Buckling Analysis of Tri-axial Woven
Fabric Composite Structures

Duosheng Xu

A Thesis
in
The Department
of

Mechanical and Industrial Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Doctor of Philosophy at
Concordia University

Montreal, Quebec, Canada

August 2004

© Duosheng Xu, 2004



3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-96963-0
Our file  Notre référence
ISBN: 0-612-96963-0

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol ]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.






ABSTRACT

Buckling Analysis of Tri-axial Woven Fabric Composite Structures

Duosheng Xu, Ph.D.

Concordia University, 2004

The buckling of a structure may have an adverse effect on the structural
performance and may cause instability of the structure or even failure of a structure,
especially in structures with thin elements. Single layered tri-axial woven fabric
composite structures belong to this type of thin structures. The load at which buckling
will occur has to be determined. It is the purpose of the present dissertation to perform

this task. The study of the dissertation covers the following aspects:

Q A curved beam model for non-linear finite element analysis is presented. Based
on the continuum mechanics principles, the finite element updated Langrangian
incremental formulation for non-linear analysis is derived. Example problems are
solved and comparison of the present results with those from literature is made.

The effectiveness of the formulation and the validity of the corresponding

computer code are demonstrated.
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The buckling analyses of several simple tri-axial composite structures, such as
straight composite beam and curved composite beam subjected to different
boundary conditions, simply-supported composite structure with two intersected
curved tows and simply-supported tri-axial woven composite structure with three
intersected curved tows, that are a part of tri-axial woven fabric composite tow
structures are performed. In order to further confirm the accuracy of the numerical
solutions, approximate analytical solutions corresponding to these tow structures
are derived. The numerical results obtained are in very good agreement with the
analytical solutions for the straight beam, curved beam and curved beam
structures. The effect of the resin on the curved tri-axial woven composite tow

structures is also investigated.

The buckling behavior of more complicated tri-axial woven fabric composite
structures is studied. These more complicated structures include basic tri-axial
structure, modified basic tri-axial structure and enlarged basic tri-axial structure
where additional weavings are added to make the sample longer and wider. The
basic tri-axial structure is subjected to uni-directional or bi-directional loading.
The sensitivity of the buckling behavior of the basic tri-axial structure to the
change in the boundary conditions and to the imperfection due to initial
configuration is investigated. The sensitivity analysis of buckling behavior to the
in-plane aspect ratio of the structure is also conducted. Their numerical results
and corresponding physical explanations are given. In order to gain some insight

into the buckling behavior of more complicated tri-axial woven fabric composite
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structures, the buckling analysis of the modified and enlarged basic tri-axial
composite structures subjected to uni-directional loading is also conducted.
Numerical results reveal that these modified and enlarged basic tri-axial
composite structures have almost the same buckling behavior as the basic tri-axial
structure. In order to provide confirmation to the numerical solutions and to
provide simpler ways to obtain the results, approximate analytical solution
corresponding to the basic structure subjected to uni-directional loading and bi-
directional loading has been derived by using multi-layered plate theory and
equivalent energy method. The numerical result obtained for the basic tri-axial
structure is compared with the analytical solution for corresponding tri-axial
structures. The comparison shows good agreement between the two solutions. The
upper bound of the value of the buckling load for the tri-axial woven fabric
composite structure is obtained from analytical solution. The investigation of the
effect of the resin on the basic tri-axial woven composite structure shows that the
Young’s modulus of the resin has little effect on the buckling behavior of the
basic tri-axial structure due to the interaction of the woven tows constituting the
structure.

The value of the buckling load is normalized. Extension to the buckling of real
life large tri-axial structures is discussed. Buckling load of a real life large tri-
axial structure can be obtained approximately by subtracting from the value of the
approximate analytical solution by 8%. Thus determined value of buckling load

for a real life larger sized tri-axial structure is on the safe side.
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Chapter 1
Introduction

1.1 Tri-axial composite structure

Due to their attractive properties such as light weight, high strength, high
stiffness, low density, etc., composite materials have been increasingly used in many
engineering fields such as aerospace, automobile, sports equipment, and marine
structures. It is also well known that textile fabric composites have been attractive for
industrial applications as a reinforcement of composite materials. For example, the
composite materials reinforced with woven and braided fabric preforms have been
considered for potential structural applications in the aircraft and automotive industries.
Fabric-reinforced textile composites potentially have better out-of-plane stiffness,
strength, and toughness properties than laminates composed of plies. Among these textile
fabrics, tri-axial woven fabrics have many attractive properties. It has been stated [1] that
the tri-axial woven fabrics have more isotropic responses to both tensile and shear
deformations compared with the conventional biaxial fabrics. In addition, the tri-axial
woven fabrics are stiffer and easier to handle. Consequently, tri-axial woven fabrics can
also be individually used in some composite structures such as satellite dishes.

In this application, the tri-axial woven fabric composite used for a satellite dish is
a single-ply material made from carbon fibers and epoxy. It is composed of three carbon

fiber tows woven at 0°, 60° and 120° orientations and impregnated with resin. The resin is



also used between the interlaced parts of the tows to bond the tows together. A portion of
a photograph of this tri-axial woven fabric composite structure is shown in Fig. 1.1. Itis a
flat structure. In the application of the satellite dishes, it is curved and is subjected to
transverse pressure. However, for convenience, a flat tri-axial structure will be studied in
the present dissertation since the in-plane loading applied a flat structure may be

transformed to transverse loading applied to a structure with curvature.

\!

74 mm

107 mm

N
N

Fig. 1. 1: A photograph of tri-axial woven fabric composite structure. Scale: 1:13.45

A typical larger sized tri-axial structure is shown in Fig. 1.2. It can be seen in
these figures that holes occupy more than 50% of the surface area of the structure. These
holes reduce the mass of the material and at the same time allow the escape of impacting
air, which in turn reduces the load to be supported.

For design purposes, it is of interest to understand the mechanical behavior of the

tri-axial composite structure. Works on the characterization of the mechanical properties



of the materials such as the determination of elastic modulus, deflection due to bending
and thermal expansion coefficient have been carried out by Qi Zhao and S.V. Hoa [2-6].

Due to the complex nature of the structure, it is of great interest to understand its stability

X-crossover

Fig. 1. 2: Tri-axial woven fabric composite structure

when subjected to compressive loads because the satellite dish will be subjected to in-
plane compressive loads during its service. When the loading becomes larger or reaches
its critical value, the satellite dish may undergo failure due to instability or buckling.
This is the objective of the present study, namely the buckling behavior of the tri-axial

composite structure subjected to in-plane compressive loading.

1.2 Decomposition of the tri-axial structures into

simple models

The tri-axial woven fabric composite structure consists of three yarns interlacing

one over the other along the three directions. It is an array of cells of hexagonal shape or



a series of X-crossovers connected to each other. The X-crossover is so named since it
has the shape of the capital “X” and is composed of four interlaced tows woven with two
tows at 0° orientations and two tows one each in directions of 60° and 120° as shown in
Fig. 1.2. The hexagonal shape of the structure is the basic tri-axial structure constituting
the whole tri-axial woven fabric composite structure. The basic tri-axial structure as
shown in Fig. 1.3 is composed of six woven intersected tri-axial curved composite tows
which are bonded at their interlaced parts by resin. The more complicated and larger
sized tri-axial composite structure with more interlaced tows can actually be obtained by
either adding more X-crossovers to the basic structure horizontally to obtain a rectangular
shape of configuration, or by adding equal number of X-crossovers to the basic tri-axial
structure both vertically and horizontally to obtain a quasi-square configuration (here

quasi means almost but not exactly the square in-plane shape).

Fig. 1. 3: Basic tri-axial composite structure with

six woven intersected curved tows

The thus obtained tri-axial woven fabric composite structure is very complicated.
It is very difficult to perform its buckling analysis analytically. Therefore, some

numerical methods have to be used to investigate its buckling behavior. However, due to



the limited memory of the personal computer, the numerical analysis of the buckling
behavior for a large sized tri-axial composite structure is impossible. In order to study the
buckling behavior of tri-axial woven structure subjected to in-plane loading condition, it
is appropriate to examine the behavior of a representative basic tri-axial structure of the
whole structure. Based on the results obtained from a basic tri-axial structure, the
buckling behavior of the modified basic tri-axial structure that is obtained by adding one
or two X-crossovers to the basic tri-axial structure horizontally or enlarged basic tri-axial
structure that is obtained by adding four X-crossovers both horizontally and vertically,
two each in both directions can be analyzed next. The understanding of the behavior of
these tri-axial structures may then be extended to understand the behavior of the larger
structure.

In order to arrive at the analysis of the basic tri-axial structure, it is necessary to
analyze first simpler structures to build up the experience and the knowledge base. Also it
would be easier to check the results at different steps. The basic structure is composed of
a simpler structure: the so called unit cell. A representative unit of the tri-axial woven
fabric composite structure can be the one shown in Figure 1.4. It consists of three curved
tows interlaced over each other along the corresponding directions. The resin
representing the adhesive layer is put between the interlaced parts of the two tows. It can
be seen easily from this figure that a further simpler form of this tri-axial structure is the
two intersected curved tow structure. Therefore, the subsequent analysis of the tri-axial
structure will be the structure with two curved tri-axial tows connected with each other by
resin. This structure is shown in Fig. 1.5. There is only one connection between two tows

and this connection is positioned at mid-lengths of the tows for the sake of symmetry.



This situation is not a representative of the unit cell in Figure 1.4, but it serves to give
some insight into the interaction between two tows. Further division of the two tow
structure shown in Fig. 1.5 should be an individual curved tri-axial tow structure. Fig. 1.6
can be one of the representatives of the individual curved tri-axial tow structure. In order
to simulate the curvature of the tow and its wave like form in the actual structure, a type
of sinusoidal curve is depicted in Fig. 1.6 to approximate the central line of the individual

curved tri-axial tow. This is the simplest form of the curved tri-axial tow structure.

Fig. 1. 5: Composite tow structure with two intersected curved tows

Fig. 1. 6: Simplest curved composite tow structure



For the individual curved tri-axial tow structure, the dimensions of the cross-
section of the tow are only 0.2x0.84 mm, but its length is much larger than these two
dimensions. The ratio of the dimension of the cross-section of a tow to its length is very
small. At this point, we can consider the individual tow to behave like a beam. Besides,
because the thickness of the tow is also very small compared to other two dimensions and
the real cross-section is very flat, this beam can be considered as thin beam. Therefore,
the individual curved tri-axial tow can be considered as a thin curved beam, while the tri-
axial woven fabric composite tow structures can be modeled as their corresponding
curved beam structures.

As for the resin at the cross over of the tows used as an adhesive layer, it can be
represented by a bar. The further assumptions and corresponding explanation will be
made in the corresponding chapters.

Above all, it can be concluded that the tri-axial woven fabric composite tow
structures can be modeled as their corresponding curved beam structures with resin bars

at the cross over of the beams.

1.3 Stability analysis of a single curved composite

beam

For a curved beam structure, when it is loaded by compression, it may undergo
large deformation, including large displacements and large rotations. In order to simulate
its deformation effectively, the curved beam has to be modeled with six degrees-of-

freedom. In addition, the kinematic relations between displacements and rotations of the



structure and loads applied will no longer be linear. Thus, a non-linear analysis has to be
performed.

Non-linear analyses can be classified into three types: materially-nonlinear
analysis, geometrically-nonlinear analysis and combination of both. As a start, we will
only perform the geometrically-non-linear buckling analysis.

For the curved beam model, the cross-section shape of the tow is assumed to be
rectangular. This is slightly different from the actual cross-section of the tow which is
elliptic in reality. However, the real cross-section is fairly flat and for buckling analysis,
the approximation of rectangular cross section may be acceptable. This simplifies the
analysis greatly. The torsional rigidity of the tow is not taken into consideration. This
implies negligible effects of stress components corresponding to deformation of the
cross-section in its own plane. In modeling, we also assume that plane sections originally
normal to the centerline axis remain plane and undistorted under deformation but not
necessarily normal to this axis. This kinematic assumption does not allow for warping

effects in torsion.

1.4 Literature survey

Tri-axial woven fabric techﬁology has been around for many years. Considerable
effort has been made to investigate the material properties of the tri-axial woven fabric
composite material and to perform its structural stress analysis. For example, many
researchers [1,2,4,5,7-18] have developed models for the prediction of the mechanical
properties of tri-axial materials. Some of them [3,17] have conducted experiments to

determine the material constants. Others [2,6,19] have developed models to perform



stress analysis and failure prediction. None of them has conducted buckling analysis of
tri-axial woven fabric composite tow structures. Since in some applications of tri-axial
woven structures, for example, the satellite dish mentioned before, the structure may
undergo large deformation under the action of compression loads and may fail due to
buckling of the structure, it is very important to conduct this kind of analysis. The
“curved beam model” for the tri-axial woven fabric composite structure has been
discussed in Section 1.2. For the present literature survey, we will mainly focus on the
buckling analysis of the curved beam and curved beam structures.

Thin beams of different configurations and cross-sectional shapes constitute a
technically important class of structural components in engineering. Because of their
structural efficiency and as an independent structural component or stiffeners of plates
and shells, thin-walled beams of different cross-sectional shapes are widely used in
different engineering applications. An important subject in designing these structures is
the accurate prediction of their buckling strength, which has drawn considerable attention
over the years. Many established theories [20,21] and finite element models [22-25] have
been proposed for the buckling analysis of a straight thin beam, and usually the effect of
non-uniform or warping-torsional behavior was considered [21,24,25] to tackle the thin
beam more effectively. In the case of the straight thin beam, the generalized stress-strain
relations for compression, flexure and warping are all uncoupled. Such uncoupling effect
leads to great simplicity in the buckling behavior of the straight thin beams which may

only buckle by flexure, by torsion or by a combination of both.
However, in the instability analysis of an initially curved beam, the generalized

stress-strain relations for compression, flexure and warping are all coupled. The use of



curvilinear coordinates results in difficulties in dealing with high-order terms in the non-
linear strains and numerical techniques (for example, numerical volume integral) of the
virtual work equation, since the curvature should be taken into account correctly. In
general, the effect of curvature on the final numerical results is very significant. Hence,
the analysis of the curved beam or curved beam structure is more difficult than that of a
straight beam or straight beam structure.

Since the first applications of computers to non-linear analysis of the structures,
various non-linear beam elements have been presented [26-32]. The stiffness coefficients
were derived by Morris [33] for a curved beam using the equilibrium conditions with the
warping effect neglected. The effect of warping was included by El-Amin and Brotton
[34] in their curved beam element for the bending and torsional behaviors. Using the
exact displacement field for the linear problems, Chaudhuri and Shore [35] and Yoo [36]
derived individually a finite element for curved beams of a thin-walled section. The
curved beam element derived by El-Amin and Kasem [37] employed a higher-order
polynomial function for the angle of twist. Considering the coupling between the in-plane
and out-of-plane loads and deformation, Lebeck and Knowlton [38] developed a finite
element for a circular ring with nonsymmetrical sections.

In the 1980s, a few researchers devoted their effort to the analytical studies of the
curved beam. For example, Yoo [39] studied the flexural-torsional stability of curved
beam; Yoo and Pfeiffer [40] carried out the elastic stability of curved beams; Yang and
Kuo [41] conducted the static stability for curved thin walled beam. However, the results
given by these researchers were found to be in conflict with those obtained from the

classical solutions given by Timoshenko [20] and Vlasov [21]. Some later papers
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explained the reasons of these large discrepancies [42-46]. It was pointed out [42, 45] that
the errors existed in the analytical equations [39, 40], which were caused by directly
substituting curvature terms of the curved beam into the strain and potential energies of
the straight beam. The wrong results obtained by Yang and Kuo [41] were owing to the
neglect of the contribution from the radial forces [43, 46]. In fact, most of these errors
can be attributed to the omission of one or more large rotation and high-order curvature
terms in the derivation of the non-linear strain-displacement relations. Saleeb and Gendy
[47] in 1991 presented the second-order non-linear strain expressions for the finite
rotations. However, there were some errors in their second-order terms of non-linear
strain expressions for which may lead to the completely wrong critical buckling load in
some cases [48]. A year later in 1992, Saleeb, Chang and Gendy [49] developed a simple,
two-noded finite element model for the three-dimensional buckling analysis of beam
assemblages. After that, Saleeb and Gendy [50] in 1994 developed a model for the fully
non-linear analysis of thin-walled framed structures by using the simple, two-node, C°-
model developed in [49]. The corresponding governing equations were obtained based on
a consistent linearization of an incremental mixed variational principle of modified
Hellinger/Reissner type with independent assumptions for displacement and strain fields.
All coupled significant modes of deformations, i.e., stretching, bending, shear, torsion
and warping, were accounted for in the generalized-beam theory.

Based on the above models and discussions [39-47], Hu, et. al [48] derived the
correct second-order terms in the non-linear strain expressions for finite rotations and
showed the effects of these second-order terms on the critical buckling load. The

researchers also developed two kinds of displacement-based iso-parametric curved beam
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elements without restriction to shallow or deep circular beam problems and applicable to
a wide range of thicknesses. These iso-parametric curved beam elements could be used
for buckling analysis including shear and warping effects and for the investigation of the
influence of the membrane/shear/warping locking phenomenon on the spatial buckling
analysis of curved beams.

To eliminate the so-called membrane/shear/warping locking in the straight and
curved beam analysis, some other extensive research has also been conducted [51-57].
Chen and Blanford [51] presented an iso-parametric straight beam element including the
warping deformation with selective reduced integration evaluation. Dvorkin, Celentano,
Cuitino and Gioai [52] suggested a C'-type straight beam element based on Vlasov’s
solutions for non-uniform torsion problem. Hence, the interpolation functions were
similar to those proposed by Yang et al. {46]. Moreover, two kinds of linear and quadratic
1so-parametric curved beam elements were proposed [53, 54] on the basis of
Timoshenko’s beam theory in which warping deformation is neglected. A so-called strain
element was proposed by Ashwell et al. [55, 56], which can eliminate the locking. The
displacement functions of this element were derived from the strain-displacement
relations based on Euler-Bernoulli beam theory which does not include shear effect and is
not applicable to the beams with high depth. Choi and Lim [57] extended this kind of
element by considering the transverse shear deformation based on Timoshenko’s beam
theory without consideration of warping deformation.

In the development of a geometrically non-linear finite three-dimensional beam
element, an updated Lagrangian and a total Lagrangian formulations were presented by

Bathe et al. [58, 59]. They were based on the Lagrangian incremental equilibrium
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equations from continuum mechanics theory and were used in elastic, elastic-plastic,
static and dynamic analysis. Since then, many researchers used and extended these
methods for buckling analysis of curved beam element. Here are some of the examples:
Ferguson and Clark [60] introduced a family of 2- and 3-dimensional superparametric
curved beam elements as a special form of general 2- and 3-dimensional isoparametric
continuum elements and studied the buckling problems of the curved beam using
Lagrangian approach. Frey and Cescotto [61] used non-linear nodal rotations to formulate
incremental total Lagrangian description. Surana and Sorem [62] developed a
geometrically non-linear formulation using the total Lagrangian approach based on the
basic curved beam geometry and configuration given by Ferguson and Clark [60]. This
formulation allows large load steps and permits large rotations between successive load
increments with good convergence. More examples of the publications of the Lagrangian
approach are included in previous references.

In the implementation of the Lagrangian approach or formulations, appropriate
displacement interpolation functions are the key point. It can eliminate membrane/shear/
warping locking by introducing appropriate terms in the interpolation functions. It can be
applied to all kinds of non-linear problems, including geometrically non-linear, materially
non-linear or the combination of both geometrically and materially non-linear problem.
Better interpolation functions can produce more accurate results. For the interpolation
functions of the curved beam elements, Bathe [63] presented 3- and 4-node isoparametric
element interpolation functions and confirmed that these functions are very effective and
efficient for the curved beam elements. Bathe and Bolourchi [64] also proved that

updated Lagrangian and total Lagrangian formulations were mathematically the same.
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The only difference is that in the total Lagrangian formulation all static and kinematic
variables are referred to the initial configuration at time 0, while in the updated
Lagrangian formulation all static and kinematic variables are referred to the configuration
at time ¢, i.e., the last known configuration. The two formulations generated the same
final element stiffness matrices and nodal point force vectors if the same number of beam
elements was employed to model a structure. However, for the beam element, either
straight beam element or curved beam element, the updated lagrangian formulation was

computationally more effective than the total Lagrangian formulation.

1.5 Objectives of the thesis

The tri-axial woven fabric composite structures may undergo large deformation,
including large displacements and large rotations, when subjected to the compression of
in-plane loading. Large deformations may cause buckling behavior of the tri-axial
composite structures. Since the buckling of a structure may have an adverse effect on the
structural performance and may cause instability of the structure or even failure of a
structure, the load at which buckling will occur has to be determined. As a start and
considering the limitation of PC computer memory and CPU speed, only geometrically
non-linear finite analysis will be performed and the buckling behavior of the basic tri-
axial structure will be analyzed in the present dissertation.

Hence, the general objectives of the dissertation research are: To develop an
effective mechanical and mathematical model of the single layered tri-axial woven fabric
composite structure for large displacements and large rotations so that it can be used to

perform the geometrically non-linear buckling analysis of the structure; To perform the
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corresponding numerical buckling analysis of a series of less complicated and small in-

plane sized tri-axial tow structures from which a generalized conclusion can be made.

The specific objectives of the study are described as follows:

1.

Develop a mechanical model — beam model — to idealize the tows in the tri-axial
composite tow structure. This includes the development of a mathematical model —
incremental updated Lagrangian formulation — using non-linear continuum mechanics
theory. This model can be employed to simulate the large deformation (large
displacements and large rotations) procedures of the tri-axial woven fabric structure
numerically, and to perform the buckling analysis of the tri-axial structure and to
determine its corresponding buckling load.

Conduct numerically the buckling analysis of the following structures: composite
straight beam, curved beam that is a part of woven fabric tri-axial composite tow
structures subjected to different boundary conditions and some simple intersected
composite tow structures such as composite structure with two intersected curved
tows and unit cell with three intersected curved composite tows in order to gain some
insight into the buckling behavior of more complicated tri-axial woven fabric
composite structures.

Derive the approximate analytical solutions corresponding to each curved composite
tow structure using bifurcation theory in order to further confirm the accuracy of the
numerical solutions.

Perform numerically the buckling analysis of the basic tri-axial woven fabric
composite structure subjected to uni-directional loading, including the sensitivity

analysis of the buckling load of the basic tri-axial structure to the change in the
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boundary conditions and to the imperfection due to initial configuration as well as to
the in-plane aspect ratio of the structure.

Derive the approximate analytical solutions corresponding to basic tri-axial
composite structure subjected to uni-directional loading using multi-layered plate
theory in order to provide confirmation to the numerical solutions and to provide
simpler ways to obtain the results.

Carry out numerically the buckling analysis of the basic tri-axial woven fabric
composite structure subjected to bi-directional loading. At the same time, conduct the
derivation of the approximate analytical solutions corresponding to basic tri-axial
composite structure subjected to bi-directional loading using the principle of energy
equivalence in order to make the confirmation to the numerical solutions and to
provide simpler ways to obtain the results.

. Determine buckling behavior of real life larger tri-axial composite structure by

extrapolating the results obtained for smaller sized tri-axial composite structure.

1.6 Organization of the thesis

In Chapter one, the tri-axial woven fabric composite structure is decomposed into

substructures. This is to carry out the effective numerical buckling analysis for the

structure. The objectives of the dissertation are given in the last part of the Chapter.

In Chapter two, the governing equations for the incremental non-linear analysis of

the curved beam element and resin element are derived based on the principle of virtual

displacements in continuum mechanics theory and updated Lagrangian formulation. The
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corresponding techniques used to determine the value of the buckling load are also given
in this Chapter.

In Chapter three, approximate analytical solutions for the buckling loads of some
simple curved beam structures, including simply-supported individual curved composite
beam, simply-supported composite tow structure with two intersected curved beams and
simply-supported composite tow structure with three intersected beams, are derived in
order to provide confirmation to the numerical non-linear finite element solution to the
buckling loads for these structures and more importantly to prove the accuracy of the
computer software especially developed for the present project.

In Chapter four, buckling analysis for these simple curved beam structures is
conducted using the incremental non-linear finite element analysis model developed in
Chapter two. The confirmation to the numerical solution is made by comparing both
numerical and analytical solutions of these structures. These analyses provide some
insight into the buckling behavior of more complicated tri-axial woven fabric composite
structures.

In Chapter five, the buckling analysis of the basic tri-axial structure subjected to
uni-directional and bi-directional loading is carried out numerically. A parametric study
of the basic tri-axial structure is also performed to study the influence of the change in
parameters of aspect ratio of the tri-axial structure and the change in boundary conditions
on the buckling load and sensitivity of the buckling behavior to the imperfections due to
initial configuration of the structure.

In Chapter six, an approximate analytical solution for the buckling load of uni-

directionally loaded and bi-directionally loaded basic tri-axial structure is developed
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using multi-layered plate theory and the equivalent energy method. Confirmation to the
numerical results obtained in Chapter five is made. Approximate analytical solution can
be used as a simpler way to obtain the buckling load analytically. For application
purpose, extrapolation of the results obtained for smaller tri-axial composite structures is
made to determine buckling behavior of real life larger tri-axial composite structures.

In Chapter seven, major conclusions of the research are made.

In Chapter eight, the highlights of the research and recommendations for the

future work are presented.
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Chapter 2

Curved beam and resin structure

In this Chapter, the equilibrium equation for a combined curved beam and resin

layer will be presented based on the principle of virtual displacements in continuum

mechanics theory. The governing equations for the incremental non-linear analysis of the

curved beam element and resin element will be derived by using updated Lagrangian
formulation. These equations will be used in the following chapters to perform the

buckling analysis of the different curved beam structures.

2.1 Principle of virtual displacements [63]

The basis of the displacement-based finite element solution is the principle of
virtual displacements. Consider the motion of a general body in a fixed Cartesian co-
ordinate system as shown in Fig. 2.1, and assume that the body can experience large
displacements and large strains. The aim is to evaluate the equilibrium positions of the
body at the discrete time points 0, Az,2At,3At,---, where Atis an increment in time. To
develop the solution strategy, assume that the solutions measured in the co-ordinate
system corresponding to all time steps from time O to time ¢, inclusive, have been
obtained. Then the solution process for the next required equilibrium position

corresponding to time ¢ + At is typical and is applied repetitively until the complete
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solution path has been solved for. Hence, in the analysis we follow all the particles of the

body in their motion, from original to the final configuration of the body.

Consider the equilibrium of the body in Fig. 2.1 again at time ¢ + At. The

principle of virtual displacements requires that
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Fig. 2. 1: Motion of body in Cartesian co-ordinate system

@-1)

where %S, are Cartesian components of Second Piola-Kirchhoff stress tensor and

t+AL

&, are Cartesian components of the Green-Lagrange strain tensor corresponding to the

deformatiom from the configuration at time ¢ to the configuration at time ¢ + At and

referring to the configuration at time z. "W is the total external virtual work. The left

hand side of equation (2-1) includes the contributions from both resin and tows of the
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structures. Finite element models for both of them will be presented in the following two
sections, respectively. Equation (2-1) can not be solved directly since the configuration at

time ¢ + At is unknown.

2.2 Formulation for tow elements

The elements constituting the tri-axial woven fabric composite structure are
curved beams. In this section, formulation for a general three-dimensional curved beam

element for finite element analysis will be presented.

2.2.1 Description of element geometry

Consider a general three-dimensional curved beam of rectangular cross section as
shown in Fig. 2.2. Co-ordinates x,, x,,x, form the global co-ordinate system, 7,,7,,7,
represent the local co-ordinate system attached to the beam (so called body attached co-
ordinate system), and 7,S,q is the natural co-ordinate system. The section dimensions
can be specified by a, and b, and a set of vectors ‘V;, ‘V} and ‘V} atanode k at time
t (where the left superscript ¢ could also be 0 or ¢ + A¢, referring to time 0 or time ¢ + At,
respectively. The same notation will be employed in the following sections). The

directions of ‘V;, ‘V¥ can be conveniently selected to be the g, s directions at time ¢. In

this case the Cartesian co-ordinates ( x,, x,, x; ) of a point P(#,s,q) within the element for a
m-noded element at time ¢ can be written as

x= D by xf 4+ 52 a, h'VE+ —Z—Zbk b, 'VE i=1,2,3 (2-2)
= k=1 k=1

i
k=1
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where &y, (k=1,2,3,4) is the 4-node beam element interpolation functions [63].

Fig. 2. 2: Three-dimensional curved beam element

2.2.2 Displacement approximation of element

The displacement field follows from the assumptions that the cross-section
normals remain straight during deformation. In the iso-parametric element solution, the
displacements approximation and their increment at a point P(#,s,q) within the element

for a m-noded element at time ¢ are interpolated in terms of the nodal translations
! u," ,i=1,2,3 along the global co-ordinate axes and the rotations 9/, i =1,2,3 about

global co-ordinate axes using

tui=t'xi_0xi = Z hy t”ik + %z aihy (thI; _qu/;) + %Z bh, (tVin‘_OVs?) (2-3)
i =1 pas
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k=1

where

k_t+Myrk k
ti“t thi_thi (2'5)
Va="v5-7a (2-6)

are the increments of unit directional vectors at node & and can be obtained by using the

following second-order approximations

VE=9, x 'V +%ek x (8, x 'V¥) @2-7)

VE=0 x'VE4lg x (0, x 'V¥) (2-8)
K} k s 2 k k s

By substituting equations (2-5), (2-6), (2-7) and (2-8) into equation (2-4),

incremental displacements can be expressed as

_rebt k tprk k
Hu~'u, —th“ o Zakhk(azH Vo) 0 i Vo) +

P
5 Z bkh (Htlj-l tVs]EHZ) 0:—2 ! V s(i+l) ) (2_9)

—Zakh ((( l) +( 2) ) Vk _61 0tlj-lthk(t+l) 01 61’:-2tV (l+2))
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where i =1,2,3, and i +1 takes the value of 1 when i =3 and i -1 takes the value of 3

when i =1; u,,, u,, are linear terms and non-linear terms specified by single underlining

and double underlining in equation (2-9), respectively.

2.2.3 Strain-displacement relationship

Green-Lagrangian strain tensor in the configuration at time ¢ referred to the initial

configuration is defined as

1
o =2 (X7 X-1)

where deformation gradient at time ¢ is

t !

o*1 0%,z 0%13
IX 1 t
o™= | o0%X21 o0%22 o0%23

t ¢
0%31  0%32  0%33
in which comma subscript denotes the differentiation with respect to ’x; .

t+At

Considering the strain increments ",

¢ ; , the following relations hold

(€ =iyt 1y

in which the linear parts of strain increments are

1
1€y =E(tui,j+tuj,i)

the non-linear parts of strain increments are

1

i = W Uy

2

where the comma subscript denotes the differentiation with respect to ‘x; .

(2-10)

(2-11)

(2-12)

(2-13)

2-14)

(2-15)
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2.2.4 Stress-strain relationship

Stresses and strains employed in Updated Lagrangian formulation are Second
Piola-Kirchhoff stresses, Cauchy stresses and Green-Lagrange strains.

The relation between the second Piola-Kirchhoff stress tensor in the configuration
at time ¢ and measured in the configuration at time 0 and Green-Lagrange strain tensor at

time ¢ referred to the initial configuration can be expressed as
085 = 0Ci o€ (2-16)

where ;C . is the constitutive tensor.

ijrs

The relation between the second Piola-Kirchhoff stresses and Cauchy stresses is

as follows

myi 0™~

T = Xy 4, @2-17)
P
where ‘p and °p are mass densities of the element in the configuration at time ¢ and

time 0, respectively. The relation between them is as follows

t
Yo 1

L - , (2-18)
p det(;X)

The incremental stress decomposition is

+A
TSy =T S, (2-19)

where 'z ; is Cartesian components of the Cauchy stress tensor and .S, 1s Cartesian

components of Second Piola-Kirchhoff stress increment tensor referred to the

configuration at time .
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2.3 Formulation for resin layer element

The resin layer is placed between the two interlaced tows and is used to bond the
tows together. The bonded tows constitute an integral body. In this section, basic
assumptions for resin layer element will be made and the corresponding formulation for

finite element analysis will be presented.

2.3.1 Basic assumptions

The thickness of the resin layer is about one-third of the thickness of the tow and
has the value of 0.067 mm. The horizontal cross-section of the resin layer is a

parallelogram as shown in Fig. 2.3. Each side is along one of the interlaced tows, but is

Tow 2
Resin
y 1 \

L
%

Tow 1

Fig. 2. 3: Tows and resin

intersected with another tow at an angle of 60°. The dimensions of both sides are
0.87x0.87 mm. For the strains of the resin layer, only out-of-plane normal strain and in-

plane shear strain are assumed to be non-zero. Details are as follows.
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First, the strains of resin layer, ¢, = and & in local resin co-ordinate system

7R NryIR3 2

shown in Fig. 2.4 can be neglected. Actually, no strains of the resin layer at the interfaces

between resin and tow 1 along y, direction and between resin and tow 2 along y,

direction, corresponding to ¢, , and ¢, inlocal beam co-ordinate systems O,x,y,z, and

0,x,y,z,1n Fig. 2.3, will be allowed since the strains of the interlaced tows in these two

directions are neglected due to their higher order nature as stated in the previous section.

Fig. 2. 4: Two-node resin element

The top tow tends to stretch the resin layer if it deforms downward; while the bottom tow
tries to compress the resin layer, and vice versa. Because the thickness of the resin layer
is very small compared with the horizontal dimensions of the resin layer, deformation due
to compression of bottom part of the resin may cancel a part of the deformation due to
tension of the top part of the resin shown in Fig. 2.5. Therefore, the strains of the resin in

horizontal plane, corresponding to ¢ and ¢ in local resin co-ordinate system

Mr27IR2 MTr37TR3

shown in Fig. 2.4, should be of small order of magnitude and will be neglected in the
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Towl] ——=» . _ _ _ L. _._._ I P

Resin EF#;'::I'——-#

Tension

Compression

Tow?2 —+— 777 —S_._

Fig. 2. 5: Deformation of cross-section of tows and resin

present case.

Second, the shear strains, & and ¢ , are negligible. This is because the
MTr17IR2 Mr1Tr3 .

shear deformations of the tows in their local co-ordinate planes O,y,z,and O,y,z,
corresponding to tow 1 and tow 2, respectively, are neglected. These planes

approximately are corresponding to the two local vertical co-ordinate planes, O, 17,77,

and O, 7,7y, , of the resin. Therefore, the shear strains, &, ~ and ¢ may be of

NriMRs 2

small order of magnitude and can be neglected.

Third, uniform shear strain, &,
R2IR3

, (or no warping due to torsion) will be

assumed due to small thickness of the resin. The equation used to express the relation

between the shear stress and shear strain is S =GE .
Nr2R3 Nr2R3

Finally, the linear stress-strain relation of the resin, S = Er€ , in local co-

MrVR1
ordinate system of the resin is assumed. The displacements of the two intersecting points
between the center lines of the two interlaced tows and the resin may be different. It will
cause deformation, either stretching or compressing the resin along its thickness. Due to
small thickness and large cross-sectional dimensions of the resin, correspondingly, the

linear stress-strain relation of the resin will be employed in the present analysis.
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2.3.2 Element geometry and displacement

description

In order to employ the geometric interpolation functions used in the case of a
rectangular cross-sectional beam, the following mapping, which maps the parallelogram

on the plane of x,,x,, in the local co-ordinate system x,,x,,x,, into a rectangular on the
plane of 77,,77;, in co-ordinate system 77,,77,,7z; (body attached, so called mapped local

co-ordinate system) as shown in Fig. 2.6 (x,, and 7, are not shown in Fig. 2.6), is used.

After the strains are found in global co-ordinate system, they will be transformed into the

mapped local system and local system consecutively at Gauss integration points.

X g3/ xR3 =bg /2 A (~ag/2,bg/2) M3 (ag/2,bg/2)
xR3=J§(xR2+aR/2) Xy =V3(xpy +ap/2)
0 — o >
60° %2 7 s
Xy =—bg /2 (~ag/2,-bg/2) (ar/2:~bp/2)

Fig. 2. 6: Mapping from 0,xXz;X; 10 0,751778271z3

Ur 10 0 Xr1

1
Nra (= 1 ——={ %2 or M, =T,x, (2-20)
Mrs 0 0 1 XR3

()

V3

Consider a general three-dimensional two-node bar of rectangular cross section as

shown in Fig. 2.4. Co-ordinates 77;,,77,,,7z; represent the mapped local co-ordinate

system attached to the bar. The cross-sectional dimensions can be specified by a,, and
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by, » which are the dimensions of the parallelogram, and a set of vectors 'V, Vi and

Vi atanode k at time ¢. The Cartesian co-ordinates ( x,, x,, x, ) of a point P(z,s,q) within

the element for a m-noded element at time ¢ can be written as

=3k, anRk VL + %me b, 'VE i=1,2,3 (2-21)
k=1

k=1
where the nodal co-ordinates ‘x/ are also the co-ordinates of the nodes corresponding to
the related tows. This is because the above mapping did not change the scaling in x,,

direction and the co-ordinates of each center of the cross-section.
In the iso-parametric element solution, the displacements approximation and their

increment at a point P(7,s,q) within the element for a m-noded element at time ¢ are

interpolated in terms of the nodal translations u,." ,i =123 along the global co-ordinate

axes and the rotations ’9,." ,i=12,3 about global co-ordinate axes using

‘u,='x, _Oxi = Z h'u q Z aph (Y Rmt = V;m; )+ %Z by (f V1§vi ~° Vlg'i) (2-22)
k=1 k=1
ui=t+A’ui_‘ui Z %Z qu ZbRkh VRI;; (2-23)
k=1 k=1
where
VI:cqt i Vqul tVIfqt (2-24)
Vs =" Vasi=' Vs (2-25)

are the increments of unit directional vectors at node £ and can be obtained by using the

following first-order approximations

Vi =0, x 'V (2-26)
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Vi, =0, x Vi (2-27)
By substituting equations (2-24)-(2-27) into equation (2-23), incremental

displacements can be expressed as
. m q m
U, =' Atui—tui = kzl:hkuik + E;alikhk (ei’:-l tVIfq(HZ) —gilj-Z tV;q(m)) +
(2-28)
5~ k tyk k otk
EZbRkhk (0i+1 VRs(i+2) _9i+2 VRs(i+1))
k=1

where i =1,2,3 and i +1 takes the value of 1 when i =3 and i —1 takes the value of 3

when i =1.

2.3.3 Strain-displacement and stress-strain

relationships

The incremental decomposition of Piola-Kirchhoff stress of the resin is
A
Sy = TryToSky (2-29)
where ‘7 Ry is Cauchy stress of the resin at time ¢.

Considering that only the linear strain terms are included, the Green-Lagrange

strain of the resin can be expressed as

HA: Epy =1 Ry =1 €ry (2-30)
Stress-strain relation in incremental form is given by

S Rt CRijrs tC€Rrs (2-31)
The incremental strain-displacement relation in the tensor form in global co-

ordinate system is given by
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1
€y = “5(1 U +tuj,i) (2-32)

Since only the strain along the thickness in x,, direction and shear strain in
Xg,Xp, plane are considered, the strain vector in local co-ordinate system can be written

as

&, =4 Cru (2-33)
2 €

where the over-bar of the quantities corresponds to their local values.
Transformation matrix of strains from the global co-ordinate system into the

mapped local co-ordinate system is given by

l 121 1122 1123 ll lll 2 ll 2 ll 3 ll 1 ll 3
l22 1 1222 1223 12 1122 122 l23 12 1 123
1321 1322 l 323 l3 ll32 132 133 13 1 133

i (2-34)
2111112 2112122 2113123 112121 + 111122 113122 + 112123 113121 + 111123

2121131 2122132 2123133 l22l3l + 121132 123132 + 122133 123131 + 121133
_211 ll3l 2112132 21]3133 112131 + llll32 ll3l32 + 112133 ll3l3l + 111133 n

where [, are the direction cosines of the global co-ordinate axes in mapped local co-

ordinate system at Gauss integration points.
Transformation matrix of strains from the mapped local co-ordinate system into
the local co-ordinate system is given by

[1 0 0000
T.=lo -2 001 0 (2-35)
3

The incremental Piola-Kirchhoff stress strain relation in local co-ordinate system

at time ¢ is as follows
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{tSRll}zl:ER 0 ]{ €11 } (2-36)
Sr2s 0 Gil|2er

where the Ex and Gy are Young’s modulus and shear modulus of elasticity of the resin.

2.4 Equilibrium equation

Substituting the stress-strain relation of both tow and resin, that is, equations (2-
12,13, 19, 29, 30) into equation (2-1), and considering that all variables in equation (2-1)
are referred to the configuration at time ¢, i.e. the updated configuration of the body, one
obtains the equilibrium equation of body in global co-ordinate system at time ¢ + At as
follows
J',VT /8,6 & ;dVy + J:VT ‘v, 60 ,d'Vy + ﬁyk Sy 6 veny d Ve =
(2-37)

ey

S — ﬁV, T80y dVe= [ Tay 8 ery AV,

where the subscript 7 of V denotes the volume of the tow and R of ¥ the volume of the
resin. Substituting the stress-strain and strain-displacement relations and the displacement
interpolation into equation (2-37), one can obtain the formulation of iso-parametric finite
elements. This procedure has been presented by Bathe [63]. In order to confirm the

numerical results of equation (2-37), approximate analytical solutions will be given first.

2.5 Determination of buckling load

Since the buckling of a structure may have an adverse effect on the structural

performance and may cause instability of the structure, the load at which buckling will
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occur should be determined. The techniques or the methods for determining the value of
the buckling load have been described by many researchers, such as Bathe [63], Hu [48],
Cook [65], and etc. Basically the most frequently used method the so called “eigenvalue
method” [63] is to find the value of the buckling load through solving a system of
eigenvalue problem equations for a linearized buckling analysis system. This method is
found to be not very effective in the present case due to the uncertainty of the nonlinear
geometric stiffness matrix at different applied loads. Therefore, it is necessary to find
another approximate method to obtain this value.

In buckling behavior a small load increment results in relatively large deflection
of the structure. This can be seen in any load versus maximum deflection curve, for
example, Fig. 4.3 in Section 4.1, when buckling happens, the curve tends to be flat, that
is, the magnitude of the slope of this curve tends to approach a very small number. If a
critical value of the slope of the curve is to be set in advance, it can be said that buckling
has happened when the magnitude of the slope of this curve is less than the
predetermined critical value. The value of the load corresponding to this point is the
value of the buckling load. In practical calculation, the value of the buckling load can be
obtained approximately by checking the magnitude of the slope of the straight line
between any two consecutive points in the load versus maximum deflection curve. If the
magnitude of the slope is less than the predetermined critical value, the value of the load
at the left side of the two points is defined as the value of the buckling load. The critical
value of the slope in the present case is set to be equal to 5. Note that in the normalized

load versus non-dimensional maximum deflection curve, the value of the normalized load
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is much larger than the value of the non-dimensional maximum deflection. In this sense,

five (5) is a very small number.

2.6 Conclusion

Non-linear finite element formulation for the buckling analysis of a curved
composite beam and resin structure has been developed using the principle of virtual
displacement in continuum mechanics theory and an updated Lagrangian approach. An
approximate method for determination of the value of the buckling load is presented. This
formulation and approximate method can be employed to conduct the buckling analysis

of the tri-axial woven fabric composite structures in the following chapters.
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Chapter 3

Approximate analytical solutions for
buckling loads of curved beam

structures

In order to provide a confirmation to the numerical finite element solution and
verification of the developed computer software, approximate analytical solutions of
buckling load for some simple curved composite beam structures, such as simply-
supported full sinusoidal composite beam, composite tow structure with two intersected
curved tows and tri-axial tow structure with three intersected curved tows will be derived
in this Chapter. It will provide confirmation to the numerical results obtained from

Chapter 4.

3.1 Simply-supported full sinusoidal beam

Suppose that the curved composite beam takes the form of a full sinusoidal beam
that is simply-supported at both ends under loads as shown in Fig. 3.1.

Assume that the plane sections remain plane after bending; the effect of transverse
shear is negligible; the loads and the bending moments act in a plane passing through a

principal axis of inertia of the cross-section; the initial rise of the beam is not large as
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compared to the cross-sectional dimensions; deflections are small as compared to the

cross-sectional dimensions; the material points on the undeformed midline (mid-plane)

A~ T T

X3

X

’

A-A Section
| Undeformed configuration

Fig. 3. 1: Sinusoidal beam

are characterized by u,,(x,) shown in Fig. 3.1. Let u,(x,) and u,(x,) denote the location
of material points on the deformed midline. On the basis of these assumptions, the strain
at any material point is given by
£=g, + XK 3-1)
where ¢, and x denote the reference-plane (mid-plane) extensional strain and change in
curvature, respectively.

Let Do and D denote the undeformed and deformed positions of a material point of

the reference line. The co-ordinates of Dgand D are (x,,u,,) and (x, +u,,u;),
respectively. For small strains, the reference plane extensional strain, &, is given by

_ds—ds,

& (3-2)

)
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where ds, and ds are the undeformed and deformed lengths of elements on the reference
line.

(ds)? = (dx, +du,)” +(du,)*
Since (3-3)
(ds0)2 = (dx1)2 + (d“30)2

and are approximated to the second order by using Taylor series expansion, one obtains

du du 1 du
—dr.(1 1 1 3
x1(+dx1 2(d) 2(dx))
J (3-4)
1 1 1 du
— =] - 30
\ds(J dxl( 2(d ))

Substituting equation (3-4) into equation (3-2) and considering that ( 1) << ( duy 2

the reference-plane extensional strain, &,, can be further written in the following form

du, 1 duy, 1 duy., 1 du30 du1 1 du, .,
=—+4 3—5
“o dx, 2(dx) 2(d )= 2 dx, )(dx Z(dx)) (3-3)

The general expression for the change in the curvature of a curved beam, « , is

given by
d’u, d’us,
= dx} B dx} (3-6)
dus 5.2 du 2
1+(=2)%)2 (1+(=2)%)2
(1+( dxl) )2 (1+( &, )%)

For small initial curvature, the expression for the change in curvature, « , after
Taylor series expansion of equation (3-6) to the second order of the slope of the

deflection, can be written as

d 2u3 2u30) d*u,
dx} dx}

(du3) d*uy, (dum)

dx; 2 dx, dxl2 dx, (3-7)

K=
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and

oG R T ey =
Strain energy of the beam is given by
U=-1—I ang=-1—_[EL32dV (3-9)
2 d 2y
where the stress-strain relation, o = E, ¢, is employed.
Assume that u,,u, are functions ofx,, then
L xidA=0 (3-10)
Substitution of equations (3-1) and (3-10) into equation (3-9) leads to
——I—ISS(ELAgoz +E, Ic%)ds” (-11)
2 b

where [ is the moment of inertia of the cross-section, S, is the length of the reference

line of the beam and the finite element length ds” of the beam can be approximated as

being accurate to the second order
1 du, .,
\/(dxl) "‘(dus) ~dx (1+ 2(d %) (3-12)

Substituting from equation (3-12), equation (3-11) can be written as

U= L (E el + E, Ix* )1+ — (d”3) )dx, (3-13)

Work done by external forces is given by

W= [ 0t =00)+ 30,50 5,0~ )+ T M 15 - xS
(3-14)

du30 )

—M(
dx dx,

Pu,
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where 6(x, —x,;)is the Dirac 6 -function and 7(x, — x,,) is the Doublet function.
The total potential of the beam is given by
U, =U-W

Substitution of equations (3-5), (3-8) and (3-14) yields

du du 1 du 1 du du, 1 du
E A 1 3 30 il 30 1 3
v, L plEAC (,) 20 T G G
2
d*u. d*u d*u, d’u d*u. du d*u., du
E I 3 30 3 30 3 3 30 30 12
L((dxlz ) (dxf )( ( ]> dx‘z( )
(3-15)
1 d
A+ d“3) i, — [ lalus —u30) + 3 0,800 ~ 1)ty —30)+
du, du du, du t
L
ZMjn(xl xl,)( - ):10)]‘1,)‘1+M(d_xl3—ﬁ) _Pu1|0

This is the general form of the total potential of a beam. In the present case, if

only the compressive axial load is considered, the total potential takes the following form

'[)[ A(du1 l(du3) l(du30) l(du30) (dul l(du3) )2+

dx, 2 dx 2 dx, 2 dx dx, 2 dx
d*u, d*u d’u 2y d’u, du d’u,, du
E I 3 30 2_3 3 30 3 3 30 30 3_16
e MO d2)<d2(1> o O (3-16)

1+ ("“3) )ty — P

Boundary conditions for a simply-supported beam are
u;(0)=uy(L)=0; u;(0)=uj(L)=0; u,(0)=0 (roller support) (3-17)

Assume that the initial configuration of the beam is
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Uy =2 sin(zf{ x,) 0<x <L (3-18)

where the Z is the initial rise parameter.
The deflection of the beam may be represented by an infinite sine series, each

term of which satisfies the boundary conditions (3-17),

s :u30+chsin(n—Z-xl) 0<x <L (3-19)

n=1
where c,,n =1,2,--- are the undetermined coefficients of the deflection of the beam.
The axial displacement of the material points may be represented by u;, which

satisfies the boundary conditions (3-17),
u, =d(l —cos(%x, ) 0<x <L (3-20)

where d is the undetermined coefficient of axial displacement of the beam.
Substituting equations (3-18) through (3-20) into the expression for the total
potential, equation (3-16), and performing the corresponding integration and neglecting

the higher order terms of undetermined coefficients yields

E A4 5, 61 5 Z, 1 2,0 2 N 22
AA-—a" (D) +-E A)d(c +) +
o 4« " (DI + A dle "=2cnn)

Uy =Pd+
(3-21)
1

T4, 4 2 2.2 w4 a1 T4, 2. " 2.4
—E AL(—) (¢, +2c cnm+Yc, n)+—E IL(=)(¢,"+ ) ¢, n")—
3 DAL 4260 D 00t 4 D )+ GBI @+ D e ')

—3—»§2—ELIL(—;£)6(CI4 + ZCIZch2n2(1+n2) + ch4n6 +8Z2(c12 +ch2n4))
n=2 n=2 =2

We are interested in finding buckling load at which instability is possible. We find

it by first writing the equilibrium equations and then studying the character of these static
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equilibrium equations. To find the static equilibrium positions, we use the principle of the

stationary value of the total potential, or

Uz =0, n=123,..
oc,

)
oU, 0

| od

This leads to

1 T 1 T i 1 T
EELA(I)chl +§ELAL(Z)4(cI3 +c1nz=;cn2n2)+—2—ELIL(Z)4cl

—EELIL(——) (c1 +CIZC 2n2(1+n )+4c1Z )=0

n=2

1 T, 2 1 Toa, 2% . 2. % 3.4y, 1 AVRS 4
—E . A(=)°d)Y ¢ n® +—E,AL(—)"(c cn + ) c n)+—FE,IL(— c n
ZL(L)nZﬂ],,ISL(L)m;n Z )ZL(L);,.

b 2
——EIL— c c,n 1+n2)+ ¢, w442 c 0 m=234,--
2 ( @’ Z, X ) E E Y=

n=2

(—) )+g e al® )(c1 +Zc n*)=0

(3-22)

(3-23)

(3-24)

(3-25)

There are two possible cases that result from equations (3-23), (3-24) and (3-25).

Casel: ¢, #0 and ¢, =0 forn=234,---

CaseIl: ¢, 20, ¢, #0 and c, =0for n=2,3,4,--- except n=m.

Case I: Substituting ¢, =0 for n=2,3,4,--- into equations (3-23) and (3-25) and

rearranging them, one obtains

P 5 7 2, 2 2 61 2 Z 2 61 E A r
— = (-2 +4Z)) (- =7 (=
n2E I/ I -3 M= ™ )53 E, I(L)

(3-26)
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The load reaches maximum when ¢, approaches zero. The buckling load for this

case is

P, 376 , 2., 305 4 Z.,
iy 376,022 305 2 3.27
PEIE el D e D (3-27)

Case II: Eliminating d and ¢,, from equations (3-23) through (3-25) and rearranging

them, one obtains

P
. —— 1 +4
PEIID a- ( )?)(m* ﬂ((+m +m )( )? ( )’m*))
(3-28)
61 E,AZ*> 61 E AZ’ )
- — 222 22 4 -1 1
52 ELIﬂ((+ )()+()( )- 30s El(m)
The maximum load corresponds to g, approaching zero. This yields
P . 2, 2o, 61 , Z, 61EAZ* , 1 ,.Z.,
———— =m* (-5 )1 - = E))+ =L (m? - )= -7 (= 3-29
BT m’( ﬂ(L) X 637r(L) )+63 1 (m )(5 ﬂ(L)) (3-29)

The lowest value of P with respect to values of integer m corresponds to m=2 and

P 2 Z s 61 , Z, 6lEAZ* 1 2Z2
—m___ —16(1-522 ()1 -—r2(E —-r}(& 3-30
n*E,1/I? (=57 (L) X 63" (L) )+21 E,I ( (L) ) (3-30)

Comparing Case I with Case II, the critical load should be the smaller one of them, which
1s given by equation (3-27).

From equation (3-27), two observations can be seen: first, the change of buckling
load for a curved beam with respect to the Euler buckling load for straight beam is
proportional to the square of the initial rise of the beam. Second, when the initial rise, Z,
of the beam is very small, i.e., Z<<I, one obtains from equation (3-27) by neglecting the
last two terms that the buckling load is the same as the Euler’s buckling load for a
straight beam. This means that the buckling load for a curved beam is the same as the one

for a straight beam. Actually, a beam with small initial rise corresponds to a shallow
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curved beam. In this case, the initial deflection may be considered as a kind of small
imperfection of the beam. As we know the small imperfection due to a small deflection
does not change the Euler buckling load.

Substituting Z=0.133 mm and L=4.58 mm into equation (3-27) in the present
case, one obtains

P,
L

It is seen that there is 4.93% decrease for the buckling load with respect to the

Euler buckling load.

3.2 Two intersected half sinusoidal beam

structure

A simply-supported two-intersected half sinusoidal beam structure is shown in
Fig. 3.2. It is constituted by two half-sinusoidal beams and resin, which bonds the beams
together at their midpoints, and it is loaded at its roller-supported ends along the local

longitudinal axis of each beam.

Fig. 3. 2: Tri-axial tow structure with two intersected curved tows
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The total potential is given by
U, =U, +U, +U, (3-32)

where the total potentials of beams AA’ and BB’ are given, respectively, by

1 L Ly
1 (e Ly
Upr = 2 _[0 (ELBA35302 +Epplpicy’ Ydig, + P3u31|0 (3-34)

The total potential of the resin is given by, assuming that the resin acts like a
stretching spring and its shear effect is neglected due to its small order of magnitude,

1 agb L L
Up =5 E, I;R 2 (Au, (—21) - Au33(—23—))2 (3-35)

where

L L L
Au 4 (TA) SUys (TA) —U 430 (TA)

(3-36)
Bt () = 3 (22) =1t (52)
are the displacements of the beams AA’ and BB’ at their midpoints.
W is the work done by the external forces, which is given in the present case by
W =Pyt (L) - Bty (Ly) (3-37)

The formulae for strain and change of curvature of the reference line are given by
equations (3-5) and (3-7). Substituting equations (3-5), (3-7), (3-33) through (3-37) into
equation (3-32), one can obtain the formula for the total potential in the same form as
equation (3-16).

Boundary conditions:

Beam AA’: Au,(0) = Au,(L,)=0; Au"y(0) = Au"y(L,) =03 u,,(0)=0 (3-38)
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Beam BB’: Aup,(0) = Aupy(Ly) =03 Aug,(0) = Aupg,(Ly)=0; u, (0)=0

Initial shape:
Beam AA’: u = Z, sin(Ll x,) 0<x, <L,
A
Beam BB’: u,,, = Z, sin(Ll X5) 0<x, <L,

B

where Z, and Zp are initial parameters of beams AA’ and BB’, respectively.

Deflections:

o0
,. . nAﬂ
Beam AA’: uyy =u 50+ ) cA,,sm(—L xgq) 0<x,<L,
p 4

o0
. . M
Beam BB’: uy, =uy,, + E Cay s1n(—L xp) 0<xp <L,
n=1 B

where ¢, and ¢z, (n=1,2, ... ) are the undetermined coefficients.

Axial displacement:

Beam AA: u,, =d,(1 —cos(%x,“ ) 0<x,<L,
A

Beam BB: u,, =d,(1 —cos(%xm)) 0<x, <L,
B

where d4 and dp are the undetermined coefficients.

(3-39)

(3-40)

(3-41)

(3-42)

(3-43)

(3-44)

(3-45)

Substituting all the assumed initial shapes, deflections and axial displacements

into total potential expression, using the same material properties and geometries for the

two beams but different initial rise parameters, i.e. Z, and Z,, setting Z, =-Z, =-Z and

performing the same procedure of operation as in Section 3.1, one obtains the buckling

loads as follows:
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Py | 138 2Zyo 7" 2169 Ejdy s 110 13 325,
El(g)z_l o 5D [1800(EI) HIA-gm G
iy
(3-46)
13E,4,, 3EA,
e ELIZ( (= ))mwu +50-=a (> ))}

For accuracy to the second order of the initial rise, buckling load in equation (3-

46) can be approximated by

(3-47)

If the beam is very flat and the initial rise has the same order as the height of the
cross-section of the beam, the factor, £, 422 /E, I, will not be a small quantity. In this

case the buckling load can be approximated by

P E A7, : 2
a =1+(£)2{ 13,1169 EAZ°, ) 143E,4Z BEAZ I (3 48
£ 15y 2L” | 15 2[1800° E,I 60 EI 60 E,I
AT

Substituting Z=0.133 mm and L=2.29 mm into equations (3-46), (3-47) and (3-48)
in the present case, one obtains the non-dimensional buckling loads in these three cases,
respectively, as follows

_R
2E /2

=1.0105, 1.0019 and 1.0106 (3-49)
It is seen that equation (3-48) is a very good approximation.
From equation (3-46) or (3-48) one observes that the buckling load of two
intersected half-sinusoidal beam structure with flat cross-section not only depends on the

factor of initial rise parameter, (Z/L)?, but also depends on the ratio of the tension

stiffness (E;4) to the bending stiffness (E./) of the beam. The relation between buckling
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load and ratio of tension stiffness and bending stiffness, £;4/ E.I, based on equation (3-
46) is plotted in Fig. 3.3. The value of the stiffness ratio, £,4/ ELI, shown in Fig. 3.3 is
obtained by changing the thickness of the beam from 0.16 mm to 0.24 mm, of which 0.22
mm is the real thickness of the beam. The selected thicknesses at five different points

which correspond to the values of the stiffness ratio at these points shown in Fig. 3.3 are

1 02 g T 2 S T T

. 1015 -
g

L e e 5 o i
\ i .

3

~%1.005 -
Ay

T -
= Corresponding to the thickness of the real structure

=T
50985 -
2 089 4
i

S0985t 1
e

€ 0o} .
5

§0975¢ .
Z

gl an i , -
200 250 300 350 400 450 500

EiAl ExI (1/mm®)
Fig. 3. 3: Curve of non-dimensional buckling load versus stiffness ratio
E1A/ E([ for two intersected curved beam structure

uniformly distributed over the range of [0.16, 0.24]. Actually, substituting the area and

moment of inertia of the cross-section of the beam, that is, 4 = ab and I = Tlibcf , into

stiffness ratio and canceling the similar factors, one obtains E 4/ E.I = 12/a”. This

equation shows that the stiffness ratio is a function depending on the thickness of the
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beam only. It also shows that the larger thickness of the beam corresponds to the smaller
stiffness ratio. Therefore, smaller value of the stiffness ratio corresponding to horizontal

coordinate in Fig. 3.3 corresponds to larger thickness of the beam.

3.3 Three intersected full sinusoidal beam

structure

A simply-supported three-intersected full sinusoidal beam structure is shown in
Fig. 3.4. This structure is a unit cell of the tri-axial woven fabric composite structure. It is
made of three full sinusoidal composite tows woven at angles of 0°, 60°and -60° with
each other and bonded together by resin and is loaded at its three roller-supported ends
along the local longitudinal axis of each beam.

The total potential of unit cell is given by

Uy=U,+Uy+U,+Uy =W (3-50)

Fig. 3. 4: Woven tri-axial tow structure with three intersected curved tows
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where U,, U, U are strain energies of beams AA’, BB’ and CC’, respectively. U, is

given by

=% J:A (Epidqeio + Epgd 4c3)dx,

(3-51)

U and U, can be obtained simply by changing the subscript 4 in equation (3-51) into B

and C.

U, is the strain energy of the resin, which is given by

1

Ug =EE tR(A A3( )— Aum( N += E

R

1

R

W is the work done by the external forces, which is given in the present case by

W =—=Pyu (L)~ Pyug (Lg)— Feue (L)

Boundary conditions:

Beam AA’: Au ;(0) =Au3(L,)=0; Aulfz(0)=Auls(L,)=0; u,,(0)=0
Beam BB’: Auy, (0) = Aup, (L) =0; Aug,(0) = Aug, (Ly)=0; u, (0)=0

Beam CC’: Au,(0) = Aug, (L) =0 Augy(0) = Auly(Le) =03 uy (0)=0

Initial shape:

Beam AA’: u ,, =Z, sin(i—ﬂ X4)

A

Beam BB’: u,,, =Z, s1n(L Xg)
B

Beam CC’: u ., = Z, sin(—il Xcp)
C

+5ER tR(A 33( ) A”03( )’

t"(A cs(

R

0<x; <L,

0<x, <L,

(3-52)

(3-53)

(3-54)

(3-55)

(3-56)

(3-57)

(3-58)

(3-59)
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where Z4, Zp and Z¢ are initial parameters.

Deflections:
Beam AA’: u, =u 5 + nz;c,,,, sin(%r—xm ) 0<x,<L, (3-60)
Beam BB’: uy; =uy,, +§c3n sin(%xm) 0<x,; <L, (3-61)
Beam CC’: g, =gy + gcc,, sin(%xa) 0<xy <L, (3-62)

where c¢,,, ¢z, and ¢, (n=1,2, ... ) are the undetermined coefficients.

Axial displacement:

Beam AA’: u, =d (1 —cos(%x,ﬂ )] 0<x,<L, (3-63)
A

Beam BB’: u,, =d,(l —cos(%xm)) 0<x, <L, (3-64)
B

Beam CC’: ug, =d (1 —cos(%xa ) 0<x, <L, (3-65)

C
where d,4, dg and d¢ are the undetermined coefficients.
Substituting all the assumed initial shapes, deflections and axial displacements
into total potential expression, equation (3-50) using the same material properties and

geometries for the three beams but different initial parameters, i.e. Z,, Z, and Z,
setting Z. =Z, =-Z, = —Z and performing the same procedure of operation as in the

Section 3.1, one obtains the buckling load

P 376 5.2, 305 4 Z.,
w1376 2202 305 4 Z 3-66
PENE e D Tt D (3-66)
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Substituting Z=0.133 mm and L=4.58 mm into equation (3-66) in the present case,
one obtains

P
wer - 0 G-67)
L

It is seen that nearly 5% decrease for the critical load with respect to the Euler

critical load for single straight beam case is predicted.

3.4 Conclusion

The approximate analytical solutions for buckling loads of some simple
configurations such as a simply-supported curved composite beam, a simply-supported
tow structure with two intersected beams and a simply-supported tow structure with three
intersected curved beams have been presented by using the energy method. They can be
used as confirmation of the numerical non-linear finite element solution obtained in the

next Chapter for these configurations.
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Chapter 4

Finite element buckling analysis of

curved beam structures

Using the formulation derived in Chapter 2, the buckling behavior of a few simple
configurations of the curved composite beam will be presented in the following. These
simple configurations include a straight composite beam, a curved composite beam, tow
structures with two intersected curved beams and a tri-axial tow structure with three
intersected curved beams. The material properties of the tow (beam) and resin used in

this Chapter and the following Chapters are given in the Table below:

Table 4. 1: Material properties of tri-axial composite tow and resin’

Material E; (GPa) | Er(GPa) | Grr(GPa) | Grr(GPa) vir
Composite tow 500.0 40.0 24.0 14.3 0.26
Resin 3.5 3.5 1.3 1.3 0.35

* Subscript L denotes longitudinal direction; Subscript T denotes transverse direction.
where E is Young’s modulus, G is shear modulus and v is Poisson’s ratio.

The geometric parameters of the tow are as follows:

Height of cross-section of tow a=0.2mm
Width of cross-section of tow b=0.84 mm
The geometric parameters of the resin are

WidthxLengthxThickness = 0.87x0.87x0.067 mm

Transverse loads used in the following case P'=0.005 N
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4.1 Buckling behavior of single isotropic arch

beam with clamped ends

The single isotropic circular arch beam is shown in Fig. 4.1. It is clamped at both

ends with a single load at the apex. The material of the arch is assumed to be isotropic

Fig. 4. 1: Arch beam with clamped ends

and linearly elastic. The arch is idealized using 8 equal curved beam elements. The

maximum deflection w is measured from the apex of the configuration before loading.

Geometry and material properties of the beam are as follows [64]:

The radius of the arch
Height of the cross-section
Width of the cross-section
Length of the arch

Young’s modulus of elasticity
Poison’s ratio

Number of elements

R =3381 mm
a=4.8 mm
b=254mm

L =863.6 mm
E=68.95 GPa
v=0.2

N=8
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Comparison of the results with the one given in the Ref. [64] is shown in Fig.4.2.
It can be seen that very good agreement is obtained, proving the accuracy of the

formulation and also of the computer program developed for the analysis.

160

140

120 f +: Results in Ref. [64] | A

O: Present results

100

80

Load ()

60

40

=
£3

3 4 5 6 7 8 8
Maximum deflection w(mm) «10°

Fig. 4. 2: Load versus maximum deflection curve for the arch—Curve 1

Since this is a well known structure, its buckling behavior has been studied by
many researchers such as Bathe [64], Surana [62], Dupuis [66], Hu [48], etc. One of the
most important characteristics of its buckling behavior is that it undergoes snap-through
during deformation while loading. In order to check if the present formulation and

software can predict this nature of the buckling behavior of the structure and their
effectiveness for large deformation of a structure, further loading is made by increasing

the value of the load from the level of the situation shown in Fig. 4.2. The result is shown
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in Fig. 4.3. In this figure, one can clearly see that there is a big jump of deflection when
the load reaches a certain value. This shows that a snap-through exists in this case. Thus,

the accuracy and effectiveness of the present model and software has been confirmed.

45[’ T T T T T i et T T

40F

& ),
e ool oo )

Big jump of the deflection
Snap-through exists 1

L i 1 i 1 i

04 0B 0B 1 12 14 1B 1.8
maximum deflection (mm)

Fig. 4. 3: Load versus maximum deflection curve for the arch—Curve II

4.2 Simply-supported straight beam made of

individual composite tow

A simply-supported straight composite beam with a static compressive load at the
roller-supported end and a small lateral downward static load at the center, which is
employed to initiate the instability, is shown in Fig. 4.4. The beam is composed of an

individual composite tow which is assumed to be orthotropic and linearly elastic. The
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same assumption holds in the following sections. The length of the beam is 4.58 mm. It is

analyzed using 4 4-node elements. The maximum deflection u,,,, was measured from
the center corresponding to the unloaded configuration along x3 direction.

Node

14 P o :
o7 @M Bl E EEs

Element U3

Fig. 4. 4: Simply-supported straight tri-axial composite beam

The non-dimensional load versus maximum non-dimensional deflection curve of

the beam in non-linear analysis is shown in Fig.4.5.

0.9
0.8
D7
0B F

05

0.4

0.3

Non-dimensional load P/E; I(w/L)*

g2

0.1

4o 1 Lo 1 1 1
0 0.1 0.2 B3 0.4 0.5 0.6 0.7 0.8

Maximum non-dimensional deflection -u3max/L

Fig. 4. 5: Load versus deflection curve for simply-supported straight tow.
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The non-linear finite element solution obtained for the non-dimensional buckling

load in this case is P, /(x*E,I/L*) = 0.9648. This result is very close to the result

obtained using well known Euler’s beam-column formula, that is, P, /(z*E, 1/L*)=1.

There is about 3.5% difference that is predicted. The reason for this is that the shear
effect is included in the present case while the shear effect is not considered in the Euler
case. Since the present beam is a thin beam, the shear effect will “soften” the beam and

decrease the value of its buckling load. Therefore, very good consistency is obtained.

4.3 Straight cantilever beam made of tri-axial

composite

A straight cantilever composite beam with an individual static compressive load
at the free end and a small lateral downward static load, which is employed to initiate the
instability, at the same end is shown in Fig. 4.6. It is analyzed using 4 4-node elements.
The length of the beam is 4.58 mm. The maximum deflection u, is measured from the
free end corresponding to the unloaded configuration. The non-dimensional load versus

maximum non-dimensional deflection curve of the beam in non-linear finite element

analysis is shown in Fig. 4.7.

Node .
1 4 7 10 13}P
% [2] [3] [4] P
Element
| L i
I Y L

Fig. 4. 6: Straight cantilever composite beam made of individual tow
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The non-linear finite element solution obtained for the non-dimensional buckling

load in this case is P, /(z>E, I/L*)=0.2429. This result is very close to the result

obtained using Euler’s beam-column theory given by P, /(z*E,1/L*)= 0.25. There is

about 2.84% difference between them. The reason for this is also the shear effect. The
difference has the same order as the simply-supported straight beam. It can be seen that
excellent agreement is also obtained.

It is worthy to mention that the ratio of the critical loads corresponding to the
simply-supported beam and cantilever beam obtained using Euler’s theory is 4. In the
present non-linear finite element analysis the ratio is 3.972, which is very close to 4. The
agreement is therefore confirmed. This further proves the accuracy of the formulation and

the computer program developed for the analysis.

0.25 T T

02
b
[

Non-dimensional load P/E I(n/L)*
= 2
s n

0.05 -

0 L i skl | L e 1

0 Do n.oz 0.03 0.04 0.05 0:06
Maximum non-dimensional deflection -u3max/L

Fig. 4. 7: Load versus deflection curve for clamped straight tow
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4.4 Simply-supported curved beam made of

individual composite tow

A simply-supported curved composite beam with a static compressive load at the
roller-supported end and a small lateral downward static load, which is used to initiate the
instability, at the middle of the beam is shown in Fig. 4.8. It is analyzed using 4 4-node

elements. The span of the beam is 4.58 mm. The maximum deflection u, is measured
from its center line corresponding to the unloaded configuration. The curved beam is on
ox,x, plane and the equation of its center line can be expressed as:

{x3 = Zsin(2mx/ L) @4-1)

x,=0

Fig. 4. 8: Simply-supported curved composite beam

where the maximum value of the co-ordinate in x; direction is Z =0.133 mm. This value
is obtained from observation of the microphotograph of a section of the individual tow in
a tri-axial structure as shown in Fig. 4.9.

Non-dimensional load versus maximum non-dimensional deflection curve of

simply-supported individual curved composite beam is shown in Fig. 4.10.

60



Non-dimensional load P/E; I(n/L)

Fig. 4. 9: Configuration of the fiber tow and resin.
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Fig. 4. 10: Load versus deflection curve for simply-supported curved tow
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The non-linear finite element solution obtained for the non-dimensional buckling
load of a simply-supported individual curved tow is P, /(z*E,I/L*)=0.9185.It is 4.8%

less than the finite element result in straight beam case and 3.4% less than analytical
result. It is also worthy to note that the difference (4.8%) of the non-linear finite element
solution for buckling loads between straight beam and curved beam almost has the same
amount of difference (4.9%) from analytical solution for the two beams. It shows that the
change of the buckling load due to curving the beam in finite element solution obeys the
same law given by equation (3-27) if the buckling load is measured based on the straight
beam buckling load. Next, from figures 4.5 and 4.10 we can see that the slope of the load
versus maximum-deflection curve of a curved beam before buckling is less than the slope
of the load versus maximum-deflection curve of a straight beam before buckling. It
means that curving the beam will increase the deforming rate of the beam before buckling
and as a result, as we have expected, the deformation of a curved beam will be larger than
the deformation of a straight beam at the same amount of axial compressive load.
Therefore, good agreement is thus confirmed.

Deformed and undeformed shapes of simply-supported single curved composite

tow are shown in Fig. 4.11 when load is equal to 120 N.

04

T L} T T

g 02 Undeformed configuration -
«

g 0 T

Ly g

0.2 Deformed configuration =" -

04 T | L (RISl (S COLAR S

i 05 1 15 2 25 3 35 4 45 5

X1 axis

Fig. 4. 11: Deformed and undeformed shapes of simply-
supported curved composite tow
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4.5 Cantilever curved composite beam

Using the same beam configuration, the same material properties and the same
finite element mesh as that of the simply-supported curved composite beam in Section
4.4, but different boundary conditions, that is, the clamped boundary condition at the left
end of the beam and free end condition at the other end, and different load condition with
a compressive load and a small lateral downward static load to initiate the instability at
the free end and performing the non-linear finite element analysis, one obtains the load

versus maximum deflection curve as shown in Fig. 4.12. We can see from Fig. 4.12 thata

0.25

o
Ky

0.15

o
s

Non-dimensional load P/E; I(w/L)?

0.05

—

0 002 004 006 008 - DA 042 04 0DaAB. 018
Maximum non-dimensional deflection -t43max/L

Fig. 4. 12: Load versus maximum deflection curve for cantilever curved tow

much larger deflection and much larger deformation rate of the curved beam compared
with the cantilever straight beam case in Section 4.3 at a certain amount of axial

compressive load are predicted.
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We did not draw this curve together with the curves of other cases due to this
reason. This further confirms the observations made in Section 4.4,

The non-linear finite element solution thus obtained for the non-dimensional
buckling load of a cantilever individual curved tow is P, /(x*E,I/L*)=0.2201. The ratio
of the buckling load for simply-supported curved beam to the one in the present case is
4.17. It is very close to 4. It shows that the Euler buckling load relation between a simply-
supported beam and a cantilever beam also holds for the present case. Deformed and
undeformed shapes of cantilever individual curved composite tow are shown in Fig. 4.13
when load is equal to 27 N. It may be noted here that for the curved beam the original
configuration is oriented at an angle with respect to x, -axis at both the fixed and free

ends.

0‘4 | MR | T T T
o 22 Undeformed configuration ]
Eé 0 \éh_/ ]

R

0.2 o .

Deformed conﬁguration%""m*ww

_04 X i L St ] G L L i 1
0 D5 1 15 2 25 3 35 4 45 5

X1 axis

Fig. 4. 13: Deformed and undeformed shapes of cantilever curved beam

4.6 Simply-supported two intersected curved

composite tow structure

A simply supported curved tri-axial composite tow structure is shown in Fig. 3.2.

This structure is made of two intersected curved composite tows at angle of 60°, which
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are bonded together by resin at the midpoints of each tow for the sake of symmetry. The
initial configurations of the beams follow half of a sine curve. Thus, the curvature of the
tow is maintained. The resin layer at the cross over of the tows can be represented by bars
as modeled in Chapter 2. The ends of the tows are represented by pins at one end of the
tow and by pin-on-rollers at the other end of the tow. The tows are constrained at the ends
such that the reaction forces at the constraints are perpendicular to the orientation of the
tows at these ends. Two static compressive loads along the connection lines of
corresponding supported ends and a small lateral downward static load at the apex are
applied. The small lateral load P’ is employed to initiate the instability and it is kept to be
constant. The values of the axial loads for the two beams, which are P, and Py, will be
kept to be the same. The structure is analyzed using 4 4-node elements with two elements
for each tow. The maximum deflection u, is measured from its central line
corresponding to its unloaded configuration. The dotted lines in the figure constitute the

x,x, plane of co-ordinate system. The length of the beam is 2.29 mm. Geometries of the
structure are as follows:

The beam AA'is in x,x, plane and the equation of its central line is given by

X3=Z sin(% x)

4-2)

x,=0

The beam BB' is in x,,x,, plane, where x,, is parallel to x, axis and x,, is in
B1°VB3 B3 3 Bl

ox,x, plane and is intersected with ox, axis at angle of 60°, as shown in Fig. 3.2. The

equation of central line of beam BB' is as follows:
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. T
Xgy=—2 Sm(f Xp) 4-3)

Load versus maximum deflection curve is plotted in Fig. 4.14. The non-

dimensional buckling load obtained from the non-linear finite element analysis in

Non-dimensional load P/E I(n/L)*

b i S 1 At Lt ] 1

Lo
g 04 1 1.5 2 25 3 35 4
Maximum non-dimensional deflection -u3max/L x10°

Fig. 4. 14: Load versus maximum deflection curve of simply-
supported two intersected tow structure

this case is P, /(n’E,1/L*)=0.9862. It is 6.86% larger than the individual curved beam

case and 2.22% larger than the individual straight beam case. It shows that the resin used
for bonding two oppositely curved tows may have the effect to resist further deformation
of the structure. The result obtained from the approximation solution given in Section 3.2
is 1.01. It is 1% larger than the Euler buckling load in straight beam case. This further

confirms the effect of the resin on resisting the deformation of the structure. Comparing
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the two results, the non-linear finite element solution is seen to be 2.36% less than the
approximate solution. It is a very good agreement. The reason for the difference between
the two solutions is the shear effect of the beams. Non-linear finite element solution takes
the shear effect into consideration while the analytical approximate solution does not.

In order to know the effect of the resin on the buckling behavior of simply-
supported two oppositely curved tow structure, ten times of variation, both increasing and
decreasing, of Young’s modulus of resin is made. Buckling loads at different Young’s
modulus values are plotted in Fig. 4.15. From this figure one observes that buckling load
increases as the Young’s modulus becomes smaller - this is because smaller Young’s
modulus leads to smaller stiffness of the resin as a bar, correspondingly, the resin is
deformed more easily. This leads to further increase in curvature of each beam when

loads are smaller. Note that each beam is curved along different directions. In order to

0.96856

T T T T T

Original value of Young's modulus of the resin
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Fig. 4. 15: Buckling load for two-tow structure versus Young’s modulus of the resin
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make the two beams to buckle together, great effort needs to be exerted in order to
reverse the curvature of one beam. Therefore, larger value of load P is needed to buckle
the structure if the two beams are to buckle on the same side, either up or down. For the
case of stiff resin, the two tows are held together more rigidly. As such they tend
todeform together at the initial low loads, that makes buckling easier. This procedure can
be described by Fig. 4.16. The structure in Fig. 4.16 is buckled downward due to a

downward small transverse load P’'.

Undeformed configurations ~ Undeformed configurations

1.Deformed configuration ~ 2.Deformed configuration 3. Buckled configuration
when axial loads are small ~ when axial loads are large

Fig. 4. 16: Deformation patterns of two-tow structure

Non-linear finite element solution for the relation of buckling load and ratio of
tension stiffness and bending stiffness, E£;4/ E; [, is plotted in Fig. 4.17. For comparison
purpose the analytical solution shown in Fig. 3.3 is also plotted in Fig. 4.17. The values
of the stiffness ratio at different points shown in Fig. 4.17 are obtained in the same way
as in Fig. 3.3. For clarity the values shown in Fig. 4.17 are also listed in Table 4.2. From
both the table and the figure one can observe that the value of the buckling load obtained
from either non-linear finite element solution or approximate analytical solution tends to

increase as the thickness of the beam becomes larger, but the differences between the two
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Table 4. 2: List of non-dimensional buckling loads of NFES' and AAS?

Stiffness ratio (1/mm) 208.33 247.93 300.00 370.37 468.75
Thickness of the beam (mm) 0.24 0.22 0.20 0.18 0.16
NBLNFES’ 0.9882 0.9876 0.9862 0.9853 0.9834
NBLAAS* 1.0111 1.0109 1.0105 1.0101 1.0096
Relative error’ (%) 2.26 2.30 2.38 2.46 2.60

1. NFES — Non-linear finite element solution.

2. AAS — Approximate analytical solution

3. NBLNFES — Non-linear finite element solution for non-dimensional buckling

load.

4. NBLAAS — Approximate analytical solution for non-dimensional buckling load.
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5. The error of non-linear finite element solution relative to approximate analytical
solution.
solutions tends to decrease. This is because of the shear effect of the beam. For a thin
beam, when it gets thinner, it will be easier to be deformed and the value of its buckling

load will tend to be smaller.

4.7 Simply-supported three intersected curved tri-

axial composite structure

A simply supported curved tri-axial composite tow structure, the so-called unit
cell, is shown in Fig. 3.4. This tri-axial structure is made of three composite tows woven
at angles of 0°, 60°and -60° with each other and bonded together by resin at locations
situated at 1/4 and 3/4 of the length of each beam. There are three connections among the
three beams. The initial configurations of the beams follow full sine curve. The structure
is loaded with three static compressive loads at three roller-supported ends and three
small lateral downward static loads at the three apexes shown in Fig. 3.4. The small
lateral load P'y, P'; and P’3 at apex are still used to initiate the instability. The values of
the axial loads for the three beams, which are P4, Pg and P¢, will be kept the same.

The structure is modeled using 12 4-node elements with 4 elements for each tow.

The maximum deflection u, is measured from its central line corresponding to its

unloaded configuration. The dotted lines in the figure constitute the x,x, plane of co-
ordinate system. Geometries of the structure shown in Fig. 3.4 are as follows:

The beam AA'is in x,x, plane and the equation of its central line is given by
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% = Zsin(Z x) -4)

x,=0 4-5)
The beam CC'is in x.,x., plane, where x,, is parallel to x, axis and x,, is in
ox,x, plane and is intersected with ox, axis at angle of — 60°. The equation of central

line of beam CC' is given by
Xey =—2Z sin(%[ Xc1) (4-6)
The beam BB'is in xg x,, plane, where x,,is parallel to x, axis and x,, is in

ox,x, plane and is intersected with ox, axis at angle of60° . The equation of central line

of beam BB' is given by
X3 =—2 Sin(zTn- Xp) 4-7)

The load and maximum deflection curve of the structure is shown in Fig. 4.18.
The buckling load from non-linear finite element solution in this case is P, /(z*E,I1/1?)

= (.9564. The result obtained from approximate analytical solution in Section 3.3 is
0.9507. Comparing the two solutions, the difference of the buckling load for a unit cell
between them is 0.6%. It is an excellent agreement.

The effect of the resin on three-intersected-tow structure is shown in Fig. 4.19. It
can be seen that the effect of the resin on the three-intersected-tow structure looks the
same as the two-intersected-tow structure, except the slope of the curve for the three-
intersected-tow structure is less than that of the two-intersected-tow structure. This
reveals that the more tows are involved in the tow structure by weaving, the less effects

the resin has on the buckling behavior of the structure.
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Fig. 4. 18: Load versus maximum deflection curve of simply-supported
three intersected tow structure
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Fig. 4. 19: Buckling load for three-tow structure versus Young’s
modulus of the resin
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4.8 Conclusion

A non-linear finite element analysis for the buckling behavior of several simple
curved composite beam structures has been performed. These structures include
individual straight and curved composite beam, composite tow structure with two
intersected curved beams and tow structures with three intersected curved beams.
Comparisons between present numerical solution and approximate analytical solutions
obtained in Chapter four for the corresponding structures are also made. The accuracy of
the numerical solutions has been confirmed by the approximate analytical solutions for
corresponding structures. Therefore, the non-linear finite element formulation can be
used for analyzing the buckling behavior of the complicated tri-axial woven fabric

composite tow structures, which will be presented in the next Chapter.
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Chapter 5

Buckling analysis of more complicated

tri-axial structures

Buckling of a structure may cause structural instability or collapse. The maximum
load that a structure can support prior to failure has to be estimated. In this Chapter, the
buckling analysis for more complicated tri-axial structures will be conducted. The tri-
axial structures are restrained either along upper and lower edges or only along left and
right edges or all four edges and are subjected to a uni-directional or bi-directional
loading. These cases will be studied separately.

The typical configuration of the tri-axial tow structure under investigation is the
basic composite structure with six tri-axial woven fabric composite tows bonded at their
interlaced parts by resin, as shown in Fig. 5.1. The investigation conducted involves
buckling analysis, sensitivity analysis of buckling behavior to initial imperfections and to
the change in boundary conditions. By adding different numbers of X-crossovers both
vertically and horizontally to the basic tri-axial structure, modified basic tri-axial
structures configured in the rectangular in-plane shape with different in-plane aspect ratio
values are obtained. Sensitivity of buckling behavior to the in-plane aspect ratio of these
structures will also be studied. Performing buckling analysis on these configurations will
lead to a better understanding of the relationship between buckling loads and the size and

shape of the tri-axial woven structures.
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Fig. 5. 1: Basic composite structure with six woven intersected curved tows

5.1 Simply-supported basic structure subjected to

uni-directional loading along x, direction

A simply-supported composite structure consisting of six curved tri-axial woven

fabric composite tows (the so-called basic tri-axial composite structure shown in Fig. 5.1)

subjected to uni-directional compressive loads Ppy, Pa:, Pp: and Py along x, direction at

the supported ends and six small lateral downward static loads of equal magnitude
denoted by dots at the six apexes, that are used to initiate the deflection, is shown in Fig.
5.2. The structures shown in Fig. 5.1 and 5.2 are the same. Both of them are the basic
composite structure. Fig. 5.1 is a three dimensional view of the central line of the
structure and Fig. 5.2 is a two dimensional view of the configuration. The values of the
axial loads, Pa’, Pp' , P and Py are kept to be equal and they are increased by the same
increment each time. The values of the six transverse loads denoted by dots are kept to be
equal and constant throughout. They are equal to 0.005N and this loading is kept to be the

same in the following sections, unless otherwise specified.
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The structure, as mentioned in the above, is made of six composite tri-axial tows
that are woven at angles of 0°, 60°and 120° and bonded together by resin at the interlaced
parts. The tri-axial composite tow is assumed to be orthotropic and linearly elastic. It is
idealized by using 48 4-node beam elements which are distributed along the central line
of every individual curved tow, as shown in Fig. 5.3. The central lines of the curved tows
can be approximated by sine curves. Every element takes up a quarter of a full sine curve

of the central line as shown in Fig. 5.3. The projected length, L, of the structure is equal

Tow Resin

Cross-section S-S’

Fig. 5. 2: Basic structure with six intersected tows subjected to
uni-directional loading

to 9.16 mm. The cross-sectional dimensions of the beam (tow) are 0.84x0.2 mm, which is
kept the same in the following sections. The maximum deflection u,_, of the structure is
measured from its mid surface corresponding to the unloaded configuration. The central

points of the resin part that is between the interlaced tows in Fig. 5.2 constitute the x,x,
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plane of the co-ordinate system and the x; co-ordinate is determined as per the right-

hand-rule. The structure is simply-supported at the edges of x;=0, L as shown in Fig. 5.2.

Element [1] El

Fig. 5. 3: Central line of a full sine wave of an individual
tow of the basic structure and its element meshing

The central line of beam AA' as shown in Fig. 5.1 and 5.2 is in x,x, plane and A

is the origin of the co-ordinate system. The equation of its central line is given by

4x2 =0 (5'1)

X,=-Z sin(—Aﬂ—L— &)

where Z =0.133 mm, and this value has been obtained from experimental observation of
the microphotograph of a tow. Here, Z is the amplitude of the curved tow, which is equal
to the distance between the centers of the resin part and tow at the interlaced cross-

section as shown in Fig. 5.2; £ €[0,L] is the independent parameter used to express a

space curve in the co-ordinate system X, x,x, with origin at 4; AL is the length of

hexagon in the middle as shown in Fig. 5.2, AL = 2.29 mm.

The beam BB’ is parallel to beam AA’ and the distance between them is
2AL sin(%) as shown in figures 5.1 and 5.2. The equation of the central line of beam BB’
is given by
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1%, ==2AL sin(%) (5-2)

Xy = ZSin(—A’-’L— &)

The beam CC' is intersected with beam AA’ at an angle of 60° counterclockwise

as shown in figures 5.1 and 5.2. The equation of its central line is given by

x, = £ eos(3)

1x, = (& —3AL)sin(§) (5-3)

Xy = Zsin(AiL-f + %)

The beam DD’ is parallel to beam CC’ and is located at a distance of 2AL sin(%)

from beam CC' as shown in figures 5.1 and 5.2. The equation of its central line is given
by

-

x =2AL+¢& cos(%)

1% = (£-3AL)sin(7) (5-4)

Xy = Zsin(XﬂL—.f +—’25)

\

The beam EE' is intersected with beam AA' at an angle of 120° counterclockwise

as shown in figures 5.1 and 5.2. The equation of its central line is given by
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[ eneE
X =g cos(7)

A

X, = (AL —:)sin(g) (5-5)

. T 7
Xy = Zsm(Eg —-2—)

\

The beam FF' is parallel to beam EE’ and is located at a distance of 2AL sin(%)

from beam EE' as shown in figures 5.1 and 5.2. The equation of its central line is given

by

-

x, =2AL+¢& cos(%)

1x, = (AL - é)sin(g) (5-6)

. T V4
Xy = Zsm(—A——L—§ —5)

Material properties of tri-axial composite tow and resin are given in Chapter 4.
The non-dimensional load versus non-dimensional maximum deflection curve of the
structure obtained by performing non-linear finite element analysis developed in Chapter
2 is shown in Fig. 5.4. Note that load P in this figure refers to the load applied to each
beam (tow). The symbol P will have the same meaning in the following sections, unless
otherwise specified. During this analysis, the load increment is set to be equal to 1N in
order to perform the static analysis. This procedure of load application is also used in the
following sections.

The non-linear finite element solution for the non-dimensional buckling load of a

simply-supported basic composite structure shown in Fig. 5.2 subjected to uni-directional
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Fig. 5. 4: Load versus maximum deflection curve corresponding to the
structure shown in Fig. 5.2; u3y.x is the maximum deflection of the structure
referred to the unloaded configuration

loading is P, /(#z*E,I/1*)=1.002.

Comparing the value of the buckling load for the basic tri-axial structure with
those of the simply-supported individual curved beam made of a tow shown in Fig. 4.8
and the simply-supported three-intersected curved tow structure shown in Fig. 3.3, it is
seen that the critical buckling load of the basic structure is 9.09% higher than that of the
simply-supported individual curved beam and 4.77% higher than the critical buckling
load of the three-intersected curved tow structure. It shows that the basic tri-axial

composite structure made by bonding and weaving many curved tows together can

sustain larger compressive loads than that of the individual curved tow and that of the tri-
axial woven fabric tow structure with fewer tows. Actually, when the tri-axial composite

structure is fabricated by weaving and bonding tows together in the way shown in Fig.

80



1.2 and loaded uni-directionally, the structure is strengthened by the bonded and woven
tows in the directions of 60° and 120° and resin. Therefore, the value of its buckling load
should be larger than that of the individual tow and that of the structure with fewer tows.

For the purpose of application, the total non-dimensional load ( P, /(z*E, 1/1?))

per unit width of the tri-axial structure versus non-dimensional maximum deflection
curve of the structure is shown in Fig. 5.5. From this figure one can observe that the
shape of the curve is similar to the one shown in Fig. 5.4, but the values of the buckling
load shown in these two figures are different. This is because the quantity of the load
shown in Fig. 5.5 is obtained by dividing the load in Fig. 5.4 by the width of the basic tri-

axial structure.

0B

o

PEJ(n/L)*W (1/mm)

o
N

0.002 0004 0006 0.008 DOV 0012 0.014 0.016 0.018 0.02

Non-dimensional maximum deflection usax/L

Fig. 5. 5: Total non-dimensional load per unit width of the basic tri-axial
structure, Pr/E LI(7t/L)2 W, versus non-dimensional maximum deflection curve
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Effect of Young’s modulus of resin

In order to know the effect of the Young’s modulus of the resin on the buckling
behavior of simply-supported basic tri-axial structure shown in Fig. 5.2, ten times of
variation, both larger and smaller than the current Young’s modulus of resin is
considered. Buckling loads for different Young’s modulus values are plotted in Fig. 5.6.
From this figure one can observe that variation of the Young’s modulus of the resin has
little effect on buckling load of the basic structure. This is because the effect of the resin
is diminished due to the interaction of the woven tows constituting the structure when

they move up and down.

1 []03 T g T T T

1.0025 : &

Original value of Young's modulus of the resin

v

Non-dimensional buckling load, P./E.l(w/L)*

1.002 &
1.0016} -
1.001 — : -

5 10 15 20 2 30 %

Young’s modulus of the resin (GPa)

Fig. 5. 6: Buckling load for basic structure versus Young’s modulus of the resin
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5.2 Simply supported basic structure subject to
loading along X, direction

In some cases, the tri-axial woven structure may sustain compressive loads in the
x, direction. The buckling behavior may be different from that of the structures that are
loaded in x; direction because of the apparent anisotropic nature of the structure. In order
to predict the buckling behavior of the tri-axial woven structure in these cases, consider

the basic tri-axial structure that is simply-supported at the edges parallel to x; axis and

loaded in x; direction as shown in Fig. 5.7.

Fig. 5. 7: Basic structure with six intersected tows subjected to
uni-directional loading in x; direction

The non-linear finite element solution for the non-dimensional buckling load of

the structure shown in Fig. 5.8 subjected to uni-directional loading in x; direction is

P, (x*E,1/L*)=0.9217. Comparing this result with the one corresponding to the structure
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as shown in figures 5.2 and 5.4, the difference between the values of the buckling loads

in both cases is about 0.08. It is only 8% less in the present case than in the previous case.

This shows that the tri-axial woven fabric composite structure displays in-plane isotropic

properties.
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Fig. 5. 8: Load versus maximum deflection curve of the structure as shown in Fig. 5.7

5.3 Simply-supported modified basic tri-axial

structure subjected to uni-directional loading

along x, direction

Modified basic tri-axial structures are obtained by adding additional tows to the

basic tri-axial structure. These structures have longer and wider in-plane dimensions than

the basic tri-axial structure. Studying the buckling behavior of the modified basic tri-axial
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structures can provide the sensitivity analysis for the in-plane aspect ratio of the tri-axial
structures.

Two modified basic tri-axial structures will be discussed in this section. The first
one (8-tow structure) corresponds to the tri-axial woven structure in which one more X-
crossover is added horizontally to the basic structure as shown in Fig. 5.9. The second
one (10-tow structure) corresponds to the tri-axial woven structure in which two more X-

crossovers are added horizontally to the basic structure as shown in Fig. 5.10.

P

Fig. 5. 9: Tri-axial woven composite structure with
eight intersected curved tows

The final configurations of the two modified tri-axial structures will have different
in-plane aspect ratio values with respect to the original in-plane configuration of the basic
tri-axial structure. The loading and boundary conditions are the same as the one shown in

Fig. 5.2 in Section 5.1.

Fig. 5. 10: Tri-axial woven composite structure with ten
intersected curved tows
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By performing the non-linear finite element analysis, one obtains for these two
structures the curves of load versus maximum deflection measured from their unloaded
configurations as shown in Fig. 5.11. For convenience of comparison, the load versus
maximum deflection curve for basic tri-axial structure is also shown in this figure. The
values of the buckling load obtained from non-linear finite element analysis for the

modified 8-tow and 10-tow structures are P, /(z2E,1/1*)= 1.0034 and 1.0049,

respectively.

From this figure one can see that the buckling loads for both cases are almost the

same, but the rates of their deformation are a little different. The deformation rate of

O — Basic tri-axial structure (Fig.5.2)
A = Corresponding to Fig. 5.9
ti — Corresponding to Fig. 5.10

Non-dimensional load, P/E,I(x/L)*

i

o]  § (§ 1
] 0:005 og 0015 0.02 0025
Non-dimensional maximum deflection “u3ma/L

i

Fig. 5. 11: Load versus maximum deflection curve for tri-axial woven
structures shown in figures 5.2, 5.9 and 5.10
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longer sized tri-axial structure corresponding to Fig. 5.10 is a little larger than that of the
shorter sized one corresponding to Fig. 5.9 after the load reaches certain value. It shows
that when more X-crossovers are involved in the basic tri-axial structure in horizontal
direction or the in-plane aspect ratio of the tri-axial structure becomes larger, the structure
becomes less stiff, or in other words, the tri-axial structures with larger aspect ratios are
casier to be deformed. The reasons for approximately the same value of the buckling
loads for both structures are that first, the difference of the size between the two
structures is not so much. Slight difference in the size of the structures may not result in
big change in the value of their buckling loads. Second, both the structures have the same
total cross-section, but different length. If the values of their buckling loads are
normalized, their buckling loads may not change too much. Comparing with the load
versus maximum deflection curve for the basic tri-axial structure shown in Fig. 5.11, the
buckling behavior of the three cases are nearly the same. Therefore, one can conclude
that changing the aspect ratio of the basic structure by adding more X-crossovers
horizontally to the basic tri-axial structure will not change much of the buckling behavior

of the tri-axial composite structure.

5.4 Sensitivity analysis due to the change in
boundary conditions
In previous sections the structures are simply-supported. But in many situations,
the structures are required to be clamped at one end and to be simply-supported or free at

the other end. In these cases the boundary conditions will be different from the previous

case. Therefore, the buckling behavior will also be different. It is the purpose of this
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section to conduct the investigation of buckling behavior of the basic structure subjected
to the change in boundary conditions. Since the tri-axial woven fabric composite
structures with boundary conditions clamped at one end and free at the other end are
relatively very rare in practice, the boundary condition in which the left end (x; = 0) is
clamped and the right end (x; = L) simply-supported as shown in Fig. 5.12 will be studied
instead. Uni-directional loading will be applied.

As for the case of the basic tri-axial structure subjected to uni-directional loading
with all the four edges to be simply-supported, it is exactly the same as the case which
will be studied in Case I of Section 5.7 when the loads in x, direction are equal to zero.
Therefore, the analysis of buckling behavior for this case will not be performed in the
present Section. A detailed discussion will be given in Section 5.7.

By performing the non-linear finite element analysis, one obtains for this case the
curve of load versus maximum deflection measured from its unloaded configuration as

shown in Fig. 5.13. From this figure one obtains that the value of the non- dimensional

Pp

Pan

Fig. 5. 12: Basic structure with clamped and simply-supported boundary
conditions under uni-directional loading
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buckling load in this case is equal to 1.5110, which is 50.8% larger than that of the basic

structure subjected to uni-directional loading shown in Fig. 5.2. This is because the

clamped end can resist the rotation of the structure at this end and thus shorten the

deformable length of the structure compared to the same configuration with simply-

supported end. Smaller length of the structure corresponds to larger buckling load if the

structures have the same cross-section.

Non-dimensional load, P/E I(n/L)*

5.5 Buckling analysis of the basic structure with

imperfection due to initial configuration

K o i 1 L
0 0.005 0.01 0.015 0.02 0.025
Non-dimensional maximum deflection -usmax/L

Fig. 5. 13: Load versus maximum deflection curve for basic composite
structure with clamped and simply-supported boundary conditions

0.03
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It is very common that imperfections exist in a structure either due to initial
configuration or due to eccentric loading. However, since the dimensions of the cross-
section, especially the thickness, of the beam (tow) of the structure are very small, the
eccentricity of the loading will be very small. Therefore, imperfections due to the
eccentric loading will not be investigated in this thesis. The sensitivity analysis of the
buckling load of the basic structure to the imperfection due to initial configuration will be

conducted in this section.

In practice, imperfections due to initial configuration are usually caused by
manufacturing defects or some lateral load applied to the structure before compressive
loads are applied to the structure. In order to model a more practical imperfect
configuration and carry out the buckling analysis, imperfect configurations of the
structure are obtained by superimposing the initial deflections caused by some lateral
loads to the ideal configuration (perfect original configuration). The initial deflections of
the structure are obtained by applying small concentrated lateral loads of different
magnitudes in the middle of the structure and carrying out the corresponding finite
element analysis. The combination of the original configuration and the initial deflection
constitutes the configuration of the structure with imperfection. The buckling analysis
will be conducted hereafter for these imperfect configurations. In these cases no further
lateral loads are applied to initiate the deformations as in the previous cases.

The load versus maximum deflection curves for the imperfect basic tri-axial
structure obtained by performing non-linear finite element analysis are shown in Fig.

5.14. For the purpose of comparison, the load versus maximum deflection curve for the
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basic structure is also depicted in this figure. The maximum deflection is measured from
the corresponding unloaded configuration with imperfection. From this figure following
observations can be made: The value of the buckling load decreases and the curvature of
the curve before buckling increases as the initial deflection of the basic structure
increases. Comparing the curves for the basic tri-axial structure with imperfection with
the curve for their perfect structure shown in Fig. 5.14, it can be observed that the

curvatures of the curves for the configurations with imperfection before buckling are
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Fig. 5. 14: Load versus maximum deflection curves of the basic
tri-axial structure with different initial deflections

larger than that of the perfect configuration. The larger curvature of the curve
corresponds to the more pronounced effects of the non-linearity of deformation. The
larger the initial deflection of the configuration is, the larger the deformation of the

structure will be due to compressive loading.
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5.6 Simply-supported enlarged basic structure
subjected to uni-directional loading along x;

direction

In Section 5.3 the buckling behavior of two tri-axial composite structures of rectangular
in-plane shape with different aspect ratios has been analyzed. In practical applications,
the configuration of the tri-axial composite structures could also be of quasi square in-
plane shape, which is obtained by involving the same number of X-crossovers both in x;
and x; directions. In order to carry out the buckling analysis of such configuration, the
buckling behavior of the so called enlarged basic structure will be investigated in this
section. The present enlarged basic structure (12-tow structure) can be obtained by
adding four more X-crossovers to the basic structure, with two such X-crossovers in each

of the directions of x; and x;, respectively, as shown in Fig. 5.15. It is subjected to uni-

Fig. 5. 15: Simply-supported enlarged basic composite structure
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directional loading and is simply-supported at both the left and right ends. Its upper and
lower edges are free.

By performing the non-linear finite element analysis, one obtains the curve of
load versus maximum deflection measured from the unloaded configuration as shown in
Fig. 5.16. For comparison purpose, the load versus maximum deflection curve for the
basic tri-axial structure is also presented in this figure.

Comparing the two curves shown in Fig. 5.16, it can be observed that the two
configurations shown in Fig. 5.2 and Fig. 5.15 have little difference in their buckling

behavior except the rate of deformation of the enlarged basic tri-axial structure is a little

o1 — Enlarged basic tri-axial structure
o= Basic tri-axial structure g

Non-dimensional load, P/E I(w/L)*

n 1
00002 0004 0006 O00S 001 0OD12 0014 0016 0018 002
Non-dimensional maximum deflection ©3max/L

Fig. 5. 16: Load versus maximum deflection curve of the enlarged basic
tri-axial structure under uni-directional loading

smaller than that of the basic tri-axial structure. It shows that the enlarged basic tri-axial

structure is a little stiffer than the basic tri-axial structure. The value of the non-
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dimensional buckling load of non-linear finite element solution for the enlarged tri-axial
structure is P, Ax*E,1/L*)=1.008. It is only 0.6% larger than the value of the buckling

load for the basic tri-axial structure considered in Section 5.1. This is because the two tri-
axial composite structures have similar cross-sectional properties along x; direction. That
is, every cross-section of each composite structure along x; direction has the same
number of tows in three different directions and the structures are fabricated in the same
way. If they are equivalent to beam-columns, their buckling behavior should not be much
different from each other. The small increment in the value of the buckling load for the
enlarged tri-axial structure compared to the basic tri-axial structure shows that when the
in-plane sizes of the tri-axial composite structure is relatively small, the more tows are
involved in the cross-section of the tri-axial structure along the load (x;) direction, the
larger the normalized compressive load tends to be sustained by the tri-axial structure.
However, the magnitude of the normalized compressive buckling load may not increase
infinitely; instead it may approach a certain value as the in-plane size of the tri-axial
structure increases. This will be observed using the approximate analysis later on.

As for the slight difference in stiffness (slopes of the load versus maximum
deflection shown in Fig. 5.16) of the two tri-axial structures, it is because the enlarged tri-
axial structure can sustain a little larger load as discussed above than the basic tri-axial
structure as discussed above. Therefore, the following conclusion can be made: the basic
tri-axial structure and enlarged basic tri-axial structure have little difference in their
buckling behavior.

The total non-dimensional load ( B, /(z*E,I/1?)) per unit width of the enlarged

tri-axial structure versus maximum deflection curve is shown in Fig. 5.17. For
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convenience the same curve for basic tri-axial structure is also shown in Fig. 5.17. From
this figure one can observe that the relation between the two curves of total non-
dimensional load ( B, /(z*E,1/I*)) per unit width versus maximum deflection for basic

and enlarged tri-axial structures is similar to those shown in Fig. 5.16, but the values of

the buckling load are different from those shown in Fig. 5.16. This is because the width

PEI/L)* W (1/mm)

o — Enlarged basic tri-axial structure
o — Basic tri-axial structure

o
B

1 sl L i
0002 0004 D006 0008 0OV B2 0014 0016 0018 002
Non-dimensional maximum deflection #3max/L

Fig. 5. 17: Total non-dimensional load per unit width of the tri-axial structure,
Pp/ELI(n/L)*W, versus non-dimensional maximum deflection curve

of the enlarged basic tri-axial structure is twice as much as that of the basic tri-axial
structure and the total load applied to the enlarged basic tri-axial structure in x; direction
is also two times as much as that applied to the basic tri-axial structure. The same
increment ratio is applied to both the width of the structure and the axial load.

The curve of buckling load of different tri-axial structures versus the number of

tows in these tri-axial structures is shown in Fig 5.18. From this figure one can see the
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Fig. 5. 18: Buckling load versus the number of tows in tri-axial structure
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Fig. 5. 19: Total buckling load per unit width versus the number of tows
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tendency of the value of the buckling load as the number of tows involved in the tri-axial
structure gets larger.
The curve of non-dimensional buckling load per unit width for different tri-axial

structures versus the number of tows in these tri-axial structures is shown in Fig 5.19.

5.7 Simply-supported basic tri-axial structure

subjected to bi-directional loading

In many cases, the structures are loaded bi-directionally. In order to understand
the buckling behavior of the tri-axial composite structure subjected to bi-directional
loading, the buckling analysis of the simply-supported basic structure subjected to the bi-
directional loading will be conducted next. The structure is the same as the one
considered in Section 5.1, but it is subjected to bi-directional loading and is roller-
supported at the upper and lower edges, as shown in Fig. 5.20. To analyze the effects of
bi-directional loading on buckling behavior of basic tri-axial structure, two cases will be

investigated:

Fig. 5. 20: Basic tri-axial structure with six intersected tows
subjected to bi-directional loading
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Case I: The values of all the loads in x, direction are kept to be equal and
constant throughout while the values of the loads in x, direction are kept to be equal and

they are increased by the same increment each time.

Case II: The values of all the loads both in x, and x, directions are kept to be
equal and they are increased by the same increment each time.

In both situations the values of six small lateral downward static loads denoted by
dots in Fig. 5.20 at the six apexes that are used to initiate the deflection of the structure
are also kept to be equal throughout.

By performing the non-linear finite element analysis as in the previous sections,

one obtains the curve of non-dimensional buckling loads versus non-dimensional load in

1.444

1.442

1.44

1.438

1.436

1.434

Non-dimensional buckling load, P/E I(x/L)*

T4 L ' L
0 005 0.1 015 02 025 03 0.35

Non-dimensional load in x, direction, P, /E,I(z /L)’

Fig. 5. 21: Curve of buckling load versus the loads in x, direction for Case I
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x, direction as shown in Fig. 5.21 corresponding to case I, for which the results are also

listed in Table 5.1, and the curve of the non-dimensional load versus non-dimensional

maximum deflection measured from the unloaded configuration corresponding to the

case II (that is, the case with the same loading in both x, and x, directions) as shown in

Fig. 5.22. The non-linear finite element solution of the non-dimensional buckling load for

case Il is P, /(z*E,I/I*) = 0.8729.

Table 5. 1 List of FES” of basic tri-axial structure subjected to bi-directional loading™"

B, (ZEJIL?)

0.000

0.0759

0.1518

0.3036

(P or (7 ELIIL?)

1.4430

1.4415

1.4392

1.4336

* FES refers to finite element solution.

** Values of both loads along x; and x; directions are normalized based on the individual

beam structure.
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Fig. 5. 22: Bi-directional loading with the same increment of the loads both in

x,and x, directions for Case II
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From Fig. 5.21 two observations can be made. First, the value of the buckling
load along x, direction decreases as the value of the load along x, direction increases.
The decreasing rate of the value of the buckling load is larger when the value of the load
in x, direction is getting larger. This is because the structure has been deformed due to
the loads in x, direction before the compressive loads in x, direction are applied. This

deformation can be considered as the initial imperfection of the configuration of the basic

composite structure. When the values of the loads in x, direction are getting larger, the

deformation or in other words the initial deflection of the configuration due to the loads
in x, direction will be larger. On the contrary, the values of the buckling loads along
x, direction will become smaller.

Next, simply-supporting the upper and lower edges of the basic structure
increases the value of its buckling load when it is subjected to uni-directional loading.
Actually, when the values of the loads in x, direction are equal to zero, the basic
structure is subjected to uni-directional loading. The point on the vertical coordinate in
Fig. 5.21 corresponds to this case. Comparing the values of the buckling loads of the uni-
directionally loaded basic tri-axial structure that has free upper and lower edges as shown
in Fig. 5.2 with the one that has roller supported upper and lower edges as shown in Fig.
5.20, one obtains that the buckling load of the structure with the roller supported edges is
44% larger than that of the structure with free edges. It is because restraining the
unloaded edges of the basic structure may make the structure harder to deform. As a
result, its buckling load becomes larger compared with the free edge case.

Fig. 5.22 shows the buckling behavior of the bi-directionally loaded basic tri-axial

structure with the same increments of the loads in both x,and x, directions. Comparing
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Fig. 5.22 with Fig. 5.4, following observations can be made: first, the value of the
buckling load ( 2, /(z*E,1/1*) = 0.8729 in this case) of the bi-directionally loaded tri-

axial composite structure is smaller than that of the uni-directionally loaded basic tri-axial
composite structure; second, the deflection and the rate of deformation of the bi-
directionally loaded case are also a little bit larger than those of the uni-directionally

loaded case. The reason for that is due to the effects of the loads in x, direction.

5.8 Conclusion

Buckling behavior of various forms of tri-axial woven fabric composite structure
has been studied numerically using non-linear finite element formulation developed in
Chapter two. The structures include the basic tri-axial structure, modified basic tri-axial
structures that are obtained by adding one or two X-crossovers horizontally to the basic
tri-axial structure and enlarged basic tri-axial structure that is obtained by adding more X-
crossover to the basic tri-axial structure both horizontally and vertically, two each in both
directions. They are subjected to either uni-directional loading or bi-directional loading.
The numerical results reveal that these tri-axial composite structures subjected to uni-
directional loading have a little difference in the value of their buckling loads. This shows
that slight difference in the configuration of tri-axial composite structure will not result in
big jump in the value of its buckling load, but the small change in the value of the
buckling load does have its significance, that is, when the number of tows in tri-axial
structure gets larger, the value of the buckling load of corresponding structure becomes

higher. Buckling analysis of the simply-supported basic tri-axial structure with
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imperfection in the form of initial deflection and basic tri-axial structure subjected to
different boundary conditions is also performed. It is observed that the value of the
buckling load decreases as the maximum initial deflection increases and changing the
boundary conditions of the basic tri-axial structure from simply-supported ends to
clamped ends will increase the value of its buckling load. The investigation of the effect
of the resin on the basic tri-axial structure shows that the Young’s modulus of the resin
has little effect on the buckling behavior of the basic tri-axial structure due to the

interaction of the woven tows constituting the structure.
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Chapter 6

Approximate solutions for simply-
supported basic tri-axial composite

structure

In order to evaluate the numerical results obtained from non-linear finite element
analysis and to provide a simpler way to validate and interpret the results, approximate
analytical solution for simply-supported basic tri-axial composite structure subjected to
uni-directional loading and bi-directional loading will be presented in this Chapter. The
equivalent multi-layered composite plates corresponding to the uni-directionally loaded
basic tri-axial composite structure and equivalent anisotropic plate corresponding to bi-
directionally loaded basic tri-axial structure will be used for modeling. Plate theory will

be employed to determine their buckling loads.

6.1 Basic tri-axial structure subjected to uni-

directional loading

A typical simply-supported tri-axial woven fabric composite tow structure
subjected to uni-directional loading is shown in Fig. 6.1. Two rigid bars served as the
support fixture are bonded with the structure at the ends of x;=0 and L. The loads are
uniformly distributed at the restrained end. Considering that the thickness of the structure
is very small compared with its in-plane dimensions and that the overall in-plane shape of

the structure is more like a thin plate or a shell (after undergoing larger deflections) with
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Fig. 6. 1: Typical tri-axial woven fabric composite tow structure

open holes, if the open holes of the structure are idealized to have been filled with some
kind of pseudo material, the whole structure could be modeled as a plate. Therefore, it is
the purpose of the present section to find out an equivalent laminated composite plate
model (hereafter called “plate model”) to the tri-axial composite structure (hereafter
called “beam model” since it is modeled as an interconnected beam structure) to
determine its buckling load. If the whole piece of the structure is taken as a thin
laminated composite plate, cylindrical bending of the plate may be anticipated and the
equivalent conditions between the “beam model” and the “plate model” need to be made.
The procedure to obtain an equivalent plate to the tri-axial structure is as follows:
1. The tri-axial structure consists of three types of tows: tows parallel to the loading
direction, tows making an angle of 60° with the loading direction and tows
making an angle of — 60° with the loading direction.
2. One set of equations will be developed to establish equivalence between tows
parallel to the loading direction and an equivalent plate with a principal axis

parallel to the loading direction.
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3. One set of equations will be developed to establish the equivalency between tows
making an angle of + 60° to the loading direction and an equivalent skew plate
with two parallel edges making an angle of + 60° to the loading direction.

4. The final equivalent multi-layered plate with different fiber orientations
equivalent to the tri-axial structure will be made by bonding all the equivalent
single layered plates corresponding to tows as discussed in item 2 and 3 above.

5. Ciritical buckling loads calculated using the above equivalency will be done. If

good comparison is obtained, the equivalency equations will be established for

approval use.

6.1.1 Equivalent conditions for a simply-
supported composite beam and simply-

supported single layered composite plate

Let us consider the equivalent conditions for a simply-supported composite beam
and a single layered composite plate with simply-supported edges at x; = 0 and L and free
edgesatx, = -b/2 and 5/2 as shown in Fig.6.2 (whereb is the width of the plate). In

this figure the geometric parameters of the single layered plate are defined symbolically

with overbar.

"_HE..?\

(a)
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Fig. 6. 2: (a) Simply-supported beam; (b) Simply-supported rectangular plate

6.1.1.1 Equilibrium equation for a simply-supported individual
composite beam

For a simply-supported straight beam (assume that the beam is made by an
individual straight composite tow) and using the same assumptions made in Chapter 3,
that is, plane sections remain plane after bending and the effect of transverse shear is

negligible, the equilibrium equation corresponding to Fig. 6.2(a) can be written as [20]

4 2
E L¥x, 4 2
dx, dx,

=0 (6-1)

where P is the concentrated compressive load applied at the centre of the beam and w3 is

the deflection of the beam and subscript b hereafter refers to the beam.

6.1.1.2 Equilibrium equation for a simply-supported rectangular
single layered composite plate

Consider a rectangular plate with its left and right edges simply-supported and the
other two opposite edges free, as shown in Fig. 6.2(b). If one assumes that the plate is
made by using the same composite material as the composite beam (tow) but with

different cross-sectional dimensions and uniformly distributed load is applied at the right
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end of the plate along x; direction, the deflection of the plate is independent of x, and its

equilibrium equation is given by [67]

_d*%u,, —__d%u
Db +Pab—L2 =0 6-2
PRk = (62)
where D, = 1_E a’ is the bending rigidity of the single layered plate per unit

width in x, direction, v;r and vy, are the longitudinal-transverse and transverse-
longitudinal Poisson’s ratio of the tow, respectively, a is the thickness of the single
layered plate, b is the width of the plate, P is the applied uniformly distributed pressure,

u,; is the deflection of the plate and subscript p and hereafter refers to the plate.

6.1.1.3 Equivalent conditions for simply-supported composite
beam and simply-supported single layered rectangular

composite plate

From equations (6-1) and (6-2), if the beam and the single layered rectangular
plate are completely similar or equations (6-1) and (6-2) have the same solutions, the

following relations must be satisfied:

_3~
_ab (6-3)
1-virvy
ab =ab (6-4)
Pab =P (6-5)

Note that since the same material is used for the beam and the equivalent single

layered plate, their material constants are the same. Therefore, the cancellations are made
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for the factors with the same material constants during the derivation of equation (6-3).
The same procedures are employed in the derivation used in Figure 6.3.

Equations (6-3) through (6-5) are the requirements for the availability of replacing
the composite beam with an equivalent single layered composite plate, that is, the

equivalent conditions for the beam and the single layered plate.

6.1.2 Equivalent conditions for a simply-
supported off-axis composite beam and
simply-supported off-axis single layered

composite plate

Let us consider the equivalent conditions for simply-supported off-axis composite
beam and off-axis single layered composite plate. Here the “off-axis beam” or “off-axis
plate” means the longitudinal symmetric axis of the beam or the plate makes an angle

with x; axis, as shown in Fig. 6.3.

4
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Fig. 6. 3: (a) Simply-supported off-axis composite beam;

(b) Simply-supported off-axis single layered composite plate

6.1.2.1 Equilibrium equations for simply-supported individual
off-axis composite beam

For a simply-supported straight off-axis composite beam as shown in Fig. 6.3(a)
(assume that the beam is made by an individual straight composite tow and its symmetric
axis makes an angle of @ with x axis), its equilibrium differential equation can be derived
by considering an element of the beam. For clarity the center line of the beam and its
corresponding beam element are shown in Fig. 6.4. Before deriving the equilibrium
equation of the off-axis beam, the following assumptions are made.

Assumption 1. Apart from the force P applied in x; direction, there are no other
external forces or moments applied to the beam.

Assumption 2. The torsional effect of the beam is small and is neglected. This is
because there is no external torsional moment applied to the beam.

Assumption 3. The effects of shearing deformations and shortening of the beam

axis are neglected. Therefore, plane sections remain plane after bending.
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Assumption 4. Deformation of the beam is very small so that the cross-sectional
rotations of the beam can be decomposed into two rotations, that is, rotation about x; axis
and rotation about x; axis, and this decomposition is unique. This assumption will allow
us to decompose or superimpose the rotations of the beam cross-section about x; and x3
axes without considering the effect of the sequence of the rotations and to decouple the
moment equilibrium equations about x; and x; axes.

Assumption 5. The shearing force ¥ and bending moment M acting on the sides of
the element are assumed positive in the directions shown in Fig. 6.4 (b) in three
dimensional view. For clarity, the shearing force 7 and bending moment M are also

shown in figures 6.4 (c¢) and (d) in two dimensional view.

Center line of the
undeformed beam

X

W),

X3Py VotdV; Vi+dVs

y,
1 : C P

/’l\ P ( l [/ My+dM,
bl Center line of the M2 M, M3+dM,
deformed bearmy Vs Vaf dx

X1
e ®)

Fig. 6. 4: (a) Simply-supported off-axis beam; (b) Beam element; M is the bending
moment of the cross- section and ¥ is the shear force of the cross-section.

N X2
V3 [ %3 My+dM, V. My+dM;
V3+dV; M
Vo +dV
© ) 2

Fig. 6. 4: (c): Beam element in x;x;3 plane; (d): Beam element in xx; plane.
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The relations among the load P, shearing force ¥, and bending moment M are
obtained from the equilibrium of the element in Fig. 6.4(b). Summing forces in the x3
direction gives
V,-(V, +dV,)=0
or dV,=0 (6-6)

Taking moments about the central horizontal line of the left side cross-section

parallel to x; axis at point C (center of the cross-section) gives

M, +V; +dVy)dx, - (M, +dM2)+Pa;[”3 dx, =0
X
or (considering equation (6-6))
aM, _pdin _y (6-7)
dx, dx,

where P is the equivalent concentrated compressive load applied at the centre of the beam
and up; is the deflection of the beam in x3 direction.

According to the assumptions made before that the beam undergoes small
deformation (small translations and small rotations) and no torsional deformation
happens, the cross-sectional rotations of the beam can be decomposed into two rotations,
that is, rotation about x; axis and rotation about x3 axis. In this case, the axial deformation
of the element shown in Fig. 6.4(b) caused by bending can be decomposed into bending
caused by moment M; and bending caused by M3 and the corresponding strains and
stresses can be decomposed in the same way. Therefore, the axial deformation as shown
in Fig. 6.5 caused by bending, i.e. moment M,, in the vertical plane is given by

Uiz = —X30p, (6-8)
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Fig. 6. 5: Differential slice of a beam before and after bending
under the action of moment A/, only

where up1/; is the displacement of point R along x, direction due to bending caused by
moment M, only and 6}, is the cross-sectional rotation of the beam about x, due to
bending caused by moment M; only.

For small deflections, the rotation of the cross-section about x; or the slope of the
projection of the deformed central axis of the beam in Ox;x; plane is given by

_ duy,

6,, = 6-9
= (6:9)
By substituting equation (6-9) into equation (6-8), one obtains
du
Upryp = %3 —dxb: (6-10)
The strain in x; direction caused by bending moment A, is given by
du d’u
in = dl:cll/z =X dxlzbs (6-11)
The stress corresponding to this strain can be written as
d’u,,
O =E, 6 =-E, %3— (6-12)
dx;

where E, is the Young’s modulus of the composite beam along x; direction and is given

by [68]
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2 2 2
n ) 2 n'm
—=——(m? - v )+ —(n* -mPvy ) —— (6-13)
E EL 1 ET t LT

where m =cos@ and »n =sinf, 4 is the orientation of the fiber.
Over a cross-section, the moment corresponding to this stress as shown in Fig.

6.6, M,, is given by

M, =—L0'1,2x3dA (6-14)

o12dA = force

> + direction of M,

Fig. 6. 6: Moment and stress relation over a cross-section

Substituting for ¢/, from equation (6-12), one obtains

d du,,

2 2
_ 28 Upy . d U,
M2 ——LEx1x3 —gl—;—dA—_Exl dxlz
1

-2 I, (6-15)

1

Lx?dA =-E,

where the cross-sectional moment of inertia of the composite beam about x; axis

_L ba’
2 12 cos@

(6-16)
Substituting equation (6-15) into (6-7) and differentiating it with respect to x;, one

obtains the moment equilibrium equation about x;, axis as follows

E.L d"u;,3 dQu;,3
P dx dx,

=0 (6-17)

In the same way, one can derive the moment equilibrium equation about x3 axis.
Summing forces in the x; direction gives

V,—(V, +dV,)=0
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or dV,=0 (6-18)
Taking moments about the central vertical line of the left side cross-section

parallel to x3 axis at point C (center of the cross-section) gives

M, +(V, +dV,)dx, — (M, +dM3)+P(%12——tan0)dxl =0

Xy
or (considering equation (6-18))

M _pdn | pang-v, (6-19)
dx, X,

where uy; is the deflection of the beam in x, direction and & is the off-axis angle of the
beam axis.
Performing the same procedures or derivation as used in deriving equation (6-15),

one obtains the bending moment about x; axis as follows:

2
d"usy (6-20)

M 3= -E X dxf X3
where the cross-sectional moment of inertia of the composite beam about x3 axis

_i ab®
% 12 cos’ @

(6-21)

Substituting equation (6-20) into (6-19) and differentiating it with respect to xj,

one obtains the moment equilibrium equation about x3 axis as follows

+PL %2 _piang (6-22)

Equations (6-17) and (6-22) together constitute the equilibrium equations of the off-axis
composite beam.
Since the cross-section of the beam is very flat and the moment of inertia of the

cross-section of the beam about x; axis (7, ) is much smaller than the moment of inertia
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of the cross-section of the beam about x; axis (1, ), thatis, I, <<1I, (1, /I, =1/70.56.

This number is obtained by substituting the cross-sectional dimensions of the beam,

which are a = 0.2 mm and b = 0.84 mm, and the off-axis orientation, 8 = 60°, into

_ 0.84x0.2°

equations (6-16) and (6-21), that is, I, = 5 =1.12x10°mm* and
* 12xcos60

3
= ﬂ‘-‘—izo—zo =79.03x10°mm*, and dividing I, by I, ). Also there may be transverse
* 12xcos” 60 ? :
loads to initiate the deflection in x; direction in practice. Furthermore, the cylindrical

bending of the composite beam is assumed, that is, the symmetrical axis of the cylindrical

shape of the beam is assumed to parallel to x; axis, the deflection, u,,, in x, direction
may be very small and can be neglected compared with the deflection, u,, , in x;
direction. In this case, equation (6-22) can be removed from the equilibrium equations

and the equilibrium equation of the off-axis beam is approximately given by equation (6-

17).

6.1.2.2 Equilibrium equation for simply-supported off-axis single

layered composite plate

Consider the off-axis plate (in order to match the off-axis beam, off-axis plate is
used instead of skew plate in this thesis) with its left and right edges simply-supported
and the other two opposite edges free, as shown in Fig. 6.3(b). If one assumes that the
plate is made by using the same composite material as the off-axis composite beam
shown in Fig. 6.3(a) but with different cross-sectional dimensions, the load is applied at

the right end of the plate along x; direction and is uniformly distributed over the right side
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cross-section of the plate, its equilibrium equation in Cartesian coordinate system is given

by [67]
d*u N7 o' d*u o*u o*u?
p3 3 p3 p3 p3 pl
+4D +2(D, +2D + +
11 axl4 16 axlg,axz ( 12 66) 126 22 26 axgaxl 22 a ;1 11 6x13
63-—0 3170 63_0 63E0 631,70
3B ?L _(B,,+2B pl PL_pB P2 _(B,, +2B p2 6-24
16 ax12 , ( 12 66) x226x1 26 ax; 16 6x13 ( 12 66)axl2ax2 ( )
*u? *u, _ 8%
p2 p2 — p3
X, 0X 2 X

where 1‘,’1 and EI‘,’Z are the in-plane displacements of the mid-plane of the off-axis plate and

definitions of the coefficients B; and D are given in Reference [67]. In the present case,

the coefficients

B;i=0(j=1,2,6). (6-25)
Since the plate has been assumed to undergo cylindrical bending, the deflection of

the plate is independent of x,, that is, the deflection # ,, is the function of x; only.

Therefore, all orders of the derivatives of u ,, with respect to x, are equal to zero, that is,

Py Uy 0w, 0% o (6:26)

axdax, oxtox? ocdx,  oxl

Substituting equations (6-25, 6-26) into equation (6-24), one obtains the

cylindrical bending equation for the composite plate as follows:

D“B d4l'7p3 + Fa_g dzi{_p3 _
cos® dx! cosf dx}

(6-27)

Equation (6-27) is obtained by multiplying 5 /cos@ on both sides of equation (6-

24) for the sake of comparison with equation (6-17) using same unit.
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In equation (6-27) the bending rigidity of the off-axis single layered plate per unit

a’ and the related engineering constants are given by

1%1

width in x; direction D,, = %Qx

reference [68]

4 4 2.2 22
(O =M Oy +1"0p +2m7n" Q0 +4m n"Qge

E
O = L
1-vivy
E
< Q22 = I—T’ (6'28)
—Vir¥n
v E
0y, — 15k
l1-v, vy
\st = GLT

Note that if the common factor cosf in equation (6-27) is cancelled, the
equilibrium equation for the off-axis single layered composite plate will have the same
form as equation (6-2) for the rectangular single layered composite plate. The difference

is that their coefficients or bending rigidities D;; are different from each other.

6.1.2.3 Equivalent conditions for the simply-supported off-axis
composite beam and the simply-supported off-axis single
layered composite plate

From equations (6-17) and (6-27), if the off-axis composite beam and the off-axis
single layered composite plate are completely similar, the following relations must be

satisfied:

a’b=E,a’h (6-29)

%1%
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ab =ab (6-30)
Pab /cosf = P (6-31)
Equations (6-30) through (6-31) are the requirements for replacing the off-axis
composite beam with an equivalent off-axis single layered composite plate, that is, the
equivalent conditions for the off-axis composite beam and the off-axis single layered

composite plate.

6.1.3 Discussion of the equivalent conditions for
the composite beam and single layered

composite plate

Comparing equations (6-29)-(6-31) it can be seen that equations (6-3)-(6-5) are
the special case of equations (6-29)-(6-31) at 8 =0° . Therefore, equations (6-29)-(6-31)
are the general equivalent conditions for a simply-supported beam and a simply-
supported cylindrical bending plate. Of these, equations (6-29) and (6-31) ensure the
similarity of the buckling behaviors of the two structures, while all of the three equations
(6-29)-(6-31) ensure both the similarity of the buckling behavior and stress distributions
of the two structures.

When equations (6-29)-(6-31) are satisfied, the beam and the plate are of
complete similarity. When at least one of equations (6-29)-(6-31) can not be satisfied, the
beam and the plate are of partial similarity. In the present case the buckling behavior of
the tri-axial woven composite structures is of concern. Therefore, equation (6-30) will be
discarded in the equivalent conditions for the two structures in order to build a laminated

composite plate with uniform thickness in later sections.
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It is also worthy to note that equations (6-29)-(6-31) are derived by referring to
Fig. 6.3, in which off-axis angle § is counterclockwise from horizontal line corresponding
to 60° tows in tri-axial composite structure. These equations can also be used in the case
of 6= —60° corresponding to 120° tows in the tri-axial structure because no specific

requirements for the off-axis angle 6 are employed during their derivation.

6.1.4 Determination of the geometric parameters

of the equivalent single layered plates

In order to obtain an equivalent laminated composite plate which has the same in-
plane dimensions as the tri-axial composite structure, the widths of the equivalent single
layered composite plates for the beams will be assumed as the distances between central
lines of the two neighboring parallel strips formed by neighboring parallel beams. As
shown in figures 6.1 and 6.7, for example, Area D formed by two neighboring parallel
beams D1-D1' and D2-D2' is a strip. Area A, B and C are the areas surrounded by the
edges of the structure and central lines of the neighboring strips parallel to beams A1-Al',
B1-B1'and C1-C1', respectively, in directions of 0° 60° and 120°., Therefore, the width of
Area 4 shown in figures 6.1 and 6.7 corresponds to the width of the equivalent single
layered composite plate for beam A1-A1". Since all the beams with 0° orientation are
distributed uniformly in the tri-axial structure along x, direction, the width of Area A is
also the width of other equivalent single layered plates for beams with 0° orientation.
Similarly, widths of Areas B and C in figures 6.1 and 6.7 correspond to the widths of the
equivalent single layered composite plates for beams with 60° and 120° orientations,

respectively. For clarity, these areas of the corresponding equivalent plates and strips are
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shown in Fig. 6.7. The tows of the structure are not shown in this figure. The same

symbols as in Fig. 6.1 are used in Fig. 6.7.

Area A

Fig. 6. 7: Equivalent plates to the corresponding beams and strip

In the present case, because the distances between the two neighboring parallel
beams in all directions of 0°, 60° and 120° are the same, the equivalent single layered
composite plates for the beams in three different directions have the same width, that is,
b =3.97 mm (6-32)

Solving equation (6-29) fora, one obtains the thickness of the equivalent single

layered composite plate as follows:
E 1
a; = a(=—>)3 (6-33)

where the subscript i that can be 60°, 0° or —60° refers to the orientation of the beams.

Note thatE, , O, . given by equations (6-13) and (6-28) are functions of 6.

Therefore, the thickness of the single layered equivalent composite plate will be different

with different orientations of the beams.
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Substituting the corresponding geometric parameters and material constants of the
beams and plates into equation (6-33), one finds that all the thicknesses of the equivalent
single layered composite plates for the beams with different orientations are

approximately equal to each other and have the value of

a, =0.1 mm (i=0°60° -60") (6-34)

6.1.5 Equivalent multi-layered composite plate

and its equilibrium equation and buckling
analysis

Now all the beams in the tri-axial woven fabric composite structure are replaced
by their corresponding approximate equivalent single layered composite plates, for which
their cross-sections are determined by equations (6-32) and (6-34). Also their lengths and
fiber orientations are the same as the corresponding beams, as shown in figures 6.1 and
6.7. In addition, the equivalent single layered composite plates with the same fiber
orientation are put in a plane at their corresponding beam location and bonded by resin.
These plates with the same fiber orientation will form a thin layer of the composite
laminate. For example, putting and bonding all the equivalent single layered plates for
beams with orientation of 0° (all “A” areas as shown in figures 6.1 and 6.7) in the
structure in parallel order in the same plane will constitute a composite laminate with 0°
of fiber orientation. Similarly, putting and bonding all the equivalent single layered plates

for beams with orientations of 60° and 120° (all “B” and “C” areas shown in figures 6.1
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and 6.7) in parallel order in their corresponding planes will constitute two thin laminates
with 60° and 120° of fiber orientations, respectively. Their in-plane dimensions are
exactly the same as those of the tri-axial woven fabric composite structure shown in Fig.
6.1 and their thicknesses are determined by equation (6-33). Stacking and bonding with
resin the three plies of the laminate in the sequence of /60%/0°/-60% will form a multi-
layered composite plate. This plate is used to replace the whole tri-axial woven fabric
composite structure. Note that in this equivalent replacement all beams oriented at 60°, 0°
and 120° in the structure are replaced by plies with fiber orientations at 60°, 0° and —60°,
respectively, and “woven fabrication and bonding with resin at the interlaced parts” of the
structure is replaced by bonding with resin the laminates that form a plate structure. If
they are loaded uni-directionally, both the original tri-axial woven composite structure
and the new multi-layered composite plate structure will have the similar buckling
behavior.

The equilibrium differential equation for the new multi-layered composite plate

structure as shown in Fig. 6.8 with cylindrical bending is given by [67]

4 3.0 3.0 2
d u,, d’u, d’u,, d’u,,

Dpll dx;; ~Pp11 dxf —Pple dx13 + pap dx12 =0 (6'35)

where u;’,l and ufﬂ are the in-plane displacements of the mid-plane of the equivalent multi-

layered plate, P, is the distributed axial load applied to the structure in x; direction and
a,=daso+do+a.so is the total thickness of the equivalent plate structure, and the bending

rigidity of the equivalent multi-layered plate structure,

D,y = -;-(Q;,if’ «—“—20)3 ~(~a_g ~921)3)+sz, «“7")3 ~(—"7°)3)+Q,2‘,’,, (@ +"—2°)’ —(“—2‘))3» (6-36)
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where Q,’;lxl is given by equation (6-28) and the superscript i refers to the fiber

orientation.

| L |

I\ L

Fig. 6. 8: Simply-supported equivalent rectangular composite plate
The coefficients By and B,i6 in equation (41) are given by

By = QY (- =) 00, (G = (- 20) 08, (@ + 29 -2 (637)
_l -60 _6_2___— _a__2 0 _5_2___@0_2 60 ;r— 5_02__5_2 _
Byis = 3 Q02 =Gy =)+ 05, () -2 405, (@ + 27 -2 (638)

Oss, = Q11 = Q1z = 205 )nm’ +(Q1 = Oy + 205 )mn’ (6-39)

Substituting the geometric parameters and material constants of the equivalent
multi-layered plate into equations (6-37) and (6-38), the coefficients B,1; and B,y are
thus obtained as By,11 = B,16 =0. Therefore, the equilibrium equation (6-35) for the

equivalent multi-layered plate can be further simplified as

d*u du
D P ypa —2 =0 6-40
Pl dxl4 pp a’xl2 ( )

The critical load or buckling distributed load of the multi-layered plate structure

for unit width shown in Fig. 6.8 is given by [67] as follows

2

T
(Ppap)cr :DpllF (6-41)

The total critical load is given by
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”2

(Ppapbp)cr = Dpllbp L_2 (6_42)

where b, is the width of the equivalent plate.

Let us consider the basic structure shown in Fig. 5.2. For the basic structure, its
in-plane projected width on x; axis is given by

b, = %Lsin% (6-43)

Since the equivalent multi-layered plate has the same width as the basic tri-axial
structure, the width of the plate can be determined by
b, =b, (6-44)
Substituting equation (6-44) and other material constants and geometric
parameters of the equivalent multi-layered composite plate into equation (6-42), the
buckling load for the plate is thus obtained as follows:

(P,a,b,),, =144.5 N (6-45)
(P,a,b,), is the total load applied to the equivalent multi-layered composite plate.

Considering the buckling load defined in the basic tri-axial woven fabric
composite structure shown in Fig. 5.2, the buckling load of the equivalent multi-layered

plate equivalent to that of the basic tri-axial woven composite structure is given by
(P,a,b,)e =(Pya,b,), 4=36.1 N (6-46)
where the denominator 4 corresponds to the 4 equal axial loads applied to the basic tri-

axial composite structure as shown in Fig. 5.2.

The normalized non-dimensional equivalent buckling load based on the same

2
factor as used in the basic tri-axial composite structure, that is, ”L—zL , 1s given by
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(P,a,b,
2EJ/L2

—2p Pl 1,09 (6-47)

This result is 8.78% larger than the value of the non-linear finite element solution
given in Section 5.1 corresponding to the basic tri-axial structure shown in Fig. 5.2. Tt is
8.13% larger than the value of the non-linear finite element solution given in Section 5.6
corresponding to the enlarged tri-axial structure shown in Fig. 5.15. In other words, the
value of the buckling load of the non-linear finite element solution for the basic tri-axial
structure is 8.07% less than that of the approximate analytical solution for the equivalent
multi-layered composite plate. The value of the buckling load of the non-linear finite
element solution for the enlarged basic tri-axial structure shown in Fig. 5.15 is 7.52% less
than that of the approximate analytical solution for the equivalent multi-layered plate.

The reason for this discrepancy is that the approximate solution for the equivalent
multi-layered composite plate does not consider the shear deformation of the plate while
the non-linear finite element solution for the beam does. Because this is a very thin plate,
shear deformation will “soften” the structure. As a result, the value of the buckling load
of the structure will be decreased due to the shear deformation. The decrease of the value
may be around 3.5% referring to the difference between the analytical approximate
solution and non-linear finite element solution for the thin beam given in Chapter 4.

Comparing the differences of the buckling loads of the non-linear finite element
solution for the basic and enlarged basic tri-axial woven structures relative to the
approximate analytical solution, one finds that difference for the buckling load of the
enlarged basic tri-axial structure is smaller than that for the basic tri-axial structure. This
is because the basic tri-axial structure is only a small part of the tri-axial woven fabric

structure and it has lower in-plane load transferability due to the edge effect of the tri-
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axial woven fabric structure. As more tows are involved in the tri-axial woven fabric
composite structure and the in-plane size of the tri-axial structure gets larger, the edge
effect will be weakened and load transferability will be improved. As a result, the tri-
axial structure with more tows and larger in-plane size will sustain larger in-plane load.
However, the load sustained by the tri-axial woven structure cannot be increased
infinitely as the in-plane size of the structure increases. It has to approach a certain value.
The analytical method reveals that this value has to be less than the approximate
analytical solution for the buckling load of the equivalent multi-layered plate because the
equivalent multi-layered plate has a better replacement or better approximation to the tri-
axial woven structure when the tri-axial structure gets larger, that is, the larger the size of
the tri-axial structure is, the higher accuracy the approximate analytical solution can
predict.

Thus, it can be concluded that the numerical non-linear finite element solution for
basic tri-axial structure subjected to uni-directional loading is confirmed by approximate
analytical solution.

For convenience the results for the values of the buckling load obtained by both
non-linear finite element analysis and approximate analytical method are listed in the
following table 6.1 and figure 6.9. One can see either from the table or from the figure
that the difference between the approximate analytical solution and non-linear finite

element solution becomes smaller as the size of the tri-axial structure gets larger.
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Table 6. 1: List of the non-dimensional buckling loads for the simply-supported tri-axial
woven fabric composite structures

Structures Non-linear FE Approximate Differences relative to
solution analytical solution | the analytical solution
Basic tri-axial structure 1.0020 1.0900 8.07%
with 6 tows
Modified basic tri-axial 1.0034 1.0900 7.94%
structure with 8 tows
Modified basic tri-axial 1.0049 1.0900 7.81%
structure with 10 tows
Enlarged basic tri-axial 1.0080 1.0900 7.52%
structure with 12-tows
1 1 T T iR e T

—-—
[me]
(4]

1 — Approximate analytical solution
0 — Non-linear finite element solution

Non-dimensional buckling load, P /E I(w/L)*

T

i K O

Fa )
L=

L

8
Number of tows in tri-axial structure

9

10

11 12

Fig. 6. 9: Comparison of buckling load between numerical solution
and analytical solution
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Therefore, one can further conclude that for design purpose, the value of buckling
load for a large sized tri-axial structure can be obtained approximately by subtracting
from the value of the approximate analytical solution by 8%. Thus determined value of

buckling load for a large sized tri-axial structure is on the safe side.

6.2 Basic tri-axial structure subjected to bi-

directional loading

Approximate analytical solution for buckling analysis of bi-directionally loaded
tri-axial woven fabric composite structures will be more complicated than that of uni-
directionally loaded tri-axial woven fabric composite structures since the bi-directionally
loaded tri-axial woven structures no longer take the form of cylindrical bending as the
uni-directionally loaded tri-axial woven structures do. Therefore, the multi-layered plate
theory developed in the last section can not be used to predict the buckling load of a bi-
directionally loaded tri-axial woven structure. New methodology has to be developed to
determine the buckling load of the bi-directionally loaded tri-axial woven structure.

First, the following assumptions are made in order to find an equivalent plate of
the bi-directionally loaded basic tri-axial structure. Assume that:

1. The bi-directionally loaded simply-supported basic tri-axial woven composite
structure can be replaced by an equivalent anisotropic single layered plate with
the same loading. Boundary conditions and in-plane sizes are the same as the

basic tri-axial structure, but with different material properties.
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2. Both the central planes of the equivalent plate and the basic tri-axial structure
have the same deformed shape. This assumption is based on the conclusions made

and numerical results obtained by Zhao and Hoa [2] and [3].

Next, determine the equivalent conditions for the equivalent plate and the basic
tri-axial structure. The equivalent conditions include determination of the material
properties and the thickness of the equivalent plate as well as the loading. The material
constants obtained by Zhao and Hoa [2] and [3] will be used as the material properties of

the equivalent plate. They are listed in the following table.

Table 6. 2: Material properties of the tri-axial woven fabric composite structure [2,3]

Young’s modulus
Epl(GPa)

Young’s modulus
Epz(GPa)

Poisson’s ratio
Vp12

Poisson’s ratio
Vp21

30

26.5

0.58

0.56

Though these material constants were obtained by modeling bigger in-plane size

of tri-axial woven fabric composite structures than the basic tri-axial structure, they can

still be used as an approximation for the basic tri-axial structure because it will be seen

later in the present section that one of the most sensitive parameters for buckling load, the

thickness of the equivalent plate, a,, is a function of these constants. Different material

constants will produce different thicknesses of the equivalent plate. More accurate

material constants will result in more accurate thickness. Less accurate material constants

will lead to less accurate thickness. However, the final buckling loads thus obtained will

approximately be the same for different sets of material constants and thickness of the
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plate because of their interaction and their compensation for each other. This can be seen
in related equations developed in later part of the present Section.

The thickness of the equivalent plate can be determined by using energy method,
that is, if a plate is equivalent to the basic tri-axial structure, its strain energy should be
equal to the strain energy of the basic tri-axial structure, i.e.,

U,=U, (6-48)
where U, is the strain energy of the plate and Uj is the strain energy of the basic tri-axial
structure; subscript p refers to plate and subscript & refers to the basic tri-axial structure.

Bi-directionally loaded simply-supported anisotropic plate is shown in Fig. 6.10.
The x1x; plane is the mid-plane of the rectangular plate. Its in-plane dimensions are the

same as the basic tri-axial structure.

P,sz
[T 77 77 7

Fig. 6. 10: Bi-directionally loaded simply-supported rectangular plate

If the in-plane displacements of the plate are neglected and plane stress

assumption is employed, the strain energy of the plate can be written as [67]
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Px,~ pxy Dxy ™ pxy Pxixy = priXxy p

1
U,=5 ij(a £, +0, &, +20, £, )dV (6-49)

where o, ,0p, ,0p,, and €, ,& are stress components and Lagarangian strain

pxy? 81’X1X2
components of the plate, respectively, and ¥, is the volume of the plate.

For an anisotropic plate, its constitutive equation is given by [67]

Oy, Om  Qpo2 0 €y,
Oy |=|@oz @z 0 € px, (6-50)
o) 0 0 Q.|| 26

PxX, PxyXxy

where the elements of the stiffness matrix are given by [67]

.

E,
Qpll = £
l—vplepz/Epl
E,
O =12, % 7%
“Vonlp Ep
J (6-51)
0 12~ VPIZEﬂ
P l_vplep2/Ep1
E,
0.=G - P
T 2(14vy,y)

If one assumes that linear elements perpendicular to the mid-plane (xx; plane) of
the plate before bending remain straight and normal to the deflection surface of the plate

after bending, the components of strain can be written as:
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. d*u,
-Xx
X 3 2
Ox,
%u
3
1€, =% e (6-52)
Xy
. 0%u,
pxyxy
| 6x16x2

Substituting equations (6-50) through (6-52) into equation (6-49), one obtains the
strain energy of the plate as follows

o*u , 0%u, 0%u 2,0%u, o%u
3) +20,12%3 ax;?;*"gpzz)%( o 3)? +40 66X 3( 3

L(Q,,n 55 4, (653)

For a plate being simply-supported on all four edges, its deflection may be
assumed as [67]

i sin =~ (6-54)

p

.m
uy = 4,,sin

where A4, 1s an arbitrary constant, m and n are integers.
Differentiating equation (6-54) with respect to x; and x, and substituting back into
equation (6-53), performing the integration to equation (6-53), one obtains the strain

energy of the plate as follows

Up =5 a3 0y O 1 + 20,0 P G 0 +40,6TFV G | (659

Considering that the lowest buckling load corresponds to the first mode deflection

in both directions of x; and x,, that is, m = n = 1, and the width of the plate b, =

Lsin—Z— =gL , the strain energy of the plate of equation (6-55) can be written as
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IIH

p962

( )4 3(Qp“+ Qpl2+ 6Qp22+?Qp66) (6-56)

For the bi-directionally loaded simply-supported basic tri-axial structure as shown
in Fig. 5.20, if its shear deformations are also neglected and the same deformation
assumptions are employed as the plate deformation, namely, the plane sections originally
normal to the centerline axis remain plane and undistorted under deformation and normal

to this axis, the strain energy of the basic tri-axial tow structure can be written as
J;, o,€,dV, (6-57)

where o, and ¢, are stress and strain in local coordinate system of each tow, in which its
origin of the local coordinate system corresponding to each tow is put at the end of the
each tow on the left side of the structure denoted by a capital letter without prime; x; axis
of the coordinate system is along that tow and directs toward the other end; x} axis is in
x1x2 plane and directs to the upward; x} axis is determined by the right hand rule. An

example of the local coordinate system of tow BB' in Fig. 5.20 is shown in Fig. 6.11.

B B’ x!
Fig. 6. 11: Local coordinate system of tow BB' in Fig. 5.20

The relation of the local stress and local strain is given by

oy =E.e, (6-58)

where the local strain ¢, is given by
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, 0%,
£, =X 8x’23 (6-59)
1

According to the basic assumption 2 made at the beginning of this section, if the
curvatures of the tows are neglected compared to the length of the tows in the structure,
the deflection equation of any tow in Fig. 5.20 can be approximated in global coordinate

system as (first mode deflection at m =n = 1)

. X, . X
u; = A4, smT‘sm—2

P

4 (6-60)

X, =kx +c

The second equation given above is the equation of local coordinate axis x| in

O x1x; plane, in which & and ¢ are constants to be determined in the following and depend

on the location of the tows in the structure shown in Fig. 5.20. They are given as follows:

Tow AA' in Fig. 5.20 k=0 and c =%L :

Tow BB’ k=0and c=%L;

Tow CC' k=43 and ¢=0; (6-61)
Tow DD’ k= /3 and c:—%L;

Tow EE' = -3 and c=§L;

Tow FF’ k= -3 and c=+3L;

Substituting the cotresponding parameters of the tow given in equation (6-61) into

equation (6-60), deflection equation of that tow can be obtained. For example, for tow
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DD/, after substitution of the parameters & and ¢ from equation (6-61), deflection

equation of tow DD’ can be written as

u; =4, sin L gin TX2
L b,
3 (6-62)
X, =43 x —gL

All the rest of the deflection equations of the tows in the structure shown in Fig.
5.20 can be obtained in the same way.

The relation between local and global coordinate systems is given by

(x] =(x, +d,)cos6 +(x, +d,)sin O

{xh =—(x, +d,)sinf+(x, +d,)cosd (6-63)

X3 = X3

where @ is the angle of the rotation of the local coordinate system about global coordinate
system, d; and d, are constants to be determined in the following and they represent x;
and x, coordinates of the origins of the local coordinate systems in global coordinate
system.

The origin of the local coordinate system of tows is given as follows:

AA'inFig.520  (d1, d2)=(0,0)

BB’ (d\, d») = (0, -{iL)
ccC’ (d1, d2) = (0, —%L)
DD’ @, d2)=(§,—%n (6-64)
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3

EE' (d1, d2) = (0, ?L)
L «/5
FF’ dy, d:
( 1, 2) (29 8

The displacement relation of local and global coordinate systems is given by
Uy =1y ‘ (6-65)
Substituting equations (6-58) through (6-65) into equation (6-57) and performing the
integration to the final equation, one obtains the strain energy of the basic tri-axial
structure as follows:

9.4713

U, =
Y

AﬁL(—%)“a%EL (6-66)

Substituting equations (6-66) and (6-56) into equation (6-48) and solving for the

thickness of the plate a,, one obtains

4=l - PRI (6-67)
Pt Qp12 +— 9 O +?Qp66

As mentioned at the beginning of the section, from equation (6-67) one can see
that the equivalent thickness of the plate depends on the values of the equivalent material
constants. Different values of the material constants will produce different value of the
thickness of the plate.

Substituting the related geometric parameters and material constants of the basic
tri-axial structure and the material constants of the equivalent plate listed in Table 1, one
obtains the thickness of the equivalent plate as follows:

a,=0.23 mm (6-68)
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The buckling load of the simply-supported rectangular anisotropic plate per unit

length subjected to bi-directional loading is given by [67]

2.3

T a b L
(prl L2 + przblz; )cr = Tp Qpll (_ZP)Z + 2(Qp12 + 2Qp66) + Qp22 (b_)Z (6'69)
p

where the subscript cr denotes the critical load or buckling load.
Load equivalent conditions

As for the load equivalent condition, it can be obtained by equating the work done
by the loads applied to the equivalent plate to the work done by the loads applied to the

basic tri-axial structure as long as the two structures are equivalent each other, namely,

W, =W, (6-70)

where the W, is the work done by loads applied to the equivalent plate and W}, the work
done by the loads applied to the basic tri-axial structure.
For the equivalent plate with reference to Fig. 6.10, if the edge displacements of

the plate are assumed to be A, for the right-hand side edge, A, , the lower edge and A,

the upper edge, the work done onto the plate is given by

W,=P,bA, +P, LA (+P, LA_, (6-71)

mpx

Since it has been assumed that the equivalent plate and the basic tri-axial structure
have the same deformation, the edge displacements of the basic tri-axial structure should
be equal to the corresponding edge displacements of the equivalent plate. The work done
of the basic structure shown in Fig. 5.20 is given by

Wy =(Ppy + Py + Py + Ppy )A, +(Fey + Ppy + Ppy + Ppiy)A
(6-72)
+(Pgy + Ppy + Foy + Ppy)A
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Substituting from equations (6-71) and (6-72) into (6-70) and rearranging, one
obtains

(Ppy + Py + Py + Py — P, b, )Ax, +(Pey + Ppy + Pgy + Py — przL)sz ot
(6-73)
(Py + Ppy + Py + Py =P, L)A, , =0

This equation should hold for any edge displacements of the structures. Therefore,
all the coefficients of the displacements have to vanish, that is,
PF'] +PBII +PAI| +PD’1 _Pp b =O

%P

Py + Py, + Py + Ppy —przL =0 (6-74)
Poy + Ppy + Py + Py, ——przL =0

Equation (6-74) describes the relations between the loads applied to the equivalent plate

and the basic tri-axial structure. Hence, it is also the said conditions for the load

equivalent.

Considering that the forces P..,, Py, P, Py, are equal in their values and
forces Py, Ppys PyysPrysPeysPryy Py and Py, are equal in their values in the present case,
the second and the third equations of (6-74) are actually the same. Thus, only the second
equation of (6-74) is to be retained for convenience. If P, Py, P, and Py, are denoted
by P, and Py, Ppy, Pyys Prys Prys Pryy Py and Py, by B, , the load equivalent conditions
of equation (6-74) can be written as

P, b, =48,

P
(6-75)
P,L= 4B,x2

As in Section 5.7, two cases will be discussed in the following.

Case I: P, is constant while P, changes.
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Solving for P, from equation (6-69), one obtains the buckling load of the

equivalent plate per unit width as follows:

2.3

(})pxl )c

_ 4
T2

b, L, b?
O (Tp) + 2(Qp12 +20 ,66) + szz (b_) = pr2 L—’; (6-76)

Substituting the load equivalent conditions given by equation (6-75) into equation (6-76),

the approximate buckling load applied to the basic tri-axial structure can be written as

n*b,a’ b L b
(Fox )er = ""‘LL{Q 11(_&)2 +2(0,12 +20,66) + O (“"“)2} —F,, = (6-77)
480 |7 L ? ? b, L

The Table 6.3 lists the values of the buckling load applied in x; direction
calculated from equation (6-77) at different values of the loads applied in x; direction by
substitution of the related geometric parameters and material constants of the plate. These

results are also shown in Fig. 6.12.

Table 6. 3: Comparison of finite element solution and approximate solution

B, /(PELIL) 0.000 0.0759 0.1518 0.3036

(B, Jor (W ELIIL?Y 1.5770 1.5755 1.5741 1.5711

P /T°E IILY) 1.4430 1.4415 1.4392 1.4336
ed%) 8.50 8.51 8.57 8.75

*  Present approximate solution.
**  Non-linear finite element solution obtained in Section 5.7.
*#** Relative error of non-linear finite element solution with respect to approximate
analytical solution.
From this Table and the curve shown in Fig. 6.12, one can see that the error of the
non-linear finite element solution with respect to the approximate equivalent plate

solution becomes ever so slightly larger when loads applied in x, direction gets larger.
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This may be because of the loading procedure. In finite element analysis, the loads in x;
direction are applied in one step while the loads in x; direction are exerted gradually by
an increment each time until the structure buckles. It is also worth to mention that the
present approximate analytical solution does not consider the shear effect on the plate
deformation. From these points of view, the accuracy of the solution of non-linear finite

element analysis is confirmed.
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Fig. 6. 12: Comparison of the finite element solution and approximate solution

Case II: Varying both P, and P,
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Because the uniform in-plane loading is applied to the basic tri-axial structure, the
in-plane load exerted to the equivalent plate should be also of uniform form. Therefore,
the following form of in-plane loading of the plate can be assumed.

P =RP (6-78)

px; px
where R is the load ratio and its value can be obtained by dividing the first equation of (6-

75) by the second one as follows:

Ppo _APby 3
P, 4B, L 2

px

(6-79)

Substituting equations (6-79) and (6-78) into equation (6-69) and solving for 7, ,

one obtains the approximate buckling load applied to the basic tri-axial structure as

follows:
z sz“; b, L.,
(Pbx1 Yor = W O (T) +2(Qp12 20 ,66) + O p ('5;) (6-80)

Substituting the required geometric parameters and material constants of the
equivalent plate and related parameters into equation (6-80), one obtains the value of the
buckling load of the basic tri-axial structure as follows
(Po)er (W E 1/ 17) = 0.9561 (6-81)

Recalling that the value of the normalized buckling load for this case obtained in
Section 5.7 by using non-linear finite element method is P, /(z2E,1/L*) = 0.8729, the

error of this solution with respect to the approximate solution given in equation (6-81) is
equal to 8.7%.
Again as in the last section and in case I of the present Section, the approximate

analytical solution obtained here does not consider the shear effect of the equivalent
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plate. Therefore, one can conclude that the non-linear finite element solution is

comparable with the approximate analytical solution.

6.3 Conclusion

In order to provide confirmation to the numerical non-linear finite element
solutions and to provide simpler ways to obtain the qualitative results, approximate
analytical solution to the buckling load of the basic tri-axial structure subjected to uni-
directional loading and bi-directional loading has been derived by using equivalent multi-
layered plate theory and anisotropic plate theory, respectively. Comparing the numerical
solution with the analytical solution, there is only 7-9% difference between them. Thus, a
good agreement is obtained. Therefore, the equivalent plate method can be a simpler way
to get the buckling load for the tri-axial woven fabric composite structure. The
approximate analytical solution also provides the upper bound of the buckling load for

the tri-axial woven fabric composite structure subjected to uni-directional loading.
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Chapter 7

Conclusions

Based on the studies conducted in this dissertation, the following major

conclusions can be drawn:

A non-linear finite element formulation for the buckling analysis of tri-axial
composite curved beam structures has been developed. Corresponding
approximate analytical solutions to the structures are also presented. The accuracy
of the numerical solutions has been confirmed by the approximate analytical
solutions for corresponding structures.

Buckling behavior of different forms of tri-axial woven fabric composite structure
has been studied using non-linear finite element formulation. The structures
include the basic tri-axial structure, modified basic tri-axial structures that are
obtained by adding one or two X-crossovers horizontally to the basic tri-axial
structure and enlarged basic tri-axial structure that is obtained by adding more X-
crossover to the basic tri-axial structure both horizontally and vertically, two each
in both directions. They are subjected to either uni-directional loading or bi-
directional loading. The numerical results reveal that these tri-axial composite
structures subjected to uni-directional loading have a little difference in the value
of their buckling loads. As more tows are involved in tri-axial structure, the value

of the buckling load of corresponding structure becomes higher. Buckling
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analysis of the simply-supported basic tri-axial structure with imperfection in the
form of initial deflection and basic tri-axial structure subjected to different
boundary conditions is also performed.

The investigation of the effect of the resin on the basic tri-axial structure shows
that the Young’s modulus of the resin has little effect on the buckling behavior of
the basic tri-axial structure due to the interaction of the woven tows constituting
the structure.

Approximate analytical solutions to the buckling load of the basic tri-axial
structure subjected to uni-directional loading and bi-directional loading obtained
using multi-layered plate theory and anisotropic plate theory, respectively, are
comparable to the corresponding non-linear finite element solution. Therefore, the
approximate analytical methods used in the present thesis provide simpler ways to
obtain the results.

Extension to the buckling of real life large tri-axial structures is discussed.
Buckling load of a real life large tri-axial structure can be obtained approximately
by subtracting from the value of the approximate analytical solution by 8%. Thus
determined value of buckling load for a real life larger sized tri-axial structure is

on the safe side.

144



Chapter 8

Contributions of the research and

recommendations for the future work

8.1 Contributions of the research

In this thesis, a detailed and efficient non-linear finite element model of tri-axial
woven fabric composite tow structure is developed to investigate the buckling behavior
and to determine the value of the buckling load. Analysis of buckling behavior and
determination of the value of the buckling load for several tri-axial structures are
performed. The results are compared with the approximate analytical solutions. Through
this study, several contributions are made. They can be summarized as follows:

e Used curved beam formulation to model the tri-axial woven fabric composite tow
structure.

e Developed the corresponding incremental non-linear finite element formulation
for the tri-axial woven composite structure using updated Lagrangian approach in
continuum mechanics theory.

e Investigated numerically the buckling behavior of several tri-axial structures, such
as individual curved composite beam, composite tow structure with two

intersected curved beams, tri-axial structure with three intersected curved beams,
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basic tri-axial structure with six woven curved beams, modified basic tri-axial
structures with eight and ten woven curved beams, respectively, and enlarged
basic tri-axial structure with twelve curved beams. Corresponding buckling loads
were also determined. These structures were subjected to different loading
conditions such as uni-directional loading and bi-directional loading and change
in boundary conditions from simply-supported ends to clamped ends. Conducted
sensitivity of the buckling behavior of tri-axial structure to the imperfections in
the form of initial deflections of the configuration. Analyzed the effect of
Young’s modulus of the resin on the tri-axial composite structure.

¢ Derived the corresponding approximate analytical solutions of the buckling loads
to all the tri-axial composite structures investigated numerically using different
techniques, such as energy method, equivalent multi-layered plate method and
equivalent strain energy method. Approximate analytical solution serves as both
the confirmation to the numerical results and simpler ways to obtain the results.

¢ Extension to the buckling of real life large tri-axial structures was discussed.

Portion of the research results have been either accepted as refereed journal

articles or submitted for publication [69-71].

8.2 Recommendations for the future work

The thesis research presents a fundamental non-linear finite element analysis of

buckling behavior for several forms of tri-axial woven fabric composite structure. It is
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recommended that the following future studies should be undertaken to further explore
the validation and the application potentials of the proposed methodologies to facilitate its
realization and implementations.

e In practical application, tri-axial woven fabric composite structure is much larger
in its size than those studied in the present thesis. Therefore, non-linear finite
element analysis of buckling behavior for larger sized tri-axial structure needs to
be investigated using more powerful computer.

¢ In order to confirm and validate the results of non-linear finite element solution
for a large sized tri-axial structure subjected to different loading conditions and
different boundary conditions, experiments need to be performed.

e For thorough understanding the buckling behavior of tri-axial woven fabric
composite structure, post-buckling analysis of the structure needs to be conducted.

e The tri-axial structure may undergo instability or collapse during buckling.
Therefore, progressive failure of the tri-axial structure under compressive loading

needs to be carried out.
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