited capacity. Typically, only a
few bits are reserved for control purposes. So, the limited feedback information
is especially attractive in that they allow antenna selection at the transmitter
without requiring a full description of the channel to be fed back. In particular,
the only information fed back is the selected subset of antennas to be employed.
We will consider two different transmit antenna selection criterion for two kinds
of channels. For slow fading channel, the antenna selection can be carried
out based on channel state information. we select those transmit antennas
which maximize the instantaneous SNR by comparing the channel magnitude
for each transmit antennas. However, if the channel state changes fast, due
to the delay and limited capacity of feedback channel, it may be impossible
to perform transmit antenna selection every time the channel changes. In this
case, we can perform transmit antenna selection every time the second order
channel statistic changes. That is, we can select those antennas which minimize
the average error probability based on the channel covariance matrix. After

this, we shall consider the joint transmit-receive antenna selection scheme.

Modify the system model to take the channel estimation error into considera-

tion. The channel fading coefficients are estimated by inserting pilot sequences
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in the transmitted signals. Assume channel is constant over the duration of a
frame and independent between the frames. At the beginning of each frame,
orthogonal pilot sequences are transmitted form each transmit antennas. Then
the receiver estimates the channel fading coefficients by using the minimum
mean square error (MMSE) algorithm. It has been shown that with MMSE,
the estimation error due to noise can be modeled as a zero mean complex
Gaussian random variable. We will investigate the sensitivity of antenna se-
lection to channel estimation error. The error may also happen to the control
bits of the feedback channel. By knowing the error probability of each control
bit, we can also quantify the impact of feedback channel error to the transmit

antenna selection.

We only investigate the antenna selection over flat fading channel in our work.
However, for high data rate wireless communication systems, such as W-CDMA
system, the signal duration may be small compared to the multipath spread of
the channel, resulting in a frequency-selective fading channel or equivalently
a temporal ISI channel. So, the study of antenna selection technique over
frequency-selective fading channels needs to be done. In this case, antenna
selection is carried out by comparing the average energy contained in the multi-
ple paths corresponding to each antenna. Furthermore, because of the multiple
paths, at the receiver the orthogonality of STBC does not hold any more. Con-
sequently, a equalizer should be employed to convert the channel into a temporal

ISI-free channel. So, the orthogonality between signals after the equalizer still
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holds, and the ML can be realized by simple linear processing.

A more attractive but tough job is to apply the antenna selection technique
in cooperative wireless network. In the relay channel, suppose data is to be
transmitted from the source terminal S to destination terminal D. Due to the
broadcast channel, another terminal in the network which we denote as the relay
terminal R, also receive the signal from S and thus can cooperate with S to
accomplish the communication with D. In this case, the antenna on S and that
on R form a virtual transmit antenna array which realizes spatial diversity gain
in a distributed fashion, but the delay between the received signal copies at D
due to processing delay at R need be taken into the consideration for transmit

antenna selection this time.
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Appendix A

Component Codes Used in

Simulation

A.1 Orthogonal STBCs for Three Transmit An-

tennas

The transmission matrix of full rate STBC for real signal constellation set is given by

[6]

1 —T9 —T3 —X4

X3 = Tog I1 Ty —T3 |- (Al)

I3 —I4 I1 Hop)
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The transmission matrix of rate 3/4 STBC for complex signal constellation set is

given as follows. [57]

Xsg=1| -y 2t 0 -} (A.2)

A.2 Rate 1/2 (7,5),c CC Code

The encoder diagram of (7,5),. CC is shown in Fig. A.1. At each instant, the encoder

accepts 1 input bit and outputs 2 coded bits. The constrain length is 3.

Input bit T~e—» Output coded bit

Figure A.1: (7,5),¢ CC encoder.

It’s transfer function is given by

J3ND5
1-JND - J2ND

T(D,N,J) =

= JPND°+ (J*+ J°) N?D® + (J° +2J° + J) N°D" + - - -
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It means there are 2' paths of distance [ + 5 from the all-zeros path and of [+ 1 1s in

the information sequence of that path, where [ =0,1,2,- - -. The free distance is 5.

A.3 4-state, 8s—PSK TCM Code

For Rayleigh fading channel, Wilson suggest a 4-state, 8—PSK TCM without parallel
transmissions. The trellis diagram of this code and 8-PSK signal set are shown in
Fig. A.2. As is shown, the trellis diagram of this code is fully connected and results
in shortest error event paths of length two. This is the maximum achievable time

diversity with 4-state TCM scheme.

SO 0426 & 081 »
S1 1537
S2 4062
S3 5173 ¢ 3

Figure A.2: 4-state, 8—PSK TCM code trellis diagram and signal set.

The labels listed left to a state node indicates the branch labels for transitions
from that state corresponding to the encoder inputs 00, 01, 10, and 11 respectively.
g% = 0.586, g2 = 2, g2 = 3.414, and ¢? = 4, represent the square of the normalized
Euclidean distance between signals in the constellation set. Since this code is linear,

its transfer function can be obtained from the modified error state transition diagram
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as shown in Fig. A.3.

Figure A.3: Modified error state diagram of the 4-state, 8—PSK TCM code

The transfer function can be shown to be

T(D,I) = &tis + Eatrg + Ests (A.3)
where,
— - — — _1 — -
& 1—-%t4 —tip —ts t1
& | T —tyg 1—t5 —t2 to
&3 I —t; =t 1-—tg t3

We list the branch labels used for evaluating of the performance over AWGN channel,

and MIMO Rayleigh fading channel respectively in the following table.
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Branch AWGN channel MIMO Rayleigh fading channel
Label | (D =eap(- £ 7)) (D= %)
y D% I(1+Dg)"
ty D9 I1(1+Dgd)~""
3 ?D% I’ (1+Dg3) "
o ID% I(1+Dgj) ™
. D% I(1+Dg3)™™
te s (D +p%) [ 12 ((1+ D)™™ + (1+ Dgh) ™)
h 1P (DA D) |32 ((1+ D) ™ + (1+ D)™
o 1D I(1+Dg}) "
4 17 (Dg? + Dyg) 31 ((1 + D)™ 41+ Dgg)_NM)
- 1D I(1+D)"™
i D% I*(1+Dg3)™™
o sr(pt+pR) |3 (0+ g™ + (14 D)™™
ta D93 1+ Dg%)_zz
ta D9 (1+ Dg})”
s D (L+Dg3) ™

Table A.1: Branch labels of the modified error state diagram of the 4-state, 8—~PSK

TCM code.
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Appendix B

The Definite Integration Used in
the Derivation

© _n,—ax _ _n!
1L [ z"e %de = By

2 [ arerrids = tptly

2rntl

o0 1 _ 1 {2L-1
3. %fo (z2+1)L+1dx_ 4_L( L )
0 n,— n! @ = D(k+1)
4 [ Q(Vaz)aremdy = % (1—\/ﬂ,§)mfm) ,a>0

This integration can be evaluated as follows. As we know that

n

- n! o,
e dr = — — ke ™,
k!
k=0
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so we have

/Ooo Q (Vaz)z"e *dz = - /Ooo Q (Vaz)d < Z—:xke"”)

Assume y = +/az, the last line of above equation can be represented as

[Cewamzerin="2 1 g [ e aa ),
0 0

1,k
2 P kla

According to the definition of @ (y), we have dQ (y) = —\/%-e'?ﬁ/ 2dy, so

o0 nl i n! 0 1+a/2 2
vazr) xte fdr = — — —_— ko= =2V dy.

By knowing that f0°° e " dy = ﬂ;ﬁ:—ﬂ@, after some algebraic manipulations, we
can get the final result as shown above.

5. 1 L& dr =" wif (z;) + R

Ve
Where, x; = cos KL;;M, w; = I, and remainder R, = (Qn)!%f(zn) (€) (-1<€<

1). As n increase the remainder term R, becomes negligible [58] (25.4.38).
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