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Abstract

A New Three-parameter Lifetime Distribution with
Bathtub Shape or Increasing Failure Rate Function

and A Flood Data Application

Rui Zhang

In this thesis, a new three-parameter lifetime distribution with bathtub shaped or in-
creasing failure rate function is given by adding a shape parameter in the distribution
which is suggested by Chen(2000). It can be used for modeling lifetime data from
reliability, survival analysis and various extreme value data. The detailed analysis
of this distribution includes density shapes, tail classification and character, hazard
function shapes and the extremes and extreme spacings distributions. The confidence
intervals for the parameters are discussed by using bootstrap method. Its application
in modeling extreme value data is illustrated by the floods data of the Floyd River

at James, lowa.
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Chapter 1

Introduction

1.1 Introduction

As a human attribute, reliability has been used for a long time. For technical systems,
however, the reliability concept has been applied for not more than 60 years. It is
observed that the lifetime distribution of many electronic, mechanical and electro-
mechanical products often has non-monotone failure rate functions. In many relia-
bility analyses, especially over the life-cycle of the product, it usually involves high
initial failure rates (infant mortality) and eventual high failure rates due to aging and

wearout, indicating a bathtub shape failure rate.

In fact, from the 60’s and 70’s, researchers got interested in the distributions with non-
monotone hazard function, such as bathtub shape and unimodal hazard functions and
noticed that distributions with one or two parameters like the Weibull distribution
have very strong restrictions on the data. Smith and Bain (1975) gave the exponen-
tial power distribution whose hazard function has a bathtub shape. Mudholkar and
Srivastava (1993) provided an exponentiated-Weibull distribution. This distribution
has monotone increasing, monotone decreasing, bathtub or unimodal failure rate de-

pending on the different parameter ranges. Chen (2000) proposed a two-parameter



lifetime distribution with bathtub shape or increasing hazard function. Its distribu-

tion function is:

Fo(z) =1- 0= (z>0) (1.1)

In this thesis, a new three-parameter distribution is given, which is obtained by
adding a shape parameter to the Chen’s two-parameter lifetime distribution (2000).

Its cumulative distribution function is given by:
Fa)=(1-0)" 0 (@>0) (12)

where A > 0, 8 > 0 and o > 0 are the parameters. The purpose of this thesis
is to provide a structural analysis of this distribution in a method similar to that
of the exponentiated-Weibull distribution by Mudholkar and Hutson(1996) and the

two-parameter distribution by Chen (2000).

Chapter 1 includes an introduction. A brief review of basic concepts and theorems
of survival analysis are given in Chapter 2. Especially, the concepts of extremes,
extreme spacing and tail classification are discussed in detail, along with the basic

bootstrap method for a confidence interval for a parameter.

Chapter 3 contains the basic facts about the new distribution and some properties
of its density function, along with a discussion of the shape and properties of the
corresponding hazard function. Chapter 4 presents an analysis of the extremes and
extreme spacings of this distribution. It also provides the classification according to
their tail lengths. In Chapter 5, we provide an application of this distribution in the
extreme-value analysis using flood data for the Floyd River at James, Iowa. We use
maximum loglikelihood method to estimate the parameters and give the confidence
intervals for each parameter by using the bootstrap method and the likelihood ratio

test to test some hypothesis about the distribution. The empirical TTT transform



is used to justify the appropriateness of this distribution. Here we also provide a
comparison of this distribution with well known exponentiated-Weibull distribution

by using the same data set.

The final part contains some remarks and conclusions.



Chapter 2

Review of The Definitions and

Theorems

2.1 Introduction to Basic Concepts

Until the 1960s, reliability was defined as: “ the probability that an item will perform
a required function under stated conditions for a stated period of time.” In fact,
reliability analysis includes a variety of statistical techniques for analyzing positive-
valued random variables. These techniques were primarily developed in the medical
and biological sciences, and they were also widely used in the social and econnomic

sciences, as well as in engineering (reliability and failure time analysis).

2.1.1 Reliability Function and Failure Rate

Let random variable T be the lifetime or time to failure of a component, having
probability density function (p.d.f) f(¢) and distribution function(d.f) F(¢). The
probability that the component survives beyond some time is called the reliability

(survival) R(t) of the component. Thus,

Rt)=1-F(t)=P{T >t}, (t>0) (2.1)



The component is assumed to be working properly at timet = 0(R(0) = 1) and no
component can work forever without failure (lim;_, ., R(t) = 0). R(f) is a monotone
non-increasing function of t. Reliability has no meaning for ¢ < 0. F(t) is called the

unreliability.

The probability that a component will fail in the interval (t,t + At] given that the

component is working at time t is:

Pt <T < t+ At)
P(T > t)
F(t+ At) — F(t)

= =0 (2.2)

Pl<T<t+AMT >t) =

By dividing this probability by the length of the time interval At and letting At — 0,

we can get the failure rate (hazard) function h(t)at timet :

. P<T<t+ AHT > )
ht) = Alil—r}o At
. F+A)-F(t) 1
= Am At R(t)
IO (2.3)

R(t)

A failure rate function may be classfied as an IFR (increasing failure rate) , or DFR (decr-

easing failure rate).

Since
f(t) = SF () = ~R () 2.4

then
h(t) = —% _ —%log R(t) (2.5)

then using R(0) = 1, we have

/ "Bt = —log R(t)



and

R(t) = e~ Jo hlwdu (2.6)

Remark: From the above concepts and formulae, the reliability function R(t) and
the distribution function F(t) = 1 — R(t) are uniquely determined by the failure rate
function h(t). We can also find the relationships between the functions F(t), f(¢), R(t)

and h(t) as given below:

Table 2.1: relationships between the F(t), f(t), R(t) and h(t)

Expressed by F(t) 1) R(t) h(t)
F(t)= - i fuydu 1= R(E) 11— e Jorwd
f@)= 4F(1) - —4R(t)  R(t)efo hwdn
R(t) = 1-F() ftoo fu)du - e~ Jo h(w)du
hlt) = TR 7w ~#logR®) -

In order to understand the relationships between them, the graph is drawn for exam-

ple f(1) = oy

2.1.2 Bathtub Hazard Function

In many industrial applications, the hazard function is observed to have the so-called
bathtub shape as shown in figure 2.2. The failure rate with bathtub shape is often
high at the beginning phase. This can explain that there must be undiscovery defects
in the items, these will show up when these items are activated. When the item

has survived in an undiscovery defect phase, the failure rate often stabilizes at a level
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Figure 2.1: The relationships between the F(t), f(t), h(t)and R(t)

where it remains for a certain time until it starts to increase as the items start to wear
out. From the shape of bathtub hazard curve, the lifetime of an item can be divided
into three parts: the burn-in period, the useful period and the wear-out period. A
bathtub curve is called degenerate if either the decreasing or increasing part is not

present (i.e., it is either always increasing or always decreasing).
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Figure 2.2: The bathtub curve



During the burn-in period, the failure rate is expected to drop with age. In the
second period, failure rate is approximately constant and exponential model is usually
acceptable, whereas components begin to reach the wear-out phase with increasing
of the failure rate. The wear-out failure is the outcome of a depleted process due to

abrasion, fatigue, and so on.

2.2 Classification of Probability Laws by Tail Be-
havior

The probability laws can be classified as one of three types of tail behavior: short,
medium, or long. Parzen (1979) used the limiting behavior of the density-quantile
function f(Q(U))(as U goes to 0 or 1, where Q(U) is the inverse function of distri-
bution function F(t)) to classify the probability laws. The right-tail behavior of a
probability law with density function f(¢) is classified according to the value of the

right-tail exponent aq, defined by

fRU) ~1A-v)*, U—-1)

When the density function is differentiable, the definition of the tail exponent ag can

be defined as:

i A= 0I@)
°Tuo- T fQUY))
where
_ =f(QU))
"= Tew) .

The above formula is also equivalent to:

—(1-F@)f' @)
f()?

Qp = lim
t—00



Then right-tail classification would have the following three categories:

ap < 1: short tail
ap =1: medium tail
ag>1: long tail

A similar classification for a left tail holds in terms of the left-tail exponent «;, defined

as:
o = lim —Z/W)
v-o+ f(Q(U))

equivalently,
_ e JOFQR)
B O

with the following rules similar to the left tail classification:

a1 < 1: short tail
a1 =1: medium tail
a1 >1: long tail
When ap = 1, Parzen’s (1979) medium-tailed distribution may further be classified

by limiting value of the hazard hunction h(t). Suppose:

hi = lim ———= lim ———= = lim

1—
Ty 1 (a)(7) W (e (1) M=)

So a right-tail density-quantile classification has five categories:

.
g < 1 short tail

apg=1,h; =0: medium — short
§ ag=1,0< h; < c0: medium — medium

op=1h =00: medium — long

\ op>1: long tail

A similar classification for a left tail holds with «; replacing oy and hy = limy_g+ ﬁfﬁ
= lim,_g+ %(—tt)l replacing hy. In the following chapters, we will give the quantile,
density-quantile function, classification of the tails and their relations to extreme

value theory for this new distribution.



2.2.1 Extremes and Extreme Spacings

Extreme value and extreme spacings distributions are elegant important parts of
statistical theory and practice. The asymptotic distributions of the smallest and the
largest observations in a random sample have interested many prominent statisticians
including Fisher, Fréchet, Gumbel and Gnedenko, from the earliest days of modern
statistics. The large sample distributions of the extreme value have been traditionally

used to classify the tail-behaviors of populations.

Definition 1: Let X, X5,... X, be a random sample from a random variable X hav-
ing continuous distribution function F(y) and density function f(y), and let Xy =
Xin < ... £ Xpin = X(n) be the corresponding order statistics. Si., = X2 — X

and Sp., = X(n) — X(n—1) are the extreme spacings (ES).

Definition 2: If as n — o0, S,., converges to 0 in probability, then the right
tail is called ES-short. If S, diverges in probability, then the tail is called ES-
long. It is called ES-medium if .S, remains bounded but non-zero in probability.

S1n = Xo.n — X1 can be used similarly to describe the left tails.

The classical extreme value classification is a little crude. And exponential and normal
distributions have medium right tails. To refine it, Schuster (1984) proposed using
limiting distributions of the extreme spacings to divide the medium tail distributions

into three subclasses.

Theorem 1: [Fisher and Tippett (1928), Gnedenko (1943)] Let { X, } be a sequence
of 4.i.d random variables. If there exist costant ¢, > 0,d, € R and some non-
degenerate distribution function H, such that, for M, = maz{X1, Xo,..., X,},

M, — n d
Cn

H

10



then H belongs to one of the three standard extreme value distribution.

0, ifr <0,
Fréchet;: o, (z) =
e % ifz > 0.

e~ (=2 ify <0,
Weilbull: ¥, (z) =
1, ifr > 0.

Gumbel: Alz)=e* ",z €R.

This theorem is equivalent to saying that as n — oo, the limiting distribution of
anXnin + b, for suitably chosen a, and b,, must be that of Y~1/® or —Ye or

—logY for some o > 0. Where Y is a standard exponential random variable. The
corresponding population is then said to have a long or short or medium tail, respec-

tively.

Theorem 2: [Schuster (1984)] Suppose hg exists and is possibly infinite. Then
1. ho =0 if and only if S1., = 0p(1).
2. hop =a,0 < a < 00, if and only if S., = O,(1) but Si., # 0p(1).

3. hp = ooif and only if Sy, £ .

It implies that the distribution can be classified as an ES short, ES medium, or ES

long left tail by statement 1, 2, 3 in this theorem respectively.

Lemma: [Schuster (1984)] If 3(F) = inf{z : F(z) > 0} > —oo,then F has an
ES short left tail.

Lemma: [Schuster (1984)] Suppose the distribution F' has no mgf, then F' has an ES

long right tail.

11



Lemma: The ES short- (right-) tailed distributions are composed of the refined
Parzen(RP) short- and the RP medium-short tailed distributions. The RP medium-
medium distributions are the ES medium tailed, and the RP long and the RP medium-

long are the ES long tailed.

These theorems give a physical interpretation of the short-, medium- and long-tail
distributions in terms of the limiting size of the extreme spacings in a random sample.

Now divide the five RP classes into three extreme spacing(ES) groups:
(i) ES short =RP short, RP medium-short
(ii) ES medium =RP medium-medium
(iii) ES long =RP medium-long, RP long

Generally speaking, an ES short-tailed distribution will rarely have outliers, an ES
medium-tailed distribution will occasionally have some outliers, and an ES long-tailed

distribution will often have extreme outliers.

Theorem 3: When n goes to infinity,both nl1., and n(l — U,.,) converge in law to

the standard exponential r.v.Z.

Proof:
Let Uy, Us,...,U, be a random sample from a uniform(0,1) population, and let
Ui, Usin,. .., U denote the sample order statistics. By the formula, we can get

12



the density function of fy,. (u1):

foun(w) = m%’l)!mul)]l-lu P ), (0 <uw < 1)
— n[l _ _1__]n—1
= n(l—u)"?!

Then: P{nU1., <t} = P{Upn < %}
= / fUl:n (U]_)dUl
0

= / (1 —uy)" duy

0
4
= 1-(1-=)
(-

The limit value of P{nUs., <t} is:

t
lim P{nUy, <t}=liml1-(1—-=)"=1-¢"
N—00 n

n—00

So nly., converges in law to the standard exponential r.v.Z.
we also can get that n(1—Uy.,) converges in law to the standard exponential r.v. Z by

using the similar proof. O

Lemma :(cf.[Mudholkar and Hutson(1996)]) For any sequence Y, of random vari-
ables such that Y, 2 Y in law as n — 00, and g,(y) converges uniformly to g(y) over

all compact sets, then g,(Y,) L g(Y).

2.3 Bootstrap Method

Bootstrap method [see Efron and Tibshirani (1985)] is a recently developed tech-
nique for making certain kinds of statistical inferences. It is only recently developed
because it requires computer to simplify the intricate calculation of traditional sta-

tistical theory. Now researchers need no longer rely on asymptotic theory to estimate

13



the distribution of a statistic. Instead, they may use resampling method which return
inferential results for either normal or non-normal distributions. Here we mainly use
this method to get the confidence interval (empirical percentiles and BC, (Bartlett-
Correction adjusted) percentiles [see Davison amd Hinkley (1997)].

Suppose original sample z = (z1, 2, ..., Zn), 6 is the estimator of fand B is the
number of resamples. In order to give the distribution “ bootstrap” of the estimator,
at first:
(1) Generate alarge number B of bootstrap samples of sizen zy = (27, 23, ..., Z5,), b=
1,2,..,B.

"

(2) Calculate an estimator é(b) using z}

Then X R
> (80 — 8@)®
6(3 i1 (00) — 03))?)

a =

rojeo

where:
by = & i O
é(i): an estimator of 6 gotten from the original sample without i-th;
n: the size of the original sample;
%:¢4(i@%iﬂ>
where:
f: estimator of § of the original sample;
ézb): an estimator of 4 for b-th “ bootstrap”;
B:“ bootstrap” number(recommended value B=1000);
®~1(.): the inverse function of the normal distribution accumulated standard.

In this form, the BC, confidence interval is given by:

BC, = (é*(al)’ é*(az))

14



where:

. 7 (@)
a1 =0 Zp+ Zo _J— 2
1— a(Zo + Z(@)
) 5 z(i-a)
Qg = ii] Z() + ZO —J_ Z
1 — a(Zo + 20-2)

and
Z0: the point percentile of the standardized normal distribution;

®(.): indicating the cumulative normal distribution accumulated standard.

15



Chapter 3

Density Function and Tail Shape

Classification

3.1 Density Function and Its Properties

In this Chapter, we consider the classification of distributions given by Eq.(3.2) and
analyze its nature with respect to the parameters «, 3, and A. To simplify the dis-
cussions, we let A = 1. The general case can be dealt similarly. Then the distribution

function becomes:
F(t) = (1—el-e‘ﬁ)a, (t>0,0>0,8>0), (3.1)
The corresponding p.d.f. is:
7ty =ap (1- el-et")a_l =01 (150.050,850),  (3.2)

The quantile function obtained by inverting the distribution function in (3.1) is given
by:

Q(U) = (log(1 ~log1 ~ US4, (a>0,8>0), (3:3)
In order to discuss the properties of density function, we derive the derivative of

f(t). Note that we are dealing with the case A = 1. The general case(\ # 1) is very

16



cumbersome. Even the case of A = 1 is quite involved, but a simple transformation

simplifies the analysis. Let us write:
2= 2(t) =€’
Then writing f(t) = g(z); we have:

ft) = g(2)

= af(l - el™?)o el 21 (log 2) T,

and the derivative of g(z)is given by :

1 Je

%gl(z) — ((1 —el"z)“"lel_z)’z(logz) 5o (1 _el—z)a—lel—z
((10g 2) 7Y

— z(log Z)@—;—l{(a _ 1)(1 _ 61—z)az—262(1—z) _ (1 _ el—z)a—lel—z}

+(1 = e )Ll {(log ;:)'L'LE—1 4 - 1(1og z)'%}

= (1-¢e")*%(log z)%—lel_z[(a ~1)zlog ze!™*

Flogz(1— e%)(1 = 2) + (1 — el—Z)ﬁ—gl- (3.4)

= (1 - e 2(log2) T el [Ti(2) + Ta(2) + Tu(2)] (3.5)

WhereTy(z) = (a — 1)zlogze!™*, Ty(z) = log z2(1 — e17%)(1 — 2) and T3(z) = (1 —
el'z)% = ﬂ—gl- Now we need judge the symbol of each part of ¢’(z) equation. At

first, consider the case of z — oo (that is ¢ — 00). The sign of ¢'(z) depends on the

17



three terms in square brackets. Since,

lim Ty(2) = lim(a— 1)zlogze'™

(= )(logz+ 1)

= lim

Zz—00 e?-1

. (a=1);
= lim

2500 el
=0

lim Ty(z) = lim logz(1 —e'™*)(1 — 2)

200

= lim logz(1 — 2)

Z2—00

= —©

lim T3(z) = lim (1 — e'7?)
Z—00 200

p-t_p-1
6 p

We find that for large z, ¢'(2) < 0; hence as ¢t — oo, f(¢) is decreasing. Now we

consider four cases where we can explicitely discuss the nature of f(¢).

Case I (a < 1,8<1)

If a < 1and @ < 1, then: Since,

Ti(z) <0 forall z>1ort >0,

Ty(z) <0 for all 2> 1 and

Ts(z) < 0, it follows from Eq.(3.4), that ¢’'(z) < 0 for all z > 1. That means g(z) is

decreasing or f(t) is strictly decreasing.

Case II: (a>1,6>1)

For this case, we show that f(¢) is unimodal. Let:

6-1

U(z) = (e —1)zlog ze! ™ +log z(1 — ™) (1 — 2) + (1 — e!7?) 3

then
1-z 1—=2 /8 hant 1
U(z) = (a—1)zlogze*+ (1 —¢e #)logz — zlogz + ——)

B
= (a—1)zlogze'™ 4 (1 — '™ #)ep(2)

18



Where ¢(2) =logz — zlog z + % We find that,

1 1
V'(z)==—-logz— 2=
z z

i) ==y -

22z
It is obvious that ¢"”(z) < Ofor 2 > 1. This implies that ¢/(z) is decreasing
function. Hence; ¥'(z) < ¢'(1) = 0 = ¢(z) is a decreasing function. Since
lim, o ¥(2) = —o0, and ¥(1) = % > 0, there exists a z* such that ¢(z*) = 0
and, 0 < (z) < ¥(1) = %‘1—1- for 1 < z < z*. This implies¥(z) > 0 for 1 < z < z*.
Futher since, lim,_, ¢'(2) = —00, using the same argument, we find that there exists

z** > z*, such that ¥(z**) = 0. This provides that g(z) is unimodal or equivalently

f(t) is unimodal.

Case III: (& < 1,08 > 1)
Note that ¢’(z) has the same sign as ¥(z). Since
U(z2) = (a — )zlogze 7 + (1 — e *)(2)
For a < 1; (o — 1)zlogze!™* < 0 for all z > 1.
Also, ¥(z) is decreasing function and ¥(z) < (1) = gg—l
Let z* be such that(z*) = 0; then
For z > z*; ¥(2) < 0, hence;
g(z) \ for z > z*.

For z < 2%,

U(z) >0 & (a—1zlogze ™+ (1 — e ™ )h(z) >0
(1 -e")Y(2)

>1-
zlog zel=#  — “
_ 1=z
o a>1_QZeTNE) L
zlog zel—#
1— 1-2
< aZl—supzSz*(———emzl—uz*

zlog zel—*
If a satisfies the above condition, then f(¢) is unimodal, otherwise f(¢) is decreas-

ing with ¢.
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Case IV: (e > 1,8 < 1)
This case is very similar to the case III. Maybe ¥(z) is always non-positive, or at the
begining, it is non-negative and eventually becomes non-positive. That means g(z) is

decreasing or unimodal. It is equivalent to saying f(¢) may be decreasing or unimodal.

By the above analysis, it is clear that when « and Fboth are larger than 1, the
density function is unimodal, whereas, when both are smaller than 1, the density
function is decreasing. Another case, we may get unimodal or decreasing density

function. This is summarized in Table 3.1

Table 3.1: illustrates the four types of density shapes

o Ié] density behavior
1 1 decreasing
<1l «1 decreasing
>1 >1 unimodal

<1 >1 decreasing or unimodal

>1 <1 decreasing or unimodal

Some graphs showing the density function plot for various values of a, [ are given

in Fig 3.1-3.6:

In the above graphs, they are respectively the cases: i)a > 1, > Li)a <1, <1,
fli)aa > 1, f < landaf < 1, ivja < 1, > 1landaf < 1, v)ja < 1, § >
land af > 1 and vi)a > 1, f < land af > 1. We find that when at least one
ofa, 3 is less than 1 and the other one is larger than 1, the corresponding density
function is decreasing or unimodal depending on whether a8 > 1 or not. Of course,

it is only a conjecture.
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Figure 3.1: The density function curve with a =2, =5
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Figure 3.2: The density function curve with a = 0.2, 8 = 0.5
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Figure 3.3: The density function curve with a =2, f = 0.2
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Figure 3.4: The density function curve with o = 0.2, § = 1.5
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Figure 3.5: The density function curve with « = 0.5, 3 =6
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Figure 3.6: The density function curve with a = 2, 8 = 0.9
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3.2 Tail Shape Classification

According to the definition in the Chapter 2, we need to compute agand oy for clas-

sifying the tail shapes.

== F()f @)
A TOE
i 108 /(1)
t—oo log(1 — F(t))
loga+log B+ (a—1)log(l —e!™*) + 1 — 2z +log 2 + ﬁ—ﬁ_—l loglog 2

o

zl»r& 10g(1 — (1 — el—z)a)
a— 1)l 141482 L1 (1 gl®)e
_ hm [( )l—el z B zlogz][ ( ) ] (36)
2—00 __ael—z(l — 61—z)0¢—1
Now let k(z) = (@ — 1)15 — 1+ 1 + 22 s then
lim k(z) = -1
Z—00
and
) 1— (1 _ el—z)a i (1 . el—-z)a—l
1 = 1
o0 —al — el-r)a-lel—z oo (@ — 1)(1 — el-#)o-2el2 _ (1= el#)a-1
= -1
Hence, from Eq.(3.6),
) 1 _ (1 _ el-—z)a
ap = lim k(2) “a(l - el-Fyalgls 1

Hence, by Parzen’s classification scheme, the density function has a right medium

tail. A refined classification is needed by considering h;.

hl = lim —

2 D
—(1 - 1-z2\a

= lim 1-(1-e™) Y
7% qf(1 — el=2)e-lel~2x(log 2) 7
] ‘—Ol(l _ el—z)a—l

= lim B B=1 1 B=1 4
70 af(—z(logz) F + (logz) ? +%(logz) 57
] —(1 - el-—z a—1

= lim ( 51 ) 5
7 B(—2(logz) 7 + (logz) 7 )

=0
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Since hy = 0, so it has a medium-short tail.(see the definition in Chapter 2)

For the left tail case, we find
NZ0%0,

= TNIOE
loga+log B+ (a—1)log(l —e™#) +1—z+logz + %loglogz

a1 =

= i
1 alog(l — el—2)

— —- _pl—z — —pl—z
T L B B
- Z—‘l ael-—z

-1 -1
= & +5
o apf
1
= 11— — < 1{(sincea>0,0>0
e (since « g >0)

Hence, it follows that the density function has a short left tail.

In addition, the shapes of the density function of this distribution can be under-
stood by considering the limits of f(Q(U))as U — 0(z — 1) and U — 1(z — 0).
From the Eq.(3.3), we know that Q(U) = (log(1 —log(1 — UY*)))Y/4, (a > 0,8 > 0),
then

dU 1

FQ) = 250 =z 7
dUu
Since,
1Y) — L (1og(1 ~log(1 - UE))B Lout,

U of
Eq.(3.7) becomes,

1—-log(l=Us)1—Us=

1

FQU)) = aB(log(l - log(1 — Us))"5 (1 —log(1 - U=))(1 - U=)U"=  (3.8)

Now we examine the limits of f(Q(U))(U —0,U — 1):
I) Consider U — 1:

lim f(Q(U)) = lim af(log(1 — log(1 — U+))) "#(1 ~ log(1 - U)(1 ~ U=) (3.9)
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Using transformation, t = 1 — log(1 — U= ), we have

lim f(Q(U)) = hm aﬂ(logt) Atel ™.

U—1

Since

lim te!™* =0
t—oo

and when 8 < 1, limy;_,oo(log t)l—% =0,
S0

lim aﬁ(logt) Atelt =0 for § < 1

That is
lim f(Q(U)) =0 when 8 < 1.

U—-1
The same result holds for the case § > 1,

Since,

lim f(Q(U)) = lim af(logt) ste™

U—1
log t
= lma gﬂg_)__
1ot1/13+ 1 — LY(logt) 7
_ thmaﬁ( gt) (t_1 5)(logt)
— 00 e
=0

IT) Consider U — 0:

lim f(Q(U)) = lim af(log(1 — log(1 — U)))' 50"~z

Ha>1,0>1:
}}_I{%)f(Q(U))=0

i) a<1,8<1:
lim f(QU)) =
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i) a>1,8< L

then

Ut-a
l‘ U — 1. 1
lim fQW)) o aﬁ(log(l —log(1—U=)))s "

(1= HUu-s(1 —logl - U=))(1 — U#)

o3

= lim af T -
U=0 " (4 = 1)(log(1 — log(1 — U=)))7~*Lya~

11
= lim af & S
70" (L~ 1)(log(1 — log(1 — U3)))F 2UE-!

(3.10)

From the Eq.(3.10), the limiting value of f(Q(U)) (U — 0) may be 0 or 0o, depending
on the parameters o, 3.

iv) a<l,/>1

(log(1 — log(1 — U%)))*~5

lim f(Q(U)) = limap Us-1
-1
= llm Oéﬁ (1 ﬁ)U 1 1
U=0 " (1 —1)(log(1l —log(l — U=)))?
(1-pu-s

= lim af

U0 (L~ 1)2((log(1 — log(1 — UZ)))F )

There are similar results in this case as in case iii). The limiting value of f(Q(U))

(U — 0) may be 0 or oo, depending on the value of a, 3.
These results are summarized in the following table.

Table 3.2: illustrates the limits of four cases

U—-0|U—-1

a>1,0>1 0
a>1,0<1|0o0rc

a<l,f>1]|00r

o o o O

a<l, <1 o0
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From the above classification and limit results, we may conclude that when the den-
sity function has monotone decreasing density function, it becomes unbounded in
the left-tail. Otherwise, it always has a short left tail. About its right tail, it has a
medium short right tail which doesn’t depend on «, (. The density function is either

unimodal or monotone decreasing.

3.3 The Hazard Function Analysis

The hazard function (also known as the failure rate, hazard rate, or force of mortal-
ity) h(t) is the ratio of the density function f(t) to the survival function R(t), given
by:

h(t) = %% (3.11)

For the distribution, introduced in Eq.(3.11), the hazard function is given by:

_ap(l- el_etﬁ)w—lelwttﬁ_et/3 451

h(t) = 3.12)
) 1—(1—et=¢")e (
As in section 3.1, we may analyze h(t) in term of z = ¢, and consider
Ll
1 05,3(1 _ el—z)a—lel—z+logz(10g Z) i
h t = 1 8) = =
af(1l —el™?)"tel = x(log z)‘% (3.13)

1—(1—el=?)«

aB((L — e'=)o1el*2(log 2) 7 )'(1 — (1 — €')°)
(1= (1 —el=%)a)2

af(l — et el %2 (log z)%—ﬂ—l(l — (1 — et=%)2y
(1 — (1 _ el——z)a)2
_ aﬁd)l(z)(l —(1—e7%)) — (1 — et=#)*1el %2 (log z)gﬁ—qb(z)
(1~ (1 — el-%))2
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where .

1-z a—lel—z 2 %
¢1(Z) — d((l —¢ ) R Z(lOg ) )

and
ba(2) = (1 - (1 - =52
2 T dz €
It can be seen that
91(2) = ((1— ™) e ) 2(log2) T + (1 — ') el *(=(logz) 7 )’
— Z(lOg Z)%l((a _ 1)(1 _ el—z>a—2e2—2z _ (1 _ el—z)a—lel—z)

ﬂ_l u—11)
_1_

(logz) 7
= (1-e"%)*?(log z)ﬁT tel%2log 2((a — 1)l ™% — (1 — '7%))

+(1 — e'%)>tel~*((log z)p_l;—1 +z 5 p,
_ —1
+(1 = e *)*(log z)%_lel””(l — e (logz + gﬁ—) (3.14)
and  ¢o(z) = —al—e'F) el (3.15)
Then +'(z) can be written as:

'(z) = ¢3(2)da(2)

(1- 1-z)a—2(1 )%l_l 1-z
Where ¢5(2) = == etz — and

du(z) = (zlogz((a—1e!™* = (1 -e™)) + (1 —e'*(log 2 + %))(1 — (1 - %))
+(1 — e %) *aze’ *log 2

It is very easy to see that ¢3(z) is always larger than 0, so we need to consider ¢4(z)

in detail.
-1
¢4(z) = zlogz(a—1)e™ — (1 —e'®)zlogz + (1 — e'*)(log 2 + @_5_)

—zlog z(a — 1)e}*(1 — ! 7)* + (1 — e!7%)*H 2 log 2
—(1 =€) (log z + _,8;_1)

+(1 — ') *aze! * log 2
= (-0 + DT - (1= + zlogalae T — 14 (1= )
= (1 —e"™)Gi(2) + Go(2)
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Where
G1(2) = oz + 7)1 - (1))

and

Go(z) = zlogz(ae!™ — 1+ (1 — e}7%)%)

Now we can find some limits when ¢t — oo(z — o0):

= 0 (3.16)
lim ae’™ — 1+ (1 —€!™*)* =0 (3.17)
. ) 2zlog z
A G2 = e

=0 (3.18)
Since
Z—r00 - 1
Gu(2) B log fae ™ - 20D e 4 o)
Z—00 - ].
6alz) R 2tog (O ey 4 of ()

and

lim ze!™* = lim — - =0

2—00 z—00 €%
G2(z) converges to zero at a faster rate than Gi(z).
Suppose k(o) = ae'™* — 1+ (1 —e!™*)* and el =1t 0<t<1)

so that
kla) =ta -1+ (1-1)%,

K(a) =t+ (1 —1t)*log(1l —t),
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K'(a) = (1 —t)*log(l — t) log(1 — ) = (1 — ¢)*(log(1 — t))? > 0.

And
a=0,k(0)=0,

a=1k(1)=0.

et
Let k'(a) = 0, then o* = log, ¥, a = o* is a minimum value point.

Now we need to prove that:

“Togl = D) >1—t (3.19)
o f — <! (3.20)
Proof:
Let T(t) = (1 —t)log(1 —¢t) + ¢
T(0) =0
T'(t) = ~log(1 —1) + T —-(~1) + 1= ~log(1 ~ ) > 0

So T'(t) ,/, and T(t) > T(0) = 0, that is —m—g(—'i_—t—) > 1 — ¢. This proves Eq(3.19).
To prove Eq.(3.20), let ¢g(t) =log(1 —¢) +¢

g(0) =0

1
"M =—— 41
q'(t) T T1<0

Which is equivalent to g{t) “\,, and g(t) < ¢(0) = 0, that is _Fg(i——_tj < 1.
Now, we go back to consider the behavior of k(). Since o* is the minimum value
of k(a)

K(a) <0, for(a < a*)

and

K(a) >0, for(a > a*)
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Also when a > 1, k'(a) > 0 and k(1) = 0; i.¢, fora > 1, k(a) /7, hence

k(a) > 0, for(a > 1)
k(a) < 0, for(0 < a < 1).

There are four cases:
Case I (a>1,08>1)
When a > 1, 8> 1, ¢s(2) > 0,

so r(z)is increasing, that is h(t) is increasing.

Case II: (a>1,3<1)
Whena > 1, 8 < 1, ¢4(z) > 0,for all z or at the beginning, ¢s4(z) < 0, then it
becomes positive. In this case, therefore r(z) is increasing or bathtub, that is h{t) is

increasing or bathtub.

Case III: (a < 1,4>1)
Whena < 1,8 > 1, ¢a(2) > 0,for all z or at the beginning, ¢4(z) < 0, then it
becomes positive. Hence r(z)is increasing or bathtub, that is h(t)is increasing or

bathtub.
Case IV: (e <1,0<1)
Whena < 1,8 < 1, at the begining, ifz < e%, ¢$4(z) < 0, thengy(z) > 0,

hence r(z)is bathtub, that is h(t) is bathtub.

Figures 3.7-3.12 depict different shapes of the hazard function for four cases:
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Table 3.3: Four types of hazard shapes

o I} failure behavior

1 constant

<1l <1 bathtub

>1 >1 increasing

<1 >1 increasing or bathtub
>1 <1 increasing or bathtub

Figure 3.7: The hazard function curve with o = 0.5, 3 = 0.5
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Figure 3.8: The hazard function curve with o« =2, § =2

Figure 3.9: The hazard function curve with o =2, § = 0.3
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Figure 3.10: The hazard function curve with « =5, 3 =0.5

In the above the graphs, they are respectively the cases: i)a > 1, § > 1, ili)a <
1, < lii)a>1, f<landaf < 1l,ivija<l, f>landaf <1, v)a<l, 8>
land o > 1 and vi)a > 1, f < land af > 1. we see that when at least one of
the a, 3 is less than 1 and the other one is larger than 1, the corresponding hazard
function is decreasing or bathtub which seems related to a8 > 1 or not. Of course,

it is only a conjecture which is similar to the cases of the density function.

35



hit)

Figure 3.11: The hazard function curve with o = 0.3, 8 =2

Figure 3.12: The hazard function curve with o = 0.6, 8 = 2



Chapter 4

Extremes and Extreme Spacings

The tail-character of a population is closely related to the asymptotic distributions
of the sample extremes. Freimer et al(1989) discuss the relationship between the
extreme value distribution and the character of the tails, and demonstrate, using
the generalized Tukey lambda and the Weibull families as examples, how simple
expansions of quantile functions may be used to derive the extreme value distribution.
They also prove that expansions may be used for obtaining the limiting distributions

of the extreme spacings.

4.1 Extreme Value Distribution

Extreme value distributions are the limiting distributions for the minimum or the
maximum of a very large collection of random observations from the same arbitrary
distribution. Gumbel (1958) showed that for any well-behaved initial distribution (i.e.
F(z) is continuous and has an inverse), only a few models are needed, depending on
whether you are interested in the maximum or the minimum, and also if the obser-
vations are bounded above or below. As demonstrated in Freimer et al. (1989), the
asymptotic distributions of the extremes and extreme spacings of random samples,

and the related theory can be derived and developed by applying elementary methods

37



to the population quantile functions.

Let Uy, Us,...,U, be arandom sample from a uniform (0,1) population, and let Uy.,,
Uan, ..., Unndenote the sample order statistics. Then the order statistics Yj, of
random samples of sizen from this new distribution is gotten by using the quantile

function:

1
8

Yim = (log(l ~log1-UE)". @ B>0,i=12, n

Hence the limiting distribution of Yi.,, andY,., can be obtained from the above
equation for ¢ =1 and 7 = n respectively given by:

1
g

Yim = (log(l —log(1 — Ulén))) ) o, B> 0.

and

Yo = (log(1 - log(1 = Uz)))", @ 8>0.

We can use the Theorem 2 (see Chapter 2) that as n — oo, both nlUi., and n(1—Up.p)
converge in law to the standard exponential r.v. Z. In particular, we get the following

theorem.

Theorem 1: Let Yi., and Y., be the minimum and maximum of a random sample
of size n from this population respectively, and let Z denote the standard exponential

r.v.with c.d.f. Fz(z) =1-e7% 2z > 0, then as n — oo,
na_lﬁYlm L oz
and
B(log(1 + log n))l”%(l +logn)Yn — Blog(l+ logn)(1 + logn) — loga & —log Z

Proof:
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Since Yi., = (log(l — log(1 — Ulin)))% , Taylor expansion of log(l — log(1 — u®))
about u = 0, gives:

log(1 — log(1 — u#)) = u& + o(u=)

that is:
1 1 1.1
log(1 ~log(1 - UE) = Uf+or (()3)
1 L 1 1 1 1 1
n¥log(1 ~log(1 - Uf,)) = n#UF, + n¥or ((1)?)
therefore nﬁYlm ~ (nUlm)'al_ﬁ L zas

Now we show the second part of the theorem.
Expanding log(1 — w=) around u = 1gives,
log(l —us) = log(l— (u—1+1)%)
1
= log(l—[1+ a—(u -1 +o((u—-1))])

= log(*—* ~o((u ~ 1))

then: log(1 — log(1 — Uign)) = log <1 _ 10g1_“_of_fm log(1 - aO((le:nU_. 1))))

2 — Upn) \ ?
(log(1 — log(1 — Un)))? =~ (log(l +logn — log ﬁ&—Un—n)O

That is:
- . B
Yon & (log(l + logn — log M))
[0

and from the lemma (see Chapter 2), we can show that for any sequence Y, of random
variables such that Y, = Y in law asn — oo, and g,(y) converges uniformly to g(y)

over all compact sets, then g,(Y;) = g(¥). Hence, we let

(y) = {log(d +logn y))? — (log(1 + log n))#

gn\y 1_
%(10g(1 + logn))ﬁ Lf—i#gn
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Here we show that
gn(y) — —y = g(y) on compact sets.

We can write

(log(1 + logn — )7 — (log(1 + logn))’

gn(y) = I_
5(log(1 +logn))* ™ ooy
1
(log(1 + logn) + log(1 — %))ﬁ

%(log(l + log n))ﬁ"lﬁ—i()g—n

(log(1 + log n))
- 17
5 (log(1 +logm))* ™ 5y

y 5
log(l — ————
o8 1+logn) 1

1+ log(1 + log n)

1 1 1
Blog(l + logn) 1+ logn

For y in a compact set, there must exist a positive number M which makes |y| < M,

|l

THogn < 1, that means |y| — 1 < logn,orn > elVl=1 we

we can choosen, such that

choose N = max(3, |e™~!]), when n > N, then:

Y Y
log(l - —— log(l — ———
1+l0g( 1+logn)+o o8l 1+logn) 1
8 log(l +1logn) log(1+logn)
gn(y) = T i 1
Blog(l + logn) 1 +logn

So

log(1 — 7{-—)

an(y) = 11+ BN,y (n > N) uniformly
T+Togn

Let X,, = log &gﬂﬁ, it converges to logg = log Z — log a in law. And since:

11— wn
Yn:n ~ (log(l + lOg’n, — log n(—(]___l

)%

(log(1 +logn — log M))% — (log(1+ logn))% I
« — loga —log Z

1_

%(bg(l +logn))s 1—1—1()@
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Then:
B(log(1 + log n))%_l(l +logn) Y — Blog(1 + logn)(1 + logn) — log o & —log Z.

d

4.2 Extreme Spacings

Schuster (1984) used the convergence in probability of the the extreme spacings
Yon—Yn_1., to refine the classical classifications of the extreme value distributions into
subclasses named medium-medium, medium-long and medium-short, as explained in
Chapter 2. Freimer et al (1989) used the convergence in distribution of the extreme
spacings to clarify the refinement by caculating the magnitudes in probability of the
extreme spacings in large samples and interpreting them as tail lengths. Mudholkar
and Kollia (1994)examined the tail lengths of the generalized Weibull family. Mud-
holkar and Hutson(1996) examined the tail lengths of the exponential Weibull family
using the similar method. Now we consider the family introduced in Chapter 1 for a

similar treatment.

Let Spn = Yo — Yn_1.n and S1., = Ya., — Y1.,,, then convergence results of the extreme

spacings of this distribution are given in the following theorem.

Theorem 2: For a random sample of sizenfrom the family and random variable
(Z, X) with joint p.d.f.

e™® if0<xr <z,

fZ,X — 9
0, otherelse

as n — oo
1 L L L
nob Sy, — ZoF — Xap
and

(log(1 + logn))l—%ﬂ(l +log n)Spm = =(log Z — log X)

e
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Proof:

Here we use Lemma 4.1 from Freimer et al. (1989) as given below.

Lemma: [Freimer et al. (1989)] If U., < Us. < ... < Uy, are the ordered statistics
from a random sample from U(0, 1) distribution, then as n — 0o, (n(1—Up_1.n), n(1—
Upn:n)) converges in law to the random variable (Z, X)) having the joint distribution
as given in the theorem.

Since Spn = Ynm — Yp-1)m and Sun = Yoy — Y1, using Theorem 1, we get the

following results:

1 L L 1
1o Sy — LB — X of

1

(log(1 + logn))l"%(l +logn)Snn A (log Z — log X)

|

Corollary: The left and right extreme spacings of a sample of size n from the dis-

tribution in Eq(1.2) satisfy:

and .
(1+ log n))E—1

_ (log
Snm = Op 1+logn

)

Note: From the Corollary, it an be seen that in Schuster’s terminology, classically
medium right tail of this distribution is always medium-short. and the convergence
rate of the extreme spacings is in terms of powers of log(1 + logn). So the medium-

short tail is not very short.
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Chapter 5

An Application

The flood rate of rivers have important economic, social, political and engineering

implications. The modeling of flood data and analyses involving indications constitute

an important application of the extreme value theory. Mudholkar and Hutson(1996)

use the empirical TTT transform to demonstrate that exponential Weibull family

provides a pratical model for the analysis of the flood data. Here we use the similar

method to examine the model introduced in this thesis for the flood data and compare

the model used by Mudholkar and Hutson(1996).

Table 5.1: The Consecutive Annual Flood Discharge Rates of the Floyd River at

James, Iowa

Year Flood Discharge in{ ft3/s)

1935-1944 | 1460 4050 3570 2060 1300 1390 1720 6280 1360 7440
1945-1954 | 5320 1400 3240 2710 4520 4840 8320 13900 71500 6250
1955-1964 | 2260 318 1330 970 1920 15100 2870 20600 3810 726
1965-1973 | 7500 7170 2000 829 17300 4740 13400 2940 5660
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5.1 Model Fits

The Floyd River flood rate data for the years 1935-1973 are given in Table 5.1. An
exponentiated Weilbull model for the these data was constructed by estimating the
parameters «, # and o by using the method of maximum likelihood as in Mudholkar
et al.(1995): & = 0.232, § = 77.958 and & = 4.241. Now we consider the model given
in Eq(1.2).

5.1.1 Parameter Estimation

We use Maximum likelihood method to estimate the parameters and consider three
cases: i) A =1 in Eq.(1.2), ii)a = 1 in Eq.(1.2) and iii)full model in Eq.(1.2). In
each case, the density and likelihood functions are given. For maximizalim , we use

Excel.

i) Suppose A = 1, then the model becomes:
20
F(z)=(1—-¢'" )"
and density function becomes:
1-e”’ ya-1_1+2f - p-1
(@) = ap(1 - et yetetsat
Maximum likelihood function is:

n 1—e% yo—1 l+m.ﬁ—em§ A1
L(JI,O(,,B) = Hi:la/B(l_e ) € ¢ xi

I V¢
—e%i \a— L e P -1
= anﬂnny 1(1 —_ el € )a 16n+21=1 Z; Zz:le H szlnzf

log-likelihood function is:

i=1

log L(z,a,8) = nloga+mnlogf+ (a— 1)Zlog(1 —el7et) —I—n—l—fo - Ze%ﬁ
i=1

=1

+(B—1) Zlogwi
i=1
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Using Excel, we can get & = 266.7722, B =0.081388 and the maximum value of the
log-likelihood function is -376.369.

ii)Suppose a = 1, then:
Fz)=1- H-e)

density function is:
8
f@) = = )(=N)e” o
— )\/Be/\(l—em'@)-i-mﬁxﬁ—l
Maximum likelihood function is:

20
L@\ ) = M pgeXt=arez)™

7

B
AT 4T @H -1
)\nﬂnen)\ AN L e AT af ;n,=lei

log-likelihood function is:

log L(z, A\, ) = nlog A + nlog 8+ nX — )\Zemf —i—Zx?—F (8 — 1)Zlogxi
=1

i=1 i=1
Using Excel, we can get ﬁ = 0.17023and A = 0.011379 and the maximum value of
the log-likelihood function is -387.784.

iii)Consider the regular case:

e
F(z)=(1- 7))o

B B
f@) = a(l — eyl pa-e)y L)oo g1
= ali(l-— e"(l—e"ﬂ))a—leA(1—emﬁ)+mﬁmﬁ_1
Maximum likelihood function is:
=f of
L(z,0,0,)) = I ,aM\(1 — e}-e™))a-1 M (1) +al -1

:cﬂ n a:ﬁ n el
I — — A3 S i -1
a“/@”)\" ?:l(l e)‘(l e’ ))a len)\ A =1 et =1 wz ?:1'7;?
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log-likelihood function is:

- of
log L(z,a,3,\) = nloga+nlogB+nlogh+ (a—1) Zlog(l — M=) 4 p

i=1
n n n
—AZewf + fo +(B-1) Zlogxi
=1 i=1 i=1

Using Excel, we can get & = 387.0979,3 = 0.077969and \ = 1.132394 and the

maximum value of log-likelihood function is -376.362.

5.1.2 Confidence Intervals for Parameters

A confidence interval gives an estimated range of values which is likely to include an
unknown population parameter, the estimated range being calculated from a given set
of sample data. If independent samples are taken repeatedly from the same popula-
tion, and a confidence interval calculated for each sample, then a certain percentage
(confidence level) of the intervals will include the unknown population parameter.
Confidence intervals are usually calculated so that this percentage is 95%. The width
of the confidence interval gives us some idea about how uncertain we are about the
unknown parameter. A very wide interval may indicate that more data should be

collected before anything very definite can be said about the parameter.

Traditionally, the central limit theorem and normal approximations are used to obtain
standard errors and confidence intervals. But when the samples are not very large,
the normal approximation may provide poor results. We may not be able to rely
on normal-theory methods in the present case. Hence, we use resampling methods
which provide inferential results for either normal or nonormal distribitions. Resam-
pling techniques include bootstrap and jackknife. We mainly use bootstrap method.

In the bootstrap, B new samples, each of the same size as the observed data, are drawn
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with replacement from the observed data. The statistic is calculated for each new
set of data, yeilding a bootstrap distribution for the statistic. We suppose B = 1000,
confidence level 95%, and use the empirial percentiles and BCa (bias-corrected and
adjusted )percentiles to get the confidence intervals.

Confidence intervals for parameters in three cases are provided belows:

i)Suppose A = 1:
CI for a:(157.3348, 640.1938)
CI for (:(0.07494897, 0.08966388)

ii)Suppose a = 1:
CI for A:(0.007851, 0.014907)
CI for $4:(0.17020197, 0.1702328)

iii)The regular case:

CI fora:(4.223883, 1414.707)
CI forA:(0.04455415, 1.680493)
CI for3:(0.05785784, 0.1090082)

By comparison, the empirical percentiles are very easy to calculate, but may not
be very accurate unless the sample size is very large. The BCa percentiles require
more computation but they are more accurate and the length of confidence interval

is shorter.

5.1.3 Model Suitability

The appropriateness of this model can be checked by using likelihood ratio test. The
likelihood ratio test (LRT) is a statistical test of the goodness-of-fit between two

models. A relatively more complex model is compared to a simpler model to see if it
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fits a particular dataset significantly better. If so, the additional parameters of the
more complex model are often used in subsequent analyses. The LRT is only valid if
used to compare hierarchically nested models. That is, the more complex model must
differ from the simple model only by the addition of one or more parameters. Adding
additional parameters will always result in a higher likelihood score. However, there
comes a point when adding additional parameters is no longer justified in terms of
significant improvement in fit of a model to a particular dataset. The LRT provides
one objective criterion for selecting among possible models. The LRT begins with a
comparison of the likelihood scores of the two models: LR = 2x(log L1 —log L2) This
LRT statistic approximately follows a chi-square distribution. To determine if the dif-
ference in likelihood scores among the two models is statistically significant, we next
must consider the degrees of freedom. In the LRT, degrees of freedom is equal to the
number of additional parameters in the more complex model. Using this information
we can then determine the critical value of the test statistic from standard statistical
tables. The LRT is explained in more detail by Felsenstein (1981), Huelsenbeck and
Crandall (1997), Huelsenbeck and Rannala (1997), and Swofford et al. (1996). While
the focus of this part is using the LRT to compare two competing models, under
some circumstances one can compare two competing trees estimated using the same
likelihood model. There are many additional considerations as discussed in Kishino

and Hasegawa (1989), Shimodaira and Hasegawa (1999) and Swofford et al. (1996).

Now consider our models, the maximum value of the loglikelihood for three cases

are -376.369, -387.784 and -376.362 respectively.

Suppose Hy: a=1, Hy: a>1
log(likelihood ratio)= 2(387.784 — 376.362) = 22.844
degree of freedom= 1

critical value(P = 0.05)= 3.84
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We reject the Hy. In this case, case II does not fit the data significantly better

than case III, and it infers that the additional rate parameter is meaningful.

Suppose Hy: A=1, Hy: A>1
log(likelihood ratio)= 2(376.369 — 376.362) = 0.014

degree of freedom= 1

critical value(P = 0.05)= 3.84
We accept Hy, reject Hi.

Because this distribution has increasing or bathtub shaped hazard function, a graph-
ical method based on the TTT (total time on test) transform introduced by Barlow
and Campo(1975). Aarset(1987)proposes and illustrates the use of empirical TTT-
tranform for identifying bathtub failure rates and offers a goodness of fittest of ex-
ponentiality. The TTT transform is a convenient tool for checking the nature of
hazard rate. One of the principle use of the TTT concept has been in obtaining ap-
proximate optimal solutions for age replacement and also in obtaining approximate
optimal burn-in times. The scaled T'TT transform of a probability distribution with

d.f. F(.) and quantile function Q(.) is:

QU)
b(U) = - / (1 F(t))dt

Where 4 is mean of this distribution. Then the scaled TTT transform ¢(U) = U
for the exponential distribution which has a constant hazard function. If ¢(U) is
convex then the hazard function h(U) is decreasing, and h(U) is increasing if ¢(U)
is concave. And If ¢(U) is concave-convex then h(U) is unimodal; and it is convex-
concave if A(U) is bathtub shaped. Given a sample from a population which is

z) < 3(9) -+ < Z(n), the hazard function of the population can be obtained by using
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the empirical scaled TTT transform:

Pnlifn) = (Z(n -+ D(zy) - x(i))) /i,

j=1

where zg) =0 and g =377 (n—j+ 1)(zy) — z@)

For the above three cases, the quantile function are:

Q(U) = (log(1 — log(1 — U=)))#

Q(U) = (log(1 - @/\:_Ul))%
and |
QU) = (log(1 — w)ﬁ

respectively. Here gives the graph of the empirical scaled TTT transform for the
Floyd River flood data. And the corresponding scaled TTT trandforms for that three

cases, exponentiated-Weibull and exponential fits.
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Figure 5.1: The scaled TTT Transforms for the Floyd river at James, Iowa
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We can notice that this distribution almost has the same shape as the exponentiated-

Weibull’s. It is an ideal model to fit the flood data.

5.2 Conclusions and Remarks

A new three-parameter lifetime distribution with bathtub shape or increasing failure
rate function is introduced in this thesis. We mainly studied the properties of the
density function, tail shapes, hazard function and extremes and extreme spacings of
this distribution in the similar method as the structural analysis of the Tukey lambda
family in Freimer et al. (1988), of the Weibull family by Mudholkar and Kollia (1994)
and Exponentiated-Weibull family by Mudholkar and Hutson (1996). The principal
applications are in survival, reliability and the extreme-value analysis. For all the
analysis given in this thesis, we consider A = 1; for other values similar properties are
postulated. We also checked it for the flood data by testing A = 1. Another use of this
distribution is to test the composite good-of-fit hypothesis of the distribution given
by Chen(2000) by testing a = 1. And by adding « shape parameter, we can find
that the convergence of the sample extremes to their limiting distribution becomes

faster and it fits the flood data for the Floyd River located at James, lowa very well.

This distribution, just like exponentiated-Weibull distribution, is very useful in the
lifetime, reliability and extreme-value data analysis. They are regular and amenable

to simpler methods of analysis and inference.

For this model, the further work is still needed. Its focus can be on confidence
interval, exact joint confidence regions for the parameters, the developments in accel-
erated life testing or optimal burn-in time or control. In other words, we can make

use of the bathtub property of this distribution and let it be used in wider field.
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