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Abstract

A Hybrid Approach to Differentiated Services Multicast

Joydeep Dhar

Internet, the largest network of networks has evolved from a research-oriented network to
one with a myriad number of commercial applications. Over the last several years, there
has been an explosion in the introduction of new Internet technologies with high-end
workstations being engaged in real-time and ‘multirnedia communications like video
conferencing, IP telephony, streaming video broadcast, online gaming etc. Supporting
both the legacy services like email, file transfer and real-time multimedia like video
conferencing requires service differentiation of Internet traffic. Moreover, multipoint
communication requires implementation of multicast services. Two of the emerging
technologies for service differentiation in multipoint communication are Differentiated
Services (DiffServ) and multicasting. Although the two technologies share
complementary goals, the integration of the two technologies is a non-trivial issue due to
three fundamental problems. The problems are the scalability of per-group state
information, sender- versus receiver- driven QoS, and resource management.

The issues surrounding how to solve these problems provide the basis for this
thesis. Edge Based Multicast (EdgeCast) — has been proposed here to satisfy the
requirements for scalable DiffServ multicasting architectures. In addition it also presents
a new join/leave protocol to support the EdgeCast architecture. Performance simulation
has been done and compared with some already developed techniques. Finally, the whole
work has been summarized and comments have been made on future applications of the

architecture and several potential areas for future research.
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Chapter 1

INTRODUCTION

Internet, the largest network of networks has evolved from a research-oriented network to
one with a myriad number of commercial applications. Over the last several years, there
has been an explosion in the introduction of new Internet technologies supporting real-
time and multimedia communications like video conferencing, IP telephony, streaming
video broadcast, online gaming etc. Supporting both the legacy services like email, file
transfer and real-time multimedia like video conferencing requires service differentiation
of Internet traffic. Moreover there has been a push to point-to-multipoint communication
from simple point-to-point communication as a method of saving bandwidth and time.
All these have prompted the implementation of Quality of Services (QoS) sensitive
multicast [1] in the Internet. Different architectures like IntServ-RSVP [2, 3], DiffServ [4,
5], and MPLS [6] have been proposed for QoS support. Protocols like DVMRP [7], PIM-
DM/SM [8, 9] have been developed to support multicast. For QoS, Differentiated
Services (DiffServ) model has received more attention because of its simplicity and
scalability. As a result of increasing QoS multicast demand, the integration of DiffServ
multicast seems to be the most promising. Although both are complementary
technologies, the integration of the two is a rather difficult task due to architectural
conflicts between multicasting and DiffServ principles- core statelessness for scalability
versus per-group state information for efficiency.

The rest of this chapter is organized as follows. Section 1.1 describes the Internet

communication from the connectivity perspective with brief descriptions of unicast,



broadcast and multicast. Section 1.2 outlines the basic components required for multicast
implementation. Next Section 1.3 outlines the concept of Quality of Services (QoS) and
its importance in the future Internet. The subsections introduce the different QoS models.
Section 1.4 outlines the problems that are the motivations of this thesis. Section 1.5 is all
about how the thesis has been organized and which chapter discusses which issues.

Finally, Section 1.6 is the summary of the current chapter.

1.1  From Point-to-Point to Point-to-Multipoint
The fundamental method of network communications is between two host computers, or
unicasting. In a single session one computer transfers data to another computer. The one-
to-one sessions can offer a great deal of control of the data traffic between the source and
the receiver, allowing for acknowledgement of receipt, requests for transmission rate, and
so on. But many internet applications involve one-to-many or many-to-many (multipoint)
communications, where one or more sources are sending data to multiple receivers. For
example in a corporate network all the employees may need to watch a webcast about the
important company policy by the company CEO. This situation can be handled with
point-to-point communication, but with a penalty of network bandwidth and time
required to perform the job. On the other hand multipoint communication (point-to-
multipoint and multipoint-to-point communication) is the best possible answer to serve
this application efficiently.

Multipoint communication is possible in three different ways — unicasting, where
a separate copy of data is delivered to each of the recipients; broadcasting, where a data

packet is flooded to the whole network and all the recipients receive data even when



some of them are not interested; and multicasting, where a single packet is addressed to

all intended recipients and the network replicates packets only as needed.

1.1.1 Unicasting, Broadcasting and Multicasting

In multipoint unicasting, a source sends an individual copy of a message to each
recipient. In such cases, the number of receivers is limited by the sender’s bandwidth.
Transferring a file from a File Transfer Protocol (FTP) [10] file server to a host computer
is an example of unicasting; the data in the file is sent over the network from the server
only to the host. But if five other people in the workgroup want to copy the same file to
their own computers at the same time using FTP, the FTP server would have to send the
file to each of the five recipients separately, using five times as much bandwidth as the
single transfer. Even when the same data must be sent to more than one recipient at the

same time, unicasting works well as long as the number of recipients is small.

AN AN AN

| VANSAVAWAY

Receiver 1  Receiver 2 Receiver 1 Receiver 2 Receiver 1  Receiver 2

(@) (b) (c)

Fig 1.1 (a) Multiple Unicasting (b) Broadcasting (c) Multicasting

Broadcasting is at the other end of network spectrum. In this method the source
sends a single copy of the message and all network nodes replicates the packet such a

way that all the nodes in the network gets a copy of the message. The receiving nodes



decide whether to accept or reject the message. Wide Area Networks (WAN)-based
broadcasting has to depend on network devices like routers to duplicate packets and
distribute them among the subnets compromising the WAN or internetwork. Broadcast
traffic can quickly grow out of control at larger sites (e.g., greater than 300 or more
networked devices) and reduce the bandwidth available to support mission-critical
applications (and even general-purpose traffic). In worst-case scenarios, broadcast storm
can effectively shutdown the network, since the broadcasts can monopolize all of the
available bandwidth.

Multicasting falls between unicasting and broadcasting from the data flow
perspective. Rather than sending data to a single host (unicasting) or to all hosts on a
network (broadcasting), multicasting aims to deliver data to a select group of hosts, called
the ‘host group’. The ‘host group’ is defined by a specific multicast address — Class D
address. Unlike, broadcasting, multicasting allows each host to choose whether it wants
to participate in a multicast session. Once a host group is set up and the sender starts
transmitting packets to the host group address, the network infrastructure takes on the
responsibility for delivering the necessary data streams to all members of the group. Only
one copy of a multicast message passes over any link (such as a router) in the network;
copies of the message are only made when paths diverge at a router (e.g., the message is
supposed to be passed on to another router as well as to a workstation attached to the

current router), helping to conserve bandwidth.

1.2 The Basic Components of Multicasting

There are four major processes behind a successful implementation of multicasting:



° First, there is the definition of multicast host group, which is handled on IP
networks by specially coded addresses called multicast addresses. These are the
class D addresses in [Pv4.

. Second, a mechanism is required for joining and leaving a multicast host group.
This not only includes‘ either sender- or receiver-based control of the group
membership, but also the protocols used to transmit and manage the group
membership information throughout the network, if necessary. Group membership
1s handled via Internet Group Management Protocol (IGMP) [11], which handles
communications between routers and the Local Area Network (LAN) they serve.

e  Complex IP networks cannot forward data without the assistance of routers, which
form the third component of a multicasting system. A series of routing protocols
have been speciﬁcaliy formulated to support multicasting, both to haﬁdle the
duplication of multicast traffic asrneeded and, more importantly, to handle issues
surrounding group management.

. Lastly, there are the application protocols for creating and managing the data that

are distributed in a multicasting session.

1.3  QoS: Beyond Best Effort Services

Since its inception, Internet has come a long way within a fairly short amount of time.
The technology that once started as a means of mere inter-device communication has
now evolved into the principal source of information, entertainment, research and
business. Different types of applications are required for serving different purposes. And
all these different applications have different service constraints. E-mail exchange, file

transfer applications and audio over Internet have to rely on faithful delivery than time-



constraint delivery. On the other hand, in interactive applications — video conferencing
and streaming video, for example — impose special restrictions on latency than accuracy.
So far Internet had been providing best-effort (BE) services, which treats all the traffic
streams same — try the best to deliver, no guarantee about delay and accuracy. But the
Web and Internet together constitute a critical information, entertainment, and commerce
infrastructure that are rapidly evolving from a BE service model to one with service
differentiation provided for users, services and applications. This service differentiation
(also referred to as Quality of Service (QoS)) 1s in the form of preferential treatment
(using priorities, resource reservation, etc.) of one type of user/application traffic over
another at the servers, proxies, and network elements that comprise the end-to-end

infrastructure.

1.3.1 Major QoS Parameters

As we mentioned earlier, not all the applications have the same accuracy and delay
constraints. For example, voice applications can tolerate more delay than video
applications, but they require better accuracy. On the other hand, real-time video
applications require reception with less delay than accurate reception. If few frames are
lost in transmission still the receiver will be able to recognize the video properly, but
reception with greater delay will affect the real-time aspects of the content. The major
QoS parameters are accuracy, delay, and jitter.
e Accuracy is directly connec£ed to the packet loss ratio. This is a major aspect that
determines the quality of voice in packet networks. Each packet is assigned a header
that identifies where the packet is going and contains the information for reassembly

when the packet arrives at its destination. Unless the network is precisely matched to



the peak traffic load, packets sometime fail to arrive at the destination. These lost
packets affect the network services in different degrees depending on whether the
application type is data transmission or voice/video distribution.

o Delay is the primary QoS measure for interactive multimedia applications. It is
measured end-to-end across the packet network from the source, across the packet
network, to the destination. The upper limit of delay that is tolerated by the
International Telecommunication Union (ITU) 1s 150 ms [12]. In the conventional
Public Switched Telephone Networks (PSTN), the largest part of the end-to-end delay
is the propagation time of the transport medium [13]. Then there is processing delay
which is much less than delays created by queuing and propagation. Processing delay
includes the time taken for encoding and decoding speech, collecting the voice data
into packets, etc. Buffering delay also adds up to affect the quality of multimedia and
real-time packets. Buffers are used for queuing at routers and to control packet arrival
timé at the decoder, and data waits in the buffer for processing and propagation.

e Jitter is the variation in delay over time from point-to-point. If the delay of
transmissions varies too widely in a “Voice over IP’ (VoIP) call, the call quality is
greatly degraded. This is due to different queuing delays experienced by different
packets. The amount of jitter tolerable on the network is affected by the depth of the
jitter buffer on the network equipment in the voice path. The more jitter buffer

available, the more the network can reduce the effects of jitter.

1.3.2 QoS Service Models
The Internet Engineering Task Force (IETF) has proposed many service models and

mechanisms to meet the demand for QoS. Notably among these are the Integrated



Services/RSVP model, the Differentiated Services (DS) model, MPLS, Traffic

Engineering [14] and Constraint Based Routing [15].

1.3.2.1 Integrated Services and RSVP
The Integrated Services model 15 characterized by resource reservation. For real-time
applications, before data are transmitted, the applications must first set up paths and
reserve resources. RSVP is a signaling protocol for setting up paths and reserving
resources.

This model proposes two service classes in addition to Best Effort Service. They
are: 1) Guaranteed Service [16] for applications requiring fixed delay bound; and 2)
Controlled Load Service [17] for applications requiring reliable and enhanced best effort
service. The routers, to be able to reserve resources for providing special QoS for specific
user packet streams or flows, require flow-specific state in them. Because of the end-to-
end resource and per-flow state reservation requirements the internetwide deployment of

IntServ-RSVP is not feasible.

1.3.2.2 Differentiated Services

The primary goal of Differentiated Services (DiffServ) is to provide the benefits of QoS
without the scalability limitations of IntServ. Rather than attempting to deal with QoS on
a per-flow basis, the DiffServ model aggregates traffic with similar QoS requirements
into classes of traffic. DiffServ eliminates two key weaknesses of the IntServ model - the
setup and the maintenance of per-flow state information. In the DiffServ architecture,
intelligence is migrated to the edge of the domain in order to keep the core of the network
simple and scalable. Routers in a DiffServ domain are divided into two categories, core

routers (simple and high speed) and edge routers (stateful and intelligent).
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_______
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*Simple RED for BE

Fig 1.2 Two Adjacent DiffServ Networks

When a packet enters the network, it must first pass through an edge router. The
edge router is responsible for policing and shaping all packets that pass onto the DiffServ
network. Alternatively, the edge router may re-mark or drop a packet in the event that the
flow or source has violated its respective Service Level Agreement (SLA). Once a packet
enters the network, the packet is scheduled for transmission on the link according to the
marking (DSCP - DiffServ Code Point) [4, 5] of the packet. In order to allow for gradual
deployment, the DS (DiffServ) field is simply a semantic change to the original ToS field
of IPv4 and the Flow ID field of IPv6, thus allowing DiffServ to operate without major
changes to the Internet framework. The DS field is made up of six bits with the remaining

two bits left over for protocols such as Expedited Congestion Notification (ECN [18]).

ToS

Fig 1.3 1Pv4 Header and DSCP in Type of Service field



Core routers do not have per-flow state information and differentiate packets
according to the marking of the packet. In contrast, edge routers are stateful entities that
are responsible for policing and/or marking all packets according to an SLA between the
source (other ISP, user, and company) and the domain, or between two domains. The
DSCP of the packet defines the PHB or Per-Hop Behavior [4, 5] that should be applied to
the packet for scheduling. The PHB defines how the packet will be scheduled as well as
dealt with during congestion. In addition, certain PHBs may be rate-limited as well (such
as Expedited Forwarding (EF) [19]) to prevent link starvation of lower classes by high
priority traffic. Each core node in the network is independent and the underlying
scheduling mechanism is left up to the manufacturer.

The IETF defined PHBs include an EF PHB for low-loss, low-delay traffic such
as VoIP, Assured Forwarding (AF) PHB [20] which defines only the congestion priority
of the traffic (low, medium, high). In addition, several other PHBs have also been

proposed as IETF drafts [21, 22, 23].

1.3.2.3 Multi-Protocol Label Switching
Multi-Protocol Label Switching (MPLS) is a forwarding scheme where packets are
assigned labels at the ingress of a MPLS-capable domain. Subsequent classification,
forwarding, and services for the packets are based on the labels. Traffic Engineering is
the process of arranging how traffic flows through the network. Constraint Based Routing
is to find routes that are subject to some constraints such as bandwidth or delay
requirement.

MPLS is the latest step in the evolution of multilayer switching in the Internet. It

is an IETF standards-based approach built on the efforts of the various proprietary

10



multilayer switching solutions. MPLS uses the control-driven model to initiate the
assignment and distribution of label bindings for the establishment of label-switched
paths (LSPs) [9]. LSPs are simplex in nature (traffic flows in one direction from the head-
end toward the tail-end); duplex traffic requires two LSPs, one LSP to carry traffic in
each direction. An LSP is created by concatenating one or more label switched hops,
allowing a packet to be forwarded from one label-switching router (LSR) [9] to another
LSR across the MPLS domain. An LSR is a router that supports MPLS-based
forwarding.

The MPLS control component centers around IP functionality, which is similar to
proprietary multilayer switching solutions. However, MPLS defines new standard-based
IP signaling and label distribution protocols, as well as extensions to existing protocols,
to support multi-vendor interoperability. MPLS does not implement any of the ATM
Forum signaling or routing protocols so the complexity of coordinating two different
protocol architectures is eliminated. In this way, MPLS brings significant benefits to a

packet-oriented Internet.

1.4 Problem Motivation

The important problem regarding the Internet today is, to provide the multi-level services
to meet the user needs while keeping such implementations scalable to the billions of
users present on the Internet. Two of the emerging technologies for the solution to this
problem are DiffServ and multicasting. DiffServ proposes a model for QoS while
multicasting proposes a model for group applications. Moreover the multicast states in
the routers are dependent on the number of active (source, group). A potential solution to

this problem is making the multicast states independent of the number of (source, group).
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Also supporting heterogeneous QoS to meet group members’ different requirements also
has to be addressed. The issues surrounding integration of DiffServ and providing

heterogeneous QoS are the motivations of this thesis.

1.5  Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 outlines the problems of
DiffServ multicast, the general approaches of QoS multicast, the background and related
work and an overview of the proposed EdgeCast solution. Chapter 3 gives a complete
architecture of EdgeCast including a new join/leave protocol description. It also discusses
several considerations about EdgeCast implementation. Chapter 4 provides the theoretical
analysis of EdgeCast and the simulation results showing the performance analysis. It also
provides comparative analysis of EdgeCast with some other related approaches. Finally,
Chapter 5 concludes the thesis by summarizing the architecture, addressing other

applicable issues, and discussing future research directions.

1.6 Summary

This chapter introduced multicasting and QoS based Internet — the components and
parameters of multicast and QoS. Brief description of multicast techniques, QoS models
like DiffServ, IntServ-RSVP, and MPLS has also been provided. The problem motivation
section introduced the motivation behind the thesis work. The complete thesis

organization has also been described to outline the contents of the subsequent chapters.

12



Chapter 2

DIFFSERV MULTICAST PROBLEMS AND
RELATED WORK

2.1 Introduction

Although multicasting 1s a good way of conserving bandwidth while transmitting data to
multiple receivers, it still has its additional complexities that may need to be addressed.
The successful deployment of multicasting on WANSs requires that these issues be
resolved. Moreover, deployment of multicast in a DiffServ network requires some other
special issues to be resolved — state scalability, simple core, resource utilization and
reservation, and heterogeneous QoS support. This chapter describes the primary conflicts
between DiffServ and multicasting. Before that some fundamental issues regarding
multicasting is outlined so that the DiffServ multicast problems can be explained in the
light of those issues. The overview of existing solutions as well as the proposed solutions
are categorized and examined.

Rest of this chapter is organized as follows. Section 2.2 outlines some important
multicasting issues that need to be considered for implementation. Section 2.3 defines the
conflicts between DiffServ and multicasting in the light of the previous section. Next,
Section 2.4 introduces the three general classes of solutions to the DiffServ multicasting
problem. Then, Section 2.5 presents existing solutions for the DiffServ multicasting
problem and discusses the strengths and weaknesses of each approach. Following that,
Section 2.6 describes a brief overview of the solution proposed in this thesis and its major

properties and uniqueness.
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2.2 Fundamental Issues in Multicasting

There are some fundamental issues [24] related to successful multicast operations which
need to be considered prior to multicast implementation. As we know, receivers join a
multicast group to receive data and when they are not interested in that group’s data, they
leave the group. So there should be a proper method of group management involved.
Since multicast involves replication of packets, the efficient utilization of network
resources 1s also of great importance. Another problem is managing multicast state

scalability. All these issues are discussed below in brief.

2.2.1 Joining and Leaving a Group

Receiving multicast data requires that the interested receivers join a multicast group. The
major aspect of multicasting is that the receivers who have expressed interest in receiving
data — in other words, joined a multicast group will only receive data from the source of
that group. When there is no need of receiving data from that group, it is required to leave
that particular group.

It is difficult to have the complete knowledge about the active or available
multicast sessions on an internetwork. Multicast Backbone (MBone) [25] developers
experimented with applications that list multicast groups like a TV guide publication.
New multicast sessions can also be announced using mailing lists, web pages or email in
a secured environment. Receiver anonymity is an interesting point in multicast, that the
sender does not have knowledge about the addresses of the receivers that have joined the
host group. Senders only know the group address where the data needs to be sent. This
host group member anonymity can sometimes lead to problems such as data delivery on

the tree even when there is no receiver to receive [25].
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Management of groups also gets complicated because of the fact that multicast
group membership should be dynamic — group members should be able to join/leave the
group in arbitrary fashion during the session. Although from the users’ point of view this
seems very much convenient, it naturally causes problems in tracking active members.
Concerning the management of group membership of the receivers they serve, the routers
bear the responsibility of updating each other. Traffic generated solely for managing
group membership may not be large; the delays associated with leaving a host group can
lead to wasted bandwidth [24]. Thus the dynamic nature of group membership can have a

negative effect on network bandwidth.

2.2.2 Efficient Transmission of Multicast Traffic

Multicast involves packet replication and the degree of replication depends on the tree
structure or how dense/sparse the group members are situated. Data transmission with the
efficient use of network resources is therefore a very important aspect of multicast
transmission. An important property of a good protocol design is the accommodation of
efficient resource usage [12]. For unicast protocol this property can be accommodated
fairly with ease. On the other hand, for muiticasting, it is rather difficult to decide which
resources should be optimized and trade-offs are required. Rather than along arbitrary
paths multicast routing trees carry traffic to the designated receivers to minimize
transmission costs through link sharing. For real-time multimedia applications there are
some other additional factors such as data loss constraint, delay constraint and media
heterogeneity [24].

The issues related to the integration and interaction of routing and resource

reservation further complicates matters. When we think about QoS support, the success in
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building a multicast tree depends on having adequate resources at each router. Even for a
static network this guaranteed resource reservation is not easy. Moreover when the
network becomes dynamic (joining, leaving, changing groups) this issue becomes even

more problematic since the involved network resources change as multicast tree changes.

2.2.3 Time-Sensitive Delivery of Multicast Traffic

The issues regarding QoS sensitive multicast transport rise as the use of real-time
multimedia data rises. Naturally, it poses some special restrictions on the transmission
capabilities of packet-switched networks like the Internet. Situations like simultaneous
data delivery to multiple recipients are also in greater demand. Time sensitive data, such
as stock quotes and other financial data need to be delivered to all recipients at the same
time, or at least within a narrow window of time. The video and audio data require a
different type of time sensitivity related to the temporal sequencing [24]. Only the
maintenance of data sequencing during delivery is not enough; the synchronization issues
between different, but related, data streams also need to be addressed. Even if a resource
reservation protocol like RSVP is used to maintain a path with guaranteed quality of
service, it 1s still likely that different paths will be chosen for audio and video streams,

since the audio stream can tolerate a lower QoS than video stream [12].

2.2.4 Guaranteed Arrival of Multicast Traffic

Guaranteed delivery of data to a series of receivers is as important as the time constraint
delivery. It is known that IP is a best-effort protocol and hence IP multicasting also
becomes a best-effort service by default. This means that IP multicasting is unreliable by
defauilt. To ensure QoS, this means that a reliable protocol has to be utilized with IP

multicasting in order to accommodate applications such as financial transactions or file
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transfers, where any loss of data is unacceptable [24]. There are many proposals for
reliable multicast protocols currently under consideration by IETF, and some of these
have already been used in commercial products, so routine reliable multicasting is merely

a matter of time [12}.

2.2.5 Scalability
Problem of scalability related to multipoint communication in the Internet is another
major issue of concern. Lots of research activities are focused to eliminate or at least
minimize this problem. The scalability problem related to multicast protocols arises from
the use of groups or <source, group> tuple. Unlike broadcasting, multicasting delivers
d‘ata selectively to a number of interested receivers and therefore, entire subnets might not
have any receivers. It 1s the responsibility of the protocols to be able to construct the
proper distribution topology and keep it updated. Considering the huge Internet topology
and its increase day by day, the density of host group members distributed over the inter-
network may vary widely from the topologically dense groups to very sparse groupings.
Therefore, it is not a simple matter to keep the network infrastructure up to date [24].
Moreover, as the number of active multicast groups grows, the routers must store
more information about the involved groups in the multicast network. This additional
stored information consumes more resources and may have profound effect on the routers
performing other network duties, such as unicast routing, QoS reservations and so on
[23]. The multicast trees that are constructed by the most common routing protocols tend
to be as close as possible to the tree of shortest-path routes. As the network dynamics
changes, so does the shape of a distribution tree. Moreover, the distribution trees can be

global and hence they can be subject to a high frequency of control traffic [24].
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2.3 Differentiated Services Multicast Problems

Achieving scalability is the primary conflict between DiffServ and multicasting. Whereas
DiffServ relies on only edge routers possessing intelligence and state information,
multicasting relies on per-group state information throughout the entire network. Thus,
when trying to integrate the two technologies, one is faced with two conflicting
principles, core statelessness or simple core for scalability versus per-group state

information for efficiency.

s Mo rwork Demands
wavmms Vfoore's Law

Fig2.1  Network speed vs. bandwidth demands [26]

The research community is still divided on whether state information (storage and
router complexity) or maximal network efficiency (bandwidth) is more important than
the other [27]. Never-the-less, it is still arguable that, if bandwidth capacity can be
increased, the state storage capacity can also be increased. This argument leads to some
other basic issues to be considered. First, the growths of bandwidth capacity and demand
are far outpacing the improvements in CPU performance (see Fig 2.1). This means, per-
packet processing better kept to minimum which is extremely difficult with per-group
state (also with per-flow state). Second, the bandwidth increase compounds the fact that it
is the maintenance of state information (router complexity) and not necessarily storage
that is the problem [27]. This exacerbates the problem that increased bandwidth may lead
to additional multicast packets and hence, the amount of per-group or per-(source, group)

state information/group dynamics would increase as well.
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It is to be noted that, the problem of scalability in multicasting is not necessarily

unique to DiffServ. It is more important in DiffServ scenario is because of the

fundamental principle of simplified core operation in DiffServ. The primary conflicts

between DiffServ and multicasting [27] are summarized below:

Per-(source, group) state scalability: The per-(source, group) state information of
multicasting is not scalable to the rather simple DiftServ core. Thus, any solutions for
DiffServ multicasting must address this fundamental issue.

Sender versus Receiver-driven QoS: Since ingress router marks packets in a DiffServ
network, the QoS provided is sender-driven. But multicasting is more a receiver-
driven service since the group members join the group for data reception. Hence QoS
request also comes from the receivers. As a result, appropriate mechanisms must be
developed that bridge the gap between the sender-driven QoS of DiffServ and the
receiver-driven QoS of multicasting.

Management of Resource Utilization: In multicast service, unlike unicast, a packet
may replicate into one or more copies in the network. Moreover the ingress node
(entrance to the DiffServ domain) may not necessarily know the exact makeup of the
multicast tree and the total QoS supporting capability of the network. Thus,
appropriate signaling or management mechanisms must be introduced in order to

manage the resource impact of multicasting on the network.

2.3.1 Per-(Source, Group) State Scalability

It is evident that the primary conflict between DiffServ and multicasting lies in the per-

(source, group) state information required for multicasting. For each active multicast

(source, group) across the domain, each router must maintain as well as manage the state
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information (group states, interfaces, timers etc.). When a large number of sources and
groups are concurrently active in the network the maintenance of the required
information leads the scalability problem.

In Source Specific Multicast (SSM) [28] the tuple (source, group) is used for
group membership. Here the group identifier is expanded from the traditional IP
multicast (Anycast) of only the group address (*, group). Let us consider an example
where an individual web server employs SSM. Obviously this results in the multicast
group address space expands significantly. We also consider the web server is set up to
place each web object as an individual group. At first this may seem “far-fetched”, such a
scheme is not impossible to envision [27]. Let us also consider thousands of or all of the
web servers on the Internet employed such a scheme. In such a case the traditional
multicast imposes the problem of supporting and maintaining state information for
millions of multicast groups [27]. The cost of such a huge storage and maintenance
support in the core routers of the Internet would be huge. Thus, it is logical to think of
some approach for DiffServ where the multicast states would be independent of (source,
group) rather would depend on network topology (network edge to be precise). Such
thinking provides the motivation of the work in this thesis and is addressed in detail in

Chapter 3.

2.3.2 Sender versus Receiver-Driven QoS

Another conflict between DiffServ and multicasting arises from the nature of how the
QoS is selected [24, 27]. Since the ingress router performs the traffic conditioning,
marking and policing, QoS in DiffServ is provided through a sender-driven manner. But

as we think of multicast, QoS is more receiver-driven since receiver asks for data from a
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specific group with a desired QoS. As only the receiver knows its own QoS requirements,
the receiver is the only entity that can drive the appropriate QoS [27]. Hence, in DiffServ
multicast, there exists a conflict in how QoS is driven.

If the sender-driven QoS is considered, then the receivers do not have much
choice — either all of them subscribe to the same delivered QoS level for receiving data
from a group or none of them join the group at all. This scheme may be the simplest but
1s completely incompatible with the future requirements and there is no flexibility at all.
The other choice can be allocating individual QoS level requested by the receivers to the
separate groups. This kind of scheme meets the QoS levels for the receivers but the
bandwidth costs of each additional tree for the additional QoS levels will be well beyond
the optimum level [27].

The most promising solution is to provide QoS in dynamic fashion where QoS
level of the packet will change on the fly for supporting heterogeneous multicast
receivers without requiring separate trees for each QoS level [22, 23, 27]. The unique

aspect of this scheme is investigated in more detail in Chapter 3.

2.3.3 Management of Resource Utilization

Resource utilization is another aspect of conflict between DiffServ and multicasting. As
mentioned earlier, such conflict is not unique with DiffServ multicast (traditional QoS
sensitive IP multicasting also requires the resource management), it introduces several
unique problems when multicasting is considered in DiffServ domain. In short, the
conflict regarding resource management can be reduced to the problem of packet
replication [29]. In unicast, one packet that goes in a router also comes out as a single

packet. But in multicast, the packet that goes inside a router may be replicated in multiple
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copies. Hence, the resource consumption may multiply based on the degree of
replication. The cost may vary between the cost of separate unicasts across the domain
and the cost of a single unicast (no branching in the multicast tree) [30, 31]. The
condition to allocate network resources efficiently is to properly quantify the resource
utilization of a multicast group on the DiffServ domain and shape/police multicast
packets at the ingress routers accordingly [27]. Although several architectures have
studied the allocation of such resources for single sourced groups [32, 33, 34], the
introduction of an architecture for both provisioning and policing of multiple sourced
groups has yet to appear [27].

If the resource utilization for multicast traffic can not be quantified properly then
a unique problem called Neglected Reservation Subtree (NRS) [22, 23] problem may
occur. NRS problem can occur if member join messages are not approved for resource
allocation before data is transmitted on the branch. The problem finds its basis in the
distributed nature of the multicast tree and the separation of multicast routing/replication
from the ingress-based policing/allocation of DiffServ [27]. While conditioning and
policing, the edge router has no idea what is the shape of the tree and what is the degree
of replication inside the core. Hence the edge cannot determine the resource requirements
to deliver data through the tree. As a result, all the network resources along the path, for a
new join request, must appropriately reserve resources for the new branch. This
requirement incurs extra storage and processing overhead in the core routers which is not

desirable from the DiffServ perspective.
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2.4 Overview of DiffServ Multicast Approaches

In order to offer support for DiffServ multicasting, the solutions can be divided into three
main classes, state-based [22], edge-based [27], and encapsulation-based [27]. The
approaches are summarized in Table 2.1 and discussed in more detail later.

Table 2.1 Summary of DiffServ multicast approaches [27]

Type Replication Replication Information Strength (+)
Allowed Weakness (-)
State-base Everywhere | Per-group state in routing table + Most efficient B/W usage
- Scalability
- State in DS core
Edge-based Edge routers | None + Simple
Tunneling + Meets DS requirements
- Dense groups
Encapsulation-based | Everywhere | Included in packet header + Scalable
+ Meets DS requirements
- Processing cost
- Per-packet overhead

2.4.1 State-Based Approach
The per-(source, group) information for each of the multicast (source, group)s is
maintained in the routers of the DS domain. When a new receiver wishes to join or leave
a multicast group, the core and edge routers in the path (of join or leave message)
propagate and update their state information for the specific group. For a join request, the
processing for resource reservation is handled at each router until the request reaches the
appropriate point in the multicast tree. This approach is the equivalent of simply applying
the traditional IP multicast model without distinction to the edge or core routers of the
DiffServ domain.

Although very straightforward, this approach contradicts the fundamental concept
of simple core routers in the DiffServ architecture. And definitely it has scalability
problems because of the complexity of per-(source; group) state maintenance at all core

routers. In addition, it also pushes the complexity of multicast protocols onto the core
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(control messages, resource reservation), thus violating the concept of simple core
routers. This approach is viable only if the number of unique multicast group stays

extremely small such as currently seen today [27].

2.4.2 [Edge-Based Approach

There is another approach that restricts the location of multicast capable routers within
the DiffServ domain. It does not allow all routers to perform packet replication and only
the edge routers are allowed to be multicast capable and replicate packets as necessary.
This approach is simple from the implementation point of view and is highly scalable but
incurs performance degradation in terms of bandwidth consumption versus the state-
based approach [27]. Other than simplicity, it is suitable for sparse groups where
replication of packets at the core routers is less likely to occur compared to that of the
dense groups. It is clear that this kind of solution keeps core routers entirely multicast
unaware, thus requiring zero support for multicasting (replication or control messages).
There 1s no additional implementation necessary in the core routers and the per-group

statelessness of the edge-based approach complies with the DiffServ architecture.

2.4.3 Encapsulation-Based Approach

The next approach is very much different than the previous two - embed the multicast
information within the packet itself. In this approach, the tree for the domain is
encapsulated within the multicast packet as an extra header. The complete replication
information is embedded inside the packet and it does not require per-group state
information to be stored in the core. This fits extremely well within the DiffServ
architecture. However, encapsulation does introduce several additional costs and

overheads. It consumes additional bandwidth for each packet in the form of encoding the
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multicast tree and thus incurs the scalability concern with the group size. This scalability
problem is reduced by encoding only the tree for the domain, not the entire end-to-end
multicast tree [27]. The second factor of concern 1s the additional CPU cost incurred due

to header processing that may be alleviated to a great extent through hardware support.

2.5 Existing Solutions and Related Work

Differentiated Services architecture has been proposed principally with unicast in mind
that works on a ‘push-model’ or is ‘sender-driven’. But multicast service is more a
‘receiver-driven’ or ‘pull-model service’. Primarily, the DiffServ in multicast scenario
was very much unexplored and all the attention was to the unicast paradigm. Recently
there has been some work in this area of DiffServ multicast, which can be found in the

references [22, 23, 27, 35-43].

In [22] the issue of DiffServ multicast is addressed that propose a solution to NRS
problem through explicit Bandwidth Broker signaling. However, it did not address the
issue of per-group state in the core. In an extended work [23] proposed to extend
multicast routing table to include DSCP, so that branched traffic from this point
downwards gets treatment according to the DSCP value in the multicast routing table

(MRT).

DSMCast [27] approach gets rid of any multicast states in core by ‘Header
Encapsulation’ in each packet. It also assumes the Ingress router has complete network
and multicast tree knowledge. The complete tree including the required QoS at every
downstream node is encapsulated in each packet by Ingress. As the multicast network
grows header length also grows and the highly dynamic nature of multicast receivers

clearly causes a problem for Ingress to change the ‘bulky’ DSMCast header information.
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In [35] a DiffServ-Aware Multicast (DAM) scheme is proposed which includes
three features: Weighted Traffic Conditioning (WTC), Receiver Initiated Marking (RIM)
and Heterogeneous DSCP Headers Encapsulation (HDHE). WTC ‘counts’ the admitted
multicast traffic as multiple unicast traffic while conditioning the traffic aggregate at the
edge routers. RIM takes care of Heterogeneous QoS requirements and HDHE provides a
means to ensure the fairness among the multicast and non-multicast flows. We see that
DAM is clearly a sender-driven approach more than a receiver-driven approach. Another
problem identified is that the network edge must have the complete network and
multicast traffic branching knowledge. Otherwise neither the WTC table can be created
nor can the HDHE be performed. Moreover HDHE scheme will suffer from same

negative effect of extra header burden and corresponding more bandwidth consumption

as in DSMCast.

In [36] another DSM approach is described known as M-DS (Multicast DS). It
operates on two inter operable limited branching techniques: Edge Router Branching and
Limited Core Branching, as appropriate within each DS domain. Edge Router Branching
disallows multicast branching points in the core of any domain and moves all the
complexities to the edge of the domain — which is very much conforming to DS
architecture. Whereas Limited Core Branching allows a limited number of core routers to
act as branching points. Here we find that the core routers have to take part in the
signaling activity in Edge Router Branching technique when an on-tree core determines
that it is the branching point and communicate that information to BB. Considering the
DiffServ proposal in [4] the cores should be free from any kind of control functions. In

case of Limited Core Branching the BB searches for special core routers as branching
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points whose functionalities will be enhanced to be similar to that of Ingress router. This
leaves the network core routers to be able to switch to enhanced as Ingress any time
needed, since any core can be found to be potential branching point which again makes
the core routers complex.

G. Bianchi et al, in [37] describes another novel approach of DSM with QoS
consideration called QUASIMODO. It works based on Gauge and Gate Reservation with
Independent Probing (GRIP) [37, 38]. The resource availability along a new QoS path is
verified via the probe based approach GRIP and then QoS is maintained by marking
replicated packets with a special DSCP value before forwarding them on the QoS path.
QUASIMODO provides Heterogeneous QoS solutions as inherited from the proposals in
[22, 23]. It also differentiates the core routers to be multicast and non-multicast routers
based on branching and non-branching points. Only the branching or multicast routers
keep MRTs. This approach is built on top of the existing multicast routing protocol (PIM)
and allows support for both BE and QoS users as well as upgrading a BE user to a QOS
one. Multicast replication and packet forwarding is provided by the PIM protocol
operation and stored in MRTs in the multicast routers.

RIMQoS [39] is a receiver-initiated multicast protocol with multiple QoS
constraints. It is a source-tree based approach assuming the availability of link-state
information and QoS unicast routing protocol. RIMQoS is intended for multicast
applications with a single source. It delegates most computing complexities to the
receiver node (i.e., router). The receiver router does the route computation and other

nodes usually only do some simple message processing. It can also support
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heterogeneous multicast. The join complexity and related computation on demand

depends on the underlying unicast protocol.

In [40] another DiffServ multicast approach called QMD is described where the
control and data plane functions are separated. The edge routers do the control plane
functions and only a set of on-tree routers (key nodes) maintain multicast routing states
and forward multicast data. Here also QMD assumes that the edge routers have the
knowledge of domain topology which is not a very favorable assumption in the highly
dynamic multicast network especially when the network is large enough. QMD is also
sender-driven in the way that the QoS path from the source to destination is computed by
the Ingress using a modified Dijkstra algorithm QMD-DIJKSTRA. It also does not
specify how an edge router will get the IP address of the other end Ingress router. There
are other QoS based multicast routing protocols like [41, 42] but all of them are based on
per-flow reservation. All the on-tree routers have to maintain the resource reservation
states of multicast groups that make the protocols impractical to be deployed in DS
domains.

The literatures in [44 - 48] discuss about the problems and solutions to multicast
state scalability and state reduction. In [44] a scheme called Dynamic Tunnel Multicast
(DTM) is proposed to eliminate the unnecessary multicast forwarding states. Based on
the observation that, when the members of a group are sparsely located, the distribution
tree of the group is likely to contain long, un-branched paths — DTM utilizes dynamically
established tunnels on un-branched links of the multicast distribution tree. After dynamic
tunnels are established, usually only the root node, branching nodes and leave nodes of

the original multicast distribution tree need to maintain state information about the group.
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The un-branched nodes are bypassed by the tunnel and do not have to know about the
group since the packets sent to the group are forwarded in a unicast fashion between
tunnel end points.

In [45] the authors have presented a technique that can be used to aggregate
multicast forwarding states. They have considered only perfect forwarding state
aggregation; that is aggregation that does not change the distribution of multicast traffic.
An interface-centric data structure model has been presented which allows aggregation of
ranges of multicast addresses in the forwarding table and aggregation can be performed
independent of the number of interfaces on a router. Depending on the future high end
router/switch architectures with parallel processors the authors assume each interface be
associated with its own copy of an input filter and an output filter where each filter yields
a pass-or-fail answer for a given (source, group). When a packet arrives on an interface it
must first pass the input filter. If it passes then the output filter of every other interface is

-independently checked to verify whether the packet should be sent through that interface.
Results yield that aggregatability is significantly higher for clustered receivers. It is
greatest on the interfaces which are busiest and hence neéd it the most.

Aggregated Source Specific Multicast (ASSM) is discussed in [46, 47] for both
the legacy network and the DiffServ supported MPLS network. ASSM is targeted to
intra-domain multicast provisioning. The key idea is that, instead of constructing a tree
for each individual multicast session in the core network (backbone), multiple multicast
sessions are forced to share a single aggregated tree. Using this concept of aggregated
multicast, [47] proposes Aggregated QoS Multicast (AQoSM) that can support QoS

multicast scalably and efficiently in DiffServ supported MPLS networks. Data packets
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from different groups are multiplexed on the same distribution tree, called aggregated
tree and each data packet of each group is encapsulated and travels on the aggregated
tree.

The NARADA protocol [48] is a system designed for video distribution. It uses
the idea of a mesh to densely connect the videoconference participants. Simultaneously,
and algorithm similar to the DVMRP is run and source rooted shortest path (reverse)
trees are constructed using the links established in the mesh. Here the end systems
implement all multicast related functionality including membership management and
packet replication. Here, an end system participating in the multicast group
communicates via an overlay structure. It maintains the stateless nature of the network by
requiring end systems, which subscribe only to a small number of groups, to perform
additional complex processing to any group.

The work in [48] proposes an edge-node multicast overlay to create a tree capable
of performing point to multipoint distribution of real-time video with a hard upper bound
on end to end delay. The tree source node will iterate through the possible tree topologies
and choose the configuration with the highest score where the score is based on the
latency and bandwidth of each configuration. By moving the tree configuration,
replication and network monitoring to the edge routers instead of end systems, the trees
can be constructed using the knowledge of overlay link bandwidths and latencies. All tree

construction and content distribution is done without the use of native IP multicast.

2.6 Proposed Solution
Although the existing solutions address different aspects of the conflicts between

DiffServ and multicasting, none of them address anything that can make the DiffServ
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multicasting independent of active multicast (source, group). In the next chapter, this
thesis proposes an architecture that addresses the problems of DiffServ and multicasting
by making the multicast operation based on topology rather than (source, group) states.
Chapters 3 and 4 describe the architecture and provide comparative analysis by
simulation.

The architecture, EdgeCast (Edge Based Multicast), proposes a hybrid solution
that combines the header encapsulation and internal router states. The egress edge router
information that is included in the multicast distribution tree is added as an extension
header at the ingress (entrance) to the DiffServ domain. The header - Edge Encapsulation
Header (EEH), allows the ingress router to explicitly specify the egress routers that the
packets must take to reach the group destinations. A heterogeneous QoS extension allows
EdgeCast to use a single tree while still meeting the heterogeneous QoS needs of the
egress points in the multicast tree.

The primary strength of this architecture is that it addresses all the conflicts of
DiffServ multicast with performance close to that of the state-based approach. However,
the key weakness of the approach is that it does introduce additional overhead as well as

requiring additional hardware for processing the EdgeCast extension header.

2.7 Summary

This chapter introduced some key aspects of DiffServ multicast. Also an overview of
general multicast issues has been provided to identify the DiffServ multicast problems
with greater clarity. In the light of the multicast issues the problems of DiffServ multicast
have been described. An overview of the methods of providing DiffServ multicast has

been given from the general perspective. Later, a brief discussion regarding the related
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DiffServ multicast approaches and their pros and cons have been provided. A hybrid
approach to DiffServ multicast — EdgeCast, has been introduced as a potential solution to

multicast problem in DiffServ domain.
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Chapter 3

EDGECAST: A HYBRID APPROACH TO
DIFFERENTIATED SERVICES MULTICAST

3.1 Introduction

In this chapter, an approach for DiffServ multicasting, EdgeCast, is proposed which is a
combination of state-based and encapsulation-based approaches. The primary goal of
EdgeCast is to address the issue of per-(source, group) state information in the core. By
utilizing the per-edge (egress) state information instead of per-(source, group) state
information in the core, the routers’ state scalability problem is made independent of the
number of active (source, group). Instead, the number of states is made dependent on
active egress edge points. Moreover, the list of egresses is added to the packets passing
through the ingress as an extra header that is used to make replication and forwarding
decisions. This encapsulated header has also the provision of providing heterogeneous
QoS to the multicast group members. Each of these issues is discussed in this chapter |
along with the basic mechanics of group dynamics (member join/leave).

The rest of this chapter is organized as follows. The section 3.2, describes the
fundamental case for a hybrid approach versus the existing solutions. Next, Section 3.3
outlines the components of EdgeCast architecture and details the required modifications
and extensions to the current multicast components. The description of how multicast
transport service is delivered including details of member join/leave is provided. Finally,

Section 3.4 summarizes the entire EdgeCast architecture and its components.
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3.2 A Case for Hybrid Approach

Unlike the traditional (source, group) based approach of IP multicast, the hybrid
approach can solve the state scalability problem by making the multicast states
independent of active (source, group). This approach is hybrid because it works on
utilizing both the multicast states and an extra encapsulated packet header. The
encapsulated header carries the list of egresses involved in the transport of the multicast
packets. The packets are replicated and forwarded not based on (source, group) states,
rather based on egress edge states. Although this hybrid approach does incur some
performance penalties, it solves some severe problems of DiffServ multicast. The

benefits of this approach can be summarized as follows:

No (source, group) states: The hybrid approach gets rid of state maintenance based on

(source, group) and allows measure of worst case scalability scenario based on

domain topology.

e Hardware support. The additional processing related to the hybrid EdgeCast can be
reduced to substantial level through the addition of hardware support.

e Resource management: A central entity like BB is able to easily monitor the resources
being consumed by the multicast tree with the aid of the edge routers

e Heterogeneous QoS support. Rather than requiring separate trees for each level of
QoS, encapsulation can allow the PHB (Per-Hop Behavior) to change as the multicast
packet crosses the domain to support heterogeneous QoS in a single multicast tree.

o Deployment: EdgeCast deals with domainwide deployment and instead of requiring

end-to-end support; the transport nature of this hybrid approach reduces the scope of
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the deployment problem to a domainwide problem whose operation is transparent to
the external Internet.
However, there are also several weaknesses to the approach which must also be -
considered as well.

e Overhead: The addition of encapsulated header to the packets incurs extra overhead
in bandwidth and proéessing.

o Increased search cycles: The header needs to be searched and matched to the
Multicast Forwarding Cache (MFC) multiple times for making the replication and
forwarding decisions.

o FEdge Scalability: Edge routers must maintain per-(source, group) state information.
Moreover, the ingress router also has to maintain an extra table for holding egress list
per source. Although these routers are better suited for such information, this is a non-

trivial problem which is inherent to multicasting.

3.3 EdgeCast — The DiffServ Multicast Approach

The primary goal of the EdgeCast architecture is to address the problem of state
scalability. It also solves the problems of heterogeneous QoS support. Although the
hybrid approach can address all these issues, the use of encapsulation and replacing
(source, group) core state with egress states introduce several challenges that must be
addressed. To start, the first challenge is to develop an efficient packet header that
reflects the multicast tree and is optimized for fast hardware processing. Furthermore, a
new domainwide Join/Leave protocol must be designed to support the edge based state
maintenance in the core. Since the general trend in multicast is towards SSM, the

EdgeCast is designed with a view to supporting SSM.
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Hence, it i1s the motivation of this chapter to address these challenges in the
EdgeCast architecture. The architecture can be subdivided into the following components
- the Extended Bandwidth Broker (XBB), the egress edge states in the core,
Encapsulated Edge Header (EEH), Registration and Query, member dynamics, packet
transport, and heterogeneous QoS support. Table 3.1 lists the components and a brief
description of their functions.

Table 3.1 EdgeCast System Components and Their Functions

Components Functions

XBB The XBB takes part in the Registration and Query operations and also it does
the QoS verification. It is a central entity that acts something like a “Domain
Manager”.

Edge States The core routers store the egress edge states and this happens during the join
process.

EEH The EEH is the most important part of EdgeCast and is an extra header that

keeps the required egress entries for the packet multicast.
Registration and Query | Through Registration the XBB gets proper knowledge about the source and
Query ensures that the source is active and the requested QoS can be met.

Member Dynamics Member dynamics deals with the new member join and active members
leaving the group.
Packet Transport Packet transport mechanism describes how the packets are replicated and
forwarded based on the EEH information in the packet.
Heterogeneous QoS This provides the mechanism to support heterogeneous requirements of
Support different members of a group
A_XBB [T qUERY
e AN

EC_LEAVE

LEAVE
Fig 3.1 EdgeCast System Model

Fig 3.1 shows a schematic of an EdgeCast system model. It consists of a single
source (S), an ingress edge router (I), two egress edge routers (Ex), three core routers

(Cx), four receivers (Rx) and an XBB. A multicast source first registers itself to the XBB
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through the registration process. Because of the registration XBB has complete
knowledge about the group’s source. A receiver willing to join group G (source S) first
sends a join request (JOIN). Based on the receiver’s request, the egress initiates query
operation (QUERY_REQ) and communicates with the XBB. If the source is active and
QoS can be guaranteed the egress gets positive acknowledgement (QUERY_ACK) about
the query. This initiates the propagation of EdgeCast specific join (EC_JOIN) message
towards the source. This EC_JOIN message creates proper egress states in the core
routers. The data from source first enters the ingress (I). It performs the EEH construction
and traffic conditioning, policing and marking. All the passing packets get their proper
EEHs inserted by the ingress. When a packet reaches the core, its EEH is checked for the
entries in the core MFCs. Based on this lookup the replication decision is made and
packets are forwarded through the proper next hop interfaces. This is how the packets are
multicast through the core. When a packet reaches the egress the first thing done is to
remove the EEH header from the packet. Then it is forwarded to the proper receivers
based on its (source, group) information.

We provide the details of each individual component in the next few sections.

3.3.1 Extended Bandwidth Broker

DiffServ architecture was proposed to provide QoS to the Internet traffic. To provide
QoS the prior reservation of network resources is a major concern. If required resources
cannot be reserved for a traffic session then QoS cannot be guaranteed. To manage
resource reservation in the DiffServ network the Bandwidth Broker (BB) has been
introduced [50, 51]. BB can be configured with organizational policies, keeps track of the

current allocation of marked traffic, and interprets new requests to mark traffic in light of
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the policies and current ailocation. A BB has a policy database that keeps the information
on who can do what when and a method of using that database to authenticate requesters.

Inter BB Communication

[
»

A

Application Server Interface

Extension to BB User Interface

Registration and

ration o
Database Query rogessing Network Overator Interface

<8, G>

< » Communications with
Edge routers

Fig 3.2 Extended Bandwidth Broker Architecture
with storage and processing unit

In the EdgeCast it is assumed that BB will handle the resource management and
so the core BB functionality is not discussed here. We propose an extension to the BB
architecture and functionality to handle the ‘Registration’ and ‘Query’ operations. Fig 3.2
shows the architecture of proposed Extended Bandwidth Broker (XBB). Here only the
parts inside the dashed rectangle are extended as compared to the BB architecture figured
in [51]. The extension includes the ‘Registration and Query processing unit’ and a data
structure to store the <S, G> information for each set of <S, G> registration. Assuming
there is a single source per group in the domain, there is no need to specify the source in
the join request, only the group and QoS are specified. This database of XBB can readily
supply the address of the source corresponding to the multicast group. Another reason for
source registration is the centralized security. A receiver will receive data only from the
authentic source registered with the XBB so that no malicious source sends data to the

group members. The receiver sends JOIN request to the egress and the egress initiates
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query process with the XBB for the source authentication and QoS verification. The XBB
performs the desired authentication and/or supplies the source address (in case of single

source per group) and QoS admission notification after performing necessary processing.

3.3.2 Egress States in Core Routers

EdgeCast — as the name specifies, utilizes the edge (egress to be more specific) points of
the multicast distribution tree to deliver multicast packets to the group receivers. In SSM
the active (source, group) or (S, G) pair is termed as an individual channel. The network
layer service provided by SSM is a "channel", identified by an SSM destination IP
address (G) and a source IP address (S). An IPv4 address range has been reserved by
Internet Assigned Numbers Authority (IANA) [52] for use by the SSM service. The
channel subscription is supported by version 3 of the IGMP protocol [53] for IPv4. SSM
provides receiver applications with a "channel" abstraction, in which each channel has
exactly one source and any number of receivers. When a receiver subscribes to an (S, G)
channel, it receives data sent only by the source S.

The network layer service provided by EdgeCast is by the egress edge value
corresponding to the end point edge router of the tree. This edge value can be the part of
the original IP address of the edge or an assigned /D value corresponding to an edge. If
ID 1s used then there must be a system to map the unique ID values to the corresponding
edges. And the XBB can be used to centrally manage that /D mapping for a domain. This
thesis assumes the last 16 bits of the IP address is used for edge value. In DiffServ, we
know that the edge routers are classified into ingress and egress, based on the direction of
data flow. All the traffic generated from source must pass through the ingress and to

reach the group destinations the packets must pass through the egress routers.
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To accomplish the multicast data transport based on egress values, it is required to
store the egress entries in the routers that are part of the multicast distribution tree. The
states are stored the same way as the SSM (S, G) states are stored. During join process
the JOIN message carries the associated egress/ID value from egress to the source. This
value 1s compared to the existing entries in the on-tree routers and stored if necessary. A
major difference between the traditional join process (JOIN) and the EdgeCast join
process (EC_JOIN) is that the process does not stop at the branching node (the node
already having the specific (S, G) entry); rather it is transported to the ingress connected
to the multicast source. The necessity of this procedure will be justified later. Although
the very first join corresponding to a particular egress must reach the source.

EdgeCast proposes an extension to the functionality of BB so that the BB is
capable of identifying the correct source associated with the new join to the multicast
(S,G). EdgeCast currently deals with intra-domain situation and the inter-domain case is
out of the scope of this thesis. Towards the source the EC_JOIN message makes egress
entry (if required) in the routers. Thus an egress entry in the router utilizes a single
address space of 16 bits instead of double address space required for SSM (S,G) entry —
64 bits for IPv4 and 256 bits for IPv6. This helps to save total memory required to store
the same number of egress states than (S,G) states in the routers. When an incoming
EC_JOIN message initiates a new egress entry it also stores the outgoing interface (OIF)

corresponding to the join’s incoming interface (IIF) — same as the traditional approach.
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Fig 3.3 A DiffServ multicast network with 4 sources/groups and 8 members

Let us consider the network of Fig 3.3. Here, an ingress is connected to four
sources and each of two egresses is connected to four receivers. Let four sources serve
four individual groups. If four receivers of either egress join four groups, using SSM will
require the first core router after the ingress to store four different entries corresponding
to four individual (source, group) combinations. The other two cores, each will also need
to store four entries since data of four (source, group)s pass through each of them. On the
other way it is also clear that the multicast data basically utilize two egress routers from
the ingress. In that case using EdgeCast will require the first core router to store only two
entries corresponding to the two egresses. And the other two cores, each will use a single
entry of the egress it is connected to. The states also need to be refreshed after some
specific timeout period. But we have not considered this in the thesis and is left as a

matter of future research.

3.3.3 Encapsulated Edge Header

The previous section described the router states that are used to replicate and forward
multicast packets in the domain. But there must be some kind of transport mechanism
that utilizes the states. For SSM, the packets are transported by comparing the (source,

group) address in the IP header to the (S, G) entries in the MFC. Unlike SSM, EdgeCast
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packet forwarding is based on egress edge entries. Within the [P header there is no room
to accommodate the extra egress entries. Hence EdgeCast provides that transport
mechanism by adding an extra header to each of the packets that pass through the ingress.
That special header is the EdgeCast Encapsulated Header (EEH). It carries the list of all
the egress edges associated to the multicast packet distribution tree.

A multicast packet may need to be delivered to 10 different receivers and the they
may be connected to 5 different egress edges. In that case there will be 5 edge entries
associated to the packet. Now the question arises about the location of the EEH. One
choice could be utilizing the IP ‘Options’ field. But IP ‘Options’ are a rare occurrence
[27] and makes the processing slower. Another choice is in between layer 3 and layer 4
headers. This location for header insertion has been suggested in [27] and solves the slow
processing problem related to using ‘Options’. The ingress router looks up the IP header
for the specific multicast group (S, G) and inserts the EEH between the layer 3 (IP) and
layer 4 (UDP, etc.) headers of the packet. This location is chosen as it preserves the
standard IP routing and DiffServ classification. The EEH is only added at the ingress of
the domain and removed at the egress and it carries all the associated egress from the

ingress to the appropriate egresses through the domain.

|P Header EEH Data

TotalEntries E[1] E[2]

16 bits 16 bits

Fig 3.4 EdgeCast Edge Encapsulation Header (EEH)
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The EEH is the sequence of bits that are responsible for routing and replicating
the packet across the core of the DiffServ domain. The makeup of these bits is faced with
two potentially conflicting goals: optimal bandwidth usage versus processing speed.

The EEH consists of two types of fields - the TotalEntries field and the E[i] field.
The fields are a fixed length in order to allow for easier processing by the hardware
mechanism. Fig 3.4 shows the layout of the EdgeCast EEH. The first field, the
TotalEntries field, is a 16 bit field that gives the total number of egress entries present in
the EEH itself. For each different egress involved in the multicast distribution tree, an
entry will be present. The next portion of the EEH is the egress edge information. For
now there is no ‘option’ field present in the EEH configuration. EdgeCast assumes a
space of 16 bits for each egress entry should be enough to handle the total number of
edge entries in a single DiffServ domain. This 16 bit space can support maximum 2'°®
edge/ID values. For now, the information required to support heterogeneous QoS is not
considered.

3.3.4 Registration

The successful operation of EdgeCast also includes ‘Registration’ of the sources. Sources

perform the registration operation with the help of ingress router and the XBB. A node

acting as a multicast source first registers itself as a ‘Source’ to a multicast ‘Group’. The

steps are as follows:

e Source sends a REGISTER_REQ <S,G> message to the ingress router.

o The ingress forwards this request to the XBB and an entry of <S,G> is made in the
XBB database. This process ensures that S is a valid and active multicast source S for

group G.
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e After successful registration process the XBB sends acknowledgement
REGISTER_ACK<S,G> to notify the requesting ingress of its <S,G> registration.

o After receiving REGISTER_ACK<S,G> the ingress will start a timer associated with
the <S,G> pair. We consider this process from ingress to XBB to be a ‘soft process’
to ensure that the <S,G> information is properly updated.

e When the corresponding timer expires, the REGISTER<S,G> message is again sent
to the XBB. What would be the optimum duration of the timer is a matter of future
research and is not considered in this thesis.

e When a source no longer wants to remain a multicast source, it sends a
UNREGISTER<S,G> message to ingress. Ingress notifies XBB of that action and

then both XBB and ingress update their databases.

3.3.5 Query

Receivers perform the ‘Query’ operation with the help of egress router and the XBB.
This makes the coordination much better among different EdgeCast network components
and also helps to maintain multicast security and QoS verification in a centralized
fashion. Query operation is invoked when a receiver sends a request to join a multicast
group. The egress router that receives the join request invokes the Query operation for
this join. Since EdgeCast has been proposed to support QoS, there must be a way to
specify the QoS requests both in the join and the query requests. In other words, the QoS
signaling has to be specified. A look at the current protocols reveals that specifying QoS
by the JOIN message is a non-trivial problem. If we consider PIM then the member join
request is specified by the IGMP Report message. The IGMP Report message can specify

the Source and Group the receiver wishes to join. But there is no way of specifying the
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QoS request in the JOIN message. We propose an extension to the original IGMP Report
message. A look at the Report message format reveals that there is enough ‘reserved’
space in the message which is currently unused and are ignored by the routers. This
‘reserved’ space 1s a good place where the QoS request can be embedded. This QoS
information will be used by the EdgeCast EC_QUERY message as explained later in this
section.

Another way is using RSVP to specify QoS. But RSVP is mainly used with
IntServ. Using IntServ/RSVP is not regarded a good choice for internetwide deployment
because of IntServ per-flow specification. Moreover, end-to-end resource reservation by
RSVP is not feasible enough for ever expanding internet. Rather, the research community
favors keeping IntServ/RSVP as stub domains and DiffServ as the core domain. This
QoS information within RSVP messages will be mapped into the EdgeCast Query
message.

In either of the cases as a choice for join, the egress router performs the required
mapping and transformation by extracting the Source, Group, QoS information from the
original JOIN message. The egress later sends the EC_JOIN message towards the source
including Source, Group, QoS and Egress identity.

The egress then invokes the Query process. The query steps are as follows:

e A receiver willing to join a group with a specific QoS sends a JOIN request with the
source S, group G and QoS Q to the egress.

. The\: egress then starts a timer corresponding to this request and sends a
QUERY_REQ<S,G,Q> message to the XBB for approval. These parameters are the

values extracted from the PIM JOIN request.
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e The XBB then performs the (S,G) entry lookup corresponding to the request.

e If the source is ‘active’ and QoS can be guaranteed then the XBB sends a
QUERY_ACK<S,G,Q> message to the requesting egress notifying the positive
feedback. Otherwise, the XBB sends a QUERY_NACK<S,G,Q> to the egress

notifying the negative feedback about the join request.

e If egress receives a positive feedback then the EC_JOIN message is sent towards the
source S. If negative feedback is received then the egress notifies the receiver of its
inability to make the join for the time being. The EdgeCast join process is described

later in detail.

For SSM kind of join request it may seem redundant to check and verify the
source in the XBB since source address is already known to the receiver. But this query
process takes care of another problem in multicasting — to verify whether the source is
active at that instance. Sometimes it is a problem of multicast that the receiver asks for
joining a source that may not be ‘active’ at that time. Due to the ‘soft’ registration process
the status of the source is always updated to the XBB. So, a positive acknowledgement
from the XBB also confirms that the source is active. For the ASM-like join, this query
process also solves the ‘source anonymity problem’ without the help of other external
protocols.

Fig 3.5 shows the flowcharts of ‘Registration’ and ‘Query’ operations. Also,

Table 3.2 lists the related messages and their parameters for these operations.
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Fig 3.5 (a) Registration and (b) Query Operations Flowchart

Table 3.2 Registration and Query Messages and Their Parameters

Message Parameters

REGISTER_REQ Source, Group

REGISTER_ACK Source, Group

UNREGISTER Source, Group

QUERY_REQ Source, Group, QoS
QUERY_ACK Source, Group, QoS
QUERY_NACK Source, Group, QoS

3.3.6 Member Dynamics

Unlike DVMRP, PIM-DM there is no periodic flood-and-prune in the EdgeCast network.

Unless explicitly a join has been established there is no data flow. And, a receiver stops
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getting multicast traffic after explicitly leaving a group. This keeps the network free from
unnecessary flow of traffic and corresponding network management.

After providing the underlying transport service the next step is to solve the
problem of how join/leave operations are performed. Whereas the (S,G) state-based
approach simply relied on individual nodes propagating JOIN/LEAVE messages towards
the multicast tree, the replacement of (S,G) state information with egress state
information makes the control packet processing a bit different. The multicast group may
be present anywhere in the global Internet, thus necessitating a search mechanism for the
multicast group. Several schemes such as MSDP (Multicast Source Discovery Protocol
[56]), MBGP (Multicast Border Gateway Protocol) [57, 58] have been developed to
address this. EdgeCast is primarily concerned with source specific model of multicast. As
EdgeCast relies on XBB for (5, G) authentication, it can also act as a source address
provider to the join process. In that case the operation can be done without the help of
MSDP etc. When a receiver sends a JOIN request the egress performs the ‘query’
operation with the XBB to reveal the source’s ‘status’. It may happen that the source is
not active at the time of join request. In that case the join operation is discarded although

there is a source for the requested group — but inactive.

Member Join

A JOIN request is sent to the egress edge router by the receiver, as usual, including a
source/group identifier (S,G). The egress router must then forward the packet to the
appropriate ingress node for multicast source. Hence the join problem can be summarized

as follows:
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For a join to source S, and group G. from node R, that arrives at egress edge
(EEgress), forward the join towards the Sy so that the QoS constraint of the request is met.

Since EdgeCast works based on egress edge value - not based on (S,G), there
must be a way to allocate the egress to the message for join. If only the edge address
(partly) is used then there is no problem, but if a unique ID per edge model is used, the
XBB is the best possible entity to allocate and manage this edge-to-ID matter. And
moreover, since DiffServ is developed for supporting QoS, the join request first must go
through a verification process to find out whether the requested QoS level can be
supported. Here it is assumed that the XBB is capable of deciding on whether the

requested QoS can be guaranteed. How this is done, is out of the scope of this thesis.

Revr Egress XBB - Cores----- Ingress Source
JOIN : ' ;
|  oumy ; : !
! ; ;
! ) i
! i i
QUERY_ACK ! i i
-------- ! i i
-7 ! i 1
_________ QUERY_NACK : i '
4" ! ' 1
QUERY_NACK i : ;
! i i
f i ——»  EC_JOIN
EC JOIN ) >
! i i
' i i IR
! ) ) DATA
| i DATA'! :
[ ! ; i
| .

Fig 3.6 EC_JOIN Protocol Timeline
Before sending the EdgeCast join - EC_JOIN, the egress initiates a ‘query’
process by sending a QUERY_REQ message including the (S,G) and the requested QoS.
The XBB then performs multiple tasks like QoS verification, verifying the source address

and status (active/inactive), and assigning a unique edge ID for the join (used only if the
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edge-to-ID assignment model is used and QoS verification turns positive). The XBB
sends a QUERY_ACK<S,G,Q> response to the egress. Otherwise it sends a
QUERY_NACK<S,G,Q> indicating that the requested join can not be made now. In such
a negative response the egress may decide either to join the group with the default BE or
abandon the join for the time being. Here it is assumed that the EC_JOIN message is only
initiated if the egress receives positive acknowledgement from the BB, otherwise the join
request 1s discafded. This EC_JOIN message is different than the original JOIN received
by the egress. The egress extracts the required information from the original JOIN and
creates EdgeCast specific join message, EC_JOIN, which includes the egress identity.

The next hop core router receives the EC_JOIN and checks the MFC with the
egress identity carried by the message. If this is a new egress intercepted by the router it
makes an entry in the MFC and the OIF of the link through which the EC_JOIN message
was received. If there is already an entry in the MFC, the router does not discard the
message like the traditional multicast, rather it forwards this towards the ingress. This is a
major difference between the SSM/Anycast JOIN and the EdgeCast EC_JOIN. This
message must reach at least the ingress — does not matter whether the intermediate nodes
already have the entry. This is required because ingress needs to know all the egress
points involved in the multicast packet distribution. When the ingress receives the
EC_JOIN it makes the entry in its table of egress corresponding to each source. Thus
ingress collects the complete egress information of multicast distribution.

If the ingress finds that the source corresponding to the new join is already active,
it stops the message at that point and discards it. On the other hand if this is the very first

EC_JOIN message for a specific source, after making the proper egress entries the
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ingress forwards the message to the source itself. Only after receiving such an explicit

join request the source starts to transmit data.

Member Leave
Like a join request, when a leave request arrives at an egress router, it will include a
source/group identifier. The egress router must then forward this control packet to the
appropriate ingress node that is connected to the multicast source. The ‘Leave’ problem
can be summarized as follows:

For a leave from source Sy and group G, received from node R, that arrives at
egress edge node (Egg.ss), update the appropriate core and edge router databases so that

the leaving receiver does not receive the packets destined for the (S, G.) address.
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Fig 3.7 EC_LEAVE Protocol Timeline
The egress, after receiving the LEAVE request for an (S,G) first checks if this is
the last receiver connected to it. If true then there is no need for sending any multicast
packet to that egress and the egress deletes the specific (S,G) entry from its forwarding
table. Moreover, the leave message must be sent towards the ingress of the source so that
the ingress database can be updated for not including the specific edge to the consecutive

passing packets. Like the JOIN message, the egress also sends a modified EdgeCast
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specific leave message - EC_LEAVE which carries egress identity. The EC_LEAVE
message also carries the (S5,G) entries that would leave the group. Although the core
routers need only the edge value to make any update to their forwarding cache, the (S,G)
entries will be required by the ingress to update its database. On the way to the ingress
the EC_LEAVE message deletes the entries of the specific egress from the routers’
forwarding tables. To make sure that the consecutive packets through ingress does not
include the leaving egress, it is required that the ingress updates its database of egress
entries corresponding to each (S,G). When the ingress receives the EC_LEAVE, it checks
the database for thé corresponding (S,G) entry that has been carried by the EC_LEAVE
and deletes the leaving egress’ entry fromk the database. This makes sure that the
consecutive packets for that specific (5,G) do not go to the leaving egress point.
Moreover, if the ingress finds that this was the only egress point involved to the specific
(S,G) then it deletes all the information regarding that (S,G) and makes sure that the
source stops sending data to that group.

There is another situation where the leave request comes to the egress which
serves as the egress point to more than one (S,G)s. In that case the egress updates its local
forwarding table by deleting appropriate information regarding the leaving (S,G). If this
was not the last receiver of the specific (S5,G) connected to the egress then there is no
need to send the EC_LEAVE message upwards. Otherwise, the EC_LEAVE message
needs to be forwarded towards the ingress to update the ingress table. But, in this case the
core routers do not make any changes to their forwarding table. This is because in this
case more than one (S,G) has been using the same egress to multicast their packets to the

group members. So, only the ingress database needs to be updated so that packets from
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the specific source do not receive the leaving egress’ entry in their attached EEH. Thus it
is made sure that the egress that has requested to leave the (S,G) does not receive the
packets destined for (S,G).

The leave process is a bit more complex then the traditional multicast leave
operation. But this is essential for the EdgeCast operation. Like the join process the leave
process also must reach the ingress for making the procéss complete (except c;nly a single
case when multiple receivers are receiving data from a specific (S, G) and are connected
to the same egress).

Table 3.3 lists the messages and parameters for ‘Join’ and ‘Leave’ operations.

Table 3.3 EC_JOIN and EC_LEAVE Messages and Their Parameters

Messages Parameters
EC_JOIN Edge Address/ID, Source, Group, QoS
EC_LEAVE Edge Address/ID, Source, Group

3.3.7 Packet Transport
The join process has set up the necessary condition for multicast packet replication and
forwarding throughout the tree. After the EC_JOIN message has been received by the
source, it starts to transmit packets. The first hop router for the packets is the ingress
router — as per the DiffServ architecture. In addition to the packet classification, marking,
policing, the ingress router in the EdgeCast architecture, must also perform the proper
EEH construction and inserting the EEH at the appropriate location of IP packet.

The ingress forwards the packet to the next hop and this forwarding is done based
on egress values - not based on (S, G). The core router checks the EEH entries and does
the MFC lookup to identify the set of OIFs through which the packet is to be replicated

and forwarded. But this MFC lookup is different from the traditional multicast MFC
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lookup. Instead of a single round of lookup there will be multiple rounds on MFC lookup,
since there are a number of egress entries in the EEH. This is one of the major
disadvantages of the EdgeCast. By employing some kind of heuristics in the search
process and with the aid of better and faster hardware this problem can be substantially
reduced. For processing packets in the network core EdgeCast assumes that there will be
a hardware mechanism in the routers that will deal with the EEH processing [27].
Alternatively, such support may be offered in software, but this will incur significant
performance penalty. Once replicated, the packet will be placed in the standard DiffServ
unicast class queues and treated according to the PHB specified by the DSCP. Once
given to the unicast queue, the multicast packet is treated identically to all other unicast
packets at the router. Another point is that the identified set of OIFs may result in
unnecessary duplication, resulting in multiple copies of the same packet being forwarded

through the same outgoing link. The following example helps to clarify the matter:

E1l

’E1|E2|E3‘E4’

E2

E3

E4

E3
E4

. Edge
O Core

Fig 3.8 Redundant Packet Replication Situation
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Fig 3.8 shows a network with four egress routers, one ingress router and three
core routers. Let us assume that recetvers connected to the four egresses joined a group
whose source is connected to the ingress (I). Now the EEH inserted to the packets include

the entries for the four egresses. The MFC in the first core router after the ingress has
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entries for all the egresses with the corresponding OIF entries i1s shown in the figure. Here
only two OIFs are involved and only two copies of the original packet should be
forwarded to the next hops. Since the EEH has entries for four egresses the EEH
processing leads to four potential copies of the packet. But a look at the MFC reveals that
actually same OIF has been entered twice and if packet is copied only based on egress
entry there will be two redundant copies. So, only two copies are needed, not four and the
replication decision needs to be taken also based on OIF entries.

To solve this problem the set of potential edges will be filtered based on OIFs so
that there will be one edge entry per OIF. The packet is replicated and the copies are
forwarded based on the filtered list so that the redundant packet replication can be
avoided. This section considered only the homogeneous QoS situation where all the
replicated packets get the same PHB because packets are replicated with the same DSCP
value. The case for heterogeneous QoS support and the matter of DSCP replacement will
be considered later. It is also assumed that the whole domain that implements EdgeCast
must have all the routers capable of EdgeCast because of different routing mechanism
than the traditional approach. A combination of capable and non-capable routers in the
EdgeCast is not considered here.

When the packet reaches the egress, as per the DiffServ architecture, the egress
will perform the SLA conformance test before sending the packet out to the destination.
Additionally, the EdgeCast requires that the egress removes the EEH from the packet.
The EEH is needed to transport packet only till the egress point. To reach the destinations
after the egress, the packets are forwarded based on the traditional (S,G) entries. That is

why the egress keeps the MFC like traditional multicast with (S,G) when the join process
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takes place. And for this reason EdgeCast also keeps all the original packet information
including the source and group addresses, although the packet does not require them for
core transport and multicast.

When the proportion of active (source, group) is much more than the network
edges, it is evident that EdgeCast will not let the state explosion to take place, since
whatever the number of active (source, group) in the domain, the states will always have
a pre-calculated maximum value that is bounded by the number of edges. Thus EdgeCast
provides the network administrators the advantage of having a much clear idea about the

worst case situation in the domain.

3.3.8 Heterogeneous QoS Support

As shown in Fig 3.9, the sender-driven approach of DiffServ has problems with
heterogeneous QoS requirements for receivers. Let us consider the case of egress nodes
(receivers) R1 and R2. Whereas R1 is requesting EF (Expedited Forwarding) level
service, R2 is requesting only (Assured Forwarding) AF11 level service. Since both
receivers share the same path to the ingress node, the difference must be resolved.
Without the option for dynamic DSCPs in the DiffServ domain, the simple solution

would be to send separate packets for each DSCP in the group.

C2 K
c1 R1-EF
1 R2-AF11
R3-AF10
C3

Fig 3.9 Heterogeneous QoS Requirements in DiffServ Domain
Depending upon the relative heterogeneity of members and the locations of such

members within groups in the DS domain, this solution may waste excessive amount of
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network bandwidth. In contrast, a second solution is to require all receivers for the group
(egress nodes) in the domain to use the highest DSCP for the group. This solution suffers
from two problems in that the solution unnecessarily consumes resources and that all of
the receivers in the group may not be willing to pay for the highest level of QoS. From
the perspective of the service provider, the only cost of adding R2 should be the last link
to R2, provided that R1 is willing to pay the full cost for EF service from I to R1. As long
as all upstream links from a receiver meet the necessary QoS of the receiver, the cost of
adding additional receivers for the group which share those same links 1s zero for the
shared links (from I to C2). Thus, the optimal solution is to introduce a scheme for
multicast whereby the DSCP is allowed to change in the network and adapt to the needs

of the downstream receiver.

3.3.8.1 Heterogeneous QoS Solutions
There have been two approaches of Heterogeneous QoS solutions: by extending

traditional IP multicast and by encapsulated header in DSMCast

Extending Traditional IP Multicast

In [22, 23], the authors presented a scheme extending traditional IP multicast to support
heterogeneous QoS in a DS domain. In order to support heterogeneous QoS, each
multicast routing entry would also include a DSCP to be used when replicating traffic for
the given group onto the specified link. The work specifically provides support for two
levels of QoS, the current gfoup QoS and a LE (Limited Effort) PHB [21] for those that
do not wish to use the codepoint of the group. However, this work suffered from several
notable problems. First, the issue of upstream PHB conflicts for full heterogeneous

support was left as a management issue. The underlying architecture of traditional IP
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multicast (i.e. per-group information embedded in core routers) makes the issue of
upstream PHB resolution non-trivial. Unlike DSMCast where the entire tree 1s known for

PHB resolution, PHB resolution must take place at each router along the tree.
R1-AF10
R2-BE

Ingress

R3 - AF20

R4 — AF21

Fig 3.10 Example of Heterogeneous QoS in a DiffServ Domain with Dynamic PHB

For example during a multicast join, one must consider not only the issue of when
PHBs should be propagated but also necessary reservation/communication with the BB
as the PHB propagates up the tree. In addition, a past history must be maintained of
downstream links in order to appropriately degrade the service if the higher classed node
leaves the QoS group. In addition, let us consider the network of Fig 3.10 where R4 joins
the group first. In this case, the tree has a codepoint of AF21 from edge to edge. Now, if
R3 join in succession, a priority problem occurs. If the core nodes along the tree do not
propagate the "better PHB' QoS up the tree, the downstream nodes will not be receiving
the QoS that they requested. For the case of R3 which is requesting AF20 service, it
would actually receive QoS of AF21-AF21-AF20 as the packets go across the multicast
tree if the priority is not propagated upstream. Although the order may not always be the
worst case, this simple example shows the necessity of propagating the best PHBs
upstream.

The propagation of higher priority PHBs introduces the second issue with

traditional IP multicasting with PHBs. For each case where the PHB must be propagated,
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the distributed nature of knowledge of the multicast tree requires that the core router must
communicate with the BB. In addition to violating the DiffServ principle of simple core
routers, such a scheme also creates the potential for fairly inefficient resource allocation

due to excessive message passing.

DSMCast and Heterogeneous QoS

DSMCast [27] uses dynamic PHBs where the core routers are kept stateless and the
propagation of 'better PHBs' is automatically taken care of at the ingress router. This
prioritization is done with complete knowledge of the multicast tree by the edge routers.
As a result of the centralized location for a given group, only a single message is required
from the ingress router to the BB. For cases where the traffic allocation may fail
(insufficient resources), the edge-based approach prevents unnecessary resource
allocations. Most importantly, the scheme removes the complexity of such operations
from the core, thus maintaining the simplicity outlined by DiffServ architecture. Whereas
LDiffServ employs a coarse-grained QoS (i.e. the PHB does not change as the packet
traverses the domain), DSMCast could also allow unicast packets to use dynamic PHBs

as they cross the domain.

Heterogeneous QoS Support in EdgeCast

The core routers” MFCs do not keep the DSCP values for the downstream branches. The
MEC entries are not fined granular siﬂce more than one group can use the same egress
entries. Hence, the DSCP requirements must be carried by the EEH. The EC_JOIN
message carries the requested DSCP to the ingress and then the ingress inserts that DSCP
value next to the corresponding egress entry. When a packet reaches a core router the

EEH is inspected by the core hardware and replication and forwarding decisions are also

59



made. When the final set of egresses is selected for replication their corresponding QoS
values are also inspected. When the replication decision is made, the original DSCP of
the packet is compared to the requested DSCP. Any mismatch prompts the DSCP

replacement according to the requested DSCP.

TotalEntries Ef oMl ER QR e, EIN] QIN]

16 bits 16 bits 8 bits

Fig 3.11 EEH with Requested QoS Values

This strategy of providing Heterogeneous QoS support requires a modification to
the original EEH architecture. Now a new field Q/i] (to store the requested QoS by the
join) is added to the EEH and each of these Q/i/s follows the location of corresponding
E[i]. Fig 3.11 shows the new EEH architecture. The question may arise about the size of
the Qfi] field to be used in EEH. The DiffServ proposal utilizes the 6 bits of the IPv4
TOS field and keeps the rest two bits currently unused (CU). These 6 bits allow 2°
different DSCP values to be assigned. Conforming to the DiffServ proposal EdgeCast
also utilizes 6 bits to store DSCP requests per edge entry. But this field takes 8 bits and
two bits of them are kept ‘currently unused’ like the original DiffServ proposal. Here,
these two ‘extra’ bits also serve another important purpose - each entry is forced to byte
boundaries to ensure ease of hardware support.

Although this new EEH structure provides the Heterogeneous QoS support, it
increases the EEH size and hence bandwidth overhead because the DSCP information

now has to be put inside the EEH.
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3.4 Summary

In this chapter the EdgeCast architecture - a new architecture for supporting DiffServ
multicast, has been proposed. Each of the different components of EdgeCast related to
DiffServ multicast has been described. New protocols for member dynamics have also
been introduced. Despite the fact that this architecture incurs per-packet overhead due to
the extra header (EEH), it makes the multicast states independent of active (source,
group) in the domain. Thus the administrator need not worry about the number of active
(source, group)s, rather the edge entries of the domain are capable of handling any
number of active (source, groups). EdgeCast also is capable of providing Heterogeneous

QoS to the group members.
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Chapter 4

THEORETICAL AND SIMULATION STUDIES

4.1 Introduction

In this chapter the performance of EdgeCast is analyzed from both the theoretical as well
as simulation perspectives. In the theoretical analysis, EdgeCast is examined for its
overhead versus the encapsulation-based DSMCast approach, and multicast states versus
the state based approach like SSM. The simulation studies examined the performance of
EdgeCast versus the other two approaches (encapsulation-based and state-based)
regarding a variety of parameters including active group numbers, header overhead, core
routers’ states, packet loss and receiver heterogeneity.

The rest of this chapter is organized as follows. Section 4.2 discusses EdgeCast
parameters from the theoretical perspective. The header overhead, the multicast states
and the message complexity have been examined. Section 4.3 presents the results of
different simulation studies and provides the necessary explanation to the results. Finally,

Section 4.4 outlines the summary of the chapter.

4.2 Theoretical Studies

4.2.1 Packet Header Overhead

The EdgeCast EEH incurs overhead to the packets that are to be multicast. This overhead
depends on the number of egresses involved in the multicast distribution tree. For every
egress involved that has group member associated with it, there will be an entry in the

EEH by the ingress. The cost of EEH can be summarized as follows:
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Costggy = TotalEntries + E*EntrySize
where TotalEntries is the field giving the number of entries in the EEH, E is the number
of egress entries, and EntrySize is the size of each entry. TotalEntries field takes 2 bytes
and EntrySize field takes 2 bytes each. Hence

Costggy = 2 Bytes + E*2 Bytes

=2(E+1) Bytes
This is the cost considering the homogeneous QoS support where there is no need

to put additional requested QoS information in the EEH. If heterogeneous QoS support is
desired then there will be extra information to be added to the EEH — one byte succeeding
each of the edge entries to hold the requested QoS information. Hence, in the case of
heterogeneous QoS support,

Costggn (Hety = 2 Bytes + E*3 Bytes

= (2+3*E) Bytes
On the other hand, in the encapsulation based technique, DSMCast, the header

overhead of TEH is dependent upon the number of non-leaf routers in the domain that are
on the multicast tree. For each involved core router an entry will be present in the TEH.
The cost of the TEH can be summarized as follows:

Cost = NumFEntries + Options + C*EntrySize
where NumEntries 1s the field giving the number of entries in the TEH (1 byte), Options
is the options field (1 byte), C is the number of entries of the cores, and EntrySize is the

size of each entry. The cost of each entry is as follows:

EntrySize =[

ID+Rep+Rep* Sizers—l
8
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where ID is the size of the unique ID (8 or 16 bits), Rep is the maximum number of
interfaces on any node in the domain (5 or 6 bits), and SizeQoS is the size of the QoS
transformation field (2 or 3 bits). In addition, each entry is forced to byte boundaries to
ensure ease of hardware support. The 5/2 (Rep = 5, SizeQoS = 2) and 6/3 settings deliver
sizes of 23 bits (rounded up to 3 bytes) and 32 bits (4 bytes) respectively [27]. The
general expression for the DSMCast header for a 4 byte EntrySize is as follows:
Costpsm = 1 Byte + 1 Byte + C*4 Byte
=2(2*C + 1) Byte
From the expressions for EdgeCast and DSMCast header overhead the necessary
condition when EdgeCast overhead is less than that of DSMCast can be seen from the
following relationship:
2E+1)<22*C+1)
=> E <2*C
But when heterogeneous QoS support is considered for EdgeCast, then the
condition is as follows:
2+3*E<2(2*C+1)

=>E <4/3*C

4.2.2 Multicast Routing States

Multicast routing states in EdgeCast depends on the number of edge routers involved in
the tree(s). Here, only the states in the core are considered since edge routers in both
EdgeCast and other (source, group) based systems store the same (source, group) entries.
Later on, in the simulation results also, the core states have been shown — no edge states

have been considered in simulation.

64



If Eg; represents the number of edge routers at the end of the distribution tree(s)
that passed through the core router i and there are total C core routers then the total

number of states in the core routers is

C
ECstates = ZEg(i)

i=l
In the worst case scenario for a core router when‘all the edge points are included
in the distribution trees that pass through the core router the maximum entries will be
equal to the total number of egress points. If maximum number of egress points is
EgMAX then in a single core worst case states will be EgMAX.V
For SSM if there are G individual groups having § individual sources the expression for

total states is

C
SSMtates = Z G

i=1

4.2.3 Message Complexity

From edge-to-edge for a new member to join a group, EdgeCast requires three messages:
a QUERY_REQ message, a QUERY_ACK message and an EC_JOIN message towards
the source. In case of QUERY_NACK there will not be any join. So, for a successful join
there will be three messages and for an unsuccessful join there will be two messages
involved. Hence, considering successful join there will be 3m messages involved for
establishing a group of size m. A join related message will be processed by all the
intermediate hops along the way up to the other edge. If the average number of nodes
from egress to ingress is Hayg, for a group of m the message processing cost is 3*¥m*H,,g
For DSMCast, a new member join requires sending DSMCast-Join-Request

message to all eligible edge routers. There will be DSMCast-Bid messages sent back to
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the egress from each of the eligible edge routers. After selecting the proper edge for the
join message to be sent, the egress sends a DSMCast-Join-Accept message to the
appropriate edge. If the average number of eligible edge routers is £, then for a new
member to join a group there will be (2*E + ) messages required. For establishing a
group of m members there will be (2*E + 1)*m messages involved. If A, is the average
number of nodes to be traversed for a complete join cycle (by all the join related

messages) then the processing cost for a group of m is (2*E + 1)*m™* hyyg

4.3 Simulation Studies
The performance of EdgeCast versus other solutions was analyzed through extensive
simulation studies. The simulation studies were conducted using the ns-2 simulator [60]
and its extension for differentiated services by Nortel Networks. The flowcharts of
different simulation processes have been given in the appendix section. Since SSM is a
state based multicast approach, the performance of EdgeCast (core routers’ states) was
compared to that of a generic version of PIM-SSM. Also the header overhead was
compared with that of DSMCast because DSMCast is an encapsulation based multicast
approach that works based on an additional header (TEH). The parameters for the
simulations were as follows:

e The network topology consisted of 50 core nodes which were interconnected with
degree of at least 3 and at most 6. There were 40 edge routers (ingresses and egresses)
connected to the 20 core routers such a way that 2 edges were connected to one core.
The edge routers were not directly connected to one another. Fig 4.1 shows the

schematic of the network used for all the simulations in this thesis.
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There were 100 sources and 300 receivers available for simulation. It was assumed
that there would be one source per group and so there would be maximum 100 groups

available for simulation.

- Each multicast source produced Constant Bit Rate (CBR) traffic with constant packet

size. Packets of varying rate were not considered.
For different simulations the network bandwidth was changed to see the effect of
resource scarcity on packet drop. Some other simulations were done keeping the

network over-provisioned with BW of 10Mbps and link delay of Sms per link.

Ingress Lo

Network Edge with 40
edge routers

Network Core with 50
core routers

Sources
Receivers

Fig 4.1 Schematic of the network used for simulation

It is to be noted that for DiffServ simulation the parameter of interest was packet

loss in the network due to resource scarcity, no delay simulation was considered. The

simulations were conducted for a single domain scenario of varying QoS distributions

(homogeneous and heterogeneous). Another point of importance is that, for the packet
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statistics, the simulated data was considered only after the network reached a ‘stable’
condition — means, when all the involved receivers joined the groups. The data of rather
‘transient’ network conditions - when receivers were still joining the groups was not

considered for consistency of the results.

4.3.1 Core Routers’ States

EdgeCast core router states depend on the number of egresses involved in the distribution
tree. Whereas, SSM core states depend on number of active (source, group). To have a
comparative look at the core router states of EdgeCast and SSM, different situations have
been simulated.

Case 1: 100 receivers joined different number of groups in different simulations. The
number of groups was increased from 1 to 10 in successive simulations. But all the group

sources were connected to a single ingress.
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180 4 - — ~ - = -~ EdgeCast Core States .. _ _ _,_ |
—a— SSM Core States
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No. of Core States

Active Groups

Fig 4.2 Total core states for EdgeCast vs. SSM for Case 1
Fig 4.2 depicts the scenario when EdgeCast shows its great advantage of
resolving the multicast state scalability problem. Since EdgeCast stores the states of only
the egress states of the domain, no matter how many active (source, group)s are involved
in the multicast sessions in the domain, the states are constant as long as the same

numbers of edges are involved in the distribution tree. On the other hand, SSM states are
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dependent on the number of active (source, group)s in the domain. The more groups are
actively participating in the multicast communication, the more states are required to be
stored in the on-tree routers. The figure shows the graph for SSM to be sharply increasing
with the number of active groups, although all the packets for those different groups
traversed the same distribution tree and hence the same on-tree routers. But graph for the
EdgeCast is constant to a certain value, since the same edges had been traversed by the
multicast packets.

Case 2: Number of groups remained constant (20 groups involving 2 ingresses). In each

simulation the number of participating receivers was increased.
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Fig 4.3 Total core states for EdgeCast vs. SSM for Case 2
Figure 4.3 is another situation where the difference between EdgeCast states and
SSM states can be visualized clearly. As the number of receivers joining the multicast
groups increases so does the involved egress points. Also the distribution tree becomes
more and more sparse involving more and more core routers. But here the numbers of
egresses being involved is much less than the number of new cores involved. And hence

the SSM states increased much sharply than the EdgeCast states.
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Case 3: Number of receivers (200) and number of active groups (20) were kept constant.

But number of ingress involved with the group sources increased in each simulation.
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Fig 4.4 Total core states for EdgeCast vs. SSM for Case 3

Case 3 and its corresponding Fig 4.4 illustrate the situation of core states when the
number of involved ingresses changes. For that situation, we see that the SSM states were
almost the same for different numbers of ingresses involved. The core distribution
changed the core states very little since the core states were dependent on the number of
active groups — which was unchanged in that case. But for EdgeCast, because of the
states’ dependence on egresses, the graph rose rather sharply and at some point
intersected the graph for SSM states. This was because, as more ingress got involved,
more distinct trees got involved. So, new edge entries were required in the ‘new’

involved cores, resulting in an increase in the number of core entries.

'4.3.2 Encapsulated Header Overhead

Here the simulations were done to have a comparative picture of EdgeCast and DSMCast
header overhead — EEH of EdgeCast and TEH of DSMCast. A couple of cases were
simulated to see the effect of egress involvement and ingress-core involvement. Here
‘ingress-core’ means the core routers which are directly connected to the ingresses.

Another simulation was performed to quantify the number of core routers involved for
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DSMCast vs. number of edge routers involved for EdgeCast, since the header overhead is
directly dependent on the number of cores for DSMCast and on the number of edges for

EdgeCast.

Case 4: A number of receivers joined a group. In each simulation the number of egresses
involved was increased and hence number of receivers joining the group also increased.

But the ingress involved was kept constant to one.

35
—&— No. of cores for DSMCast
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Fig 4.5 Total number of cores/egresses for DSMCast/EdgeCast for Case 4

Since DSMCast performs based on the TEH created depending on the involved
cores and EdgeCast performs based on the EEH created depending on the involved
egresses, 1t is an interesting thing to see, for certain cases, how the involved cores and
edges varies for DSMCast and EdgeCast respectively. Case 4 and Fig 4.5 illustrate such a
situation. As more receivers involving more egress points join the multicast groups, both
the involved cores and edges increase up to a certain point and EdgeCast shows better
performance than DSMCast. But after a certain threshold point, the core routers are not
increased as the same rate of egresses. This 1s because; at that time more and more cores
start being shared by the groups. So after that special situation, DSMCast core numbers

start to fall below the EdgeCast edge numbers.
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Case 5: The header overhead related to the transport of a single packet generated from a
source - for DSMCast and for EdgeCast. The number of cores and egresses involved
were taken from the previous Fig 4.5 of Case 4. This is for homogeneous QoS situation.

120

—a— Total Header overhead for DSMCast (Bytes)

” ~#— Total Header overhead for EdgeCast (Bytes)
00 f-- e s e e T

80 f - e T

60 -

40

Header Size (Bytes)

20 A

0 T T ‘ T ‘ T T

4 8 12 16 20 24 28 32
Egress inwolved

Fig 4.6 Header Overhead for EdgeCast vs. DSMCast for Case 5

Case 6: The effect of number of ingress-cores (cores directly connected to the ingresses)
involved in multicast to 100 receivers which are connected to 10 egresses. One sender
per ingress is considered. Since two ingresses are connected to a single ingress-core,
each ingress-core, in this case, will handle two packets (one packet from each sender).
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Fig 4.7 Header overhead for EdgeCast vs. DSMCast for Case 6

Fig 4.6 and Fig 4.7 illustrate the header overhead of DSMCast TEH vs. EdgeCast
EEH for situations described in Case 5 and Case 6. DSMCast TEH uses 4-Bytes/entry
and 2-Bytes for NumEntries and Options fields and EdgeCast EEH uses 2-Bytes/entry

and 2 Bytes for TotalEntries field. For Fig 4.6, as the number of egresses increases in the
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distribution tree, the tree becomes more sparse. This also increases the number of cores
involved in the tree. From the figure it is evident that the graph for EdgeCast is linearly
increasing, because of the linearity in the number of joining egresses. But the graph for
TEH is nonlinear since the number of cores does not increase linearly as the group
members become more sparse.

For Fig 4.7, the graphs are a bit tricky. Although the number of joining egresses
was the same, the EdgeCast EEH graph is linear — how is that? It is to be noted that for
two different packets from two different sources the egress number will be cumulative.
So, when two groups are active, cumulatively the egresses will be 20 (10 for each group’s
packet). That is why the graphs are increasing — linearly for EdgeCast and nonlinearly for
DSMCast. For both the figures, till the simulation limit the EEH overhead was always
less than the TEH overhead, since the network could not satisfy the necessary condition
for overhead equality. But from the previous discussion, it is clear that if the network

satisfied the necessary condition, the graphs would intersect at some point.

4.3.3 DiffServ by EdgeCast

This section provides simulation results that prove that EdgeCast provides differentiated
services in the domain. There are different parameters of QoS that can be measured as to
verify the differentiated services treatment by the DiffServ network. Here only packet
loss has been considered as the DiffServ parameter. A couple of situations have been
simulated to provide a clear picture of how the packet loss percentage varies depending
on the level of network resource scarcity. Here the considered network resource was
bandwidth. A number of senders were sending data to a number of receivers who joined

different multicast groups. The senders were classified into two major categories based
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on their priorities. Packets from the first class of traffic source were given QoS level 10
as default and any traffic exceeding the desired rate were marked with QoS level 11. On
the other hand, packets from the second class of sources were marked 20 by default and
the desired rate exceeding packets were marked as 21. So, in the domain, there was traffic
with four different levels of QoS priorities. The priorities were set as follows:
10>20>11>21

In the case of resource scarcity (lack of necessary bandwidth) packets with QoS
level 10 should be dropped the least and packets with QoS level 21 should be dropped the
most. The following simulation results prove this fact by showing different drop
percentage for packets with different QoS levels.

Case 7: Bandwidth of the entire network was increased gradually in different
simulations. In each simulation, all the links were given the same BW and delay.
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Fig 4.8 Drop percentage of packets with different DSCPs for varying
network BW for EdgeCast vs. SSM
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Case 8: Entire network BW was kept constant, but the number of active sources was
increased gradually in different simulations.
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Fig 4.9 Drop percentage of packets with different DSCPs for varying
number of active sources for EdgeCast vs. SSM

Case 7 and Case 8 and their corresponding Fig 4.8 and Fig 4.9 illustrate the
situations where network traffic was getting differentiated services. Both of the figures
plot comparative data of EdgeCast and SSM providing DiffServ multicast. Fig 4.8 shows
that at the beginning, when the BW was scarce, there was more packet drop. But the
percentage drop of higher priority packets was always less than that of the lower priority
packets. As the network BW increased, the drop percentage started to decrease, since
there were less congestions being experienced by the network. Moreover, higher priority
packets’ drop percentage reached zero level much earlier than the lower priority packets.
As per the DiffServ theory this is exactly how the network was supposed to behave.

Fig 4.9 depicts another DiffServ situation where the network BW was kept
constant, but the number of active groups varied. At first there was zero drop percentage,
since only two groups were active. As the active groups started to increase there was
more traffic in the network. Some bottleneck points started to experience congestion and

the packets were being dropped. For more active groups, more packets were being
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dropped. But, the higher priority packets’ drop percentage was always less than that of
lower priority packets.

It 1s evident from both scenarios and the figures that EdgeCast is very much
capable of providing DiffServ multicast. Simulations show it performs almost the same
as SSM. In a few graphs EdgeCast shows marginally degraded performance than SSM,
but in most of the cases the graphs are of same shape. The marginal degraded
performance is a direct effect of the little bit complex lookup and forward technique
involved in EdgeCast. With the aid of better lookup algorithm and high end hardware,

this marginal difference could be eliminated.

4.3.4 Heterogeneous QoS Support in EdgeCast
While the previous sections presented the results for header overhead, core multicast
states and differentiated services treatment of the packets, this section presents simulation
results that prove the heterogeneous QoS supporting capability of EdgeCast. Specifically,
the issue of QoS is complicated by the need for support of heterogeneous QoS in the
multicast tree. Another aspect of consideration is the ‘good neighbor effect’ [27].
Although two different receivers who have joined the same (source, group) can ask for
two different levels of QoS, till the branching point, the receiver requesting lower QoS
will receive the higher QoS. This is because, the other receiver, who is paying for the
higher QoS must receive treatment accordingly and being the same flow till the
branching point, the second receiver’s packets will receive better treatment because of the
first receiver — the good neighbor.

Let us consider a section of network as the following Fig 4.10, where two

receivers R1 and R3 have joined the group G1. The different receivers requesting QoS
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are: R1 asking QoS 10 (G1) and R3 asking QoS 11 (G1). The source S1 is the source for

groups G1.
RI1(10)

Fig 4.10 A Network Section Requesting Heterogeneous QoS
Two different situations have been simulated to show the effect of heterogeneous
QoS support. In the first case, the simulation was done in an over-provisioned network
with enough Bandwidth and no congestion. The second case simulated the situation when
bandwidth was scarce and congestion occurred in the network.

Case 9: A number of receivers joined different groups. The bandwidth was enough so

that no congestion occurred.
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Fig 4.11 Packets Received by the Same Group Receivers (over-provisioned network)
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Case 10: A number of receivers joined different groups. The bandwidth was reduced to a

certain level so that there was bandwidth scarcity and congestion occurred in the

network.
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Fig 4.12 Packets Received by the Same Group Receivers (congested network)

Fig 4.11 and Fig 4.12 show the packet reception by the two receivers of the same
group. A number of groups were actively sending data to a number of receivers in the
network. But, here only two receivers and a single source have been chosen as a network
section to show the effect of heterogeneous QoS requirements by different receivers. Fig
4.11 shows that both the receivers received the same number of packets regardless of
their QoS requirements. That is why two different graphs have been superimposed on
each other. Here, the network had ample bandwidth and no congestion occurred. There
was no packet drop and the receivers received data properly. But the Fig 4.12 shows a
different scenario when there was congestion in the network because of bandwidth
scarcity. Packets with different DSCPs received different treatment in the time of

congestion resulting variation in packet reception by the receivers.
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Another point to note is that, the graphs are not smooth in their shapes. This is
because, the results considered a section of the network. There were other sources
sending data to some other receivers. And the congestion was the result of all data from a
number of sources than simply the two sources. Moreover the simulated network was not
‘perfectly’ tuned due to limitations. But the overall picture from the graph show that the
network was providing DiffServ multicast services.

44 Summary

This chapter has presented the theoretical and simulation studies of EdgeCast versus
other encapsulation-based approach DSMCast and state-based approach SSM. The
header overhead, multicast states’ cost and message complexity have been analyzed from
theoretical point. Later on, some simulation results have been presented to quantify
different parameters of EdgeCast versus other approaches like DSMCast and SSM.
EdgeCast showed better performance in state cost when a large number of source and
groups were active involving a rather small number of edge points in the end of
distribution tree(s). Also, the encapsulated header overhead showed better performance
than that of DSMCast up to a certain number of edges with respect to cores. The results
also confirmed that EdgeCast is capable of providing differentiated multicast services.
Intra-group heterogeneous QoS can also be provided by EdgeCast, although by

sacrificing the header overhead a bit with that of DSMCast.
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Chapter 5

CONCLUSIONS AND FUTURE WORKS

In this chapter, a summary of the contributions to the thesis is presented and additional
considerations of the work are discussed. In addition, the chapter offers several
concluding remarks regarding the use of the contributions and concludes with several

future research directions.

5.1  Contributions
The work in this thesis contributed to a unique idea of DiffServ multicast. The notable

contributions are as follows:

Introduction to a hybrid approach — EdgeCast, of state-based and encapsulation-based

approaches for DiffServ multicast.

e Resolving multicast state scalability problem by using edge states in the routers
instead of (source, group) states.

e Introduction to the architectural and functional extensions to the Bandwidth Broker
and ingress/egress routers of a DiffServ domain.

e Developments of member join and leave protocols for supporting multicast member
dynamics that are different in operation than traditional IP multicast member
dynamics protocols.

e The support of QoS heterogeneity - different receivers joining the same multicast

group with different levels of QoS requirements.
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5.2  Conclusions

So far, all the multicast techniques were based on either the (source, group) or
encapsulation based approaches. This thesis proposes EdgeCast that provides
multicasting based on a hybrid approach of both the states and header encapsulation. And
moreover, the states are not of (source, group)s, rather of the egresses that are being used
in the multicast distribution tree. The most notable contribution is the introduction of a
method that made the multicast states independent of the number of active (source,
group)s, which tends to explode for a large number active (source, group)s in a domain.
The multicast states of EdgeCast are much more stable than the number of (source,
group) states. The network administrator can assume the worst case scenario - from the
scalability perspective, with much ease because of the knowledge of domain edge.

Unlike DSMCast, EdgeCast does not need the ingress routers to have complete
knowledge about the domain topology for operation. The XBB performs the source
registration, authentication and QoS verification. This solves the problems of malicious
source activities, source status confirmation and resource management. EdgeCast
operates by comparing the EEH entries with that of MFC entries in the routers - replacing
the procedure of how the multicast packets themselves are transported. EdgeCast shows
better performance from scalability and header overhead perspectives for certain network
situations, but these come at the cost of requiring hardware assistance at each of the core
routers. As an intermediate step or on networks with low levels of multicast traffic, the
processing of the EdgeCast EEH could be done via software although such an approach is

merely an interim step.
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The EdgeCast architecture is also capable of supporting heterogeneous QoS that
1s a growing need for next generation QoS multicast services. The introduction to
heterogeneous QoS support in EdgeCast reduces a bit, the benefits from header overhead
with respect to other encapsulation-based approach like DSMCast. Even then, in general,
EdgeCast incurs less header overhead than DSMCast. The work on heterogeneous QoS
offered interesting insights into how heterogeneous QoS performs in a single multicast
tree. Most notably, the tradeoff of network efficiency versus service differentiation is a
difficult problem that is an open topic for research.

The work in this thesis did not consider the fault detection and tolerance
situations. It was assumed that there will be an underlying scheme to take care of the fault
situations. Also it was assumed that the Bandwidth Broker is capable of managing the
QoS matters. Based on the query by the egress the BB (or XBB, the Extended BB)

performs the necessary check to evaluate whether the requested QoS can be guaranteed.

5.3 Future Works

Although EdgeCast provides a solution to DiffServ multicast problems, the work has also

opened up several other interesting areas of future research. The areas of potential future

research are as follows:

e ‘Load Shedding’ off the EEH: The encapsulated packet header EEH of EdgeCast is
the necessary part of the system. This EEH has to be carried by each and every packet
through the ingress towards the multicast members. When the distribution tree is very
sparse and lot many egresses are included in every packet, a lot of bandwidth is
wasted. Moreover, after the branching nodes a good number of egress entries become

totally unnecessary, since one branch of the tree does not require the egresses of other
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branches for replication and forwarding decisions. An efficient procedure that can
‘shed off” those unnecessary entries can save a lot of network bandwidth. But
development of such a protocol would be very challenging, since DiffServ core needs
to be kept as simple as possible.

Efficient EEH lookup: The EEH lookup and matching with the MFC entries is an area
of performance concern for EdgeCast. A better and smarter algorithm can be used
that can perform the EEH lookup in the least number of iterations and avoid any kind
of redundant packet replication. This should be done in such a way that the process
complexity does not overwhelm the core functionality.

Delay Analysis: Delay is another very important parameter of QoS sensitive network.
The work in the thesis only considered ‘packet loss’ as the QoS parameter, not delay.
The future work would be also to simulate the delay (both link delay and processing
delay) to analyze the performance of EdgeCast from the delay perspective. In that
case, both the ‘packet loss’ and ‘delay’ analysis would be able to provide a complete
picture of the EdgeCast supported network.

Fault Management: Although the proper provisioning and monitoring of QoS is
critical for next generation applications, an equally important factor for QoS is the
underlying fault-tolerance of the network. In order to provide the necessary QoS
levels to QoS-based applications, the network must offer satisfactory connectivity
across the network at all times. A protocol like EI-HELLO (Edge-based Intelligent
HELLO) [61] can be used to augment the existing link state protocols through edge-
based monitoring of the internal core routers. The ‘heartbeat’ data packets can be

used to detect the network connectivity situation and thus ensuring that the network is
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healthy. If a fault is detected then necessary measures can be taken to restore the
desired operation with the least amount of performance penalty. This can be done by
rerouting the multicast traffic as per the new join establishment. This is important,

since EdgeCast is a receiver-initiated DiffServ multicast provisioning technique.
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Appendix

A.1 Simulation Flowcharts

A.1.1 Generation and Encapsulation of EEH
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A.1.2 Registration
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A.1.3 Query
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A.1.5 EC-LEAVE
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6. Packet Replication and Forwarding in the Core
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