Automatic Generation of SDL Specifications
from Timed MSCs

Xiao Jun Zhang

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

May 2004

© Xiao Jun Zhang, 2004

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-94720-3
Our file Notre référence
ISBN: 0-612-94720-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Automatic Generation of SDL Specifications from Timed MSCs

Xiao Jun Zhang

The integration of Formal Description Techniques (FDTs) in the software process
enables formal validation, translation, synthesis and code generation. Message Sequence
Charts (MSC) and Specification and Description Language (SDL) are two formal
languages, widely used in the telecommunication industry. Generally MSC is used for the
behavioral requirement specification, while SDL is used for the detailed design
specification. The transition from the requirement specification to the design
specification is usually performed manually; and the design has to be validated against
the requirement specification.

In a previous research work, researchers from the telesoft group at Concordia University
devised an approach for generating SDL specifications from MSC specifications with a
given target architecture. It guarantees correctness of the design, and consistency between
the SDL specification and the MSC specification. The need for validation has been
eliminated.

Time concepts have been introduced in MSC-2000, which enables real-time requirements
to be specified in MSC. Building on the existing framework, this thesis presents a new
approach for translating MSCs with real-time requirements into SDL specifications. We
analyzed and classified different types of time constraints and measurements. New
algorithms for analyzing MSC specifications and generating SDL code were devised. We
also built the tool and experimented with case studies to prove the feasibility of our

approach.

il

CONCORDIA UNIVERSITY
SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared
By: Mr. Xiao Jun Zhang

Entitled: "Automatic Generation of SDL Specifications from Timed MSCs"

and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science

complies with the regulations of this University and meets the accepted
standards with respect to originality and quality.

Signed by the final examining committee:

). /g . «Qﬂ?’@MW\ a/l/l/\. Chair

Dr. M.R. $oleymani

0,2/&:2 VT S~ - Examiner, External

Dr. P. Grogond—’ to the Program

;' m Examiner
Dr.R. D

fsouli

4} ﬁ/ Examiner

Dr. A. En-Nouaary

Supervisor
r. F. Khendek

Approved by: ’/ 0. Q‘? QJ

Dr. M.O. Ahmad
Chair, Department of Electrical
and Computer Engineering

N1 2 7Yy e

Dr. Nabil Esmail
Dean, Faculty of Engineering
and Computer Science

Acknowledgements

I would like to express my heartfelt thanks to my supervisor, Dr Ferhat Khendek, for his
guidance, encouragement and patience. He has always been there openly to discuss
problems and to provide invaluable suggestions. Dr. Khendek has motivated me so much

with his dedication to this work.

I wish to express my profound gratitude to my parents, Yu Chun and Sheng. Without
their enormous love, understanding and supports, I would have never made it this far. I
dearly thank my sisters, Xiao Li and Xiao Hua. I know I can always count on their

support and encouragement. I am forever grateful to my family.

I also want to thank all teachers who have taught me in my degree program and other
colleagues at Concordia University for their valuable help and cooperation. My thanks
also go to all friends who have helped me along my study. Without them, today’s

accomplishments would not have been possible.

This research work has been supported by a postgraduate scholarship from the Natural

Sciences and Engineering Research Council of Canada, the Concordia University
Graduate Fellowship and a funding from France Telecom. Their support is most

gratefully acknowledged.

iv

Dedication

‘Co my parents, Yu &Ghun and Oheny.

Table of Contents

LISE Of FIGUEES «..uuoneeecrencrnirecesncnesesisisesssssssessssssssssosnssssessssssesassssssssssssssssssssssssssasssesssssssssss xi
LISt Of TADIES .vcvevvvctivaniniivicersrnisicararesnasaresconssnsonessesssonsenssnssssssassssstossssassseosssorssssssssssonsanss Xy
I INEFOAUCHION .nnneeeeeeneeeerenenrerererreensssneessssssaessssssossssssserersnsssssssssssssessassasessrananessssanssssse 1
1.1 Background 1
1.2 Goal of the thesis 3
1.3 Contribution of the thesis 6
1.4 Organization of the thesis 7

2 MesSAZe SEQUENCE CRATLS.....uccvevrereinenccseceieninnsiosanssssssassssssssanssssssssssesosasssssnssssosssnss 9
2.1 Introduction w9
2.2 Basic MSC 10
2.3 Structural concepts 15
23.1 COTEZIOM .ottt ettt sa e st be e e e e et e 15
232 INlINE EXPIESSIONS ...couiieririiiieieiiicteren ettt ettt e b e b satesaeesaens 16
233 High-level MSC ...ttt s 19

24 Time concepts 20
24.1 Relative constraints and MeEasUrEmMENTS.ouueueeieeeeeeieeeeieeeeeeeeeeeeereeeeeenn 21
2.4.2 Absolute constraints and MEasUTEMENTSveveeeeeerevieeeeeieeeeeeereeeeeeeeeeeaens 22
243 TIME OFFSEE oeeeeiiieeeieieeee ettt e e e e et aeeeseesassrnrenas 22
244 Time points, measurement and Intervals..........ccocccveverviiiieeeniecnescee i, 22

25 Data part in MSC 23

3 Specification and DeScription LANGUAZEcccuurersecsiossicsenceesssenseessrsssesssssssesenes 24
3.1 Introduction 24
3.2 Environment 24

4 The Existing MSC2SDL Approach

5

3.3 Agents
34 Communication
3.5 Behavior
3.6 Timer

37 Data

4.1 Background

42 The
4.2.1
4.2.2
4.2.3
424

4241
4.2.4.2
4.24.3
4244
4.2.4.5

43 The
4.3.1
432

43.2.1
4322
4323

44 Discussion
Timed MSC2SDL
5.1 Introduction

5.2 Enhanced Event Order Table

521

existing approach for bMSC

Behavioral and architecture CONSISENCYcocevevecerirerenieieerierennennes

Event Order Table...........ccccovvrvenennenne,
Occupancy Table.........ccocvevvrvneerennnnne.
Generating SDL from bMSC

...

...

SDL process instance identification and addressing............cc.ccevevene....

Mapping MSC events to SDL CONSLIUCEScoerveeereriesiecisnnreieerieennes

Timer events........ceovveevreeinvecreeenrenee.
Coregionccoccevevevceniniencenenierenne

Message overtaking..........c.cceevvveerenne.

existing approach for HMSC

...

...

Event Order Table and Occupancy Tables for HMSC.............cccveuenee.

Translation of HMSC operators............
Sequential operator..........ccccceceeeeennns
Alternative operator..........c..ccceevevnenn..

Iterative operatorcccvcervenrennnnn.

...

...

--

Enhanced Event Order Table structure

vii

26
27
28
33
34
36
36

37
38
39
42
44
44
45
45
46
46

48
49
51
52
52
56

57

59

61

5.2.2 Time requirements On €Vents in COTEZIONS......cvvvevrverererrerreeriecrnereenienens 64

523 Time requirements for inline eXpressionscccocveeriiiecennciineennene. 65
524 TIME OffSEL ..ottt sttt 67
5.3 Occupancy Table 67
54 Mapping between bMSC and SDL 71
54.1 ADSOIULE tIIME ...ttt s ene s 71
54.1.1 Absolute time CONSITAINL........cocueverrierieriirierieeirecteete e e eeenees 72
54.1.2 TiME OFfSEL ..c.ooiviiiieiieicieiee ettt ebe e nee s 73
5.4.1.3 Absolute time MeaSUTEMENLScccceruieriiireianiiarieeeeeeeeeeseceneeeneeeneenees 74
54.2 Relative tIMEooiiviiiiiiiiinicenteteeie et 75
5.4.2.1 Signal EXLENSIONcceeririeieeieeeeeee ettt et 76
5.4.2.2 Handling time variablesc.cccoeverieiieiiieceee e 82

5.4.2.3 Relative time measurements between two events in the same instance. 88
5.4.2.4 Relative time constraints between two events in the same instance 90

5.4.2.5 Relative time measurements between two events in different instances

.. 91

5.4.2.6 Relative time constraints between two events in different instances93

54.3 Time requirements in COTEZIOMNSc..cververrieieuerrenerieneeresresrestessseeseanes 95

5.4.3.1 Absolute time constraints in 8 COrEZIONcveveeerrrvereecreneereeneeerrennes 96
5.4.3.2 Relative time constraints or measurements between one event inside a

coregion and one event outside the COregionc.coceevvevvnvneeeeneeninne, 96

5.4.3.3 Relative time constraints or measurements between two events inside a

COTEZIOM ...ttt ettt er e besteebe e s be e e sae s e steeseannenberesasereneennas 98
544 TIMET BVENLS ...c.oviiiiiiiiiiicceec ettt 100
545 A complete example of translation from a timed bMSC to SDL............ 101
54.6 Inline expressions with time.............ccooieiirirnciniei e 105

54.7 Time constraints and measurements specified with other orderable events

.. 110
5.5 Prdblems encountered during translation to SDL 111
5.5.1 Time related implementabilityccccoeeevnriniiinnineceee e, 111

viil

6

7

5.5.1.1 Time COMSISIENCYccevveieimrireririrrrnnserereirisesissesesseressesesseressssesessessssesenes 111
5.5.1.2 Time-order related under-specificationsccceeeereerenererrrererenne 113
5.5.1.3 Time-inline expression related under-specificationc.cocevevevrunnen. 115
5.5.1.4 Time constraints in LOOPScccevvrvrrrrirrneinierisreieieeeiessaeeessesessesans 115
552 NON-10€al ChOICEc.oovviiiiiiiiiiciretcctc e 117
5.6 SDL Generation from timed HMSC 124
5.6.1 Translating HMSC into SDL.........cccoiiiiiniinrineeeeeesiee e 125
5.6.1.1 Event Order Table for HMSCcccccoirinnnnirnninecerecnneeeseeennns 125
5.6.1.2 Occupancy Table for HMSC.........ccooovrrmnnnneeeecceceeeeeeenes 129
5.6.1.3 Connecting SDL behavior with States............cccoeveeuevenrineeeeeennans 131
56.2 Generating SDL from timed HMSC: An example...........c.cccovevrverennee. 137
5.6.3 Non-local choice in HMSCcooovivinieiiiireicieeeeeeeee e, 142
5.7 Discussion 144
571 Shared condition as synchronization point.............c.cccccveeveevveveeeverreenennn. 144
5.7.2 Guarding conditions in MSC........ccccovvimireiinenieieeee e, 146
573 Referenced bMSC into SDL procedures...........c.cc.coevieeeeeericinierenenen. 147
5.8 Related work ... 148
The MSC2SDL2004 Tool and Case SHUAIESucueureeererererererereserersresesesesesssossan 151
6.1 Overview 151
6.2 Architecture of the MSC2SDL tool 152
6.3 Interface 156
6.4 ObjectGeode 158
6.5 Case Studies 158
6.5.1 Automatic Teller Machine (ATM) ..oooooieoe e 158
6.5.2 SRULLIE SYSTEIMevvieiiiiiiieeete e 167
6.5.3 DiSCUSSION ...ttt ettt ettt b e 179
6.6 Strength and limitations of the Tool 180
Conclusions and FULUTE WOTK...........u.cuceeveiereessssreresesesesesssesesesssssssssessssssssanns 182

1X

71 Contributions 182

7.2 Future work 183
BiBlIOGIAPRY «..coonvevivinnicriraiseisrisessssssossssassssssosssssssnessesssssssasassstosassssossssssssesssssssssassassssnsas 185
Appendix A: The Complete Algorithm for BMSC..............cucvrenesurveriensnsrisnrsnsresaesnanens 189
Appendix B: The Complete Algorithm for HMSC................uuunreenreivsurisinnsnvnssserosanens 218

List of Figures

Figure 1.1: Software process with automatic t0OlScocveveeeverrienieneinni e 5
Figure 2.1: MSC Graphical and Textual forms...........cocceiiniiniiinncniiiii s 10
Figure 2.2: BasiC MSC CONCEPLScovereriiiereiiercniieniteincic sttt s ene s ensens 11
Figure 2.3: MSC timer events and aCtiONSccevieriiierieneeneeeieenie e ssres e i 13
Figure 2.4: MSC instance creation and StOPcoccvevivteveierinecieiiniiiiiiieiesine e 13
Figure 2.5: Setting CONditiONc..covieririiiirecerreieetee ettt st e ean e 14
Figure 2.6: Coregion with general Orderingccceeciiiiiniiniiiinieieceic e 16
Figure 2.7: INliNE EXPIESSIONS ...c..cccviriiiiiniirreientiie ettt siae e ses e sia e 18
Figure 2.8: AN HIMSC ...ttt ettt e et e e st e e e br e s s sana s reaesaneeesareeennnes 20
Figure 2.9: Relative time constraint and measurementc..cocveveevureniieceerineneenioieeneeneas 21
Figure 2.10: Absolute time constraint and MeasUreMENtcceveererereerieenieeseennennens 21
Figure 2.11: Data in MISC ..ottt et 23
Figure 3.1: A simple SDL €Xample........ccoocivriiiriiiiiiiiriiiiiie et seereeseireesvenesevee e 25
Figure 3.2: Process behaviorccoueririiiniiiiniiicitene ettt 29
Figure 3.3: PHOTILY INPUL......cooiiiiiiiiieceeee et e s e e 30
Figure 3.4: Continuous Signalccceeiriirieiinieinieene et 32
Figure 3.5: Enabling CONdition.........c.coccoiiiiiiiniiiiieectie e 32
Figure 4.1: MSC2SDL apPOTACh......cciiiiiitiieiiieiieeniteerttecreeeree e seer e seree e eeeeaes s 36
Figure 4.2: Architecture consistency €Xampleccccovvvevereerieiicrieneiieoee e reeraesaeenas 39
Figure 4.3: Coregion mMappingcccceeeeeereeseeneenneeeieeneesieennns e e st e s 46
Figure 4.4: Generated process behavior in SDL of MSC for Figure 4.2(a).........c............ 47
Figure 4.5: An HMSC example with a given SDL architecturec.ccecevveeeereenennn.. 49
Figure 4.6: An HMSC sequential operator eXampleccocoevvereeeeeireioreieeereeeeeeneenens 52
Figure 4.7: An alternative operator with global condition.........................ccooooo i, 53
Figure 4.8: An alternative operator with local conditions..............ccccvevvvrevecviiriiieecne. 54
Figure 4.9: An alternative operator with no initial condition...........cccvceevvevveriiereerennenne.. 55
Figure 4.10: Process behavior for iterative OpPerator..........eceveerveerenienieesieenieennesieereenn, 56
Figure 4.11: Generated process behavior in SDL for MSC of Figure 4.5ccc......... 57
Figure 5.1: A simple MSC specification with real time requirements..............c.cueue....... 60

Xi

Figure 5.2: A timed MSC specification

..

Figure 5.3: An MSC with a timed inline eXpression.........oeveeveeerierereeneneninieeneneinns 66
Figure 5.4: An MSC With @ 100D ..o 68
Figure 5.5: MSC of Figure 5.3 with the loop unfolded..........c.cccceivneivinnccninininn, 69

Figure 5.6: An MSC with absolute time constraints and the process behavior in SDL....73

Figure 5.7: An MSC with a time offset and the process behavior in SDL........................

Figure 5.8: An MSC with an absolute time measurement and the process behavior in SDL

... 75
Figure 5.9: Example of Proper Message passing in a timed MSC..........cccocecinvnnnnncnn. 78
Figure 5.10: A timed MSC with no proper message passing for signal extension 80
Figure 5.11: Partial process behavior generated by using Variablemap...........c.ccoccruennen. 84
Figure 5.12: An MSC with relative time measurement within one instance and process
behavior in SDL ... e 89
Figure 5.13: An MSC with relative time constraint within one instance and process
behavior in SDLccoioiiiiiiciecerce e 91
Figure 5.14: An MSC with relative time measurement between two events in different
instances and the process behavior in SDL.........cccccovviviviinnineninnineenne. 93
Figure 5.15: An MSC with relative time constraint between two events in different
instances and the process behavior in SDL..........ccccooeiiiiviniinninniniinenn, 95
Figure 5.16: A timed MSC With COTEZION.......ccevviririiinieriniecie et 96
Figure 5.17: Generated process behavior in SDL for MSC of figure 5.16 98
Figure 5.18: A timed MSC with coregion and process behavior in SDL 99
Figure 5.19: An MSC with timer events and the process behavior in SDL.................... 100
Figure 5.20: A timed bMSC example with SDL architecture.........c.ccocecenivvrinernnierennan. 101
Figure 5.21: Generated process behavior in SDL for the example of Figure 5.20 105
Figure 5.22: A typical alt inline expression in MSC and process behavior in SDL 107
Figure 5.23: A typical loop inline expression in MSC and process behavior in SDL 108
Figure 5.24: A typical opt inline expression in MSC and process behavior in SDL...... 110
Figure 5.25: A timed MSC with absolute time constraint conflicts.............ccccovuevennnn... 113
Figure 5.26: A timed MSC with relative time constraint conflictsoeevvvirvennennen. 113

Figure 5.27:

An unimplementable MSC with a time-order related under-specification. 114

xii

Figure 5.28: An unimplementable MSC with a time-inline expression related under-
SPECITICALION ...ovvviiiiiiiiiiieiticictte s 114
Figure 5.29: A timed MSC With 100D....c.coccvviviiiininiiiicr e 116
Figure 5.30: MSCs with a non-local choiCec.cvvveviiniiiiiniiiniiniiii e 118
Figure 5.31: MSCs with alt inline eXpression ... 120
Figure 5.32: An MSC with non-local choiCeccccvmiviiiiiniinii 123
Figure 5.33: An HMSC SpecifiCation........cccoceeeivveniniiiiiiinniiiciiitie e 126
Figure 5.34: An HMSC specification with 2 100D........ccccceeevivviniiniiiiiiniice, 129
Figure 5.35: Loop unfolded...........ccccocvininiiiiiiniiiniiiiiiiiin et 130
Figure 5.36: An HMSC sequential scenario and generated process behavior in SDL....131
Figure 5.37: An example of MSC setting condition becoming SDL state...................... 132
Figure 5.38: An HMSC loop scenario and generated process behavior in SDL............. 133
Figure 5.39: A HMSC alternative scenario and generated process behavior in SDL..... 135
Figure 5.40: An HMSC alternative scenario with guarding conditions and generated
process behavior in SDL ... 136
Figure 5.41: A timed HMSC and given SDL architectureccooeviiviiiiiiinninnns 138
Figure 5.42: Generated process behavior in SDL for the example of Figure 5.41 142
Figure 5.43: An MSC with shared conditionc.ccceevvviniiniiniiiiiii, 145
Figure 5.44: An HMSC specification with a bMSC referenced repeatedly.................... 148
Figure 6.1: Interfacing MSC2SDL2004 with ObjectGeode..........cceevreromeneicecvcrnennnene 152
Figure 6.2: MSC2SDL2004 t00] archifeCtureccocuerverorerieineeriieeecneree e 153
Figure 6.3: MSC-2000 ParSer.........ccocierieiiinierienieerie e eneresrere e see e enne 156
Figure 6.4: The to0] interfacec.coveiiiieiiiniieiiieeeee e 157
Figure 6.5: The MSC specification for the ATM SYStem..........ccoveeereenirnienserinenennnenn 161
Figure 6.6: The SDL architecture for the ATM SYSteMcocverveeeerieneenienrieenrenennenns 163
Figure 6.7: Process behavior for ATM..........cccocviiiniiiniiiiininccncnceeeeeeennns 165
Figure 6.8: Process behavior for Bank ..o 167
Figure 6.9: The MSC specification for the Shuttle systemccccoeceerivneeceniincinnnnnnn, 169
Figure 6.10: The SDL architecture for the Shuttle system.........cocvvvinienicennncinnnnn, 172
Figure 6.11: Process behavior for Shuttlecoocviivierinieiiiiiniiiiic e, 175
Figure 6.12: Process behavior for BroKerAgent.......ccoocevvvevieriiiiiiiiininieenie e 176

Xiii

Figure 6.13: Process behavior for ShuttleEXt...........ccooevinirnvinininenccnnvien
Figure 6.14: Process behavior for BrokerAgentExt ..o,

Figure 6.15: Process behavior for Bankccccovivinniniiniiinnncnininnnee e

Xiv

Table 3.1:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 5.9:
Table 5.10
Table 5.11

Table 5.12:
Table 5.13:
Table 5.14:
Table 5.15:
Table 5.16:
Table 5.17:
Table 5.18:
Table 5.19:
Table 5.20:
Table 5.21:
Table 5.22:
Table 5.23:
Table 5.24:

List of Tables

SDL SOTES..c..viuviiiiiiiinitiirei e sa st e be e 35
Event Order Table eXamplecccovrvirneinieniieniinineenreeneeeeenesser s 42
The Occupancy Table for process P2 of MSC of Figure 4.2(a)cccc...... 44
Individual Event Order Tables of HMSC example of Figure 4.5.................... 50
Event Order Tables of HMSC example of Figure 4.5 ..o 51
The Enhanced Event Order Table of MSC of Figure 5.2 ... 64
Event Order Table with inline expression timing information 66
The Enhanced Event Order Table of MSC of Figure 5.3 ..., 67
Event Order Table for an inline expression without the loop unfolded........... 69
A local Event Order Table with the loop unfolded............ccccceniniinninnin. 70

The Variablemap Table of MSC of Figure 5.2.......cccoocviviiinininiinnincniinnnen, 88

The Variablemap Table of MSC of Figure 5.12(a).......c.cccecevveenenniceincrenincnne. 89
The Variablemap Table of MSC of Figure 5.13(a)....c.ccoceeveeevennencienieienene, 90
The Variablemap Table of MSC of Figure 5.14(a)....c.cccccevvevivienineneneninncan 92
: The Variablemap Table of MSC of Figure 5.15(a)....cccceevvviiienenieniennennns 94
: The Enhanced Event Order Table of MSC of Figure 5.16cccccvvvennennn. 97
The Variablemap Table of MSC of Figure 5.16(a)........ccccccvveeninecrninnnnnns 97
The Variablemap Table of MSC of Figure 5.18(a).......cccccecvevvivrnirinennnenne. 100
Enhanced Event Order Table of MSC of Figure 5.20(a).......c.ccceevvenvnnnne. 102
Occupancy Tables of the example of Figure 5.20ccccovevvevrvencvncrinneennn. 103
Variablemap Table of the MSC of Figure 5.20(a)........ccccooevervveenrerennnne, 103
Enhanced Event Order Tables of individual bMSCs of Figure 5.33 127
All pair shortest path for the HMSC example of Figure 5.33...................... 127
An intermediate Event Order Table of HMSC of Figure 5.33.................... 128
The global Enhanced Event Order Table of HMSC of Figure 5.33............. 129
A local Event Order Table for an unfolded 100Dccccveveecvveeecniineneee. 130
Individual Enhanced Event Order Tables of bMSC of Figure 5.41............. 139
All pair shortest path for the HMSC of Figure 5.41ccccoovvvivivvrivvinnnnen.. 139
Enhanced Event Order Table of HMSC of Figure 5.41.........cccccooueennnne.... 140

XV

Table 5.25: Occupancy Tables of example of Figure 5.41c.ccooovvvvicinivicniiiiniinnn

Table 5.26: Variablemap Table of HMSC of Figure 5.41

XVi

...

Chapter 1

Introduction

1.1 Background

Software process is referred to as the sum of all software activities, encompassing the
entire software life cycle [13]. This process involves a collection of principles,
methodologies, methods and techniques. There are major phases in most software process
models, namely analysis and requirement, design, implementation, testing and
maintenance. Each phase has its own goal and defined products. In the analysis and
requirement phase, software engineers gather requirements from the clients/users, specify
software features and also prioritize them. The output of this phase is a system level
document describing what the software system does, its constraints and performance
requirements. Usually high level test cases may also be obtained in this phase as well.
The document may be written in an informal language or in a formal language. The
requirement documents are used as input of the design phase. This phase basically
defines a solution to the requirements. It includes an architecture of the software system,
modules in the system, and interfaces between the modules. In the implementation phase,
the design is coded in a concrete programming language. Testing comes as the next
phase; the produced software is tested to ensure its conformance to the functionality and
performance requirements specified in the requirement documents. Maintenance is

conducted during the entire software life for modifications and updates.

Because of the rapid growth of software system scale and the increase in the complexity
of problems that software tries to solve, software processes need to be more formal and
systematic techniques must be developed and deployed in order to render engineering
processes more efficient and less error-prone. Especially, real time distributed software
systems such as in the telecommunication domain, where scenarios get more complex
since there are different modules running independently, perhaps on different sites.
These modules interact and coordinate with message passing, and each module has its
own timing. Consequently, system requirements are more difficult to capture, and design
processes become more complex. To ensure the correctness and performance of such a
software process, some formal methods have been introduced specially for the

requirement and design phases.

Formal methods are the mathematics and modeling applicable to the specification,
design, and verification of software processes. Formal methods include formal languages,
techniques and tools [14]. Consequently, specifications and models that precisely
describe all or part of a system’s behavior at various levels of abstraction can be
developed. Formal methods clearly define the semantics of the requirement and design
specifications so that they can be transformed to implementation more easily. Some other
advantages of the precise descriptions include automatic validation and verification of the
specification against some reference models and ease of redesign and maintenance

processes. Some formal languages are widely used for Telecommunication software

engineering, such as SDL [4], MSC [5], and Tree and Tabular Combined Notation

(TTCN) [21].

MSC is a formal language standardized by the International Telecommunication Union
(ITU). It is used to specify behaviors of system components and environment by means
of message exchange [1]. MSC has textual and graphical forms and it supports both
incomplete and complete specifications. The latest version of MSC is MSC-2000, which

bears significant extensions from its predecessors.

SDL, the most widely used formal language, is also standardized by ITU. It is based on
the communicating Extended Finite State Machines (EFSM) model. SDL defines the
required system behavior or the actual system behavior in a stimulus/response manner [2]
with either textual or graphical forms. With supporting tools such as TAU SDL Suite

[20], an SDL design specification can be converted into an implementation.

MSC and SDL are generally used together. Not only does MSC provide the requirement

document for design using SDL, but also it can be used to generate test cases.

1.2 Goal of the thesis

As explained before, a software process goes through several phases. The documents
produced in one phase are used as input for the next phase. Therefore, some transitions
need to be performed when moving from one phase to the next. Usually this transition is

done manually, that is, software engineers analyze the requirement specification

document, and come up with a design to solve the problem specified in the requirement
phase. Then, the design is elaborated and coded. The transition process is likely to
introduce some errors. Based on formal methods, some engineering tools have been
developed to automate the transition steps. For example, ObjectGeode [12] can generate
high-level language code in C++ or Java from a well designed SDL design specification.
Since SDL is a formal specification language, the design can be verified more easily
against the requirements and translated into code without error. Therefore, in the
telecommunication software processes, the work from design to implementation has been
automated, which reduces the amount of effort for the software developers; and, at the

same time, the produced code is less prone to error.

Similarly, we consider the transition from the requirement specification to the design
specification can be automated as well. When the requirement is specified in a formal
language such as MSC, then correctness and consistency can be verified. If the MSC
specification is correct, we can map it into a formal design specification such as in SDL.
Figure 1.1 shows the transition between phases of software process with automatic tools.
Researchers have been working on developing such approaches to generate automatically
the design from the requirement. The telesoft group at Concordia University devised an
approach and developed a tool for generating SDL design specifications from MSC

requirement specifications and a given target architecture [2] [7]. The reason for choosing

MSC and SDL is that they are compatible languages and both of them are widely used in

Telecommunication. The work done so far by the telesoft group was based on MSC-96. It

guarantees the correctness of the design, and consistency between the SDL specification

and MSC specification. The need for validation has been eliminated.

Figure 1.1: Software process with automatic tools

The MSC language has evolved and time concepts have been introduced in MSC-2000.
This enables real-time requirements to be specified in MSC. The existing approach and
tool do not handle time concepts. Translating timed MSC specifications into SDL

specifications has become a new challenge.

Building on the existing framework, this thesis presents a new approach for handling
real-time requirements in MSC, and generating SDL specification from timed MSCs with
a given target design architecture. We have analyzed and classified different types of time
constraints and measurements. In order to incorporate time information into the
framework, the new approach has extended the existing internal structures and added new
structures. We have devised new algorithms for analyzing semantics of timed MSC

specifications, building necessary internal structures, detecting semantic errors, and

generating process behaviors in SDL. We have built the new MSC2SDL tool with the

new approach and experimented with case studies.

1.3 Contribution of the thesis

The existing approach initiated in {2] derives SDL process behaviors from a set of MSCs
with a given SDL architecture. The approach ensures, by construction, consistency
between the SDL specification and the basic MSC (bMSC) specification [2]. Therefore,
no validation is needed for the SDL specification against the requirements specified in
MSC. The approach also prevents deadlocks that may be introduced during translation.
This approach has been extended in [7] to handle MSC timers, coregions, message

overtaking, and high level MSC (HMSC) operators.

MSC-96 has evolved into MSC-2000 with time concepts. System designers can specify
time constraints and measurements associated with events, which represent a crucial
aspect of Telecom Software. The existing approach does not handle this aspect and our
goal is to develop an approach so that the design specifications can be generated
automatically from the requirement specifications for real-time software systems. We
first studied and categorized MSC time constraints and measurements. In order to
incorporate time concepts, we re-designed the internal structures of the existing
framework. Then, we devised the mapping from MSC time concepts to SDL constructs
and an algorithm for generating SDL specifications from timed MSC specifications.

Moreover, a non-local choice detection technique for bMSCs and an extension for

detecting non-local choice for HMSCs were introduced. We also built a compiler for a

subset of MSC-2000, and implemented our new approach in the MSC2SDL tool.

The achievement of this work is not only an extension of the existing approach; it also
introduces real-time requirements into the picture and handles the associated thorny
issues. The contribution bridges the gap between the requirement and design of real-time

software system.

1.4 Organization of the thesis

The rest of the thesis is organized into six chapters.

Chapter 2 gives an overview of the MSC language and focuses on MSC time concepts.
Chapter 3 introduces the SDL language.

Chapter 4 describes the existing approach for generating SDL specifications from MSC
specifications as presented in [2] and [7]. First of all, an overview of the existing
approach is presented, including the internal structures and the mechanism how bMSC
and HMSC concepts such as events, coregion, HMSC operators are handled. Then, the
limitations of the approach are discussed.

Chapter 5 presents the complete approach for handling time concepts. We first analyze
the time constraints and measurements in MSC. Then, we present our techniques for
handling them using some extended or added internal structures, and for translating them
into the eqpivalent SDL constructs. Next, the study of HMSC is presented. Moreover, the
technique for handling inline expressions is also presented and discussed. Finally we

finish this chapter by discussing some time related issues and the related work.

Chapter 6 presents the implementation of our approach, the MSC2SDL tool. It includes
the compiler for a subset of MSC-2000, and the SDL generator for timed MSCs.
Interfaces of the tool and two case studies are also presented in this chapter.

Chapter 7 summarizes the results and contributions of the thesis, as well as the possible

future investigations and expansions.

Chapter 2

Message Sequence Charts

2.1 Introduction

MSC is a powerful and expressive language to describe interactions among system
components. It is standardized by the International Telecommunication Union (ITU); its
latest version is MSC-2000 [5]. MSC is a formal language with two forms: textual and
graphical. An MSC specification defines the order of events occurring in different
instances, as well as the timing constraints on those events. MSC also supports some
structural concepts. MSC has gained in popularity among telecommunication software
engineers. They are not only used to capture the requirements, but also to specify test

cases, and performance constraints of the systems.

In this chapter, we give a brief introduction to bMSC, MSC structural concepts (including
HMSC) and Time Concepts. A complete description of MSC can be found in
recommendation Z.120 [5]. Figure 2.1 shows a simple MSC specification in both

Graphical (MSC/GR) and textual (MSC/PR) forms.

msc msci
b

mi

.
L

[process P1 |

m2

——

msc mscl;

I1: instance process P1;
in ml from env;

out m2 to env;
endinstance;

endmsc;

As we can see, MSC/GR describes typical scenario(s) in an intuitive way. It is easy for
designers to specify behavioral requirements and understand them. MSC/PR is an
alternative way of describing system behaviors. It is easy for the automatic tools to

manipulate specifications in MSC/PR form. For the illustration purpose, we use MSC/GR

in this thesis.

2.2 Basic MSC

A bMSC describes behaviors of parallel processes and asynchronous message exchanges

among them. We will introduce the instance, environment, message, action, timer events,

Figure 2.1: MSC Graphical and Textual forms

instance creation, instance stop, condition and ordering concepts.

10

bMSC name Instance name

‘/ /\ Entity type

msc Basi::MV x
b 12

ljrocess1 I | process2‘1 Environment
moO >
/ m1 _ /
L // g m2
Messagesl]]

Figure 2.2: Basic MSC concepts

Instance

MSC is about behavior of instances and interactions among them as well as with their
environment. An instance can be of some process type; it has its own behavior that is
independent of other instances. Messages are sent from one instance to another. An MSC
instance might be an SDL system, block, process, etc. MSC instances play a key role in
the MSC specifications. In the graphical form, an instance has an instance head, an axis
symbol, and an instance end symbol. The semantics of these elements are: the instance
head symbol determines the start of the description of an instance within an MSC. It does
not describe the creation of the instance. Correspondingly, the instance end symbol
determines the end of the description of an instance within an MSC. It does not determine
the termination of the instance. Events on one instance axis are totally ordered from top
to bottom. Examples of instances, I1 and 12 are shown in Figure 2.2.

Message

Message is the means by which instances communicate with each other. A message has a
sending event and a receiving event. The output and input relation provides a total order

assumption between these two events. Both sending and receiving of messages can

11

happen in instances or environment. In the graphical form, a message is represented by an
arrow from its output to input (see Figure 2.2). In textual form, keywords before and
after can be used to define an ordering of message events on different instances.
Environment

An MSC has an environment. Instances may interact with the environment through
message exchange. There is no control on the behavior of the environment. However, an
assumption that the environment cooperates properly with the MSC specification is
agreed in general. There is no order among message input and output events that happen
in the environment. In the MSC graphical form, the environment is represented by a
frame that is the boundary of an MSC specification as shown in Figure 2.2

Action

Actions are atomic events that represent some internal manipulation within an instance.
There are two types of actions. The informal actions are associated with informal text
enclosed in a single quote, and the formal actions are specified with one or more data
statements. These statements may be binding, etc. Figure 2.3 shows two actions, one is a
formal action that binds O to variable a; the other is an informal action, which is in the
form of a string, ‘processing’.

Timer events

Timers can be used in MSC specification to define certain time related requirement.
There are three kinds of timer events, namely, starttimer, stoptimer and timeout. When
started, a timer is set to a duration (if the duration is not specified, then the default value
from mscdocument is used). After the time specified by this duration elapses, a timer

encounters a timeout, hence consumption of the timer signal. However, before timeout

12

happens, this timer can be stopped. Any starttimer event must be matched by a timeout or
stoptimer events, even though they can be appear in different MSCs. In Figure 2.3, timer
T1 is started in instance I1 and then it is stopped. In instance I2, timer T2 is started, and

after the default time duration passes, it timeouts.

msc bmsc
msc bmsc 12
" 12 5o
l process P1 | [process P2 | ’_p@___j
mi 4 13

a:=0
m1 - | | pem—— >‘ process P3
T1[100] ‘
% T2 m2_

T1 ¢— @I ‘processing’

Figure 2.3: MSC timer events and actions Figure 2.4: MSC instance creation and stop

Instance Creation

In MSC, an instance may be created by another instance. No events can take place in a
created instance before its creation. Figure 2.4 shows an example in which instance 12
creates instance I3.

Instance Stop

The instance stop is the counterpart of the instance creation. When it stops, an instance
terminates its lifetime. In Figure 2.4, after sending message m2 to the environment,

instance I3 terminates its execution.

13

Condition

Conditions are allowed in MSC to restrict traces. There are two types of condition:
setting and guarding conditions. A setting condition sets a state either global for all the
instances or non-global for a subset of instances only. A guarding condition restricts the
behavior of an MSC by only allowing the execution of events in a certain part of the
MSC depending on the guard’s value. Guarding conditions are usually used in inline
expressions that we will introduce in later sections. Figure 2.5 shows setting conditions.
Starting is a global condition and Processing is a non-global condition set by 12 after

receiving the message m1l.

msc bmsc
11 12
process P1 process P2

<I Starting l>

m1

Figure 2.5: Setting condition

General Ordering
The order of events in MSC is determined by three rules, 1. Events on the same instance

are ordered according to their positions along the instance axis; 2. A message-sending

14

event always precedes its corresponding receiving event; and 3. The events happening on
the created instance are behind its creating event.

However, MSC allows ordering events, which are usually used in coregion to specify
some desired order among events in such an order-relaxed region. General ordering is
defined by the keyword before and after in the textual form, and it also has its graphical

representation. An example will be given after we introduce the coregion concept.

2.3 Structural concepts

MSC provides some structure constructs to allow for more complex specifications. We

present here a brief introduction to these structures.

2.3.1 Coregion

As mentioned previously, the order among events in one instance is totally specified
according to the positions of these events in the axis. However, the order among events is
relaxed or partially specified in a coregion. This is useful when the order of events is not
yet defined and may be refined in the future. In Figure 2.6, there is a coregion in instance
I2; receiving message m2, receiving message m3 and sending message m4 are in this
coregion. Then, these three events are not totally ordered by the instance axis. They can
be in any order except that receiving m2 must precede sending m4 since a general order

is specified between them in instance I1.

15

msc msc1
i 2
| process P1 process P2 I
m1
>
m2 >Il__: m3
B {
m4 !
]

Figure 2.6: Coregion with general ordering

2.3.2 Inline expressions

There are five kinds of inline expressions, which allow designers to specify more
complex behaviors.

The seq operator represents the weak sequencing operation for sequential composition of
MSCs. A guarded seq operand with a false guard is dynamically illegal.

The par operator defines the parallel execution of MSC sections. All events in the MSC
parallel section are executed. However, only the order among events within each operand
is preserved. If all guards of all operands are evaluated false, then par-expression
becomes empty.

The opt operator is an optional section for the MSC to execute. If the guard for opt
section is evaluated false, then this optional section is not executed. Otherwise, it is
executed.

The alt operator defines alternative scenarios. Only one of the operands is executed. If all

guards are false, then the specification is dynamically illegal. However, if there is more

16

than one operand having true guard values, at run time, MSC randomly executes one of
them. Another case is that one operand of alt can be guarded with the keyword
otherwise, which is the complement of the conjunction of all guards in other operands.
The loop operator defines an iteration scenario. Event sequences inside of a loop are
executed repeatedly to the specified times. If no loop boundary is specified, MSC uses
some default values. If the boundary is specified as a range, then the loop is executed a
number of times within the range.

The exc provides a facility for specifying exceptional cases in MSC. If the execution
enters exc section, MSC terminates after execute all events inside this section. Otherwise,
MSC executes the rest of the section. An exc section must be shared by all instances in
the MSC.

Examples of inline expressions are shown in figure 2.7. In figure 2.7(a), the alt inline
expression has two operands. One is instance 11 sends message ml to instance 12; the
other is instance I2 sends message m2 io instance I1. Only one operand can be executed.
In figure 2.7(b), a loop inline expression is specified. The scenario that instance I1 and I2
exchange message ml and m2 is executed repeatedly. In figure 2.7(c), the opt inline
expression has a guarding condition, if this condition is evaluated true, the opt inline
expression is executed. In figure 2.7(d), an exc inline expression is specified. If an
exception occurs after instance I1 receives message mO from instance 12, I1 sends
message ml to 12. Otherwise, I1 sends m2. In figure 2.7(e), the par inline expression
describes two paralle]l execution traces. One is instance I1 send message m1 to instance
12, the other is instance 12 send message m2 to instance Il followed by Il sending

message m3 to 12.

17

msc Alt msc Loop
I 12 I 12
| process P1 | process P2 I process P1 | process P2
alt m1 . loop mi
P m2 m2
] I []
(a) (b)
msc Opt
" 2 msc Exc
I 12
rocess P1 rocess P2
[opt] P mo
<when needed > mi "
o m1 _
P m2 m2 -
E— W—— —— ——
(© @
msc Par
}] 12
| process P1 | process P2
ar
| par| m -
P m2
m3
I I
(e)

Figure 2.7: Inline expressions

18

2.3.3 High-level MSC

HMSC provides a means to graphically combine a set of MSCs. An HMSC is a directed
graph. Its nodes can be a start symbol, an end symbol, an MSC reference, a condition, a
connection point, or a parallel frame [5]. In addition, HMSC provides four operators to
structure referenced MSCs in sequential, parallel, alterative, or iterative manner. They are
similar to the corresponding operators in Inline expressions. HMSC describe a system
hierarchy that can contain both bMSCs and HMSCs. Figure 2.8 shows an HMSC
example, where m1, m2, m3, and m4 are bMSCs or HMSCs. The control flow goes to
m1l after interpreting the start symbol. An alterative operator following m1l directs the
control flow to m2 or m3. There is also an iterative operator, specifying a free loop from

m2 to m1. The end symbol is interpreted after executing m4.

The end symbol is not compulsory; an HMSC does not need to have it. Conditions can
also be used in HMSC to indicate global system states or guards and impose restrictions

on the MSCs that are referenced in an HMSC specification [5].

In an HMSC, the components of MSC are connected process by process according to the
weak sequencing semantic. For instance, if both m3 and m4 are bMSCs and contain a
common process P; an event el in P in m3 and another event €2 in P in m4, then el
precedes e2. However, the order of events on different processes is not specified, unless it

can be implied through weak sequencing semantic and temporal order rules.

19

msc hmsc V

Figure 2.8: An HMSC

2.4 Time concepts

Time concepts are introduced in MSC-2000 to support the notion of quantified time for
the description of real-time systems with a precise meaning of the sequence of events in
time. Time constraints can be specified in order to define the time at which events may
occur. The progress of time is represented explicitly in a quantified manner, i.e. the traces
of events are enhanced with a special event that represents the passage of time with
quantitative time values. Classical MSC, disregarding time, can be interpreted as a set of
traces of events. When time concepts are introduced, the event traces are a subset of those
of untimed MSC. The time progress (i.e. Clocking) is equal for all instances in an MSC.
Moreover, all the clock values are equal, i.e. a global clock is assumed [5]. According to
MSC semantics, MSC events such as message input/output, timer events and actions are
instantaneous, i.e. they do not consume time. Time concepts can be used in MSCs in two
manners: absolutely or relatively. The absolute time represents the global clock value of

the specified system. The relative time represents the time distance between pairs of

20

events. Furthermore, time can be measured and also be used as constraints to pairs of

events. The time concepts permit more refined MSC specifications.

2.4.1 Relative constraints and measurements

A relative time constraint is a requirement defined between a pair of events, i.e. the time
distance from the preceding event to the subsequent event. A relative time measurement
measures time distance from the preceding event to the subsequent event in Figure 2.9; a
relative time constraint is specified between event €0 and el. A relative time
measurement is specified between event €0 and e2; the measurement result can be used in

the following specification to constraint other events.

msc Relativetiming msc Absolutetiming offset 30
b 12 I
l process P1 process P2 | process P1
et mi _
@[3.4] [gy
e2
[3.6]
el
——b et m2 e3
Figure 2.9: Relative time constraint and Figure 2.10: Absolute time constraint and
measurement measurement

21

2.4.2 Absolute constraints and measurements

An absolute time constraint is defined for one event as the global clock value at which
this event happens. An absolute time measurement measures the occurrence time of an
event. For example, an absolute timing is specified for event el in Figure 2.10, which
requires event el to occur at absolute time in the range [3, 4]. Moreover, an absolute time

measurement is also specified for el, which measures its occurrence time.

2.4.3 Time offset

A time offset can be assigned to an MSC, which is used to offset all absolute time values
within that MSC. In Figure 2.10, MSC Absolute timing has an offset 30, and then the

absolute constraint for el actually becomes [33, 34].

2.4.4 Time points, measurement and intervals

These two concepts are used to define semantics for time constraints and measurements.
In terms of absolute time constraints or measurements, they are always referred as time
points, which are the absolute global clock values. As far as relative time constraints are
concerned, a time interval is referred, which represents the time distance between two
time points. Time points and time intervals can also be measured as described in the
previous sections. In Figure 2.10, the absolute time constraint for event el is specified as
a time point, which should fall into the absolute time range [3, 4]. While in Figure 2.9,
the relative time constraint specified between €0 and el is refereed as a time interval,

which should be in the range [3, 6].

22

2.5 Data part in MSC

MSC-2000 also introduced data concepts [5]. Basically data can be used statically or
dynamically [5]. Designers can declare messages, timers with parameters, as well as
dynamic variables in the MSC document. Data can be manipulated in binding through
message passing or actions. Data can also appear in a condition expression, a time
constraint or as timer duration. The usage of data in MSC is very important in our study
of translating time requirements into SDL and non-local choice detection. Figure 2.11
shows an example of MSC data usage. A variable called “a” first is used in a guarding
condition to restrict the execution of the MSC specification. Then, its value is bound to a
variable called “b” in another instance through a message passing. Finally, the MSC

increments the value of variable “b” by one with an action box.

msc data
1 12
| process P1 I process P2
< _whena>5 >
m1(a=:b)
I T

Figure 2.11: Data in MSC

23

Chapter 3

Specification and Description Language

3.1 Introduction

SDL has been standardized by ITU. Its latest version is SDL.-2000 [4]. This language has
been defined for unambiguous specification and description of reactive systems. SDL
specifications consist of behaviors, data description and structure [4]. The basic behavior
description is based on the Extended Finite State Machine (EFSM) model. Data
description is based on abstract data types. Abstract Syntax Notation One (ASN.1)
language [16] has been added into SDL standard for data description. The structure
consists of a set of hierarchical blocks and processes, communicating through signal

channels. In this chapter, we review SDL concepts important to our study.

3.2 Environment

SDL Systems interact with their environment. The behavior of the environment is non-
deterministic, but by assumption, it cooperates with SDL systems. Figure 3.1 (a) shows

an example of the environment, which is indicated by the boundary of the system.

24

system sys

(m3]
ch

(m3]
2

signal m1, m2, m3;
signal md;
(m1] [m2]
ch1

(a) System Level

environment

block B1

[md]

[m4]

' ch?

(b) Block level

process P1

U

‘start’

.

]

m4

processing’

g

(c) Process level

Figure 3.1: A simple SDL example

25

3.3 Agents

In SDIL-2000, an agent is defined as one or a set of entities, which have their own
variables, procedures, state machines and some contained agents. Agents can be
classified into three types:

System

A system is the outmost agent. It contains signal definition, channel definition, data
types, and other agents. A system is separated from the environment with the system
boundary. Agents inside of a system may interact with the environment though signals
conveyed by channels. Inside a system, agents may also interact with each other as well.
In Figure 3.1 (a), system sys contains some signal declarations, block agents, and
communication channels.

Block

The blocks are the key components for SDL providing hierarchical architecture to system
specifications. A block is contained in a system or another block. It may contain
processes or one or more blocks. Therefore, blocks are used as containers of other agents.
Inside a block, signals, channels, data types and agent types can be defined. And the
communication among contained agents and outside agents can be achieved through
channels and signals. As an example shown in Figure 3.1 (b), the block B1 was contained
In system sys; it contains two processes P1, P2, and communication channels as well.
Process

Processes define the behavior of a system. In SDL, a process is represented as an EFSM.

A process instance can be created in the system initially when the system starts, or by

26

some other process instances during its execution. There may be multiple instances of
one process type existing in one system.

Processes communicate with one another through signals sending and receiving. Each
process instance has its own identity (pid), memory space, variables, states, etc. We can
see in Figure 3.1 (b), two processes P1 and P2 communicate with each other through
channel ch3. Figure 3.1 (c) shows behavior of P1.

A process identifies itself with the keyword self, and the process instance that has created
it, as parent. Moreover, every process has an input queue for received signals. Normally
this queue is First-in First-out (FIFO). However, when some signals have priority, then
such signals can be selected and consumed from the queues without respecting FIFO
order. A sending process instance of a signal can be identified by the keyword sender.

There are two process instances in Figure 3.1 (b), and Figure 3.1 (c) shows P1’s behavior.

3.4 Communication

Communications among agents are done through channels using signals.

Channel

A channel represents a transportation path for signals. It has a FIFO queue. It can be
unidirectional or bi-directional. A channel can connect two agents or one agent with its
environment. Signals conveyed by channels are delivered to their destination, the
endpoint of the channel. For example, channel ch3 in Figure 3.1 (b) is a bi-directional

channel that conveys signal m3 in both directions.

27

There are two types of channels in terms of delay time. Some channels transport signals
without delay and are denoted by NODELAY. If a channel has a delay, then the delay is
non-deterministic.

Signal

A signal is a message instance that travels from one agent to another. It can be sent or
received by either an agent or environment; m1, m2, m3, and m4 are examples of signals

in Figure 3.1.

3.5 Behavior

SDL system behavior is composed by the set of process behaviors. For specifying process
behaviors in form of EFSMs, there are defined constructs. Figure 3.2 shows common

oncs.

28

Start

node

Signal input
N

Signal save

Reset timer

process P1 -—

Q timerT; j‘
[set (now+5, T) |/

Declaration

/

- Settimer

states

-
‘

\

Task

Instance creation

— | ‘process mt1’

- /T l<

\L reset (T) l connecting
I

l

Process stop
\

> P2

Figure 3.2: Process behavior

29

Start construct is the starting node of a process in SDL. When a process instance is

created, this node is interpreted at the starting point of the execution.

States represent status of EFSMs. A trigger can cause an EFSM to transit from one state
to another after a series of actions. There are three types of triggers, namely input,
Spontaneous signals, and Continuous signals. An Input has higher priority in terms of
consumption over a Continuous signal within a state. However, there is no further

priority defined among the three types of triggers so that in some cases, transition from

one state may be non-deterministic when more than one possible transition exists. Same
states can be specified in different places, this is useful sometimes to provide clear
specifications.

Input

An input allows the consumption of the specified signal instance provided that the signal
is in the input queue of the process instance. In addition to being a trigger for a process to
transit from one state to another, the interpretation of input binds the data conveyed by
the signals to variables in the receiving process instance address space. A signal also
carries the pid of the sender process instance so that it is known to the receiver upon the
signal consumption. An input originates from one instance would carry a different pid
from any other process instances in the system.

Priority input

In one state, more than one input trigger can be specified. In the case that some input
signals are favored, Priority inputs are convenient to express that the reception of one or
more signals take the priority over that of other signals. For example, in Figure 3.3, ml

has priority to m2, and then as long as m1 is in the input queue, it is consumed before m2.

process P

Figure 3.3: Priority input

30

Save

The semantics of consumption of the signals in the input queue defines that if the signal
at the head of the queue is not specified for consumption in a state, then it is discarded. In
some cases, if such signals may be useful for the system transitions in the future, then
save constructs can be used to retain desired signals in the queue and the signals
following them can still be consumed before them.

Continuous signal and enabling condition

A continuous signal is a trigger with a boolean expression for an SDL state. When the
boolean expression is evaluated true, the transition is triggered without the need of
consuming a real signal. Since signal inputs have higher priority, this happens only when
there is no real signal that matches the input signal list of such a state. The boolean
condition used in a continuous signal can also be used to enable consumption of an input
signal or a spontaneous transition. In this case, it is called enabling condition. Only if the
condition specified following an input signal or a Spontaneous transition for a state is
evaluated true, can the transition be triggered. Figure 3.4 shows a continuous signal. If
the condition is evaluated true, then the process will transfer from states s1 to s2. While
in Figure 3.5, the enabling condition is imposed on the input signal m1. Only when the
condition is evaluated true, upon the consumption of ml, does the process makes its

transition.

31

process P process P

m1

< enabled >

< enabled >

Figure 3.4: Continuous signal Figure 3.5: Enabling condition

Spontaneous transition

A spontaneous transition specifies a state transition without any signal consumption. In
fact, none is used as the input clause; and sender expression contains self. The activation
of a spontaneous transition is independent of the presence of signal instances in the input
queue.

Task

Tasks are internal manipulations inside a process. Usually they are used for data bindings
or informal tasks in the form of text. An example can be found in Figure 3.2.

Create

A process instance may create other instances. Created instances have keyword self
containing their new pids; and a parent instance has its offspring containing the created
instance’s pid. Create cannot create more instances of one type than the specified number

in the definition. In Figure 3.2, process P1 creates a process instance of P2.

32

Output

Process instances use output constructs to send messages to other instances. An output
usually has two ways to address the destination instances: direct addressing, specifying
the destination instance pid; and indirect addressing, specifying a channel by which a
signal needs to go through. If there is more than one channel that carries the signal, the
specification is ambiguous.

Decision

A decision construct is used to branch transitions according to some conditions. For one
condition, there may be multiple answers and each of them leads to a separate transition.
Answers can be formal or informal (in text). Whenever one answer is evaluated true, the
transition may take the corresponding branch. However, if there is more than one answer
evaluated true, the transition will be nondeterministic.

Stop

A stop causes an agent to terminate. This termination means that the agent ceases to exist
and all its memory space is released. The last construct in Figure 3.2 is the stop for

process P1.

3.6 Timer

Timers are objects that belong to a process instance. They are used to specify a time
interval. When the specified interval has passed, a timer signal is generated and inserted
into the instance input queue. Then the process instance can consume this signal as any
other input signal.

There are two timer actions:

33

Set Starts a timer with a specified time interval, the timer becomes active.
Reset Stops a timer before or after it expires. This action makes the timer inactive. If

the timer has already expired, then its signal is removed from the input queue.

3.7 Data

In order to handle the time concepts, we need to include the SDL data part (especially
data carried by signals and data bindings in action boxes) into our approach.

Here we give a brief introduction to SDL data types. SDL uses the concept of abstract
data types. Data types are called sorts in SDL. As in high level programming languages,
SDL provides users some pre-defined sorts, and also allows new sorts to be created.
Table 3.1 shows SDL pre-defined sorts. Sorts can be defined at any level, system, block
or process, and they can be used by any entity in the same level or in a sub-level. SDL
signals, Timers and variables should be declared before they can be used. SDL signal
names should be declared at the system level or block level with the keyword signal (e.g.,
signal m1, m2 ;). SDL timers are declared within the owning process scope with the
keyword timer (e.g., timer T1 ;). SDL variables are declared within the process scope

with the keyword dcl (e.g., dcl a, b integer ;).

34

Pre-defined sorts | Examples

Boolean True, false

Integer 1, -3, 2004
Character ‘a’, ‘0O, ‘%, ‘6
Charstring “processing”, “SDL”
Time 3,0,102

Real 3.14,-1.745,2
Natural 1,2,3

Duration 8,20

PID (Process id) | null

Table 3.1: SDL sorts

Moreover, ASN.1 has also been added into SDL data part. One can use ASN.1 or even C

language to describe data for an SDL system.

35

Chapter 4

The Existing MSC2SDL Approach

4.1 Background

In a previous research work, researchers from the telesoft group at Concordia devised an
approach and developed a tool for generating SDL specifications from MSC
specifications. This approach, initially introduced in [2], translates a bMSC specification
with a given SDL architecture into SDL process behaviors. Essentially, the bMSC
consists of instances that exchange messages. Then the initial approach has been
extended in [7]. Instead of handling just message input and output events, the extended
approach incorporated more types of bMSC events and HMSCs. The existing approach
guarantees correctness of the design, and consistency between the generated SDL
specification and the given MSC specification. The need of validation of the design
specification against the requirement specification has been eliminated. Figure 4.1

illustrates this approach.

Specification in MSC SDL architecture

i MSC2SDL

/

Specification in

Figure 4.1: MSC2SDL apporach

36

The MSC2SDL approach is based on MSC 96. It handles various MSC events and
structures, such as message input/output, action, timer events, instance creation, coregion,
and HMSC. The approach takes MSCs and generates process behaviors in SDL. It
bridges the gaps from the requirement to the design of software processes. The existing
approach also has its limitations. First, it does not handle MSC inline expressions and
parallel operator of HMSCs. Second, it does not handle the newly added concepts in
MSC-2000: Time and Data. We review the existing approach in the rest of this chapter,

since it is the framework on which our work is based.

4.2 The existing approach for bMSC

The existing approach first checks the architecture consistency between an MSC
specification and a given SDL architecture, and then generates SDL process behaviors.
The translation from bMSC events to SDL behavior constructs is mostly based on a
mapping scheme. In order to prevent possible deadlocks of the generated SDL system,
the approach also builds two tables. One is used to keep track of the order among bMSC
events, and the other is used to keep track of all signals that may be in the input queue of
a process upon its consumption of each signal. With these two tables, the approach
analyzes possible receptions in each state of a process and preserves useful signals for
future consumptions, which would be discarded otherwise. To better illustrate the

existing approach, we will use an example.

37

4.2.1 Behavioral and architecture consistency

In software processes, documents produced in each phase need to conform to those of the
previous phases to ensure the correctness. In telecommunication software design, an SDL
specification usually needs to be validated against its MSC specifications to ensure the
behavior consistency between the requirement and the design. For the purpose of
generation, the existing approach states that an SDL specification is consistent to an MSC
specification in their behavior if and only if the set of traces defined by the MSC is
included in the set of traces of the SDL specification [7]. Since the approach implements
the MSC specification with SDL so it ensures the behavioral consistency between the

SDL specification and the MSC specification.

On the other hand, to make sure that the MSC can be implemented in the given SDL
architecture, the architecture consistency has to be checked:
All processes described in the given MSC are present in the given SDL architecture.
There is a channel connecting the sending and the receiving processes in the given

SDL architecture for each message exchange described in the given MSC.

For example, Figure 4.2(a) and (b) give an MSC specification and an SDL architecture
respectively. We say that they are consistent from architecture point of view. Since for
each process in the MSC specification, there is a corresponding process in the
architecture; and for each message in the given MSC, there is a channel conveying the

signal from the sender to the receiver.

38

msc example

Nl 12

I process P1 process P2 biock B
el |« 2 e3 13
--------- >| process P3 fa]
e4 b » €8
Ti5] €5 a > €9
d - e10
e2 e7
L] | [

(2) (b)

Figure 4.2: Architecture consistency example

Moreover, the SDL architecture may consist of more processes and routes than those
required by the MSC specification. For instance, if in the Figure 4.2(b), there is a process
P3 in block B and some channels connecting P3 with other processes, we still consider

the MSC specification and the SDL architecture are consistent.

4.2.2 Event Order Table

Messages in MSCs are explicitly specified, and the order of the sending/consumption
events with respect to their instances is specified [7]. However, MSCs do not specify the
actual arrival order of the messages into the input queue of the destination processes.
Rather, the order depends on the underlying architecture and the process behaviors
interleaving. On the other hand, SDL processes implicitly discard signals, which are in
the front of their input queues, and are not expected in the current state. These discarded
signals may lead to a deadlock if they are needed in the next states [7]. For instance, in

Figure 4.2 (a), the MSC specifies that instance I2 consumes message ¢ before message d.

39

However, since message ¢ and d are sent from instance I1 and I3 respectively, either of
them may first gét into the input queue of instance I2. According to the SDL
specification, there is no problem in the case that ¢ arrives before d, which conforms to
the consumption order specified in the MSC. However, in the case that signal d arrives
before ¢, process 12 discards signal d when it consumes c, since d is at the head of the
input queue and not needed in this state. Therefore, I2 will never run to completion
because signal d is no longer available for consumption. To avoid the possible deadlocks,
the approach generates SDL save constructs for each signal in the input queue that may
be ahead of the signal to be consumed. The need of save construct can be determined by
checking the order relation of each input event against all the successive input events of

the same instances [7].

The approach builds a table, called Event Order Table, to keep track of the orders
between each pair of input/output events specified in the MSC specification. The
input/output events are uniquely numbered and represented by rows and columns of the
. table. If the event represented by the row precedes the event presented by the column,

then the corresponding cell is marked.

According to ITU Recommendation Z.120, order among events can be determined by the
following temporal partial order rules:
Events are totally ordered for each instance axis.

The output event of a message precedes the corresponding input event.

40

Furthermore, the MSC create event defines an order relation between the created instance
input/output events and all input/output events that are above the create event on the
creator instance. In other words, events that precede a create event also precede all events
on the created instance. The instance creation modifies the Event Order Table by adding
more order relations. Events inside coregion are unordered. Consequently we get the
following criteria for building the Event Order Table.
(1) An event precedes all events that follow it on the same instance axis except those
in the same coregion.
(2) Output events always precede their corresponding input events.
(3) Events that precede an instance creation event precede all events in the axis of the
created instance.
(4) All possible order relations among coregion events are marked in the Event Order
Table.
Order among events is transitive. That is, if event el precedes e2, and e2 precedes €3,

then el precedes e3.

Table 4.1 is the Event Order Table for the MSC example in Figure 4.2(a). For instance, in
row €3, the table cells corresponding to column e4, €5, €6, and €7 are marked according
to criteria 1; table cell (e3, el) is marked according to criteria 2; the table cells
corresponding to columns €8, €9, and €10 are marked according to criteria 3. Moreover,
table cells (e4, e5) and (e5, e4) are both marked according to criteria 4. After criteria 1-4

applied to all possible pair of events, then criteria 5 is applied to update the table, and

41

repeated until there is no further change in the table. For example, table cell (3, €2) is

marked because (e3, el) is marked and (el, €2) is marked.

el e2 e3 e4 e5 eb el e8 e9 | el0

el T T

e2 T

e3 T T T T T T T T T
e4 T T T T T T
es5 T T T T T T
e6 T

e7

e8 T T T T
e9 T T T
el0 T

Table 4.1: Event Order Table example

4.2.3 Occupancy Table

Now we have obtained the order relation among all events in an MSC specification with
the Event Order Table. The approach then builds another type of tables, called
Occupancy table, in order to determine whether other signals may be in the input queue
when a specific signal is to be consumed.

Every process with signal input has an occupancy table. One Occupancy table maintains
the order relations among input events/signals for a process. Each row of the table
corresponds to an input event. Each column represents the incoming channels that convey
signals to this process. Each cell in the table is filled with all signals that may be in the
input queue (may be at the head of the queue) when the process is ready to consume the
signal received by the row event. The following condition states whether a signal would
be filled into the row of event e..

If Not(e,<< e;) AND NOT (e, << ¢;)

42

Then the signal received with event Er is filled into the cell corresponding Row Ec
and the channel column through which the signal is delivered.

Where,

e. denotes the current row event in the Occupancy Table.

e denotes the current input event.

es denotes the corresponding output event of ;.

<< denotes order relations (proceeds).

(ex << e€y) mean ey precedes ey in time. This relation can be extracted from the
Event Order Table where ex represents the row event and ey represents the

column event.

Table 4.2 shows the Occupancy Table for process P2 in the shown in Figure 4.2(a).
Process P2 has two input events €6 and €7, and two incoming channels chl and ch2. For
instance, when P2 is ready to consume signal ¢ (event e€6), the approach checks the input
message ¢ and d.

For message c,

NOT(e;<< e;) AND NOT (e.<< e;)

NOT (e6<<e6) AND NOT (e6<<el0)

By checking Event Order Table, we know this condition evaluates true. Therefore, signal
b is included in the row of event e6 and the column ch2.

For message d,

NOT(e,<< e.) AND NOT (e.<< e5)

NOT (e7<<e6) AND NOT (eb6<<e2)

43

This condition also evaluates true with the order information in the Event Order Table.

Therefore, signal d is included in the row of event €6 and the column chl.

input events input message Channel chi Channel ch2
€6 c d c
e7 d d

Table 4.2: The Occupancy Table for process P2 of MSC of Figure 4.2(a)

From this table, we know that signal d maybe at the head of the input queue when process

P2 is ready to consume signal c; therefore an SDL save construct needs to be generated.

4.2.4 Generating SDL from bMSC

The generation of SDL constructs from MSC construct is based on a one-to-one construct
mapping in most cases. Coregions have to be taken care so that the generated SDL
incorporates all possible execution traces. The SDL processes transit from one state to
another by consuming an input signal. The existing approach generating an SDL state for
each MSC message input event. Moreover, save constructs are also generated for signals
savings according to the Occupancy Tables except for messages that are sent by the same

instance and travel through the same channel as the input message.

4.2.4.1 SDL process instance identification and addressing

The existing approach has also addressed process addressing, which is essential to the
translation from MSC to SDL. Message exchange between instances is explicitly
illustrated in the MSC specification. In SDL, the addressing is either explicit or implicit.

Usually before process instances have any information of one another, implicit

44

addressing is used, in which a channel is specified for the signal to travel from the sender.
Explicit addressing uses SDL pids as the destination of the outputs and these pids can be
obtained through keywords sender, parent, or offspring.

In order to use explicit addressing, the approach creates SDL pid variables for an instance
to save the pids of the other instances that have communicated with it through the
keyword sender, if there are outputs following the inputs to the sender instances.
Likewise, the pid of a created instance is also saved if the parent instance needs to send
messages to the created instance according to the MSC specification. Moreover, the
approach also uses destination process names as output signals destinations if both the

sender and receiver instances are in the same block.

4.2.4.2 Mapping MSC events to SDL constructs

The generation of SDL constructs from MSC events is based on a one-to-one mapping in
most cases. MSC instance create events are mapped to the SDL create construct. MSC
action events, message sending and receiving events are also mapped to SDL task, signal

output and input constructs respectively.

4.2.4.3 Timer events

MSC timer events Starttimer and Stoptimer are mapped to SDL timer constructs set and
reset, respectively. MSC Timeout event is represented in SDL as a signal input. If a timer
has been set in SDL, then in every later state, the approach generates a time signal input
to expect the possible timeout until the corresponding timer is reset or the timer signal is

consumed in some state.

45

Furthermore, the existing approach has also addressed the ambiguous behavior caused by

timeout events within coregions. The details can be found in [7].

4.2.4.4 Coregion

Order among events in one coregion is relaxed. The permutation of sequences of all
events in a coregion indicates all possible order relations unless some general order has
been defined explicitly. The approach completes Event Order Table with all possible
order relations caused by coregion, while preserving any stated general order among
events. To generate SDL behavior, the approach builds a coregion tree to preserve all
possible execution traces. Then it translates the coregion tree into SDL constructs. For
instance, I2 has a coregion including event €4 and e5 in the MSC example shown in
Figure 4.1(a). Figure 4.3(a) shows the corresponding coregion tree. The partially

generated process behavior of P2 is shown in Figure 4.3(b).
any
() |
@ @ ¢) ¢)
| b > [a>
© D > [

(a) (b)

Figure 4.3: Coregion mapping

4.2.4.5 Message overtaking

Message overtaking is the situation in that two messages are sent to the same process
instance whereas they are consumed in the order that is opposite to their sending order. In

the case that two signals travel the same channel, to avoid possible deadlocks, the

46

existing approach detect it and generate a save construct for the earlier sent message for
its later consumption. For instance, in the MSC example Shown in Figure 4.2(a), in the
coregion including event e4 and e5, in the case that e5 precedes e4 (I2 sends message a
before b), a message overtaking occurs on consumption of these two messages in instance

I3. Process P3’s behavior in SDL has a save construct for signal a when consuming b.

Finally, following all procedures and techniques described before, the process behavior
for the MSC example in Figure 4.2 (a) with the given SDL architecture in Figure 4.2 (b)

can be obtained as shown in Figure 4.4.

Process P1

pidvar:= sender

|
SET (now+5, T)

Figure 4.4: Generated process behavior in SDL of MSC for Figure 4.2(a)

47

Process P2

- Process P3

pidvar:= offspring

=

ato pidv& I bto pidv%

CH

}@?

[e < L2/
(=)
[« <

Figure 4.4: Generated process behavior in SDL of MSC of Figure 4.2(a) (continued)

Moreover, the approach assumes that the MSC environment consists of several
independent instances with their independent behaviors. No assumption is made about
any order between the messages sent by these instances. Therefore, the approach
generates a save construct for every signal sent by the environment for all the SDL states

that precede the state that in which the signal is consumed.

4.3 The existing approach for HMSC

The existing approach also translates HMSCs to SDL. Following the idea of handling

bMSC, both order relation among events and possible signals in the input queues of

48

processes at each state are tracked in order to prevent possible deadlocks. Both the

approach of obtaining the Event Order Table and the translation algorithm have been

extended to handle the structural concepts of HMSC.

4.3.1 Event Order Table and Occupancy Tables for HMSC

To create Event Order Tables for a given HMSC, the existing approach first assigns a

unique number to all input/output events in the HMSC specification. Next, it creates an

individual Event Order Table of each bMSC in the HMSC by applying the bMSC Event

Order Table algorithm. For example, Figure 4.5 shows an HMSC, and the individual

Event Order Tables for each bMSC are shown in Table 4.3.

1
O
=
/\

msc si

b
process P1

el

12
process P2

> e2

msc s2

H

e3

12
[process P1 I l process P2

-
%

e4

msc s3

I
| process P1

e5

12
[process P2

-
-«

e6

Figure 4.5: An HMSC example with a given SDL architecture

49

block B
[v.Z] (X]
P1 - > P2
chi

Figure 4.5: An HMSC example with a given SDL architecture (continued)

el e2 e3 e4 e5 eb
el T e3 e5
e2 e4 T e6 T

Table 4.3: Individual Event Order Tables of HMSC example of Figure 4.5

The approach then updates the order among all events of each instance in the Event Order
Table according to the order relations among their owning bMSCs. If two bMSCs have
the same instances, then the events of an instance in the preceding bMSC precede all
events of the same instance in the other bMSC, which is the weak sequencing semantics.
For example, bMSC S1 precedes S2 and S3 in Figure 4.5, then event el precedes €3 and
e5; event e2 precedes e4 and 6. All events are incorporated into an Event Order Table
for HMSC, with the newly added order relations and existed order relations in each
bMSC Event Order Table. An intermediate Event Order Table is obtained as shown in

Table 4.4 (a).

50

el |e2 |e3 |ed |e5 |eb el je2 |e3 |ed |e5 |eb
el T |T T el T T T |T |T
e2 T T e2 T T |T |T
e3 T e3 T
ed T T e4 T T |T
es es
eb T e6 T

(@) ()

Table 4.4: Event Order Tables of HMSC example of Figure 4.5

The next step is to update each Event Order Table internally as described in the previous
section; this step is repeated until there is no change in the Event Order table. The final

Event Order Table for above example is show in Table 4.4 (b).

Occupancy Tables are still used for HMSC to generate save construct for signals which
may be at the head of the input queues when each signal is ready to be consumed. The
Occupancy Tables can be generated for each process with message inputs after the Event
Order Table for the HMSC is obtained. The algorithm remains the same as for bMSCs

described before.

4.3.2 Translation of HMSC operators

The existing approach discusses translation of HMSC in terms of HMSC operators, since
basically referenced bMSCs can be translated as described in the previous sections, and
the operators specify the control flow among the referenced bMSCs. The defined control

flow has to be respected when generating SDL specification.

51

4.3.2.1 Sequential operator

HMSC Sequential operators compose bMSCs in sequential order. And the order among
events in the same instance from these bMSCs is determined according to the weak
sequencing semantics. When generating process behaviors in SDL, the approach refers to
the bMSCs in a sequential order. For example, if there is another referenced bMSC, say
S2, connected with a sequential operator after bMSC S3 in the example shown in figure
4.5, the approach generates an SDL output construct for sending message Z from S3,
followed by another SDL output construct for sending message Y from S2, which follows
bMSC S3. The partial HMSC specification and generated process behavior for process

P2 is shown in Figure 4.6.

:
y

Figure 4.6: An HMSC sequential operator example

4.3.2.2 Alternative operator

An alternative operator is translated into SDL states and/or SDL decisions for each
process depending on the role of a process in the alternative scenario. If a process is the
initiator of alternative scenarios, i.e. it determines the alternative that is going to be
executed; an SDL decisions construct is generated. Otherwise, the approach generates an

SDL state, whose name can be determined by the conditions in the MSC specification.

52

Global Initial Condition

If the operator is preceded by a bMSC global condition or HMSC condition, then this
condition becomes the initial condition of operator. SDL state construct is generated for
each process in the alternating bMSCs, and the events from each alternating bMSC of the
same process becomes a branch in the process behavior in SDL. For instance, if there is a
global condition, say “init”, following bMSC S1 in the HMSC example in Figure 4.5,
then this condition is the initial condition for the following alternative operator. For
process P1, which is the initial process, an SDL state construct and a spontaneous
transition followed by a non-deterministic decision are generated. For process P2, a state
is generated. The partial HMSC specification and generated process behaviors are shown

in Figure 4.7.

Figure 4.7: An alternative operator with global condition

53

Local Initial Condition

If there is no Global Initial Condition found, then each instance in the alternating bMSCs
will be analyzed separately. If a common condition found for an instance in all the
bMSCs, then an SDL state construct is generated for this process with its condition name.
Finally, all events of the same process from each alternative bMSC become a branch in
the SDL process behavior. Suppose that bMSCs S2 and S3 in the example in Figure 4.5
both have local conditions in the two instances I1 and 12, then the local condition names
becomes the state names in SDL specification. Figure 4.8 shows the bMSC specifications

and the partial generated process behaviors.

msc s2 msc s3
I 12 I 12
wait init m init
Y Z
e3 = ed e5 eb
]] i I

Eagpu i e =

Figure 4.8: An alternative operator with local conditions

54

No Initial Condition

In the case that there is no Global Initial Condition or Local Initial Condition found, for
the initiator process, a non-deterministic SDL decision is generated and all events of the
same process from each alternative bMSC become a branch in the SDL process behavior.
For a non-initiator process, an SDL state construct is generated with a generated name.
This is the case in Figure 4.5. The partially generated process behavior is shown in figure

4.9.

(|)()
v L EXGI X

Figure 4.9: An alternative operator with no initial condition

Furthermore, the existing approach supposes all alternative scenarios have to join to a
common point after the alternative operator. If the specification after the alternative
operator begins with a global condition, local condition or input events, then all
alternative scenarios are ended by SDL nextstate construct. Otherwise, an SDL label is

generated to refer to the finally condition.

55

4.3.2.3 Iterative operator

The approach checks the initial state of an Iterative operator in order to refer to at the end
of the iteration. In the case that the initial state is neither a condition nor an input event,
an SDL label is generated; and after translating the last MSC event in the loop, an SDL
join construct with the label name is generated to implement the loop. Otherwise, the
approach generates an SDL nextstate construct with the condition name or the state name
before the input. The example in Figure 4.5 has an Iterative operator. The partial

generated process behavior is shown in figure 4.10.

any

< [2X)
-

Figure 4.10: Process behavior for iterative operator

<

Finally, following all procedures and techniques described previously, the process

behaviors for the HMSC example in Figure 4.5 can be obtained as shown in Figure 4.11.

56

Process P1 Process P2

x'.

Y to P2

pidvar:= sender

[v< [=z<
D X (o<

Y to pidv% Z to pidvar

®

Figure 4.11: Generated process behavior in SDL for MSC of Figure 4.5

ot

The previous research has addressed problems that may be caused by Multi-instances,
Shared conditions, and MSC semantic errors, making the existing approach even more
complete in terms of semantic checking while translating from MSC to SDL. We do not

present all the details in this thesis. A complete discussion can be found in [7].

4.4 Discussion

The existing approach translates MSC-96 specifications into SDL specifications. It
handles various MSC events and structures, such as message input/output, action, timer
events, instance creation, coregion, and HMSC. It also checks various aspects of MSC
semantics before generating SDL. It guarantees correctness of the design, and

consistency between the SDL specification and MSC specification.

57

However, the existing approach has some limitations. First, it does not handle MSC inline
expressions and parallel operator in HMSC. Second, some assumptions in the previous
work may limit the flexibility of the approach, such as it assumes that all alternative
scenarios have to join to a common point after the alternative operator, which is often not
the case in HMSC specifications. Moreover, the existing approach cannot handle the
newly added concepts in MSC-2000: Time and Data, which enable real-time system
specifications and more sophisticated MSC specifications with data manipulation. Our
interest is mainly on MSC time concepts. The rest of the thesis illustrates our

contributions for translating timed MSC into SDL.

58

Chapter 5

Timed MSC2SDL

5.1 Introduction

MSC-2000 has introduced time concepts. This new feature makes it possible to specify
distributed real-time system with MSCs. Generating SDL specification from timed MSC
specification becomes our goal and new challenge. The translation of timed MSC
specification to SDL specification will ease the transition from the requirement to the

design of real-time software processes.

Time requirements in MSCs may include time offsets for the systems, absolute and
relative time constraints or measurements on events, and requirements through the use of
timers. For example, the MSC specification in Figure 5.1 has two time requirements. One
is a relative constraint specified between event €0 and el, the other is a relative time
measurement between event €0 and e2. The previous approach that we have discussed in
Chapter 4 does not handle such a MSC specification. First of all, there is no internal
structure that keeps track of the time requirements information. Second, the mapping

algorithm does not take time requirements into consideration.

59

msc Relativetiming

11 12
process P1 process P2
-—=80
Y

[3,6]
el
S AN m2 e3
L I

Figure 5.1: A simple MSC specification with real time requirements

In this chapter, we present the categorization of time requirements in MSC
specification, re-designed and newly added internal structures that keep track of time

information.

In terms of mapping MSC time requirements to SDL, we have studied the time related
features in SDL. SDL has the notion of global time (allowing to measure durations
throughout the system by means of appropriate time stamps) and allows time dependent
decisions in the functional design (timeouts and time dependent enabling conditions
allow to define consiraints on the triggering time) [19]. These features make possible to
specify time constraints and measurements from timed MSCs in SDL. Consequently, a

new translation algorithm has been introduced.

60

5.2 Enhanced Event Order Table

Timed MSC has real-time requirements that the system must satisfy. The time
requirements are associated with events, such as absolute time constraints on individual
events, or relative time constraints between pairs of events. In order for the generated
SDL specifications to satisfy these time requirements, we need to map them to SDL
constructs associating to the constrained events. As we described in the previous chapter,
the translation is mainly based on mapping from MSC events to SDL constructs.
Therefore, if we record all time requirements for an MSC event, at the time of mapping
this event to SDL constructs, the associated time requirements can be translated at the
same time. For example, when translating the output event of message m1 in the MSC
specification of Figure 5.1, we can generate the necessary SDL constructs to specify the
two time requirements associated to it, provided that we have the time requirement

information at the translation time.

To gather time requirements for each MSC event, one choice is to design some structure
to record the time requirements in MSC. However, considering all time constraints and
measurements are related to one event or a pair of events, and that Event Order Table
contains all input and output events and indicates pair wise order among the events, a

good choice is to re-design the Event Order Table and add timing information into it.

5.2.1 Enhanced Event Order Table structure

Besides containing order information of the corresponding to the row and column events,

the modified Event Order Table cells should also contains time requirements associated

61

with the pair of events. They should include whether a time requirement is a time
constraint or measurement, and whether it is of absolute time or relative time. Other
information such as time values and the boundary inclusion of the time values, and user
defined time variable names in case of measurements also need to be included. Now,
each cell of the table, instead of being only a boolean value indicating pair wise event

order, becomes an object that encapsulates the following information:

Precedence, which takes value “T” to indicate pair wise event order.

Time Interval, which may record a relative time constraint, or a relative time
measurement between the row and the column event of a cell. In the case of absolute time
measurements or constraints specified for individual events, they are recorded in the cells
that the corresponding to the identical row and column events (which are the cells on the
diagonal of the table and are not used in the existing approach). Symbols “&” and “@”
are used to indicate whether the real-time requirement is relative or absolute. A time
interval may contain two time values used as upper bound and lower bound of the time
constraint, or contain a time variable used to store the time measurement result.
Furthermore, information about whether that the time bounds are inclusive or not is also

recorded, which is indicated by left/right brackets or braces.

MSC inline expressions can be specified with time requirements; we will discuss them in
detail in the following sections. Here we want to incorporate order information of events
in inline expressions in to this extended Event Order Table. We make a modification to

the Precedence attribute in the Event Order Table cells. If an event is in an opt inline

62

expression, it is optional to the whole MSC. Therefore, we use “O” as the Precedence to
indicate this property in its corresponding cell (both row and column events correspond
to the same event); if two events are in different operands of an alt or exc inline
expressions, they are exclusive in terms of the execution traces. Therefore, we use “E” as

the Precedence to indicate this property in the cells corresponding to these two events.

We call this re-designed Event Order Table an Enhanced Event Order Table.

Figure 5.2 shows an example of a timed MSC with different types of real-time
requirements, such as absolute time measurements and constraints, relative time
measurements and constraints. All the time information is recorded properly in the

Enhanced Event Order Table shown as Table 5.1.

msc example

I 12

| process P1 ' ‘ process P2 l
e0
et
e2

4

e3

-————

I]

Figure 5.2: A timed MSC specification

63

e0 | el |e2 e3 e4 | e5 eb e’
e0 @1 T | T T T T T
el T T T &t T T
e2 T T T
e3
e4d| T T | T T T T T&(0,8)
e5 T&[1,t] T T
eb T @[3,3] T
e7 T

Table 5.1: The Enhanced Event Order Table of MSC of Figure 5.2

For instance, in cell (e0, €0), @tl means an absolute time measurement is specified for
event e0. In cell (el, e5), T indicates that el occurs before €5, there is also a relative time
measurement and the value will be saved into variable t. In cell (e4, €7), a relative time
constraint is recorded for these two events. The time boundaries are 0 and 8; neither of
the boundaries is inclusive. In cell (e5, e3), a relative time constraint using the previous
measurement result is recorded for these two events. Finally, event €6 has an absolute

time constraint, which is saved in cell (€6, €6). Both time boundaries are 3, inclusive.

5.2.2 Time requirements on events in coregions

Time requirements can be specified on events inside a coregion. Since the order of the
events in a coregion is relaxed, either of the two events associated with a relative time
requirement can occur before the other one. The existing approach marks “T” in both
cells associating to the two events if a relative time requirement exists. In SDL process
behavior, each possible trace becomes an alternative branch. In order to find time
requirement information easily through either of the two events in the SDL generation

phase, we record the time information in both cells in the Enhanced Event Order Table.

64

5.2.3 Time requirements for inline expressions

Time constraints can be specified with MSC inline expressions, which actually
constraints the staring and/or ending events of the inline expressions. In this case,
building Enhanced Event Order Table needs one more step. That is to determine the
starting and/or ending events of the inline expressions by using order information
recorded in the Enhanced Event Order Table. There are three types of time constraints
with inline expressions. One is of time constraints specified between the starting events
of an inline expression and another event outside of the expression. In this case, the
starting events of each operand need to be decided (if possible) and the time constraints
are specified in the cells corresponding to each of the starting events and the other event.
The second is of time constraints specified between the ending events of the inline
expression and another event outside of the expression. In this case, the ending events of
each operand need to be decided (if possible) and the time constraints are specified in the
cells corresponding to each of the ending events and the other event. The third is of time
constraints specified between the starting and ending events of the inline expression. In
this case, both the starting and ending events of each operand need to be decided (if
possible) and the time constraints are specified in the cells corresponding to the starting

and ending event of each operand.

Figure 5.3 shows an MSC specification with time constraints specified for an alt inline

expression. When building the Enhanced Event Order Table, we first complete filling the

order information into the table and obtain an intermediate table shown as Table 5.2.

65

Note that since event el is in one operand of the alt inline expression; €2 is in the other
operand of the same inline expression. Therefore, the Precedence attributes in the
corresponding cells (el, e2) and (e2, el) are indicated by “E”. The same happens to event

es, e2, etc.

msc example
I 12
process P1 process P2
_______ el | < m100 o4
[0,5]
Y Y W IET
et m1(1,2) »| €5
[1015)} | [TTTTTTTTTETTTT
[0,20] a2 m2(20) > o6
m200
-y = e’/
e3
I I

Figure 5.3: An MSC with a timed inline expression

e0 el |e2|e3 |ed|e5|eb| e7
e0 T ! T| T T | T| T
el E| T T|{E| T
e2 E T E| T | T
e3
e4 | T | T | T|T T|T| T
e5 E| T E| T
e6 E T E T
e7 T

Table 5.2: Event Order Table with inline expression timing information

66

By using the order information in this table, for the alt expression, we can identify that
for the first operand, the starting event is el and the ending event is €5, for the second
operand, the starting event is e2 and the ending event is e6. Therefore, time constraint
information can be added into proper table cells and result Table 5.3, the final

Enhanced Event Order Table.

e0 el e2 e3 ed e5 eb e’
e0 T&[0,5] | T&[0,5] T T T T
el E T&[0,20] T&[10,15] E T
e2 E T&[0,20] E T&[10,15] T
e3
ed T T T T T T T
e5 E T E T
eb E T E T
e’ T

Table 5.3: The Enhanced Event Order Table of MSC of Figure 5.3

5.2.4 Time offset

Time offsets can be specified to MSCs. According to MSC semantics, a time offset
offsets all absolute time values in one MSC. Therefore, all absolute time constraints in
the Enhanced Event Order table become their original values plus the time offset. For
example if a time offset 5 is specified for the MSC shown in figure 5.2, then in the table

cell corresponding to €6 in table 5.1, the absolute time constraint values become [8,8].

5.3 Occupancy Table

Before generating process behaviors in SDL, Occupancy Tables are built for the purpose

of saving signals and avoiding possible deadlocks. The Occupancy Table structure

67

remains the same as in the existing approach. However, the building algorithm has been

slightly modified because of the two following reasons.

Events in loops

Events in a loop inline expression are executed repcatedly each iteration, which may
cause the need of more signal saves. For example, in the MSC specification shown as
Figure 5.4, instance I2 receives message ml and m2 repeatedly and we suppose m1 and
m?2 travel different channels. We can get the Enhanced Event Order Table shown as table
5.4. Using the existing condition for building Occupancy Tables that has been presented
in the previous chapter, we have NOT (ed<<e2) AND NOT (e2<<e3). Therefore m2

should enter the row of event €2 of the Occupancy Table for instance 12.

msc loop
11 12
process P1 process P2
Loop<5,5> el mi
> e2
e3 m2 > ed
| |

Figure 5.4: An MSC with a loop

68

el e2 e3 e4
el T T T
e2 T
e3 T
ed

Table 5.4: Event Order Table for an inline expression without the loop unfolded

However, when instance I2 consumes message m2, m1 for the next loop iteration may be
at the head of 12’s input queue. Therefore, m1 should also be in the row of event e4. By
using the order information in the Enhanced Event Order Table, this result cannot be
obtained directly. To solve this problem, we unfold the loop once (shown as Figure 5.5)

and build a local Event Order Table for the loop (shown as Table 5.5).

11 12
process P1 process P2
m1
e > e2
e3 m2 > e4

, m1
e3’ m2 > e4
I L]

Figure 5.5: MSC of Figure 5.3 with the loop unfolded

69

el | e2 | e3 | ed [el’ | e2’ | e3 | ed
el T T T T T T T
e2 T T T
e3 T T T | T T
ed T T
el’ T | T T
e’ T
e3’ T
ed’

Table 5.5: A local Event Order Table with the loop unfolded

Events el’, e2’, €3’ and e4’ are duplicates of el, e2, €3, and e4. They are used for
evaluating the conditions in building the Occupancy Tables. For example, at the row of
event e4, we have NOT (e2’<< e4) AND NOT (el’<<e4) evaluating true. Therefore, the
message received by event €2’ (m1) enters the row of event e4, which will result a signal

save for m1 when instance 12 consumes signal m2 in the SDL generating phase.

Events in alt inline expressions
The Precedence between a pair of events in the Enhanced Event Order Table is no longer
a boolean variable as described in the previous section; it may not only hold true or false,
but also exclusive for a pair of events that can not occur in the same execution trace.
The condition for input event Er enters the row of Ec becomes
(NOT (e,<< e;) AND NOT (e, << €5)) AND (NOT (e, Pe;) AND NOT (e.De))
where
e. denotes the current row event in the Occupancy Table.
e, denotes the current input event.

e denotes the corresponding output event of e,.

70

<< denotes the order relation (preceding).

@ denotes the order relation (exclusive).

The reason of adding more constraints to the existing condition is that we want to m...
sure the input events are not exclusive to the row event. Because if they are exclusive,
they can never both occur in the one execution trace, there is no need for one input event

to save the signal of the other.

5.4 Mapping between bMSC and SDL

Process behaviors are generated based on one to one mapping from MSC constructs to
SDL constructs in most cases. Therefore, for some basic events such as MSC action,
input/output without time constraints, etc, translation can be done directly; and this has
been discussed in [7]. In this section, we will discuss how time-related MSC events can
be mapped to SDL process behaviors according to different categories of time

requirements.

5.4.1 Absolute time

MSC assumes global clock. All instances in one MSC specification have a common
global clock value at any given time. The clock values can be used to constrain an event
or measured at the time that the event occurs. In SDL, the global time also exists. Each
process instance can access it through the construct now, which holds the current global
time value. Therefore, a direct mapping from MSC global time to SDL global time

exists.

71

5.4.1.1 Absolute time constraint

Absolute time constraints using global clock values can be specified for individual MSC
events. Semantically, such a time constraint requires the event occurs at the specified
time or within the specified time range. In SDL, one can use conditions to constrain
transitions of processes. Specifically, these conditions are in form of continuous signals
or enabling conditions. According to the SDL semantics, such a constrained transition
occurs only when the condition is satisfied. Otherwise, the transition is delayed or fails.
Therefore, conditional transitions can be used to map MSC absolute time constraints of

events.

For example, Figure 5.6(a) and 5.6(b) show an MSC with absolute time constraints and
the corresponding process behavior design in SDL. A continuous signal is formed for
event el using its absolute time constraint @[2,4] to enable the transition to occur, so that
process P1 can send signal m1. An enabling condition is also formed for event e4, which
enables the transition to occur only if the absolute time is 6 when process P1 receives

signal m2.

72

msc abscon
i

process P1

j

[process P2

@[2,4]
el m1 » e2
[@6] m2
ed |« e3
|]

(a)

process P1

<(2<=now)and(now<=4)>

m1 to P2

m2

{ Now=6)

(b)

Figure 5.6: An MSC with absolute time constraints and the process behavior in SDL

5.4.1.2 Time offset

In the case that a time offset is specified for an MSC specification, the time offset offsets
all the absolute time values in this MSC. The Enhanced Event Order Table contains the
absolute time constraint values obtained from their original values plus the time offset.
Therefore, generating process behaviors in SDL can be done transparently by taking
absolu:e time values in the Enhanced Event Order Table. An MSC example is shown in
Figure 5.7(a), which is obtained from adding a time offset 5 to the example shown in

Figure 5.6(a). The behavior of process P1 in SDL is shown in figure 5.7(b), where the

resulted absolute time constraints become their original values plus the time offset.

73

msc timeos offset 5
i

j

process P1 process P2
@[2,4]
el mf1 »| €2
[@6] m2
e4 |= e3

X

(a)

process P1

{(7<=now)and(now<=9) >

m1i to P2

m2

{ Now=11)

(b)

Figure 5.7: An MSC with a time offset and the process behavior in SDL

5.4.1.3 Absolute time measurements

The global time at which an event occurs can be measured using MSC time
measurement. As we explained previously, global clock values can be accessed through
the construct now in SDL. Moreover, the values of now can be assigned to variables of
time type or real type through SDL task constructs. This requires that the specified time
patterns to store the measurement results must be declared as time or real variables in the
corresponding processes. In Figure 5.8(a), the absolute time of event el needs to be
measured and stored into the time variable t1. In figure 5.8(b), an SDL task construct is

used to assign the value of now to time variable t1, which needs to be declared in process

P1.

74

process P1

msc absmea none
i }
process P1 process P2 l t1:=now
@t m1 to P2
el m1 > €2

m2

e4 |t e3 m2

(a)
(b)

Figure 5.8: An MSC with an absolute time measurement and the process behavior in SDL

5.4.2 Relative time

A relative time requirement relates a pair of events. It specifies the time difference
between the occurrences of the two events. To obtain the duration, we need to calculate
the difference between the global time at which the first event occurs and that of the
second event. As we have discussed before, the global time can be obtained through
construct now in SDL. Therefore, we can first record the global time when the first event
occurs. When the second event occurs, we calculate the difference between the global
time now and recorded time for the first event. Now, there are two problems we may

encounter in doing above.

75

The first is that since variables belong to individual SDL processes, if two events are on
the process, then the time variable storing the occurrence time of first event is accessible
to calculate the duration when the second event occurs. However, when the two events
are not on the same process, then the time variable, belonging to the process on which the
first event occurs, is not accessible to the process on which the second event occurs,

when the duration need to be calculated.

The second problem is that when the second event occurs, we have to the take the time
variable storing the occurrence time of the corresponding first event to calculate the
duration. In order for the time duration can be calculated correctly with the right time
variables, we need a mapping from time variables to their corresponding events since

there may be many such variables in our context.

5.4.2.1 Signal extension

To solve the first problem mentioned previously, we consider that the occurrence time of
the first event of a relative time requirement must be known to the process that the second
event is on when the second event occurs. This can be achieved through some message
passing by having the time value sent from one process to another. The assumption here
pertaining to the translation from MSC to SDL is that we do not intend to add extra
message passing to the existing MSC specification, but rather, to find existing message

passing to convey the time information needed as the message parameters.

76

There are two types of message passing can be used for conveying time information from
one process to another.
(1) A proper message passing between the two processes can be found to carry the
timing information.
(2) A proper message passing between the two processes cannot be found but a chain
of message passing (via some intermediate processes) can be found to relay the

necessary timing information.

For example, Figure 5.9 shows an MSC with relative time requirements. For the relative
time measurement between event €3 and el, a direct message passing can be found to
convey a time value at which e3 occurs from process P2 to P1, which is the sending
signal of m1. For the time constraint between event e2 and €6, no direct message passing
from process P1 to P3 can be found, but a message passing chain can be used to convey a
time value, which is the sending of m2 from P1 to P2, and the sending of m3 from P2 to

P3.

77

msc example
1 2
process P1 process P2

0y i st e3 13
_}_fl__% --------- > process P3

el

e2 "K‘"": """""""

m2 ed4 m3
eb |
I *

Figure 5.9: Example of Proper Message passing in a timed MSC

However, even if a message passing or a chain of message passings can be found from
one process to another, it does not ensure that they are proper to convey time value for a
relative requirement. In order for a message passing or a chain of message passings to be
proper for a relative time requirement, the time information from the process in which the
first event occurs has to be delivered to the process in which the second events occurs at
the time that is not later than the occurrence of the second event. That is, suppose the two
events involved in a time requirement are el and e2, el precedes €2; el is on process P1,

and e2 is on process P2.

(1) If there is a message passing m from P1 to P2 with the sending event e3 and
receiving event e4. For message passing m being proper to convey the timing
information, €3 must not precede el and e4 must not succeed e2. Moreover, e3

may be el and e4 may be e2.

78

(2) If there is a message passing from P1 to P3 with the sending event €3 and the
corresponding receiving event e4; there is another message passing from P3 to P1
with the sending event e5 and the receiving event €6. Then the message passing
chain can .. proper to convey the timing information if €3 does not precedes €l,
ed precedes =5 and e2 does not succeed e6. Likewise, €3 may be el and €6 maybe
e2. Similarly, this chain could have more than two messages passing with more

intermediate processes involved.

For example, there are two relative time requirements in the MSC shown in Figure 5.10.
Even though there is a direct message passing m1 from process P2 to P1, it is not proper
to convey time value for the time measurement between event e4 and el. This is because
the consumption of ml succeeds event el, and any time value conveyed by ml is
available only when e2 occurs. It is too late to calculate the time duration between el and
e4. Similarly, message-passing m1 from P2 to P1 is not proper for relative time constraint
between event e5 and e3. The reason is when m1 is sent, the occurrence time for e5 is not

available since e4 precedes e5.

79

msc example

i 12
process P1 process P2

Figure 5.10: A timed MSC with no proper message passing for signal extension

To find proper message passing or chain of messages passing, we need only the order
information in the Enhance Event Order Table, with which we can examine each pair of
sending and receiving events to determine if they are proper for a relative time
requirement according the above two rules. Of course finding a proper message passing
chain may be of high complexity in computing. Since all possible message passing
combinations have to be tested until a proper message chain is obtained. After finding the
proper messages passing, we can extend their parameter lists to incorporate the needed
timing value for the relative time requirements, hence the signal extension. For the
example in Figure 5.9, signal m1 needs to be extended as m1 (time) to convey a time
value from process P2 to P1. Similarly, signal m2 and m3 need to be extended same way

since they form a message passing chain to convey a time value from Process P1 to P3.

80

Finally, if any signals are extended, in order to make the generated SDL system
syntactically correct, these signals must be declared as the extended format in their
scopes. Moreover, all messages passing of these signals must be in the same format even
if some of them do not need to convey any time value for relative time requirements. For
example, suppose we add another message passing of ml from process P3 to Pl
following event 6 in Figure 5.9, in the generated process behaviors, both P3 and P1 have
to use the extended ml format for this newly added signal passing, and the parameter in
this signal is a dummy. We need to declare a dummy variable on each of the processes as

well.

So far, the problem of making the time value known to another process has been solved
with signal extension. However, a new problem comes with this solution. Signal
extension is done before generating process behaviors; the sending event and receiving
event of an extended signal are not always the pair of events that are involved in the
relative time requirements. Furthermore, process behaviors are generated one process
after another; the two events involved in one relative time requirement may be not in the
same process. We need to know, at the generating time, the mapping from a signal
extension to a relative requirement. This is similar to the problem of mapping declared
time variables to relative time requirements that we have mentioned in the previous
section. Both of the problems can be solved if we design a schema that relates a relative

time requirement to the extended signal and the corresponding time variables.

81

5.4.2.2 Handling time variables

In order to record the relationship among a time constraint, events associated with the
constraint, the extended signal with its sending and receiving events, and corresponding
time variables, we have proposed a structure, calied Variablemap. The Variablemap
records all necessary information for a relative time requirement when it is translated into

process behavior in SDL.

A Variablemap is tuple including the following elements:

(1) Frontevent: the first event involved in a time constraint, which precedes the second
event in time.

(2) Backevent: the second event involved the time constraint, which succeeds the first
event in time.

(3) Carryoutevent: the sending event associated with the extended message passing.

(4) Carryinevent: the receiving event associated with the extended message passing.

(5) FrontVariable: a time variable generated for the Frontevent to save its occurrence
time, which may be sent to another process by Carryoutevent along the extended
signal.

(6) CarryVariable: a time variable generated for Carryinevent to bind the value of
FrontVariable that is sent along the extended signal.

(7) UserVariables: the user defined variables associated with the time constraint or
measurement.

(8) StampVariable: a time variable generated for recording the occurrence time of the

Backevent.

82

All generated time variables are unique.

For example, let’s consider the relative time measurement be. veen event €3 and el in
Figure 5.9 and see how the Variablemap is built and used in the SDL generation phase.
Since event €3 precedes el, then the Frontevent takes e3 and the Backevent takes el. In
order to record the occurrence time of el, we need a FrontVariable, say Timevarl. After
taking the global time value, it is sent by the extended signal ml (Timevarl). The
Carryoutevent takes e3 and the Carryinevent takes el, since they are the sending and
receiving event of m1. Upon consumption of the signal m1 by process P1, it has to bind
the value carried by Timevarl to local time variable, say, Timevar2, which is the
CarryVariable. Finally the UserVariables takes t, which is defined by the user and used to
store the measurement result. With this Variablemap built beforehand, process behavior
can be generated easily through looking up the needed information in it. When we
generating process behavior for P1, since we know that event el is involved in a relative
time measurement, we simply declare a time variable called Timevar2. Because the
Carryinevent is also el, we generate an SDL input construct with the extended signal
format m1 (Timevar2), then an SDL task construct to bind the difference of now and the
value of Timevar2 into the UserVariables t. For process P2, similarly, we declare a time

variable Timevarl, then generate an SDL task construct to record the occurrence time of

e3. Because the Carryoutevent is €3, we generate an SDL output construct with the
extended signal format ml (Timevarl). Figure 5.11 shows the partial behaviors of the

two processes described above.

83

process P1 process P2

|
Timevari:.= now_J
m1(Timevar2) < ! -
m1(T imevarb
7

t:= now - Timevar2 [

l

(a) (b)

Figure 5.11: Partial process behavior generated by using Variablemap

Variablemaps can also be used for absolute time measurements to keep track the user
defined variables. In Fact, our approach generates a Variablemap for each time
requirement in an MSC specification. The advantage of doing this is that we only need to
search the Variablemaps to know whether a time requirement is specified on an event in

the SDL generation phase. The following are the rules for generating Variablemaps.

(1) If an absolute time measurement is processed, the Frontevent takes the first event
and the UserVariables takes the user defined variables to store the measurement
result. All other attributes remain null.

(2) If a relative time measurement is processed, the Frontevent takes the first event;
the Backevent takes the second event; a FrontVariable is generated for the first
event to store its occurrence time value in the generation phase; the UserVariables
takes the user defined variable to store the measurement result.

- If the two events are on the same instance, then all other attributes remain null.

84

- If the two events are not on the same instance, then a signal extension must be
resolved. The Carryoutevent takes the sending event of this message passing,
and the Carryinevent takes the receiving event of this message passing.
Furthermore, a CarryVariable is also generated for binding the time value ... the
generation phase.

(3) If an absolute time constraint is processed, the Frontevent takes the only event
involved and the UserVariables takes the user defined variables for the time
constraint, or it remains null if the constraint is specified with concrete time values.
All other attributes remain null.

(4) If a relative time constraint is processed, the Frontevent takes the first event; the
Backevent takes the second event; a FrontVariable is generated for the first event to
record its time value in the generation phase, the UserVariables takes the user
defined variables that specify the constraint, or it remains null if the constraint is
specified with concrete time values.

- If the two events are on the same instance, then all other attributes remain
null.

- If the two events are not on the same instance, then a signal extension must be
resolved. The Carryoutevent takes the sending event of this message passing,
and the Carryinevent takes the receiving event of this message passing.
Furthermore, a CarryVariable is also generated for binding the time value in
the generation phase. One important point is that if the Backevent is also the
Carryinevent, then a StampVariable must also be generated for recording the

occurrence time of the second event. This is because the value carried by a

85

signal cannot be used in its enabling condition [15]. Therefore, we use a
conditional signal in the following SDL state to check whether the time
constraint is met with the values of the StampVariable and the CarryVariable.

Examples showing this can be found in both section 5.3.3 and 5.3.5.

Note that one time constraint may have more than one Variablemap in the case that a

chain of message passing is involved.

In the SDL generating phase, the Variablemaps are referenced to ensure that each event
associated with a time requirement is generated using the proper variables and signal
extensions. We will describe how the Variablemaps are used with example in the
following sections. Here are some examples about how Variablemaps are built according

to above rules.

If we consider the scenario in Figure 5.2, some Variablemaps can be formed as the

following.

For the absolute time measurement at €0, the Frontevent takes event e0, UserVariables

takes user defined variable t1, and all other attributes remain null.

For the relative time measurement between event el and e5, the Frontevent takes the first

event el; the Backevent takes the second event e5. The extended signal should be

message m1 with sending event el and receiving event eS. Therefore, the Carryoutevent

86

takes event el; the Carryinevent takes €5. The FrontVariable is generated and called
timevar0Q for storing the global time at el; the CarryVariable is also generated and called
timevarl for binding the value of the FrontVariable upon message consumption. The
UserVariables takes the user defined variable t. since e5 is both the Carryinevent and the
Backevent; a StampVariable timevar5 is also generated. Note that the original message
ml has format ml (integer, integer). After signal extension, it becomes ml (integer,

integer, time) in the generated process behaviors.

For the relative time constraint between event e4 and €7, the Frontevent takes the first
event ed, the Backevent takes the second event e7. Since the two involved events are on
the same process, no signal extension is needed. Therefore, both the Carryoutevent and
the Carryinevent remain null, the generated FrontVariable is timevar2; the CarryVariable

remains null, and there is no UserVariables.

For the relative time constraint between event e5 and e3, the Frontevent takes the first
event €5, the Backevent takes the second event e3. The signal to be extended is m100,
then the Carryoutevent takes its sending event e7 and the Carryinevent takes its receiving
event e3. The generated FrontVariable is timevar3, and the CarryVariable is timavar4;
finally the UserVariables is t as specified. A StampVariable timevar6 is also generated

because €3 is both the Carryinevent and the Backevent.

87

All Variablemaps are kept in the Variablemap Table shown as Table 5.6, and the

information is accessed in the SDL generation phase, which we will continue to discuss

in the following sections.

Front_ | Back_ | Carryout_ | Carryin_ Front_ Carry_ User_ Stamp_
event event event event Variable | Variable | Variables | Variable
e0 NIL NIL NIL NIL NIL tl
el e5 el e5 timevarQ | timevarl t txmcz_rvar
ed e’ NIL NIiL timevar2 NIL NIL
es e3 e7 e3 timevar3 Tlrrfvar t timevarb

Table 5.6: The Variablemap Table of MSC of Figure 5.2

5.4.2.3 Relative time measurements between two events in the same

instance

An MSC relative time measurement is used for the observation and recording of the
distance between the occurrence times of a pair of events. When a time measurement is
specified between two events in one MSC instance, the variables used for the calculation
are local to its corresponding process. Indeed, the Variablemap contains only the
FrontVariable, the UserVariables, the Frontevent and the Backevent. In generating the
process behavior, at the Frontevent, a SDL task construct is generated to record the current
global time into the FrontVariable through now, which indicates the time at which the
Frontevent occurs. Then at the Backevent, the construct now holds the occurrence time of
the second events; another task construct is generated to calculate the measurement result
by subtracting the value of the FrontVariable from now, and bind the result to the

UserVanables.

88

In Figure 5.12(a), the time interval between events el and e4 need to be measured. Its

corresponding Variablemap is shown as Table 5.7.

Front_ | Back_ Carryout_ Carryin_ Front_ Carry_ User_ Stamp_
event event event event Variable | Variable | Variables | Variable
el ed NIL NIL t0 NIL tl NIL

Table 5.7: The Variablemap Table of MSC of Figure 5.12(a)

In Figure 5.12(b), we can see that at the Frontevent e1, an SDL task construct is generated
to record the current global time now into the FrontVariable t0. And at the Backevent e4, we
also generate an SDL task construct to calculate the difference between the current global

time now and the time value stored of the FrontVariable; the result is bound into the

UserVariables tl.
process P1
msc example @
1 12
10:= now
process 1 I process 2 l
e m1 m1 to P2
-r- > e2
P m2 e3
ed m2
> < >< t1:= now-t0

(a)
(b)

Figure 5.12: An MSC with relative time measurement within one instance and process behavior in

SDL

89

5.4.2.4 Relative time constraints between two events in the same

instance

An MSC relative time constraints is used for specifying a duration requirement between
the occurrence times of a pair of events. Similar to a relative measurement, when a time
constraint is specified between two events in one MSC instance, the variables used for
the calculation are local to its corresponding process. The Variablemap contains only the
FrontVariable, the UserVariables, the Frontevent and the Backevent. In generating the
process behavior, at the Frontevent, a SDL task construct is generated to record the global
time into the FrontVariable through now, which indicates the time at which the Frontevent
occurs. Then at the Backevent, the construct now holds the occurrence time of the second
event; and an SDL continuous signals or enabling condition construct is generated to
enforce the time constraint with the condition checking whether the difference between
the value of the FrontVariable and now is within the specified range. The time constraint

range can be concrete time value or using user defined variables.

In Figure 5.13(a), a time constraint is specified between events el and e4 using concrete

time values. Its corresponding Variablemap is shown as Table 5.8.

Front_ | Back_ Carryout_ Carryin_ Front_ Carry_ User_ Stamp_
event event event ever Variable | Variable | Variables | Variable
el e4 NIL NIL t0 NIL NIL NIL

Table 5.8: The Variablemap Table of MSC of Figure 5.13(a)

90

In Figure 5.13(b), we can see that at the Frontevent el, an SDL task construct is generated
to record the current global time now into the FrontVariable t0. And at the Backevent e4, we
generate an SDL enabling condition checking whether the difference between the value of

FrontVariable and the current global time now is within the constraint range (2, 6).

process P1
msc example l
t0:= now

1 12

[process 1 l I process 2 | m1 to P2
m1
m2

m2

(2,6)

ed <(now-t0>2)and(now-t0<6) >

X %

(b)

Figure 5.13: An MSC with relative time constraint within one instance and process behavior in SDL

(a)

5.4.2.5 Relative time measurements between two events in different

instances
When a relative time measurement specified for ¢ pair of events on two different MSC
instances, the occurrence time of the first event is local to the process in which the
Carryoutevent resides, and the process in which the Backevent resides needs it to calculate
the time duration. Therefore, a signal extension must be resolved to convey the time

value. The Variablemap contains all its attributes. In SDL generation, at the Frontevent,

91

a task construct is generated, which binds the occurrence time of the Frontevent now into
the FrontVariable. The Carryoutevent and the Carryinevent correspond to the sending and
receiving event of the extended signal respectively. At Carryoutevent, the FrontVariable
is inc. -porated into the signal as one of its parameters sent to the other instance. Upon the
receiving of this signal, which refers to the occurrence of the Carryinevent, for its SDL
input construct, the CarryVariable is used to bind the time value carried by the
FrontVariable. Finally on occurrence of the Backevent, an SDL task construct is
generated to calculate the difference between current time now and the value of

CarryVariable; the result is bound to the UserVariables.

In Figure 5.14(a), a time measurement is specified between events el and e4. Its

corresponding Variablemap is shown as Table 5.9.

Front_ | Back_ Carryout_ Carryin_ Front_ Carry_ User_ Stamp_
event event event event Variable | Variable | Variables | Variable
el e4 el e2 t0 tl 12 NIL

Table 5.9: The Variablemap Table of MSC of Figure 5.14(a)

Figure 5.14(b) shows the process behavior of P1. We can see that at the Frontevent €1, an
SDL task construct is generated to record the occurrence time of the Frontevent now into
the FrontVariable t0. The extended signal is ml. The Carryoutevent sends ml with the
FrontVariable to Process P2. Figure 5.14(c) shows the process behavior of P2. The
Carryinevent receives ml and binds the value of the FrontVariable to the CarryVariable t1i.

Then at Backevent, an SDL task construct is generated to calculate the difference between the

92

global time now and the time value of the CarryVariable; the result is bound to the UserVariables
t2. For simplicity of the illustration, we assume signal m1 and m2 travel the same channel
in the SDL architecture, therefore, in Process P2, there is no save construct needed for

signal m2 on consumption of ml.

msc example process P1 process P2

" 12
process 1 J [process 24' Q
e2

KT 10:= now
&2

m1(0) to P2

m2

A

e3
ed

m2

t2:= now-t1

(2)

(b) ©

Figure 5.14: An MSC with relative time measurement between two events in different instances and

the process behavior in SDL

5.4.2.6 Relative time constraints between two events in different

instances

‘Similarly, when a relative time constraint is specified for a pair of events on two different
MSC instances, the occurrence time of the first event is local to the process in which the
Carryoutevent resides. The process in which the Backevent resides needs it to enforce the
time constraint. Therefore, a signal extension must be resolved to convey the time value.

The Variablemap contains all its attributes. In SDL generation, at the Frontevent, a task

93

construct is generated, which binds the occurrence time of the Frontevent now into the
FrontVariable. The Carryoutevent and the Carryinevent correspond to the sending and
receiving event of the extended signal respectively. At Carryoutevent, the FrontVariable
is incorporated into the signal as one of its parameters sent to the other instance. Upon the
receiving this signal, which refers to the occurrence of the Carryinevent, for its SDL input
construct, the CarryVariable is used to bind the time value carried by the FrontVariable.
Finally on occurrence of the Backevent, an SDL continuous signals or enabling condition
construct is generated to enforce time constraint with the condition checking whether the
difference between the value of CarryVariable and the current global time now is within
the specified range. The time constraint range can be concrete time value or using user

defined variables.

In Figure 5.15(a), a time constraint is specified between events el and e4 using concrete

time values. Its corresponding Variablemap is as Table 5.10.

Front_ | Back_ Carryout_ Carryin_ Front_ Carry_ User_ Stamp_
event event event event Variable | Variable | Variables | Variable
el e4 el e2 t0 tl NIL NIL

Table 5.10: The Variablemap Table of MSC of Figure 5.15(a)

Figure 5.15(b) shows the process behavior of P1. We can see that at the Frontevent €1, an
SDL task construct is generated to record the occurrence time of the Frontevent now into
the FrontVariable t0. The extended signal is ml. The Carryoutevent sends ml with the

FrontVariable to Process P2. Figure 5.15(c) shows the process behavior of P2. The

94

Carryinevent receives m1 and binds the value of the FrontVariable to the CarryVariable t1.
Then at Backevent, we generate an SDL enabling condition checking whether the difference
between the value of CarryVariable and the current global time now is within the specified
range (3, 6). For simplicity of the illustration, we assume signal m1 and m2 travel the
same channel in the SDL architecture, therefore, in Process P2, there is no save construct

needed for signal m2 on consumption of ml.

msc example process P1 process P2

i 12
[process 1] [process 2 J Q

10:= now

st

el

m1(t0) to P2

s2

el

m2 m2

< (now-t1>3)and(now-t1<6) >

(a) (b) ©

Figure 5.15: An MSC with relative time constraint between two events in different instances and the

process behavior in SDL

5.4.3 Time requirements in coregions

As we have mentioned in the previous section, time requirements can be specified for
events in a coregion. Since a coregion relaxes the order among events, therefore, there are
usually more than one possible execution traces for one coregion. For each trace, time
constraints and measurements must be translated into process behavior in SDL.

We can classify time requirements in coregions into three categories.

95

5.4.3.1 Absolute time constraints in a coregion

If there is any absolute time constraint or measurement specified in a coregion, in each

trace it is handled the same way as described in the previous section.

5.4.3.2 Relative time constraints or measurements between one event

inside a coregion and one event outside the coregion
For a relative time constraint or measurement between one event inside the coregion and
anther event outside the coregion, it is still handled same way except that in each trace,
the time constraint or measurement must be enforced for the two events. In the case that
the relative time constraint is specified for the two events that are not in the same

instance, a signal extension must be resolved before the translation phase.

For example, in the MSC specification shown in Figure 5.16, event el and €2 are in a
coregion. A relative time constraint is specified between event el and €2, and an absolute

time measurement is specified for event e4. The Enhanced Event Order Table is shown in

Table 5.11.
msc example
" 12

el

e3

Figure 5.16: A timed MSC with coregion

96

el e e3 ed4
el T&(1,3) | T T
e2 T
e3 T T
c4 T 2

Table 5.11: The Enhanced Event Order Table of MSC of Figure 5.16

The coregion introduces two possible execution traces for process P2, which are e2 then
e4 and e4 then e2. For both traces, m1 can be found as the extended signal for conveying
a time value for translating the relative time constraint. Moreover, the absolute time

measurement for event e4 is handled in each trace. The Variablemap is shown as Table

5.12.
Front_ | Back_ | Carryout_ Carryin_ Front_ Carry_ User_ Stamp_
event event event event Variable | Variable | Variables | Variable
el e2 el e2 t0 tl NIL t2
ed NIL NIL NIL NIL NIL t NIL

Table 5.12: The Variablemap Table of MSC of Figure 5.16(a)

The Generated process behaviors in SDL are shown in Figure 5.17. For the relative time
constraint between event el and €2, at the Carryoutevent, m1 is sent with the value of the
occurrence time of the Frontevent. In each possible trace of process P2, at the
Carryinevent, ml is received and the value of FrontVariable is bound to the
CarryVariable. Moreover, since the Carryinevent is the same as the Backevent, the
occurrence time of the Backevent is recorded in the StampVariable t2. Because SDL does

not allow values carried by a signal to be used in its enabling condition, we generate

97

another state s2 or s5 to enforce the time constraint with the StampVariable and the
CarryVariable. Furthermore, the absolute time measurement is handled in both possible

traces.

process P2

process P1 -
D

t0:= now

m1(t0) to P2

[] a

m2

< (ed1>and241<3) >

s3

m2

< (@atstand2t1<3) >

k

() ‘ (b)

Figure 5.17: Generated process behavior in SDL for MSC of figure 5.16

5.4.3.3 Relative time constraints or measurements between two events
inside a coregion

The third case is that a time constraint or measurement is associated with two events
inside a coregion. Since the relative order of the two events can be different in different
execution traces, then two Variablemap is generated for each possible trace. In SDL
generation, each trace uses a Variablemap according to the relative order of the two

events, ensuring the correct Frontevent and Backevent, etc.

98

Figure 5.18(a) shows a scenario that a time constraint is specified between events e2 and
e4. The two Variablemaps are generated and shown in Table 5.13. One of the
Variablemaps is for e2 precedes e4, and the other is for e4 precedes €2. In both
Variablemaps, FrontVariables are both t since there is only one trace can be execute. at a
time. Similarly, if the time requirement is a relative time measurement, UserVariab.e is
same too for both Variablemaps. In SDL behavior, in each trace, the global time value
now is recorded into the FrontVariable at the Frontevent, and at the Backevent, time

constraint is enforced. The generated process behavior for P2 is shown in Figure 5.18(b).

msc example process P2

11 12

el
\ e2
&3 m1

]
|
i
v 1T (36)

o4

X

3
eb6 m

SNA

< (now-t>3)and(now-<6) >

(a) (b)

Figure 5.18: A timed MSC with coregion and process behavior in SDL

99

Front_ | Back_ | Carryout_ Carryin_ Front_ Carry_ User_ Stamp_
event event event event Variable | Variable | Variables | Variable
e2 e4 NIL NIL t NIL NIL NIL
e4 e NIL NIL t NIL NIL NIL

Table 5.13: The Variablemap Table of MSC of Figure 5.18(a)

5.4.4 Timer events

Time constraints can be specified in form of timer events. Semantically MSC starttimer
and stoptimer events are equivalent to SDL set timer and reset timer constructs
respectively. When a timer expires in SDL, a timer signal is generated and inserted into
the owning process’s input queue. Therefore, timeout event in MSC has its equivalence
in SDL. Timer events and possible problems when they are in a coregion have been
discussed in our existing approach [7]. The translation is straightforward. An example is

shown in Figure 5.19.

msc exampleI1 " process P2
process P1 process P2
T[10]
| SET (now+10,T) |
m2 -
—— | 7 <
T

(a) (b)

Figure 5.19: An MSC with timer events and the process behavior in SDL

100

5.4.5 A complete example of translation from a timed bMSC to SDL
A timed bMSC specification and an SDL architecture are given in Figure 5.20. We

present the major steps to illustrate the translation process.

msc example
12

i
process P1 l ! process P2 l

e0
@[2'1,3"11] ef

e2

(a)

system sys
[m100] cht [m1]
B1 | B2
ch2 [m2]
(b)
block B1 block B1
[m100] [m1] [m1] [m100]
- = »| chi - »| chi
r Sr
- h et
o2 ch2 o2 ch2

© (@

Figure 5.20: A timed bMSC example with SDL architecture

101

First of all, we build the Enhanced Event Order Table containing the order relation
between each pair of events and all the time requirements shown as Table 5.14. For
example, the absolute time measurement for event €0 is recorded in table cell (€0, €0).
The result of this measurement is used to constrain event el; the information is also filled
in cell (el, el). The relative time measurement between event el and e5 is recorded in

cell (el, e5). The measurement result is used to constrain event €5 and €3, etc.

el el e2 e3 ed e5 €6 e’
e0 | @tl T T T T T T
el @2*t1,3*1] | T T T &t T T
e2 T T T
e3
¢4 T T T T T T T&(0,8)
e5 T&[1,t] T T
eb T T
e’ T |

Table 5.14: Enhanced Event Order Table of MSC of Figure 5.20(a)

Since both of them have input events, we build Occupancy Tables for process P1 and P2
shown as Table 5.15. For P1, both event €0 and e3 are inputs of signal m100, and there
are no other signals can be in the input queue. For P2, event €5 is the input of signal m1,

and signal m2 may be in the input queue when P2 consumes m1.

102

input events input message Channel srl
e0 ml100 m100
e3 m100 m100
input events input message Channel srl Channel sr2
es5 ml m1i m2
eb m2 m2

Table 5.15: Occupancy Tables of the example of Figure 5.20

The next step is to build Variablemap table (shown as Table 5.16), which contains the
necessary information to translate time requirements into SDL. In the mean time, signal
extensions are resolved as ml (integer, integer, time) and m100 (time, time). For
example, both the absolute time measurement and constraint for event €0 and el has a
Variablemap respectively, in which only UserVariable is used. For relative time
measurement between event el and e5 (which belong to two different instances), the
Variablemap indicates the corresponding Carryoutevent, Carryinevent, as well as the
necessary time variables. Time constraints between event e4 and €7 is local to instance
12, therefore, Carryoutevent, Carryinevent and CarryVariable are not used. A
StampVariable is used for relative time constraint between €5 and e3, since event €3 is

both Backevent and Carryinevent.

Front_ | Back_ Carryout_ Carryin_ Front__ Carry_ User_ Stamp_
event event event event Variable | Variable | Variables Variable
e0 NIL NIL NIL NIL NIL tl NIL
el NIL NIL NIL NIL NIL t1 NIL
el e5 el es5 timevarl | timevar2 t NIL
ed e7 NIL NIL timevar3 NIL NIL NIL

es5 e3 e’ e3 timevar5 | timevar6 t timevarll

Table 5.16: Variablemap Table of the MSC of Figure 5.20(a)

103

Finally, we generate the process behaviors in SDL using the mapping techniques we have
described in the previous sections. All the time requirements in MSC specification are
translated into SDL as shown in Figure 5.21. For example, in the generated process
behaviors for P1, absolute time measurement for the input of signal m100 is done with an
SDL task that binds the value of global time now into the Uservariable t1. The absolute
time constraint for sending signal m1 is enforced with a continuous signal in state S2.
Since the output event of ml is both the Frontevent and the Carryoutevent for relative
time constraint between event el and €5, signal ml is extended to send the occurrence
time of event el, which has been recorded in timevarl. The following input event of
m100 is both the Carryinevent and the Backevent of relative time constraint between
event e5 and e3. Therefore, a StampVariable is used here to record the occurrence time of
eS. Moreover, since m100 is extended with two time parameters, the input of signal m100
in state sl has two dummy parameters timevar7 and timevar8. This is solely for the

syntax purpose.

104

1
process P process P2

O

[m100(timevarg,timervari0) v@
lm100(timevar7,timevar8) <

timevar3.=now

now>=2"t1)and(now<=3"11> mt (intvar1,intvar2,timevar2)< [m2 /

[m1(10,20,imevart) to pidvar—>

< (now-timevar3>0)and(now-timevar3<g)>
l

<(timvar1 1-timevare>1)and(timevart 1-timevarb<t) > l m 00(timevar5,t) o pid\b
(a) (b)

Figure 5.21: Generated process behavior in SDL for the example of Figure 5.20

5.4.6 Inline expressions with time

As we have already mentioned in the section of the Enhanced Event Order Table, time
requirements can be associated with inline expressions. The key to handling them is to
determine the involved starting/ending events of each operand in these inline expressions
by checking the order information among events in the Enhanced Event Order Table.
Then we can apply the techniques we have discussed in the previous sections to translate

the specified time requirements into process behaviors in SDL.

105

However, besides showing how SDL process behaviors can be generated from timed
inline expressions in the previous sections, we also need to study how inline expressions
can ¢ mapped to SDL constructs. Since inline expressions are structures in MSC, they
can noi be mapped to SDL constructs on a one to one basis. Because SDL is strong in its
expressiveness, there may be more than one SDL behavior equivalent to an MSC inline
expression. For the purpose of translation, we want to regulate SDL designs for different

types of MSC inline expressions.

Alt

Each operand of an alt inline expression becomes a branch of the process in SDL. All the
branches start with a common state that we generate for the beginning of the alt inline
expression. If any operand has guarding condition, we generate a continuous signal with
the condition. Finally, all branches join with an SDL label at the end of the inline
expression. Figure 5.22 shows an example of the design. For illustration purpose, we

assume message m3 and m4 travel the same signal channel.

106

msc alt Process P1
i P process P2

l process P1 I fprocess P2 l

m3
| m <

(@ (b) ()

Figure 5.22: A typical alt inline expression in MSC and process behavior in SDL

Loop

Loop expressions are rather complex due to the loop boundaries. First of all, we generate
an SDL state followed by input of none and a decision of testing whether the lower
bound is greater than the upper bound. If so, the execution of the loop frame is skipped.
Otherwise, an SDL task construct is generated to initialize an loop counter to zero; it then
is followed by another state as a decision point. In the following, four continuous signals
are generated with different combinations of the guarding condition and the number of
times of iterations executed. If the loop counter is less than the lower bound and the
guard condition is true, the loop frame is executed once and the loop counter increments
by one. Then the second state is used to take the control flow back to the decision point.
If the value of the loop counter is in between the lower bound and upper bound and the
guard condition is true, the instance has nondeterministic decision on continuing to
execute the loop frame or skipping it. If the loop counter is in between the lower bound

and upper bound and the guard condition is false, the instance skips executing the loop

107

frame. Finally if the value of the loop counter is greater than the upper bound, the
execution of the loop frame is skipped. We use SDL labels to join different branches, and
a state to achieve the iterations. Note that this process behavior can be only for the
instance which makes the ..ecision about on executing the loop. Any other participating
instance behavior can be much simplified. Figure 5.23 shows an example of the design.
For illustration purpose, we assume message ml, m2 and m3 travel the same signal
channel. In the example, guard is a boolean expression; L and H are the upper and the

lower bounds of the loop; and c is the loop counter.

msc loop process P2
3 12
process P1 process P2
loop | m3 < | m1 <
when guard mi |
e T
m
o
] I
(a) (b)

Figure 5.23: A typical loop inline expression in MSC and process behavior in SDL

108

process P1

()

Figure5.23: A typical loop inline expression in MSC and process behavior in SDL (continued)

Opt

We generate an SDL state for the beginning of an opt expression. The semantics of MSC
requires that a guarded opt expression always goes through the option operand if the
guard is true. Therefore, if a guarding condition is specified, we generate an SDL input
construct of none followed by a decision construct with the guard as its condition. On the
true answer side, we translate all events in the opt frame; on the false answer side, we
translate all events after the opt frame. Finally, the two braches join with an SDL label. If

there is no guarding condition for the opt inline, expression, and SDL decision construct

109

becomes a nondeterministic decision. Figure 5.24 shows an example of the design. For

illustration purpose, we assume message ml and m2 travel the same signal channel.

msc opt process P1 | process P2

’process P1] [process P2! S
m [none <
W5 > 0 I mi < [m2 <

\ 4

m2 (true) (false)
— — @

(@ (b) (c)

Figure 5.24: A typical opt inline expression in MSC and process behavior in SDL

5.4.7 Time constraints and measurements specified with other

orderable events

One assumption we have held through all previous discussion is that we consider only
time requirements specified with message input and output events in MSC specifications.
However, time constraints and measurement can be also associated to action events,
creation events, timer events etc. Since these events currently are not in the Enhanced
Event Order Table, to handle such timed events, we can simply include them into Event
Order Table. We skip the detailed discussion here, since the modification is

straightforward.

110

5.5 Problems encountered during translation to SDL

We have discussed the approach of translating timed bMSC specification into an SDL
specification. However, not all timed MSC specifications can be implemented in SDL.
There are several causes we will discuss in the following sections. Similar to handling the
consistency checking between the MSC and SDL architectures that we have discussed in
the previous chapter, our approach will be checking the scenarios which cause the
implementability problems before the actual SDL generation starts. If any of the

problems found, we report it and the translation terminates.

5.5.1 Time related implementability

Time requirements may introduce some implementability problems. We can categorize
them as follows: Some MSC specification with time constraints is not implementable
with SDL due to conflicts among time requirements or under specification. In this case,
information needed to check these problems can be found in the Enhanced Event Order
Table. Some other implementability problems may also come from the incompleteness
of the semantics of MSC standard or problematic MSC scenarios such as non-local

choice.

5.5.1.1 Time consistency

Time consistency means the consistency among different time constraints in an MSC
specification. Time constraints specify temporal orders between events. These orders

have to be consistent with the causal orders between events [6]. However, this is not

111

always the case in MSC specifications if time constraints are not specified carefully.
There are two cases we describe in the following:

(1) Absolute time constraints violating the causal order.

(2) Absolute time constraints violating relative time constraints

(3) Relative time constraints violating time interval to one another.
The theoretical definition of time consistency and the checking algorithm are discussed in

[8] and [6] respectively. Here we just explain above scenarios by several examples.

For example, in figure 5.25, event €2 and e4 are ordered, but their absolute time
constraints conflict to each other in terms of the time range. Event €2 precedes €4,
therefore, e2 cannot occur in absolute time (4, 6) while e4 occurs in (1, 3). Moreover, the
relative time constraint between event el and e4 also conflict with the absolute time
constraints on el and e4. In figure 5.26, two types of time inconsistency occur. First, on
the same instance Il, the relative time constraint between el and e4 contradicts the
relative time constraint between el and e5. If €5 occurs in the interval of (1, 3) after el,
then e4 can not occur in the interval of (5, 7) after e1, because e4 precedes e5. Second, in
instances 12, the relative time constraint between e2 and e3 contradicts the relative time
constraint between el and e4, because e2 and e3 succeed el, precedes e4, and if events e2
and e3 take an interval of (8, 10), then the interval of (5, 7) between el and e4 can never
be satisfied. The MSC is syntactically correct, but semantically incorrect. Before doing
any translation, the time consistency checking has to be done. This step is critical for

handling timed MSC to generate SDL.

112

msc example
il 12

process 1 ! | process 2 !

e1 @J0] mi .l 62
@(4,6)
[8,10]
- et m2 e3
os |@(13)
]]

Figure 5.25: A timed MSC with absolute time constraint conflicts

msc example
I 12
process P1 | process P2
I el mi > e2 _
{6.7) (8,10)
- - m2 -
(1,3) o4 e3
X __ mi

eb eb
]]

Figure 5.26: A timed MSC with relative time constraint conflicts

5.5.1.2 Time-order related under-specifications

A relative time constraint is specified between two events; however, their temporal order
may be not implied by any causal order rule. MSC specifications with this kind of
scenarios are not implementable with SDL.

For example, in figure 5.27, events el and e2 are not ordered. However, a relative time
constraint is specified between them. This scenario is not implementable in SDL. Note
the MSC is not an erroneous specification. It can be seen as an under-specification case

and the order between el and e2 may be refined in future development of the

113

specification. In the enhanced event order table, the scenario will cause the precedence in
two table cells associated with el and e2 unmarked, and this tells us to terminate the
translating procedure.

Time-order related under-specification checking rule: for any cell in the Event Order
Table, if a relative time constraint is specified for the two associate events and
precedence is unmarked, then report under-specification for the MSC and terminate

translation.

msc example

11 12
process P1 1 process P2

el -T="
;0 3)
-

ed

e3

Figure 5.27: An unimplementable MSC with a time-order related under-specification

msc example
al 12
o1 m2(x:=) & -
[1.2]1

alt =
e2 m1 m3 o6
e3 e7
ctherwise > m1 < otherwise >
e4 » e8

[| |

Figure 5.28: An unimplementable MSC with a time-inline expression related under-specification

114

5.5.1.3 Time-inline expression related under-specification

MSC allows time requirements specified between for inline expressions. As discussed in
the previous sections, we handle this kind of time requirement by determining the starting
and/or ending events in each operand through order information in the Enhanced Event
Order Table. However, this is not always possible. There are scenarios that the starting
and/or ending events in some operands are not decidable. MSC specifications with those
scenarios can not be implemented.

For instance, in figure 5.28, a relative time constraint is specified between event €5 and
the starting events of the alt inline expression. However, in the first operand, it is
impossible to decide whether €2 or €6 is the starting event. Therefore, we do not know
which event should be imposed with the time constraint. During the process of building
the enhanced event order table, if this scenario happens in MSC specification, the
algorithm detects it and terminates the translation.

Time-inline expression related under-specification rule: for any inline expression
specified with time constraints, use order information in the Enhanced Event Order Table
to determine the starting or ending event for each operand, if the event in interest cannot
be determined, then report under-specification for the MSC specification and terminate

the translation.

3.5.1.4 Time constraints in Loops

Time requirements in loop inline expressions are rather complex. Most of the problems
are caused by the interaction among the loop guarding condition, loop boundaries, and

time constraints on events inside a loop. This interaction affects the number of iterations

115

that a loop executes. Sometimes an inconsistency occurs when a loop can not execute
even the number of iterations specified by its lower bound, and this is because the
guarding condition or absolute time constraints on events inside the loop prevent it from

more iteration. [6] has addressed the time consistency problem in loops.

Moreover, an event inside a loop is actually a serial of events in execution. When an
absolute time requirement is specified on such an event, the MSC standard does not say
whether this time constraint need to be respected all iterations or just in the first one.
Figure 5.29 shows an example. The loop should iterate 5 times, event €2 is within a loop
and with an absolute time constraint. Respecting the absolute time constraint in all
interactions definitely is a stricter constraint on the system. Similarly, the MSC standard
is not clear on relative time requirements in a loop. Does the time constraints needs to be
respected between e2 and e4 only, or also between e4 and €2’ (where €2’ is €2 in the next

iteration).

msc loop
I 12
l process P1] l process P2 I
L00p<5,5> e mi e2
e3 ; 1,2
@[24] l< m2 _oy el
e4
I .

Figure 5.29: A timed MSC with loop

116

At the current stage, we adopt the assumption that absolute time requirements need to be
respected all iterations and relative time requirements need to be respected between

events in the same iteration of the loops.

5.5.2 Non-local choice

The previous work has addressed non-local choice problem in HMSCs that makes them
unimplementable. Similarly, inline expressions in bMSCs can also cause non-local
choice, when two or more instances may choose to execute different operands. The
bMSCs with non-local choice are not implementable. For example, Figure 5.30(a) shows
a simple alt inline expression, where instance I1 may chose to execute sending ml to 12,
while I2 may choose to execute sending m2 to I1. The decisions are made purely based
on individual instances. Moreover, a non-local choice can also be caused by guarding
conditions for inline expression operands. Figure 5.30(b) shows this kind of scenario. The
value of variable x and y are the same through a binding in passing message of m2. The
value of x and y are used in the guarding conditions in the alt inline expressions.
Apparently, instance Il and I2 can not have their conditions evaluated to the same
boolean value for any operand. So they can not choose the same operand to execute by
MSC semantics. There is another type of non-local choice can be caused by the system
architecture. Figure 5.30(c) shows an opt inline expression, in which instance I1 decides
whether the opt operand is executed or not, while instance 12 simply follow I1 by getting
a different message. However, if message ml and m?2 travel through different signal
channels, a scenario might occur in which instance I1 decides to execute opt operand and

sends m1 and then sends m2, but m1 gets delayed in the channel and I2 sees message me

117

first. In this case, 12 has no idea about the decision on executing opt operand, which has

been made by I1.
msc alt msc alt_guards
" 12 1 12
process P1 | process P2 [process P1] [process P2 |
m2(x:=
L ait mi o alt |
o < when x>0 > mi <when y<=0
 m ISR . S
< T o> <y
] I
|
(a) (b)
msc opt
b 2
I process P1 I process P2 I
m2 -
. I

(c)

Figure 5.30: MSCs with a non-local choice

We can generalize the causes of non-local choice through the examples.
(1) For the first example, there is no instance which can solely decide the operand to
execute, or we say that there is controller instance for the inline expression.

(2) For the second example, the guard conditions yield conflict operand choice

among the participating instances.

118

(3) For the third example, a decision can be solely made by an instance. However, it

might be mistaken by some participating instances due to the system architecture.

The following is a further analysis from the three generalized aspects and a devised non-

local choice detecting algorithm.

First of all, since the non-local choice in inline expressions are due to the possibility of
participating instances executing different operands, for non-local choice detecting
purpose, we need to define the operands for each type of inline expression. For an alt
inline expression, the operands are same as defined in MSC standard, because each
participating instance has to execute one of them. For an exc, an opt or a loop inline
expression, the first operand is the enclosing scenario in the inline expression, and the
other is the rest of the enclosing frame, because the decision is about executing the first
operand or not every time when the control flow reaches the beginning of the inline

expression.

Our detecting approach starts with “Mark True operands”, which intends to find the
possible operands to execute for each participating instance.

For each participating instance, evaluate the guarding conditions in each operand and
mark the operand if the guard is evaluated true. If there is no guari for some operands,

they are also marked (no guard implies a guarding condition true).

119

STEP 1

If for each instance, there is only one operand marked and this operand is common
among all participating instances, non-local-choice does not appear. If these marked
operands are not common to all participating instances, non-local choice exists. If any

instance has more than one operand marked true, we need to do further analysis.

msc alt_guards msc alt_guards
1" 12 " 12 13
I process P1 I | process P2 l l process Pﬂ
x:=5
m2(x=:y) > m2(y=:2)
- m2(x:=y) att
whenxot > <lwheny>1 > whenz>1 >
[ait] A A
<whenxo0> gy <wheny<=0 N D I —
___________________ ——— < whenx>2 B <wheny>2 > <whenz>2 >
otherwise > 5 < otherwise > » (9]
m
TRED> <G> | <wenmi>
b D
I I
T R NN
(a

(b)

Figure 5.31: MSCs with alt inline expression

In figure 5.31(a), for both instance I1 and 12, there is only one operand that can be

marked true (since x and y take the same value 5 through binding along message m2),
and their operands marked true are common to each other, so that there is a common

choice between the two instances. Non-local choice does not exist.

120

If we can not draw a conclusion from STEP 1, further analysis is needed. The next step of
analysis is about whether there is an instance can solely decide the operand to be

executed among the possible operands.

Definition: if an instance I sends a signal S before any other instances in one
operand of an inline expression, and any other participating instance receives a
signal following S before all its other events, we say that instance I controls the
operand of this inline expression, and S is called the control signal.

If all operands of an inline expression are controlled by instance 1, and any other
shared instances receive different signals (or the same signal with different data
values along the signal) following each control signal Si in each operand, we say that
instance I controls the inline expression. If such an instance I does not exist, we say

this inline expression is controlled by multiple instances.

STEP 2

If there exist some instances having more than one operand marked, form operand sets
with these marked operands for all instances, say s;, 3 ... s, (without losing generality,
we assume that size (s1)<= size (s3)<=...<= size (sp)). Non-local choice does not exist for
alt and exc inline expressions, if these sets satisfy s; C s» 81 C 83 ... 81 C sp, and the
instance corresponding to s; is the controller instance of this inline expression. Otherwise,

non-local-choice exists.

121

This condition basically says that if there is more than one possible operand for an
instance to execute, then the instance with the fewest possible operand must be the
controller instance and that the choice made this instance must be one of the possible

operands of any other participating instance.

In figure 5.31(b), since variables x, y and z all takes the séme value 5, for instance 11, all
its three alt operands are marked true, and for instance I2 and I3, only the first two
operands are marked true. Therefore, this satisfies the condition, s3C s> C 1.

Moreover, instance I3 sends different control signals to other two instances in each
operand of the inline expression (note: in the first operand, instance I3 sends A to
instance I2 and instance I2 sends A to instance I1, this is still a case that I3 is the
controller, since instance I1 and I2 has no event before they receive signal A as the result
of sending signal A from instance 13), therefore, I3 is the controller, non-local choice

does not exist.

If we modify the above example slightly, it gives us another scenario that shows non-
local choice. In figure 5.32, since X, y and z all take the same value 5, for instance 11, all
its three alt operands are marked true, for instance 12 the first and the third operands are
marked true and for instance I3, the first and the second operands are marked true. That

1s, 83 C 8 is true; but, s3 C s»is false. Non-local choice exists.

122

msc alt_guards

1 12 13
l process P1 } | process P2 ’ | process P3
x:=5
mZ(x:.y) > m2(y=:z)

| o

< whenx>1 > < wheny>t > < when z>1
A

——

< _whenx>3> Lwheny>2 > < whenz>8 >
D

D

] —— i - ——— e — e ——

-

Figure 5.32: An MSC with non-local choice

For opt and loop inline expressions, STEP 2 must also be successful in order to apply

STEP 3.

STEP 3
If control signals to any participating instance for the two operands travel different
channels in the given SDL architecture, non-local choice exists. Otherwise, non-local

choice does not exist.

We have this condition for loop and opt inline expressions because the controlling signal
for the second operand can be received by a non-controller instance both when the

controller decides to execute the opt or execute at least one iteration of the loop, and

123

when the controller instance decides to execute the second operand directly (loop may be
sipped). These two scenarios can only be distinguished by allowing the control signals to

any participating instance travel the same signal channel.

We have already shown an example in Figure 5.30 (c) and explained the reason how non-
local choice can occur because of the SDL architecture. However, if m1 and m2 traverse
the same channel and if m1 has been sent, 12 will receive m1 before m2. 12 knows that
opt is executed. If m2 is received without receive m1 before, I2 knows that opt should not

be excused. The reason is that in the same channel, signals are FIFO in SDL.

5.6 SDL Generation from timed HMSC

HMSCs provide a means to geographically define how a set of MSCs can be combined.
HMSC:s also allow the use of time requirements. Therefore, we have also done study on
translating timed HMSC specifications into SDL specifications. Our existing approach
handles translation from HMSC to SDL. However, it adopted the syntax of HMSC from
ObjectGeode, which is not the MSC-2000 standard specified in [5]. In the study of
translating timed HMSC into SDL, we have taken the HMSC standard syntax.
Consequently the algorithms of generating Enhanced Event Order Table, building
Occupancy Table and the translating from HMSC to SDL have been redesigned. As the
previous work, we do not handle parallel frames in HMSCs. In the following sections,

we will describe our approach.

124

5.6.1 Translating HMSC into SDL

An HMSC specification is composed with nodes that can be a starting symbol, end
symbols, MSC references, conditions, and connection points. The flow lines connect the
nodes indicates the possible sequencing among the nodes [5]. In fact, we can view an
HMSC specification as a directed graph, with all previous mentioned nodes and the flow
lines as its directed edges. To generate process behaviors, we need to gather events for
each process from all nodes in the HMSC into an SDL process with respect to the

sequencing that the flow lines specify.

5.6.1.1 Event Order Table for HMSC

Like the approach for translating timed bMSC specifications to SDL specifications we
still need to keep track of the ordering and timing information among events in the
Enhanced Event Order Table when handling timed HMSCs. This information facilitate to
the building of Occupancy Tables later on to avoid deadlocks and Variablemaps to
handle time requirements in the translation phase. However, the order among all events
from different MSC references in an HMSC specification cannot be built only according
to the partial order rules described previously, since the flow lines of an HMSC also help
to specify orders among events. In fact, we can build individual Enhanced Event Order
Tables for each bMSC reference, and then obtain a global Enhanced Event Order Table
by properly combining them according to the order relationship of the referenced

bMSC:s specified by the flow lines.

125

To find the order relationship among referenced bMSCs, we can traverse the HMSC
graph and calculate paths between each pair of them. A table is constructed with its rows
and columns representing the nodes in the HMSC. We fill table each of the table cells a
found path weight from the row node to the column node. If there is no path from one
node to another, the weight takes infinity (inf). This table can be seen as a Meta “Event
Order Table”, since it provides an order map at the level of bMSCs for calculating order

among all events eventually.

For example, Figure 5.33 shows an HMSC with its referenced bMSCs, in which the
HMSC nodes are labeled except the starting node as they appear in the textual form. All
Enhanced Event Order Tables for the individual referenced bMSCs are built and shown

as Table 5.27.

msc hmsc_ex msc s1
\V4
I
process P1 process P2
P L4
=~ Z
L3
I I
L5 /N
msc s2 msc s3
1 i2 H 2
process P1 l l process P2 I | process P1 ' l process P2 l
X Y
e3 > e4 e5 > e6
I I I L

Figure 5.33: An HMSC specification

126

el e? e3 e4 es eb
el T e3 T e5 T
e2 ed eb

Table 5.17: Enhanced Event Order Tables of individual bMSCs of Figure 5.33

We calculate all pair shortest path for the HMSC graph and obtain the Table 5.18. The
number in each table cell indicates the minimum number of edges from the row node to

the column node. An inf indicates no path is available.

L1 L2 L3 14 L5
L1 0 1 2 3
L2 2 0 1 1 2
L3 1 2 3 4
L4 inf inf inf 0 1
L5 inf inf inf inf 0

Table 5.18: All pair shortest path for the HMSC example of Figure 5.33

Now we can combine the individual Enhanced Event Order Tables into a global Table
using the order information provided in Table 5.15. In fact, the events in different
referenced bMSCs respect the weak sequencing order. Let W (L1, L2) denotes the
shortest path weight of two different nodes from L1 to L2. Rules to interpret order

relationships between each pair of nodes and their contained events are described as

follows:

127

Precedence

If W (L1, L2) is not inf, we say that node L1 precedes L2. Therefore, if L1 and L2
contain a common instance, then all events in L1 on this instance precede all events in L2
on the same instance.

Exclusive

If W (L1, L2) and W (L2, L1) are both inf, we say that L1 and L2 are exclusive.
Therefore, all events in L1 are exclusive to those in L2, and vice versa. This case is
similar to the situation of events in different operands from alt inline expression. The

corresponding cells are marked with “E”.

We can obtain a global Table for all events in the HMSC shown as Table 5.19, which
retains the order from individual Enhanced Event Order Tables with new orders
information added according to the rules. For example, since W (L1, L3) is not inf, for
instance, event el precedes e3. Similarly, el also precedes e5; e2 precedes e4 and e6; e3
precedes el and e5; e4 precedes €2 and e6. Finally, the table is updated by itself by
calculating a transitive closure for each event. Table 5.20 shows the final global

Enhanced Event Order Table.

el | e2 | e3 | ed | e5 | eb
el T | T T
e2 T T
el T T
ed T
e5 T
eb

Table 5.19: An intermediate Event Order Table of HMSC of Figure 5.33

128

el | e2 | e3 | e4d | e5 | eb
el T T T T T
e2 T T
e3 T T T
e4 T
es T
eb

Table 5.20: The global Enhanced Event Order Table of HMSC of Figure 5.33

5.6.1.2 Occupancy Table for HMSC

As described previously, Occupancy Tables for processes need to be built to avoid
deadlocks due to discard of signals by SDL, which that are not expected in one state but
maybe needed in later transitions. If a loop presents in an HMSC specification, similar to
the approach of handling loop inline expressions in bMSCs, we gather all referenced
bMSCs that form the loop, unfold the loop once with all events duplicated and build a
local Event Order Table for the loop, then apply the condition to add signals into the
Occupancy Tables that may otherwise be missed. For example the MSC specification

shown as Figure 5.34, bMSC S1 and S2 forms a loop and we suppose that message ml

and m?2 travel different channels.

msc loop

Figure 5.34: An HMSC specification with a loop

129

msc S1 msc S2
v i 12 i 12
process P1 l processzl [process P1 | l process P2
m1 m2
—— —— —

We unfold the loop once and get a local Event Order Table for the loop shown as Figure

5.35 and Table 5.21 respectively. |

11 2
| process P1 | l process P2 |
m1
el > a2
e3 m2 > ed
3 mi
e > e2
3’ m2 » o4
T I

Figure 5.35: Loop unfolded

el |e2 |e3 |ed el |e2’ |e3 [ed

el T T T T T T T
e2 T T T
e3 T T T T T
ed T T
el’ T T T
e2’ T
e3’ T
ed’

Table 5.21: A local Event Order Table for an unfolded loop

Finally, the condition for building Occupancy Tables is used; we get m2 enters the row of

event €2 and m1 enters the row of event e4 in 12’ Occupancy Table.

130

5.6.1.3 Connecting SDL behavior with states

When generating process behaviors in SDL, we direct the control flow of a process from
one HMSC node to the next. SDL states and nextstate construct can be used, if we first
assign a state to each process in each node. When the control flow directed by a flow line
goes from on node to another, we can take SDL nextstate constructs to make sequential
connection. Using this technique, we can simply handle sequential, loop and alternative

scenarios in HMSC.

Sequential composition

Consider the following sequential scenario shown as Figure 5.36(a), bMSC S1 is
followed by S2; S1 and S2 come from Figure 5.33. Suppose we have assigned an SDL
state name for instance I1 in S1, named stl, an SDL state name for the same instance in
S2, named st2. The process behavior can be easily generated though connecting the two

states as shown in Figure 5.36 (b).

msc Seq process P1

\V

/\

()

(b)

Figure 5.36: An HMSC sequential scenario and generated process behavior in SDL

131

The assigned state names are unique, but instances in one bMSC node may use the same
state name, since state names are local to individual processes. In the case that there is a
setting condition at the beginning of an instance in a bMSC, the condition name is used
as the state name for the instance in this bMSC, instead of generating one. This is because
we can map MSC setting conditions as a SDL states. For example, if S2 is the one shown
in Figure 5.37(a) and S1 remains the same, the generated process behavior for P1 uses the

condition name as its state as shown in Figure 5.37(b).

msc s2

1

process P1

2
| process 2 I

e3 > 4

(a)

(b)

Figure 5.37: An example of MSC setting condition becoming SDL state

Loop
Using SDL states to connect process behavior for a HMSC loop scenario makes no

difference from the way we handle sequential scenarios. For example, if we have an

132

HMSC specification shown in Figure 5.38(a), and bMSC S1 and S2 still come from
Figure 5.33, the generated process behavior uses the state to achieve the iterations as

shown in Figure 5.38(b).

msc Ioop process P1

(a)
(b)

Figure 5.38: An HMSC loop scenario and generated process behavior in SDL

Similarly for loop scenarios, if there is a setting condition at the beginning of an instance
in a bMSC, the condition name is used as the state name for the instance in this bMSC,

instead of generating one.

Alternative composition

Similar to MSC inline expressions, an alternative scenario in HMSC usually has a
controller instance that decides which alternative to take through sending other instances
messages and other instances follow the decision. The approach handles the controller

instance and the non-controller instances differently. For the controller instance, we

133

assign a state name to the connection point. In its process behavior, the state is followed
by a spontaneous transition and a nondeterministic decision. Then all the alternative
bMSCs. are connected to the answers by using their assigned states. For any non-
controller instance, the state name assigned for the connection point is used for all
alternative bMSC nodes as a decision point, and state names assigned for individual
alternative bMSCs are not used. In fact, the inputs of different signals in the alternative

bMSCs are connected directly the decision point.

Consider the HMSC shown in Figure 5.39(a), with bMSCs S1, S2 and S3 coming from
Figure 5.33. Suppose we have assigned a state name called alter to the connection point
L2, state names stl, st3 and st4 to L1, L3 and L4 (bMSCs S1, S2 and S3) respectively.
The end node L5 also has a state name st5. The process behaviors can be obtained as we

have described, shown as Figure 5.39(b) and (c).

134

process P1

msc hmsc_ex process P2

©

st5 sts

(b)

Figure 5.39: A HMSC alternative scenario and generated process behavior in SDL

Finally, if the alternative scenario finishes with all alternatives join together as shown in
example, the process behavior is connected with the state name of the following node

(st5). Otherwise, each alternative branch connects to its own successor’s state.

In the cases that there is a setting condition in any non-controller instance at the

beginning of alternative bMSCs, we take the condition name as the state name of the

connection point for the non-controller instance. For example, if a setting condition

135

named “waiting” is specified for instance I2 both at the beginning of bMSCs S2 and S3,

the “waiting” should replace “alter” in the process behavior of P2.

There are also cases that in an alternative scenario, there is no controller inétance, but
decision is made purely by guarding conditions. In SDL generation, we treat all instances
as non-controller instances. A state is still used at the connection points, and then the
guarding condition node from each alternative bMSC becomes a continuous signal
following this state. For example, we consider the same HMSC shown as Figure 5.39(a),
but S2 and S3 become as shown in Figure 5.40 (a) and (b), suppose A, B, C, and D are

boolean expressions. Process behaviors can be generated shown as Figure 5.40(c) and

(d).

msc s2 msc s3

b 2 1 12

A

e3 > e4 eb5

e6

(a) (b

Figure 5.40: An HMSC alternative scenario with guarding conditions and generated process
behavior in SDL

136

process P1 process P2

none

) Lo ~< L

[72]
o
3]

st

" [none <

(©) (d

Figure 5.41: An HMSC alternative scenario with guarding conditions and generated process
behaviors in SDL (continued)

5.6.2 Generating SDL from timed HMSC: An example

A timed HMSC specification and SDL architecture is given in Figure 5.41. We present

the major steps to show the whole process that of translating a timed HMSC to SDL.

137

msc hmsc_ex msc st

\V
L1 R
___{.. I process P1 | process P2 |

- I
&t
N LZ
X
fz T e2 |« el
s R el » 4
L5 /\ * I—

msc s2 msc s3

1 12

2

|
process P1 process P2

waiting
X Y
eb > e6 e7 > e8
I I I I
block B

Figure 5.41: A timed HMSC and given SDL architecture

First, we can build the individual Events Order Tables as shown in Table 5.22. Note that
for the time measurement of bMSC S1, the first and last events are identified from the
order relation among the events as el and e4 respectively. The time requirement is then
filled into the table cell (el, e4). Similar for the relative measurement for bMSC S3, the

first event is €5 and the last event is €6. Then the relative time constraint is filled in the

cell (e5, €6).

138

el e2 e3 e4
el T T | T&t
e2 T T
e3 T
ed
e5 eb
€5 T
eb
e7 e8
e7 T&(1,2%1)
e8

Table 5.22: Individual Enhanced Event Order Tables of bMSC of Figure 5.41

Then we can build an order table for HMSC nodes (Table 5.23) and then obtain the
global Enhanced event Order Table (Table 5.24) through applying the stated combining
rules. For example, since the shortest path from node L1 to L4 is 2, node L1 precedes L4.
According to the weak sequence semantics, event el precedes event e8. Then the
Enhanced Event Order Table updates itself by calculating order transitive closure for

each event. The results are shown as Table 5.19 and Table 5.20.

L1 L2 L3 L4 L5
L1 0 1 2 2 3
L2 2 0 1 1 2
L3 1 2 0 3 4
14 inf inf inf 0 1
L5 inf inf inf inf 0

Table 5.23: All pair shortest path for the HMSC of Figure 5.41

139

el e2 e3 e4 es eb e7 e8
el T T T&t T T T T
e2 T T T T T T
e3 T T T T T
ed T T
e5 T T T
eb T
e’ T&(t,t*2)
e8

Table 5.24: Enhanced Event Order Table of HMSC of Figure 5.41

The next step is to build Occupancy Tables for process P1 and P2, since both of them

have input events. Table 5.25 shows the two tables. For example, when P2 consumes

message Z, both signal X and Y maybe in the input queue as shown in Table 5.25 (b).

input events input message Channel chl
X X
(a)
input events input message Channel chl Channel ch2
e4 Z XY z
e6 X XY
e8 Y

(b)

Table 5.25: Occupancy Tables of example of Figure 5.41

For time requirements in the specification, Variablemap table is also built, which is
shown as Table 5.26. For example, the time measurement specified for node L1 actually
has el and e4 as its Frontevent and Backevent respectively. Since both of them are in the
same instance, only FrontVariable and UserVariable are used in its Variablemap. The

relative time constraint for node 14 has e7 and e8 as its Frontevent and Backevent

140

respectively. A StampVariable is also used because event €8 is both Backevent

and

Carryinevent
Front_ | Back_ Carryout_ Carryin_ Front_ Carry_ User_ Stamp_
event event event event Variable | Variable | Variables Variable
el ed NIL NIL timevarl NIL t NIL
e7 e8 e7 e8 timevar2 | timevar3 t timevar4

Table 5.26: Variablemap Table of HMSC of Figure 5.41

Next, we assign states to HMSC nodes. States names stl, st2, st3, st4, and st5 are given

to HMSC nodes L1 to L5 respectively.

Finally, we generate process behaviors. For each process, we BFS (Breath First Search)

traverse the HMSC graph from the start node and connect behavior of the process using

the assigned states. The generated process behavior is as shown in Figure 5.42. Note that

process P2 uses the setting condition name as the state name of the decision point, instead

of using the assigned state name “st2” for L2. This is because P2 is the non-controller

process in the alternative scenario, and there is an setting condition “waiting” at the

beginning of both bMSCs S2 and S3; The state names “st3” and “st4” are also not used

by process P2. Moreover, there is no signal save construct for Y when process P2 is

consuming signal X, since signal X and Y travel the same channel.

141

process P1 process P2

() ()
X > timevar2:=now

s Y (timevar2)

-

< (timevar4-timevar3s>t)and(timevar4- >
timevar3<2*t)

st

Figure 5.42: Generated process behavior in SDL for the example of Figure 5.41

5.6.3 Non-local choice in HMSC

We have discussed the approach of translating HMSC specifications into SDL
specifications in the previous sections. However, not all HMSC specifications can be
implemented in SDL. Similar to bMSCs with inline expressions, HMSC may have non-
local choice situations. [7] has addressed this problem in HMSC and has given criterion

to detect non-local choice in HMSC.

142

(1) If bMSCs of the same alternative are controlled by different instances, non-local
choice exists.
(2) In case of nested alternatives, the following two conditions have to be satisfied to
ensure the presence of non-local choice:
- The lower alternative and the higher alternative are not controlled by the
same instance.
- The controller instance of the lower alternative is not depending on the

controller instance of the higher alternative.

However, as non-local choice scenarios in inline expressions that are caused by system
architecture, HMSCs may also have such situations. For instance, if signal X and Y travel
the different signal channels in the example shown in Figure 5.41. Instance 12 cannot find
out the decision made by I1 if it receives signal Y. This is because instance 11 may decide
execute bMSC S2 then S3; it sends signal X then Y. However, it is possible that signal X
is delayed and signal Y is received by instance 12 first. Instance 12 does not know the
decision made by I1 was either to execute S2 then S3 or to execute S3 directly.
We can generalize the cause of this kind of non-local choice as the controlling signals for
the alternative do not travel the same channel, and one or more alternative bMSCs can be
optional in the execution. Therefore, we give the following criterion to detect non-local
choice in HMSC that caused by system archivecture.

(1) There are one alternative bMSC precedes another according to the order relation

calculated for HMSC nodes.

143

(2) The control signals for these two alternative bMSCs travel different signal
channels by the given system architecture.

If both of the conditions are satisfied, non-local choice exists.

5.7 Discussion

We have also explored other MSC2SDL related problems that we have encountered

along our study.

5.7.1 Shared condition as synchronization point

In MSC, a global or non-local condition shared by more than one instances requires
synchronization among the sharing instances. The static requirements of shared
condition say “if instance a and b share the same <condition> then for each message
exchanges between these instances, the <message input> and <message output> must be
placed either both before or after the <condition>" [5]. In other words, between instances
a and b, a message sent before the condition need to be received before the condition.
That is, if we consider the shared condition a system state, then each of the sharing

instances has to wait all other sharing instances reach this state before proceeding further.

For example, in the MSC specification shown in Figure 5.43, Instance I1 sends ml to
instance I2 before shared condition “ready”, and then it sends m2 to instance 12 after.
According to the requirement stated above, after sending m1l, instance I1 reaches state

“ready”, it cannot send m2 until instance I2 has received m2 and also reaches this state.

144

msc shared_condition
1 12
i process 1] | process 2 '
mi
el e2
el ready
e3 e4
m2
]]

Figure 5.43: An MSC with shared condition

A simple way of implement this synchronization is to use a shared variable among related
instances as a semaphore, which blocks evolution of shared instances until they all reach
the intended state. In SDL-2000, a variable can be defined in block level so that all
contained processes have access to it (read and write). This mechanism is done through
two implicit remote procedure calls set_v and get_v provided by the generated state
machine of the block. Therefore, this synchronization required by MSC shared condition
should get translated into SDL gracefully using this mechanism. However, the current

ObjectGeode version does not support block level variables.

Another possible way is to use export/import or revealed/view construct provided by
SDL. However, since these two types of commands only grant a process to read the value
(not to write) of a variable from a different process, in orcuer to achieve a full
synchronization among a group of processes, every pair of processes have to declare both
revealed and view (export/import) variables for each other, or we can use a tree-like
structure with intermediate instances to reduce the amount of revealed and view

(export/import) variables. In other words, the synchronization is achieved in a distributed

145

manner. This solution obviously will cause a lot of overhead to the generated SDL

design.

Therefore, we decided release this requirement on this stage and merely see shared a
shared condition a state with no synchronization. When tools such as ObjectGeode

supports block level variables, this requirement can be fulfilled gracefully.

5.7.2 Guarding conditions in MSC

MSC does not provide a formal semantics for conditions. Setting conditions set the
system conditions and guarding condition can reference them to constraint the execution
traces of the system. However, a condition name is not in the data part of MSC, yet

guarding condition may check a condition name as a boolean variable.

For SDL generation purpose, we may define all condition names as boolean variables,
and all setting conditions set the corresponding condition name boolean variables to true
so that guarding conditions may check their values. This sounds a good solution.
However, in many cases more than one condition names may be needed to be combined
into one condition according to usage of them. For example, an MSC system might have
setting conditions as both “connected” and “disconnected”, and normally these two
condition names should be two values of one system state variable. If we define two
boolean variables for these two conditions, this most likely does not conform to the idea

of the system designer. Without knowing the logic relation among condition names, a

146

“merge” of them is impossible. Therefore, in our approach, we do not handle guarding

conditions using condition names to avoid the possible ambiguity.

5.7.3 Referenced bMSC into SDL procedures

An HMSC can reference a bMSC more than once. If we generated SDL code for the
bMSC every time it is referenced, it seems that we are doing some redundant work since
the same bMSC should have the same process behaviors, and repeated behaviors in SDL
can be defined as procedures, which can be called by the process state machine.
However, we have found that the same bMSCs in different context may result slightly

different behavior and the difference comes from signal saves.

For example, Figure 5.44 shows an HMSC specification, where bMSC S1 is referenced
twice in this HMSC. For the first reference (Label L1), upon instance I2 consuming m2,
m1 (from L2) maybe in its input queue, then an SDL save construct must be generated
here. However, upon instance 12 consuming m2 again (from L2), there is no SDL save
construct is needed, since all other signals must be consumed before, so m2 is the only
signal in the input queue. Therefore, two same bMSC references result different SDL
behavior due to the different contexts; we cannot reuse one’s SDL code for the other.

Therefore, we generated SDL code for a bMSC every time it is referenced.

147

msc hmsc_ex

L1 S1

L2 S1

1

msc S1

H
I process P1 |
el

mi

12
l process P2 l
> e2

e3 — ed

Figure 5.44: An HMSC specification with a bMSC referenced repeatedly

5.8 Related work

In this chapter, we have presented our approach for generating SDL specifications from
timed MSC use cases, under a given SDL architecture. The approach checks the
syntactical and semantics errors of MSCs, as well as their implementability. In the
generated SDL specification, we ensure its equivalence to the given MSC without

inducing any design error.

Research on generating SDL from MSC has been active and a lot of work has been done

in the recent years. Mansurov and Zhukov proposed an approach to synthesize SDL from

148

MSC [9]. It has been turned into a commercial product by Klocwork. The main objective
of this work is to provide SDL executable specifications and give early feedbacks for the
phases of requirement analysis and design [9]. In contrast, in addition to generate SDL
behavior, this approach generates SDL architecture as well. However, sometimes this
approach has a consistency problem between the given MSC specification and the
generated SDL architecture as well as SDL behaviors. Moreover, we have noticed that
this approach is not flexible with SDL architecture. Since different SDL architectures
may result different process behaviors, and one requirement specification may be used

for different target system.

Dulz and Gruhl presented an approach to generate prediction models from MSC
specifications. In contrast to our approach, their objective is solely for the purpose of
performance prediction [10]. They assume a memoryless process model in that process
transitions are atomic and the order of transitions does not affect the state of a process,
hence a one state process model. Therefore, the ability of handling complex process
behavior is limited. Furthermore, this approach also derives SDL architecture from given
MSC using an architecture specification language. This approach is not suitable for

prototyping, refinement and simulation purpose.

In his Master thesis [11], Persson has also presented an approach of extracting SDL
architecture from MSC. By analyzing MSC specification, it creates SDL system, blocks
and processes. This approach also creates a signal channel between each communicating

processes in the architecture to convey the exchanging signals. However, this approach is

149

very limited since the SDL architecture is the only concern of this work. The SDL

specification is incomplete.

SDL generation from MSC with Real-time requirements has not been addressed in the

above-mentioned research. We believe our approach is unique in handling timed MSC

into a correct SDL model.

150

Chapter 6

The MSC2SDL1.2004 Tool and Case studies

6.1 Overview

The approach described in the previous sections has been implemented in C/C++ on
Windows 2000. We have used MFC (Microsoft Foundation Class) for the Graphic User
Interface. If needed, the core of this tool can be easily ported to other platforms such as

Solaris, Unix or Linux.

MSC2SDL2004 Tool is built to generate SDL designs from MSC specifications. This
version is a successor of our existing tool MSC2SDL that handles MSC-96. The tool
emphasizes the newly introduced concepts of time and data in MSC-2000. It also handles
inline expressions in bMSC. It interfaces with ObjectGeode, as shown in Figure 6.1 We
have adopted the textual and graphical representation format of SDL; however, the
current version of ObjectGeode does not support MSC-2000 Time and Data concept, and
its syntax for HMSC is not the standard form specified in [S]. Therefore, we have used
the MSC-2000 standard textual form to represent MSC specification. The MSC2SDL tool

takes two files as inputs. One contains the MSC specification, and the other contains the

target SDL architecture.

151

The SDL architecture can be edited using ObjectGeode. Since there is no commercial
tool that currently supports MSC-2000 time and data, users need to directly provide MSC
specification in a textual form that contains time and data. MSC2SDL.2004 Tool reads
MSC specification and SDL architecture specification, and builds their internal
representations. Then, the inputs are analyzed and SDL specification is generated if there
is no semantic error detected by our algorithms. The generated SDL behavior is
combined with the architecture to produce an output file, which is in pr file format of
ObjectGeode. Therefore, this file can be viewed and modified with ObjectGeode SDL

editor, as well as be simulated with ObjectGeode tools.

ObjectGEODE
SDL editor

MSC Specification

Textual representation

| MSC2SDL2004 |
/——J' Textual representation
SDL Specification) & CIF graphical info.

Figure 6.1: Interfacing MSC2SDL2004 with ObjectGeode

SDL Architecture

6.2 Architecture of the MSC2SDL tool

The tool consists of the following eight main modules: Dispatcher, BmscParser,

HmscParser, bMSCProcessor, HMSCProcessor, SDLGeneratorbMSC,

152

SDLGeneratorHMSC, and SDLFileGenerator. Figure 6.2 shows these modules in an

architecture diagram.

pr | .hmsc/msc

MSC2SDL2004
Y
bMSCParser

bMSCProcessor HMSCProcessor
= 1. EventBuilder H 2. EventOrderTabIeE : 1.GraphBilcie_r H 2._b_M_SCParser _J
"3 Consistency | | 4. NonLocalChoice | | | |3.bMSCProcessor]
I'5. CoregionTree | {"4. GlobalEventOrderTable !

OccupancyTable OccupancyTable

|] SDLGeneratorHMSC
[SDLGeneratorbMSC | LE_B_E_‘%;D_E'E‘S-'P—M_SQ-_:
SDLFileGenerator

v P

Figure 6.2: MSC2SDL2004 tool architecture

The inputs of the MSC2SDL2004 are an MSC files and an SDL architecture file.
The functionality description of the main modules and sub-modules are as the following:
(1) Dispatcher: distributes inputs into proper processing path according to different
types of MSC.
(2) bMSCParser: checks the syntax of the input bMSCs.
(3) HMSCParser: checks the syntax of the input HMSCs.

(4) bMSCProcessor: analyzes bMSCs.

- EventBuilder: builds internal presentation of MSC events.

153

- EventOrderTable: builds Enhanced Event Order Table.

- Consistency: checks architecture consistency between the bMSCs and the given
SDL architecture.

- NonLocalChoice: detects the existence of non-local choice in bMSCs.

- CoregionTree: builds coregion trees if there are any coregions in the MSC

specifications.

(5) HmscProcessor: analyzes high level MSC.

- GraphBuilder: builds internal presentation of HMSC.

- GlobalEventOrderTable: merges individual Event Order Tables into a global

one.

(6) OccupancyTable: builds Occupancy Tables.

(7) SDLGeneratorbMSC: generates SDL constructs for bMSCs.

(8) SDLGeneratorHMSC: traverses HMSC graph and calls SDLGeneratorbMSC to
generate SDL constructs for a HMSC.

(9) SDLFileGenerator: generates SDL output file in the ObjectGeode format.

The architecture of MSC2SDL tool shown in Figure 6.2 also demonstrates the execution
flow. First of all, the Dispatcher analyzes the input files.
(1) If the inputs are a SC'L architecture file and a basic MSC file, the control flow
goes to the bMSCParser, which checks the syntax of bMSCs. Then, the
bMSCProcessor builds the internal presentation of MSC events and the Enhanced

Event Order Table. Next, it does architecture consistency checking and Non-local

154

choice checking, then creates Coregion trees if there are coregions specified in the
bMSC specification. The Occupancy module then builds the occupancy tables.
Finally, the SDLGeneratorbMSC generates SDL specification and the
SDLFileGenerator creates the output: a pr file that contains the process behaviors
in SDL with its architecture.

(2) If the inputs are a SDL architecture file, a high level MSC file and a set of basic
MSC files, the Dispatcher module sends them to the HMSCParser, which checks
the syntax of HMSC. HMSCProcessor builds the internal presentation of HMSC
as a graph, it then calls the bMSCParser and the bMSCProcessor to process each
referenced bMSCs as we have described previously. Next, the HmscProcessor
combines individual Event Order Tables into a global one then builds the
occupancy tables. The SDLGeneratorHMSC then traverses the HMSC graph and
calls the SDLGeneratorbMSC to generate SDL behavior for all processes from
each referenced BMSC. Finally, the SDLFileGenerator creates the output: pr file,

as the final step.

One of the important aspects for implementing our tool is about MSC-2000 parser. Since
there is no commercial compiler for this latest MSC version, we have built our own
parser that handles time and data in MSC2000. The building modules for bMSCParser
and HMSCParser are lexical analyzer, pre-parser, syntactic analyzer, and semantics
analyzer. Inputs to this parser are bMSC and/or HMSC textual files; the outputs are
arrays of internal representation of MSC statements. The parser reads the input MSC

files, and generates tokens that are specified in the MSC-2000 lexical rules. Then the Pre-

155

parser is called to resolve names and variable types according to naming rules. The
syntactic analyzer parses the token stream from the Pre-parser to check the syntax of the
input file according to MSC-2000 grammar. Finally, Semantic analyzer detects semantic

errors. Figure 6.3 shows the internal structure of the parser.

MSC-2000 Parser
.msc/.hmsc .
Lexical » Pre-parser
analyzer
Internal
presentation of L4
st<atements Semantic | Syntactic
anaylzer analyzer

Figure 6.3: MSC-2000 parser

This parser is a reduced is based on a reduced version of MSC-2000. We have omitted
MSC references in bMSCs, HMSC references in HMSC, instance decomposition, Gates,
Data in instance creations, etc. The reduced grammar simplifies the design of the parser,

and it is sufficient for the purpose of this study on the current stage.

6.3 Interface

Users run this tool by clicking the MSC2SDL2004 icon. The execution initiates a
Graphic User Interface shown in Figure 6.4. The window contains various sections for

users to use MSC2SDL tool easily.

156

Figure 6.4: The tool interface

To run the application, the user needs to input MSC source files and SDL architecture
files by clicking the “MSC Input” and “SDL Arch.” buttons, a new window pops up each
time to let the user to select MSC or SDL source file through a file browser. If the MSC
input file is an HMSC, all referenced bMSC by this HMSC must be placed in the same
folder as this HMSC. The default file name for generated SDL file is sdlout.pr and will be
placed in the same folder as the selected SDL architecture file. User has the option to

overwrite the default path and name. The “Execute” button initiates the translation. The

157

processing information is shown to the user in the display area. The user can use the

“Clear” button to reset the tool to its initial state after each execution.

6.4 ObjectGeode

ObjectGeode is a toolset dedicated to analysis, design, verification and validation through
simulation, code generation and testing of real-time and distributed applications.
ObjectGeode supports a coherent integration of complementary object-oriented and real-
time approaches based on the SDL and MSC standards languages [12]. ObjectGeode
provides graphical editors, a powerful simulator, a validation tool, and a C code
generator. Our work adopts the SDL pr format of ObjectGeode. The required SDL target
system architecture in our approach can be edited using ObjectGeode SDL editor.
Furthermore, the generated SDL behavior can be viewed, edited, checked, and simulated
using the ObjectGeode toolset. The detailed information of ObjectGeode can be found in

the User Manuals and Tutorials [18].

6.5 Case Studies

We present in this section two applications.

6.5.1 Automatic Teller Machine (ATM)

The ATM system is used to for self serve Banking. It usually allows users to access their
accounts and perform transactions such as balance inquiry, deposits, withdraw, etc. We

have modeled a simple ATM system as a case study for the tool.

158

MSC specification

The MSC specification of the system is shown in Figure 6.5, which has time
requirements, an inline expression and various HMSC operators. The system consists of
two actors: the ATM machine and the Bank. The system interacts with the user
represented as the environment of the system. For illustration purpose, we have specified
two ATM functions as well as the user logon process. The HMSC specification
references some bMSCs. For example, in bMSC SATRTUP, the user supplies the card
and the ATM machine initializes a counter and sets up a timer for the purpose of
controlling the user’s login process. If the user does not enters the password to the ATM
machine before the timer expires, the ATM returns the card to the user and informs the
user timeout, which is bMSC TRY_AGAIN. Then the system returns to its initial state.
Otherwise, the ATM machine requires the Bank to verify the password and updates the
counter. This scenario is represented by bMSC PROCESS_PIN; and a time constraint is
specified that requires the time duration from sending signal Verity from the ATM
machine to its reception by the Bank should be within (0,2). If the password is incorrect,
the Bank informs the ATM machine and the ATM machine informs the user to reenter its
password (bMSC REENTER_PIN). The user has three chances to give the correct
password. Otherwise, the card gets swallowed by the ATM machine (bMSC
SWOLLOW_CARD) and the system returns to its initial state. If the password is correct
according to the verification by the Bank (bMSC PIN_OK), the user is given three
options.

(1) Get balance of his account (bMSC GET_BALANCE).

159

The user inquires its account balance; the ATM machine relays this inquiry to the
Bank. The Bank gets the account balance then the ATM relays it to the user. The
system gets back the option state the user to perform the next transaction. A
relative time constraint is specified for the ATM machine that requires the time
duration from sending signal Get_Balance to the Bank and the reception of signal
Balance from the Bank should be within [1,5].
(2) Withdraw allowable amount of money (bMSC WITHDRAW).
The user enters an amount to withdraw; the ATM machine then sends this inquiry
to the Bank. If this amount is not approved (less than the account balance, for
example), the Bank informs the ATM machine and the ATM machine relays this
information to the user. Otherwise, the Bank informs the ATM machine to
disburse money to the user. Then the ATM machine inquires the account balance
to the Bank. When the information is sent back, the ATM machine sends it the
user. The system gets back the state status the user to perform the next
transaction. A relative time constraint is specified for the alt inline expression that
requires the time duration from reception of signal Ent_Amount by the ATM
machine to the end of the expression (either the transaction is approved and the
ATM disburse the money then prints the transaction record, or otherwise the
ATM machine informs the user the withdraw amount is not allowed) should be
within (3, 10).
(3) End the transaction ((MSC CANCEL_TRANS).
If the user decides to end the transaction, the ATM machine informs the Bank and

returns the card to the user. The system returns to its initial states.

160

msc ATM

Y

STARTUP

——O0—

PROCESS_PIN TRY_AGAIN

[REFUSE_PIN]

=

REENTER_PIN

SWALLOW
_CARD

(—

[GET'BALANCEJ (WITH:‘)/RAW] [CANCZ_TRANS]
] L

msc STARTUP

msc TRY_AGAIN

msc PROCESS_PIN

j K
i i [Am] | Bank
ATM ATM Enter_PIN‘
Card g T V%(T
Return_Card
count:=0 < count:=count+1
- Time_Out
Req_PIN '} - Processing_MSG
T(10] B
——— N E——
msc REFUSE_PIN msc PIN_OK
| k i k
ATM | | Bank ATM | | Bank
- Invalid P Valid
INV_PIN_MSG Option
I I I L]

Figure 6.5: The MSC specification for the ATM system

161

msc REENTER_PIN msc SWALLOW_CARD msc GET_BALANCE
j i i k
[A] ATM [Atm | | Bank |

Get_BaIance> Req_Balance

< when (count<3) > <_when (count>=3) > 'I“]
[1.5]

- < | Balance
Req_PIN Card_Swallowed -t
- Print_Balance
T(10] > Option
— —— - N
msc WITHDRAW
j k
atv | [Bank
Withdraw
Req_Amount
Ent_Amount
g S o 1~
Approve_Amount
msc CANCEL_TRANS alt Amount_Approved
. - Give_Money Req_Balance
’ k > 3.10)
r ATM I l Bank J | Balance
Print_Trans
Cancel | | | | pemeedeemmmmmme e
- Not_Approved
Abot | Not_Possible_MSG
i
_ Return_Card
h m Option
] I I I

Figure 6.5: The MSC specification for the ATM system (continued)

SDL architecture

Figure 6.6 shows the SDL architecture of the ATM system. In the system level, it consists
of ATM_block and a signal channel connecting to the environment. Inside ATM_Block,
there are two signal channels srl and sr2. Channel sr2 connect process ATM to process
Bank, and channel srl connects process ATM to the block environment with signal

channel ch.

162

system ATM

signal Card, Req_PIN, Enter_PIN, Verify, Processing_MSG, Retum_Card,Time_Out, Valid, Option;

signal Invalid, INV_PIN_MSG, Cancel, Abort, Get_Balance, Req_Balance, Balance, Print_Balance;

signat Withdraw, Req_Amount, Ent_Amount, Approve_Amount, Amount_Approved, Give_Money, Print_Trans;
signal Not_Possible_MSG, Not_Approved, Card_Swallowed,

[Card, Enter_PIN,Cancel,Get_Balance,
Withdraw,Ent_Amount]

-

ATM_Block -
ch [Req_PIN, Processing_MSG,Retum_Card,
Card_Swallowed, Time_Out,INV_PIN_MSG,
Option,Print_Balance, Req_Amount,Give_Money,

Print_Trans,Not_Possible_ MSG]

block ATM_Block

[Card,
Enter_PIN,
. . Cancel,
gr;\{::gé Valid, Get_Balance,
! Withdraw,

Amount_Approved,

Not_Approved] Ent_Amount]

sri ch

ATM

Bank

X

f.
|

sr2
[Verity, Abort, [Req_PIN, Processing_MSG,
Req_Balance,Appro Return_Card, Card_Swallowed,
ve_Amount] Time_Out, INV_PIN_MSG,

Option, Print_Balance,
Req_Amount, Give_Money,
Print_Trans,Not_Possible_MSG]

Figure 6.6: The SDL architecture for the ATM system

Non-local choice
MSC2SD1.2004 tool has detected a possible non-local choice problem in the given MSC
specification.

It is at the alternative operator connecting bMSC PROCESS_PIN and

TRY_AGAIN. Since PROCESS_PIN is controlled by the environment and
TRY_AGAIN is controlled by ATM. According to our non-local choice detecting
criteria, this is considered as a non-local choice. However, in fact the scenario is

controlled by the environment and a timer, and the choice is deterministic. We can

163

actually classify this type of scenarios and handle it properly in the future development

our approach and tool.

SDL Generation

One assumption we have made in applying this case study is that the environment is fully
cooperative with the system. That is, the environment sends signals to the system
according to the requirements from the system and never sends signals in a random order.
This gives clearer generated process behaviors in SDL without so many signal saves that
may be caused by the system architecture. However, another possible assumption about
the environment is that the environment contains more than one process that behaves in a
random order. In this case, if the signals travel multiple channels, the system need to
generate more signals saves since it has no idea about the sequence of signals sent from

the environment. The tool can also be configured to adopt the second assumption.

The generated process behaviors are shown in Figure 6.7 and Figure 6.8. The process
behavior for ATM is split into two pages. The user defined variable “count” and timer T
have been declared in the SDL process. There are also some generated time variables
that are used to translate the time requirements specified in the MSC specification.
Process Bank also has one time variable declared for the time requirement. Moreover,
there are actually some redundant states with spontaneous transition in its behavior, such
as state SO. This problem is caused by our translation algorithm, which generates a state
for the process when each referenced bMSC is processed even though the bMSC contains

no behavior for the process. Here, Bank does not appear in bMSC STARTUP, and our

164

algorithm still gives a state to the process. This problem can be solved with one more step
of removing redundant states after SDL generation. Whenever there is a state with only a
spontaneous transition to the next state, the state can be removed. Consequently, the
nondeterministic behavior of state S8 also disappears after state SO is removed. Finally,
since ATM and Bank are in the same block, they address each other their process names.

ATM sends signals to the environment using implicit addressing.

process ATM Page:1/2

dcl count integer;
det TVAR4 time;
dcl TVARS time;
dcl TVAR2 time;
dcl TAVRO time;
timer T,

.
Invalid Valid
< ((1<now-TVAR2)and(now-TVAR2<5))
| INV_ PIN_MSG V|aE> Option via sr>
Print_Balance via sri

h!

< Count<3) <Count>_3)

I Req_PIN via s> | Card_ Swallowed via sT -
SET(now+10,T) (’ T

|
Rl) [fosame < [oman

Regq_Amount via srI>

{

N

iR
E

Verify(TVARO) to Ban

Processing_MSG via sri>
Approve_Amount to Bank

TAVR3:=now

Figure 6.7: Process behavior for ATM

165

process ATM Page:2/2

S16

—

]
Amount_Apporved < Not_Approved <

Give_Money via sr1
Req_Balance to Bank |

<{(3<now-TVAR4Jand(now-TVAR4<10)) >

| Not_Possible via sr1_>>

Option via sr

Balance

<{((3<now-TVAR3)and(now-TVAR3<10)) >

Print_Trans via srt

Figure 6.7: Process behavior for ATM (continued)

166

process Bank]
del TVART time,

Ss23

i)

[Amount__Apporved to Ab Not_Approved to ATM >
S8
S24 ‘
S6
Req_Balance < ()
| none < [Verify(TVAR1)< m I none <| i
I]
S50
S0 S22

< ((O<now-TVAR1}and(now-TVAR1 <2))>

- (=)
@ 1 I |
| Abort < [Req_Balance < I Approve_Amoum<
| I
)

) Valid to ATM [S0) Balance to ATM

Invalid to ATM

Balance to ATM

(

Figure 6.8: Process behavior for Bank

6.5.2 Shuttle system

The shuttle system is rail-based transport system described in [17]. The system consists
of a railway network, shuttles, and orders for shuttles to accomplish. After a shuttle
obtains an order, it delivers the order to its destination. Then, a shuttle may get a payment

or pay a charge depending on whether or not it meets the specified deadline.

167

MSC specification

We have simplified the shuttle system and modeled it with MSC. The MSC specification
is shown in Figure 6.9, which has time requirements, an inline expression various HMSC
operators, and MSC states that helps to achieve the concurrency between the shuttle and
the broker agent.

The system consists of three actors: the shuttle, the broker agent and the bank. The broker
agent generates and announces orders for the shuttle to accomplish (bMSC
ANNOUNCE_ORDER). The shuttle has the choice of biding for an order (bMSC
MAKE_OFFER) or not doing so (bMSC NO_OFFER). Even if the shuttle makes an
offer, the broker agent still can reject the offer if it considers the offer is proper for the
order it has announced (bMSC NO_ORDER). Moreover, if the shuttle gets the order, it
will deliver then report to the broker agent (bMSC GET_ORDER_DELIEVR). If the
order deadline has passed, the shuttle will pay a penalty. Otherwise, the shuttle gets paid
for completing the order. The bank is taking charge of paying or charging the shuttle.

In order for the broker agent and shuttle act independently, we have decomposed the both
shuttle and the broker agent into two components. The shuttle consists of process Shuttle
and ShuttleExt. The Shuttle bids and takes orders only, and the ShuttleExt delivers the
orders. The broker agent consists of the BrokerAgent and BrokerAgentExt. The
BrokerAgent generates, announces and assigns to the shuttle only, and the
BrokerAgentExt monitors the result of each delivered order by the shuttle. In this way,
the shuttle may take more than more one order at any time and the orders are delivered
sequentially. Moreover, each actor goes back its original states by using MSC set

conditions after one round of operation is completed. For illustration purpose, one

168

assumption we have made in the specification is that, the deadline of each order is the
absolute time of 10 times of the order ID x. The order ID x is incremented by 1 each time
a new order is generated. The completion time of each order is measured and compared
with its deadline. The result is used to decide whether the shuttle should get paid or

should pay a penalty.

msc SHUTTLE

INIT

ANNOUNCE_ORDER
[7]
[NAKE_OFFEﬂ (NO_OFFER]
[\/ |
[GET_ORDER_DELIVEﬂ [NO_ORDER]

1

msc INIT msc ANNOUNCE_ORDER
BrokerAgent Shuttle BrokerAgent
listening

Eﬂ | NewOrder(x:=x)

d

l ‘Evaluating_Order l

_*—

L

Figure 6.9: The MSC specification for the Shuttle system

169

msc MAKE_OFFER

Shuttie

]

Offer(x)

BrokerAgent

[]

Y

‘Evaluating_Offer’

L I
msc NO_OFFER msc NO_ORDER
Shuttle BrokerAgent Shuttie BrokerAgent
NoOffer(x) _ RefuseOfter(x)
] *] I

Figure 6.9: The MSC specification for the Shuttle system (continued)

170

msc GET_ORDER_DELIVER

Bank ShuttleExt Shuttle BrokerAgent BrokerAgentExt
| |
< ide > ready > AssignOrder(x) monitoring
ExecuteOrder(x:=x) Inform(x=:x)

< listening > < announcing >

‘Calculate_path_move
_to_fromstation’

‘Load_order

‘Calculate_path_move
_to_tostation’
1

‘Unload_order

Complete(x) @t
_aﬂ . < when (t<=x*10) >

Successful(x)

A

__ Getpayment(x)

[‘Update_account+x’

b o o e i e o - ———————] - - ——— ———] o - " i " T ——— — o s G * - o]

_Paypanelty(x)

l ‘Update_account-x’ l
|

< iLIe > < rady > @i_on‘@
; L

Figure 6.9: The MSC specification for the Shuttle system (continued)

SDL architecture

Figure 6.10 shows the SDL architecture of the shuttle system. In the system level, it
consists of three blocks, namely the Bank-Block, the Shuttle_Block and the
Broker_Block. These blocks are connected with two signal channels chl and ch2. In the
Bank_Block is the process Bank, which connects to chl through the signal sr4. In the

Shuttle_Block, the shuttle has been decomposed into two processes. One is Shuttle and

171

the other ShuttleExt. They are connected with signal channel sr5. ShuttleExt connects to
chl and ch2 through signal channel sr8 and sr2 respectively. Shuttle connects to chl
through signal channel sr8. In the Broker_Block, the broker agent has been decomposed
into the BrokerAgent and the BrokerAgentExt processes. They are connected through

signal channel sr6, and they connect to chl through signal channel sr3 and si7

respectively.
system ShuttleSystem
signal Inform(real), ExecuteOrder(real), PayPenalty(real), GetPayment(real), Failure(real), Successful(real);
signal Complete(real), RefuseOffer(real), AssignOrder(real), NoOfter(reai), Offer(real), NewOrder(real);
{NewOrder,
AssignOrder,
[Offer, RefuseOffer,
[GetPaymant, NoOffer, Successtul,
PayPenalty] Compiete] Failure]
Bank_Block |« Shuttle_Block | » Broker_Block
ch2 cht
block Bank_Block block Broker_Block
[GetPayment
, PayPaneity] [inform}
BrokerAgent » BrokerAgentExt
) s16
ch2
[Offer,
NoOffer] [Complete}]
sr3 [NewOrder, s ful
AssignOrder, Lali‘li‘:eess ul
RefuseOffer]]
eht ~ cht

Figure 6.10: The SDL architecture for the Shuttle system

172

block Shuttle_Block

[GetPAyment,
PayPanelty]
{ExecuteOrder] sr2 ho
Shuttle | ShuttleExt 5

sr5

b

[NewOrder,
AssignOrder,
RefuseOffer]

[Successful,
Failure] sr8

sri

[Offer, [Complete]
NoOffer]

chi ~ chi

Figure 6.10: The SDL architecture for the shuttle system (continued)

SDL Generation

The generated process behaviors are shown from Figure 6.11 and Figure 6.15. In the
MSC specification, no instance has process type. The tool checks the consistency
between MSC specification and given SDL architecture by promoting all instances in the
MSC specification as process types. Then they match the processes defined in the SDL
architecture. There are 5 user defined variables, namely x’s in instance Shuttle,
ShuttleExt, BrokerAgent and BrokerAgentExt, and t in BrokerAgentExt. They are all
declared in corresponding SDL processes. Since there are three blocks in the system,
when two processes from different blocks pass massages, implicit addressing is used.

However, explicit addressing is used for two processes in the same block.

Moreover, we can see that there are still redundant states in the process behaviors as
those in the previous case study; and they can be removed with a refine step after SDL
generation. We have also found some nondeterministic transitions, which come from the

MSC specification. For example, state “ready” and “S2” in ShuttleExt both have two

173

possible transitions and they are nondeterministic. ShuttleExt does not appear in any
referenced bMSCs other than GET_ORDER_DELIVER. If we take the assumption that
all processes should go with the control flow specified by an HMSC, then absent
processes in some bMSCs are not controlled when at the alternative operators and our
SDL generating algorithm generates nondeterministic behaviors for all process in the
system. Therefore, this problem can be seen as a type of non-local choice. Furthermore,
if we look at this case study carefully, we found that the referenced bMSC that process
ShuttleExt only acts at the very end of the HMSC specification. Therefore, ShuttleExt
does not really need to follow the control flow before GET_ORDER_DELIVER, which
creates the nondeterministic behaviors. As a matter of fact, in this case, the
nonderministic behaviors can be also be removed after SDL is generated. We see that in
state “ready”, ShuttleExt has a spontaneous transition to state S1, and only spontaneous
transitions lead ShuttleExt from S1 to monitoring, therefore, this kind of “redundant”
loop can also be detected and removed. Then the behavior of ShuttleExt starts with the
SDL start construct, followed directly by state “monitoring”. The same problem happens

to process BrokerAgentExt and Bank.

174

dcl REALVARA1 real,

process Shuttle del REALVARO real: |j
dcl x real;

[|

none RefuseOffer AssignOffer
(R EALV/IS\R 1)

ExecuteQrder(x) to
ShuttleExt

NewOrder(x) <

‘Evaluating_Order’

Figure 6.11: Process behavior for Shuttle

175

process BrokerAgent

dcl REALVAR1 real;
dcl REALVAR2 real;
del x real:

)

)

none X:=x+1
x:=0 NewOrder(x)
via sr3

announcing

'__L Offer
F\EALV[AR 1)

‘Evaluating_offer

o)

none

NoOfter g

none none
RefuseOffer(x) AssignOrder(x)
via sr3 via sr3

Inform(x) to
BrokerAgentExt

announcing

Figure 6.12: Process behavior for BrokerAgent

176

process ShuttleExt

dcl REALVART real;
dcl REALVAR2Z real;
del x real;

s

Execute
Order(x)

‘Calculte_path_move
_to_fromstattion’

‘Load_order’

‘Calculte_path_move
_to_tostattion’

‘Unload_order’

ompieie(x) via
38

Successful
REALVAR1

GetPayment(x) via
sr2

Figure 6.13: Process behavior for ShuttleExt

177

process BrokerAgnetExt

Inform(x)

t:=now
Successful(x) via Failure(x) via
sr7 sr7
{ monitoring }
| dcl REALVARS real;
none none del t time;
del x real;

Figure 6.14: Process behavior for BrokerAgentExt

178

process Bank

=)

I |

GetPayment PayPenalty
_'“"”_ei mn,magg (REALVARS)_<_
GetPayment(x) via PayPenalty(x) via
St sr2 sr2

L @
D

ready

dcl REALVARA4 real;
dcl REALVARS real;
dcl x real;

none none

Figure 6.15: Process behavior for Bank

6.5.3 Discussion

Following the two case studies, we have seen two problems in our approach. First, our
SDL generating algorithm may generate “redundant” state transitions for some HMSC
specifications. Second, it may also generate “redundant” loop transitions for some HMSC
specifications. We can classify them as the following. The “redundant” state transitions
are those states transit to the next state spontaneously with no other “actions” than an

input of none. A “redundant” loop may contain many “redundant” state transitions that

179

form the loop with no other “actions”. Both of them can be detected and removed. As a
matter of fact, this is to minimize states for nondeterministic automata.

The fact that the “redundant” loop in process ShuttleExt in Shuttle System is redundant is
due to the property of the MSC specification that the process appears only in one pa... of
the HMSC. This fact also removes the potential non-local choice property. In the case
that the process appears in more than one path and it is not aware of the decision at any

alternative operator, non-local choice should be detected before generating SDL.

6.6 Strength and limitations of the Tool

The néwly built tool MSC2SDI1.2004 includes the functionalities of the previous tool, and
it adds functionalities to handle the translation of real-time system specifications. It also
handles inline expressions (except exc and par operator) as well. The strengths and
limitations as follows:
Strengths:
(1) The tool handles time constraints broadly and robustly.
(2) The tool checks various non-local choice scenarios in inline expressions.
(3) In an MSC specification, an instance is allowed not to have a process name. In
this case, the instance name can be used as corresponding process name.
Limitations:
(1) The tool does not allow declarations in bMSCs, thus it requires an mscdocument
to be included in the input MSC files.
(2) Time constraints associated with orderable events other than input/output is not

implemented in this version.

180

(3) Message relay for conveying time constraints information is not implemented in
this version.

(4) In bMSCs, no nested inline expression is allowed.

(5) This version does not handle multi-instances for one process.

(6) The Non-local choice detecting mechanism for HMSC is not fully implemented in

this version.

181

Chapter 7

Conclusions and Future Work

7.1 Contributions

In this thesis we have developed on an existing framework for generating SDL design
specifications from MSC specifications. Our contribution consists mainly in handling the

time constructs of MSC-2000 for the translation to SDL.

For translation purpose, we have redesigned the Event Order Table. The Event Order
Table keeps track of event order between each pair of events; and also records real time
requirements specified in the MSC. Moreover, new order relation between a pair of
events has been introduced to indicate events in different execution traces, so that we can
handle MSC inline expressions and HMSC alternative operators efficiently. Signal
extension has also been introduced in order to handle relative time requirements between
events in different instances. Variablemap has been used to organize time variables and

signal extensions for reference during the SDL generation phase.

We have defined the mapping from timed MSC to SDL, and devised an SDL generation
algorithm. This algorithm handles all types of real time requirements that can be
specified with MSC, such as time offsets, absolute time constraints and measurements,

relative time constraints and measurements, timed inline expressions, and time

182

constraints specified for referenced bMSCs in HMSCs. The SDL generation algorithm
from HMSC has also been redesigned, so that it conforms to the MSC-2000 standard

and capable of handling more complex specifications than the previous approach.

Our work includes the study of some semantic issues. We have devised a non-local
choice detection algorithm for MSC inline expressions that contain MSC guarding
conditions, message control and system architecture. For HMSC, the previous non-local
choice detection algorithm has been extended to detect non-local choices caused by
system architecture. Time related implementability of MSCs is addressed in our approach
in order to make sure that time requirements in an MSC specification can be implemented
in SDL. We also discussed translation related problems such as MSC conditions, and

SDL procedures.

Finally, we have rebuilt the MSC2SDL2004 tool with our newly developed approach and
experimented with case studies. The result has proved the feasibility of automatic

synthesis of SDL design specifications from timed MSC requirement specifications.

Our work is the first one so far that addresses translation of timed MSC to SDL. It

handles real-time requirements and addresses the related thorny issues.

7.2 Future work

Our approach is very promising for telecommunication software development; since it

provides a systematic and automatic tool not only to make the transition from

183

requirements to design much easier, but assure the quality of the product. Our approach
and the tool can be further enhanced using an incremental development approach.

MSC structural concepts

Our approach so far handles a subset of MSC structural concepts. We believe more work
can be done, such as allowing MSC references in bMSCs, HMSC references in HMSC,
etc. Parallel operator of inline expression and HMSC are also an interesting extension.
Furthermore, SDL-2000 has introduced exception and exception handler; MSC exc inline
expression may be handled using these concepts.

External Data types

Currently our approach only allows MSC specifications to use limited data types and
manipulations, such as integer, real, and their simple operations. However, complex
systems need more advanced data types and operations that may be defined in other
| languages, such as C or ASN.1. Handing imported data definitions and functions in MSC
will make our approach more powerful for complex specifications.

Multi-instance

The previous work handles multi-instances in untimed MSCs. We believe that more
study should be done in order to handle this problem in our newly devised approach.
Non-local choice in HMSC

The non-local choice problem in HMSC is rather complex. It is very important to detect
this problem before translating MSC into SDL. A more complete detecting approach may
be devised and integrated into this work, so that our tool becomes more powerful in

helping users to detect such kind of semantic problems.

184

[1]

(2]

(3]

(4]

[5]

Bibliography

E. Rudolph, J. Grabowski and P. Graubmann, Tutorial on Message Sequence
Charts (MSC’96), Proceedings of FORTE/PSTV'96 Conference, Kaiserslautern,

Germany, 1996.

G. Robert, F. Khendek and P. Grogono, Deriving an SDL Specification with a
Given Architecture from a Set of MSCs. in A. Cavalli and A. Sarma (eds.),
SDL.97: Time for Testing - SDL, MSC and Trends, Proceedings of the eighth

SDL Forum, Evry, France, Sept. 22 - 26, 1997.

F. Khendek, G. Robert and G. Butler and P. Grogono, Implementability of
Message Sequence Charts, Proceedings of the first SDL Forum Society

Workshop on SDL and MSC, Berlin, Germany, June 29 - July 1, 1998.

ITU-T, Specification and Description Language (SDL), International
Telecommunications Union, Telecommunications Standards Sector (ITU-T),

Recommendation Z.100, 1999.

ITU-T, Message Sequence Chart (MSC), International Telecommunications
Union, Telecommunications Standards Sector (ITU-T), Recommendation Z.120,

1999.

185

[6] T. Zheng, F. Khendek, Time Consistency of MSC-2000 Specifications,

Computer Networks, Vol. 42, No. 3, 2003.

[7] M. M. Musa, Automatic Generation of SDL Specifications from MSCs, M.A.Sc

Thesis, Concordia University, Montreal, Quebec, Canada, 1999.

[8] R. Detcher, I. Meiri, J. Pearl, Temporal constraint networks, Artificial

Intelligence 49 (1991) 61-95.

[9] N. Mansurov and D.Zhukov, Automatic Synthesis of SDL models in Use Case
Methodology, SDL’99: The Next Millennium, Proceeding of the ninth SDL

Forum, Montreal, Quebec, Canada, June 21 -25, 1999.

[10] W. Dulz, S. Gruhl, L. Kerber and M. Sollner, Early Performance Prediction of
SDIL/MSC-specified Systems by Automated Synthetic Code Generation,
SDL’99: The Next Millennium, Proceeding of the ninth SDL Forum, Montreal,

Quebec, Canada, June 21 -25, 1999.

[11] J. Persson, MSC Transformations, MASC thesis, Department of

Communication Systems, Lund Institute of Technology Instructor, Sweden,

1998.

186

[12]

[13]

[14]

[15]

[16]

(17}

(18]

[19]

ObjectGeode, Telelogic, Toulouse, France, 2001,

G. Cugola, C.Ghezzi, Software Processes: A retrospective and a path to the

future, Software Process: Improvement and Practice VOL.4, NO.3, 1998.

Formal Methods Group, University of Toronto, www.cs.toronto.edu/fm.

J. Ellsberger, D. Hogrefe, A. Aarma, SDL Formal Object-oriented Language for

Communicating Systems, Prentice Hall, 1997.

ITU, Recommendation X.680 - Information technology — Abstract Syntax

Notation One (ASN.1): Specification of basic notation 2002.

Software Engineering Group, Shuttle System Case Study, Version 1.0,

University of Paderborn, 2004, http://wwwcs.upb.de/cs/ag-

schaefer/CaseStudies/ShuttleSystem/.

Telelogic, ObjectGeode version 4.0, Tutorial, 1999.

S. Graf, Expression of time and duration constraints in SDL,
Telecommunications and beyond: The Broader Applicability of SDL and MSC,
Third International Workshop, SAM 2002, Aberystwyth, UK, June 24-26, 2002.

Revised Papers.

187

[20] TAU SDL Suite, Telelogic, Sweden, 2004.

[21] ITU-T, The Tree and Tabular Combined Notation Version 3 (TTCN -3): Core

language, International Telecommunications Union, Telecommunications

Standards Sector (ITU-T), Recommendation Z.140, 2003.

188

Appendix A: The Complete Algorithm for

bMSC

(1) Check the architectural consistency between given SDL and MSC

The following two steps ensure the MSC and given SDL architecture are

consistent before generating process behavior.

- For each process described in the MSC, there is a corresponding process type
in the SDL architecture (If any MSC instance has no defined process type, the
instance name is promoted as a process type name).

- Each message described in the MSC is enumerated in the SDL architecture by

a route connecting the sending process and the receiving process.

(2) Number each input/output event uniquely
Each event in the MSC specification is uniquely numbered, so that they can be
distinguished in the translation process.

- Each input/output event is assigned a unique number.

(3) Build the Event Order Table
This algorithm builds the Enhanced Event Order Table. It takes three steps. First,
time and order information are filled for each pair or individual events. For each
event, check all time constraints and measurements, in which it involves, fill time

information into the corresponding table cells. Then order information is obtained

189

and filled using temporal order rules. Order specified by coregion and instance
creations is also taken into account as well. Moreover, events in different
operands of an alt or exc irﬂine expression and events in opt inline expressions are
identified and their orders are marked as described in the previous section;
Second, the table is updated according to the transitive and reflective properties
among events. Finally, for each inline expression that specifies with time
requirements, using the order information to determine the staring or ending
events of each operand. Fill the time requirements in the corresponding cells. If
the starting event or ending events cannot be determined, that the MSC is not

implementable is declared.

For each instance i in the bMSC
For each input/output event e on the axis of instance i
If absolute time constraints exist
Insert it into the cell (e, ¢)
Endif
If relative time constraints with other events exist
For each time constraint with event e;
Insert the time constraint information into the cell (e;, e)
Endfor
Endif
If e is in a coregion

For each event e; with in the coregion

190

If the order between e and e; is not specified or e precedes e; by a general order
specification
Mark cell (e, e;) with ‘T’
Endif
Endfor
Endif
If e is in an alt or exc inline expression
For each e;in the same inline expression
If e;is in a different operand
Mark cell (e, e;) with “E”
Endif
If e;is in same operand and following e
Mark cell (e, e;) with “T”
Endif
Endfor
Endif
If e is in an opt inline expression
Mark cell (e, e) with “O”
Endif
For each event e;that is in the same instance and follows e
Mark cell (e, e;) with “T”
Endfor

If a create event ey exists following e

191

For each event ¢; in the created instance
Mark cell (e, e;) with “T”
Endfor
Endif
If e is an output event and its corresponding input event is e;
Mark cell (e, e;) with “T”
Endif
Endfor
Endfor
Repeat
For each event row e
For each cell (e, e;) marked with ‘T’
Look for the event row e;.
For each cell (¢, ey) marked with T
If cell (e ei) is not marked with “T”
Mark it with ‘T’
The Event Order Table has been changed.
Endif
Endfor
Endfor
Endfor
Until there is no change in the Event Order Table entries

For each cell (e, e;) marked with “E”

192

Mark the cell (e; ¢) with “E”

Endfor

For each inline expression ex
For each requirement specified for ex
If the time requirement is specifies with start before or start after event ¢
If the inline expression is an alt
For each alt operand i
Look up the Event Order Table
If the start event can be decided as e;
Insert the time information into cell (e; ex) or (e €;)
Else set NOT_IMPLEMENTABLE flag
Endif
Endfor
Else Look up the Event Order Table
If the start event can be decided as e;
Insert the time information into cell (e; ex) or (ex €;)
Else set NOT_IMPLEMENTABLE flag
Endif
Endif
Endif
If any time constraints specified as end before or end after e;

If the inline expression is an alt

193

For each alt operand i
Look up the Event Order Table
If the end event can be decided as e;
Insert the time information into cell (e; ex) or (e €;)
Else set NOT_IMPLEMENTABLE flag
Endif
Endfor
Else Look up the Event Order Table
If the end event can be decided as e;
Insert the time information into cell (e; ey) or (e €;)
Else set NOT_IMPLEMENTABLE flag
Endif
Endif
Endif
If time interval exists following the end of the inline expression
If time interval specified with relative time
If the inline expression is an alt
For each alt operand i
Look up the Event Order Table
If the start and end event can be decided as ei and e,
Insert the time information into cell (e; ex)
Else set NOT_IMPLEMENTABLE flag

Endif

194

Endfor
Else Look up Event Order Table
If the start and end event can be decided as ei and ey
Insert the time information into cell (e; ey)
Else set NOT_IMPLEMENTABLE flag
Endif
Endif
Else (time interval specified with absolute time)
If it is a singular time
For every event e; in this inline expression
Insert the information into cell (e; €;)
Endfor
Else (bounded time)
Look up Event Ofder Table
If the start and end event can be decided as ei and e;
Insert the time information into cell (e; ex) and (e e;)
Else FLAG NOT_IMPLEMENTABLE
Endif
Endif
Endif
Endif
Endfor

Endfor

195

(4) Check time related implementability
This algorithm checks time related under-specifications and errors. The two
events involved in any relative time constraint or measurement must be ordered.
Moreover, there should be no conflict between any two absolute time constraints

associated with the two ordered events.

For each Event Order Table cell with relative time constraint
If the cell is not marked with “T”
Terminate the translating process
Endif
Endfor
For each pair of events e;and ey with absolute time constraints
If (e; proceeds ey) and (time value of e; is greater than that of e)
Terminate the translating process
Endif

Endfor

(5) Check non_local cheice
This algorithm detects non-local choice. There are three steps. First, for each
participating instances, a set is formed, in which operand numbers whose
guarding conditions with true values are contained. If all sets contains only one
common operand, non-local choice does not exists is declared. Otherwise, step 2
follows. The controller of the inline expression is going to be decided. If all

operands have one common controller instance, then the controller for the inline

196

expression exists. If the controller instance does not exist, non-local choice exists
is declared. Otherwise, check whether the set for the controller instance is a subset
of all other sets. If this is not the case, non-local choice exists is declared.
Otherwise, if the inline expression is an alt inline expression, non-local choice
does not exist. If the inline expression is an opt or loop, step 3 follows. In step 3,
the channels that control messages travel are checked. If all control messages
travel the same channel, non-local choice does not exist. Otherwise, declare that

non-local choice exists.

For each inline expression
For each participating instance
Evaluate all guarding condition for each operand (if no guarding condition for
one operand, it is considered having a value true)
Form a set with all the operand No. with true guarding condition
Endfor
If each set contains only one element
If all elements from all sets are common
Declare non-local choice does not exist
Else
Declare non-local choice exists
Endif
Exit
Else

Find controller instance for this inline expression

197

If no controller instance found
Declare non-local choice exists
Exit

Else

If the controller instance is not the instance v hose set s; has the least

elements
Declare non-local choice exists
Exit
Else
If for all other sets s, Sz ... S, nOt ((s; Cs1)and (s; Cs2) and
Sn)
Declare non-local choice exists
Exit
Else
If the inline expression is alt
Declare non-local choice does not exist
Exit
Else
If not all control messages travel the same channel
Declare non-local choice exists
Exit
Else

Declare non-local choice does not exists

198

.and (s; C

Endif
Endif
Endif
Endif
Endif

Endif

- Subroutine: Find_the_controller_instance_for_an_inline_expression
For each instance i
Controller_i = true
For each operand
If the first event does not precedes any other events in all instances in this
operand
Controller_i = =false;
Endif
Endfor
If Controller_i = = true
Instance i is the controller instance
Exit

Endfor

(6) Create Coregion Tree
This algorithm creates a coregion tree for each coregion in a bMSC that manifests

all possible execution traces. It is same as the one in the previous work.

199

For each instance i in the bMSC
If coregions exist
For each coregion area C on i axis
Extract events that precede all other events in C or have equal footing
If only one event found
Create the tree header node and put this event in the header
CreateChildren (rest of events in C) /* a recursive function that
extracts events that precede all others given or have equal footing and
create child nodes*/
Else
Create an empty tree header node.
CreateChildren (all events in C). /* a recursive function that extracts
events that are precede all other given or have equal footing and
create child nodes*/
Endif
Endfor
Endif

Endfor

(7) Fill the Occupancy Tables
This algorithm builds an occupancy table for each instance that has input events,
indicating upon each signal consumption, the possible signals that can be in the
process’s input queue. The same condition is used as described in the existing

approach, except that since we are handling inline expressions now, two messages

200

passing in different operands of an inline expression won’t enter each other’s
table row. In the following presentation, E®PEs indicates event E and Es are

exclusive in the Enhanced Event Order Table.

For each instance i in the bMSC with message input
For each input event e,
If e. ;s in a loop inline expression
Unfold the loop once and build a new Event Order Table with unfolded
loop events
For each input event e, and its corresponding output event e,
If (NOT (e,<< e.) AND NOT (e, << e;)) AND (NOT (e;Pe.) AND
NOT (e De;))
Add message e, to row e. of the Occupancy Table
Endif
Endfor
Endfor
If a coregion exists in instance i
Get the corresponding Coregion Tree

Distribute the saved messages of the coregion events among the tree node.
Endif

Endfor

@ denotes the order relation (exclusive)

201

(8) Build Variablemaps
A Variablemap is generated for each time constraint or measurement. The
Frontevent is always present, which is either the event associated with an absolute
time constraint or measurement, or the first event of a relative time constraint or
measurement. The Backevent is the second event in a relative time constraint or
measurement. The FrontVariable is generated to record the occurrence time of the
first event. If a signal extension is needed, then the Carryoutevent and
Carryinevent are filled. The CarryVariable is also generated. The UserVariable is
filled if exists. A StampVariable is generated when the second event of a relative

time constraint is both the Carryinevent and the Backevent.

For each time constraint or time measurement in the Event Order Table
Build a Variablemap
Fill out the Frontevent
Fill out the Backevent as needed
Generate the time variables as needed

Find the Carryoutevent and the Carryinevent as needed

Endfor

(9) Generate the SDL code

202

This algorithm generates process behaviors in SDL according to the types of MSC
events and the mapping design for each type. First of all, absolute time constraint
values are changed if a time offset for the MSC exists. Then, MSC events on each
instance are scanned sequentially to generate SDL behaviors. There is a handler
for each type of MSC events. These handlers generate necessary translate MSC
events into correct SDL designs. A set of Flags are manipulated for each event to

indicate any time constraints and time measurements related to it.

For each instance i in BMSC
Generate an SDL start node
If time offset exists
Change all absolute time constraint values with addition of the time offset
Endif
For each event e on I instance
Call Set_Flags
Case type of event e
Input event:
Call Input_handler
Output event:
Call output_handler
Start of coregion:
Call Coregion_handler
Start of alt inline expression:

Call alt_handler

203

Start of opt inline expression:
Call opt_handler
Start of exc inline expression:
Call opt_handler
Start of loop inline expression:
Call opt_handler
Set timer event:
Call Set_timer_handler
Time out event:
Call Time_out_handler
Otherwise:
Call Otherwise_handler
Endcase
Endfor

Endfor

- Subroutine: Set_Flags

If e has a relative time constraints with preceding events in another instance
Set flag R_P_REMOTE

Endif

If e has a relative time constraints with preceding events in same instance
Set flag R_P_LOCAL;

Endif

204

If e has a relative time constraint or a time measurement with succeeding events
in another instance
Set flag R_F_REMOTE
Endif
If e has a relative time constraint or a time measurement with succeeding events
in the same instance
Set flag R_F_LOCAL
Endif
If E has a absolute time constraint
Set flag ABS
Endif
If E has a time measurement as the second event
Set flag MEA

Endif

- Subroutine: Input_handler

Generate an SDL state construct if needed

If the corresponding signal has been extended
Generate an SDL time variable definition

Endif

Generate an SDL input construct

If (ABS) OR (R_P_LOCAL)

205

Generate an SDL conditional transition construct with the time constraints as the
condition
Endif
If there are messages assigned to be saved
Generate an SDL save construct for each one
Endif
If a timer has been activated
Generate an alterative SDL input construct for the time signal
Endif
If a message will be sent later to the sender
Generate an SDL pid variable definition
Generate an SDL task construct to Save the sender pid into the pid variable
Endif
If(R_P_REMOTE)

Generate an SDL time variable definition

Generate an SDL task construct to save now into the time variable

Generate an SDL nextstate construct

Generate an SDL transition construct with the time constraints as the condition
Endif
If (MEA)

If now has been saved

206

Generate an SDL task construct to calculate time measurement use the value in
time variable
Else
Generate an SDL task construct to calculate time measurement with now
Endif
Endif
If (R_F_REMOTE) OR (R_F_LOCAL)) AND (now has not been saved)
Generate an SDL time variable definition
Generate an SDL task construct to save now into the time variable

Endif

- Subroutine: Output_handler
If (ABS) OR (R_P_LOCAL) OR (R_P_REMOTE)
Generate an SDL nextstate construct
Generate an SDL input construct with input none
Generate an SDL conditional transition construct with these time constraints as
the condition
Endif
If (MEA)
Generate an SDL task construct to calculate time measurement with now
Endif
If the pid address of the destination is known

Use the pid variable to send the signal

207

Else
Use the name of the destination process or find a channel to send the signal
Endif
Generate an SDL output construct
If (R_F_REMOTE) OR (R_F_LOCAL)
Generate an SDL time variable definition

Generate an SDL task to save now into the time variable

Endif

- Subroutine: Coregion_handler
Rebuild the coregion tree
Translate the rebuilt coregion tree

Go to the end of the coregion

- Subroutine: Rebuild_coregion_tree
From root of the coregion tree
For all children of each node e
If there are events other than input event or time out event AND there is more
than one event
Create an input event node input none and take this new node as child of e
Take all events among E’s children other than input events or time out events
and their subtrees as subtrees of the new node
Endif

Endfor

208

- Subroutine: Translate_the_rebuilt_coregion _tree
From root of the rebuilt coregion tree
For each level of the tree
For each node
If the node is an event
Call Set_flags
Case the type of event e
Input event:
Call input handler (save necessary messages which specified in the coregion tree)
If the input event with an input none and there are more than one nodes as its
children
Generate an SDL non-deterministic decision construct
Endif
Output event:
Call output handler
Set timer event:
Call set timer handler
Otherwise:
Call otherwise handler
Endif
Endfor

Endfor

209

- Subroutine: Set_timer_handler
Generate an SDL timer definition

Generate an SDL set timer construct

- Subroutine: Time_out_handler
Generate an SDL input construct
- Subroutine: Otherwise_handler
This handler is to handle events having a type that is not enumerated.
- Subroutine: Alt_handler
Generate an SDL state construct T
Name a label N ‘
For each of the operand S in alt inline e)cpression
If guards for S exists
Generate an SDL conditional transition decision with guards as condition.
Else
Flag NO_GUARDS
Endif
For each of the event e in S
Case the type of event e
Input event:
Call Set_Flags

Call Input handler

210

Output event:

If NO_GUARDS and E is the first event in S
Generate an SDL input construct with input none

Endif
Call Set_Flags
Call Output_handler

Start of coregion:
Call Coregion_handler

Set timer event:
If NO_GUARDS and E is the first event in S

Generate an SDL input construct with input none

Endif
Call Set_timer_handler

Time out event:
Call Time_out_handler

Otherwise:
Call Otherwise_handler

Endcase

Endfor
If S is not the last operand in alt inline expression
Generate an SDL join construct with label N

Else

211

Generate an SDL connection construct with label N
Endif

Endfor

- Subroutine: Opt_handler
Generate an SDL state construct T
Name a label N
For the opt
If guards for S exists
Generate an SDL conditional transition decision with guards as condition.
Else
Flag NO_GUARDS
Endif
For each of the event e in S
Case the type of event e
Input event:
Call Set_Flags
Call Input handler
Output eventi:
If NO_GUARDS and E is the first event in S
Generate an SDL input construct with input none
Endif
Call Set_Flags

Output_handler

212

Start of coregion:
Call Coregion_handler
Set timer event:
If NO_GUARDS and E is the first event in S
Generate an SDL input construct with input none
Endif
Call Set_timer_handler
Time out event:
Call Time_out_handler
Otherwise:
Call Otherwise_handler
Endcase
Endfor
Endfor
Generate an SDL join construct with label N
Endfor
(Generate an SDL connection construct in the other branch with label N, when

process the events following the opt inline expression)

- Subroutine: Exc_handler
Generate an SDL state construct
For the exc

If guards for S exists

Generate an SDL conditional transition decision with guards as condition.

213

Else
Flag NO_GUARDS
Endif
For each of the event e in §
Case (E type) of event e
Input event:
Call Set_Flags
Flag NO_STATE
Call Input handler
Output event:
If NO_GUARDS and E is the first event in §
Generate an SDL input construct with input none
Endif
Call Set_Flags
Output_handler
Start of coregion:
Call Coregion_handler
Set timer event:
If NO_GUARDS and E is the first event in S
Generate an SDL input construct with input none
Endif
Call Set_timer_handler

Time out event:

214

Call Time_out_handler
Otherwise:
Call Otherwise_handler
Endcase
Endfor
Endfor
Generate an SDL stop construct

(Continue translation following state T for the rest of exc inline expression)

- Subroutine: Loop_handler

Name two labels N1, N2.

Generate an SDL variable definition

Generate an SDL task construct (for the upperbound)
Generate an SDL variable definition

Generate an SDL task construct (for the lowerbound)
Generate an SDL state construct

Generate an SDL input construct with input none

Generate an SDL decision construct

Generate an SDL join construct with label N1 follow the true answer construct
Following the false answer construct

Generate an SDL variable definition

Generate an SDL task construct (initialize the loop counter)
Generate an SDL state construct s

Following the state s

215

{

Generate an SDL conditional transition construct taking loop boundaries and
guard (if exist) as the condition
Generate an SDL connection construct with label N2
For each event e in the loop

Case the type of event e
Input event:

Call Set_Flags

Call Input handler
Output event:

Call Set_Flags

Output_handler
Start of coregion:

Call Coregion_handler
Set timer event:

Call Set_timer_handler
Time out event:

Call Time_out_handler
Otherwise:

Call Otherwise_handler
Endcase

Endfor

Generate an SDL task construct to increment counter

216

Generate an SDL nextstate construct

/
{

Generate an SDL conditional transition construct taking loop upper boundary
and counter as the condition

Generate an SDL connection construct with label N1

/
{

Generate an SDL conditional transition construct taking loop boundaries, counter
and guard (if exist) as the condition
Generate an SDL decision construct with condition any
Generate an SDL join with construct Label N1 following one answer construct
Generate an SDL join with construct Label N2 following another answer

construct

{

Generate an SDL conditional transition construct taking loop boundaries, counter
and guard (if exist) as the condition

Generate an SDL join construct with label N1

217

Appendix B: The Complete Algorithm for

HMSC

(1) Check the architectural consistency between given SDL and MSC
The following two steps ensure the HMSC and given SDL architecture are

consistent before generating process behavior.

- For each process in each referenced bMSC, there is a corresponding process type

in the SDL architecture.
- For each message described in each referenced bMSCs is enumerated in the SDL

architecture by a route connecting the sending process and the receiving process.

(2) Number each input/output event uniquely

Each event in the HMSC specification is uniquely numbered, so that they can be

distinguished in the translation process.

- Each input/output event is assigned a unique number.

(3) Build the Event Order Table

- Build individual Event Order Tables for all referenced bMSCs.

- Calculate all pair shortest path for HMSC graph

- Combine individual Event Order Tables into a Global Event Order Table

according to the relationship among the bMSCs.

218

(4) Create Coregion Trees
Same as described for bMSC

(5) Build Occupancy Tables
Same as described for bMSC, except that the inline operators alt, opt are replaced
by the corresponding HMSC operators. When loop operators exist, unfold the loop
and build an Event Order Table with the unfolded loop events.

(6) Build Variable Maps
Same as described for bMSC.

(7) Generate SDL code
This algorithm generates process behaviors in SDL from an HMSC specification.
The first step is to reserve state names for each HMSC node. Then, the HMSC
graph is first search manner traversed and process behavior is generated from all

referenced bMSC:s.

Reserve state name for each HMSC node

Generate SDL from HMSC

- Subroutine: Reserve_statename
For each connect

Search for local condition in connected bMSCs
If found

Use this name as the state name for this instance
Else

Reserve a state name

219

Endif
Endfor
For each Label which represents a BSMC
Generate a state name for this BMSC

Endfor

- Subroutine: Generate_SDL

Generate an SDL start construct

Traverse the graph from the start node (BFS):

{

If there is only adjacent node

If the node is a guarding condition

Generate an SDL nextstate construct
Generate an SDL state construct

Generate an SDL enabling transition construct

Else if the node is a setting condition
Generate an SDL nextstate construct
Generate an SDL endstate construct (if needed)

Generate an SDL state construct

Else if the node is a connect

Generate a state using its reserved state name

220

Continue to traverse the graph

Else if the node is an bMSC
Generate an SDL nextstate construct using the its state name
Generate an SDL endstate construct to end above state (if needed)
Generate an SDL state construct

Call BMSC SDL generating procedure

Else if the node is the end node

Generate an SDL end construct

Else (there are more than one adjacent node)

If the instance is the controller instance
Generate an input “none”
Generate a decision construct with “any”
Generate an empty answer CORStruct

Else

Continue to traverse the graph

Endif

Endif

Continue to traverse the graph

221

