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Abstract

An Object-Oriented Framework for Constructing Availability Management Services:
System Architecture and Application Development

Xiang Hua Qin

With the ever increasing dependence on the distributed computing services,
service availability is becoming an important factor in building today’s distributed
application. To achieve fault-tolerance and high availability in modern computing
infrastructures, providing redundancy in hardware, software and information is a well
established approach to provide reliable services. The idea behind one such redundancy
management scheme namely server clustering is to implement any application service
that must be available to users despite hardware or software failure by a group of
redundant software servers which run on distinct hosts and maintain redundant
information about the global service state. To accomplish high availability of the service,
the software system that facilitates implementation of application services must provide
for dependability attributes through a set of primitive dependable distributed protocols in
order for the service to continue functioning despite some number and types of failures.

We describe an object-oriented framework for designing and implementing
availability management services. We present a library of object-oriented implementation
of a suite of dependable distributed protocols, and show how these protocols can be
composed together to build an application that provides highly available services to users.
Specifically, we introduce our proposed system architecture called JAMS (Java-based
Availability Management System) which integrates the availability management service
and the online FDIR (Fault diagnosis, isolation and reconfiguration) service on a
distributed heterogeneous platform. The JAMS architecture is described in a way that
reflects the design and development phases, spanning from requirement analysis to
module implementation. A case study of a banking service is presented to illustrate how
JAMS can be used to build a dependable distributed application in a modular manner
ensuring that the application service remains continuously available to the user despite

the presence of failures, maintenance and growth.
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Chapter 1

Introduction

In this chapter, we introduce basic concepts and terminologies with regard to
JAMS (Java-based Availability Management System). JAMS is implemented by
integrating the Availability Management Service and Fault Management Service namely
FDIR (Fault Detection, Isolation and Recovery) in a distributed system. After
highlighting the increasing importance of such a system like JAMS to build an
application service in distributed system, we describe the properties of Availability
Management Service and FDIR, respectively, and then discuss the features of JAMS by
comparing it with related work. Object-Oriented Programming and Java technology are
introduced to help the reader better understand this work. We conclude this chapter with

contributions of the thesis.



1.1 Fault Tolerance in Distributed Systems

Distributed Systems are computer networks that consist of clients and servers
connected in such a way that one system can potentially communicate with another. Data
is not located in one server, but in many servers. These servers might be at LAN or WAN.
At present, the Internet and web technology have greatly expanded the concept of
distributed systems. Now, web is typically defined as "massively distributed collection of
systems" [25].

Web application servers provide universal access to any client with a browser.
They tend to grow up in order to meet the needs of industrial network applications and E-
business. Unlimited communication and information exchange prevail, as they become
compatible with different types of computing platforms and operating systems.

A distributed environment has many distinct characteristics, one of which is
providing distributed data protection from local disasters. Data may be replicated to other
systems to provide fault tolerance, and a distributed system may be reconstructed from
replicated data so that it continues functioning despites the failure of some components.

With the ever increasing dependence on the computing services, service
availability is becoming a matter of paramount importance in building today’s distributed
application. Distributed systems are much more complex in the sense that they have a
large number of nodes that may fail independently and many activities that run
concurrently. In any business, downtime or unavailability of services may cost an
excessive amount of money in addition to operation cost. A conservative estimation from
Gartner [23] pegs the hourly cost of downtime for computer networks at $42,000. For

large e-commerce dependent sites, outages are more costly. EBay's 22-hour crash in June



1999, for instance, cost the company more than $5 million in returned auction fees. The

estimated costs for a variety of network applications are outlined in Table 1 [23]:

(SOURCE: ALINEAN)

‘&Profit-draining potential
i i b big |

A ute of downt

Business application o Estis utage cost-per-minute
E-commerce [ $1000 |

Messaging

Table 1: Estimated costs for a variety of network applications

Fault tolerance and high availability is about keeping systems up and running 24
hours a day, 7 days a week, or at least keeping systems up and running with a reasonable
amount of performance. Fault-tolerant features in early network operating systems
included mirrored disks, with both disks reading and writing the same information. If one
disk failed, the other kept running in what is called "failover" mode. Of course, nowadays
fault-tolerant systems must provide more than just disk failover. In modern computing
infrastructures, different ways to achieve fault tolerance and high availability are the

following:

o Redundancy in hardware ( e.g.: disk mirroring and duplexing, redundant
communication links)
» Redundancy in software ( e.g.: exception handling, multiple-version

software)



e Redundancy in information (e.g.: server clustering, distributed computing,

duplicate data centers)

Therefore, redundancy management protocols are being designed and developed
to handle specific tasks having abilities to correctly detect, diagnose, and recover from
errors. The idea behind one such redundancy management scheme namely “server
clustering” is to implement the application service that is required to be always available
by a group of redundant software servers which run on distinct hosts and maintain
redundant information about the global service state. The clustered servers work as a
central hub for an application service, like air traffic control, banking, and real-time
control, and so on. In such a critical system, the system availability concept is an
important aspect that needs to be considered early in the system’s design phase. To
accomplish high availability of the service, the software system that facilitates
implementation of application service must provide for dependability attributes through a
set of primitive dependable distributed protocols in order for the service to continue

functioning despite some number and type of failures.

1.2 Java-based Availability Management System

Towards the objective discussed above, a system architecture called JAMS (Java-
based Availability Management System) is designed for constructing a fault-tolerant
application software by using the redundancy management protocols. JAMS is an object-
oriented fault-tolerant system, which integrates the Availability Management Service and
the online FDIR (Fault Detection, Isolation and Recovery) service on a distributed

platform. JAMS is aimed at helping an application programmer to build application



services which can remain continuously available to users despite the presence of failures,

maintenance and growth.
1.2.1 Availability Management Service

Availability management service is being developed for the purpose of keeping
the critical services of a distributed system continuously available to users despite the
presence of system failures, maintenance and growth [14].

In present systems, human system operators take responsibility of reconfiguring a
system after failures or removal of nodes for maintenance. They tend to have
comparatively slow reaction times, and this may result in an excessive interval time for
critical services to become available again. System operators are likely to make mistakes
while repairing, even worse this may lead to further failures, causing further
unavailability. Therefore it is crucial to develop Availability Management Service to
conduct automatic reconfiguration in the presence of failures and maximize the
availability of the critical services.

Availability Management Service is focused on realizing automatically the
availability specified for critical services offered by a distributed system to end users. A
primary server provides the current service while a backup maintains past service states.
Suppose a group of servers provide a critical service S and its primary server fails for
some reasons. In this case, the Availability Management Service first promotes the §
backup to the primary and then starts another S backup, rather than just cold-start another
primary for S. This process will greatly reduce the duration the service is unavailable to
users, since it is much faster to promote the backup to the primary by software than to

cold-start a new primary by human. The detailed requirement and description of this



service is discussed in Section 2.2.5.

The efficiency and usefulness of such highly available system can be improved by
integrating FDIR service which provides a set of tools to support distributed systems
dependability aspects, such as fault detection, group membership, atomic broadcast,
checkpointing, etc. For instance, availability management service takes action of

promoting after fault detection detects a fault in primary server.
1.2.2 FDIR service

FDIR is a fault management service that employs a set of distributed protocols to
achieve desired dependability attributes in the presence of faults through a process of
fault detection, fault isolation and resource recovery/reconfiguration.

The main goal of FDIR is to preciously diagnose faults, effectively prevent the
faults from creeping into a system, and timely recover system by rolling back to a
moment at which the service state is assured to be fault-free, thereby regaining
operational status. This capability leads to reduction in diagnostic time or downtime, and
therefore increases system availability. The following requirements are essential to the
overall correctness of the protocols in FDIR:

o All of N redundant units perform identical operation with identical inputs. N must
be at least 2m+1, where m is the maximum number of faulty units.

o The clocks of correct nodes are approximately synchronized with a maximum
allowable deviation.

e The broadcast of message between nodes must be atomic and reliable. All correct
nodes deliver a message at same synchronized time.

e The diagnosis does not require administered testing. The determination of a faulty



node is done collectively by other nodes in the system. Every faulty node is
identified by all other non-faulty nodes.

e All nodes have an identical view of group membership at any time.

o Either all or none of the nodes perform recovery, and the nodes only roll back to a
consistent system state.

Through these identified requirements, it can be inferred that the following building

block protocols are essentially needed. The detailed discussion is given in Section 2.2.

e Clock synchronization ensures that the clocks of active nodes are synchronized
within certain known constant deviatipn at any point in real time.

e Atomic broadcast is used to achieve the atomicity, order and bounded
communication of message exchange, thus to provide consistent information to
multiple nodes in the distributed systems.

e Voting function is used to compare the output in order to make a decision while
multiple system entities execute the same task with the identical inputs.

¢ Online fault diagnosis is responsible to identify the faulty node. It is achieved
through constantly monitoring, message exchange among redundant systems and
determination of the faulty node by the majority of votes.

e Membership protocol identifies all functioning servers that cooperate to provide
the service and organizes them into a group that exists over time.

e Check pointing is commonly used technique for recovering system from failure. It
establishes periodically consistent checkpoints. In case of failure, it rolls back the

system state to a previous error-free checkpoint.



1.2.3 Object-Oriented Paradigm and Java

In object oriented programming, a model is created for a real world system.
Classes are programmer-defined types that model the components of the system.

A class is a prototype that defines the variables and the methods common to all
objects of a certain kind. An object is a software bundle of related variables and methods.
Using the prototype provided by a class, the programmer can create a number of objects,
each of which is called an instance of the class. Different objects of the same class have
the same fields and methods, but the values of the fields will in general differ. Software
objects interact with one another by exchanging messages. A class can inherit state and
behavior from its superclass. Inheritance provides a powerful and natural mechanism for
organizing and structuring software programs.

Java technology is both a programming language and a platform. Java language is
an object-oriented programming language developed by Sun Microsystems. It has
become one of the most popular network programming languages due to a number of
features including simplicity, object oriented, distributed, robust, secure, architecture
neutral, multithreaded, etc. The Java platform differs from most other platforms in that it
is a software-only platform that runs on top of other hardware-based platforms. The Java
Virtual Machine (JVM) is the base of the Java platform and can be implanted onto
various hardware-based platforms. In other words, it means that as long as a computer
has a JVM, the same program written in the Java programming language can run on

different operating systems like Windows, or Solaris.



1.2.4 Features of JAMS

JAMS is an object-oriented fault-tolerant system that can be characterized by the

following key features:

Fully Object-Oriented. The needs of distributed, client-server based systems
coincide with the encapsulated, message-passing paradigms of object-based
software. Every component in JAMS is objectified without much regard to
whether it is the user interface or the protocol abstraction.

Modularization. The objectified components are organized into modules
according to their functionalities. Each module is independent of each other. This
modularization enables optimal code reuse.

Portable. JAMS is designed to support applications that will be deployed into
heterogeneous network environments. Pure Java programming exempts JAMS
from the platform dependencies.

Autonomous. JAMS is running continuously to monitor the system. When the
primary server fails, the backup is promoted automatically. The availability of the
service is achieved without human intervention.

High performance. JAMS achieves superior performance by adopting a scheme in
which multiple threads concurrently execute. Each module runs as a prioritized
thread. The fault detection module and availability management module have
high priority while others run as low priority threads, ensuring a high probability
that resources are available when required, leading to higher performance.

Self fault-tolerant. The protocols chosen to implement JAMS are all elaborately

concocted to tolerate faults. Thus, they enable JAMS to make accurate judgment.



1.3 Related Work

By making use of redundant software server group, many other prototypes of
fault-tolerant distributed systems have been built, often by emphasizing different aspects
of fault tolerance, communication, distribution, action atomicity, persistence etc. Some of
the examples of successful dependable distributed systems are: TANDEM [1], IBM XRF
[1], CONSUL [28], HOROUS [28], ARJUNA [21] and BAST [17].

In TANDEM, the operating system implements the pair-management algorithms
and uses duplex resources to mask hardware-resource failure from users. The IBM XRF
system provides conﬁnuous database service by using a group of two database servers
running on two distinct high-end processors connected by point-to-point local area
network. The duplication of hardware resources needed by software servers makes the
TANDEM and IBM XRF single-fault tolerant. Systems like HORUS and CONSUL
provide reliable distributed protocols, but in their protocols, “group” is the elemental
distributed addressing facility. ARJUNA and BAST are two of best known examples that
have adopted object-oriented approach. ARJUNA is implemented in C++, which deals
with failures by providing high level application-building tools based on transaction,
while BAST mainly concerns with composition of distributed protocols such as fault
detection and consensus. In contrast to system like ARJUNA on one hand, or HORUS on
the other hand, BAST is neither a transaction-oriented nor a group-oriented system.

Compared to JAMS, BAST is the closest among all systems that we have come
across. In both systems, protocols are basic structuring components and the
protocols/algorithms are objectified as separate objects. BAST adopted a strictly

vertically-layered approach in which the protocol dependencies are modeled as layer

10



interactions. There are several drawbacks with this approach. First, protocol classes are
unlikely ready-to-use. Protocol programmer has to build a new protocol class with
desired semantics by deriving them from all the necessary protocol classes. Furthermore,
the objects of derived protocol classes are quite difficult to be manipulated at runtime,
since there are concurrently executing more than one protocol at the same time in an
object.

In contrast to BAST, our system chooses different set of protocols to build a
framework. Furthermore, all requirements of FDIR and availability management have
been considered and are fully implemented in JAMS. The remarkable difference with
other systems, especially with BAST, is that it adopts different design pattern to manage
distributed protocol interactions. Protocols are all assembled in one horizontal layer, so
called protocol layer. The interaction between protocol objects at run time is achieved
through inner-class design and pipe mechanism. Each protocol is designed as a module-
class to communicate with other modules through pipes. Communications between
objects within one module are achieved by inner classes. Based on such a design,
protocol classes are independent with each other and would be easily implemented
without considering their synchronization. It enables optimal code reuse, for example, if
we want to use a new fault detection protocol, we simply need to replace current online
diagnosis protocol class with a new one, leaving all other module-classes unchanged
since they have no relationship between each other in the design phase. Finally,
additional protocols can be added in JAMS without considering the intricacies of protocol

interactions.
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1.4 Contributions

The specific contributions of the thesis include our objectives:
® To identify building block protocols, highlight and address issues involved in
block interactions and inter-dependencies within the class of redundancy
management protocols.
® To structure the complexity involved in block interactions and propose an
object-oriented  solution for JAMS by developing classes for individual
building block protocols and subsequently integrating them.
® To implement JAMS for supporting most application services across different
platforms.
® To evaluate the robustness of JAMS by applying it to an application service.
Each of the above stated objectives has been met successfully, and we will elaborate
on these in subsequent chapters.

1.5 Organization

In the next chapter, we present the building blocks pertaining to JAMS. Their
inter-dependency is also discussed in this chapter. Chapter 3 introduces our proposed
object-oriented design of JAMS and describes the dynamic behavior of protocol modules.
In chapter 4, we present a case study of a banking service to illustrate how we can use
JAMS to actively replicate a server object in some distributed applications, in order to
make it fault-tolerant and highly available. Chapter 5 concludes the thesis with

discussions and future research directions.
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Chapter 2

Background of Dependable Protocols

As mentioned in Chapter 1, our system is designed to build a reliable distributed
system that is capable of correctly detecting, diagnosing, and recovering from errors, and
is based on a number of redundancy management protocols as building blocks to perform
each of these specific tasks. In this chapter, we identify these building blocks, and outline
a framework which incorporates these basic building blocks in JAMS. We start with
introducing the system model and fault model. Next we describe a primitive building
block of synchronization protocol, and then subsequently discuss other building blocks in
FDIR. The availability management service is as well discussed by highlighting its key
functions and features. Finally, we highlight the block interactions and inter-
dependencies and outline a framework which encompasses these building blocks for

JAMS considering their interactions at design phase as well as at run time.
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2.1 System Model and Fault Model
2.1.1 System Model

We consider a system consisting of distributed nodes linked by a synchronous
communication network which enables any two active nodes to communicate within a
known, bounded time, given that there is no network partition. For simplicity, we assume
that the nodes are uniprocessor. The proposed approach is applicable to multiprocessor as
well.

The synchronous communication network provides a datagram service and a
message diffusion service that allows both unicasting and multicasting. When an active
node issues a message and broadcasts it to the network, all active nodes will eventually
receive it. Communication services are implemented by the underlying network
communication protocols. TCP/IP has become the de facto standard network
communication protocol, and has been used in JAMS as well.

The dispersal of information is assumed to be symmetric, nét asymmetric. The
comparison of these two dispersion mechanism is shown in Figure 2.1. When a node
transmits information to the network, symmetric dispersal indicates all receivers obtain

the same information while receivers get different information with asymmetric dispersal.

node_i node_1i
mess_a mess_a mess_a mess_a’
node_j node_k node_j node_k
(a) symmetric communication (b) asymmetric communication

Figure 2.1 Symmetric and Asymmetric Communication
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To achieve fault tolerance, distributed system architecture incorporates redundant
processing components. The following definition of terms stated here is based on [1]. A
computing service specifies a collection of operations whose execution can be triggered
by inputs from service users. The operations defined for a specific service are performed
by a server for that service. The behaviors of a service can only be carried out by a
number of redundant servers in distributed systems. The set of functioning servers form a
group to cooperate so as to provide the services and each server works as a member. If a
node possesses all physical resources needed for running a certain service, it is called a
potential host for that service. There is a total order on the set P of node identifiers. A
service implemented by a server relies on services implemented by other servers. It is
called service dependency. That is to say a service u depends on a service r if the
correctness of u’s behavior depends on the correctness of r’s behavior. In JAMS, each
protocol provides a service. For example, Broadcast Service that we make use of is based
on the Atomic Broadcast protocol. The application service is also an example of service
extended by a server. In JAMS, service dependencies are interpreted / referred as inter-

dependencies of building block protocols.
2.1.2 Fault Model

It is presumed that all the communication links are non-faulty and that nodes are
the only potentially fault units. This fault model is termed as PP (processor- processor)
[7]. It is assumed that the datagram service could suffer omission or performance failures.
Failures in thé underlying network such as lost, late, duplicated, or corrupted messages
are supposed to be overcome by the TCP/IP.

A node is perceived to either work correctly or become faulty which can be the
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case of having benign faults, value faults or crash faults. The PP model that we utilize is
flexible to cover a range of fault types. This is done to incorporate a realistic system
environment where faults do not match idealized fault conditions of only a single specific
fault occurring over system operations. In PP, we classify the faults that an individual
node is sufficient to detect as benign fault since the fault-effect is locally detectable. On
the other hand, there are situations that require multiple nodes to exchange their
syndrome information with each other in order to provide accurate diagnosis. The value
faults and crash faults are classified as globally detectable faults. A value fault occurs
when the server gives the incorrect output in response to inputs. The node is said to suffer

the crash failure if the server omits to produce output to subsequent inputs till it restarts.

2.2 Building Block Protocols

For each protocol, we give a brief discussion by highlighting its features and

requirements. For details we refer the reader to [4, 6, 7, 11, 14, 26, 27].
2.2.1 Clock Synchronization

Synchronization is a fundamental issue in distributed system. The clock of servers
are synchronized with some known constant maximum deviation at any point in real time
and such synchronized clocks run within a linear envelope of real time [4]. A processor is
synchronous if it always performs its intended function within a known time limit.

We denote by C, the clock of processor p and use Cy() to denote p’s local clock
time at real time z. We say the processors are synchronized if the following properties are
satisfied:

e Every processor p has a local C, with known bounded rate of drift p

respecting to real time. That is, for all real time > ¢,
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c,)-¢,)

(1+p) SWS(HP)

e For any correct processors p and ¢, and for any real time ¢z, clocks are
within a maximum deviation ¢ and are within a linear envelope of real

time where
lc,()-c, () <o
Through clock synchronization primitive, it is possible to measure message
timeout, and this provides a mechanism that makes possible the implementation of many
other distributed protocols, such as atomic broadcast, fault detection, and availability
management

2.2.2 Atomic Broadcast

The objective of atomic broadcast is to enable the correct processor of a
distributed system to attain consistent knowledge of the system state, and achieve the
atomicity, order and bounded communication of message exchange, despite failures and
random communication delay. It relies on the clock synchronization protocol. An atomic
protocol is a protocol that satisfies the following properties [11]:

e Aromicity: If an update is initiated by a correctly functioning member at clock
time T, then at T+D, where D is time constant, the update is either delivered to all
functioning members or not delivered to any correctly functioning members.

e Total Order: All updates delivered by correctly functioning members are

delivered in the same order at each correctly functioning member.
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e Termination: If a correctly functioning member broadcasts an update m at time T
on its clock, then m is delivered by all correctly functioning members at time 7+D
on their clock.

With these properties, atomic broadcast can be used to implement the abstraction
of synchronous replicated storage: a distributed, resilient storage that display, at any
clock time, the same contents at every correct physical processor and that requires D time
units to complete replicated updates. This satisfies the need of membership and the
availability management primitives.

2.2.3 Membership

Membership protocol identifies all correctly functioning servers that cooperate to
provide the service and organizes them into a group that exists over time. It provides all
correctly functioning members with consistent views of the membership, which can
shrink with crashes or grow with joins, and guarantees bounded failure detection and join
delay [6]. A membership service is required to satisfy the following properties:

o Stability of local views: After a processor joins a group as a member, it stays

joined in that group until a failure is detected or a processor start occurs.

e Agreement on history: let processors p and g be correct throughout a certain

time interval. If during that interval, p and g are joined to a common group G/
and after leaving G1, p joins group G2 and q joins group G2', then G2=G2".

e Agreement on group membership: if two correct members p and g are joined

to the same group, then the two processors have the same view of membership
of that group: members(p j=members(q).

e Bounded join delay: there exists a time constant J such that, if a processor j
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starts at time T and j stays correct until time 7+J, then by time T+J, the
processor j joins a group that is also joined by each other processor that was
correct throughout [T, T+J].

® Bounded failure detection delays: there exists a time constant D such that, if a

processor f joined to a group G fails at time 7, then each member of G that
stays correct throughout [T, T+D] joins a group G’ by T+D such that fis not a
member of G,

The above requirements imply that two services are fundamental to implement
this membership protocol: clock synchronization and atomic broadcast. For example, the
total order on the delivery of group atomic broadcast messages enable all correct
members see the same changes of the membership in the same order.

Next, we describe a simple “periodic broadcast membership” protocol. A
membership server j that starts at time S invites the other servers to form a new group by
broadcasting a “new-group” message time-stamped S. In response to a “new-group”
message, each server broadcasts a “present” message that contains its identifier and
indicates its willingness to join a new group by time V=S+4, where 4 denotes the bound
of atomic broadcast delay. We call the set of servers at time V the membership as of view
time V, denoted by MEMBERS (V). With this method, all nodes, which had left the group
earlier and later joined MEMBERS (V) again, will have the same view of membership at
time C=V+4. This task of identifying membership is scheduled periodically by all
members of MEMBERS (V). At an interval of =z, each server broadcasts a “present”’
message and re-computes the membership at membership-confirmation time V+ kz + 4,

where k is some integer and = > 4 in order to let server know the membership as of view
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time V before it checks next “currentness”. Thus, the membership is sampled with a
sequence of snapshots taken at V, V + z, V + 27, etc. The join of new member at time W
leads to cancellation of previously scheduled task of identifying membership, and
rescheduling of a new task with new check time O=W+ kr. The following pseudo code
[6] gives an overview on this membership protocol.

task Membership;

var group: Time; members: set of P initially{};
broadcast(“new-group”, myclock+ 4);

cycle
when receive(“new-group”, V)
do
if (myclock > V) then abort fi;
cancel(Broadcast);

broadcast(“present”, V, myid)
schedule(Broadcast, V+7x)
od;
endcycle;
task broadcast (V:Time)
if (myclock>V) then abort fi;

broadcast(“present”,V, myid);
schedule(Broadcast, V+r)

By this membership protocol, the crash failure of server f can be easily detected
from the formation of a new group from which f is excluded. Suppose server f is a
member of MEMBERS (V) and fails at time V+#, where # < z. By time V+r, all members
of MEMBERS (V) except the failed server f broadcast a “present” message. At
membership confirmation time V+n+4, assured by the atomicity and termination
properties of atomic broadcast, all surviving members of MEMBERS (V) detect that f is
not in MEMBERS (V+ n) and they join a new group of MEMBERS (V+ =)

Due to a node join or crash, the change of membership is sent to availability

management service that we will discuss in Section 2.2.6.
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2.24 Online Fault Diagnosis

Fault diagnosis is responsible to identify the faulty node so as to restrict the
influence of faults in the system operation and to support the fault isolation and
reconfiguration processes of FDIR. A variety of approaches have been proposed for
system diagnosis. The online diagnosis approach that we are going to discuss, unlike the
existing fault detection techniques, does not require administered testing but is achieved
through constant monitoring and exchange of message among redundant system
functions. Through this assimilation of messages, it then accurately determines the faulty
node by the majority voter which guarantees that, given a majority of non-faulty inputs,
the error will be masked [8]. This online diagnosis approach is itself tolerant to faults in
the diagnostic process.

As discussed in our fault model, all faults are classified as 1) local-classification
of locally detectable fault-effects at node level, and 2) global-classification based on the
nodes exchanging of their local-classification to make a global judgment at the system
level. Hence, the diagnosis process is characterized with two phases [7]:

e Phasel: Local diagnosis syndrome formulation based on a node’s local
perception of other nodes’ fault status. This is established by a node’s self
analysis of incoming message traffic from other nodes.

e Phase2: Global diagnosis syndrome formulation through exchange of local
diagnosis syndrome information with all other system nodes.

The detail of algorithm is illustrated as following, where n represents frame number,

and V; is the result of node i’s voting process on the inputs received over frame n.
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Online Diagnosis Algorithm [7]

Round(n),

1y

2)

3)

4)

5)

n>0
Each node i monitors all received messages over frame n, executes frame n
of the workload, and arrives at a voted value V..
Each node sends V; to all other nodes.
Each nodes i compares incoming messages to its own voted value V;:

e If the value from j does not match, is missing, or there is an
accusation from the last frame of i against j, i records that j is BAD.

e Otherwise, i records that j is GOOD.

Each node i sends its report on each other processor to all processors.
Each node i collects all votes from other node j:

e If the majority of votes are BAD, then node i declares j is faulty.
Furthermore, node i records an accusation against any processor k
that voted j as GOOD.

e If the majority of votes are GOOD, then i records an accusation

against any node k that voted j as BAD.

The online diagnosis algorithm is required to satisfy two specific properties [9]:

Correctness: every node diagnosed to be faulty by a non-faulty node is
indeed faulty, or we can say if a good “i” declares *” faulty, *j” is indeed
faulty.

Completeness: every faulty node is identified, or we can say if ‘4™ is faulty,

then all good processors diagnose *j” as faulty.

Both requirements guarantee the online diagnosis algorithm has sufficient

capability to support the fault isolation and reconfiguration process.
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2.2.5 Checkpointing

Checkpointing is a common technique used in conjunction with recovery method
to speed up the recovery time. It establishes consistent recovery points periodically. In
case of failure, it rolls back the system state to a previous error-free checkpoint and
continues from that point.

As our system is not intended to design as a transaction-oriented system, we don’t
adopt any transactional protocol. To accommodate this point, we develop a simple
synchronous checkpointing protocol which depends on clock synchronization and atomic
broadcast protocols. It can be simply described as follows:

® There are two types of checkpoints [26]. Permanent checkpoint is a local
checkpoint at a node, and part of a consistent global checkpoint. Tentative
checkpoint refers to the temporary checkpoint that is made to be a permanent
checkpoint at the successfully termination of a checkpointing cycle.

® Every Q period, each node takes a tentative checkpoint which records its current
state and makes the last tentative checkpoint to be permanent. The permanent
checkpoint is written to a stable storage. This process refers to a checkpointing
cycle.

® When a primary updates its state, it broadcasts an update m to all nodes at time 7.

® When a node receives the update m from primary, it updates its current state with

m. By the properties of atomic broadcast, at time 7T+4, all nodes will have the

same state on the primary.
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@ Upon a fault being detected at primary, all nodes recover which results in
canceling the current checkpointing cycle, rolling back the current state to the
permanent checkpoint and rescheduling checkpointing with period .

This Checkpointing algorithm requires two basic properties:

® Correctness: Only the error-free tentative checkpoint can be made to be
permanent checkpoint. Nodes roll back only to their permanent checkpoints.

® All or nothing: Either all or none of the nodes takes permanent checkpoints.
2.2.6 Availability Management

Availability management (AM) service is a distributed system service that enables
the critical service of a distributed system to remain continuously available to users
despite arbitrary numbers of concurrent node removals, node joins, node crashes and/or
node failures.

Availability management service depends directly on the atomic broadcast,
membership, and fault diagnosis blocks. It will be notified by membership of any node
join, leave or crash; It will notified by atomic broadcast when fault diagnosis detects any
faulty node. AM service is also based on the following assumptions [14]:

e Loose synchronization among the servers for the critical service S: a primary
maintains the current service state, while one or more backups maintain past
service states. The consistency of state information between loosely
synchronized servers can be maintained by periodic checkpoints.

e Location transparent: we assume a directory naming service that keeps track of
resources and location information, and a request/reply transport service ensures

that server migrations are transparent to users.
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Const P: set of all nodes of the system

var N: Set of P init {}; //set of active nodes or hosts

var on: Boolean init false; // on=true when § is started

var primary: node init L ; //points to node hosting primary for S, | : undefined value
var backup: node init 1 ; //points the node hosting backup for §

start-service() =
on«— frue,
start-servers(N);

start-servers(A: set of P) =
start-primary(A);
if primary #1
start-backup(A-{primary})
fi;

stop-service() =
on« false;
if backup#1 ;
stop server for § on backup;
backup 1 ;
fi;
if primary #1
stop server for S on primary;
primary 1 ;
fi;

faulty-node(n) =
N«N-{n};
if myid=n then exit();
if primary=n
if myid=backup
broadcast a “recovery” command,
sleep(50); //wait checkpoint recovery
fi;
primary <1 ;
promote-backup(N);
fi;
if backup=n
backup¢«1;
start-backup(N- {primary});
fi;

add-hosts(h) =
N « Nnuin }

start-primary(A: set of P) =
if primary =1 and A #{}
primary < select-host(A);
start primary server for S on primary;
fi;

start-backup(A: set of P) =
if backup=1 and A #{}
backup « select-host(A);
start backup server for S on backup
fi;

promote-backup(A: set of P) =
if backup#1 and A #{}

promote backup server for S on backup

primary<«— backup;

backup 1 ;
start-backup(A-{primary});
fi;

crash-node(n) =

NeN-{n}

if primary=n

primary 1 ;
promote-backup(N);

fi;

if backup=n
backup« 1 ;
start-backup(N- {primary });
fi;

Figure 2.2: State transitions of Availability Management Service [14]
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o Automatic reboot: nodes can automatically reboot after a crash or a failure. It
ensures that the number of servers for the critical service will not shrink
greatly in a certain time period, thus to maintain availability autonomously
even there is no human interference for a long time.

To ensure that the availability management service is itself available as long as at
least one node is active, a team of availability management servers is hosted by all nodes
of the system. For simplicity, we assume availability management service is responsible
for only one critical sefvice S, and all active nodes are hosts of service S. Various
constants, variables being used and operations of availability management service are
depicted in Figure 2.2. The operation faulty-node(n) is an additional operation made over
the original protocol in view of the case that a faulty node have been detected by online

diagnosis protocol.

2.3 Inter-dependencies of Building Block Protocols

Having identified the necessary building blocks and pointed out the role of each
building block in achieving the overall objectives of JAMS, we highlight issues involved
in block interactions and inter-dependencies which we have to manage not only during
the design phase (between the protocol classes) but also at run time (between the protocol
objects). An important policy in composing protocols is to establish the consistency of
specifications across various constituent blocks by demonstrating that the requirements of
these building blocks are non-conflicting [15]. According to this policy, we elaborate the

inter-dependencies of these building blocks in JAMS framework, shown in Figure 2.3.
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Availability Fault
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A —B: A depends on B by the correctness of behavior
A>B: A influences B at the run time

Figure 2.3: Inter-dependencies of Building Blocks

Based on the interaction of the building-block protocols in this figure, we identify
the exact conditibns that a particular block imposes on other blocks. This helps ascertain
the exact requirements that need to be observed across the blocks. As we have already
identified the specific attributes of each block, we summarize, in Table 2.1, the
conditions and requirements for each block-interaction in Table 2.1.

We can address building blocks dependencies and identify the governing
condition by analyzing the dependency paths as well as influence paths as depicted in
Figure 2.3 along with the reference to Table 2. For example, in a dependency path of AM
(Availability Management) > Membership—> Broadcast - Clock Synchronization, AM
depends on Membership directly, and the Membership relies on the Atomic Broadcast to
get the membership agreement. The influence of Atomic Broadcast on the Membership is
that the underlying system model must be synchronized. This constraint is satisfied by the
propetties of Clock Synchronization. As an example, the influence path Fault Detection

> AM -> Checkpointing shows their run-time interaction when a fault is detected. The
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presupposition of AM asking Checkpointing for recovery is that a benign or value fault

has been accurately diagnosed by the Fault Detection.

Block Interactions

Primary Attributes

Sync.— Broadcast
Sync.— Membership
Sync.— Fault Detection
Sync.— Checkpointing
Sync.— AM

Sync.— FDIR

* synchronized clocks
bounded drift rate
bounded clock skew

Broadcast — Membership
Broadcast — Fault Detection
Broadcast — Checkpointing
Broadcast — AM

Broadcast — FDIR

synchronous system model
synchronized clocks
bounded delay

Membership — Fault Detection
Membership — Checkpointing
Membership — AM
Membership — FDIR
Membership --> AM

unpartitioned network
synchronous system model
synchronized clocks
bounded communication
atomicity and ordering
crash fault

FaultDetection --> AM
FaultDetection — FDIR

unpartitioned network
synchronous system model
synchronized clocks
bounded communication
group Communication
benign fault and value fault

AM --> Checkpointing
AM — FDIR

unpartitioned network
synchronous system
synchronized clocks
bounded communication
atomicity and ordering
group Communication

Checkpointing — FDIR

unpartitioned network
synchronous system
synchronized clocks
bounded communication
atomicity and ordering
coordinated checkpoints
group Communication

Table 2: Block Interactions and Primary Attributes
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In this chapter, we have identified the building blocks that are used to implement
JAMS and their dependencies. It is to note that the relationships between those
distributed protocols at run-time are quite complex. In the next chapter, we address the

complexities in protocol interactions in our object-oriented design of JAMS framework.

29



Chapter 3

Objected-Oriented Design of JAMS

As discussed in Chapter 2, composition of building-block protocols is a
challenging task since the protocols are interacting with one another not only during the
design phase but also at run time. With this viewpoint, we now introduce the object-
oriented design of JAMS in detail. We first present the overview of JAMS system
architecture, and describe how the framework integrates the building blocks as modules
in this architecture. Then we give an in-depth explanation of the proposed modular design.
Finally, we illustrate the dynamic behavior of each module through a set of sequence

diagrams.
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3.1 System Architecture

Since the relationships between distributed protocols are quite complex, the first
step is to structure this complexity. Figure 3.1 presents an overview of object-oriented
system architecture design of JAMS. The JAMS architecture is structured in two layers:
Communication layer and Protocol layer. The communication Layer is constituted by
three communication modules. This layer is responsible for sending messages to a
multicast socket, receiving messages from network, and delivering them to the
corresponding protocol module in protocol layer. The protocol layer consists of five
protocol modules. Each protocol module includes a protocol class that is implemented

with the specification of basic building block protocols identified earlier.

( t

Receiver
Communication Broadcast ¥
Layer < A
Message Filter
2
I A A A A A
A Y \ 4 Y
(" Fault Membership Availability Clock Checkpointing
Detection Management Synchronization
Protocol <
Layer

Figure 3.1: Overview of the JAMS framework

In each module, there is a main class named module class. In each protocol-
module class, the related protocol is implemented as its inner class named protocol-class.

We use the name of the related protocol to refer its protocol module, module class,
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protocol-class and corresponding objects. For example, for fault detection module -
FDmodule, inside its module class - FaultDetection, the object fdPtclObject of protocol
class FaultDetectionProtocol is capable of executing the fault detection protocol. An
object of FaultDetection is expressed as fdObject. The three communication modules are

BCmodule, RCVmodule and MFmodule.

3.2 In-depth View of Design

As mentioned, JAMS is fully object-oriented. Every component in JAMS is
objectified without any concerns of it being a user interface or the protocol abstraction. A
user interface is implemented in order to illustrate and test JAMS. Due to the
environment restriction, the CSmodule is not implemented. We assume network
administrator has configured the system to be synchronized. In the subsequent sections,
we discuss the detailed design and the implementation for those components to

collaborate together.
3.2.1 Design Patterns — Modular Design

Before discussing the system architecture, we first highlight issues related to
protocol interactions. There are several approaches to protocol compositions. Most of
them have applied inheritance as main tool to compose protocols, such as BAST, Arjuna.
In our opinion, inheritance alone is not sufficient because it does not offer enough
flexibility. For example, as seen in Figure 2.2 which depicts the inter-dependencies of
building blocks, AMmodule depends on CSmodule, BCmodule, MEMmodule, and
influences CKPTmodule. Except the CSmodule (since the clock can be maintained as
global variable by the system), AMmodule must inherit three other classes in order to be

able to run on its own. This type of inheritance is hard to be implemented, and typically
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does not allow code reuse, for example, if we use another membership protocol to replace
current one, all other protocols on which membership is dependent have to be changed.
Also, Java does not support multiple inheritance. In our design, protocol interaction has
been dealt with by message passing mechanisms. The communication layer thus plays an
important role of message exchange in our system.

In Figure 3.2, class diagram of main modules shows eight main classes involved
in the system. We have designed the BCmodule class — Broadcast as an abstract class. All
protocol-classes are subclasses of Broadcast. By inheritance, all protocol-classes can use
the multicast service which is implemented in Broadcast. We will discuss this inheritance
in Section 3.3.1. The RCVmodule and MFmodule can be viewed as one single module
which is simply responsible for receiving datagram from the network and passing the
data to the object of protocol-module class as required. The protocol-module classes are
all extended from class Thread. A protocol-class is built in as an inner class of the
module class. The module-class threads runs only for receiving messages from the
communication layer. With such a design, an object of a protocol-class is capable of
manipulating the data which is received by its module-class object and multicasting the
message to its peers. In JAMS, the objects of communication-module classes and
protocol-module classes work concurrently, and the objects of the protocol-classes also
run at the same time. Accordingly, all objects in the system perform task independently
and the interactions between them are easily handled. This independent design enables

each module to be easily implemented and/or extended in future.
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-digplay:Userinterface
+DATAGRAM _LIFE:int
+LOCAL TEST:int
+GLOBAL_TEST:int
+DIAGNOSIS_PERIOD:int
-timer.Timer
-timer1 . Timer
-timer2:Timer
-timer3:Timer

-fdPiclObjectFauliDetectionProtocol

+FauitDetection
+runvoid

FaultDetectionProtocol

Userinterface setFaultyButton actionAdapter
Userlnterface setNonf aultyButton actionAdapter

Figure 3.2: Classes diagram of main modules of JAMS
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3.2.2 Protocol Module

Protocol module is defined as a set of classes that collaborate together to perform
the desired operations as specified in different protocols’ requirements. There are four
implemented protocol-module classes in JAMS. Each module corresponds to a specific
protocol-module class, and each protocol-module class includes one protocol-class and
other supporting-protocol classes. The protocol-class is defined as the inner class of its
module class, and practically it implements the behavior of the related protocol. An inner
class is a nested class whose instance exists within an instance of its enclosing class and
has direct access to the members of its enclosing instance.

The inner class design is a key feature of JAMS. The reasons of using inner class
are as follows:

1. As a member of its enclosing class, an inner class has a special privilege [24].

It has unlimited access to its enclosing class's members, even if they are
declared privates. For example, fdPtclObject is free to use all variables and
methods of fdObject. This high access priority greatly facilitates programming
of the protocol algorithm.

2. Inner class is hidden to other classes in the same package. This is a security
mechanism which protects encapsulation of protocol-classes. In JAMS, by
nesting protocol-class within a module-class, only the module-class can create
the object of protocol-class.

3. Itis easy to code the event-driven program by using inner class. There are two
kinds of inner classes used in our system to implement event-driven task: one

is being extended from class TimerTask which handles an event of time-elapse,
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and the other one implements an actionListener interface to handle an event
from Userlnterface.

Each protocol-module class embodies a set of instances of classes. Their
relationship is shown in Figure 3.3 with an example of the class diagram of FDmodule. A
brief explanation is as follows:

FaultDetection is the main class of FDmodule. It creates all instances of other
classes in a module. FaultDetectionProtocol is an inner class of FaultDetection, and its
instance acts as a fdPtclObject that executes online diagnosis algorithm which we
presented in Section 2.3.2. Being inherited from Broadcast, FaultDetectionProtocol can
multi-broadcast Message to the group. Upon receiving Message by reading InputStream,
FaultDetection sets timer to schedule a TimerTask which invokes some operations in
FaultDetectionProtocol, and collects the diagnosis information in FdMsgSets in which a
set of Syndromes reflects the local test information and a set of Reports reflects the global
test information. FaultDetectionProtocol tests the faulty node based on the information in
FdMsgSets. Through Userlnterface, a user can see the results of protocol execution as
well as log of events. Additionally, it allows tester to inject artificial fault to simulate
node fault.

All other protocol modules have the same inner class design as FDmodule, while
having their own supporting classes accommodating their own protocol. The detailed

discussion about each module is given in Section 3.3.

36



Userinterface I ingiststream I Broadedst
+Userinterfaceq +Broadcast) . .
- §bInitd ; void +Broadcast(msyg : Message) ; void
# processWindowEvent(e - WindowEvent) - void +Broadcast(mesy *Stringy : void
+addSetFaultylistener(| ActionListener) : void +Bpadcast(mesqg : String, port int, unicastAddr : InetAddress) - void
+addSetNonf aultyListener(l rActionListener) void Realip> +getHosiName( String
+addSubmillistener(! -Actionlistener)  void + gettocalHostAddress( : inetAddress
+gystemPrintout{s String) : void + {eaveGroup( : void
+ghablegervice( : void
+ disableSenvice void
+ displayStatus(s : String).: void l?
*+ enableAdmCommandy) : void FaultDetectionProtacal
+disableAdmCommand()-::void TimerTask -
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*vote( :int

+ focaiTest) : void

+ generateLocalRepon() :-String

+globalTest(: void 1 fux
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Figure 3.3: Class Diagram of Fault Detection Module
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3.2.3 Communication

Communication mechanism is a key aspect of JAMS framework. It enables
interaction between the running objects which can be a network node in the group, or any
instances of classes running in one node. Communications between objects within a
module can be easily achieved by an inner class. Communications between network
nodes and between the modules are mainly discussed here. Figure 3.4 gives an overview
of JAMS communications. Communications between network nodes are implemented by
a multicast socket, and communications between the objects of module-classes are
achieved by setting up pipes. The messages they exchange with one another are of the

type of class Message which has an attribute to identify which protocol module the

Message belongs to.

InetAddress
mlMticastGroup

- multicasflP

| MembershipProtocol | lAmProtucol I | CheckPaintingPratocal ” FaultDetectionProtocol |

/

Membetship AM CheckPointing FauitDetection
infindtis - + FaultDetection(is  inputStream)
+Membership(is, 0s) + AM(is T InputStream) + Chec_kPmntmg@s T InputStream) + rung -void
+tung : void . ] +runQ-void +1unQ :void
N S s v -~
* ~ Tl o~ - * Prd
RS Rty ~ % g
~ RN S A ’
R T - o~ - \\ P
Y e lne iz
PipedOutputStream ‘PipedinputStream
/:‘ L L -7
f s .~ - -
i e
4 IPEL
i - - = -
MsgFilter Receiver
+ Receiver(os : OutputStream)
+ MsqFilter(is, 0s1,7 052, 083, 084, 0s5) +.run ; void
*run{y -void #finalize® void

Figure 3.4: Communication in JAMS
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Communications between Network Nodes

Relying on the transport layer, BCmodule, and RCVmodule provide group
communication services. As shown in Figure 5, this service implements one-to-many
multicast communications that enables any member to broadcast, at any time, a message

m to all active members in the group over the distributed network.

Network

Transport Laver

receive () 1 send( )

A

Receiver Broadcast
7'y

vwrite( ) broadcast( )

Figure 3.5: Group Communication Service

When JAMS starts up in a node, this node joins the multicast group by executing
the following code in BCmodule.

//create a multicast socket with known IP and port.
multicastGroup = InetAddress.getByName(''225.2.36.6");
multicastSocket = new MulticastSocket(1111),;
multicastSocket.joinGroup(multicastGroup);

All members in this group have a multicast socket with the same IP address. Each
node’s ReceiverObject is running as a thread, listening to this multicast socket. Therefore
any messages sent to this socket will be received by all of members in this multicast
group.

BCmodule class is designed as an abstract class Broadcast. All protocol-classes

are inherited from Broadcast. Whenever the communication between network nodes is
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necessary, an object of protocol-class broadcasts a message by calling function
broadcast( ) which is implemented in class Broadcast. Any message sent to this multicast
socket will be received by the revObject of each member of the group, and then written to
mfObject. Finally, the message will be delivered to the corresponding protocol module by

mfObject. Next section will discuss how it is delivered properly.

Cl:l Broadcast

isMulticastboolean
-msgPacket:String
-multicastPortint
-multicastSocket:MulticastSocke
-unicastiP:InetAddress
-unicastPortint
-unicasiSocket:DatagramSocke!
-p:DatagramPacket

+Broadeast
+Broadeastvold
+Broadcastvoid
+Broadcastvoid
+leaveGroupvoid

hostName:String
localHostAddress InetAddress

[:‘:I FaultDetectionProtocol l;':l MembershipProtocol GheckPointingProtocol AmProtocol
-ngdeName:String -nodesListArrayList -nodeName:String -myid:String
-testvatuerint -newNodesListArrayList -itCkpt:CheckPoint -members:ArrayList

e —— -numnint -pmnCkpt.CheckPaint -onService:boolean
+FaultDetectionProtocol -myName:String -logCounter.int -ptimary:String
-backup:String
StartDiagnosis +MembershipProtoco! +CheckPointingProtocol
LocalTest +addNode:yoid +makeNewTttCkptvaid +AmPraotocol
GlobalTest +gelNode:void +makaCkptPermanentyoid +selectPrimaryHost:String
—_———] +printMembers.void +addLogMessage:void +selectBackupHost:String
frameNum:int +deliveryvold +histaryCommitTrsc.void +addHostvoid
+updateMembership:void +removeHostvoid
+noticeAMS:void MakeTHCkptPermanent +startNode:vold
—_ Recovery +statPrimaryvoid
TimerTask! Recoveryt +startBackup:void
TimerTask2 +promoteBackup:void
TimerTask3 +stantServers void
_— +startServicevoid
members:ArraylList +stopSernvice void
+crashNode:void
+faultyiNode.void
+broadCastPBvaid
+updatePBvoid

Figure 3.6: Inheritance in JAMS
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Communication between Modules

Communication between modules is referred as the communication between
threads at run time since each module-class object starts as a thread. Pipes are used to
communicate between those module-class threads in JAMS. It enables threads to
communicate in a portable way. By using pipes, a bunch of threads can be connected
together, and thus synchronization between them is being taken care of. Figure 4 shows

how pipes are used to connect threads in JAMS.

Fault Detection

i

Message Membership = Availability
=) Receiver =) Filter Management

::>| Checkpointing |

!

v PipedInputStream y PipedOutputStrea

Figure 3.7: Communication between modules

The main objective to use pipe for communication between modules is to keep
every thread simple at all time. For example, consider the communication channel from
RCVmodule to FDmodule. The rcvObject is only responsible to listening for the
incoming message all the time and transferring the received message to a piped-output
stream connected with mfObject. Upon reading a message from the piped-input stream,
the mfObject will simply state which protocol-module that the message belongs to, and
then pass it to that specific module. The fdObject just needs to read the message from the
piped-input stream without caring for the source of that message. Since AMmodule

depends on MEMmodule directly, we set up a pipe between them, and thus whenever the
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memObject detects a node crash, it notifies amObject right away, without broadcasting
the message to network.
The following fragment shows how to set up pipes and connect them with threads in

order to construct a communication channel from RCVmodule, through MFmodule,

MEMmodule, to AMmodule.

*set up pipes*/

PipedOutputStream pout = new PipedQutputStream();
PipedInputStream pin = new PipedInputStream(pout);
PipedOutputStream poutl = new PipedQutputStream();
PipedInputStream pinl = new PipedInputStream(poutl );
PipedQutputStream pout2 = new PipedQutputStream();
PipedInputStream pin2 = new PipedInputStream(poutl );

/* construct threads */

Receiver receiver=new Receiver(pout);

MsgFilter filter = new MsgFilter(pin, poutl ),
Membership mem = new Membership(pinl,pout2);
AM am=new AM(pin2);

/* start threads */
receiver.start();
filter.start();
mem.start();

am.start();
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3.3 Details in Protocol Modules

This section describes the dynamic behavior among objects in each module with
the help of sequence diagrams. A sequence diagram, on the horizontal axis, shows the life
time of the object that it represents, while on the vertical axis, shows the sequence of
creation or invocation of these objects. Sequence diagram clearly depicts the sequence of
events, and allows the designer to specify the sequence of messages sent between objects
in collaboration over time. It is an excellent tool for depicting concurrent operations in

each module of JAMS.

3.3.1 Fault Detection Module

The sequence diagrams of FDmodule are shown in Figures 3.8, 3.9 and 3.10. The
first diagram shown in Figure 3.8 captures the course of events that take place when
JAMS is started. Class JAMSystem defines main( ) method which is the entry to the
system. Upon calling main(), object jamsObject is created. The objects of module-classes
are created in succession, such as mfObject and fdObject. Creation of module-classes -
AM, Membership, CheckPointing is omitted in this diagram. Objects in each module are
produced subsequently. When an instance of FaultDetectionProtocol, fdPtclObject, is
created, it broadcasts a “join” message to the group.

The second diagram shown in Figure 3.9 captures what happens when the
FaultDetection thread receives a “join” message from other peers. The process of
passing message through MulticastSocket, Receiver, MsgFilter, data inputStream and
outputStream is not shown in the diagram. There are three Timers (t1, 12, t3) and three

associated TimerTask (startDiagnosis, localTest, globalTest) involved in the process.
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Timer ¢/ schedules startDiagnosis — a start of a fault diagnosis algorithm. The localTest
and globalTest of diagnosis algorithm are scheduled by 72 and ¢3 respectively. fd is
continuously listening to inputStream. When a “join” message arrives, 2, t3 are canceled
and tl reschedules startDiagnosis. The elapsed time of Al invokes fdPtclObject to run
startDiagnosis. In this way, diagnoses of the group are synchronized. By calling
startDiagnosis, fdPtclObject broadcasts a “diagnosis” message which includes its test
value, and schedules a localTest and a globalTest at the same time in each node. All
“diagnosis” messages are sent to the group. As noted in diagram, Al is a constant which
represents datagram timeout in the network, and A2 is a constant indicating diagnosis
period.

The third sequence diagram in Figure 3.10 shows a complete diagnosis cycle in
the case of a group of three nodes. Upon receiving a “diagnosis” message, msgSets
converts the message to a syndrome and adds the syndrome to its syndrome list. The
event of elapsed time B invokes fdPtclObject to run locatTest which executes vote() on
the syndrome, generates a localReport to record which node is GOOD or BAD, and
broadcasts this “report” to the group. Upon receiving this “report” message, fd saves it in
msgSets’ local report list. The event of passing time C invokes fdPtclObject to run
globalTest. The final diagnosis result is reported as a “faultyReport” message and
broadcasted to the group by a non-faulty node. This diagnosis cycle is repeated every A2

period, and restarts if it receives a “join” message.
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Figure 3.8: Sequence Diagram #1 of Fault Detection Module
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Figure 3.10: Sequence Diagram #3 of Fault Detection Module

3.3.2 Membership Module

k

The sequence of actions in MEMmodule is depicted in Figure 3.11, 3.12 and 3.13.

The first diagram shown in Figure 3.11 captures what happens when memObject receives

a “join” message from other peers. Figure 3.12 captures the activities and transitions

during a membership checking period. The third sequence diagram in Figure 3.13

captures the invocations which take place when the memObject receives a “faultyReport”

message from the group. There are three Timers (¢, 12, t3) and three associated

TimerTasks

(TimerTaskl,

TimerTask2, TimerTask3)
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TimerTaskl is scheduled to broadcast a “present”

message for membership checking

purpose. TimerTask2 updates the membership according to the received “present”

messages, and informs AMmodule of the membership update. In TimerTask3 the

“faultyReport” message is passed to AMmodule. This leads to the removal of the faulty

node from the group. From FDmodule sequence diagrams, it is evident that receiving

“join” message always leads to canceling of the current algorithm cycle and rescheduling

of the next algorithm cycle.
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Figure 3.13: Sequence Diagram #3 of Membership Module
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3.3.3 Availability Management Module

The sequence of actions in AMmodule is depicted in Figures 3.14, 3.15 and 3.16.
Referring the pseudo code of Availability Management Service in Section 2.2.5 helps
better understand the sequence. Figure 3.14 captures what happens when amObject
receives a “join” or a “crash” notice from memObject. As shown in Figure 3.14, function
add-host() and crash-Node() will be invoked by receiving “join” and “crash” message
respectively. “p&b” message is broadcasted in order to indicate the newly joined node
which is current primary and which is current backup. The second diagram shown in
Figure 3.15 captures the course of events when an administrator presses “start service”
button on userlnterface, where a action listener is on watch. The third sequence diagram
in Figure 3.16 captures the invocation that occurs when memObject receives a “p&b” or a
“faulty” message from the group. Upon receiving “p&b” message, the node updates its

primary and backup. Function faulty-Node() is invoked by receiving a “faulty” message.

memObject : 0s: is: amObject: ampPtclObject qroup :
Membership OutputStream InputStream Al AmProtocol MulticastSocket
| I ] | I
: PRV 2: connectByPipe 1 : : !
3:m = Read( ] { rm.protocol="AM"
| T | m.content="P&B"
| i L 4: [m/.I;Antent:"onn"] addhost(m.olhlerMsg) m.otherMsg= primarylbackup
] | |
| | 1 :
! 6; Write(m) | :
|

1

7: connectByPipe
8: Send(m)

U 5: [mv;u smallest]Bm‘aagast(m)
I
|
!
|

9:m = Read)

|

|

[

|

|

|

10: [m.content="crash"] cr’ashNode(m.id) /I-;J

[l |

10.1: removeHost{m.ld)

|
10.2:. [m.id=primary] prom%:teBackupo

|
10.3: [m.ld=backup] standlackupo

10.4 logCrashRecord( |

S Y

FIRIEIN

Il
|
Figure 3.14: Sequence Diagram #1 of Availability Management Module
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Figure 3.15: Sequence Diagram #2 of Availability Management Module
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Figure 3.16: Sequence Diagram #3 of Availability Management Module
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3.3.4 Checkpointing Module

The sequence of actions in CKPTmodule is depicted in Figures 3.17 and 3.18.
Figure 3.17 captures what happens when ckptObject receives a “join” message from
other peers. The current checkpointing period is cancelled and a new checkpointing cycle
is rescheduled. This diagram also demonstrates a complete process in a checkpointing
period. The second diagram shown in Figure 3.18 captures the invocation of Recovery ()

that occurs when ckptObject receives a “recovery” message from the group.

s ckptObiect ; I s Timer I l 12 Timer l ckptPtciObiect . datebase
InputStream CheckPointing T i CheckPaintingProtacol
T | I [ |
1:m’= Réad) | | | | [
N | | ' |
2 [m.qontent="join’] SchedulF(MakeTttCkptPermaqentO,A,B) | I
' | [ {
i
/ | ! (
i |

!

i
! ‘ ¥ MakeTttleptPermanemo L.1: pmnChkpt = makeckptPerman%nt(pmanpt)

|
A-datagram time out
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!
I
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Figure 3.17: Sequence Diagram #1 of Checkpointing Module
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Figure 3.18: Sequence Diagram #2 of Checkpointing Module

After having described JAMS architecture, we next present a case study of banking
service where we have utilized JAMS framework to develop such a highly available

application in a modular way.
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Chapter 4

Case Study of Applying JAMS to an Application

A fully operational JAMS has been implemented based on the modular design
discussed in Chapter 3. This chapter discusses how the application programmer can use
JAMS to build a fault-tolerant distributed application in a modular manner. We apply
JAMS’s implementation to an application service namely banking service to see how it
ensures that application service remain continuously available to users despite occurrence
of failures, maintenance and growth. Our presentation sacrifices description of details
involved in a realistic application development for the purpose of making the underlying

concepts understandable.
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4.1 Building the Application

The application developer is responsible to develop a reliable distributed application
by using ready-to-use protocol object libraries of JAMS. Figure 4.1 reflects where an
application developer is going to place the desired application in the distributed platform
provided by JAMS. The application service is designed as self-contained coded module,

and located in the protocol layer in JAMS.

Figure 4.1: Building Application as a module in JAMS

A simple banking service has been developed for the purpose of testing. Two
types of transactions are available to a client: deposit and withdraw. A data file is created
to simulate a bank’s database. Only the total balance of a bank account is saved in the

data file. We name this bank application as JAMS_BANK.
4.2 Achieving Active Replication of JAMS_BANK

Considering a situation that JAMS_BANK objects are running in a network of three
host nodes, we want the banking service to be available even when some host nodes crash
or become faulty. In this network, banking service objects (banking servers) and JAMS
objects are replicated on all three host nodes. Objects which are instances of a same
protocol class on different nodes have exactly the same information. Only the primary of
banking servers provides banking service to users. The banking service is a replicated

object and it is manipulated as a group of replica banking servers {a, b, c}. Whenever
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primary server crashes or becomes faulty, the backup server is promoted to become the
primary, and subsequently, continues to provide banking service without any prolonged

disruption.

opi()

. TAMS_
Invoked by an action, the BANK 3

operation opt() is executed ———
by protocol object on a node T T2 S L)

Figure 4.2: Active Replication with Protocol Objects

This high availability is ensured by the running protocol objects on all three nodes.
Figure 4.2 depicts the active replication of protocol objects on all three nodes. Three
kinds of actions can be initiated by three concurrent users: the human administrator, the
adverse environment and the system-timer. The actions that an administrator can initiate
include “start service”, “stop service”, “add host”, “remove host”, and the actions of an
adverse environment include the “crash node” and “fault node”. The system-timer
executes periodically the “increment current time” action on a node’s clock governing the
rounds of the protocols’ execution. Any one action of these three kinds triggers an
operation of the replicated protocol objects on all host nodes. For example, the elapsed

time of a period of fault detection process invokes the execution of startDiagnosis( ) on

each fdPtclObject of all three nodes; identifying a fault node triggers the invocation of
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Sfaulty_Node( ) of amPtclObject on all three nodes. It ensures that the states of the
replicate objects remain identical on each node.

The relationship between the banking server and other protocol module-class objects
inside a node is illustrated in Figure 4.3. Through the interface, AM administrator can
start or stop bank service; client can access the bank service; tester can set a node faulty
over JAMS_BANK system; the protocols’ execution information and the banking result
can be displayed. AM module could know of any node join or crash/leave from
Membership module and that of a node being declared faulty from FaultDetection
module. The service state is checkpointed by Checkpointing protocol periodically. Upon
receiving a faultReport message that a faulty node is detected on primary of the bankiﬁg
service, AM module sends a “recovery” command to Checkpointing module. Upon
receiving “recovery” message, Checkpointing module discards current tentative
checkpoint, and rolls back banking service state to a previous permanent state whose

banking balance was already committed into the date file.

Membership K-----cccom s e FaultDetection
Group
7 T _
! ’ KnowF aultyNode~~ -'setfaulty
i - -
i - -
1 -
JaingLrash e Lsisplay
{ - e
: i isplay
P - e EN
il - display
AMS - —agminsraior Userinterface
' TR - displ 7
: {display
| L banking

Recgvery

CheckPointing | === ======" T Gheckpoint T T TS ){ Server

Figure 4.3: Relationship between the server and other objects in JAMS

56



Figure 4.4 shows the layout of the implemented user interface. The right region
displays the protocol execution results, such as the fault report, membership update, etc.
On left top corner, there is the banking service access area. The banking service is only
accessible on the primary of banking servers. The node name, the current banking
primary and backup are shown on the bottom status bar. The administration panel is
between the status bar and the banking area. After administrator logs in, six command
buttons are enabled for administrator. They are Start Service, Stop Service, Add Host,

Remove Host, Set Faulty and Set Non_faulty.

FDIR System

FD localTest invoked
FD receive: Message[node=PR protocol=FD,sendTime=Tue May 25 16:22:55 EDT 2004,m:
FD receive: Message[hode=LU protocol=FD,sendTime=Tue May 25 16:22:55 EDT 2004,ms¢
MEM timer task1 invoked.
membership receive msg: Message([node=PR,protocol=MEM,sendTime=Tue May 25 16:22
membership receive msg: Message[node=LU, protocol=MEM,sendTime=Tue May 25 16:22
CKPT: MakeTtCkptPermanentis invoked
Save pervious state:1000, currentState=1000
-Current Membership:
1. WV
2. PR

D GlobalTest invoked
ault Detettion Report-—--
--- NG faully node ----—

MEM timer task? invoked.

membership receive msg: Messagefnode=PR, protocol=MEM,sendTime=Tue May 25 162>

membership receive msy: Message[node=LU,prolocoi=MEM,sendTime=Tue May 25 16:23

FD StartDiagnosis invoked

FD receive: Messagenode=PR protocol=FD,sendTime=Tue May 25 16:23:30 EDT 2004,m

FD receive: Messagefnode=LU,protocoi=FD,sendTime=Tue May 25 16:23:30 EDT 2004,m¢
embership receive msg: Message[node=PO protocol=MEM,sendTime=Tue May 25 16:2%

membership receive msg: Message{node=PR,protocol=MEM,sendTime=Tue May 25 16:22
membership receive msg: Message{node=LU, protocol=MEM,sendTime=Tus May 25 16:23
ambership receive msg: Message[node=PQO protocol=MEM,sendTime=Tue May 25 16:2

FD receive: Message[node=PR protocol=FD,sendTime=Tue May 25 16:23:45 EDT 2004,m:
FD receive: Messagenode=LU,protocol=FD,sendTime=Tue May 25 16:23:45 EDT 2004,m¢
FD receive: Messagelnode=PO protocol=F D,sendTime=Tue May 25 16:23:44 EDT 2004,m
AMS receive: 31614731 Message[node=LU protocol=AMS,sendTime=Tue May 25 16:23:49
urrent Membership---—
1. WU
2. PO

Figure 4.4: Outlook of the user interface
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4.3 Testing of JAMS_BANK

Each module or protocol class of JAMS has been individually tested. In this
section, we discuss the complete system testing with a real-world application to ensure
 the overall robustness and correctness of all aspects of dependability supported by JAMS.
Testing is undertaken in a 100M LAN during a normal workday. Network nodes hosting
JAMS_BANK are running either Windows XP or Red Hat Linux 9. Test cases that we
used to validate the overall functioning of JAMS_BANK are partially listed in Table 3,

where (a, b, ¢) represents three host nodes in the group.

Test Cases | Initial states Actions or events Expected Results Pass
Service — on
Case 1 Service is off Administrator login primary =a N
(a,b,c) Press “Start Service” backup=b
(a, b,c)
primary=a primary=a
Case 2 backup=>b b crash backup=c J
(a,b,0) (a,b,o)
primary=a primary=b
Case 3 backup=b a crash backup=c V
(a,b,0) (a,b,0)
primary=a - . primary=a
Case 4 backup=b Admlmstf:ator login ,(,) n b backup=c V
Press “Set faulty
(a,b,0) (a,c)
primary=a . . primary=>b
Case 5 backup=>b Adllr)lizlsst?;o: ;:fll:l ,(,) na backup=c v
(a,b,c) et ety (b, c)
primary=>b primary=>b
backup=c . backup=c
Case 6 ®. 0) Deposit $100 (b, o) \/
balance=$1000 balance=$1100
primary=b i _
backup=c Deposit $100 primary=c
Case 7 (© v
b, ) b crash balance=$1200
balance=$1100 ce=
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%233?]?[) Administrator login on b primary=c
Case 8 ® I;—C Press “Set faulty” (© v
balancent 1100 Deposit $100 balance=$1100
primary=c Administrator login Service — off
Case 9 (0 Press “Stop Service” (o) v

Table 3: Test Cases of JAMS BANK

We take test case 8 as an example to explain the testing procedures.
Initial States:
1. There are initially 2 host nodes, b and c.
2. Node b is the primary of the banking service and node c is the backup.
3. The balance of the bank account is $1100.
Actions:
1. Administrator logs in on b, so the six command buttons are enabled.
2. Administrator presses button “Set Faulty”.
3. A user deposits $100 from b.
Expected Results:
1. Node ¢ becomes the primary of the banking service.
2. Node b leaves the group, only node c stays in the group.
3. There is no backup now.
4. The transaction “Deposit $100” is not completed. The user is prompted to
repeat this transaction. The balance of the bank account remains $1100.
As the test case has passed through, we could extract the following conclusions:
1. The faulty node is diagnosed and isolated accurately by Fault
Detection/Diagnosis protocol.

2. The fault on primary leads to promotion of the backup, so that the service
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remains available to users.
3. Any transaction on the faulty primary is rolled back, so that the service
states remain consistent.

After systematic testing, it has been demonstrated that JAMS_BANK does provide
autonomous availability of banking service despite arbitrary numbers of concurrent nodes
removals, crashes, joins, and faults. The banking service always remains continuously
available on the primary to users as long as there is at least one non-faulty node in the
group.

There are two log files for recording JAMS_BANK operations from the start of a
service to its completion. The first log file, ams.log, is used to record the change of
service status, i.e., the change in status of a node being primary and backup. The second
log file, history.log, logs all transactions and any recovery history. Below we show these
two log files which are generated by a testing sequence comprising of test cases 1,3,6,8

and 9 as shown in Table 3.

e e o ok R ok o o st ofe v ok ok e ol ok o o e ok st of o o ol e ok kel o ams lﬂg e ok ok ok e b o o e o ok ook sk ol ok ke sk ok sk ok sk ok sk ok sk ke ok ok ok

Bank Service is on at Thu Mar 11 15:02:47 EST 2004 with Primary=8R Backup=3I .

Primery SR crash, SI becomes new primaty, 3 becoms new backup at Thu Mar 11 15:04:22 EST 2004.
Remove faulty node SI, 3 becomes new primary at at Thu Mar 11 15:07:32 EST 2004.

Bank Service is off at Thu Mar 11 15:11:41 EST 2004. '

e ok e ok e o s ok she ofs s o ool sk e R e e bk hist-ufy' lug e e e st o e o she b ol ok e e ok e ofe b e ok sk e o e b ok ok

SI: Depositfl00 at Time=Thu Mar 11 15:05:14 EST 2004, Balance->1100
SI: Deposit$i00 at Time=Thu Mer 11 1506:47 EST 2004, Balance->1200
Recovery at Titne=Thu Mar 11 15:07:34 EST 2004. Belance->1100

More tests will be necessary to refine our analysis and further optimize JAMS. In
order to support a variety of application semantics, additional transactional protocols
should be added to JAMS. For example, an atomic commitment protocol is needed when
there may exist two or more primaries at one time. This issue is beyond the scope of this

thesis.
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Chapter 5

Discussion and Conclusions

Service availability has become an increasingly important factor in building
distributed applications of late. In e-business, downtime may cost millions of dollars in
addition to operating expenses. JAMS aims to help the application programmer build the
application services that can remain continuously available to users despite the presence
of failures, maintenance and growth. By implementing the distributed environment
provided by JAMS protocol modules, one can be assured that the final product, in
redundancy management aspect, is a consistent, fault tolerant, maintainable system with
high availability. Please note that if we add protocols from the class of transactional
process in JAMS, the product will be made more robust.

In this thesis, we have presented JAMS, an object-oriented library of reliable
distributed protocol classes. In order to obtain overall global properties of JAMS, we
have identified the building blocks- that are appropriate to provide availability
management service and FDIR service, and also highlighted their inter-dependencies. It
has been shown how these complex protocols are integrated in JAMS by modularization.
The complexity of inter-dependencies among the protocols was easily solved by using the
modular design strategy and communication mechanisms. In JAMS, each protocol was
designed as a module, structurally independent with each other, thus they can be used as
the basic structuring components of distributed environment. We have introduced details

of JAVA implementation for each module according to its sequence diagrams. The case
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study of the banking service has demonstrated that, by using JAMS, the reliable
distributed application can be easily developed and its availability is greatly enhanced.

Other previous research works have already tackled the problem of distributed
system design. Only BAST adopted the object-oriented approach of composing protocol
objects, but its design has a couple of limitations. For example, it does not offer enough
flexibility to optimal code reuse. The approach of modular composition, which is
implemented in the JAMS, is the main contribution to the modeling of well-structured
distributed systems. The JAMS is an object-oriented fault-tolerant system that can be
characterized by the following features: (a) fully object-oriented; (b) modularization; (c)
portable; (d) autonomous; (e) high performance; (f) self fault-tolerant.

5.1 Contributions

This work is dedicated to the field of application service availability by
integrating Availability Management with FDIR method. The main contributions are
summarized to be:

e An investigation of related work, which helps to identify the problems and to
provide inspiration in the pursuit of optimal design of the system architecture.

e An identification of building block for each problem within classes of redundancy
management protocols and extensions/modifications to some of existing protocols.

o The specification of functionalities of the building blocks and block inter-
dependencies.

e Development of an availability management system by using modular

composition.
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e A modular design of JAMS system architecture, where each module is

independently implemented.

e An implementation of JAMS in an object-oriented language.

e A case study of applying JAMS to a banking service to demonstrate real-world

applicability.

5.2 Future Research Directions

Over our experience in designing and developing JAMS, we envision the

following research directions:

The availability management service would be designed to serve a set of
application services instead of just one.

The PP fault model would be extended to Hybrid Fault-Effect Model [7]
which considers not only the benign and value faults, but also the arbitrary
and link faults.

The synchronization policy would be changed to close synchronization
instead of loose synchronization. That is to say there may be many
primary servers acting as peers to interpret the service requests in parallel
and maintaining their internal states close to each other. In this case,
additional transactional protocol would be needed.

The harmonization of task scheduling of entire system would be an
attractive research topic. For example, how to decide broadcast
termination time in a specific network; when fault diagnosis should be

scheduled after the membership is updated and when checkpointing
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should be scheduled compared to diagnosis; how long the availability

management should wait for checkpointing and recovery.

Moreover, JAMS framework is open not only for application programmers, but
also for protocol programmers. As mentioned earlier, each suggested extension would
lead to development of a new protocol. However, each of these new protocols could be
implemented as an independent module and be added to the JAMS without having to

construct a new structure.
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