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ABSTRACT

Low-Complexity Adaptive Filtering Algorithms Based on

the Minimum L..-norm Method
Abhishek Tandon

The complexity of an adaptive filtering algorithm is proportional to the tap length of the
filter and hence, may become computationally probhitive for applications requiring a long
filter tap. In this thesis, we provide a framework for developing low-complexity adaptive
filter algorithms by utilizing the concept of partial-updating along with the technique of
finding the gradient vector in the hyperplane based on the L..-norm criterion. The resulting
algorithm should have low-complexity not only because of the updating of only a subset of
the filter coefficients at each time step, but also from the fact that updating a filter coefficient
using fhe algorithm based on L..-norm requires less number of operations compared to the
Ly-norm algorithm. Two specific coefficient selection techniques, namely the sequential
and M-Max coefficient selection techniques, are considered in this thesis. Statistical anal-
yses of these two algorithms are carried out to derive the evolution equations for the mean
and mean-square of the filter coefficient misalignment as well as to obtain stability bounds
on the step-size of the two algorithms. Further, these analyses are used to show that the
algorithm employing the M-Max coefficient selection technique can achieve a convergence
rate that is closest to the full update algorithm. As a consequence, even though there are
various ways of selecting a subset of the filter coefficients, the study of the other techniques
becomes redundant. Simulations are carried out to validate the results obtained from the
statistical analyses of the algorithms. The concept of developing algorithms based on the
partial-updating and Le.-norm is extended to proportionate adaptive filtering. Finally, the
performance of the proposed adaptive filtering algorithms as well as that of the existing

ones is studied in echo cancellation.
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Chapter 1

Introduction

1.1 Adaptive Filter

Filters are devices used for removing undesired components from a given input while not
affecting the desired ones. The very fact that they are supposed to extract the useful infor-
mation out of a noisy set of data makes them useful in different fields of engineering such as
sonar, communications, and speech processing. Depending on the kind of operators used,
the filters can be classified as linear or nonlinear. A linear filter uses linear operators on the
noisy input signal such that the effect of noise is minimized at the output based on some
criterion. A useful criterion that is often employed in designing filters is to minimize the
mean-square value of the error between the desired response and the actual output of the
filter. The use of this criterion leads to a mean-square optimal filter, known as the Wiener
filter [1].

In deriving the Wiener filter, it is assumed that certain statistical parameters of the noisy
input signal are available. This might not be the case, when there is no a priori knowledge
of the signal statistics or when the system statistics are nonstationary. In such cases, it

becomes difficult to obtain a Wiener filter. One way of solving this problem is to estimate



the statistical parameters of the input signal and then to adjust the internal parameters of
the filter accordingly. This can be done using an adaptive filter [1], [2].

Adaptive filters have the ability to operate and adapt themselves to an unknown envi-
ronment. To start with, the coefficients of these self-tuning filters are set to some initial
values based on whatever knowledge we have about the unknown system. For a stationary
environment, the coefficients converge to the Wiener solution after a number of iterations.
For a nonstationary environment, the adaptive filters have the tracking capability, i.e., the
coefficients can adjust themselves to the changes provided these changes are sufficiently
slow. Adaptive filter algorithms are recursive, which means the internal parameters of the
filter can be updated from one iteration to the next. Since the coefficients are time varying
and can be updated using a particular recursive adaptive algorithm, adaptive filters belong
to the category of nonlinear filters. Hence, properties such as additivity and homogeneity
are not applicable to such filters. In addition, these filters are data dependent. Therefore, it
is also very difficult to analyze the statistical behavior of such filters as opposed to those of
time-invariant filters.

The coefficients of an adaptive filter are obtained using a posterior data that never yields
a complete picture of the input signal statistics. Also, in most applications of adaptive fil-
ters, the unknown systems are nonstationary. Therefore, it is next to impossible to obtain
an optimal model of the unknown system using an adaptive filter. For these reasons, we
have to settle with suboptimal models of the unknown systems. Depending on the applica-
tion, one may select or develop an adaptive filtering algorithm. The choice of an adaptive

filtering algorithm is dependent on one or more of the following factors:

o Computational cost - Amount of computational resources consumed within a pro-

cessor while implementing the algorithm.

e Convergence rate - Number of iterations required to obtain a solution that is close to



the Weiner solution for a stationary environment. A fast convergence rate is always

desirable provided all the other constraints are also met.

e Tracking rate - Capability of an adaptive filter algorithm to adjust itself in case of a

nonstationary environment.

o Steady-state error (Filter coefficient misalignment)- Steady-state error while obtain-

ing the Weiner solution.

® Robustness - Capability of the algorithm for not to become divergent in the presence

of small disturbances.

The ability of an adaptive filter to change its internal parameters to adapt itself to the
changes in the environment makes it a powerful device for signal processing. Adaptive
filters .ﬁnd applications in diverse fields such as sonar, biomedical engineering, communi-
cations and speech processing. Depending on the overall structure that is used for updating
the filter coefficients, various applications of an adaptive filter are classified into the fol-

lowing four categories [1]:

1. System-identification - Modeling an unknown system such that for the same input to
the mathematical model and the unknown system, the error between their outputs is

minimized for a specific criterion.

2. Inverse-modeling - Developing a best-fitting inverse mathematical model of the un-

known system.

3. Prediction - Developing a mathematical model such that it best predicts the present

value of the random variables based on their past values.

4. Interference - Removal of an undesired interference signal from the input signal.



1.2 System-Identification using Adaptive Filters

Identifying nonstationary unknown systems, such as the impulse response of a communi-
cation channel, is one of the most common applications of an adaptive filter (see Fig. 1.1).
The performance requirement of an adaptive filter for the system-identification application
is typically set by the desired response, which is the output of the unknown system. The
objective of the adaptive filter algorithm is to provide a linear model of the unknown system
such that for same input, the difference between the outputs of the mathematical model of
the unknown system and the unknown system itself is minimized for some criterion. Let
us assume that we have an unknown system whose output is y (k) for the an input sequence
x (k) at time k. The output of the mathematical model ¥(k) using an adaptive filter is given
by

y(k) =w" (k)X (k) (1.1

where W (k) = [w1 (k), wa (k), ..., wn (k)]%., is the filter coefficient vector, and X (k) =
[x(k),x(k—1),...,x(k—N+ 1)]1(,><1 is the input regressor vector. Using some adaptive

algorithm, the coefficients of the adaptive filter are varied such that the error

e(k) =y (k) -y (k) (1.2)

is minimized. In order to update the filter coefficients, the error e (k) is fed back to the adap-
tive filter. When the model of the unknown system is a true representation of the unknown
system, then e (k) becomes zero and the updating of the filter coefficients stops. However,
in most cases, the internal parameters of the unknown system are nonstationary. In such
cases, ¢ (k) never becomes zero and the adaptive filter keeps on tracking the variations in
the unknown system.

Adaptive filtering consists of two major operations.



noise w(k)

+
Unknown System 5 y(k)
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input x(k)
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Figure 1.1. Modeling an unknown system using an adaptive filter

e Transversal filtering

o Coefficient updating

Transversal filtering involves computing the output of the modeled system. This is done by
multiplying the filter coefficient vector, W (k), with the input regressor vector X (k). For a
filter of length N, transversal filtering requires N multiplications and N — 1 additions. Since
the input regressor vector changes at each time step, the number of operations required for
transversal filtering is always constant in terms of additions and multiplications. The other
adaptive filtering operation, namely, the coefficient updating, involves updating the filter
coefficient vector using some adaptive algorithm. Its complexity, which is usually O (N)
operations, depends on the adaptive algorithm used for updating the coefficients. Therefore,

the overall complexity of the adaptive filter algorithm is proportional to the tap length.



1.3 Scope and Objective of the Thesis

System-identification applications such as network echo cancellation, require large num-
ber of filter taps for modeling an unknown system with sufficient accuracy. As mentioned
earlier, the complexity of an adaptive filter algorithm is proportional to the tap length of
the filter. Therefore, an algorithm may become computationally probhitive for applications
requiring a long filter tap, especially for real-time implementations. Furthermore, in appli-
cations such as network echo cancellation, the challenge is to increase the convergence rate
of the algorithms, as well as to increase the number of channels that can be handled by the
available real-time resources. For these reasons, there is an ever increasing demand of low
complexity, fast converging adaptive filter algorithms.

The choice of algorithms range from the complex fast converging least-square-based
(e.g. recursive-least-square) algorithms to the relatively simple slow converging stochastic-
gradie'nt-based (e.g. least-mean square) algorithms. The use of complex least-square-based
algorithms can sometime be computationally probhitive for real-time applications, in which
case we resort to the simpler stochastic-gradient-based algorithms (e.g. NLMS algorithm).
However, requirements such as the large number of filter coefficients needed to model
the unknown system with sufficient accuracy and the possibility of making maximum use
of the available real-time resources can impair the possibility of employing the NLMS
algorithm. One approach for reducing the complexity of the algorithms is to update only a
subset of the filter coefficients at each time step [3]-[13]. Since the complexity for updating
the filter coefficients is proportional to the length of the filter coefficients, the reduction
in the complexity of the partial-update (PU) algorithms is proportional to the reduction
in the number of filter coefficients updated. Another efficient approach for reducing the
complexity of algorithms is to employ quantization in the filter coefficient updates, such as

in the case of the simplified NLMS algorithm due to Nagumo and Noda [14], [15], which



is based on the concept of finding the minimum gradient vector in the hyperplane using the
Le.-norm criterion. It requires less number of computational operations for updating the
filter coefficients compared to the NLMS algorithm, which is based on the L,-norm.

The objective of this thesis is to provide a framework for developing low complexity
adapti.ve filtering algorithms by combining the concepts of partial updating and the tech-
nique of finding the gradient vector in the hyperplane based on the L..-norm criterion. The
complexity of the resulting algorithms is reduced not only because of the updating of only
a subset of the filter coefficients, but also from the fact that compared to algorithms based
on Lp-norm algorithm (for example, NLMS algorithm), algorithms based on the L..-norm
method require less number of operations for updating each filter coefficient. Due to the
significant reduction in the computational complexity, the proposed algorithms are well
suited for applications requiring a large number of filter taps in order to model an unknown
system with sufficient accuracy.

The organization of the thesis is as follows. In Chapter 2, a brief introduction to the
different approaches used for developing adaptive filtering algorithms is given. Some of
the low-complexity stochastic-gradient algorithms are discussed in detail. The derivation
of these algorithms using constrained optimization method are also presented.

In Chapter 3, we provide a framework for developing low-complexity adaptive filtering
algorithms by combining the concepts of partial updating and the technique of finding the
gradient vector in the hyperplane based on the L..-norm criterion. The resulting algorithm,
referred to as partial-update normalized sign LMS (PU-NSLMS) algorithm, updates a sub-
set of the filter coefficients of the simplified NLMS algorithm due to Nagumo and Noda
[14], [15]. The PU-NSLMS algorithm is derived by employing the error control proce-
dure as suggested in [15]. Then, two specific cases of the general PU-NSLMS algorithm,
namely, sequential and M-Max PU-NSLMS are proposed.

In Chapter 4, statistical analysis of the two proposed PU-NSLMS algorithms are carried



out. It is shown that for a selected value of the step-size, the evolution equation for the mean
of the filter coefficient misalignment (FCM) converges to zero. The evolution equation for
the mean-square of the filter coefficient misalignment as well as the stability bounds on the
step-size of the algorithms are also obtained. The M-Max PU-NSLMS algorithm is shown
to have a convergence rate that is closest to that of the full update algorithm. Finally,
simulations are carried out to validate the theoretical results.

In Chapter 5, we first review the proportionate-stochastic-gradient algorithms. Next,
the notion of partial updating is extended to the proportionate algorithms based on the
Lo-norm to develop a low-complexity proportionate algorithm whose convergence rate is
comparable to that of the full update algorithm.

In ‘chapter 6, the application of adaptive filters in echo cancellation is considered. The
performance of the proposed filtering algorithms as well as that of the existing ones is
studied in echo cancellation.

In chapter 7, we conclude the thesis by summarizing the results obtained and discussing

the scope for future work.



Chapter 2

Adaptive Filter Algorithms

In this chapter, a brief introduction to the different approaches used for developing the
adaptive filtering algorithms is first given. Then, some of the low-complexity adaptive
filter algorithms based on the stochastic-gradient approach are discussed. The derivation of

these algorithms using constraint optimization methods is also presented.

2.1 Overview

There are a number of approaches that exist for developing adaptive filter algorithms and

these may be broadly classified into two categories [1].

1. Stochastic-gradient - The procedure of deriving the stochastic-gradient based adap-
tive filter algorithms consists of two steps. The first step involves developing a re-
cursive gradient-based algorithm, which after successive iterations, converges to the
Wiener filter solution. These recursive equations for computing the gradient vector
during each iteration require the input correlation matrix and the cross-correlation
vector between the input signal and the desired response. In the second step, the

two correlations are replaced by their respective stochastic estimates to yield the



stochastic-gradient algorithm. Replacing the correlations in the steepest-decent al-
gorithm by their respective stochastic estimates leads to the well known least-mean-
square (LMS) algorithm [16]. The LMS algorithm was first proposed by Widrow
and Hoff in 1960, and since then, a great deal of work has been carried out to ana-
lyze the performance of this simple, yet effective, adaptive filter algorithm [18]-[23].
Stochastic-gradient algorithms, such as the LMS algorithm, have simple architec-

tures and are well suited for applications requiring low-complexity algorithms.

2. Least-square - Algorithms based on least-square estimation are more complex com-
pared to those based on the stochastic-gradient approach. The least-square method
involves the minimization of the weighted error square cost function, where the error
is the difference between the output of the mathematical model of the unknown sys-
tem and the unknown system itself for the same input. Compared to the stochastic-
gradient algorithms, the least-square based algorithms have faster convergence rates
in a stationary environment. However, high complexity and numerical instability of
the least-square based algorithms place a limitation on their practical applications.
It should also be noted that the performance of the least-square based algorithms
are dependent on the mathematical model of the unknown system. Therefore, their
tracking rate can be inferior to that of the stochastic-gradient algorithms, which are

model independent.

2.2 NLMS Algorithm

The LMS algorithm having a simple architecture, and yet the ability to give a satisfactory

performance, is one of the most popular and widely used stochastic-gradient algorithms.

10



The coefficient-update equation of the LMS algorithm is given by
W(k+1)=W(k)+pue (k)X (k) (2.1)

e(k) =y (k) — W' (k)X (k) 2.2)

where 1 is the step-size, y (k) is the desired response of the adaptive filter, W (k) = [wy (k),
wa (k) ..., wn (k)]xy is the filter coefficient vector, and X (k) = [x(k),x(k—1),...,
x(k—N-+1)]§, is the input regressor vector.

The convergence rate of the LMS algorithm is dependent on the relationship between
the step-size and the input signal statistics [20]-[23]. The choice of a step-size that is good
for a given environment might lead to a poor performance or even a divergence of the LMS
algorithm once the environment changes. Therefore, the user of the LMS algorithm may
have to choose overly conservative values of the step-size to avoid the divergence of the
algorithm. This might ultimately cause an undesirably slow convergence rate of the LMS
algorithm. In order to overcome this problem, the normalized LMS (NLMS) algorithm
has been proposed [14], [24]. The NLMS algorithm can be viewed as the solution of the
following constrained optimization problem [17]:

wrf}g—ll)”
subject to W (k+1)X (k) =y (k)

(W (k+1)— W (k))||2 2.3)

The L-norm constrained optimization problem in (2.3) is solved using the Lagrange mul-

tipliers. The cost function to be minimized is given by

J(k) = W (k+1) = W(E)2+A (v (k) - WT (k+ 1) X (k) 2.4)

11



where A is the Lagrange multiplier. Solving (0J/9A) =0 and (9J/dw; (k+ 1)) = 0 gives
y(k) = WT (k+1)X (k) (2.5)

and

wdk+D—ww%)=%x@—i+l%ie(L“qN) 2.6)

From (2.5), (2.6), and (2.2), we have

A yE) - W BX(E)
2 T T XTRX®
(k)
XT(0) X (k) @7

Substiituting (2.7) in (2.6), and introducing a small step-size y, gives the NLMS algorithm:

Wkt 1) =W + 5 ()(” 2.8)

where & is a small positive number added to the denominator to prevent the division by
ZEero.

The normalizing factor of the NLMS algorithm ensures that the adaptation gain of the
algorithm is independent of the changes in the environment statistics, contrary to that of the
LMS algorithm. Therefore, users of the NLMS algorithm need not be overly conservative
while choosing the step-size and can still achieve a faster convergence rate compared to the
LMS algorithm in a changing environment. The normalizing factor of the NLMS algorithm

at time k is given by

c2(k) = N Pk—i+1)+38

= o2(k—1)+x*(k)—x* (k—N) (2.9)

12



The above equation shows that the normalizing factor at time & can be computed using
the normalizing factor at time (k — 1), and this would require only two additions and one
multiplication. The step-size of the NLMS algorithm is divided by the normalizing factor
to obtain the adaptation gain of the algorithm. Then, using this normalized adaptation gain,
the NLMS algorithm updates its filter coefficients. The NLMS algorithm requires 2N+2
additions, 2N+2 multiplications, and one division for updating the N filter coefficients at
each time step. It should be noted that the NLMS algorithm has an overhead of only two
additions, one multiplication, and one division over the LMS algorithm.

Since the development of the NLMS algorithm, a great deal of study has been done
regarding its statistical behavior [25]-[29]. It has been shown that the mean of the filter
coefficients converge to the optimal (Wiener) solution in a stationary environment. For
non-stationary environments, the NLMS algorithm shows a good tracking capability. The
stability bounds on the step-size of the NLMS algorithm for input signals generated from

stationary, zero-mean, white Gaussian process are given by
O<u<?2 (2.10)

which reaffirms the fact that the bounds of the step-size of the NLMS algorithm are inde-

pendent of the changes in the environment statistics.

2.3 Partial-Update NLMS Algorithm

Requirements such as the large number of filter taps needed to model the unknown sys-
tem with sufficient accuracy, and maximizing the number of implementations that can be
handled within the available real-time resources may diminish the possibility of employing

the NLMS algorithm. Since the computational complexity of the adaptive filter algorithms
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depends on the number of filters taps, one may choose to reduce the complexity by updat-
ing only a subset of the filter coefficients at each time step [3]-[13]; this process known as
partial-updating.

A partial-update NLMS (PU-NLMS) algorithm can be viewed as the solution of the

following constraint optimization problem:

Wi 14 G ) (W (k+1) — W (R))||3 @.11)

subject to WT (k+1)X (k) = y (k)

where A (k) = diag{ai (k),az(k),...,an (k)}yu is a diagonal matrix whose elements
are +1 or 0. Solving (2.11) in a fashion similar to that used in solving (2.3) gives the

coefficient-update equation of the PU-NLMS algorithm:

W(k+1) = WK + xT(()kz)s(k()y):((()kis 2.12)

From the above equation, we see that A (k), referred to as the coefficient selection matrix,
is used to determine the subset of the filter coefficients that are updated at time k. It should
be noted that A (k) has no unique solution, when trace (A (k)) = M is a constant less than
N. In such cases, there are various ways of selecting a subset of the filter coefficients, and

these may be broadly classified into the following two categories:
e Predetermined coefficient updating (PCU)
e Selective coefficient updating (SCU)

In the case of PCU, the subset of the filter coefficients to be updated at each time step is
predetermined. Therefore, this method does not require any operation for obtaining the
subset of the filter coefficients to be updated at a particular time step. However, such is not

the case for SCU, which requires a selection process to be run to obtain the subset of the
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filter coefficients to be updated. Therefore, a partial-update algorithm employing SCU is

more complex compared to a partial-update algorithm employing PCU.

2.3.1 Sequential NLMS Algorithm

This section presents the PU-NLMS algorithm when the partial updating is carried out
through a specific PCU technique, namely, the sequential updating [11]. The resulting
algorithm is termed sequential NLMS algorithm. The coefficient-update equation of this

algorithm is given by

pe (k) A (k) X (k)
XT (k) A (k) X (k) + 5

W(k+1)=W(k)+ (2.13)

where

A (k) = diag{ay (k),ay (k), ...,an (k)}

ay=q b ErDmodK=0 ie(l,...,N)
0 if (k+i)modK +#0

K=(N/M),Kel

This algorithm sequentially updates M = (N/K) filter coefficients at each time step. In
order to do so, the sequential NLMS algorithm uses every K*# element of the input regressor
vector at each time step and each element of the input regressor vector after K time steps.
For K = 1, the sequential NLMS algorithm reduces to the NLMS algorithm. The sequential
NLMS algorithm requires N+M+2 additions, N+M+2 multiplications, and one division for
updating the M filter coefficients at each time step.

There is an inevitable reduction in the convergence rate of an adaptive filter algorithm,
when only a subset of the filter coefficients are updated at each time step. In the case of

PCU, the reduction in the convergence rate of the algorithm is proportional to the reduction
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in the number of filter coefficients updated. This can be a major drawback, especially for

applications requiring a long filter tap.

2.3.2 Selective-PU-NLMS Algorithm

This section presents the PU-NLMS algorithm when the partial updating is carried out
through a specific SCU technique, namely, the M-Max updating [6]. The resulting algo-
rithm is termed selective-PU-NLMS (SPU-NLMS) algorithm [4], [5]. This algorithm runs
a selection process to determine the subset of the filter coefficients to be updated at a par-
ticular time step. The selection of the subset is carried out such that the Euclidean norm
(L»-norm) of the resulting coefficient-update vector is minimum.

Let the solution to the coefficient selection matrix A (k), for which the Euclidean norm
of the coefficient-update vector is minimum, be denoted by A (k). Then, the coefficient-

update vector of the SPU-NLMS algorithm is given by

pe (k) A (k) X (k)
W(k+1)—-W(k) = — 2.14
(k+1)— W (k) XT (0)A ()X (k) (2.14)
In the above equation, for given e (k) and y, the Euclidean norm of the coefficient-update
vector A (k)A (k) is minimum, when ||A (k)X (k)||, is maximum. Therefore, the SPU-
NLMS algorithm updates the filter coefficients corresponding to the M largest elements of
the vector |X (k)|. The coefficient-update equation of the SPU-NLMS algorithm is given

by
pe (k) A (k) X (k)
X7 (k) A (k) X (k) + 8

W (k-+1) =W (k) + (2.15)

where
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1 ifi=argMmaximaof |x(k—i+1
a (k) = fi=arg S ) e(l,...,N)  (216)

0 otherwise

Since the SPU-NLMS algorithm runs a sorting procedure for selecting the subset of the
filter coefficients at each time step, it is more complex compared to the sequential NLMS

algorithm.

2.4 Simplified NLMS Algorithm due to Nagumo and Noda

Another efficient approach for reducing the complexity of the adaptive filter algorithm is
to employ quantization in the filter coefficient updates, such as in the case of the simplified
NLMS algorithm due to Nagumo and Noda [14], [15]. The simplified NLMS algorithm
due to Nagumo and Noda is based on the concept of finding the gradient vector in the hy-

perplane using the L..-norm criterion and employs sign-data to update the filter coefficients.

2.4.1 Minimum L..-norm Solution

In order to be able to solve for the coefficient-update vector of the simplified NLMS algo-

rithm due to Nagumo and Noda, we need the following lemma [15].
Lemma Let A be a non-zero vector in a vector space RY, and b a scalar quantity. Then,
zZ= ﬂ:Thsign {A} is the minimum Le.-norm solution of the linear equation ATZ = b, where

\|.Il, and sign{.} are the Li-norm and the sign operator, respectively.

Proof: Let a; and z; denote the denote the " element of the vectors A and Z, respectively.
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Then,

|b| = iZi

< maxi<i<y Zaizi

= |Z||..[|All4
Thus, for a non-zero A
|8l
1Z|l.. <
[[A]l;

Let Z be the solution vector to the equation ATZ = b such that it satisfies

2. > min, |1ZIl.

It should be noted that the solution vector Z is not unique. Assume that

7 _ 1o
7= sign{A
AT, e 1A

Then,

]l “oo HAH AITanb”Z”“

From (2.18) and (2.21), we get

min |1Z]..=|[Z].

Therefore,

L
7= sign{A
A, e A

is the minimum Le.-norm solution to the linear equation ATZ = b.
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2.4.2 Derivation of the Algorithm

For an adaptive filter, e (k), the error in predicting the output of the unknown system is
given by
e(k) =y (k) -~ W' ()X () (2.24)

Let e (k) be minimized by adjusting the filter coefficient vector W (k) using the vector A (k)
to give

(1-u)e(k) =y (k) — [W" (k)+AT (k)] X (k) (2.25)

where A (k) € RY is the coefficient-update vector at time k and u is the step-size. Substi-
tuting (2.24) in (2.25) yields
pe (k) = AT (k) X (k) (2.26)

Using the lemma given in Section 2.4.1, the minimum Le.-norm solution of A (k) is given
by
e (k

S ) sign

Thus, the coefficient-update equation of the simplified NLMS algorithm due to Nagumo

and Noda is given by

= _,ue(k) sign
W (ke 1) = W) + e ssien (X () (2.28)

where 8 is a small positive number added to the denominator to prevent the division by
zZero.

The simplified NLMS algorithm of Nagumo requires 2N+2 additions, N+2 multipli-
cations, and one division. Thus, the computational complexity of this algorithm is less
than that of the NLMS algorithm. In terms of performance, the convergence rate of the

simplified NLMS due to Nagumo and Noda is comparable to that of the NLMS algorithm.
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For input signals generated from stationary, zero-mean, white Gaussian process, the stabil-
ity bounds on the step-size of the simplified NLMS algorithm due to Nagumo and Noda

algorithm are given by

2
0<u<?2 (E) (2.29)

It should be noted that the above bound on the step-size is independent of the environment

statistics and slightly tighter compared to that of the NLMS algorithm.

2.5 Summary

In this chapter, stochastic-gradient- and least-square-based approaches for developing the
adaptive filter algorithms have been briefly discussed. The derivation of the NLMS algo-
rithm by posing the adaptation problem as a Ly-norm constraint optimization problem and
then solving it using the Lagrange multipliers have been explained. The derivation of the
low-complexity partial-update NLMS algorithm, by introducing the coefficient selection
matrix into the constraint optimization equations of the NLMS algorithm, has been pre-
sented. Two specific partial-update NLMS algorithms, based on the sequential and M-Max
coefficient updating have been briefly discussed. Finally, the derivation of the simplified
NLMS algorithm due to Nagumo and Noda [14],[15] using the minimum Le.-norm method

has been given.
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Chapter 3

PU-NSLMS Algorithm

3.1 Introduction

The choice of algorithms range from the complex least-square-based (e.g. recursive-least-
square) algorithms to the relatively simpler stochastic-gradient-based (e.g. least-mean-
square) algorithms. In applications, where use of the computationally intensive least-
square-based algorithms are probhitive, we resort to the simpler stochastic-gradient-based
algorithms, such as the NLMS algorithm. However, requirements such as the large number
of filter coefficients needed to model an unknown system with sufficient accuracy may di-
minish the possibility of employing the NLMS algorithm. The complexity of the adaptive
filter algorithm can be reduced by updating only a subset of the filter coefficients at each
time step [3]-[13]. The reduction in the complexity of the algorithm is proportional to the
reduction in the number of filter coefficients updated at each time step. Another efficient
approach for reducing the complexity of the algorithm is to employ quantization in filter
coefficient updates, such as in the case of the simplified NLMS algorithm due to Nagumo
and Noda [14], [15].

In this chapter, we propose a framework for developing low-complexity adaptive fil-

tering algorithms by combining the concepts of partial updating and finding the gradient
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vector in the hyperplane based on the L..-norm criterion. The resulting algorithm, referred
to as the PU-NSLMS algorithm, can be expected to have a reduced complexity not only
because of the updating of only a subset of the filter coefficients, but also from the fact
that compared to an L;-norm algorithm (for example, NLMS algorithm), algorithms based
on the L..-norm require a smaller number of operations for updating each filter coefficient.
Using the framework proposed in this chapter, two specific algorithms, namely sequential
and M-Max PU-NSLMS algorithms, are proposed.

The organization of this chapter is as follows. Section 3.2 presents the derivation of the
general PU-NSLMS algorithm. Sections 3.3 and 3.4 present two specific cases of the PU-
NSLMS algorithm by employing the sequential [11] and M-Max [6] coefficient updating.

In Section 3.5, complexity of the two proposed PU-NSLMS algorithms are discussed.

3.2 PU-NSLMS Algorithm

This section presents the derivation of the PU-NSLMS algorithm by employing the error
control procedure suggested in [15]. Following notations are used while deriving and ex-
plaining the algorithm:

y (k) : Desired response of the adaptive filter at time &

x(k) : Input signal

e (k) : The error in predicting the desired response

X(k) = [x(k),x(k—1),...,x(k—=N+1)]},, : Input regressor vector

W (k) = [w1 (k), w2 (k), ..., wn (k)]y : Filter coefficient vector

A (k) =diag{ai (k),az (k),...,an (k)}y.y : Coefficient selection matrix

having diagonal elements as +1 or 0

For an adaptive filter, e (k) is given by

e(k) =y (k) — W' (k)X (). 3.1)



The error is minimized by adjusting the filter coefficient vector W (k) using the vector

A (k) A (k) to obtain
(1-p)e(k) =y(k) - [W" (k) +AT (k) A (k)] X (k) 3.2)
where A (k) € R is a variable vector and u is the step-size. From (3.1) and (3.2), we have
pe (k) = AT (k) A (k) X (k). (33)

The minimum L..-norm solution of A (k) is given by [15]

e (k)

_ M
AR = X,

sign{A (k)X (k)} (3.4)

where ||.||; and sign {.} are the L;-norm and sign operators, respectively. Thus, the coefficient-

update equation of the PU-NSLMS algorithm is given by

pe (k)
A ()X (k) +

W(k+1)=W(k) + sign{A (k)X (k)} (3.5)

where & is a small positive number added to the denominator to prevent the division by
Zero.

As discussed in Chapter 2, the coefficient selection matrix A (k) has no unique solution,
when trace (A (k)) = M is a constant is less than N. In such a case, there are various ways
of determining the subset of the filter coefficients to be updated at each time step, and these

may be broadly classified as the PCU and SCU.
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3.3 Sequential PU-NSLMS Algorithm

This section presents the PU-NSLMS algorithm when the partial updating is carried out
through a specific PCU technique, namely, the sequential updating [11]. The resulting
algorithm is termed sequential PU-NSLMS algorithm. The coefficient-update equation of

this algorithm is given by

_

~ pe (k)
WD) =W+ X @ 55

sign {A (k)X (k)} (3.6)

where

A (k) = diag{a1 (k),az (k), ...,an (k)}

1 if (k+1 dK =0
ay=q b T EEmo ie(l,...,N) 3.7)
0 if (k+i)modK #0

and K,M € I. This algorithm sequentially updates M = (N/K) filter coefficients at each
time step. In order to do so, the sequential PU-NSLMS algorithm uses every K" element
of the input regressor vector at each time step and each element of the input regressor
vector after K time steps. For K = 1, the sequential PU-NSLMS algorithm reduces to the
simplified NLMS algorithm due to Nagumo and Noda [14], [15].

There is an inevitable reduction in the convergence rate of an adaptive filter algorithm,
when only a subset of the filter coefficients are updated at each time step. In the case of
PCU, the reduction in the convergence rate of the algorithm is proportional to the reduction
in the number of filter coefficients updated. This can be a major drawback, especially for

applications requiring a long filter tap.
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3.4 M-Max PU-NSLMS Algorithm

This section presents the PU-NSLMS algorithm when the partial updating is carried out
through a specific SCU technique, namely the M-Max updating [6]. The resulting algo-
rithm is termed M-Max PU-NSLMS algorithm. This algorithm runs a selection process to
determine the subset of the filter coefficients to be updated at a particular time step. The se-
lection of the subset is carried out such that the Euclidean norm (L,-norm) of the resulting
coefficient-update vector is minimum.

Let us assume that the solution to the coefficient selection matrix A (k) for which the
Euclidean norm of the coefficient-update vector is minimum is denoted by A (k). Then, the

coefficient-update vector of the M-Max PU-NSLMS algorithm is given by

AK)AK) = W(k+l)—W(k)

(3.8)

In the above equation, for given e (k) and y, the Euclidean norm of the coefficient updated
vector A (k) A (k) is minimum, when |A (k)X (k)||, is maximum. Therefore, the M-Max
PU-NSLMS algorithm updates the filter coefficients corresponding to the M largest ele-
ments of the vector |X (k)|. The coefficient-update equation of the sequential PU-NSLMS

algorithm is given by

k‘
N

W(k+1) = W (k) + <

AmX o, s e A BX0} (3.9)

where
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lifi=argsMmaximaof |x(k—i+1
ay=] = S Ve, .m (3.10)

0 otherwise

The M-Max PU-NSLMS algorithm obtains the subset of the filter coefficients to be updated
at each time step in a fashion similar to that used in the M-Max NLMS algorithm [6].
Since the M-Max PU-NSLMS algorithm runs a sorting procedure before updating the filter

coefficients, its complexity is higher than that of the sequential PU-NSLMS algorithm.

3.5 Complexity

In this section, the computational complexities of the proposed sequential and M-Max PU-
NSLMS algorithms are discussed. The sequential PU-NSLMS algorithm requires N+M+2
additions, N+2 multiplications, and one division to update M filter coefficients at each
time step. Since the subset of the filter coefficients to be updated at each time step is
predetermined, the sequential PU-NSLMS algorithm does not require additional operations
to determine the coefficients. This is not true in the case of M-Max PU-NSLMS algorithm,
where the selection of the subset of the filter coefficients is carried out at each time step.
The elements of |X (k)| are sorted in an ascending order, and then, the filter coefficients
corresponding to the M largest elements of |X (k)| are updated. Fast sorting algorithms
such as the one in [30] require 2/og, (N) + 2 comparisons for sorting. Therefore, M-Max
PU-NSLMS algorithm requires 2/og; (N) + 2 additional operations over the sequential PU-
NSLMS algorithm. Furthermore, additional memory is required for storing the pointers of
the sorted vector of |X (k)|. The memory requirements can be reduced using the selective

block coefficient updating [9].
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3.6 Summary

In this chapter, we have provided a framework for developing low-complexity adaptive fil-
tering algorithms by combining the concepts of partial updating and finding the gradient
vector in the hyperplane based on the L..-norm criterion. The resulting PU-NSLMS al-
gorithms have a reduced complexity not only because of the updating of only a subset of
the filter coefficients, but also from the fact that compared to an Ly-norm algorithm, al-
gorithms based on the L..-norm require less number of operations for updating each filter
coefficient. Using the framework proposed in this chapter, two specific algorithms, namely,
sequential and M-Max PU-NSLMS algorithms have been obtained by using the sequential
and M-Max coefficient updating techniques for partial updating. It has been shown that
the M-Max PU-NSLMS algorithm is computationally more intensive than the sequential
PU-NSLMS algorithm.
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Chapter 4

Statistical Analysis

4.1 Introduction

In adaptive signal processing, statistical analyses are generally carried out to better un-
derstand the behavior of the algorithms, such as the convergence to the Wiener solution,
stability bounds on the step-size, among other.

In this chapter, the statistical analyses of the sequential PU-NSLMS and M-Max PU-
NSLMS algorithms are carried out. In Section 4.2, assumptions made in order to make
the analyses of the two PU-NSLMS algorithms tractable are discussed. In Section 4.3,
evolution equations for the mean and mean-square of the filter coefficient misalignment,
and stability bounds on the step-size of the sequential PU-NSLMS algorithm are obtained.
In Section 4.4, results of the statistical analysis of the sequential PU-NSLMS algorithm
are suitably modified to obtain the corresponding results of the M-Max PU-NSLMS algo-
rithm.. In Section 4.5, it is shown that the M-Max PU-NSLMS algorithm can achieve a
convergence rate that is closest to that of the full update algorithm. In Section 4.6, simu-
lations are carried out to validate the theoretical results obtained in Sections 4.3, 4.4 and

4.5.
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4.2 Analysis of the Sequential PU-NSLMS Algorithm

An adaptive filter is a nonlinear filter, whose internal parameters are dependent on the
input signal, and as a consequence, it is difficult to carry out the statistical analysis of such
a filter without making certain assumptions. We make the following assumptions about the

statistics of the input data and desired response of such a filter

e Vectors [y (k) X7 (k)]T and [y(1) XT (l)]T are independent, when [ # k. This as-
sumption is also known as the independence assumption [31], [1], and it has been

shown to produce theoretical results that can accurately predict the simulations.

e Input signal is generated from a stationary, zero-mean, white Gaussian process with

a variance G2 .

e Desired response of the adaptive filter y (k) is given by
y (k) = WX (k) +n (k) (4.1)

where W is the optimum filter response, and n (k) a stationary, zero-mean, white
noise with a variance o2. The filter coefficient misalignment (FCM) vector W (k) is
given by

W (k) = W—W (k) 4.2)

In this section, we derive the evolution equations for the mean and mean-square of the filter
coefficients of the sequential PU-NSLMS algorithm. By taking the expectation of both

sides of (3.9), we obtain

E{Wk+1)} = E{W(k)}

_ye(k) sign
* E{||A<k>x<k>||1 8 {A(")X(")}} “3)
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where E {.} is the expectation operator. Assuming ||A (k) X (k)||; to be uncorrelated with

the [e (k) sign {A (k) X (k)}], we have

E{W(k+1)} ~ E{W(k)}

1 .
+ uE {m}E{e (k)sign{A (k)X (k)}} 4.4)

In order to compute the second expectation term on the right hand side of (4.4), E { W%(—(T)Tl }

is approximated as

1 1
E{ 1A (k) X (k)11 } T E{[AMX®N,}

The expectation E {||A (k) X (k)||;} can be expressed as

(4.5)

2 E{(JA®X®])
“NV:“ EQIX(O],}

= M \/%%Q (4.6)

where

Y 2X(INCR T
ME(X @)

It should be noted that the value of {; is dependent on the coefficient selection process

4.7)

employed for updating the subset of the filter coefficients. For the sequential PU-NSLMS
algorithm, [E {]|A (k) X (k)||;}/ E{||X (k)]|;}] can be shown to be (M/N). Hence, {; = 1
for the sequential PU-NSLMS algorithm.
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From (3.1), (4.1), (4.2), (4.4), (4.5) and (4.6), we have

E{Vv’(k+1)} =E{W(k)}

~ (4.8)
~RE {sign {|A Q)X (0} [XT () W (&) +n (k)] }
where
- H
p=—rt— 4.9)
M\/%O'xg
Solving (4.8) based on the independence assumption yields
—~ M~ —~
E{W(k+1)} - [I—yﬁkm(k)]E{W(k)} (4.10)
where
R, (k) = diag{ri,...,rn}, (4.11)

2
v, = \/;Gxgl,ie (1,...,N)

From (4.10), we can see that for a selected value of the step-size y, the evolution equation
for the mean of the FCM converges to zero.
Next, an equation characterizing the mean-square behavior of the sequential PU-NSLMS

algorithm is derived. The FCM covariance matrix E {V (k)} is defined as
E{V (k) :E{W(k)'VVT (k)} 4.12)

Using the independence assumption, the evolution equation for the covariance matrix of

the FCM is given by
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E{V(k+1)} =E{V(k)}
—fE {sign{A (k)X (k)} X" (k) } E{V (k)}
—HE{V (k)} E {sign{A (k)X (k)} X" (k) } (4.13)
+IPE {sign {A (k) X (k) } XT (k) V (k) X (k) sign {XT (k) } }
+IPE {sign{A (k)X (k) } sign {XT (k) A (k) } } o2

Taking the zrace of the matrices on both sides of (4.13) yields the evolution equation for

the mean-square of the FCM (for details, see Appendix A)

o5 (k+1) = [1—211( \/7C10'x> ( (N+8&-1)o )] oé(k)-{—ﬁz%Noﬁ

(4.14)
where
6% (k+1) =trace(E{V (k+1)}) (4.15)
2
_NE{A®X @]} w16

2= THER O]
Similar to {;, §; is also dependent on the coefficient selection process employed for up-
dating the subset of the filter coefficients. For the sequential PU-NSLMS algorithm, the
expression [E {||A (k)X2(k)||,}/ E{||X?(k)||,}] can be shown to be (M/N). Hence,
2 = 1 for the sequential PU-NSLMS algorithm. From (4.7), (4.9), (4.16) and (4.14), we
have a simplified expression of the evolution equation for the mean-square of the FCM:
2 o2

2 o
Gyzv(k)+]‘7(z*)*c—g
TT X

2
0% (k+1) = [1—2—’i+ a (4.17)

V()

. . « 2 .
Letting k — oo in (4.17) gives the steady-state FCM, 6% (co):
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2M (3) —uN | oF

Stability of the evolution equation for the mean-square of the FCM is guaranteed, if

2
62 (o) = {——————“N } On (4.18)

2
KoM
1-2-+——=| <1 (4.19)
N M(3)
that is,
2M (2
0 m— — 4.20
U< (n) (4.20)

4.3 Analysis of the M-Max PU-NSLMS Algorithm

The only difference between the architectures of the sequential PU-NSLMS and M-Max
PU-NSLMS algorithms is the coefficient selection process employed to determine the sub-
set of the filter coefficients to be updated at a particular time step. Therefore, instead of
carryiﬁg out a separate statistical analysis of the M-Max PU-NSLMS algorithm, one can
appropriately modify the results of the sequential PU-NSLMS algorithm to obtain the cor-
responding results of the M-Max PU-NSLMS algorithm.

While carrying out the statistical analysis of the sequential PU-NSLMS algorithm, only
the values of {jand {, are dependent on the coefficient selection process employed. Thus,
modifying the values of these terms accordingly would provide us with the statistical results

of the M-Max PU-NSLMS algorithm.

4.3.1 Estimating Sum of M-Max

is di ~ _ NE(JARX(0)]);} _ Ne{[lawxi]]}
It is difficult to obtain the values of {; = METIX(ON,} and {; = ME[R@] ] in the
case of SCU, since obtaining E {||A (k) X (k)||,} and E {||A (k) X? (k) ||, } requires ordered

statistics [32], [33].
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The problem of ordered statistics has been well discussed in [34]-[36], where recur-
sion formulae and tables have been generated for the expected values and moments of the
ordered statistics. Werner, de Campos and Diniz [3] use numerical methods for obtaining
E{||A (k) X2 (k)Hl} In this section, instead of using numerical methods, we derive ap-
proximate closed form expressions for {; and {;. Using simulations, it is shown that the
derived expressions provide fairly accurate results for sufficiently large values of M and N.
In order to derive the expressions, we introduce the following variable

Z =212 ... Zn]yy : Contains all the elements of the vector |X (k)| such that

271<22<...<z;<... <
Using ordered statistics, the probability density function (PDF) f; (z) of the j*helement of

Z is given by [32]

Y H QU -F @I Q) (4.21)

0= G

where fx (.) and Fx (.) are respectively the PDF and the cumulative distribution function

of the elements of |X (k)|. It can be shown that

E(JAWX®I} = [z ()de 4.22)
E{[A®X®)],} = /_:zzgx(z)dz 4.23)
where
N
@ = Y fi@
1=N-M+1
= Y e B QIR @Y Q) @29

=N (= DN 1)
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The above equation can also be written as

8x () =Nfx(2)€ (4.25)
where
_ ) (N"l)! t— -
- T LN_ZMH =t } 426
r = Fx(2) 4.27)
g = [1-Fx(2)] (4.28)

Using the De Moivre-Laplace theorem [32] , & in (4.26) is approximated as

! 1 (m—p)?
~ _mzP) g 4.29
= Jooa Jz‘n‘ome"p< 2z, )" 42
where
! |
mo= —— (4.30)
ol = N—p_‘% 4.31)

For large values of N,

1 \2
NG exp (— (mZGzp) ) ~ &(m— p) (4.32)

where d (m — p) is a Dirac delta function with unit area under the curve. From (4.27), (4.29)

and (4.32), we obtain
1
gz/(l_%_j)S(m—FX (2)) dm (4.33)
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The solution of the above equation is given by

0 z<F7l(1-%4=1
£ X]( v1) (4.34)
I e>F(1-F5)
where F ! () being the inverse of Fy (.). The above equation can also be written as
& ~ U(z—2) (4.35)
M-—1
_ —1 _
w = F (1 N_1> (4.36)
where U (.) is a unit step function. From (4.25) and (4.35), we have
gy () =N fx (2)U (z—z0) 4.37)
Substituting (4.37) in (4.22) and (4.23) gives
E{JAGOX®,) ~ N/ 2fx (2)U (2~ 20) dz (4.38)
E{A0X®]) ~ N[ 2HEUGC-)dz (4.39)

If elements of X (k) are generated from a stationary, zero-mean Gaussian process with a
variance 62, then E {||X (k)||;} =N\/%cx and E {||X2 (k)||, } = NoZ. Using (4.38), (4.39),

one can obtain the the approximate expressions for {; and {; as

NE{|AK) X (®)]],}

o= THEQR O}
exp (53)
RN V) 4.40
) @40
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and

NE {[[A®) X ®)|],}
ME{[X2(®)],}

|

2 e (53 + vEnsiit
"V )

G2

(4.41)

where zg satisfies (4.36) and Fy ! (.) is the inverse of cumulative distribution function of
the random variable generated from stationary, zero-mean, white Gaussian process with a
variance 0)%. Table 4.1 compares the values of {; and {; obtained experimentally using
MATLAB and using the closed form expressions in (4.40) and (4.41), respectively, for the
case of variance 02 = 1. It is seen from Table 4.1 that the theoretical and experimental

estimates of {; and {; are close, and that the estimation error decreases with increasing M.

TABLE 4.1
COMPARISON OF THE EXPERIMENTAL ESTIMATES OF {; AND {3 WITH THEIR
THEORETICAL ESTIMATES IN (4.40) AND (4.41), RESPECTIVELY FOR THE CASE OF

N = 256 AND DIFFERENT VALUES OF M

M | §i(Th) | Ci(Exp) | % error of §; | §(Th) | {2(Exp) % error of {p
16 | 2.6844 | 2.8075 -4.5863 4.9882 | 5.1465 -3.1728

32 | 24132 | 2.4614 -1.9966 3.9536 | 4.007 -1.1913

64 | 2.0470 | 2.0615 -0.7079 2.8788 | 2.8883 -0.3304

96 | 1.7919 | 1.7977 -0.3237 2.2683 | 2.2704 -0.0909

128 | 1.5898 | 1.5920 -0.1410 1.8556 | 1.8557 -0.0068
Th: Theoretical results, Exp: Experimental results, and % error = T}';foe x 100

37



4.3.2 Analysis

The evolution equation for the mean of the FCM of the M-Max PU-NSLMS algorithm is
given by
—~ M~ —~
E{W(k+1)} - [I——,uNRxx(k)]E{W(k)} (4.42)

where

R (k) = diag{ri,...,rv}, (4.43)

2
o= \/;csxcl,ie(l,...,N)
N
M\/%Gxg

The approximate closed-form expression for estimating the value of {; is given for the M-

=)

(4.44)

Max PU-NSLMS algorithm in (4.40) (Appendix B). From (4.42), we see that for a selected
value of the step-size u, the evolution equation for the mean of the FCM converges to zero.
Also, the evolution equation for the mean-square of the FCM of the M-Max PU-NSLMS

algorithm is given by

(M /2 (M M
0% (k+1) = [1 —2f (m/;clox> +P (N(N+C2— 1)03)} o (k) + 1 No,
(4.45)

The approximate closed-form expression for estimating the value of {3 is given by (4.41)

(Appendix B). From (4.44) and (4.45), we have

2 2 2
2 o NG 5 U o
oyk+1)= ’1 2N+ N (20) ] cw(k)—f—M(Tz_tC%) o2 (4.46)

Letting k — o in (4.46) gives, Gé (o), the steady-state FCM of the M-Max PU-NSLMS
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algorithm:

Q
i3

uN o,

(00) = — (4.47)
2M (383) (N + G- 1) | oF

Stability of the evolution equation for the mean-square of the FCM of the M-Max PU-

NSLMS algorithm is guaranteed, if

2
N -1
PPLNR R UAR b)) B (4.48)
N MN(38)
that is,
2M 2.
O<pu</———m—=1|= 4.49
SRRy (ﬂ 1) @49
For large values of N, (4.49) can be approximated as
2M (2
0 — (=g 4.50
U< (n 1) (4.50)

4.4 Convergence Rate

The general evolution equation for the mean-square of the FCM of the PU-NSLMS algo-

rithm can be written as

oM
0% (k+1) =[1—1] 6% (k) +,u2ﬁN0,2, (4.51)

where

T = %I:Zﬁ(\/%t.ﬂo’x) ~ﬁ2(N+C2—1)0;2c} (4.52)
u

= (4.53)
M\/%GxCI

=)
i
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It should be noted that the above equations are independent of the coefficient selection
process employed, and only the values of {; and {; change depending on the coefficient
selection process employed. The evolution equation for the mean-square of the FCM is
convergent for |1 — 1| < 1, that is, 0 < T < 2. For T > 1, neither the convergence rate of
the evolution equation for the mean-square of the FCM increases nor the steady-state FCM
decreases. Hence, only 0 < T < 11is of practical interest. In this range, the convergence rate
of the evolution equation for the mean-square of the FCM improves with increasing value
of T.

From (4.52) and (4.53), we have

M|2 # N+ -1)
=— |—=u— 4.54
VI Twed g .
For lafge values of N, N+ {3 — 1 ~ N. Therefore, (4.54) can be approximated as
i~ |2 Nir (4.55)
N|ME (38 |

In the above equation, T and consequently, the convergence rate of the evolution equation
for thé mean-square of the FCM increase with increasing values of {;. Thus, the coefficient
selection process having the largest value of {; will provide the best convergence rate for
the PU-NSLMS algorithm.

Since at any instant k, the coefficient selection process of the M-Max PU-NSLMS al-
gorithm maximizes ||A (k) X (k)||;, the value of {; = [E {||A (k) X (k)||;}/E{IIX(K)||,}] is
maximum for the M-Max PU-NSLMS algorithm. Thus, the convergence rate of the M-
Max PU-NSLMS algorithm is better than that of the PU-NSLMS algorithm employing
any other coefficient selection process, and M-Max PU-NSLMS algorithm can achieve a

convergence rate that is closest to the full update algorithm.
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4.5 Simulations

In this section, we study the performance of the proposed PU-NSLMS algorithms. In
order to do so, a system-identification problem is considered. Fig. 4.1 shows the impulse
response of an unknown system characterized by an FIR filter with 256 taps. The input
signal is generated from a stationary, zero-mean, white Gaussian process with a variance
o2 = 1. The signal to noise ratio (SNR) is 40 dB. The adaptive filter used to model the
unknown system is also assumed to have a filter tap length N = 256. The L;-norm of the
FCM, |W (k) — W3, is used as the performance index.

The stability bounds on the step-size of the sequential PU-NSLMS and M-Max PU-
NSLMS algorithms are given by (4.20) and (4.49), respectively. Even though the actual
bounds on the step-size of these algorithms are somewhat different from these expressions,
they can still be used as guidelines towards a good choice of the step-size. Fig. 4.2 shows
the theoretical upper bounds on the step-size of the sequential PU-NSLLMS and M-Max
PU-NSLMS algorithms for different values of K = (N/M). The upper bound on the step-
size of the M-Max PU-NSLMS algorithm is higher than that of the sequential PU-NSLMS
algorithm. Therefore, by opting for a larger value of the step-size, the M-Max PU-NSLMS
algorithm can achieve a faster convergence rate than that of the sequential PU-NSLMS
algorithm.

Figs. 4.3 and 4.4 show the FCM curves of the sequential PU-NSLMS and M-Max PU-
NSLMS algorithms for M = 64 and different values of u. The FCM curves were obtained
through averaging 50 trials. They also show the corresponding theoretical FCM curves
obtained from (4.17) and (4.45), respectively. Figs. 4.5 and 4.6 show the steady-state FCM
obtained from the simulations as well as from the theoretical analyses of the sequential PU-
NSLMS and M-Max PU-NSLMS algorithms given by (4.18) and (4.47), respectively. Figs.
4.3,4.4,4.5 and 4.6 show an excellent agreement between the theoretical and experimental

results,
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Figure 4.1. Impulse response of an unknown system.
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Figure 4.2. Upper bounds on the step-size of the sequential PU-NSLMS and M-Max PU-
NSLMS algorithms for the case of K = % =2,3,...,8.
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Figure 4.3. Simulated and theoretical FCM curves of the sequential PU-NSLMS algorithm
for the case of N =256, M = 64 and u = 0.02, 0.04, 0.06, 0.08.
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Figure 4.4. Simulated and theoretical FCM curves of the M-Max PU-NSLMS algorithm
for the case of N =256, M = 64 and u = 0.1,0.2, 0.3, 0.6.
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Fig. 4.7 shows the FCM curves of the PU-NSLMS algorithm (M = N), and for the se-
quential PU-NSLMS and M-Max PU-NSLMS algorithms for the case of M = 64. The
step-size for all the algorithms is chosen such that the algorithms achieve approximately
the same steady-state FCM. It is seen from Fig. 4.7 that the convergence rate of the se-
quential PU-NSLMS algorithm is very much lower than that of the M-Max PU-NSLMS
algorithm. The M-Max PU-NSLMS algorithm shows only a small degradation in the con-
vergeﬁce rate compared to that of the full update algorithm, and has a convergence rate
comparable to that of the SPU-NLMS algorithm. The results of Fig. 4.7 reaffirm that the
M-Max PU-NSLMS algorithm can achieve a convergence rate that is closest to that of the

full update algorithm.

4.6 Summary

In this chapter, we have carried out the statistical analyses of the sequential and M-Max
PU-NSLMS algorithms. Evolution equations for the mean and mean-square of the filter
coefficient misalignment, and stability bounds on the step-size of the two algorithms have
been obtained. It has been shown that the M-Max PU-NSLMS algorithm has a convergence
rate that is closest to that of the full update algorithm. The theoretical results obtained from

the statistical analyses of the two algorithms have been validated using simulations.
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Figure 4.7 Convergence rates of the PU-NSLMS (M=N), sequential PU-NSLMS, and M-
Max PU-NSLMS algorithms for the case of N=256 and M=64.
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Chapter 5

Proportionate Algorithms

5.1 Introduction

With its simple architecture and ability to give robust performance, the NLMS algorithm is
one of the most popular and widely-used adaptive filter algorithms. However, its conver-
gence rate is inversely proportional to its filter tap length, thus making the rate undesirably
slow for applications requiring a long filter tap. One approach for increasing the rate of
the adaptive filter algorithm is to incorporate a priori information about the unknown sys-
tem into its design, as in the case of adaptive filter algorithms having nonuniform gain
distribution [37]-[47]. An algorithm having a nonuniform gain distribution allocates more
adaptation energy to the filter taps with larger FCM. Thus, by making the filter coefficients
with larger FCM to converge faster, such an algorithm can achieve a faster convergence
rate compared to the one having a uniform gain distribution (for example, the NLMS algo-
rithm).

In this chapter, we discuss proportionate algorithms, wherein different adaptation gains
are allocated to the various filter coefficients using some criterion. In Section 5.2, a brief
introduction to the different proportionate algorithms is provided. The derivation of the re-

cently developed proportionate NLMS (PNLMS) algorithm using a constraint optimization
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method [40] is also presented. In Section 5.3, a low-complexity partial-update proportion-

ate algorithm based on the L..-norm criterion is proposed.

3.2 PNLMS Algorithm

It is known that in the field of wireless communication, echo cancellation, and underwater
acoustic communication, the impulse response of a transmission channel is often sparse,
that is, the finite-impulse-response (FIR) filter representing the transmission channel has
only a few large taps . Martin et al. [44], [45] have shown that one can achieve a substantial
improvement in the performance of an adaptive filter, by incorporating into the design of the
filter, a priori information such as the impulse response of the unknown system. Based on
this fact, various adaptive filter algorithms have been proposed exploiting the “sparseness”
of the impulse response of the unknown system. These algorithms allocate more adaptation
energy to the filter coefficients having larger FCM, and thus, force them to converge faster
than the filter coefficients having relatively smaller FCM. Since the filter coefficients having
larger FCM are more important in terms of the convergence rate, an algorithm having a
nonuniform gain distribution can achieve a faster convergence rate compared to the one
having a uniform gain distribution.

Makino et al. [41] have proposed an adaptive filter algorithm for acoustic echo can-
cellation, wherein different adaptation gains are allocated to the various filter coefficients,
thus allowing individual learning rates for the filter taps. This algorithm, referred to as the
exponentially weighted step-size (ES) algorithm, has an architecture similar to that of the
NLMS algorithm except for the exponential distribution (rather than uniform distribution)
of the adaptation energy over the filter taps. The motivation for the ES algorithm is that
the envelop of the room impulse response decays exponentially over the filter coefficients,
and therefore, by having a gain distribution similar to the envelop of the room impulse re-

sponse, it can achieve a faster convergence rate compared to that of the NLMS algorithm. It
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should be noted that in this algorithm, the nonuniform distribution of the adaptation energy
over the filter taps is time-invariant and is set by the user. This is undesirable, since the
adaptation gains of the various filter taps cannot be varied in accordance with the changes
in the acoustic impulse response of the room.

If the idea of allocating less gain to the filter taps having relatively smaller FCM is
stretched to the extreme, then it leads to algorithms that try to determine the flat regions in
the impulse response using some criterion, and then allocate zero gains to the filter taps in
those regions (for example, [42], [43]). However, the problem with such algorithms is in
the determination of the flat regions in the impulse response.

In order to overcome these problems, a new variant of the NLMS algorithm, namely,
the PNLMS algorithm [37], [38] has been proposed recently. The novelty of the PNLMS
algorithm lies in the fact that the learning rate assigned to each of the filter coefficients
is adaptive. This means that the PNLMS algorithm can automatically determine the filter
coefficients that are important in terms of the convergence rate and accordingly allocates
more adaptation energy to these coefficients. The PNLMS algorithm is employed to iden-
tify an unknown system having a sparse impulse response, such as in the case of network
echo cancellation. A network echo path is usually 64 ms to 128 ms long. However, the
active region of a network echo path, where most part of its energy is concentrated, is only
about 4 ms to 8 ms long. The rest of the region in the network echo path is relatively flat
and can be taken to have zero value. The PNLMS algorithm exploits the “sparseness” of
the network echo path by allocating more adaptation energy to the filter coefficients in the
active region compared to those in the relatively flat region of the network echo path. Since
the filter coefficients in the active region have larger FCM, thus forcing these coefficients
to converge faster compared to those in the relatively flat region, the PNLMS algorithm can
achieve a faster convergence rate compared to that of the NLMS algorithm. For the PNLMS

algorithm, the learning rate of the individual filter taps are taken to be proportional to the
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magnitude of their respective tap-weights in the preceding iteration. Therefore, the alloca-
tion of the adaptation energy among the filter taps of the PNLMS algorithm is automatic,
and not user controlled.

The PNLMS or any other L-norm algorithm having a nonuniform gain distribution can

be viewed as the solution of the constraint optimization problem

2

'G 2 (k) (W (k+1) —W(k))]]2 (5.1)

Wi

subject to W7 (k+ 1) X (k) = y (k)

where G (k) = diag {g1(k), g2(k), ...,8gn (k) }y«u is the gain distribution matrix. Solving

(5.1) in a manner similar to that used in solving (2.3) gives the coefficient-update equation

_ pe (k)G (k)X ()
W(k+1) =Wk + 3 ()G(k)x(k) (5.2)

where 0 is a small positive number added to the denominator to prevent the division by
zero. The matrix G (k) controls the allocation of the adaptation energy over the filter taps.
The expression for the diagonal elements of G (k) in the case of PNLMS algorithm is given
by [37]

| gi(k) = max{pL..(0), [w; ()]}, i € (1,...,N) (53)

where

l.(k) = max{l.(k),8}

lo (k) = max{{wi (k)|, ..., wn(k)[}

and p and § have small positive values.
For an unknown system having a sparse impulse response, the PNLMS algorithm can

achieve a faster convergence rate compared to that of the NLMS algorithm. However, since
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the PNLMS algorithm needs to compute the individual learning rates of the filter taps,
it is computationally more complex than the NLMS algorithm. The high computational
complexity of the PNLMS algorithm can impair its use in real-time applications, especially
those requiring a long filter tap. The complexity of the PNLMS algorithm can be reduced
in a number of ways. These include: (1) reducing the number of comparisons required for
computing the individual learning rates of the filter taps [39], (2) reducing the number of
filter coefficients updated at each time step [40], and (3) finding the gradient vector in the

hyperplane based on the L..-norm criterion [47].

5.3 PU-PNSLMS Algorithm

In this section, a low-complexity proportionate adaptive filter algorithm is developed by
combining the concepts of partial-updating and proportionate updating based on the Le.-
norm criterion. The proposed algorithm is derived by modifying the error control equations
employed for developing the PU-NSLMS algorithm.

For an adaptive filter, the error e (k) is given by
e(k) =y (k) - W' (k)X (k) (5.4)

This error is minimized by adjusting the filter coefficient vector W (k) using the vector

A (k)G (k) A(k) to obtain
(1=me(k) =y (k) [WT (0)+47 ()G () A ()] X (&) 55

where G (k) = diag {g1(k), g2(k), ...,gn (k)} is the gain distribution matrix, A (k) is the

coefficient selection matrix, A (k) € RV is a variable vector, and u is the step-size. From
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(5.4) and (5.5), we have
pe (k) = AT (k) G (k) A (k) X (k) (5.6)

Using the lemma given in Section 2.4.1, the minimum Le.-norm solution of A (k) is given
by

= e (k) sign

The coefficient-update equation of the PU-PNSLMS algorithm is given by

ue (k) |G (k) A (k)| sign {X (k)} (5.8)

Wk+D) =Wk + g RAamxm],

For M = N, the PU-PNSLMS algorithm reduces to the proportionate normalized sign LMS
(PNSLMS) algorithm [47]

_ pe®IGE
W (k1) = W)+ s sien (X (6) 59)

For M < N, there are various ways of updating a subset of the filter coefficients at each time
step. One approach is to select the filter coefficients such that the Euclidean norm of the
vector G™! (k) [W (k4 1) — W (k)] is minimum at each time step. In (5.8), for given e (k)
and p, the Euclidean norm of the vector G™! (k) [W (k- 1) — W (k)] is minimum, when
|A (k) G (k) X (k)||; is maximum. Therefore, the filter coefficients corresponding to the M
largest elements of ||G (k) X (k)||; are updated at each time step. The resulting algorithm
is referred to as the M-Max PU-PNSLMS algorithm and its coefficient-update equation is

given by
pe (k) |G (k) A (k)|

W(k+1) =W (k) + IG(K)A ()X k)],

sign{X (k)} (5.10)

where

A (k) = diag{a (k), @y (k), ...,an (k)}
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1 ifi=argMmaximaof |g;(k)x(k—i+1
a (k) = / S le (k)= ) vie(l,...,N) (511
0 otherwise
In order to reduce the operations required to compute the individual learning rate of the

filter taps, the elements of the gain distribution matrix of the PU-PNSLMS algorithm are

defined as
_ wv)
Ty wi (k)] +y

where O and y are small positive numbers. The M-Max PU-PNSLMS algorithm requires

gi (k) +38,ie(1,...,N) (5.12)

N+2M additions, 2N+M+2 multiplications, one division and log2(N) + 2 comparisons per
time step, whereas the PNLMS algorithm requires 3N-2 additions, 4N+4 multiplications

and one division.

5.4 Summary

In this chapter, first, a brief introduction to the adaptive filter algorithms having nonuni-
form gain distributions and motivations for developing such algorithms have been dis-
cussed. Next, a low-complexity proportionate partial-update algorithm has been developed
by combining the concept of updating a subset of the filter coefficients and the technique
of finding the gradient vector in the hyperplane based on the L..-norm criterion. Also, a co-
efficient selection technique for the low-complexity proportionate partial-update algorithm
based on minimizing the length of the coefficient-update vector has been proposed. It has
been shown that the complexity of the proposed algorithm is less compared to that of the

PNLMS algorithm.
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Chapter 6

Echo Cancellation

Echo cancellation is one of the most important applications of the adaptive filter algorithms.
In this chapter, a brief introduction to the problem of echo cancellation is first given. Then,
the performance of the proposed adaptive filter algorithms in the problem of echo cancel-

lation is studied and compared with that of some of the existing ones.

6.1 Echo Canceler

Echo is generated due to the reflection of signals at points along the transmission medium.
It remains unnoticed if the time delay of the echo path is small. As the time delay of
the echo path increases, say above a few tens of a millisecond, the echo becomes more
apparent and annoying. The problem of echo arises in a telecommunication channel due
to the impedance mismatch between the hybrid and customer loop, and is referred to as
the network echo. Since the development of the first echo canceler by the Bell Labs [48]
to alleviate the problem of network echos, a lot of work has been done in this field. An
echo canceler generates the replica of the echo path by applying the reference signal to an

adaptive filter algorithm. If the transfer function of the adaptive filter is identical to that of
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Figure 6.1. Echo-canceler configuration.

the echo path, then it is possible to achieve a total cancellation of the echo. However, in
most of the cases, total echo cancellation is impossible and the difference between the echo
and the output of the adaptive filter algorithm is fed back to the adaptive filter so as to update
the filter coefficients. Fig. 6.1 shows the architecture of an echo canceler. In addition to the
adaptive filter algorithm, an echo canceler also consists of the double-talk-detector (DTD),
analog to digital (A/D) converter and digital to analog (D/A) converter. During a double
talk, the signal generating from the near-end speaker acts as an uncorrelated noise of large
amplitude to the adaptive filter algorithm and can cause the adaptive filter algorithm to
diverge. In order to overcome this problem during a double talk, filter coefficient updating
is stopped whenever the DTD detects a double talk. Adaptive filter is a digital filter and
the speech an analog signal. Therefore, in order to overcome the problem of compatibility
between the digital filter and the analog signal, A/D and D/A converters are required. The
A/D cénvener transforms the speech signal into a digital signal. This signal is fed into the
adaptive filter for processing. The output of the adaptive filter is converted into an analog

signal using the D/A converter. During a double talk, if the model of the network echo path
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is accurate, then the output of the adaptive filter is equal to the signal generated from the
near-end speaker.

The impulse response of an FIR filter is more stable compared to that of an infinite-
impulse-response (IIR) filter. Therefore, FIR filters are preferred over IIR filters for the
purpose of echo cancellation. Ideally, the tap length of an FIR filter should be equal to
the length of the echo path. For most practical cases, it has been been observed that the
network echo paths can be modeled accurately by employing FIR filters with a tap length

less than or equal to 128 ms.

6.2 Performance

In this section, we discuss the performance of the proposed algorithms, namely, the M-
Max PU-NSLMS and M-Max PU-PNSLMS algorithms and compare with that of the SPU-
NLMS and PNLMS algorithms, respectively, both from the point of the complexity and the

convergence rate.

6.2.1 Complexity

Tables 6.1 and 6.2 show the number of multiplications, additions and comparisons required
by the proposed M-Max PU-NSLMS and M-Max PU-PNSLMS algorithms as well as the
SPU-NLMS and PNLMS algorithms for different values of M and N. It is observed that
the M-Max PU-NSLMS algorithm requires the least number of operations compared to
the other three algorithms. The SPU-NLMS algorithm requires more number of multi-
plications and the same number additions and comparisons compared to the M-Max PU-
NSLMS algorithm. It is also observed that the proposed M-Max PU-PNSLMS algorithm

requires much less number of operations compared to the PNLMS algorithm.
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TABLE 6.1

COMPUTATIONAL COMPLEXITIES OF THE M-MAX PU-NSLMS, SPU-NLMS,

M-MAX PU-PNSLMS, AND PNLMS ALGORITHMS FOR THE CASE OF N = 256

Algorithm M | Multiplications | Additions | Comparisons | Complexity
(m) (a) (c) (m+a+c)

32 258 290 10 558
M-Max PU-NSLMS | 64 258 322 10 590
128 258 386 10 654
32 290 290 10 590
SPU-NLMS 64 322 322 10 654
128 386 386 10 782
32 546 320 10 876
M-Max PU-PNSLMS | 64 578 384 10 974
128 642 512 10 1164
PNLMS 256 1024 766 - 1790
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TABLE 6.2

COMPUTATIONAL COMPLEXITIES OF THE M-MAX PU-NSLMS, SPU-NLMS,

M-MaX PU-PNSLMS, AND PNLMS ALGORITHMS FOR THE CASE OF N = 512

Algorithm M | Multiplications | Additions | Comparisons | Complexity
(m) (a) (c) (m+a+c)

32 514 546 11 1071
M-Max PU-NSLMS | 64 514 578 11 1103
128 514 642 11 1167
256 514 770 11 1295
32 546 546 11 1103
SPU-NLMS 64 578 578 11 1167
128 642 642 11 1295
256 770 770 11 1551
32 1058 576 11 1645
M-Max PU-PNSLMS | 64 1090 640 11 1742
128 1154 768 I 1933
256 1282 1024 11 2317
PNLMS 512 2052 1534 - 3586
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6.2.2 Convergence rate

In this section, a study of the convergence rate of the proposed M-Max PU-NSLMS and M-
Max PU-PNSLMS algorithms as well as that of the SPU-NLMS and PNLMS algorithms
is carried out. Figs 6.2 and 6.3 respectively show the sparse and dispersive echo paths,
which are used to study the convergence rate of the algorithms. In order to compare the
convergence rate, the step-size for each of the algorithms is chosen so that all the algorithms
achievé approximately the same steady-state FCM.

Fig. 6.4 shows the convergence rates of the M-Max PU-NSLMS and SPU-NLMS al-
gorithms for the case of M = 32 using the sparse and dispersive echo paths of Figs. 6.2 and
6.3, respectively. Figs. 6.5 and 6.6 show similar convergence rates of the two algorithms
for the case of M = 64 and 128, respectively. From Figs. 6.4, 6.5 and 6.6, it is observed
that the convergence rate of the M-Max PU-NSLMS algorithm is comparable to that of the
SPU-NLMS algorithm both for the sparse and dispersive echo paths. Further, it is observed
that the convergence rates of the two algorithms are independent of the nature of the echo
path.

F1g 6.7 shows the convergence rates of the PNLMS algorithm as well as that of the
proposed M-Max PU-PNSLMS algorithm for the case of M = 32, 64 and 128 using the
sparse echo of Fig. 6.2. Itis observed that the convergence rate of the M-Max PU-PNSLMS
algorithm (M = 128) is comparable to that of the PNLMS algorithm. Further, the M-
Max PU-PNSLMS algorithm shows a minimal degradation in the convergence rate as the
number of filter coefficients updated at each time step decreases.

Fig. 6.8 shows the convergence rates of the M-Max PU-PNSLMS and M-Max PU-
NSLMS algorithms for the case of M = 32 using the sparse and dispersive echo paths of
Fig 6.2 and Fig 6.3, respectively. Figs. 6.9 and 6.10 show similar convergence rates of the
two algorithms for the case of M = 64 and 128, respectively. It is observed that in the case

of a sparse echo path, the M-Max PU-PNSLMS algorithm has a faster convergence rate
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Figure 6.2. Sparse echo path.
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Figure 6.4. Convergence rates of the M-Max PU-NSLMS and SPU-NLMS algorithms for

the case of N = 256 and M = 32 using the sparse and dispersive echo paths of Figs. 6.2
and 6.3, respectively.
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Figure 6.5. Convergence rates of the M-Max PU-NSLMS and SPU-NLMS algorithms for

the case of N = 256 and M = 64 using the sparse and dispersive echo paths of Figs. 6.2

and 6.3, respectively.
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Figure 6.6. Convergence rates of the M-Max PU-NSLMS and SPU-NLMS algorithms for

the case of N = 256 and M = 128 using the sparse and dispersive echo paths of Figs. 6.2

and 6.3, respectively.
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Figure 6.7. Convergence rates of the PNLMS algorithm (N = M = 256) and the proposed

M-Max PU-PNSLMS algorithm (N = 256 and M = 32, 64, 128) using the sparse echo path
of Fig. 6.2.
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Figure 6.8. Convergence rates of the M-Max PU-PNSLMS and M-Max PU-NSLMS algo-

rithms for the case of N = 256 and M = 32 using the sparse and dispersive echo paths of

Figs. 6.2 and 6.3, respectively.
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Figure 6.9. Convergence rates of the M-Max PU-PNSLMS and M-Max PU-NSLMS algo-

rithms for the case of N = 256 and M = 64 using the sparse and dispersive echo paths of

Figs. 6.2 and 6.3, respectively.
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Figure 6.10. Convergence rates of the M-Max PU-PNSLMS and M-Max PU-NSLMS

algorithms for the case of N = 256 and M = 128 using the sparse and dispersive echo

paths of Figs. 6.2 and 6.3, respectively.
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compared to the M-Max PU-NSLMS algorithm. However, for a dispersive echo path,
where the energy of the impulse response is spread over a wide region, the convergence
rate of the M-Max PU-PNSLMS algorithm is slower compared to that of the M-Max PU-
NSLMS algorithm.

6.3 Summary

In this chapter, first, a brief introduction to the problem of echo cancellation has been given.
Next, the performance of the proposed algorithms, namely, the M-Max PU-NSLMS and
M-Max PU-PNSLMS algorithms have been studied and compared with that of the SPU-
NLMS and PNLMS algorithms, respectively, both from the point of the complexity and
the convergence rate. The complexities of these algorithms have been compared in terms
of the number of multiplications, additions and comparisons required to update the filter
coefficients at each time step. It has been observed that the proposed M-Max PU-NSLMS
and M-Max PU-PNSLMS algorithms are computationally less intensive compared to the
SPU-NLMS and PNLMS algorithms, respectively. For comparing the convergence rates
of the algorithms, different echo paths have been used. It has been shown that the conver-
gence rate of the M-Max PU-NSLMS algorithm is comparable to that of the SPU-NLMS
algorithm both for the sparse and dispersive echo paths. Further, it has been observed that
the convergence rates of the two algorithms are independent of the nature of the echo path.
It has been shown that the convergence rates of the M-Max PU-PNSLMS and PNLMS
algorithms are comparable. Also, it has been observed that in the case of a sparse echo
path, the M-Max PU-PNSLMS algorithm shows a minimal degradation in the convergence
rate as the number of filter coefficients being updated at each time step decreases. The
convergence rates of the M-Max PU-NSLMS and M-Max PU-PNSLMS algorithms have

been compared using the sparse and dispersive echo paths. It has been observed that in
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the case of a sparse echo path, the convergence rate of the M-Max PU-PNSLMS algorithm
is faster than that of the M-Max PU-NSLMS algorithm. Also, in the case of a dispersive
echo path, the convergence rate of the M-Max PU-PNSLMS algorithm deteriorates and is
slower compared to that of the M-Max PU-NSLMS algorithm. As a consequence, the pro-
posed algorithms have lower complexities compared to the existing algorithms, with the
former algorithms providing a performance comparable to that of the later in terms of the

convergence rate.
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Chapter 7

Conclusion

The ability of an adaptive filter to adapt itself to the changes in an unknown environment
makes it a powerful tool for signal processing. One of the main applications of adaptive
filters is in the identification of unknown system. The complexity of an adaptive filter
algorithm is proportional to the tap length of the filter, and therefore, such an algorithm can
be computationally probhitive for applications requiring a long filter tap.

This thesis has been concerned with the development of low-complexity adaptive filter
algorithms by combining the concept of partial-updating and the technique of finding the
gradient vector in the hyperplane based on the L..-norm criterion. The resulting algorithms,
referred to as the PU-NSLMS algorithms, have a reduced complexity not only because of
the updating of only a subset of the filter coefficients at each time step, but also from the
fact that compared to the L;-norm algorithm (for example, the NLMS algorithm), algo-
rithms based on L..-norm require less number of operations to update a filter coefficient.
Two specific algorithms, namely, the sequential and M-Max PU-NSLMS algorithms have
been obtained by employing the sequential and M-Max coefficient selection techniques for
updating a subset of the filter coefficients. The statistical analyses of the two algorithms

have been carried out under the independence assumption. Evolution equations for the
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mean and mean-square of the filter coefficient misalignment as well as the stability bounds
on thé step-size of the two algorithms have been obtained. It has been shown that the M-
Max PU-NSLMS algorithm has a convergence rate that is closest to that of the full update
algorithm. Simulations have been carried out to validate the theoretical results obtained
from the statistical analyses of the algorithms. The concept of partial-updating based on
the L..-norm criterion was extended to the proportionate adaptive filtering to develop the
PU-PNSLMS algorithm.

The performance of the proposed algorithms as well as that of the existing ones have
been studied in echo cancellation. The complexities of these algorithms have been com-
pared for different values of, N, the tap length of the filter and M, the number of filter coef-
ﬁcients updated at each time step. Simulations using the sparse and dispersive echo paths
have been carried out to study the convergence rates of the algorithms. It has been shown
that the convergence rate of the proposed M-Max PU-NSLMS algorithm is comparable to
that of the SPU-NLMS algorithm both for the sparse and dispersive echo paths. Further,
it has been observed that the convergence rates of the two algorithms are independent of
the echo paths. It has been shown that the convergence rate of the M-Max PU-PNSLMS
algorithm is comparable to that of the PNLMS algorithm. Also, it has been observed that
in the case of a sparse echo path, the M-Max PU-PNSLMS algorithm shows a minimal
degradation in the convergence rate as the number of filter coefficients being updated at
each time step decreases. The convergence rates of the M-Max PU-NSLMS and M-Max
PU-PNSLMS algorithms have been compared for the sparse and dispersive echo paths. It
has been shown that in the case of a sparse echo path, the M-Max PU-PNSLMS algorithm
converges much faster compared to the M-Max PU-NSLMS algorithm. However, in the
case of a dispersive echo path, the convergence rate of the M-Max PU-PNSLMS algorithm
deteriorates and is slower compared to that of the M-Max PU-NSLMS algorithm.

One of the major contributions of this thesis is the statistical analyses of the sequential
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and M-Max PU-NSLMS algorithms. Results obtained from these analyses have helped
us to better understand the behavior of the two proposed algorithms. A similar analysis
for the M-Max PU-PNSLMS algorithm needs to be carried out. Also, the performance of
the proposed algorithms have been studied in the case of a stationary, zero-mean, white
Gaussian input signal. Real life signals are neither stationary nor generated from a white
Gaussian process. Therefore, the performance of the proposed algorithms need to be stud-
ied fof nonstationary and correlated signals. Also, a detailed study needs to be carried out
to understand the behavior of the proposed algorithms in the case of a finite word length

environment, such as in the case of a fixed-point processor.
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Appendix A

In this appendix, the derivation of (4.14) is given. Let [],, , refer to the (m,m)"™" element

of the the matrix [.]. Solving the diagonal terms in (4.13) separately, we have

¥y

¥,

[—RE {sign{A ()X ()} X" ()} E{V (K)}],,.,,

[~RE {sign {A ()X (K)} X" (k)}],, 0 ELV (&)}

—,ﬁ\/%chl E{V (k) }m,m

[—RE{V (k)} E {sign{A ()X ()} X" (0)}],,

E{V ()}, [-RE {sign{A ()X ()} X" (8)}],,.,

—ﬁ\/%GxCI E {V (k)}m,m

(k)X (k)} XT (k) V (k) X (k) sign {X” (k) } }]

2202 [0 () + (G~ DE{V (O},
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where

¢, = VEUABX K]}
ME {|[X (k)| }

and
o, - VE{IA WX @]l )
2T TME{[X2(0)]}

The use of (7.1), (7.2), (7.3), and (7.4) in (4.13) results in (4.14).
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